
Reservoir Computing with a Chaotic Circuit

Johannes H. Jensen1, Gunnar Tufte1

1Department of Computer Science,
Norwegian University of Science and Technology, Trondheim, Norway

johannes.jensen@ntnu.no

Abstract

Reservoir Computing has been highlighted as a promising
methodology to perform computation in dynamical systems.
This makes Reservoir Computing particularly interesting for
exploiting physical systems directly as computing substrates,
where the computation happens “for free” in the rich physical
domain. In this work we consider a simple chaotic circuit as a
reservoir: the Driven Chua’s circuit. Its rich variety of avail-
able dynamics makes it versatile as a reservoir. At the same
time, its simplicity offers insight into what physical properties
can be useful for computation. We demonstrate both through
simulation and in-circuit experiments, that such a simple cir-
cuit can be readily exploited for computation. Our results
show excellent performance on two non-temporal tasks. The
fact that such a simple nonlinear circuit can be used, suggests
that a wide variety of physical systems can be viewed as po-
tential reservoirs.

Introduction
Most dynamical systems in nature are nonlinear (Strogatz,
2015). An abundance of these systems show complex dy-
namic behavior, giving rise to phenomena such as self-
organization, robustness, adaptivity, learning and intelli-
gence (Mainzer, 2007).

It is argued that many natural systems perform some
form of intrinsic computation. Neural systems and self-
organizing cellular structures are examples of large networks
of simple electrochemical nodes that together process large
amounts of information in support of the organism (Toffoli,
2004).

Transforming such intrinsic information processing to the
artificial realm has been a key topic towards reproducing
lifelike systems. Dynamics in the brain and neural sys-
tems has been targeted from the early days of cybernetics
(Wiener, 1961; Ashby, 1960) to today’s ongoing Human
Brain Project (Markram, 2012). The processes of cellu-
lar communication also includes dynamic behavior that can
be exploited toward mimicking natural information process-
ing in artifacts, e.g. self-replication of structure (Langton,
1984).

An often neglected aspect about these phenomena is
that they occur in physical systems. Through millions of

years, computation has evolved bottom-up with electrical
and chemical mechanisms as the basic building blocks. Evo-
lution has discovered ways of doing computation by explo-
ration and exploitation of the natural processes available in
the physical substrate. Can we similarly exploit the underly-
ing physics of matter to perform computation with such de-
sirable properties as self-organization, robustness, vast par-
allelism and adaptivity?

To be successful, we need to consider computation both
from a physical and a dynamical systems perspective. What
types of dynamical/physical systems are suitable for compu-
tation? How do we ”program” such systems (what are the
inputs and outputs)? How should we define computation in
terms of fixed points, attractors and trajectories? What’s the
role of bifurcations and chaos? (Stepney, 2012)

Finding natural models of computation would pave the
way for exploiting physical systems directly for information
processing. Such devices would be highly efficient, since
computation happens ”for free” directly in the substrate as
the result of intrinsic physical properties. Complex materi-
als with a vast number of interconnected elements could be
exploited for immense parallel processing at the nanoscale.
Evolution in-materio has indeed shown that computation can
be evolved in physical matter (Miller et al., 2014).

Reservoir Computing (RC) has emerged as a promising
technique for exploiting a dynamical system (the ”reser-
voir”) for computation. It is difficult to know how the output
of a dynamical system should be interpreted to effectively
perform useful computation. RC offers a flexible solution
to this problem by utilizing a readout layer that is trained
to produce some desired function as a linear combination
of reservoir states. By virtue of its complex dynamics, the
reservoir provides a rich repertoire of nonlinear transforma-
tions that can be utilized by the readout.

The study of nonlinear dynamics has shown that surpris-
ingly simple systems can exhibit complex behavior. In this
work, we present one of the simplest physical reservoirs: a
chaotic circuit. We show both through simulations and in-
circuit experiments that the rich dynamics of the circuit can
be exploited for solving computational tasks.

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

222

Oral presentation

Readout layerInput layer Target functionReservoir

Figure 1: Reservoir Computing architecture.

Typically, reservoirs are complex systems with many state
variables. However, even low-dimensional systems can be
used effectively as reservoirs. Appeltant et al. (2011) show
that by multiplexing output in time rather than space, a sin-
gle nonlinear node can act as a virtually high dimensional
system.

RC’s primary success story has been processing tempo-
ral (time-dependent) signals, where the reservoir serves as
a nonlinear memory. Appeltant et al. (2011) employ de-
layed feedback to provide the nonlinear node with memory
of past states. Our reservoir is conceptually simpler in that
it does not employ delayed feedback, and consequently has
very limited memory.

It is often argued that a reservoir performs optimally when
its dynamics lie on the ”edge of chaos” (Bertschinger and
Natschläger, 2004). However, a chaotic reservoir can still
be used as long as the input is sufficiently large to drive its
dynamics out of the chaotic regime (Ozturk and Principe,
2005).

For non-temporal tasks, a chaotic system can be more
readily exploited as long as it can be reset between inputs.
Goh and Crook (2007) demonstrate how the transients of
the Lorenz attractor can be used for pattern recognition. All
transients will eventually diverge in a chaotic attractor, ef-
fectively separating all inputs. However, transients will re-
main similar for an initial period of time. By selecting at
which point(s) in time the transients are observed, the sensi-
tivity of the classification can be adjusted. This selection, of
course, can be done automatically by the readout.

This paper is organized as follows: we begin by dis-
cussing the relevant background theory and related work.
Next, we describe the chaotic circuit and our approach for
using it as a reservoir. We then explain our experimental
setup, followed by results and discussion. Finally we con-
clude with a discussion of future work.

Background
Inspired by the wide array of intrinsic physical computa-
tion found in nature, Evolution in-materio takes a bottom-up
approach to evolve computation in physical matter (Miller
et al., 2014). These efforts have been rather successful and
a variety of computational devices have been evolved, e.g.
a tone discriminator and robot controller in liquid crystal

Figure 2: Driven Chua’s circuit, adapted from Murali et al.
(1994a)

(Harding and Miller, 2004, 2005) and logic gates evolved
in carbon nanotubes (Lykkebø et al., 2014; Massey et al.,
2015) and gold nanoparticles (Bose et al., 2015).

Stepney (2008) argues that the time is ripe to climb the
“neglected pillar of material computation”. To be success-
ful we must find computational models that are natural for
the physical substrate. Stepney further argues that model-
free evolutionary search provides limited insight into what
(physical) mechanisms are being exploited and for what rea-
son.

Links between dynamical systems and information theory
were established over half a century ago when Shannon en-
tropy was used to describe uncertainty in nonlinear dynam-
ics (see Crutchfield et al. (2010) for a historical discussion).

Shaw (1981) argues that attractors act as information
sinks: in the joining of trajectories, information about the
state history of the system is lost. Chaos conversely acts as
an information source: divergence of trajectories brings into
view new information not present in the initial conditions.

It has been suggested that chaos plays an important role in
natural systems by providing a rich repertoire of dynamics
that may be utilized for increased performance (Sinha and
Ditto, 1998).

Reservoir Computing has its roots in neural network re-
search, where it was discovered that the rich dynamics and
memory capabilities of recurrent neural networks (RNNs)
could be exploited without any training of the network.
Good performance could be obtained with a random net-
work coupled with a linear readout layer trained on the acti-
vations of the RNN nodes (Jaeger, 2001; Maass et al., 2002).

Figure 1 shows the typical RC architecture with three dis-
tinct parts: the input layer, the reservoir with its many recur-
rent nodes, and the readout layer. Note that the readout is
the only trained part, both the input layer and the reservoir
remain unchanged.

Formally, the reservoir transforms a low-dimensional
time-dependent input u(t) into a high-dimensional state vec-
tor x(t) which is more readily processed by the linear read-
out. The reservoir acts as a nonlinear kernel with memory,
maintaining a rich, high dimensional, nonlinear transforma-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

223

Oral presentation

− 3 − 2 − 1 0 1 2 3

x

− 3

− 2

− 1

0

1

2

3
g(

x)

a

b

b

Figure 3: Current-voltage characteristic of Chua’s diode.
Given the (normalized) voltage x across the diode, the cur-
rent through the diode is given by g(x). The characteristic
slopes a and b from equation (1) are also depicted.

tion of input history.
RNN reservoirs have outperformed state of the art meth-

ods in a wide range of challenging temporal tasks such
as speech recognition and time series prediction. For an
overview of RC methods, see Lukoševičius and Jaeger
(2009).

The reservoir can be any kind of dynamical system, as
long as it can be perturbed by input and its output observed.
This has inspired a diverse range of physical systems used
as reservoirs. Examples include an optoelectronic system
(Paquot et al., 2012), a photonics chip (Vandoorne et al.,
2014), nanoscale switch networks (Sillin et al., 2013), the
bacterium Escherichia coli (Jones et al., 2007) and even a
bucket of water (Fernando and Sojakka, 2003).

System description
In this work we consider a simple nonlinear circuit as a
reservoir. We have chosen the Driven Chua’s circuit intro-
duced by Murali et al. (1994a,b) since it is one of the sim-
plest circuits with a rich variety of dynamics. The circuit
(Figure 2) consists of only a handful of components: three
linear elements (a resistor, an inductor and a capacitor) and
a nonlinear resistor (a Chua’s diode). An external periodic
forcing signal f(t) drives the dynamics of the circuit.

The circuit is described by the following set of normalized
differential equations:

ẋ = y − g(x)

ẏ = −βy − βx+ Ff(ωt) (1)
g(x) = bx+ 0.5(a− b)[|x+ 1| − |x− 1|]

where x corresponds to the voltage across the capacitor C
and y corresponds to the current through the inductor L. The
term Ff(ωt) is the external forcing signal with amplitude F
and angular frequency ω. Note that in the original paper, the

0.0 0.2 0.4 0.6 0.8 1.0

F

− 8

− 6

− 4

− 2

0

2

4

x

Figure 4: Bifurcation diagram as the forcing amplitude F is
increased from 0.0 to 1.0. The system shown has β = 1.0,
a = −1.70 b = −0.52 and ω = 0.7.

periodic driving force was sinusoidal, i.e. f(t) = sin(t).
Here we generalize the forcing term to include any type of
periodic function.
g(x) is the equation for the Chua’s diode which has a

piecewise-linear current-voltage characteristic as shown in
Figure 3. The three linear regions have slopes a and b as
shown with breakpoints at ±1.

The dynamics of the circuit depends on the parameters β,
a, b, ω and F . Figure 4 shows the bifurcation diagram as we
increase the amplitude F of the forcing signal. Several inter-
esting phenomena can be observed, such as period-doubling
bifurcations, chaos and periodic windows.

For the current study we consider the case where the
slopes of the Chua’s diode are in the range a < −1 and
−1 < b < 0. In the absence of the external forcing (F = 0),
the system has three fixed points in this case: an unstable
fixed point at the origin and two stable fixed points P+ and
P−.

For the first part of this work we simulate the system
numerically using the normalized version of the equations.
When implementing the circuit physically we translate back
to the corresponding circuit equations.

Input/output encoding
Before any dynamical system can be used as a reservoir, we
need to decide how to perturb the system with input (the
input encoding), and how to observe the corresponding re-
sponse (the output decoding). Since we also wish to realize
the circuit experimentally, we must keep in mind the phys-
ical constraints of the system, as well as the limitations of
electrical components and test equipment.

First we tackle the question of input encoding: where in
our system do we apply the input signal u(t) and how should
this signal be encoded? Note that the focus here is on non-
temporal tasks, where the input u does not depend on time.

A common approach is to apply input as the initial condi-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

224

Oral presentation

0.0 0.2 0.4 0.6 0.8 1.0

F

− 8

− 6

− 4

− 2

0

2

4

6

8
x

Figure 5: Bifurcation diagram of transients as the forcing
amplitude F is increased from 0.0 to 1.0. The system shown
has β = 1.0, a = −1.70, b = −0.52 and ω = 0.7, sampled
with k = 10 for N = 5 periods.

tions (x0, y0) of the system. This is possible in simulation
where we are free to choose initial conditions, however in a
physical system this may not be the case. For instance, forc-
ing a physical system towards an unstable fixed point may
be impossible.

In this work, we instead apply input as part of the external
forcing signal Ff(ωt). We map the input u to the ampli-
tude F of the forcing signal in a linear range [Fmin, Fmax],
i.e. u is first normalized to the range [0, 1] then F =
Fmin + (Fmax − Fmin)u. Instead of sinusoidal forcing,
we use square waves since they are more easily generated
with our test equipment, i.e. f(t) = sgn(sin(t)). For each
input u, the system is perturbed for N periods of the forcing
signal. Between each input the system is reset to start in the
same stable fixed point.

The output of our reservoir is the (discretized) transients
of the system during the fixed perturbation period. We can
visualize the output as a bifurcation diagram of transients, as
shown in Figure 5. With such an output mapping, the reser-
voir produces many nonlinear transformations as a function
of the input F . Compared to the long-term dynamics of
the same system (Figure 4), the transients produce a richer
repertoire of nonlinear functions.

Specifically, we observe the variable x(t) while the sys-
tem is perturbed by input. We record x(t) at a fixed
sampling rate kω, always an integer multiple of the forc-
ing frequency, to obtain kN discrete output samples from
the system. The reservoir state vector is thus x =
[x(0), x(τ), x(2τ), ..., x(kNτ)] where τ = 2π/kω is the
sample interval. Note that with k = 1 we get the Poincaré
map.

Experimental setup
The dynamics of our reservoir depends on several parame-
ters which will affect performance. For the current study we

Figure 6: Driven Chua’s circuit implemented using an active
version of Chua’s diode based on two op-amps.

fix β = 1.0, ω = 0.7 and vary the slopes in the intervals
a = (−2,−1) and b = (−1, 0).

From Figure 5 we observe a linear region from F = 0
up to the first bifurcation point (here at F = 0.45). As a
reservoir, such a linear region is uninteresting (since any lin-
ear function can be constructed by the readout layer alone)
so we should set Fmin past the first bifurcation point. The
width of the linear region depends on the parameters a, b,
and ω. Thus for a given set of these parameters, there ex-
ists a (problem-specific) optimal value for Fmin and Fmax.
However, to reduce the number of parameters we need to ex-
plore, we experimentally fix Fmin = 0.5 and Fmax = 1.0.

We perturb the reservoir with N = 5 periods of square
waves and record kN = 100 output samples. Between each
input, the system is reset to a stable fixed point, i.e. we set
the initial condition (x0, y0) = P+.

Tasks
We evaluate the performance of the reservoir on two non-
temporal tasks: nonlinear regression and nonlinear classifi-
cation.

The goal of the regression task is to approximate the 7th
degree polynomial

y = (x− 3)(x− 2)(x− 1)(x)(x+ 1)(x+ 2)(x+ 3)

in the range (−3, 3). Such a smooth function was selected
to test the reservoir’s generalization capabilities and to in-
vestigate the effect of bifurcations and chaos on reservoir
performance.

For classification we use the classical “circles” dataset
with two classes organized in concentric rings (Ben-Hur
et al., 2001). This is a simple dataset which requires a non-
linear decision surface. Being two-dimensional, it can be
easily visualized which enables graphical analysis. We reset
the reservoir between the application of each input feature,
i.e. the x and y coordinates of each point are independently
transformed by the reservoir. Furthermore, the number of

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

225

Oral presentation

− 0.8 − 0.6 − 0.4 − 0.2

b

− 2.0

− 1.8

− 1.6

− 1.4

− 1.2

a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
R

M
SE

Figure 7: Score on the regression task as a function of the slopes a and b. Mean NRMSE from ten-fold CV is shown, where
values have been capped to 1.0.

samples was set to kN = 50 for each feature resulting in a
total of 100 output samples.

For each of the tasks, 10 000 examples were generated of
which 75% were used for training and 25% for validation.
As performance metric we have used the normalized root
mean square error (NRMSE) for regression and accuracy for
classification.

Ridge regression was used for the readout layer, which is
widely adopted within the RC community as it reduces over-
fitting thanks to a regularization term (Hoerl and Kennard,
1970).

Simulation experiments
First we evaluate reservoir performance in simulation, i.e.
the governing equations (1) were integrated numerically.

We sweep the slopes of the Chua’s diode in the intervals
a = (−2,−1), b = (−1, 0) and evaluate performance on
the regression task. We use ten-fold cross validation on the
training set to evaluate reservoir performance.

We then have a closer look at the best performing reser-
voir by analysing the approximated polynomial on the vali-
dation set.

Next we apply the same reservoir on classification, to
demonstrate that the reservoir can be re-used for a different
task.

Circuit experiments
Based on the sweeps from simulation, we select a good per-
forming reservoir which we implement on a printed circuit
board. We use high-quality components with low tolerances
whenever possible. Some components are not readily avail-

able with low tolerances (such as the inductor L), so these
must be measured.

Figure 6 shows our circuit implementation. A passive ver-
sion of Chua’s diode doesn’t exist, but an active version can
be implemented using two op-amps (Kennedy, 1992) which
is what we have done here. This implementation allows the
slopes to be set by the choice of resistors R1 −R6.

Given the normalized set of parameters β = 1.0, a =
−1.70, b = −0.52 and ω = 0.7 (the best performing reser-
voir from the sweeps), we calculate values for the circuit
components as follows: select L ≈ 14mH (measured) and
C = 10nF . Calculate R =

√
βL/C = 1185Ω and de-

termine the frequency of the forcing signal Ω = ω/RC ≈
9.4kHz. The required slopes of the Chua’s diode are then
Ga = Ga ≈ −1.435mS and Gb = Gb ≈ −0.439mS
where G = 1/R.

For Chua’s diode we adjust the breakpoints Bp = ±0.8V
so that the dynamics of the circuit stays within the range of
our ADC. Adjustable positive and negative power supplies
of the op-amps allows fine-tuning these breakpoints.

The slopes of the Chua’s diode are determined by resis-
tors R1 − R6. Following the design procedure in Kennedy
(1992), we set R1 = R2 = 100Ω, R3 = Esat/((Bp −
Esat)Gb − BpGa) ≈ 1915Ω, R4 = R5 = Esat/(Bp(Gb −
Ga)) ≈ 10052Ω and R6 = Esat/((Esat−Bp)(Gb−Ga)) ≈
1116Ω where Esat = 8.0V is the saturation level of the op-
amps.

After application of input, the circuit may end up in either
of the two stable fixed points P+ and P−. To make sure the
circuit starts in the fixed point P+ before each input, we use
the following reset procedure: first a constant positive volt-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

226

Oral presentation

− 3 − 2 − 1 0 1 2 3

x

− 150

− 100

− 50

0

50

100

150
y

(a)

− 3 − 2 − 1 0 1 2 3

x

− 150

− 100

− 50

0

50

100

150

y

(b)

Figure 8: Approximated polynomial (red line) on validation set: (a) simulation NRMSE=0.07 (b) circuit NRMSE=0.16. The
target polynomial is shown in green.

− 1.0 − 0.5 0.0 0.5 1.0

x

− 1.0

− 0.5

0.0

0.5

1.0

y

(a)

− 1.0 − 0.5 0.0 0.5 1.0

x

− 1.0

− 0.5

0.0

0.5

1.0

y

(b)

Figure 9: Decision surface and classification result on validation set: (a) simulation 100% accuracy (b) circuit 99.9% accuracy.

age F > −a − 1 is applied at the input f(t). This has the
effect of destroying the other two fixed points, leaving a sin-
gle fixed point close to P+ which the system will approach.
Next, the constant voltage is removed (F = 0), causing the
the system to return to the nearest fixed point P+ as desired.
The duration of the reset period must be sufficiently large
(� 1/Ω) to allow transients to settle.

To interface with the circuit we use the Mecobo platform
(Lykkebø et al., 2014). The board can generate analog volt-
age signals using an onboard DAC and record analog volt-
ages with an onboard ADC. For our experiments we use a
12-bit DAC (AD5308) with range set to ±1.024V and a 13-
bit ADC (AD7327) with a range of ±5V .

Results
Regression
Figure 7 shows the mean NRMSE of the reservoir plotted as
a function of the slopes a and b. There is a fairly large region
of parameter space with NRMSE below 0.1. The best per-

forming reservoir has slopes a = −1.70, b = −0.52 and a
NRMSE of 0.05(±0.02). We can also see that performance
is fairly smooth as a function of the two parameters.

Figure 8a shows the approximated polynomial on the
validation set obtained with the best performing reservoir.
For a majority of the input range, the approximation is al-
most perfect. There is however two noisy regions at around
x = −0.75 and x = 1.45. The NRMSE score on the valida-
tion set is 0.07.

With the circuit reservoir we obtain an NRMSE score of
0.16 on the validation set (Figure 8b). Although the overall
shape of the approximation resembles the desired polyno-
mial, there is a fair amount of noise present. Note that no
filtering has been performed on the sampled voltage data.

Classification

On the classification task, the simulated reservoir obtains
perfect accuracy. Figure 9a shows the decision surface for
the two classes, with the validation data superimposed. As

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

227

Oral presentation

can be seen, the decision surface is smooth and there is a
sizeable margin separating the two classes.

Figure 9b shows the classification results with the circuit
reservoir. Excellent performance is obtained with only one
misclassified point (99.9% accuracy). However, the decision
surface is markedly more noisy compared to simulation.

Discussion
Our results demonstrate that a chaotic circuit can be ex-
ploited for reliable computation within a reservoir comput-
ing framework.

The a and b parameter sweeps revealed a sizeable region
of parameter space where good performance was obtained.
Furthermore, the performance landscape has many smooth
features, which looks promising for further exploration of
the parameter space with stochastic search methods.

The sweep was performed with fixed values for Fmin and
Fmax which, as highlighted earlier, may be a suboptimal
choice depending on the slopes. It is likely that the overall
performance could be improved quite substantially if Fmin

and Fmax was tuned individually for each pair of slopes.
Although good results were obtained on the polynomial

task, there were two noisy regions in the approximation.
They were also present on results from the training set, al-
though not as pronounced. These regions are likely caused
by instability close to bifurcation points, where chaotic dy-
namics dominate even the initial transients. The locations of
the noisy regions (x = −0.75 and x = 1.45) correspond to
F ≈ 0.69 and F ≈ 0.87 with our input encoding. This is
very close to two narrow chaotic bands which can be seen in
the bifurcation diagram (Figure 4).

For the classification task, near-perfect performance was
obtained with a very smooth decision surface. This result
demonstrates that the same reservoir can be re-used for two
quite different tasks, by re-training the readout layer only.
This is particularly relevant for physical reservoirs whose
properties cannot easily be changed to suit a particular task.

Our experimental results with the circuit implementation
of the reservoir revealed comparable performance to that of
simulation. However, there is clear performance degradation
caused by noise, especially on the regression task. Classifi-
cation seems more robust to this noise where we can get
away with a rather rugged decision surface.

We can attribute much of the noise due to sampling errors
which will be particularly large in regions of the signal with
steep slopes. Although noise will always be a problem when
dealing with a physical system, it can have an even more
pronounced effect in sensitive chaotic systems.

Finally, the dynamics of our circuit implementation did
deviate somewhat from simulation, likely due to nonide-
alities in the circuit components. However, good perfor-
mance was still obtained, which illustrates the robustness
and power of the Reservoir Computing methodology.

Conclusion
In this work we have shown that a simple chaotic circuit can
be used effectively as reservoir. We demonstrate that its rich
dynamics can be exploited directly for computation, both in
simulation and with a circuit implementation. To the best
of our knowledge, this is the first time a chaotic circuit has
been used as a reservoir.

Here we have restricted the scope to non-temporal tasks.
Future work will explore ways in which the chaotic circuit
can be used to process temporal signals as well. Using the
reservoir for more difficult tasks should also be attempted,
e.g. with real-world datasets that contain more noise and/or
require a more complex decision surface.

Different input/output encoding schemes should be inves-
tigated to obtain a richer repertoire of nonlinear transforma-
tions. Further exploration of parameter space through e.g.
evolutionary search is likely to find better performing reser-
voirs.

To further investigate reservoirs within the same family,
i.e. with a single nonlinear node, the Chua’s diode could
be replaced with other nonlinear elements. Memristive de-
vices could potentially serve as nonlinear memory, making
the circuit applicable to tasks such as speech recognition.

Our chaotic circuit can be viewed as an electrical anal-
ogy of any physical system with similar dynamic properties.
The methods and results presented herein should therefore
be transferable to any natural system that can be manipu-
lated to behave within the desired dynamic regime. Given
that such a simple physical system can be exploited, a wide
variety of natural systems can be viewed as potential reser-
voirs. The grand goal of exploiting intrinsic properties of
matter for computation seems within reach, paving the way
towards highly efficient computation at the nanoscale.

References
Appeltant, L., Soriano, M., Van der Sande, G., Danckaert, J., Mas-

sar, S., Dambre, J., Schrauwen, B., Mirasso, C., and Fischer,
I. (2011). Information processing using a single dynamical
node as complex system. Nature Communications, 2:468.

Ashby, W. R. (1960). Design for a Brain: The Origin of Adaptive
Behavior. Chapman & Hall, London, England.

Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. (2001).
Support vector clustering. Journal of Machine Learning Re-
search, 2:125–137.

Bertschinger, N. and Natschläger, T. (2004). Real-time computa-
tion at the edge of chaos in recurrent neural networks. Neural
computation, 16(7):1413–1436.

Bose, S. K., Lawrence, C. P., Liu, Z., Makarenko, K. S., van
Damme, R. M. J., Broersma, H. J., and van der Wiel, W. G.
(2015). Evolution of a designless nanoparticle network
into reconfigurable Boolean logic. Nature Nanotechnology,
10(12):1048–1052.

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

228

Oral presentation

Crutchfield, J. P., Ditto, W. L., and Sinha, S. (2010). Introduction
to focus issue: Intrinsic and designed computation: Infor-
mation processing in dynamical systems-beyond the digital
hegemony. Chaos, 20(3).

Fernando, C. and Sojakka, S. (2003). Pattern Recognition in a
Bucket. Advances in Artificial Life, 2801(12):588–597.

Goh, W. J. and Crook, N. (2007). Pattern Recognition using
Chaotic Transients. In ESANN, number April, pages 25–27.

Harding, S. and Miller, J. (2005). Evolution In Materio : A Real-
Time Robot Controller in Liquid Crystal. In 2005 NASA/DoD
Conference on Evolvable Hardware (EH’05), number Jan-
uary, pages 229–238. IEEE.

Harding, S. and Miller, J. F. (2004). Evolution in materio: A
tone discriminator in liquid crystal. Proceedings of the 2004
Congress on Evolutionary Computation, CEC2004, 2:1800–
1807.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression:
Bias Estimation for Nonorthogonal Problems. Technomet-
rics, 12(1):55–67.

Jaeger, H. (2001). The “echo state” approach to analysing and
training recurrent neural networks - with an Erratum note.
Technical Report 148, German National Research Center for
Information Technology.

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there
a Liquid State Machine in the Bacterium Escherichia Coli?
2007 IEEE Symposium on Artificial Life, pages 187–191.

Kennedy, M. P. (1992). Robust OP Amp Realization of Chua’s
Circuit. Frequenz, 46(3-4):66–80.

Langton, C. G. (1984). Self-reproduction in cellular automata.
Physica D: Nonlinear Phenomena, 10(1-2):135–144.

Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing ap-
proaches to recurrent neural network training. Computer Sci-
ence Review, 3(3):127–149.

Lykkebø, O. R., Harding, S., Tufte, G., and Miller, J. F. (2014).
Mecobo: A Hardware and Software Platform for In Materio
Evolution. In Ibarra, O. H., Kari, L., and Kopecki, S., editors,
Lecture Notes in Computer Science 2014, volume 8553 of
Lecture Notes in Computer Science, pages 267–279. Springer
International Publishing, Cham.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time
computing without stable states: a new framework for neu-
ral computation based on perturbations. Neural computation,
14(11):2531–2560.

Mainzer, K. (2007). Thinking in Complexity. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 5 edition.

Markram, H. (2012). The Human Brain Project. Scientific Ameri-
can, 306(6):50–55.

Massey, M. K., Kotsialos, A., Qaiser, F., Zeze, D. A., Pearson, C.,
Volpati, D., Bowen, L., and Petty, M. C. (2015). Computing
with carbon nanotubes: Optimization of threshold logic gates
using disordered nanotube/polymer composites. Journal of
Applied Physics, 117(13):134903.

Miller, J. F., Harding, S. L., and Tufte, G. (2014). Evolution-in-
materio: evolving computation in materials. Evolutionary In-
telligence, 7(1):49–67.

Murali, K., Lakshmanan, M., and Chua, L. (1994a). The simplest
dissipative nonautonomous chaotic circuit. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and
Applications, 41(6):462–463.

Murali, K., Lakshmanan, M., and Chua, L. (1994b). BIFUR-
CATION AND CHAOS IN THE SIMPLEST DISSIPATIVE
NON-AUTONOMOUS CIRCUIT. International Journal of
Bifurcation and Chaos, 04(06):1511–1524.

Ozturk, M. C. and Principe, J. C. (2005). Computing with tran-
siently stable states. Proceedings of the International Joint
Conference on Neural Networks, 3:1467–1472.

Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen,
B., Haelterman, M., and Massar, S. (2012). Optoelectronic
Reservoir Computing. Scientific Reports, 2:1–6.

Shaw, R. (1981). Strange Attractors, Chaotic Behavior, and Infor-
mation Flow. Zeitschrift für Naturforschung A, 36(1):81–87.

Sillin, H. O., Aguilera, R., Shieh, H.-H., Avizienis, A. V., Aono,
M., Stieg, A. Z., and Gimzewski, J. K. (2013). A the-
oretical and experimental study of neuromorphic atomic
switch networks for reservoir computing. Nanotechnology,
24(38):384004.

Sinha, S. and Ditto, W. (1998). Dynamics Based Computation.
Physical Review Letters, 81(1):2156–2159.

Stepney, S. (2008). The neglected pillar of material computation.
Physica D: Nonlinear Phenomena, 237(9):1157–1164.

Stepney, S. (2012). Nonclassical Computation — A Dynamical
Systems Perspective. Springer Berlin Heidelberg.

Strogatz, S. H. (2015). Nonlinear Dynamics and Chaos: With Ap-
plications to Physics, Biology, Chemistry, and Engineering
(Steven H. Strogatz). Westview Press, 2 edition.

Toffoli, T. (2004). Nothing makes sense except in light of evo-
lution. International Journal of Unconventional Computing,
1:3–29.

Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Mor-
thier, G., Verstraeten, D., Schrauwen, B., Dambre, J., and Bi-
enstman, P. (2014). Experimental demonstration of reservoir
computing on a silicon photonics chip. Nature communica-
tions, 5:3541.

Wiener, N. (1961). Cybernetics: or Control and Communication
in the Animal and the Machine, Second Edition. MIT Press,
Cambridge.

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

229

Oral presentation

