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Background 
This project is intended to analyze the value of having a flexible bulbous bows (bulbs), that is, being able 
to dynamically change the geometry of the bulb during operations. The purpose of the bulb is to reduce 
the ships wave resistance, by generating a wave that cancels out the wave generated from the hull. Bulbs 
have traditionally been designed and optimized for a specific service speed and loading condition. 
However, ships face a broad spectrum of operating conditions, as they have to take on a broad variety of 
trades, and one aspect of this is variations in sailing speed, which is the focus in this thesis. Hydrodynamic 
speed variations may occur on a transit-to-transit basis, or on longer time scales. An example of the latter 
is containerships that recently have seen large reductions in operating speeds - slow steaming. 

As ship owners have noticed this trend and how sailing speed varies dependent on a wide range of 
operational and market-oriented variables, recent developments have been towards designing the bulb for 
a broader range of operating conditions. This design strategy is known as robust design, and is essentially 
suboptimal for each speed scenario. However, based on the variety of operating conditions ships are 
facing, the strategy is superior to optimizing the bulb for a fixed service speed. Lately there have also been 
several examples of bulb retrofits, where bulbs designed for a fixed speed are replaced by robust bulb 
designs. Bearing this in mind, the hypothesis is that there exists an untapped potential with respect to 
resistance minimization, by introducing a flexible bulb design. A flexible bulb design implies the option of 
changing the geometry of the bulb according to the desired speed for one specific trade – or ultimately 
during the voyage. 

Objective 
 
The overall objective of this thesis is to estimate fuel savings from being able to reconfigure the bulb 
geometry with different frequencies, with the intention of analyzing the value of being agile. Embedded in 
this objective are the sub-objectives of analyzing sailing speed variations by investigation of historical 
speed records, in addition to developing a Monte Carlo Method for simulating a bulb that can change 
geometry according to the aforementioned variations. 
 
Tasks 
The candidate shall/is recommended to cover the following tasks in the master’s thesis: 
a. Describe the problem of suboptimal bulb designs, and the principles behind the different approaches 

for handling context uncertainty. 
b. Review state-of-the-art within the topic, with focus on applications of Automatic Identification 

Systems (AIS) data for sailing speed analytics and bulb design for varying operating conditions. 
c. Identify, filter and extract relevant ship segments from AIS data by use of heuristics. 
d. Exemplify the underlying dynamics behind sailing speed variations by use of extracted 

data. 
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e. Propose a suitable stochastic process for simulation of sailing speed. Fit historical speed records from 

AIS data to the selected process, generate stochastic parameter probability density functions. 
f. Develop a Monte Carlo Method (MCM) for valuation of bulbous bow agility, with speed probability 

density functions and resistance data for different bulb design as key input. 
g. Evaluate results and compare to benchmark fuel savings from robust bulb designs. Evaluate and 

discuss methodology, with emphasis on key assumptions. 
 
Cooperation with other projects 
Resistance data utilized in this thesis are to be received from stud. techn. Andreas Watle, who works on 
his master’s thesis “Flexible Bulbous Bow Design - A Hydrodynamic Study” in parallel with this study.  
 
General 
In the thesis the candidate shall present his personal contribution to the resolution of a problem within the 
scope of the thesis work. 
 
Theories and conclusions should be based on a relevant methodological foundation that through 
mathematical derivations and/or logical reasoning identify the various steps in the deduction. 
 
The candidate should utilize the existing possibilities for obtaining relevant literature. 
 
The thesis should be organized in a rational manner to give a clear statement of assumptions, data, results, 
assessments, and conclusions. The text should be brief and to the point, with a clear language. Telegraphic 
language should be avoided. 
 
The thesis shall contain the following elements: A text defining the scope, preface, list of contents, 
summary, main body of thesis, conclusions with recommendations for further work, list of symbols and 
acronyms, reference and (optional) appendices. All figures, tables and equations shall be numerated. 
 
The supervisor may require that the candidate, in an early stage of the work, present a written plan for the 
completion of the work. The original contribution of the candidate and material taken from other sources 
shall be clearly defined. Work from other sources shall be properly referenced using an acknowledged 
referencing system. 
 
The work shall follow the guidelines given by NTNU for the MSc Thesis work. The work load shall be in 
accordance with 30 ECTS, corresponding to 100% of one semester. 

The thesis shall be submitted electronically on DAIM: 
- Signed by the candidate. 
- The text defining the scope included. 
- Computer code, input files, videos and other electronic appendages can be uploaded in a zip-file in 

DAIM. Any electronic appendages shall be listed in the thesis. 
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Preface

This thesis marks the final part of my Master of Science degree with specialization in Marine

Systems Design at the Department of Marine Technology (IMT). The work has been carried out

at the Norwegian University of Science and Technology (NTNU) during the spring term of 2017,

and corresponds to 30 ECTs.

The thesis is a continuance of my project thesis, which under the name "Flexible Bulbous Bows -

Approaching the Value of Agile Bulbs in Uncertain Operating Conditions" was carried out during

the fall of 2016. Although the master’s thesis builds on theory and data addressed in the project

thesis, it can and should be read as an independent piece of work.

For those interested, I strongly recommend to read the thesis in its entirety, as it presents some-

what unconventional concepts and methodologies. The thesis encompasses a wide range of

disciplines, which resulted in several decisions and assumptions regarding both input data and

methodology along the way. The assumptions are addressed and discussed as they arise, some

of them essential to acknowledge in order to follow the reasoning.

Although the thesis is carried out as an individual project, the project is conducted in partly col-

laboration with stud. techn. Andreas Watle, who specializes in Marine Hydrodynamics. His the-

sis is named "Flexible Bulbous Bow Design - A Hydrodynamic Study", and provided resistance

data for different bulbous bow geometries, which he obtained through Computational Fluid

Dynamics analyses. In addition, two different groups of Bachelor students at the Department of

Mechanical Engineering at NTNU campus Kalvskinnet have worked on concept development

and structural calculations of a flexible bulbous bow.

Trondheim, June 8, 2017

Jon Hovem Leonhardsen
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Summary

This thesis analyzes the value of having geometrical bulbous bow flexibility in the context of

sailing speed variability. The purpose of the bulbous bow, fitted on the foremost part of the

hull, is to reduce wave-making resistance (an important fuel consumption-determinant) by the

principles of destructive interference. Suboptimal containership bulbs have in the recent years

received increased attention. The industry-wide adoption of slow steaming after the global re-

cession in 2008 has entailed bulbs that operate off their intended design condition, yielding

poor performance. Decreasing operating speeds have triggered a new design paradigm, where

bulb design is conditioned on an average performance over a projected operating profile rather

than to a specific design point. This approach is essentially a robust design strategy, accounting

for context uncertainty without external interference during the life-cycle of the design object.

However, the principles of average performance imply potential for further improvement, by

incorporation of a dynamic bulb geometry that can adapt to the operating conditions.

The value of bulb flexibility is driven by the context uncertainty, which in this thesis is focused

on sailing speed variability. Large amounts of historical speed records from Automatic Identi-

fication System (AIS) data were analyzed, and it became evident that significant variations can

occur both during transits, and from transit to transit. As sailing speed during transit is bounded

by technical and operational factors, the mean-reverting Ornstein-Uhlenbeck (OU) process was

proposed as a stochastic representation of sailing speed. The underlying key assumption was

that transit speed can be represented by three parameters; mean value, volatility and mean re-

version rate. Parameters were estimated by running a regression on filtered transit time series

for the entire Panamax containership segment, resulting in probability density functions (PDFs)

representing possible transit speed dynamics. Sailing speed was simulated according to the OU

process with transit-specific parameters sampled from the PDFs.

Resistance data for seven bulb configurations with constant cross-section, but different lengths,

represented the flexible bulb. The option of switching between the associated fuel curves was

the model representation of bulb reconfigurations. By combining sailing speed and resistance

input, the aggregated fuel consumption was estimated with Monte Carlo simulations. The value

of flexibility is derived from the option of minimizing fuel consumption by switching fuel curves,

and the analysis was conducted with different time periods allowed between reconfigurations.

The objective being to evaluate the value of agility, that is, the value of being able to rapidly

reconfigure the bulb.
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The value of agility was investigated through a case study calibrated to a reference ship similar to

the KRISO Container Ship (KCS), for which resistance data was available. Bulb reconfiguration

periods in the range between two hours and two weeks were analyzed, yielding average fuel

savings in the range between 2.86% and 2.76%, respectively. The fuel consumption with bulb

flexibility was compared to the original bulb of the KCS, and the fuel savings from agility had an

upper bound of 3.7%, which was the maximum resistance reduction in the set of bulb configu-

rations and speeds. The relatively modest difference between high and low agility is explained

by the fact that two out of the seven bulb configurations covered the speed regime between 13

and 18.8 knots, speeds the reference ship holds 93% of the time.

It is concluded that the results leave few incentives for incorporating bulb flexibility, as fuel sav-

ings from robust bulb retrofits are reported in the range between 5% and 10%. However, as

flexibility in theory should outperform robustness, recommendations for further work include

identification of valuable bulb flexibility, as this study only analyzed the value of adjusting the

length parameter of the bulb. It is emphasized that the numerous assumptions, potentially un-

certain input parameters and marginalization of certain fuel consumption-determinants make

the analysis incomplete, underscoring that the results should be treated accordingly.
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Sammendrag

Denne oppgaven analyserer verdien av å ha geometrisk fleksibilitet i bulben i forbindelse med

hastighetsvariasjoner. Hensikten til bulben, montert fremst på skroget, er å redusere bølge-

motstanden (en viktig determinant av drivstofforbruk) ved destruktiv interferens. Suboptimale

containerskipbulber har i de senere år fått økt oppmerksomhet. Den bransjeomfattende utbre-

delsen av slow steaming etter den globale resesjonen i 2008 har medført at bulber opererer uten-

for tilsiktet designkondisjon, noe som gir lav ytelse. Fallende operasjonshastigheter har trigget

et nytt designparadigme, hvor bulbdesign blir tilpasset for en gjennomsnittlig ytelse over en

anslått operasjonsprofil, i stedet for et spesifikt designpunkt. Denne tilnærmingen er i praksis

en robust designstrategi, hvor kontektsusikkerhet blir tatt høyde for uten ekstern innblanding

gjennom designobjektets livssyklus. Prinsippene bak gjennomsnittlig ytelse impliserer likevel

et potensiale for ytterligere forbedring, ved å innkorporere en dynamisk bulbgeometri som kan

endres avhengig av operasjonskondisjonen.

Verdien av bulbfleksibilitet er drevet av kontekstusikkerheten, som i denne oppgaven er fokusert

på hastighetsvariasjoner. Store mengder Automatic Identification Systems (AIS) data ble analy-

sert, og det kom frem at signifikante variasjoner kan oppstå både under transitt, og fra transitt

til transitt. Ettersom hastighet under transitt er avgrenset av tekniske og operasjonelle faktorer,

ble den middel-reverterende Ornstein-Uhlenbeck-prosessen (OU) foreslått som en stokastisk

representasjon av hastighet. Den underliggende antagelsen var at transitthastighet kan repre-

senteres av tre parametere; gjennomsnittsverdi, volatilitet og middel-reversjonsrate. Parame-

terene ble estimert ved regresjon på filtrerte transitttidsserier for hele Panamax containerskip-

segmentet, som resulterte i sannsynlighetsdensitetsfunksjoner (SDFer) som representerte mulige

transitthastighetsdynamikker. Seilehastighet ble simulert i henhold til OU-prosessen med transitt-

spesifikke parametere samplet fra SDFene.

Motstandsdata for syv ulike bulbkonfigurasjoner med konstant tverrsnitt, men forskjellig lengde,

representerte den fleksible bulben. Muligheten til å bytte mellom de tilhørende drivstoffkurvene

var modellrepresentasjonen av bulbrekonfigurasjon. Ved å kombinere seilehastighets- og mot-

standsinput kunne det aggregerte drivstofforbruket estimeres med Monte Carlo-simuleringer.

Verdien av fleksibilitet er avledet fra muligheten til å minimere drivstofforbruket ved å bytte

drivstoffkurve, og analysen ble gjennomført med forskjellig tidsperiode tillatt mellom rekon-

figurasjoner. Hensikten med dette var å evaluere verdien av agilitet, som er evnen til å kunne

rekonfigurere bulben hurtig.
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Verdien av agilitet ble undersøkt gjennom en case-studie kalibrert til et referanseskip liknende

KRISO Container Ship (KCS), for hvilket motstandsdata var tilgjengelig. Bulbrekonfigurasjon-

sperioder mellom to timer og to uker ble analysert, som ga drivstoffbesparelser i området mel-

lom 2.86% og 2.76%, respektivt. Drivstofforbruket med bulbfleksibilitet ble sammenliknet med

drivstofforbruk med originalbulben til KCS, og drivstoffbesparelsene fra agilitet hadde en øvre

grense på 3.7%, ettersom dette var den maksimale motstandsreduksjonen i settet av bulbkon-

figurasjoner og hastigheter. Den relativt moderate forskjellen mellom høy og lav agilitet ble

tilskrevet at to av de syv bulbkonfigurasjonene dekket hastighetsområdet mellom 13 og 18.8

knop, som er området referanseskipet seiler i 93% av tiden.

Det er konkludert med at resultatene indikerer få incentiver for å innkorporere bulbfleksibilitet,

ettersom drivstoffbesparelser fra robuste bulber er rapportert i området mellom 5% og 10%.

Likevel, ettersom fleksibilitet i teorien burde utkonkurrere robusthet, inkluderer anbefalinger

for videre arbeid identifikasjon av verdifull bulbfleksibilitet, ettersom denne studien kun analy-

serte verdien av å kunne justere lengdeparameteren til bulben. Det er understreket at de mange

antagelsene, potensielt usikre inputparametrene og marginaliseringen av noen drivstofforbruk-

determinanter gjør analysen ufullstendig, og at resultatene burde tolkes i henhold til dette.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Limitations and Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Motivation 9

2.1 Naval Architecture and Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Bulbous Bow and Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Reducing Resistance with the Bulbous Bow . . . . . . . . . . . . . . . . . . . 12

2.2.3 The Relationship Between Ship Type and Bulb Design . . . . . . . . . . . . . 13

2.3 Marine Systems Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Design Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Robust Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Flexible and Agile Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Visualizing the Flexible Bulb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Data Foundation 17

3.1 AIS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Decoding Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Data Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 AIS Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Breakdown of Sailing Speed Variability 25

4.1 Long-Term Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Mid-Term Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



CONTENTS x

4.3 Short-Term Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Speed Over Ground versus Speed Through Water . . . . . . . . . . . . . . . . . . . . 32

5 Statistical Representation of Speed 37

5.1 Sailing Speed as Exogenous Random Variable . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Identification of Stochastic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Probability Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Mean Transit Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Intra-Transit Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.3 Mean Reversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.4 Parameter Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 General Methodology and Simulation Procedure 49

6.1 Input to Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Resistance Data - CFD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.2 Calculation of Fuel Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.3 Specific Fuel Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.4 Sailing Speed and Transit Characteristics . . . . . . . . . . . . . . . . . . . . . 52

6.2 Simulation of Sailing Speed and Fuel Consumption . . . . . . . . . . . . . . . . . . . 52

6.2.1 The Value of Agility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.2 Monte Carlo Method for Estimation of Fuel Consumption . . . . . . . . . . . 57

7 Case Study 59

7.1 The KRISO Container Ship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Resistance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Sea Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.2 Hull and Propeller Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.3 Specific Fuel Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Calibrating Stochastic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Verification of Fuel Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.5 Model Rules for Bulb Agility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.6 Transit Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Case Study Results 71

9 Discussion 73



CONTENTS xi

9.1 Evaluation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1.1 Cost-Benefit Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1.2 Evaluation of Resistance Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2.1 Speed as Exogenous Random Variable . . . . . . . . . . . . . . . . . . . . . . 75

9.2.2 AIS Data as Estimator for Speed Variations . . . . . . . . . . . . . . . . . . . . 76

9.2.3 The Impact of Draught and Trim . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.2.4 Not Accounting for Realistic Trade Characteristics . . . . . . . . . . . . . . . 78

10 Conclusion 79

10.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 82

A Acronyms 86

B Additional Information 88

B.1 Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.2 Net Present Value Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C DNV GL Empirical Operating Data 92

C.1 Fuel Consumption Per Nautical Mile . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C.2 Operating Profiles Containerships: 2008-2013 . . . . . . . . . . . . . . . . . . . . . . 93

D Python Code 96

D.1 Master Script (MasterAnalysis.py) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D.2 Data Extraction (PlotVessels.py) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.3 Ornstein-Uhlenbeck Parameter Estimation (OU.py) . . . . . . . . . . . . . . . . . . 101

D.4 Monte Carlo Simulation Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

D.4.1 Simulation of Sailing Speed (Generate_Sailingspeeds.py) . . . . . . . . . . . 106

D.4.2 Bulb Selection and Fuel Consumption (Fuel_Aggregated.py) . . . . . . . . . 111

D.5 List of Electronic Appendages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115





List of Figures

1.1 General flow of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Resistance components as a function of FN [-] . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Concept model, flexible bulbous bow (Bang et al., 2017) . . . . . . . . . . . . . . . . 16

3.1 Length vs beam, sample of ships with maximum speed above 15.9 knots . . . . . . 21

3.2 Length vs beam, containerships longer than 200 meters . . . . . . . . . . . . . . . . 22

4.1 Mid-term speed variations, example Panamax vessel . . . . . . . . . . . . . . . . . . 27

4.2 Speed distribution: Headhaul and backhaul Europe-Asia, large containerships . . 29

4.3 New-Panamax, Post-Panamax III and Triple-E movements . . . . . . . . . . . . . . 29

4.4 Panamax containership movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Significant wave height Pacific Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Speed distribution Pacific Ocean, December and June . . . . . . . . . . . . . . . . . 31

4.7 Speed over ground vs speed through water . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8 Record differences: Speed over ground and speed through water . . . . . . . . . . . 33

4.9 Sequential record differences: Speed over ground and speed through water . . . . 34

5.1 Infrequently exchanged AIS messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Ornstein-Uhlenbeck sample paths, mean = 17, X0 = 19 . . . . . . . . . . . . . . . . . 40

5.3 Transit time series obtained from resampling algorithm . . . . . . . . . . . . . . . . 43

5.4 Simulated sample path vs AIS speed records, example vessel . . . . . . . . . . . . . 44

5.5 Mean transit speed distribution, Panamax containerships . . . . . . . . . . . . . . . 45

5.6 Intra-transit speed volatility distribution, Panamax containerships . . . . . . . . . . 46

5.7 Mean reversion rate distribution, Panamax containerships . . . . . . . . . . . . . . 47

6.1 Sailing speed sample path, one year . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Speed variations and associated fuel consumption, illustration . . . . . . . . . . . . 55

6.3 Speed sample path with associated fuel consumption for two bulb configurations 55

6.4 Lost opportunity cost: An inverse proxy for the value of agility . . . . . . . . . . . . 56

7.1 Resistance vs speed, seven bulb lengths . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Specific fuel consumption vs sailing speed . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Fuel consumption per day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiii



LIST OF FIGURES xiv

7.4 Area of operations, reference vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5 Case-calibrated mean speed distribution . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.6 Case-calibrated volatility distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.7 Case-calibrated mean reversion rate distribution . . . . . . . . . . . . . . . . . . . . 66

7.8 Simulated fuel consumption per nautical mile during sea passage . . . . . . . . . . 68

7.9 Principles of bulb agility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1 Saved fuel distribution, two hour reconfiguration period . . . . . . . . . . . . . . . . 71

8.2 Fuel savings as a function of reconfiguration period . . . . . . . . . . . . . . . . . . 72

B.1 Saved fuel distribution, six hours reconfiguration period . . . . . . . . . . . . . . . . 88

B.2 Saved fuel distribution, twelve hours reconfiguration period . . . . . . . . . . . . . 88

B.3 Saved fuel distribution, one day reconfiguration period . . . . . . . . . . . . . . . . 89

B.4 Saved fuel distribution, two days reconfiguration period . . . . . . . . . . . . . . . . 89

B.5 Saved fuel distribution, three days reconfiguration period . . . . . . . . . . . . . . . 89

B.6 Saved fuel distribution, one week reconfiguration period . . . . . . . . . . . . . . . 90

B.7 Saved fuel distribution, two weeks reconfiguration period . . . . . . . . . . . . . . . 90

B.8 Net present value, two hours reconfiguration period . . . . . . . . . . . . . . . . . . 91

C.1 Fuel consumption per nautical Mile: smaller containerships . . . . . . . . . . . . . 92

C.2 Operating profile, 8500 TEU containership: 2008 and 2009 . . . . . . . . . . . . . . . 93

C.3 Operating profile, 8500 TEU containership: 2010 and 2011 . . . . . . . . . . . . . . . 94

C.4 Operating profile, 8500 TEU containership: 2012 and 2013 . . . . . . . . . . . . . . . 95



List of Tables

3.1 AIS message types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Key information, message type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Key information, message type 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Raw structure of AIS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Fleet specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Head- and backhaul average speed: Europe - Asia . . . . . . . . . . . . . . . . . . . . 28

4.2 Head- and backhaul average speed: Trans-Pacific . . . . . . . . . . . . . . . . . . . . 28

4.3 Speed statistics, speed over ground vs speed through water . . . . . . . . . . . . . . 32

4.4 Correlation, speed through water and speed over ground . . . . . . . . . . . . . . . 34

5.1 Resampling algorithm, pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Correlation table, Ornstein-Uhlenbeck parameters . . . . . . . . . . . . . . . . . . . 47

6.1 Format of CFD input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Main particulars (full scale), KCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Resistance [kN], seven bulb lengths, ¢y = -0.8 m, ¢z = 0.9 m . . . . . . . . . . . . . 61

7.3 Hull and propeller efficiencies, summarized . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 Ornstein-Uhlenbeck parameter comparison, reference ship vs segment . . . . . . 65

7.5 Fuel consumption per nautical mile, DNV GL client data . . . . . . . . . . . . . . . . 67

8.1 Fuel savings from different levels of agility . . . . . . . . . . . . . . . . . . . . . . . . 72

8.2 Distribution of selected bulb configurations . . . . . . . . . . . . . . . . . . . . . . . 72

xv





Chapter 1

Introduction

1.1 Background

In 2008, Maersk defined a new industry standard as the first liner to implement slow steaming

as a strategic tool. The motivation being skyrocketing bunker prices, which imposed the Danish

giant an enormous fuel bill. Slow steaming is simply the term for ships steaming at lower engine

speeds, and because fuel consumption is roughly proportional to sailing speed to the power

of three, reduced speed resulted in a significant reduction in fuel expenses. While high bunker

prices triggered slow steaming, the global recession in 2008 and 2009 dramatically shifted supply

and demand balances, resulting in excess fleet capacity. Consequently, the incentives for slow

steaming raised as increased transit times absorbed up to 4.1% of the global fleet1.

While slow steaming proved to be a simple and effective solution to the shifted market dynam-

ics, naval architects saw potential for further savings through bulbous bow optimization. The

primary purpose of the bulbous bow is to minimize wave resistance by generating counter-

acting waves by the principles of destructive interference, which made bulbous bows designed

for significantly higher service speeds perform poor at operations off the design condition. Con-

sequently, a new paradigm for bulbous bow design was entered. While bulbous bows tradition-

ally had been designed to one specific design point, often fully loaded and high speed, the new

practice became to design bulbous bows according to projected operating profiles. This prac-

tice has resulted in numerous bulbous bow retrofits over the recent years, where point optimized

bulbs are cut off and replaced by bulbs designed to exhibit an average performance over a wide

range of operating conditions.

The new bulb design practice can be interpreted as a robust design strategy, that is, a passive

way of handling context uncertainty without external interference. However, while robust bulbs

have proven to outperform the point optimized alternative, the design strategy essentially en-

tails suboptimality at each specific speed scenario. Following this logic, there is a potential for

1
http://www.maersk.com/en/the-maersk-group/press-room/press-release-archive/2010/9/slow-

steaming-here-to-stay

1

http://www.maersk.com/en/the-maersk-group/press-room/press-release-archive/2010/9/slow-steaming-here-to-stay
http://www.maersk.com/en/the-maersk-group/press-room/press-release-archive/2010/9/slow-steaming-here-to-stay
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further fuel savings by incorporating system flexibility, that is, an active way of handling un-

certainty. With bulbous bow flexibility, the option of dynamically adapting the bulbous bow

according to the experienced operating condition is introduced. In theory, the bulb can be

continuously optimized to the desired sailing speed, and the value of the flexibility is conse-

quently driven by how fast and how well the bulb can adapt to speed variability. In this light,

the motivation for the thesis is to analyze the potential fuel savings from being able to dynami-

cally change the geometry of the bulbous bow, and investigate the importance of being able to

change fast.

On a higher level, the motivation for the study is rooted in energy efficiency and reduced emis-

sions. Fuel consumption is linearly correlated to CO2 emissions, and according to MARPOL

Annex VI, Chapter 4 (IMO, 2011), which entered into force in January 2013, new ships must im-

prove efficiency with 10% by 2020, 20% by 2025, and 30% by 2030. In addition, it was established

industry goals of reducing CO2 emissions with 20% by 2020, and 50% by 2050. These ambitious

environmental goals call for technological innovations, and sets the scene for this thesis.

Problem Formulation

This study can roughly be divided into two problems;

The first problem is related to the context analysis; How much and how fast does sailing speed

vary during and between transits? The primary goal of the context analysis is to model sailing

speeds as a stochastic process, by analyzing large amounts of historical speed records.

The second problem is related to the system response valuation; What is the resulting value of

being able to adapt to the uncertain context? The primary goal of the system response valua-

tion is to develop a methodology for modelling changes in bulb configuration, and derive the

associated value of being able to change with different frequencies.

1.2 Literature Review

The thesis encompasses a wide range of disciplines, including AIS based speed analytics, stochas-

tic modelling of sailing speed, bulbous bow theory, design under uncertainty and Monte Carlo

valuation of flexible designs. This section will summarize some previous studies within these

fields.
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Smestad (2015) investigated the quality and utility of Automatic Identification System (AIS) data,

and used heuristics to identify specific ship types, which enables segment analyses without ac-

cess to commercial databases. While this study seeks to predict future sailing speeds based

on AIS data, several studies has utilized AIS data to investigate speed dynamics. Adland and

Jia (2016b) used AIS data to show that operational variables (weather, commercial factors) are

important determinants for short term speed variations. They also noted that AIS speed data

is incomplete due to varying signal coverage. Adland and Jia (2016a) analyzed dynamic speed

choice in bulk shipping by investigation of AIS data, and found that ship owners do not tend

to optimize sailing speeds according to economic theory, in line with the findings of Aßmann

(2012) and Aßmann et al. (2015). Jonkeren et al. (2012) found that speed variations do depend

on non-fuel variables, and suggested more research on the topic. AIS data is also used to as-

sess ship efficiency, for example by estimation of fuel consumption based on AIS speed records

(Smith et al., 2013).

While the applications of AIS based speed analytics for prediction and forecasting of sailing

speed are limited, some studies have utilized historical speed records from other sources. Coraddu

et al. (2014) generated probability density functions for speed and draught by use of noon-

to-noon reports, with the purpose of predicting the energy efficiency operational indicator by

Monte Carlo simulations. Other studies have combined speed records with other information

for speed predicting purposes. Mao et al. (2016) presented a statistical approach for predic-

tion of sailing speed by use of engine revolutions per minute (RPM), met-ocean data and speed

records.

Several studies have addressed bulbous bow design in the context of varying speed. Lu et al.

(2016) proposed a hydrodynamic optimization design methodology accounting for an entire

operating profile, and demonstrated a decrease in resistance of 2.845%. Filip et al. (2014) eval-

uated the benefits from retrofitting the bulbous bow to a slow steaming operating profile by

CFD, yielding a power reduction of approximately 7%, while Wagner et al. (2014) obtained an

effective power reduction of 2.7% by scenario based optimization. In addition to numeric fuel

reductions, Chrismianto and Kim (2014) found that higher sailing speeds yield a longer opti-

mal bulb design. Chirica and Giuglea (2015) investigated the resistance reduction from having

a flexible bulbous bow on a small passenger ship (25 meters long) operating inland. Although

they did not obtain significant reductions from varying the length of the bulb, they point out the

potential for fuel savings.

While state-of-the-art bulbs currently are designed to exhibit an average performance over a
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wider range of sailing speeds, this thesis seeks to explore the value of flexible and agile designs.

De Neufville and Scholtes (2011) emphasizes that flexibility in design limits possible losses and

increases possible gains. Fricke and Schulz (2005) defines flexibility as a system capability to

adapt to external changes easily, while agility represents the systems capability to adapt rapidly.

Rehn (2015) demonstrated that Monte Carlo simulations is an efficient way of valuing complex

design flexibility in marine systems.

What Remains to be Done?

From the literature review it became clear that although there has been a growing number of AIS

related studies over the recent years, applications to sailing speed modelling for forecasting is

non-existent. Consequently, the author is left with the complex and intriguing task of exploring

this new academic branch, in addition to make and discuss necessary assumptions.

Moreover, there exists no studies on the topic of valuation of structural bulbous bow flexibility in

any sense. While there has been conducted valuation studies on flexibility in marine design, the

bulb case differs in the sense that the underlying uncertainty is observed in operational rather

than market-oriented variables.

1.3 Objectives

The objectives of this thesis are:

1. Filter and extract relevant ship segments from AIS data by use of heuristics.

2. Exemplify the underlying dynamics behind sailing speed variations by use of extracted

data.

3. Propose a suitable stochastic process for simulation of sailing speed.

4. Fit historical speed records from AIS data to the selected process, generate stochastic pa-

rameter probability density functions.

5. Develop a Monte Carlo Method (MCM) for valuation of bulbous bow agility, with speed

probability density functions and resistance data for different bulb design as key input.

6. Calibrate the speed input to a reference ship, and conduct a case study that estimates the

value of having an agile bulb.
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1.4 Limitations and Delimitations

The main limitations of this study is related to the available data. The work rely on two key in-

put sources, whereby one is AIS data representing the operational variations, and the other is

resistance data for different bulb designs. Although resistance is mostly dependent on speed,

draught and trim are also influencing factors. However, the only reliable dynamic data included

in AIS messages is speed and position (Ljungberg, 2017), entailing that the context analysis is

solely focused on speed variations. In addition, the available resistance data includes Compu-

tational Fluid Dynamics analyses of seven different bulb lengths (in addition to the hull model

original) at constant draught and five different speed intervals.

The study is consequently delimited to analysis and modelling of sailing speed, and valuation

of flexibility within the solution space bounded by the resistance data.

Fundamental and statistical analyses of the underlying reasons for speed variability is also con-

sidered outside the scope of this thesis. The scope is to quantify how speed variability occurs,

not why. However, the topic is addressed, and causalities discussed and exemplified.

Finally, the scope is delimited to encompass analysis of speed variability for containerships.

This argued with the fact that most bulbous bows retrofits over the recent years have been

within this segment, and that their bulb shapes are distinct and potentially suitable for flexi-

bility. In addition, the CFD results utilized in this study stem from analyses of a containership

hull model.

1.5 Structure of the Report

The rest of the thesis is structured as follows:

Chapter 2 intends to establish a high level motivation for the work, rooted in naval architecture,

marine systems design and design under uncertainty. Basic resistance and bulbous bow theory

is coupled with performance under uncertain operating conditions, in a bid to underscore the

purpose of the thesis.

The data foundation utilized to evaluate uncertain operating conditions is described in Chap-

ter 3. Fundamentals of AIS data is addressed, before the methods for obtaining segment specific

data by heuristics is elaborated.
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Chapter 4 breaks sailing speed variability into long-, mid-, and short-term variations. The un-

derlying causalities behind the different variations are discussed and exemplified. In addition,

the chapter addresses the assumption of using speed over ground as an estimator for speed

through water.

In Chapter 5, the procedure for fitting historical speed records to a stochastic model is explained.

A mean reverting stochastic process is proposed, and the estimation of model parameters is

addressed in detail.

The general methodology for simulating fuel savings is layed out in Chapter 6. Here, the different

model input is addressed, and key assumptions and procedures are elaborated.

A case study is conducted in Chapter 7, in order to quantify the expected fuel savings from hav-

ing bulbous bow flexibility. The selection of case is explained, and a number of assumptions

related to power and fuel calculations are discussed. Aggregated fuel consumption is simulated

and compared to empirical data for verification, before the different levels of agility subject for

simulation is addressed.

Chapter 8 summarizes the results from the case study, and chapter 9 discusses the results and

the methodology used to obtain them. Chapter 10 presents the conclusion of the thesis, and

states recommendations for further work.

Figure 1.1 presents a flow chart of the key parts of the study. Starting from raw AIS data, the

main flow follows the thicker arrows, resulting in fuel savings as a function of reconfiguration

period.
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Figure 1.1: General flow of work





Chapter 2

Background and Motivation

2.1 Naval Architecture and Performance Metrics

Tupper (2013) defines naval architecture as the science of making a ship fit for purpose. The

somewhat ambiguous term fit for purpose can be summarized as the ship’s ability to operate

safely, reliably and economically. The economical metric includes, in addition to the finan-

cial performance, the environmental footprint of the ship, which in recent years has gained in-

creased attention. Although all three metrics have operational determinants, for example how

the master alters speed according to weather or schedule, they are heavily influenced during the

design process. Ferreiro and Hocker (2007) defines naval architecture the following way:

The branch of engineering concerned with the application of ship theory within the design and

construction process, with the purpose of predicting the characteristics and performance of the

ship before it is built.

Further, they concretise the term ship theory as the science of explaining the physical behaviour

of a ship, through the use of fundamental mathematics or empirically derived data. The per-

formance of the ship can be divided into the three previously addressed metrics. Safety and

reliability refer to the ship’s ability to float upright, have adequate stability, withstand external

loads and maintain the desired sailing speeds in the expected sea conditions. While the finan-

cial part of the economical metric is the driver and motivation for designing and building a ship

in most cases, safety and reliability are vital metrics for designers for obvious reasons. However,

as a result of continuously improved competence and computer-aided tools, safety and reliabil-

ity are considered relatively straight forward to get right in the design process, compared to the

economical performance metric.

The financial performance is the hardest to predict at the design stage. As for any business,

the ship’s economy can be divided into a revenue domain and a cost domain. Revenue is de-

termined by the state of the market, which essentially is driven by the global economy, and via

supply and demand balances observed in freight rates. Although the ship design process in

9
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broader terms is considered to encompass market analyses in order to determine the main di-

mensions needed to absorb the expected demand, the cost domain is a more complex design

issue from a technical point of view.

The cost domain consists of capital expenditures (capex), operational expenditures (opex), and

voyage related expenditures (voyex). Capex can be interpreted as the investment cost of the

vessel. Opex is the day-to-day cost of sailing, including crew and insurance costs, while voyex

in essence is the fuel cost. Capex is obviously directly affected by the design process, in terms

of steel, machinery and labour costs. However, fuel costs account for 50% to 75% of opex and

voyex (Notteboom and Cariou, 2009), making this expenditure an important subject for mini-

mization. Fuel consumption is essentially driven by the ship’s total resistance, which in terms

are dependent on the hull shape and friction. Thus, the economical performance of a ship, both

in terms of profit and emissions, is heavily dependent on hull design.

Recalling Ferreiro and Hocker (2007) definition of naval architecture, they emphasize the pre-

diction of characteristics and performance of a ship before it is built. While prediction of per-

formance related to revenue is an isolated economical and strategic issue, prediction of cost

related performance is more of a techno-economical challenge. Different operating conditions

yield different optimal hull designs, leaving the designers with the complex task of predicting

draught and service speed before they decide on hull geometry and different resistance mini-

mizing means. Here, we touch the core problem of this study, which on a high level deals with

resistance minimization under uncertain operating conditions. More specifically, we will eval-

uate the influence of the bulbous bow in this context, and eventually estimate the potential fuel

savings from having dynamical bulb flexibility. The next sections will address resistance and

bulbous bow theory, and connect bulb design to design under uncertainty in the light of marine

systems design.

2.2 The Bulbous Bow and Resistance

In order to understand the bulbous bow and when it is beneficial, it is important to understand

the breakdown of ship resistance. This chapter will address the ship resistance components, the

bulb’s purpose in this context, and describe how different operating conditions call for different

bulb designs. Section 2.2.1 and 2.2.2 are based on material from the project thesis, and written

in cooperation with stud. techn. Andreas Watle.
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2.2.1 Resistance

The resistance forces acting on a ship moving through water can be divided into two main com-

ponents; pressure force and shear force. The pressure force is acting in a direction normal to the

surface of the body, and is mainly caused by the wave making of the hull. The shear force, often

referred to as viscous resistance, is acting tangentially to the surface, that is, in the direction of

the local relative fluid motion. This force is caused by the friction between the fluid and the

body. In ship resistance theory, a common simplification is to divide the total resistance into

wave making resistance and viscous resistance, under the assumption that these components

are independent of each other (Steen, 2007).

The wave resistance is a significant component to the total resistance of the ship. The wave gen-

eration of the hull moving through the water is a result of the pressure difference induced by the

free surface effects. It is common to assume that the pressure resistance and the wave resistance

of the ship are equal, although viscous effects such as flow separation will create pressure resis-

tance, called viscous pressure resistance. For ships, the viscous pressure resistance is usually

small compared to the wave resistance, and is therefore studied separately. The wave resistance

can be described with a hull moving through water. As the hull moves through water, the vol-

ume displacement alters the velocity along the hull. At the forward part of the hull, the water

is forced outwards, and at the aft, it flows back towards the centre line of the ship. Bernoulli’s

equation describes the wave making

Ω

2
v2 +Ωg z +p = const ant (2.1)

Here, Ω is the water density, v is the flow velocity along the hull, g is the gravitational accelera-

tion, z is the surface elevation and p is the atmospheric pressure. The velocity of the flow around

the ship hull will be retarded and accelerated in the bow and after body respectively. This will

lead to a change in the free surface elevation, as the pressure at the surface has to be equal to the

atmospheric pressure. The velocity around the ship will increase towards the middle of the ship,

and the same physical phenomena results in a change in wave elevation along the hull.

A typical distribution of the resistance components as a function of Froudes number FN is

shown in figure 2.11. Froudes number is a dimensionless ratio of the flow velocity, i.e. the ship

speed, to the ship length, given by FN = Vp
g L

. The figure is only illustrative, and aims to provide

an understanding of how the main resistance components vary as a function of speed.

1Simplified sketch based on resistance breakdown presented by Steen (2007)
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Figure 2.1: Resistance components as a function of FN [-]

2.2.2 Reducing Resistance with the Bulbous Bow

In order to improve the hull’s resistance characteristics, a bulbous bow can be fitted to the for-

ward part of the hull. The primary aim of the bulb is to generate a wave forward of the vessel,

with the purpose of minimizing the waves propagating down the length of the hull. This would

occur by the principle of destructive interference when the waves interact. The interaction af-

fects the wave making resistant component, which becomes more dominating as the ship’s ve-

locity increases, as shown in figure 2.1.

In addition to influencing the hull’s wave system, bulbous bows also affect the frictional resis-

tance. The additional wetted surface added by the bulb will always increase the frictional resis-

tance, which is the biggest contributor to the viscous resistance. The introduction of the bulb

will in some cases improve the fairing around the forebody, and thus change the hull’s viscous

pressure field, which can reduce the viscous resistance. For full, slow ships, the reduction of vis-

cous resistance due to the smoothing of the fore body can take presence over the wave canceling

effects of the bulb (Kracht, 1978).

As figure 2.1 suggests, the two biggest contributors to the total resistance are frictional and wave-

making resistance. In literature, the two dominating components are often defined as residual

and frictional resistance, whereby wave-making resistance is the majority of the residual com-

ponent.
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2.2.3 The Relationship Between Ship Type and Bulb Design

The geometry and general shape of bulbous bows vary significantly across ship segments, and is

determined by the operating profile of the ship in question. As figure 2.1 shows, wave resistance

takes dominating presence in the higher Froude regime. Consequently, the bulb design for a

ship operating at high sailing speeds differ significantly from a slower ship’s bulb. Bulb design

for faster ships is characterized by an additive and distinct shape, and are often longer than

bulbs designed for slower sailing speeds. This is explained by the fact that the length of the

bulb is roughly proportional to its internal volume, meaning that small increments in length will

increase the potential of the wave generated. This is the desired effect when the waves generated

by the hull are large, which is the case for ships at high sailing speeds. For ships operating in the

lower Froude regime, the bulb’s primary purpose is to improve the viscous characteristics, by

extending the waterline.

Containerships, as opposed to tankers and most bulk ships, often carry perishable and other

time-sensitive cargo. There may be up to hundreds of different owners of the containers on

board a ship, who want the cargo delivered as soon as possible. This makes the time pressure

greater than for other segments, who often carry cargo for one owner at a time. As a result,

container vessels tend to be faster than general cargo ships, with maximum speeds reaching

30 knots (Tupper, 2013). Consequently, containerships often operate in a high Froude regime,

which in terms results in a relatively high fraction of wave resistance. The ship design is obvi-

ously affected by this, and materialize in more slender bodies and distinct bulb shapes.

2.3 Marine Systems Design

While the design of bulbous bows can be considered a typical design task within the technical

domain of naval architecture, the previously mentioned context uncertainties calls for a broader

term. Expanding the design problem to encompass the context the design object is supposed

to thrive in, the flexible bulbous bow problem is a typical problem within the academic field

known as marine systems design. Marine systems design encompasses several academic fields,

spanning from market analysis and idea generation to engineering design. The field is broad in

the sense that projects often demands complete end-to-end solutions, leaving a lot of responsi-

bility and decision making to the design team. While a design objective may be formulated like:

Design a bulk carrier where: D = x; B = y; L = z; d = t; V = h., Erichsen (1989) provides an intu-
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itive example on how design objectives rather are formulated in the context of marine systems

design: Design the transport of x tons of iron ore per year from point A to point B..

Although both formulations eventually result in the design of bulk carriers, the difference in

scope is clear. The latter expands the solution space, increasing the chances of designing a

suitable system. The dimensions specified in the first objective might not match the demand

for iron ore transportation, or maybe two smaller bulk vessels is a better solution given the ex-

pected operating conditions. The key takeaway is that marine systems design should involve

comprehensive analysis of the context surrounding the subject for design, that being variations

in operating conditions or the global economy.

In this thesis, the marine system includes the operating context and the bulbous bow. Following

the logic of Erichsen (1989), the design objective may be formulated like this: Design a bul-

bous bow that under the operating conditions in region A continuously minimizes fuel consump-

tion.

2.4 Design Under Uncertainty

Marine systems intended to operate within shipping and offshore markets are subject to sub-

stantial amounts of uncertainty with respect to their future operating context. The projects are

often capital-intensive and of high complexity, designed to provide a service for several decades.

Thus, marine systems design is closely related to design under uncertainty, a sub-field of sys-

tems design aiming to enhance the performance of engineering systems in the context of un-

certain operating environments. Sources of uncertainty may be related to supply and demand

of a service, commodity prices, environmental regulations or, in the case of hull and bulbous

bow design, operating conditions.

Design under uncertainty requires that designers recognize and acknowledge the presence of

uncertainty, and proactively approaches the design process according to distributions of future

possibilities (De Neufville and Scholtes, 2011). The probabilistic representation of the future can

be embedded in designs in different ways, and some approaches and terms are presented and

clarified in the following sections.
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2.4.1 Robust Design

Robustness in engineering design is best understood as the passive way of dealing with uncer-

tainty. Given distributions representing the future operating context, a robust optimized design

is the design that exhibits the best averaged performance over the entire life-cycle of the design

object, without external interference. Fricke and Schulz (2005) define robustness as the systems

ability to be insensitive towards changing environments.

In the context of bulb design, robustness has gained increased attention over the recent years

as a result of slow steaming. Rather than optimizing the bulbous bow for an intended service

speed, designers take the entire operating profile into consideration, ensuring that the selected

bulb design minimizes the total fuel consumption instead of minimizing the fuel consumption

at a specific service speed. While robust design is a relatively simple way of proactively incorpo-

rating future uncertainties, the principle of average performance implies that there exists a po-

tential for further increase in performance, by introducing flexibility in engineering design.

2.4.2 Flexible and Agile Design

While robustness is passive, flexibility is an active way of handling uncertainty. Fricke and

Schulz (2005) define flexibility as a systems ability to be changed easily, meaning that the sys-

tems can be changed from external to cope with changing environments. In his thesis on Identi-

fication and Valuation of Flexibility in Marine Systems Design, Rehn (2015) suggests fuel switch-

ing and capacity expansion as potential design flexibilities, among other. Here, the flexibility

takes presence in the fact that the ship is built with the possibility of easily switch fuel or expand

capacity, should the operating context speak in favour of it. In the real options valuation space,

the term trigger level is often used to describe the level where the operating context reaches the

threshold where changing the system becomes beneficial. In the case of fuel switch, the trig-

ger level may be the price premium between two alternative fuels. Similarly, the trigger level

for a capacity expansion may be quantified in market rates (driven by demand) for a transport

service.

Flexible bulbous bow design refers to the option of easily change the geometry of the bulbous

bow according to the operating context. Here, operating context refers to the operating condi-

tions (sailing speed) of the vessel. In contrast to price premiums and market rates, the operating

condition will fluctuate frequently within the technical boundaries of the ship design. The trig-
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ger level will in this thesis be speed levels. Should the speed exceed or fall below the trigger level,

a change in geometry might be beneficial. However, the speed could return to the initial value

in a matter of hours, calling for a reverse change. Consequently, the value proposition of flexible

bulbous bows is not only driven by how easy it is to change, but also by how fast it is possible to

change the system.

Fricke and Schulz (2005) define agility as a systems ability to change rapidly. Similarly to flexi-

bility, the changes on the system come from external. In this thesis, the term flexibility will refer

to the number of possible bulb configurations easily adapted to, while agility refers to how fast a

ship can change to a new configuration. The value and need for these abilities are driven by the

uncertainty in the operating context. Consequently, it is vital to model and quantify the result-

ing variations properly. The next chapter will address the data foundation used for evaluating

variations in sailing speed.

2.4.3 Visualizing the Flexible Bulb

Before we dive deep into the context analysis and resulting value of being able to adapt, an

example of how bulb flexibility materialize is presented. Figure 2.2 displays a concept model of a

bulbous bow with flexibility in the length direction. The model is developed by Bang et al. (2017),

who have worked on concept development of flexible bulbous bow in parallel with this study.

Later in this thesis, the value of being able to extend and shorten the bulb will be discussed and

analyzed, and it is recommended to keep the presented concept in mind.

Figure 2.2: Concept model, flexible bulbous bow (Bang et al., 2017)



Chapter 3

Data Foundation

One of the cornerstones of this study is that sailing speeds can be modelled based on historical

speed records. As opposed to Mao et al. (2016), who predicted sailing speed by combining histor-

ical speed records, engine revolutions per minute and met-ocean data, this thesis focus on repli-

cating the characteristics of speed variations, solely based on historical speed records. Coraddu

et al. (2014) generated distributions of sailing speeds from noon-to-noon reports, and used the

distributions to sample daily sailing speeds in a bid to simulate the Energy Efficiency Opera-

tional Index. While their procedure essentially is similar, their assumption of using averaged

sailing speeds to simulate sailing fundamentally contradicts with this thesis’ sub-objective of

capturing the frequency of sailing speed variations. Consequently, we need extensive amounts

of data with high resolution, that is, speed records with small intervals.

Automatic Identification System (AIS) data will serve as the basis for speed modelling in this

thesis. The following sections will address the fundamentals of AIS data, how the available data

is decoded and extracted, and finally how relevant data is filtered by use of heuristics. Sec-

tion 3.1, 3.2 and 3.3 are adopted from the project thesis.

3.1 AIS Data

Automatic Identification System is an automatic tracking system used on ships, that communi-

cates through the maritime Very High Frequency (VHF) system. AIS data can be exchanged with

other ships located nearby, AIS base stations or with satellites. The latter exchange type is known

as S-AIS. The information exchanged from the vessels include static data such as navigational

data, dynamic data from the ship sensors such as speed, in addition to voyage related data such

draught and estimated time of arrival. The different message types are presented in table 3.1.

Message type 1 and 2 contain the exact same information, and will for simplicity be merged into

the same category when handling the data, and be referred to as message type 1. Message type

3 contains essentially the same information as message type 1, with minor differences. Message

type 4 does not contain any information related to operating conditions, and will in this project

17
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Table 3.1: AIS message types

ID Name Description
1 Position report Scheduled position report
2 Position report Assigned scheduled position report
3 Position report Special position report, response to inter-

rogation
4 Base station report Position, UTC, date and current slot num-

ber of base station
5 Static and voyage related data Scheduled static and voyage related vessel

data report

Table 3.2: Key information, message type 1

Information Description
Unixtime Time stamp, number of seconds elapsed since 1 January 1970
Position Latitude and longitude coordinates
Speed Speed over ground (SOG) in knots
MMSI Maritime Mobile Service Identity, vessel ID

be omitted for storage and efficiency reasons. Table 3.2 contains the information of key interest

for message type 1, which according to Smestad (2015) constitutes 72.5% of the messages. Here,

it is noteworthy that the speed is given as speed over ground, and not speed through water. The

difference between speed over ground and speed through water can be significant if the ship is

exposed to currents, and in the context of resistance and bulb design, speed through water is

the metric of interest. This issue will be addressed in detail in section 4.4.

Message type 1 does not contain vessel descriptive information, and must be analyzed in com-

bination with message type 5, which contains information on ship type and dimensions. Con-

tent of message type 5 is presented in table 3.3. As table 3.2 and table 3.3 show, neither of the

message types contains both MMSI and speed information. MMSI is included in both message

types, and will be used to connect vessel specific information to the operating conditions.

3.2 Available Data

The available data is the same data set that was utilized during the project thesis, and was pro-

vided by the Norwegian Coastal Administration, by courtesy of Harald Åsheim. The Norwegian

Coastal Administration is in possession of AIS data retrieved from both base stations and satel-

lites. AIS base stations’ detection capabilities are limited to a maximum reach 40-50 nautical
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Table 3.3: Key information, message type 5

Information Description
Unixtime Time stamp, number of seconds elapsed since 1 January 1970
Vessel specifications Length and breadth in meters
Draught Real time draught in meters
IMO number International Maritime Organization identification system
Origin Origin of voyage
Destination Destination of voyage
ETA Estimated time of arrival, measured in unixtime
MMSI Maritime Mobile Service Identity, vessel ID
Ship Type Ship type category

Table 3.4: Raw structure of AIS data

Arbitrary S-AIS message
/s:ASM//Port=638//MMSI=,c:1280622239*78/!BSVDM,1,1„A,14cTbj0vAV16ctLelSOB>Aih0D01,0*54

miles off-shore (Skauen et al., 2013), while S-AIS data can be detected from around the globe.

As this study aims to investigate variations in operational conditions for vessels operating deep

sea, S-AIS data is utilized. The Norwegian Coastal Administration is in possession of S-AIS data

from July 2010 to the end of 2015, and the data accumulates to a total of 170 gigabytes. The data

is structured as one file per day, where one file contains all messages received from all active

vessels. The data is coded, and table 3.4 shows the raw structure of one single message. 170 GB

data of S-AIS data is roughly equal to 2.5 billions AIS messages.

3.3 Decoding Data

The raw data is decoded by utilizing an open source aisparser provided by Lane (2006). The

parser was installed as an external Python module, and extracted to an SQLite database by use

of a Python script developed by Smestad (2015). All data handling, analyses and visualization in

this project are conducted in Python. An initial verification of the data was conducted by finding

the number of unique MMSI’s in the database. According to Equasis (2016), there was a total of

87,223 vessels in the world fleet in 2015. In comparison, the number of unique MMSI’s obtained

from the database was 88,024. The deviation may be a result of vessels changing owner in the

period.
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3.4 Data Filtering

The database obtained from the decoding process contains all S-AIS messages exchanged in

the period between August 2010 and December 31 2015. Obviously, a lot of this data is less in-

teresting for this study, as it contains operational data for vessels ranging from fishing vessels

and offshore vessels to tankers and bulk vessels. Hence, the data must be filtered. The static

AIS messages, message type 5, contains a two-digit number specifying the ship type. The first

digit represents the general category of the vessel. For example is category 6 denoting passen-

ger ships, category 7 cargo ships, and category 8 tankers. The second digit provides additional

information regarding the vessels’ cargo, specifying how hazardous the cargo is. Containerships

fall under category 7, meaning that the ship type field in the static messages will have a value in

the range between 70 and 79. Thus, we want to extract the messages exchanged from ships with

ship type between 70 and 79, and insert them into new tables in the database. In SQLite, this

procedure is translated into the following query:

INSERT INTO CargoMT1 SELECT * FROM GlobalMT1

WHERE userid IN(SELECT userid FROM GlobalMT5

WHERE GlobalMT5.ship_type >= 70 AND GlobalMT5.ship_type < 80)

Here, userid is the MMSI number, which is the only link between dynamic and static messages.

A similar, but simpler, query is applied for message type 5. At this point, the dynamic and static

AIS messages for all cargo vessels are extracted and inserted into separate tables. However, the

cargo category is extensive, and includes ship segments such as ore carriers, bulk carriers, cargo

barges and general cargo ships. Counting the number of unique MMSI numbers in the cargo

ship data reveals that approximately 36,000 vessels are included in the cargo category, and con-

sidering that the total number of containerships adds up to approximately 5,200 (Equasis, 2016),

additional data filtering is obviously needed.

3.4.1 AIS Heuristics

In order to extract containerships from the more general cargo category, some heuristics from

Smestad (2015) are adopted. He found that 92% of container vessels have a maximum speed

above 15.9 knots, while 92% of bulk carriers have a maximum speed of 15 knots or less. He

also discovered that RoRo vessels and Panamax container vessels are very hard to distinguish

by maximum speed, implying that the heuristic will include RoRo vessels. This heuristic was
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Figure 3.1: Length vs beam, sample of ships with maximum speed above 15.9 knots

applied by first creating a table of unique MMSI numbers and the corresponding maximum

recorded speed, which is formulated as the following query:

INSERT INTO MaxRecordedSpeed

SELECT CargoMT1.userid, max(CargoMT1.sog)

FROM CargoMT1 GROUP by userid

The table MaxRecordedSpeed contains the MMSI number and maximum speed for all ships

classified as cargo ships. Further, new dynamic and static tables for the vessels with maximum

speed above 15.9 knots were created, and filled with the following query:

INSERT INTO FastShipsMT1 SELECT * FROM CargoMT1

WHERE userid IN(SELECT userid FROM MaxRecordedSpeed

WHERE MaxRecordedSpeed.sog >= 15.9 knots)

This heuristic included approximately 20,000 ships. Figure 3.1 displays the length and beam

pairs of these vessels, revealing that there are several erroneous ship dimensions in the data

set.

In combination with removal of the erroneous data points, operational data for vessels below

200 meters of length are filtered out, because ships below 200 meters are assumed to be harder

to distinguish and few vessels below this length operate deep sea. Approximately 4,600 vessels

remained in the sample after this criteria was applied. According to Equasis (2016), the world

fleet included approximately 2,900 containerships with a gross tonnage (GT) of 25,000 or more

as of 2015, which in the case of containerships is roughly analogue to a length of 200 meters

or more. Allegedly, the sample of 4,600 ships does not only contain containerships. Smestad

(2015) utilized the fact that the difference between maximum and minimum draught is signif-
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Figure 3.2: Length vs beam, containerships longer than 200 meters

icantly lower for containerships than for other cargo ships such that bulk vessels and tankers,

and discovered that a heuristic filtering out vessels with difference in maximum and minimum

draught above 5.5 meters worked well for identification of containerships.

The delta-draught heuristic was implemented in SQLite similarly to the maximum speed heuris-

tic, and left approximately 3,000 vessels in the sample. Figure 3.2 shows length versus breadth

for the sample of what should consist of mostly containerships. While the number of ships in

the sample matches the number suggested by Equasis (2016) pretty good, the sample is likely to

contain RoRo ships, and possibly other misidentified ship types. In order to filter out samples

of similar ships, which is preferable for statistical analyses of AIS data, the filter criteria with

respect to ship dimensions can be delimited. Later in this study the Panamax container fleet

will be utilized to analyze speed characteristics. Hence, the Panamax containerships are filtered

out by limiting the beam to the range between 31 and 33 meters (due to the canal width), and

length between 250 and 295 meters. According to the ship register of Sea-web1, only five RoRo

and Car Carriers as of 2016 has a Panamax beam and a length above 250 meters. These vessels

were removed individually.

In addition to the Panamax containership fleet, a group of containerships above 350 meters of

length were filtered out. This sample group consists of New-Panamax, Post Panamax III and

Triple-E vessels, and will be used to investigate some trade patterns and speed variations. Fleet

information on the two groups are presented in table 3.5.

In the group of large container vessels, three different clusters are identified. There are 21 vessels

between 350 and 354 meters of length, 176 vessels between 363 and 370 meters of length, and 49

1
http://www.sea-web.com/

http://www.sea-web.com/
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Table 3.5: Fleet specifications

Segment Number of Vessels Average Length [m] Average Breadth [m]
Large Vessels 246 371 50
Panamax 710 276 32

vessels between 396 and 400 meters, among them Maersk’s Triple-E fleet. The beam of the ships

ranges from 41 to 60 meters. Obviously, all of the vessels in the Panamax group have a beam

of 32 meters. The lengths range between 251 and 295 meters, and are more or less uniformly

distributed, with two exceptions. 172 ships have a length between 260 and 261 meters, and 208

ships have a length between 294 and 295 meters. The fact that close to 30% of the identified

Panamax vessels have the extreme length within their segment indicates that ship owners strive

to maximize the payload capacity within the breadth constraint of the Panama canal.





Chapter 4

Breakdown of Sailing Speed Variability

Having extracted and filtered out historical speed records, a natural step before technical stochas-

tic analyses of speed variability is to investigate and exemplify the dynamics and causalities be-

hind speed variations. This chapter introduces the time frames long-term, mid-term and short-

term, in a bid to document how and when different speed variations occur.

4.1 Long-Term Variations

Long-term speed variations, or trends, are essentially driven by two key factors; the bunker

price, or implicit the oil price, and the state of the market, which is reflected in the freight rates

and number of idled ships. The effect of the bunker price is obviously related to the non-linear

relationship between speed and fuel consumption, with an exponent roughly equal to three.

Following this logic, a speed reduction of 20% will result in fuel savings in the order of 50%. With

fuel expenses accounting for 50% to 75% of total operating expenses, the strong impact of the

oil price is obvious. Ronen (2011) concluded that an increase in bunker price will call for lower

sailing speeds, and consequently more ships in order to meet the service demand.

The other long-term trend driver is the state of the market, i.e. the freight rates, which applies for

vessels operating in both the spot -, time- and bareboat charter market (Gkonis and Psaraftis,

2012). In the spot market, the ship owner covers fuel expenses and receives the freight rate.

High freight rates will increase the revenue per unit distance sailed, which will increase the ship

owner’s incentives for speeding up. The same goes for ships operating in the time- and bareboat

charter markets. In these markets, the charterer covers both fuel expenses and charter costs.

High freight rates increase the charter costs per unit time, and increase the incentives for mini-

mizing the charter time.

Slow steaming, which simply implies steaming at lower engine speeds, exemplifies how the mar-

ket and bunker price influence the sailing speeds. As a result of peak bunker prices in 2007, and

the global recession in 2008, ship owners found an effective measure in slower sailing. Not only

25
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did slow steaming reduce fuel expenditures significantly, it also absorbed excess fleet capac-

ity by increasing transit times. Since then, slow steaming has become the industry standard.

According to data obtained from DNV GL (found in appendix C.2), a typical 8,500 TEU contain-

ership has reduced the weighted mean speed from 23 knots in 2007, to 16.5 knots in 2013. This

speed reduction resulted in a reduction in weighted mean fuel consumption from 196 to 98 met-

ric tons per day. Following the logic behind long-term speed variations, slow steaming will not

sustain if the market rates rises while the bunker price remains low (approximately 300$/MT at

the time of writing).

However, while predicting rates and fuel prices is an impossible exercise with context uncer-

tainty, there is no certainty in predicting steaming speeds even if prices and rates were determin-

istic. Maloni et al. (2013) concluded that slow steaming is optimal for a wide range of freight vol-

umes and fuel prices, and there is no immediate signs of ships speeding up to pre-slow steaming

levels. In addition to the economical aspect, slow steaming entails significant environmental

benefits due to the reduced fuel consumption. The increased focus on reduced CO2 emissions

(IMO, 2011) is strongly indicating that sailing speeds are beyond peak levels.

4.2 Mid-Term Variations

Speed variations on mid-term are often a result of tactical planning problems and decisions,

which include service selection, scheduling, speed optimization, cargo routing and fleet de-

ployment (Brouer et al., 2017), and refers to speed variations from transit to transit. While these

tactical factors in theory determines the sailing speed, Adland and Jia (2016b) points out that

weather conditions, contractual limitations and supply chain considerations may govern the

speed choice in practice. Adland and Jia (2016a), Aßmann (2012) and Aßmann et al. (2015)

investigated the impact of the macro variables addressed under the long-term variations, and

found that these variables have small impact on mid-term speed choice. Lindstad et al. (2013)

investigated the optimal speed as a function of freight rates and sea conditions with respect to

profit, cost and emissions. They concluded that varying speed according to the variables could

reduce both cost and emissions significantly, a finding that in practice would entail mid-term

speed variations.

An example of mid-term speed variations are presented in figure 4.1, which shows how the aver-

age speed can vary from transit to transit in a relatively short period of time. The example vessel

is a 240 meters long Panamax vessel, operating on service between Australia, New Zealand and
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Figure 4.1: Mid-term speed variations, example Panamax vessel

Panama. As the figure shows, the mean transit speeds vary from 14 knots to 18 knots in the

period between August 11 to October 18 in 2014. In addition, the plot reveals additional fluc-

tuations around the transit means. The casualty behind the observed mid-term variations can

be numerous, among them headhaul versus backhaul speed differences. Headhaul refers to

the direction on which the vessel is loaded, while backhaul refers to the return trip. The indus-

try standard entails faster sailing on the headhaul transits, as customers are waiting for cargo.

The world trade is asymmetrical, and according to WorldShippingCouncil (2014), the trans-

Pacific container trade volume from Asia to North-America is twice as large as the opposite

direction. Likewise, the trade volume from Asia to Europe through the Suez canal is twice as

large as from Europe to Asia. This observation indicates that the average speed should be higher

for west bound transits through Suez, and for east bound transit across the Pacific Ocean. The

headhaul-backhaul dynamics are investigated for the two samples of containerships filtered out

in subsection 3.4.1.

Table 4.1 and table 4.2 contain speed statistics for the two segments on the Europe-Asia and

trans-Pacific trade, respectively. The total amount of exchanged AIS messages from vessels in

the large segment is approximately 3.3 million, while the Panamax vessels exchanged approxi-

mately 31.4 million messages.

From table 4.1 it becomes evident that the large container vessels sail at significant higher speeds

on the west bound transit through Suez, on average. The messages exchanged along this trade

route account for approximately 48% of the total amount of messages in this segment, suggest-

ing that vessels above 350 meters are regularly assigned to service on the Europe-Asia trade.

There is no significant difference in the Panamax segment. However, it can be observed that
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Table 4.1: Head- and backhaul average speed: Europe - Asia

Headhaul (Asia - Europe) Backhaul (Europe - Asia)
Segment Speed [knots] St. dev. Observations Speed [knots] St. dev. Observations
Large Vessels 18.4 14.5% 664,311 16.7 17.5% 925,504
Panamax 16.3 26% 545,476 16.2 27% 397,132

Table 4.2: Head- and backhaul average speed: Trans-Pacific

Headhaul (Asia - North-America) Backhaul (North-America - Asia)
Segment Speed [knots] St. dev. Observations Speed [knots] St. dev. Observations
Triple-E 18.8 14.7% 517,647 16.4 17.7% 690,914
Panamax 18.34 11.3% 4,215,056 16.4 16% 5,302,668

the standard deviation is relatively high. The reason for this may be rooted in the relatively low

number of exchanged messages along the route. Of approximately 31.4 million messages, only

three percent are exchanged from vessels travelling from Asia to Europe and back. This obser-

vation indicates that Panamax vessels are not commonly assigned to service along this route,

which is reflected in more diffuse trade patterns.

Table 4.2 reveals significant higher sailing speeds in the headhaul direction for both segments.

Exchanged messages for the large container segment account for approximately 37% of the total

amount, and approximately 30% for Panamax vessels. Evidently, both segments are well repre-

sented on trans-Pacific services, and it is fair to conclude that the headhaul-backhaul dynamics

are present for both segments, as well as for the large container vessel segment on the Europe-

Asia trade. This is in line with the findings of Adland and Jia (2016b), who analyzed AIS speed

records for Very Large Crude oil Carriers.

Another insight derivable from table 4.1 and table 4.2 is the standard deviations. For all three

segment-trade combinations with sufficient data foundation, the standard deviations are higher

on the backhaul transit. This reflects another tactical scheduling factor in liner shipping, namely

that vessels may utilize the buffer time on the backhaul transit and speed up, should they fall

behind on schedule. Consequently, one can observe more variations in sailing speed on the

backhaul transits, as displayed in figure 4.2.

Figure 4.3 shows a visualization of vessel movements for the group of container vessels above

350 meters of length. Obviously, there is no sailing through the Panamax canal. Almost 90%

of the AIS messages are exchange from either the trans-Pacific trade or the main Asia-Europe

trade through the Suez canal, implying that the largest container vessels are mainly deployed



CHAPTER 4. BREAKDOWN OF SAILING SPEED VARIABILITY 29

Figure 4.2: Speed distribution: Headhaul and backhaul Europe-Asia, large containerships

Figure 4.3: New-Panamax, Post-Panamax III and Triple-E movements

on these services. Figure 4.4 shows vessel movements for a subgroup of Panamax vessels with

length between 280 and 290 meters. In this case, the traffic through the Panama canal is as

evident as expected. Compared to the larger containerships, the Panamax vessels have a more

diverse span of trades. This is most likely a result of the limited amount of ports capable of

handling the larger vessels.

4.3 Short-Term Variations

Short-term variations refers to intra-transit speed variations, that is, variations experienced dur-

ing a transit. As opposed to long- and mid-term speed variations, which are results of market
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Figure 4.4: Panamax containership movements

dynamics, route planning and speed optimization, short-term variations is a result of more un-

predictable day-specific circumstances. Because of the exponential relationship between speed

and fuel consumption, variability around the transit mean speed should be avoided, and it can

be concluded that the majority of short-term variability in speed is undesirable. According to

a client case study conducted by DNV GL (DNVGL, 2015a), an 8,500 TEU container vessels can

obtain fuel savings in the range of USD 100,000 per trans-Pacific transit from sailing at constant

speed. The company points out that these variations stem from weather and crew behaviour. In

addition, it seems like vessels starts transits at higher speeds in order to reduce the probability

for being late, eventually slowing down when the port of arrival is closer.

Weather Impact

Met-ocean conditions are often, and naturally, mentioned in the literature as the single most

important reason for voluntary and involuntary speed loss, and consequently speed variations

(Prpić-Oršić and Faltinsen, 2012). This section will present a simple investigation of the rela-

tionship between waves and speed variations, and discuss the impact of ocean currents. The

wave data analyzed in this section is downloaded from the website of Hycom1.

Figure 4.5 shows a box plot2 of combined significant wave height and swell in the Pacific Ocean

1The HYCOM consortium is a multi-institutional effort sponsored by the National Ocean Partnership Program
(NOPP), as part of the U. S. Global Ocean Data Assimilation Experiment (GODAE), to develop and evaluate a
data-assimilative hybrid isopycnal-sigma-pressure (generalized) coordinate ocean model (called HYbrid Coordi-
nate Ocean Model or HYCOM).

2Box and whisker plots are uniform in their use of the box: the bottom and top of the box are always the first and
third quartiles, and the band inside the box is always the second quartile (the median). The height of the whiskers
describes the variations in the rest of the data set.



CHAPTER 4. BREAKDOWN OF SAILING SPEED VARIABILITY 31

Figure 4.5: Significant wave height Pacific Ocean

Figure 4.6: Speed distribution Pacific Ocean, December and June

in 2012 between 30°N and 50°N, the latitude range in which the majority of ships cross the Pa-

cific. The seasonal variations are evident, which makes it trivial to investigate the correlation

between ship speed and waves. Hypothetically, the seasonality should lead to higher speed vari-

ations and potentially lower average speeds in December than in June, for example.

Figure 4.6 shows the speed distribution for the Panamax fleet operating in the area in question.

The figure reveals a lower standard deviation and a marginal higher average speed in June, which

is in line with the hypothesis. As the dark bars representing December shows, rougher sea will

sometimes force the crew to slow down for safety or comfort reasons. This is quantitatively

exemplified in this case by looking at speed records below 12 knots; in June, less than 0.2% of

the records where below 12 knots, while the same fraction for December is above 5%. Although it
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seems like higher waves result in higher speed variability, finding the actual correlation between

speed loss and wave characteristics is an extensive task alone, and will not be analyzed in detail

in this study.

4.4 Speed Over Ground versus Speed Through Water

The speed records included in the AIS messages is measured as speed over ground (SOG). With

AIS data as basis for the analyses, this study implicit assumes that sailing speed variations can

be evaluated from the vessels’ speed relative to the ground, and not through water. The fact that

the speed through water (STW) is the determinant of resistance and fuel consumption makes

this assumption one of the most critical of this study. Although Smith et al. (2013) claimed that

the effects of currents should be negligible for trans-oceanic voyages (deep-sea transits), the

potential source of uncertainty should be evaluated.

Ideally, speed variations should be analyzed with STW records, but no such data sets were avail-

able. However, SOG and STW records were obtained for an Open Hatch Carrier, in order to

document and investigate how the records may differ, and comment on the resulting conse-

quences for this study. An Open Hatch Carrier can be classified as a general cargo ship, and has

a body similar to bulk vessels. Thus, the vessel analyzed in this section is designed for steaming

at significant slower speeds than containerships. The purpose of this analysis is solely to point

out the difference between the records. The data set includes approximately 53,000 data points

with 15 minutes intervals, and spans from October 2014 to March 2017. Figure 4.7 shows and

excerpt of the speed time series. Here, the green line represents the speed through water, and

the red line represents the speed over ground.

As the figure reveals, both STW and SOG varies significantly over the displayed time period.

However, it can be observed that speed over ground shows more short-term variability, suggest-

ing that some of these variations should be ascribed to ocean currents. For example will a ship

sailing at a speed of 17 knots over ground with currents acting in the opposite direction at one

knot experience a speed through water of 18 knots.

Table 4.3: Speed statistics, speed over ground vs speed through water

Measure Mean [knots] Standard Deviation [knots]
Speed Over Ground 12.76 1.93
Speed Through Water 12.78 1.86
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Figure 4.7: Speed over ground vs speed through water

Figure 4.8: Record differences: Speed over ground and speed through water

Figure 4.8 shows a scatter plot of the relationship between (STW - SOG) and SOG. The plot is

informative in the sense that it reveals where the absolute difference between speed through

water and speed over ground is high. A weak downward trend line can be observed in the plot,

indicating that some of the extreme SOG values should be corrected for ocean currents. From

the trend it becomes evident that the higher SOG records are records where the difference be-

tween STW and SOG is high, and consequently that the highest STW records are in the range of

18 knots. Similarly, the trend indicates that some of the low SOG records should be corrected

upwards. However, it can be observed that the majority of the records have a relatively uniform

distributed difference, which calls for more detailed analyses.

Related to the agile space of this study, the interesting variations are the sequential variations,

i.e. how much the speed changes from one time increment to the next. Figure 4.9 shows a

scatter of the sequential changes between SOG records and the associated sequential changes
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Figure 4.9: Sequential record differences: Speed over ground and speed through water

Table 4.4: Correlation, speed through water and speed over ground

Time Frame Slope R-Squared
15 Minutes 0.93 0.90
1 Hour 0.89 0.86
2 Hours 0.84 0.81
6 Hours 0.80 0.80
12 Hours 0.84 0.83
1 Day 0.87 0.86
3 Days 0.93 0.93
1 Week 0.99 0.96
2 Weeks 0.98 0.98

between STW records. A slope and r-squared value both equal to 1 would indicate that the two

measurements corresponds perfectly.

As the plot title of figure 4.9 shows, the slope is equal to 0.93, and the r-squared equal to 0.9.

Essentially, the slope indicates that for each knot SOG moves up or down, the STW moves 0.93

knots in the same direction. This means that the speed through water has a less volatile be-

haviour than the speed over ground. The r-squared of 0.9 implies that the model explains 90%

of the variability around the mean, essentially confirming the linearity observable from the plot.

This analysis explains the relationship between STW and SOG measurements with 15 minutes

sample intervals. In order to evaluate how well SOG predicts STW in general, the same analysis

is conducted for different time intervals.

The results are summarized in table 4.4. Higher r-squared values indicates better suitability for

SOG as an estimator for STW, while the slope serves as an indicator on the relative volatility

of the STW. It appears that the slope and the r-squared are somewhat correlated. From the
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results it seems like SOG has lowest suitability as an estimator for STW on six hours intervals.

Moreover, it seems like six hours is the interval where the STW variations are lowest relative to

the corresponding SOG variations. This may be rooted the nature of ocean currents, and the

time periods of which the ship experience currents acting a particular way at a time.

This section aimed to investigate the goodness of SOG as an estimator for STW. It should be

noted that the analyses were carried out for one specific vessel, meaning that the results should

be handled as indicators and points for discussion more than anything else. However, the results

showed some clear trends, as it became evident that the STW varies less than SOG for all time

intervals analyzed. At one and two weeks time intervals, it seems like SOG captures the actual

STW variations with high accuracy. Connecting this insight to the mid-term speed variations

displayed in figure 4.1, an initial conclusion may be that SOG tends to slightly exaggerate short-

term variations, while it serves as a good estimator for mid-term variations.





Chapter 5

Statistical Representation of Speed

While chapter 4 addressed and exemplified underlying reasons for speed variability, this chap-

ter will introduce a more technical framework for describing the variations statistically. Specif-

ically, a stochastic process for replicating characteristics of speed variations is proposed, and

the methodology for estimating the process parameters from historical speed records is ex-

plained.

5.1 Sailing Speed as Exogenous Random Variable

Stochastic modelling of historical operating speeds for forecasting purposes is not a straight

forward procedure, and requires a substantial amount of assumptions. First and foremost, one

can argue that sailing speed is not a random variable, as the speed at any time is determined

by the captain or commanding officer. The commanding officer will alter the speed accord-

ing to variations in met-ocean conditions and other daily circumstances (Ljungberg, 2017)1,

resulting in intra-transit variations and consequently affecting the short-term volatility of the

operating speed. However, even the captain has limited room for maneuvering, as the average

speed is contractually agreed upon when the trade is closed. As addressed in section 4.1, this

speed is mainly dependent on two factors; the oil price and the freight rate (Ljungberg, 2017).

Based on that assumption it should be possible to model the speed as a function of two inde-

pendent stochastic processes. However, these contracts are of high complexity, affected by the

bargaining power of the stakeholders, and includes a high number of embedded reservations

regarding met-ocean conditions. In combination with the previously mentioned short-term

variations, the human factored nature of the trade contracts makes it hard to predict operating

speeds.

While optimization studies often calculates the optimal speed based on bunker price and freight

rates, which are commonly modelled as stochastic processes (McNichols and Rizzo, 2012; Sødal

1Knut Ljungberg at DNV GL was interviewed on the topic, and provided a general understanding of the dynamics
behind speed variations.

37
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Figure 5.1: Infrequently exchanged AIS messages

et al., 2009), this study will treat the speed itself as an exogenous random variable. An exogenous

variable is a variable that affects the model, but the model can not affect the variable. The as-

sumption of exogenous speed variations is discussed in detail in section 9.2.1. The hypothesis

is that this approach will yield a lower bound value estimation for the flexible bulb case, as the

operating decision maker will have a lower threshold for altering the speed if the bulb can be

adjusted. However, retrieving statistical characteristics for historical operating speeds is com-

plicated due to the nature of S-AIS data. The intervals between the messages exchanged with

satellites are highly infrequent, dependent on the satellites’ relative position to the ship. Fig-

ure 5.1 displays the infrequent AIS messages exchanged from a container ship operating in the

Pacific Ocean.

5.2 Identification of Stochastic Process

Sailing speed is in principle continuous data, but the speed records included in AIS messages

are quantized to discrete intervals of 0.1 knots. Likewise, the messages are exchanged in con-

tinuous time, but the data is sampled at discrete intervals down to one second. Although speed

records are discrete both in speed and time, the sailing speed process is essentially continuous.

Hence, the AIS data provides discrete time series representing continuous processes. The objec-

tive is to fit these time series to a continuous-time stochastic process, in order to simulate future

sailing speeds. A continuous-time stochastic process can be defined as a collection of random

variables, and is observed in continuous time.

Stochastic processes are separated into different categories, and there exists a vast amount of

different processes within each category. This study will not drill deep into the extensive field
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of stochastic theory, so Tufto (2017)2, professor at the Department of Mathematical Sciences at

NTNU, was consulted on the topic. The key takeaway from this interview was that the selected

process must account for the fact that sailing speed is bounded by technical and operational

limitations. Technical in the sense that the process should not be able to generate sample paths

that drifts above the maximum sailing speed, and operational in the sense that a sample path

that drifts towards zero is unlikely during sea passage. Thus, the stochastic process representing

sailing speeds should be stationary, meaning that process parameters does not change over

time.

It is also assumed that sailing speed satisfies the Markov property, entailing that the current

sailing speed only depends on the immediate preceding speed, and not the sailing speeds be-

fore. We will also assume that sailing speed follows a Gaussian process, which means that the

randomness is normally distributed. Finally, as the average sailing speed for a transit often is

pre-defined, the variations during a transit will likely fluctuate around (revert to) a mean value.

These characteristics of sailing speed call for a mean-reverting stochastic process. The Ornstein-

Uhlenbeck process is the only nontrivial stochastic process that satisfies the stationary, Markov

and Gaussian conditions, and was consequently suggested as an appropriate representation of

sailing speed. The process is by definition mean-reverting.

Mao et al. (2016) addressed the high auto correlation of speed records, which means that the

correlation from one speed record to the next is high. This is logical in the sense that ships does

not alter the speed significantly over short time periods. The assumption of high auto corre-

lation supports the Ornstein-Uhlenbeck process as a stochastic representation of speed, as the

process can be considered the continuous-time analogue of the discrete-time first order autore-

gressive process AR(1). For the AR(1) process, the current value is based on the immediate pre-

ceding value. An Ornstein-Uhlenbeck process has to satisfy the following stochastic differential

equation (SDE):

d xt = µ(µ°xt )+ædWt (5.1)

Here, xt and d xt represent the sailing speed at time t and the change in absolute terms, respec-

tively. µ is the mean reversion rate. The mean reversion rate is a parameter representing how

fast the process reverts towards the mean value. µ represents the mean value,æ the standard de-

viation and dWt follows a Wiener process. The SDE has the following analytical solution:

xt = x0e°µt +µ(1°e°µt )+æe°µt
Zt

0
eµsdWs (5.2)

2Jarle Tufto, professor at the Department of Mathematical Sciences at NTNU provided input at February 2
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Figure 5.2: Ornstein-Uhlenbeck sample paths, mean = 17, X0 = 19

In order to simulate this process, it can be discretized and approximated via:

Xn+1 = Xn +µ(µ°Xn)¢t +æ¢Wn (5.3)

Here, Xn represents the speed at time index n. ¢Wn are independently identically distributed

(iid) Wiener increments, that is, normal variates with mean equal to zero and variance equal to

¢t . Thus, Wt+¢t °Wt ª N (0,¢t ) =
p
¢t N (0,1). Figure 5.2 shows sample paths of the Ornstein-

Uhlenbeck process with different æ and µ values. The blue and red lines show how the process

behaves with absence of volatility. With high reversion rate, the process quickly drifts towards

the mean, while a lower reversion rate results in a slower drift. With presence of volatility, it can

be observed that a high reversion rate makes the process fluctuate frequently around the mean,

while a lower reversion rate results in more diffuse variations. A reversion rate of zero implies

no drift towards the mean, while a reversion rate below zero means that the process will drift

away from the mean. Thus, µ must be strictly larger than zero in order for the process to make

sense.

The model can be calibrated to historical data by linear regression, where µ and µ are the co-

efficients of a linear fit between the speeds and their difference scaled by the time interval pa-

rameter. The following linear regression is ran in order to estimate the parameters (Sundar,

2016):
¢Xn

¢t
=°µXn +µµ+ æ

¢t
¢Wn (5.4)

Calibrating data to the Ornstein-Uhlenbeck from this regression is done by using built-in Python

functions. As displayed in figure 5.1, AIS messages are exchanged with highly inconsistent fre-

quency. While the process parameters can be estimated by regression of these unevenly spaced
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time series, time series with equal spacing reduce the number of computations necessary to

estimate the parameters, as several messages sometimes are exchange within the matter of sec-

onds. Obviously, the sailing speed does not change over such small time periods, resulting in

excess data. This is solved by resampling3 the data, and the next section will address the proce-

dure and how relevant data is filtered out.

5.2.1 Parameter Estimation

While AIS messages are exchanged at all modes of operation (port, anchor, sailing, etc.), the

interesting data for this study is the speed records exchanged during sea passage. A sea pas-

sage can be defined as the part of the transit (port to port) where the vessel has reached the

intended sailing speed, and does not include the initial and final navigation from and to port.

However, for simplicity, sea passages will be referred to as transits in this thesis. Transit speed

records are interesting because wave resistance takes significant presence in the higher Froude

regimes, and the primary purpose of the bulbous bow is to reduce this resistance component.

Consequently, the goal is to estimate the process parameters of time series identified as transits.

Transits are identified by filtering out time series spanning a minimum time period with con-

secutive speed records above an assumed minimum steaming speed, and the speed records will

only be resampled (to evenly spaced records) for transit time series.

Frequency of messages exchanged with satellites varies from a few seconds to several hours, and

in some cases days and weeks. In order to run the parameter estimation regression efficiently,

it is preferable with equally spaced data points. The introduction of section 5.2 addressed how

continuous data is sampled to discrete time intervals, and what we essentially want to do is

to resample the space values (speed records), to pre-defined time intervals. First, the time in-

terval must be determined. In this study, the frequency of speed variations is of high interest,

arguing for a small time interval. On the other hand, a small time interval results in more data

points, which is an important aspect bearing in mind that several millions of speed records are

analyzed. Some experiments were carried out for different time intervals, and it became evi-

dent that sampling at two hour intervals captured variations of the actual speed records with

relatively high accuracy, while keeping an acceptable computational run time. Essentially, this

means that sailing speed variations within two hour periods are negligible, or at least neglected

in this study.

3Note that the term resampling in this thesis refers to allocating data to pre-defined time intervals, and not the
correct definition of the statistical term
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The resampling procedure is two-fold; speed records within time periods of two hours are av-

eraged to a single sample, while interpolated samples are allocated to the time intervals where

speed records are absent. While the assumption of average resamples is rather straightforward

and explained by the low variability within two hours, the interpolation requires a somewhat

elaborated argumentation. The core issue is to define a maximum interpolation time span such

that the true characteristics of transit speed variations are retained, while still filtering out as

many transit time series as possible.

Allowing interpolation over long time periods will result in a higher number time series identi-

fied as transit time series, but the characteristics are manipulated to a greater extent due to the

high amount of interpolated samples. On the other hand, allowing interpolation only over short

time periods will yield higher quality of the time series, as the manipulation is limited. However,

few sequences of speed records have consecutive data points with small intervals over longer

time periods, meaning that strict interpolation rules will result in few transit time series. Essen-

tially, it is a quality or quantity kind of problem. Similar to the determination of time interval,

the maximum interpolation span was determined by experiments with different values. Inter-

polation over 12 hours was the lowest time period that retained an acceptable number of transit

time series.

Table 5.1 presents a pseudo-code explaining the resampling algorithm, which is executed in the

code found in appendix D.3. Figure 5.3 displays the complete set of transit time series in the pe-

riod between 2012 and 2015 for a Panamax container vessel after running the algorithm. Here,

Tmi n set to ten days, Nmi n to 1000,¢tmax equal to 12 hours, and minimum steaming speed equal

to 12 knots. This implies that each time series represents a transit of ten days or more, with no

interpolation between speed records with intervals above 12 hours. In other words, if the inter-

val between two records is above 12 hours, the speed records will not be treated as records in

the same transit. In this specific case, approximately 35 time transits satisfied the transit identi-

fication criteria, which resulted in 35 estimations of Ornstein-Uhlenbeck parameters.

Figure 5.4 shows one of the transit time series, where the solid line represents the resampled

AIS speed records and the dashed line represents a OU sample path based on parameters esti-

mated from that specific time series. From a visual point of view, the behaviour of the simulated

process seems to replicate the dynamics of the actual sailing speed, which indicates that the

Ornstein-Uhlenbeck process can be a good representation of speed variations.

While plots of actual speed and simulated speed are valuable for comparison and verification,

the desired output from the resampling algorithm and parameter estimation regression is prob-
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Table 5.1: Resampling algorithm, pseudo code

Step Procedure Action
1 Loop through raw data, index = i. Check

if ti+1-ti <= ¢tmax

If yes, append data to T S, and i = i + 1.
Else, store T S and proceed to step 2.

2 Check if length of T S >= Nmi n . If yes, proceed to step 3. Else, clear T S.
Return to step 1, i = i + 1.

3 Check if T St ,end - T St ,st ar t >= Tmi n . If yes, T S is qualified for data manipula-
tion, proceed to step 4. Else, clear T S.
Return to step 1, i = i + 1.

4 Create time vector, T Mt , from T St ,st ar t

to T St ,end with increments equal to ¢t .
Pre-allocate speed vector, T Ms , with
equal length.

-

5 Loop through T S, index = m, and T M ,
index n.

For each increment n in T M , store either
an averaged or interpolated speed value
at T Ms,n depending on the time spacing
in T S. Proceed to step 6 for parameter
estimation based on T M .

6 From the equally spaced time series
T M , estimate the Ornstein-Uhlenbeck
parameters according to equation 5.4,
and store them.

Clear T M and T S. Return to step 1, i = i +
1.

¢tmax Maximum allowed interpolation span
Tmi n Minimum duration of a transit
Nmi n Minimum allowed number of speed records within a transit
¢t Pre-defined time interval for the resampled time series
TS Time series representing transits before resampling
TM The resampled transit time series, from which the process parameters are estimated.

Figure 5.3: Transit time series obtained from resampling algorithm
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Figure 5.4: Simulated sample path vs AIS speed records, example vessel

ability density functions (PDF) of the Ornstein-Uhlenbeck parameters, from which random val-

ues can be sampled to simulate a transit. As figure 5.3 showed, roughly 35 sets of parameters

were obtained from analyzing a single vessel. From a statistical point of view this number is

relatively low, as it is impossible to evaluate how often the different parameters occurs. By feed-

ing entire segments into the algorithm, a more descriptive output can be obtained. The next

sections will address the fitting of PDFs to the Ornstein-Uhlenbeck parameters.

5.3 Probability Density Functions

As Monte Carlo simulations is the key methodology for evaluating the fuel savings from bulb

flexibility, it is important to have probability density functions to describe the value-driving sail-

ing speed variations. The distributions will be used to sample a mean speed, standard deviation

and mean reversion rate for each simulated transit, and this section explains how Ornstein-

Uhlenbeck parameters obtained from the procedure described in table 5.1 are fitted to proba-

bility density functions.

5.3.1 Mean Transit Speed

Resampling and parameter estimation of the Panamax containership fleet described in sec-

tion 5.2.1 resulted in 4,363 sets of parameters, each set representing the speed dynamics of one

single transit. This data can be used to obtain PDFs for each parameter, which in terms can be
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Figure 5.5: Mean transit speed distribution, Panamax containerships

sampled to simulate speed variations for transits. An open-source Python script4 was utilized

in order to obtain the best fitted statistical distributions. The script tests 82 different distribu-

tion functions in the SciPy5 library, and returns the distribution with the least residual sum of

squares (RSS) between the distribution’s histogram and the data’s histogram. Running the script

on the mean transit speed data for the Panamax fleet returned the generalized gamma distribu-

tion, which has two shape parameters, a and c (Johnson et al., 1970). In addition, a scale and loc

parameter shifts the distribution to fit the data. Figure 5.5 shows a histogram of the data, and

the corresponding PDF, which is given by the following equation:

f (x; a,c) = |c|x(ca°1)

°(a)
e°xc

(5.5)

Here, x, a, and |c| > 0, and ° is the gamma function. Accounted for the scale and loc parameters,

the PDF becomes f (y ; a,c)/scale where y = (x ° loc)/scale. The SciPy has built-in functions for

distribution sampling.

5.3.2 Intra-Transit Volatility

Running the same distribution fitting script on the intra-transit volatility returned the inverse

gamma distribution. The PDF of the inverse gamma distribution has two shape parameters Æ

and Ø, and is given by:

f (x;Æ,Ø) = ØÆ

°(Æ)
x°(Æ+1)e°Ø

x (5.6)

4Adopted from following forum: https://stackoverflow.com/questions/6620471/fitting-empirical-
distribution-to-theoretical-ones-with-scipy-python

5SciPy is a Python-based ecosystem of open-source software. https://www.scipy.org

https://stackoverflow.com/questions/6620471/fitting-empirical-distribution-to-theoretical-ones-with-scipy-python
https://stackoverflow.com/questions/6620471/fitting-empirical-distribution-to-theoretical-ones-with-scipy-python
https://www.scipy.org
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Figure 5.6: Intra-transit speed volatility distribution, Panamax containerships

In Python, Ø is set to 1 by default, and the distribution is fitted with Æ as the only shape factor,

in addition to the scale and loc parameters. The distribution function is shifted with scale and

loc equivalently to the Generalized Gamma Distribution. Figure 5.6 shows a histogram of the

standard deviations, and the corresponding PDF.

5.3.3 Mean Reversion Rate

The reversion rates are fitted to an Exponentially modified Gaussian distribution, which in Python

is described with shape parameter K > 0, scale and loc. The distribution can be interpreted as

the sum of a normally distributed random number with an exponentially distributed random

value. Here, the mean of the normal distribution is equal to loc and the standard deviation

equal to scale. The probability density function is given by:

f (x;K ) = 1
2K

e1/(2K 2)e°x/K erfc(
°(x °1/K )

p
2

) (5.7)

where,

ercf(x) = 1°erf(x) = 2
º

Z1

x
e°t 2

d t (5.8)

Figure 5.7 displays the histogram of the data, and the fitted probability density function.



CHAPTER 5. STATISTICAL REPRESENTATION OF SPEED 47

Figure 5.7: Mean reversion rate distribution, Panamax containerships

Table 5.2: Correlation table, Ornstein-Uhlenbeck parameters

Parameter µ æ µ

Mean speed level µ -
Standard deviation æ 0.011 -
Mean reversion rate µ 0.069 0.033 -

5.3.4 Parameter Correlation

In order to determine whether the parameters are correlated or not, a simple r-squared test is

ran on the data sets, with results displayed in table 5.2. As the results shows, there is no sig-

nificant correlation between the parameters. Essentially, this means that parameters can be

sampled independently in a simulation.





Chapter 6

General Methodology and Simulation Proce-

dure

This chapter will introduce the generic framework used to analyze the value of being able to

reconfigure the bulbous bow geometry. The framework has two key input sources; resistance

data and stochastic representation of speed. Calculations and assumptions for converting the

resistance data to fuel consumption are elaborated, before the methodology for simulating sail-

ing speed according to the probability density functions and the Ornstein-Uhlenbeck process is

explained. Finally, the Monte Carlo Method (MCM) used for valuation is presented.

6.1 Input to Simulation Model

6.1.1 Resistance Data - CFD Results

Resistance data is obtained from the masters thesis on the hydrodynamic effects of bulbous

bow geometry. In that study, computational fluid dynamic analyses are conducted for different

bulbous bow geometries in different speed regimes, and the resistance data are received on the

format presented in table 6.1. Here, dx, dy and dz represent the bulb’s geometrical change in

the respective direction, compared to the original bulbous bow. RW , RF and RT represent wave

resistance, frictional resistance and total resistance. The purpose of this data is to obtain fuel

Table 6.1: Format of CFD input data

Speed [knots] dx [m] dy [m] dz [m] RW [N] RF[N] RT [N] ID
12 1.0 0.0 0.0 15431.5 421136.5 436567.9 1
...

...
...

...
...

...
...

...
24 1.0 0.0 0.0 119957.2 941034.1 1060991.3 1
...

...
...

...
...

...
...

...
12 0.0 0.5 0.5 16705.5 420767.0 437472.5 36

49
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curves for different bulb configurations fitted on the same hull. This data is essential for the

study, because bulb reconfigurations are represented by switching between fuel curves.

6.1.2 Calculation of Fuel Consumption

Due to the nonlinear relationships between resistance, power, and consequently fuel consump-

tion, it is not possible to use aggregated resistance in order to evaluate fuel savings from flexible

bulbous bows. Hence, the resistance data must be converted into power and fuel consump-

tion. The equations and relationships in this section are obtained from MAN (2011). For each

resistance and speed pair, the effective power PE needed to move the ship through the water is

obtained by the following relationship:

PE = RT V (6.1)

Here, RT represents the total resistance, and V represents the speed through water. Further, the

thrust power delivered by the propeller to the water PT is obtained by:

PT = PE

¥H
(6.2)

The hull efficiency, ¥H , is equal to (1° t )/(1° w), where t is the thrust deduction coefficient

and w is the wave fraction coefficient. The thrust deduction coefficient is a dimensionless ex-

pression of the thrust deduction factor F . This factor represents the extra resistance the hull

experiences due to the suction effect of the propeller. If T represents the thrust the propeller

must deliver to move the ship through the water, T has to be equal to RT + F . Hence, t is equal

to (T °RT )/T . The wave fraction coefficient w is a dimensionless expression of the effective

wake velocity at the propeller. As a result of the boundary layer caused by the friction of the hull,

the water velocity arriving at the propeller VA will be lower than the ship’s speed through water

V . The effective wake velocity VW represents the difference between V and VA, and w =VW /V .

This value is heavily dependent on the shape of the hull, but also on the location and size of the

propeller.

Increased block coefficient results in increased hull efficiency ¥H , which is usually in the range

between 1.1 and 1.4 for ships with one propeller, and between 0.95 and 1.05 for ships with two
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propellers. Further, the power delivered to the propeller is obtained by:

PD = PT

¥B
(6.3)

The propeller efficiency behind hull, ¥B , is the product of the relative rotative efficiency ¥R and

the open water propeller efficiency ¥0. The latter is the efficiency of the propeller when it op-

erates in a homogeneous wake field without a hull. ¥0 can vary between 0.35 and 0.75, with

high values occurring when the wake fraction coefficient is low. The relative rotative efficiency

is accounting for the rotational nature of the water flowing to the propeller behind the hull. For

ships with one propeller the rotational flow is beneficial, and the efficiency is in the range be-

tween 1.00 and 1.07, while it for ships with two propellers is approximately 0.98.

In order to obtain the brake power PB of the main engine, which determines the fuel consump-

tion, we use the following relationship:

PB = PD

¥S
(6.4)

Here, ¥S is the shaft efficiency, and represents the power loss between the engine and the pro-

peller. Multiplying the hull efficiency ¥H and the propeller efficiency behind the hull ¥B with

the shaft efficiency ¥S , we get the total efficiency ¥T . Thus, we have the following relationship

between the brake power of the main engine, the effective power and the resistance obtained

from CFD analyses:

PB = PE

¥H¥B¥S
= PE

¥T
= RT V

¥T
(6.5)

With PB calculated, we need information on specific fuel consumption sfc, in order to aggregate

the fuel consumption.

6.1.3 Specific Fuel Consumption

Specific fuel consumption is by definition the fuel consumption of the engine related to brake

power (Stapersma et al., 2002).

sfc =
ṁ f

PB
(6.6)

Here, ṁ f represents the amount of fuel consumed per unit time, and is essentially the fuel con-

sumption as a function of engine speed. Specific fuel consumption is often specified in the

specifications of the engine, and is measured in amount of consumed fuel per kilowatt-hour

(kWh). Having the relationship between brake power and sailing speed and engine specifica-

tions obtained, the fuel consumption as a function of sailing speed can be obtained by rear-
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ranging equation 6.6.

6.1.4 Sailing Speed and Transit Characteristics

The other key input to the model is the probability density functions (PDF) representing the

Ornstein-Uhlenbeck parameters addressed in section 5.3. The purpose of this input is essen-

tially to make the model replicate speed variations according to historical records. Consequently,

it is of great importance to calibrate the PDFs for the specific vessel subject for simulation to en-

sure that the simulated variations are realistic.

In addition, the model need transit characteristics. In this study, transits are simplified by as-

suming an average duration. Combining this average duration with an utilization factor, that is,

the fraction of time the vessel spends at sea, results in a number of transits over a period. Thus,

the length of the period we want to simulate defines the number of simulated transits.

6.2 Simulation of Sailing Speed and Fuel Consumption

This section will lay out the general methodology for simulating sailing, aggregating the corre-

sponding fuel consumption and estimating the resulting value of having geometrical bulbous

bow flexibility. The calculations are executed in the code found in appendix D.4. For each tran-

sit, i.e. sailing from one port to another, within the specified time period, the model samples OU

parameters according to the probability density functions obtained in section 5.3, representing

the speed characteristics. Having selected the transit specific set of OU parameters, the model

alters the speed every second hour according to the OU process described in section 5.2. The

Monte Carlo Method is in essence the generation of random objects or processes (Kroese et al.,

2014), which makes the generation of sailing speeds a Monte Carlo method by definition. Fig-

ure 6.1 shows a plot of sailing speed sample paths over the course of a year. In this case, the

transit duration was set to 20 days, and the different transits are visually separated on the plot

by the vertical lines.

Next, the agility of the simulated system, i.e. how fast the bulb geometry can be reconfigured, is

specified. This is a static variable (valid through the entire simulation), and can only be changed

manually between simulations. Further, the associated fuel consumption at each generated

speed point is calculated for each bulb design based on the resistance input described in sec-

tion 6.1.1. According to the allowed reconfiguration frequency and number of available bulb
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Figure 6.1: Sailing speed sample path, one year

configurations, the simulated ship can change bulb geometry if the experienced speed yields

a lower fuel consumption for another bulb design. Essentially, in line with the constraints, the

model switches fuel curve in the set of bulb designs and associated fuel curves to minimize the

fuel consumption. Switching fuel curve in the model represents a real world change of bulb ge-

ometry, and the possibility to minimize fuel consumption at certain time steps drives the value

of flexibility. The aggregated fuel consumption for a vessel with flexible bulbous bow FC f lex is

obtained by:

FC f lex =
TX

t=1

NX

i=1

R
24

fbi (vi ) (6.7)

where,

bi 2 (Bi ) (6.8)

Here, T is the number of transits in one simulated period. N is the number of increments in each

transits, as the simulation is discrete in time (discretized continuous-time stochastic process).

R represents the time delta between time indices in unit hours, and is divided by 24 as the fuel

consumption is given as metric tonnes per day. The fuel consumption f is a function of speed v ,

which takes a new value at each time index i according to the OU process. The fuel consumption

curves are indexed by bi , which consequently represents the bulb geometry at time index i . bi

must be in the dynamic set of allowed bulb configurations Bi . Assume a ship with three different

bulb configurations are simulated, with the option of changing every fourth hour. The ship

starts out with bulb ID 1. At time index i = 0, zero time has passed and the set of allowed bulb

configurations is complete; B0 = {1,2,3}. At this point, the commanding officer decides to switch

configuration to bulb ID 2, based on the expected sailing speed for the hours ahead. Thus, b
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takes the value 2. At time index i = 1, two hours have passed since the last change in geometry,

and it not possible to take on a new configuration. Consequently, Bi only contains bi°1, and

B1 = {2}. In general, the selection of b can be mathematically formulated by minimizing the fuel

consumption at speed vi :

Z = min fbi (vi ) (6.9)

s.t.

bi =

8
><

>:

{1, ..., Nb}, if R(i ° ic ) ∏ tmi n

bi°1, otherwise

Nb represents the number of bulb configurations, ic the most recent time increment with bulb

reconfiguration, and tmi n the minimum allowed period between reconfigurations.

Aggregated fuel consumption for a ship without bulb flexibility is calculated similarly to equa-

tion 6.7, without the option of minimizing fuel consumption by switching fuel curve. If we

denote the fuel consumption for a static bulbous bow FCst at , the percentage fuel saved from

having flexibility Fsaved is given by:

Fsaved =
FCst at °FC f lex

Fst at
(6.10)

The absolute value of saved fuel can be interpreted as the shaded areas on figure 6.2. The lower

plot illustrates speed variations similar to the simulated process presented in figure 6.1, while

the resulting variations in fuel consumption for two different bulb designs are displayed in the

upper. In this illustrative case, one bulb is obviously better suited for higher speeds, while the

other one is better suited for lower speeds. Assuming for this example that the original bulb

is the one optimized for high speeds, i.e. the line with lower amplitude, the added value from

flexibility between the two configurations will be the sum of the shaded areas. The hypothesis

is that for every bulb configuration option that is added, the shaded area expands and the value

of flexibility increases.

6.2.1 The Value of Agility

The value of agility can be derived from figure 6.3. The figure shows an excerpt of a sailing

speed sample path (red line), and the corresponding fuel consumption for two different bulb

designs. Chapter 7 elaborates how the fuel consumption data is calculated. In this case, the

vessel can choose between the original bulb (designed for high speeds), and a bulb optimized to
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Figure 6.2: Speed variations and associated fuel consumption, illustration

Figure 6.3: Speed sample path with associated fuel consumption for two bulb configurations
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a design point at 12 knots. At sailing speeds below approximately 19 knots, the bulb optimized

for 12 knots yields a lower fuel consumption. Thus, 19 knots represents the trigger speed, and

when the vessel speeds up above this level, it becomes beneficial to reconfigure the bulbous

bow. Now the agility part becomes interesting; if we let t§ denote the trigger time, and ¢t the

time period from when the trigger speed is reached until the bulb reconfiguration is executed,

the lost opportunity cost (LOC) from not adapting immediately becomes:

LOC =
Zt§+¢t

t§

£
f12(v(t ))° for (v(t ))

§
dt (6.11)

Here, f12(v(t )) and for (v(t )) represent the fuel consumption (as a function of speed) for the bulb

optimized for 12 knots and the original bulb, respectively. The lost opportunity cost grows with

increased ¢t , and as lower ¢t means more agility, the value of agility can be interpreted as a

reduced lost opportunity cost. Over time, the lost opportunity cost accumulates, as displayed in

figure 6.4. The aggregated lost opportunity cost can be formulated mathematically:

LOCag g =
NX

i=1

√Zt§i +¢t

t§i

| f12(v(t ))° for (v(t ))|dt

!

(6.12)

Figure 6.4: Lost opportunity cost: An inverse proxy for the value of agility

Combining the insights from figure 6.4 and equation 6.12, we see that the value of agility is

driven by how often the speed crosses the trigger speed, and by how fast the system can adapt

to these variations.
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6.2.2 Monte Carlo Method for Estimation of Fuel Consumption

As the model samples Ornstein-Uhlenbeck parameters from probability density functions for

each transit, and each transit follows a stochastic process according to those parameters, the

Monte Carlo simulated fuel savings for a given period is essentially only one realization of the

potential savings. Consequently, and in line with the estimation branch of the Monte Carlo

method (Kroese et al., 2014), the simulations should be repeated many times, and the distribu-

tions of the sampled realizations serve as the output for evaluation.





Chapter 7

Case Study

This chapter will present the details and procedure for a case study, which estimates the ex-

pected fuel savings from having different levels of bulbous bow agility. The selection of case

study is rigorously delimited by the available hydrodynamic data, which in terms is delimited

by the available hull models for computational fluid dynamics analyses. Although analyses of

AIS data indicate that speed variations occur on both short and medium term for a wide range of

containerships, an actual simulation of fuel consumption and potential savings from flexibility

can only be carried out for a case where resistance data is available. Thus, a representative set

of historical AIS data must be used to describe speed variations, in order to capture the value of

bulb agility. A representative set of AIS data comprises speed records for ships with similar di-

mensions to the hull model used for hydrodynamic analyses, which is addressed in the following

section.

7.1 The KRISO Container Ship

The CFD analyses computed in parallel with this study utilize the KRISO Container Ship (KCS),

a hull geometry developed and made publicly available by the Korean Research Institute for

Ship and Ocean Engineering (KRISO). As the only open-source hull with the shape of a modern

containership, the KCS was essentially the only option for CFD analysis. There have been con-

ducted several studies on bulbous bow optimization on the KCS. Filip et al. (2014) optimized

the bulbous bow for a typical slow steaming profile, obtaining an average resistance reduction

of 7%. Wagner et al. (2014) utilized the KCS for scenario based optimization of the bulbous bow

based on noon-to-noon reports from a representative 3,600 TEU containership, obtaining an

weighted effective power reduction of 2.7%. Chrismianto and Kim (2014) conducted a paramet-

ric bulbous bow design on the KCS, and discovered that larger Froude numbers yields a longer

and higher bulbous bow. In addition to pure bulbous bow analyses, the KCS is utilized in a wide

range of hull studies. Among them is Tezdogan et al. (2015), who investigated slow steaming’s

effect on ship behaviour. They showed that slow steaming has beneficial effects on reducing

59
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Table 7.1: Main particulars (full scale), KCS

Main Particulars Value
Length Between Perpendiculars 230 m
Beam 32.3 m
Design Draught 10.8 m
Design Speed 24 knots

ship motion, in addition to the more obvious reduction in power and fuel consumption. The

main particulars of the KRISO Container Ship is presented in table 7.1 Although the KCS does

not exist in full scale, it’s theoretical payload capacity is 3,600 TEU. Furthermore, the beam indi-

cated in table 7.1 shows that the KCS can be considered a Panamax containership by definition.

However, with a length of 230 meters, the ship is definitely in the lower end of the segment with

respect to size, which must be accounted for in modelling of speed variations.

7.2 Resistance Data

The resistance data obtained from CFD analyses was on the format presented in table 6.1, and

the actual data used in simulations is reformulated and shown in table 7.2. For the analysis of

bulb flexibility with variable length, seven different bulb configurations were investigated. Every

bulb configuration has the same cross-section, and different lengths. Essentially, the resistance

data for ID 1-7 in table 7.2 represents resistance for the KCS with the option of changing the

length of the bulb. The first row represents the resistance data for the original KCS, and conse-

quently the base case resistance for comparison to the flexible case. Looking at the reductions

it becomes evident that the maximal obtainable fuel savings is 3.7% for this set of bulb config-

urations. In that case, the ship sails at 15 knots constant speed, with bulb ID 2. However, this is

scenario contradicts with the premise of this study, namely that speed variations do occur.

An interesting observation from table 7.2 is the correlation between optimal bulb length and

sailing speed. The data indicates that shorter bulbs are better suited for sailing at slower speeds,

while higher sailing speeds call for longer bulb design. This is in line with bulb theory; the waves

generated by the hull at slow speeds will have less potential than at high speeds. As the internal

volume of the bulb determines the potential of the wave generated by the bulb, and the length

of the bulb is proportional to its internal volume, a shorter bulb will generate a wave of less

potential. Moreover, higher sailing speeds will generate hull waves of longer period, which also

is the case for longer bulbs. Following the logic of destructive interference, it is reasonable that
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Table 7.2: Resistance [kN], seven bulb lengths, ¢y = -0.8 m, ¢z = 0.9 m

ID ¢x [m] 12 knots 15 knots 18 knots 21 knots 24 knots
Original 0 378.1** 586.7** 839.4** 1114.1 1776.8
1 -2 367.8* 570.5 818.4 1116.8** 1788.2**
2 -1.35 370.3 564.9* 817.9 1114.3 1784.3
3 -0.7 370.6 565.3 818.3 1113.2 1781.8
4 0 370.9 570.1 813.0* 1114.0 1781.1
5 0.7 370.9 570.6 813.5 1112.6 1779.8
6 1.3 371.0 570.7 821.6 1102.1* 1778.0
7 2 371.5 571.3 823.3 1114.0 1754.5*
Reduction*** - -2.8% -3.7% -3.1% -1.1% -1.3 %
* Lowest resistance in speed regime
** Highest resistance in speed regime
*** Percentage difference between original and best case

Figure 7.1: Resistance vs speed, seven bulb lengths

shorter bulbs generates better counter acting waves at slow speeds.

While the bulb configurations are optimized with intervals of three knots, the Ornstein-Uhlenbeck

process allows the simulated speed to take on speed values in the continuous space. Resistance

are roughly proportional to the speed to the power of two, which in theory should make it pos-

sible to fit a second order regression line to the data. However, the exponent is not constant

across the speed regimes, which complicates the polynomial fit. Thus, the resistance data is

interpolated to intervals of 0.1 knots. This simplification may reduce the accuracy of resistance

data in the regions where CFD analyses is not conducted, especially in the higher speed regimes.

Figure 7.1 shows the wave and total resistance plotted against speed for the different bulb con-

figurations. Due to the relatively low difference in resistance, it is hard to distinguish the lines

representing each configuration.
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7.2.1 Sea Margin

In order to account for actual sea states, a sea margin is added to the calm water resistance

obtained from CFD analyses. The sea margin includes added power due to waves, wind and

fouling, and is often set to a fixed value in the range between 15% an 35% (Arribas, 2007; Naber-

goj and Prpić-Oršić, 2007; MAN, 2011). While Eide (2015) concludes that the sea margin is speed

dependent, it will for simplicity be assumed to be constant at 20% in this study. This is argued

by the assumption of treating speed as an exogenous variable, and that the key output in this

study is the percentage of fuel saved from having a flexible bulb.

7.2.2 Hull and Propeller Efficiencies

In order to convert resistance data into the needed total power, several hull and propeller ef-

ficiencies must be estimated. No case-specific calculations on the efficiencies have been con-

ducted, and all numbers are based on estimates from MAN (2011). For the following analyses

and estimates, a reference ship is used to retrieve engine and operating data. The reference ship

is selected based on a combination of similarity to the KCS and amount of exchanged AIS mes-

sages, in order to ensure a solid data basis for comparison to the segment data. For legislative

reasons1, the reference ship must remain anonymous.

The reference ship is equipped with one fixed pitch (FP) propeller, which yields a hull efficiency

¥H in the range between 1.1 and 1.4. Knowing that higher block coefficient results in higher hull

efficiency, the hull efficiency is set to 1.2 due to the slender nature of mid-sized containerships.

The open water propeller efficiency ¥O ranges between 0.35 and 0.7. Utilizing the available pro-

peller characteristics of the KRISO Container Ship (five blades, D = 7.9 meters) in combination

with data from MAN (2011), the open water propeller efficiency is set to 0.55. For ships with sin-

gle propellers, the relative rotative efficiency ¥R is normally around 1.0 to 1.07. Conservatively,

the value is set to 1.0, and the propeller efficiency working behind the ship ¥B is obtained by

multiplying ¥O and ¥R .

The final efficiency needed to obtain the total power, the shaft efficiency ¥S , is usually around

0.99. Multiplying ¥H , ¥B and ¥S , we obtain a total efficiency ¥T of 0.65. Now, the needed total

power can be calculated according to equation 6.5 in subsection 6.1.2. The hull and propeller

efficiencies used in the case study is summarized in table 7.3.

1Refers to the agreement with the Norwegian Coastal Administration
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Table 7.3: Hull and propeller efficiencies, summarized

Efficiency Notation Interrelation Value
Hull ¥H - 1.2
Open Water Propeller ¥O - 0.55
Relative Rotative ¥R - 1.035
Behind the Hull Propeller ¥B ¥O ¥R 0.55
Shaft ¥S - 0.99
Total ¥T ¥H ¥B ¥S 0.65

Figure 7.2: Specific fuel consumption vs sailing speed

7.2.3 Specific Fuel Consumption

The reference vessel is equipped with a two-stroke single acting diesel engine, with seven cylin-

ders and a maximum continuous rating (MCR) of 38,000 kilowatts at 100 revolutions per minute.

At 90% MCR, the service speed is 24 knots. As there is no available data on the exact engine,

specific fuel consumption curves for low speed diesel engines from Stapersma et al. (2002) are

calibrated to data points from an engine with similar characteristics (MAN, 2015). Assuming a

sailing speed of 25 knots at MCR and a cubic relationship between speed and power, the rela-

tionship between sailing speed and specific fuel consumption (SFC) presented in figure 7.2 is

obtained. Having calculated total power and SFC as functions of sailing speed, obtaining total

fuel consumption as a function of sailing speed is trivial. Figure 7.3 shows the fuel consumption

per day as a function of speed for the bulb configurations presented in table 7.2.
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Figure 7.3: Fuel consumption per day

Figure 7.4: Area of operations, reference vessel

7.3 Calibrating Stochastic Parameters

As addressed in subsection 5.2.1, distributions of Ornstein-Uhlenbeck parameters are advan-

tageously obtained by data resampling and parameter estimation of entire segments, since the

data basis for individual ships is often insufficient. Because the KCS qualifies as a Panamax ves-

sel, it is reasonable to use parameter probability density functions from this segment. However,

the segment data spans more than 700 vessels, with lengths ranging from 250 to 295 meters.

The data set is not descriptive in the sense that there could be, and essentially is, both design

and operational differences and variations between vessels in the sample group. Using the PDFs

from the segment without calibrating for vessel to vessel differences will fail to capture the true

value of bulb flexibility, and the fuel savings will be exaggerated. Hence, the parameter PDFs are

calibrated to the operating data for the reference ship. Figure 7.4 shows the areas of operation

of the reference ship in the period between 2010 and 2015.
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Table 7.4: Ornstein-Uhlenbeck parameter comparison, reference ship vs segment

Maximum Minimum Mean
Parameter Reference Segment Reference Segment Reference Segment
µ 20.6 23.6 13.8 12.42 16.9 16.9
æ 3.2 3.7 0.61 0.15 1.43 0.97
µ 8.52 13.01 0.53 -0.06 2.18 2.18

Figure 7.5: Case-calibrated mean speed distribution

Table 7.4 shows a comparison of the Ornstein-Uhlenbeck parameters between the reference

vessel and the Panamax fleet. Some significant differences are revealed, whereby the most im-

portant are related to the mean transit speeds. The minimum mean transit speed recorded for

the reference vessel is 13.8 knots compared to the segment minimum of 12.42 knots, indicating

that there exists vessels in the sample group steaming at significant slower speeds than the refer-

ence vessel. Thus, the generalized gamma probability density function is calibrated by tweaking

the parameters a, c, loc and scale, and displayed in figure 7.5.

Calibrating the intra-transit standard deviations is done in a similar manner, by tweaking the

Æ, loc and scale parameters of the inverse gamma distribution. For the mean reversion rates,

the K , loc and scale parameters are calibrated according to the exponentially modified Gaussian

distribution. As discussed in section 5.2, low mean reversion rates suggest a weak drift towards

the mean, and values below a certain threshold threshold may lead to speed processes that takes

values above maximum sailing speed, or drifts towards zero. Sampling 1,000,000 mean reversion

rates from the distribution returned a minimum value of 0.4, which according to experiments is

sufficiently high to avoid unrealistic speed behaviour.
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Figure 7.6: Case-calibrated volatility distribution

Figure 7.7: Case-calibrated mean reversion rate distribution
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Table 7.5: Fuel consumption per nautical mile, DNV GL client data

2000-3000 TEU [MT/Nm] 4000-5000 TEU [MT/Nm]
Market Average 0.11 0.16
Best In Class Liner 0.085 0.145

7.4 Verification of Fuel Consumption

Given the vast amount of assumptions and simplifications during the power and fuel calcula-

tions, the simulated fuel consumption should be compared to empirical consumption data for

verification. Andersen (2017) at DNV GL’s ECO Insight provided empirical fuel consumption

data for different containership segments. The data is based on more than 500 ships, and key

numbers are summarized in table 7.5. The original document is found in appendix C.1.

Simulating one years sailing 500 times yielded the results visualized in figure 7.8. The simula-

tions were carried out with the original KCS bulb, which is designed for a service speed of 24

knots. The fuel consumption output is given as an annual average per nautical mile. Recall-

ing that the KCS has a theoretical payload capacity of 3,600 TEU, an average fuel consumption

of 0.125 metric tons per nautical mile seems reasonable compared to the empirical data. The

relatively wide spread can be ascribed to the the assumption of randomly selecting stochastic

speed parameters, which entails that some years will have higher average sailing speed than

others. This results in higher fuel consumption per unit distance because of the non-linearity

between speed and consumption. As this assumption essentially neglects realistic trade pat-

terns, for example headhaul and backhaul differences, it will yield less accurate results on a

year-to-year basis. However, as the desired output is distributions of expected fuel savings, run-

ning the Monte Carlo simulations numerous times will yield representative expectations. This

assumption will be addressed in further detail in the discussion.

7.5 Model Rules for Bulb Agility

In order to analyze the value of being able to rapidly reconfigure the bulbous bow, the aggre-

gated fuel consumption for one years sailing is simulated with different allowed reconfiguration

frequencies. As discussed in section 5.2.1, the finest data resolution analyzed in this study is

two hours, consequently also the highest frequency of bulb change possible to value. The low-

est frequency subject for valuation is the case where the ship can change bulb configuration in



CHAPTER 7. CASE STUDY 68

Figure 7.8: Simulated fuel consumption per nautical mile during sea passage

port. Between the extremes, we will analyze the value of being able to reconfigure the bulbous

bow every sixth and twelfth hour, in addition to every day, every second day, every third day and

every week. As the mean transit duration is set to two weeks, the latter case allows the ship to

change configuration once during sailing in addition to in port.

A core issue for the valuation of bulb agility is the model rule for selection of bulb configuration.

For the case with the highest level of agility, the model simply selects the bulb configuration

that minimizes the fuel consumption at each time step. However, when the agility is restricted,

selecting bulb according the speed in a specific increment can lead to severe suboptimality for

the next increments. Consider a scenario where the sailing speed drops significantly for a short

period, before it recovers. The speed drop may trigger a configuration change to a bulb better

suited for lower speeds. However, when the speed recovers to a higher level, the bulb cannot be

reconfigured. Thus, the aggregated value contribution from the bulb flexibility might negative,

which contradicts with the core principles of flexibility in engineering design De Neufville and

Scholtes (2011).

The solution to this issue was to assign some predictive capabilities to the model. Take the

case where the bulb configuration can be changed every time the vessel is in port. Since the

simulated sailing speeds are generated prior to the fuel calculations, the bulb configuration can

be selected to fit the average sailing speed for the transit ahead. As the model actually knows the

future sailing speed and can select bulb based on deterministic knowledge, this assumption may

seem optimistic. However, as addressed in chapter 4, the average sailing speed for the upcoming

transit is determined before the vessel leaves port. Similarly, if we simulate the case where bulb

reconfiguration is allowed every sixth hour, the bulb configuration will be selected based on the
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Figure 7.9: Principles of bulb agility

average speed the upcoming six hours. A bulb change in this scenario may represent a scenario

where the sea conditions are expected to be rougher for a shorter period, or the vessel must

speed up to arrive port at schedule.

Another factor that speaks in favour of the predictive model is the fact that longer predictions

will yield more uncertain performance of the bulb. The mean speed of the upcoming three days

will have a higher standard deviation than the mean speed of the upcoming six hours, which

results in more variations around the mean speed and consequently a lost opportunity cost of

not being able to change rapidly. Figure 7.9 explains the logic behind this assumption. In the two

lower plots, the horizontal lines represent the design speeds for different bulb configurations.

The lower left plot displays the case where the bulb is selected to fit the mean speed across

the entire period, while the lower right plot shows the case where the bulb configuration can be

changed according to the mean speed of the hours ahead. Increasing the agility will lead to more

and better suited design speed lines, effectively reducing the grey shaded area which represents

unfavorable speeds.

7.6 Transit Characteristics

The transits are assumed to have an average duration of 14 days, and the vessel is assumed to

have a sea-passage utilization of 0.75. The latter assumption is based on analyses AIS data, and

implies that the vessel spends 75% of the time steaming at speeds above 12 knots.





Chapter 8

Case Study Results

As addressed in subsection 7.2, the absolute maximum obtainable fuel savings for the case with

constant area and varying length is 3.7%. Figure 8.1 shows the distribution of fuel savings with

two-hour agility, compared to the original bulb, and it can be observed that the average annual

saved fuel is 2.859%.

The distribution was obtained from 5,000 Monte Carlo simulations, and table 8.2 shows the dis-

tribution of selected bulbs in the simulations. Bulb ID 3, with ¢x equal to -0.7 m, is omitted

from the table because the configuration is not optimal in any speed regime. It becomes evi-

dent that the simulated vessel sails with bulb ID 2 or bulb ID 4 88.8% of the time. Recalling the

probability density function for mean transit speeds displayed in figure 7.5, the average value

was equal to 16.85 knots. Sampling 1,000,000 values from the distribution reveals that 93.2% of

all mean transit speeds are in the range where ID 2 or ID 4 are optimal. The short term variations

æ explains why the two configurations are selected 88.8% of the times, and not 93.2%.

The fuel savings declines with increased reconfiguration period, down to 2.76% for the case

where reconfiguration is only allowed in port, and the result for different levels of agility is pre-

sented in table 8.1. Distributions for all levels of agility is found in appendix B.1. Figure 8.2

shows the value of agility as a function of reconfiguration period. It should be noted that the

savings reach maximum at two hours, as speed variability within this period is neglected.

Figure 8.1: Saved fuel distribution, two hour reconfiguration period

71
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Table 8.1: Fuel savings from different levels of agility

Annual Fuel Reduction Annual Value*
Frequency of Change Average Standard dev. At 300$/MT At 500$/MT
2 Hours 2.859% 0.128% $110,695 $184,491
6 Hours 2.847% 0.129% $110,230 $183,717
12 Hours 2.838% 0.129% $109,881 $183,136
1 Day 2.827% 0.131% $109,446 $182,426
2 Days 2.811% 0.132% $108,836 $181,394
3 Days 2.797% 0.133% $108,294 $180,490
1 Week 2.770% 0.136% $107,248 $178,748
Port - 2 Weeks 2.764% 0.140% $107,017 $178,361
* 12,906 MT fuel consumed annually. Fuel bill = $3,871,800 at 300 $/MT

Table 8.2: Distribution of selected bulb configurations

ID 1 ID 2 ID 4 ID 5 ID 6 ID 7
¢x [m] -2 -1.35 0 0.7 1.3 2
Optimal at [knots] 12-12.9 13-16.6 16.7-18.8 18.9-19.3 19.4-22 22.1-24
Selected[%] 0.8 43.8 45 5.1 5.3 0

Figure 8.2: Fuel savings as a function of reconfiguration period
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Discussion

9.1 Evaluation of Results

While the constant area with varying length case appears as the most realistic bulb flexibility

with respect to structural and technical complexity, there is no doubt that the gained fuel sav-

ings are too low to impress potential stakeholders. Fuel savings from bulbous bows retrofits are

reported in the range between 5% and 10% (DNVGL, 2015b), leaving few incentives for installing

a flexible system should we trust the results obtained in this study. Although the maximum po-

tential savings for the case was 3.7%, it should be emphasized that the average fuel savings of

2.859% is case specific, determined by the operating profile of the reference vessel selected. The

analysis was re-simulated with a left-skewed probability density function for the mean transit

speed (1 knot lower average), resulting in average fuel savings of 3.13% for the two-hour agility

case. However, reduced speed entails reduced fuel consumption, and a percentage increase in

saved fuel compared to the base case does not mean higher savings in absolute terms.

9.1.1 Cost-Benefit Discussion

As displayed in table 8.1, the annual monetary value of having bulbous bow flexibility is in the

range between $110,695 and $107,017 with today’s bunker price. DNVGL (2015b) estimates the

investment cost of a retrofit to approximately $600,000 for a 13,100 TEU containership. Dale

et al. (2016) concretize the cost breakdown of a bulb retrofit for vessels in the range between

500 TEU and 1000 TEU, and estimate 1 MNOK (approximately $118,000) in fixed costs related to

optimization, engineering and approval. Further, they estimate the material costs to the range

between 0.25 and 0.7 MNOK ($30,000-$84,000), dependent on the size of the vessel. From these

insights we can derive that the cost of a bulb retrofit for a vessel of the size of the KCS will be in

the range between $200,000 and $600,000, probably close to the middle.

However, it is rather obvious that the flexible system will increase the costs substantially. In ad-

dition to the base costs of labour and steel, costs related to the dynamic parts of the system will
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drive the magnitude of the required investment. Additionally, the design and engineering of the

system will be more extensive, entailing an extra incurred project cost. Besides the investment

cost, the flexible bulb system would probably incur a higher maintenance and operating cost,

with respect to both planned and unplanned maintenance, and consumption of lubrication oils

and other consumables.

Cost analysis of a flexible bulbous bow system is outside the scope of this thesis, and estima-

tions would consequently be highly speculative. However, for illustrative purposes, the pay-

back time for an investment of $600,000 is calculated. Assuming a discount rate of 10%, the

net present value (NPV) with a bunker price of 300$/MT and 500$/MT reaches zero (pay-back)

at approximately eight and four years, respectively. The complete NPV analysis is found in ap-

pendix B.2. Again, compared to profitability analyses of robust bulb retrofits, where estimated

pay-back time is between one and two years dependent on bunker price (DNVGL, 2015b), the

outlook of flexible bulb systems is not so optimistic. However, there are two scenarios that could

reduce the pay-back time of a flexible bulb system. The first is related to scaling; consider again

the 13,100 TEU vessel. While the cost of installing and operating a flexible bulb certainly would

be higher than for the full scale KCS, the fuel consumption of such a vessel can be three times

larger (Notteboom and Cariou, 2009). Consequently, increasing the investment cost with less

than 200% will reduce the pay-back time. The second scenario is when the flexible bulb is in-

cluded in the new-build specifications, and the costs related to cutting off the original bulb is

absent.

On the plus side compared to robust bulb designs, flexible bulbous bows have the advantage

of being adaptable to change. While robust bulbs typically are designed to a slow steaming

operating profile, they will not perform as intended if the average sailing speeds should revert

towards pre-slow steaming levels. Quoting Kjeld Roar Jensen at Clipper Fleet Management1:

"Estimating the actual gain when modifying the bulbous bow is quite complex as it depends on

the future and usually unknown operational profile, i.e. future loading and speed conditions."

Here, he refers to estimates of fuel savings from fitting a robust bulbous bow. This would be a

minor concern with bulbous bow flexibility.

1Quote from article: https://forcetechnology.com/en/maritime-industry/cases/retrofitting-a-
new-bulbous-bow

https://forcetechnology.com/en/maritime-industry/cases/retrofitting-a-new-bulbous-bow
https://forcetechnology.com/en/maritime-industry/cases/retrofitting-a-new-bulbous-bow
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9.1.2 Evaluation of Resistance Input

The resistance data from CFD analyses was effectively an upper bound of the fuel savings from

having bulb flexibility. In addition to determining the maximum fuel savings, the CFD results

strictly influenced the distribution of selected bulb designs. As table 8.2 showed, the range be-

tween 13 knots and 18.8 knots was covered by only two different bulb configurations. As this

speed range constitutes the majority of steaming speeds for the reference vessel, it follows that

flexibility beyond these configurations adds little value.

Although the CFD analyses were of high quality and made this study possible, the differences

in resistance across bulb configurations were to small to obtain any significant fuel reductions

from being able to switch between them. The causalities behind the small differences may be

several, one of them being the decision to only alter the length parameter of the bulb. This de-

cision was made because it was, and still is, assumed that it is the most realistic flexibility to

incorporate structurally. However, Filip et al. (2014) obtained resistance changes on the KCS in

the range between -25% and +40% from altering the width and height of a bulbous bow in dif-

ferent speeds regimes. Working with resistance differences of a magnitude in that order would

definitely have resulted in more interesting results with respect to the value of agility.

9.2 Methodology

Numerous assumptions have been made during the process of estimating the value of bulbous

bow agility. This section will address the most important assumptions, and discuss their impact

on the study.

9.2.1 Speed as Exogenous Random Variable

Treating speed as an exogenous variable, i.e. a variable that affects the model, but not vice versa,

is one of the key decisions in this study. The alternative is to treat speed as an endogenous

variable, that is, a variable that is determined or influenced by other variables in the model.

Bulb configuration is an example of an endogenous variable in the model, as it is effectively

determined by the speed variable.

The assumption of treating speed as an exogenous variable essentially neglects the fact that the

speed is determined by the commanding officer, and implies that ships are forced to follow pre-
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defined speed variations. However, the commanding officer will never alter the speed just for

the sake of it. There are always underlying reasons, or agents, inducing the speed variations,

that being met-ocean conditions, schedule, or the ship owners business strategy. In that sense,

if the master acts perfectly, all speed variations are just reactions to the behavior of the agents.

In behavioural finance, the people trading assets in a stock market are referred to as agents.

Their behaviour, i.e. their willingness to buy or sell an asset, will cause the the price to move

up or down. Since agents have different preferences and information, the price movements

are unpredictable over time, and stochastic of nature. Rather than modelling the behaviour of

each individual agent, which obviously is impossible, the stock movements are modelled as a

stochastic process based on historical prices. While it for ship speeds actually is possible to

model the agents’ behaviour (weather, schedule, rates, etc.), we argue that stochastic modelling

of ship speeds works under the same assumption as in finance.

However, the option of changing the geometry of the bulbous bow interferes with the assump-

tion of exogenous speed variations. While the incurred costs from increasing the speed may

have prevented the ship from speeding up without bulb flexibility, the altered hydrodynamic

characteristics with another bulb configuration might lead to a different decision (reaction) by

the commanding officer. The hydrodynamic performance of a ship in different speed regimes

is an important determinant of variations, and the fact that bulbous bows traditionally are de-

signed to one specific design point makes speed variations undesirable in general. With the op-

tion of changing geometry according to the sailing speed, the range of acceptable hydrodynamic

performance extends. Thus, instead of just determining the optimal bulb for the sailing speed,

we have an optimization problem with two decision variables. Given the circumstances, what

are the optimal bulb configuration and sailing speed? This is an optimization problem of high

complexity, and is not investigated in this thesis. Nonetheless, the hypothesis is that this factor

will result in increased speed variations, because the ship can adapt to a wider range of sailing

speeds. If the hypothesis is correct, which seems reasonable, it will entail that the estimated fuel

savings from bulb agility is a lower bound, as variations drive the value of agility.

9.2.2 AIS Data as Estimator for Speed Variations

Section 4.4 addressed the assumption of analyzing variations in sailing speed from AIS data, and

consequently using speed over ground. Recalling that the speed through water (STW) showed

less volatility than the speed over ground (SOG), the analysis should be re-conducted with lower

short-term volatility. The analyses has been conducted with two-hour resolution, and table 4.4
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indicated that the relative volatility of the STW compared to SOG was 84% at this time frame. Ad-

justing the short-term volatility probability density function downwards has two effects; firstly,

and maybe not so obviously, is that the fuel savings from being able to reconfigure the bulb in

port increases. This is because the ship will operate closer to the selected bulb’s design point

through the entire transit when the short-term variations are smaller. Secondly, and more in-

tuitively, is that the value of two hour agility decreases compared to the port agility. When the

short-term volatility goes towards zero, the value of both two hour agility and port agility con-

verges towards 2.83% reduced fuel consumption. At zero volatility, the sailing speed is constant

over transits, and the option of reconfigure the bulb during transits adds no value.

Additionally, the correlation analysis of STW and SOG showed that the latter captures the actual

variations of STW on one and two weeks time frame with high accuracy, suggesting that the

mean transit speed distributions should not be corrected. While the data basis was too small

to draw quantitative conclusions, the analysis indicated less short-term variations, which in

terms results in increased value of port agility, and less relative added value from more rapid

reconfigurations. This insight speaks in favour of port agility, which also appears as the most

realistic bulb flexibility from a structural complexity point of view.

9.2.3 The Impact of Draught and Trim

Limited by available data (both operational and resistance), this study has not considered draught

as a part of varying operating conditions. Draught does definitely vary from transit to transit due

to the asymmetrical world trade, and draught variations does definitely affect the resistance

and consequently fuel consumption. However, draught variations have less of an impact on

fuel consumption than sailing speed. While fuel consumption is roughly proportional to speed

to the power of three, the relationship to draught has an exponent of approximately two thirds

(MAN, 2011). Meng et al. (2016) investigated the relationships between fuel consumption and its

determinants speed and draught, and calculated correlation coefficients in the range between

0.82 and 0.92 for speed, and in the range between 0 and 0.36 for draught. Their analysis encom-

passed containerships of 5,000 and 13,000 TEU, and exemplified the relative impact of speed

versus draught. However, although speed is the main determinant of fuel consumption, the im-

pact of the bulbous bow at different draughts can not be neglected. All investigated studies on

bulb optimization in the context of varying operating conditions (Filip et al., 2014; Wagner et al.,

2014; Lu et al., 2016) has accounted for draught, all of them concluding that draught considera-

tions are important. Preferably, the study should have been conducted with draught data, and
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it goes without saying that draught must be considered should someone want to explore the

concept further.

While the correlation between trim and bulb performance is not so commonly investigated in

the literature, Ljungberg (2017) emphasized that the industry has a great focus on trim optimiza-

tion for resistance minimization purposes. Trim has definitely an impact on resistance, and it is

reasonable to assume that also the bulb performance is affected by this variable.

9.2.4 Not Accounting for Realistic Trade Characteristics

As addressed in section 7.4, the simulation model does not account for realistic trade character-

istics. More specifically, the model samples random mean transit speeds according to the prob-

ability density function, and is essentially neglecting the fact that vessels sails faster in loaded

condition. This entails that the model may sample mean transit speeds that represent typical

headhaul transits for an entire simulated period. This is unrealistic in the sense that ships does

not only sail fully loaded, and the mean transit speeds will alter from one transit to the next.

However, in line with the principles of Monte Carlo methods, running the simulations many

times will ensure a representative distribution of outcomes.



Chapter 10

Conclusion

10.1 Concluding Remarks

This thesis has analyzed the value of being able to rapidly reconfigure the bulbous bow accord-

ing to the sailing speed. The study has essentially been divided into two main parts; one part de-

voted to the analysis and modelling of sailing speed variability, and one part devoted to the mod-

elling of a flexible bulbous bow intended to thrive under the aforementioned variations. Based

on AIS data, historical speed records were fitted to the Ornstein-Uhlenbeck mean-reverting pro-

cess, which was proposed as a stochastic representation of sailing speed. Combined with resis-

tance data for different bulb geometries, a Monte Carlo method for estimating the fuel savings

from being able to switch between the resulting fuel curves was developed, and applied on a

case study calibrated to the KRISO Container Ship.

Fuel savings were estimated for reconfiguration periods (agility levels) between two hours and

two weeks, resulting in percentage reductions in the range between 2.86% and 2.76%, respec-

tively. The resistance data obtained from CFD effectively bounded the maximum obtainable fuel

savings to 3.7%. The small difference between the agility levels is explained by the fact that two

bulbs covered the optimality range between 13 and 18.8 knots, resulting in few configurations to

switch between during most transits. Hence, it is concluded that the bulb configuration space

was too wide and too coarse for a representative containership operating profile. Seven bulb

configurations, optimized to design points from 12 to 24 knots (equal spacing), were available,

whereby two of them were used 88.8% of the time. Further, it is concluded that the obtained fuel

savings are too small to compete with the robust bulb alternative, from which fuel savings are

reported in the range between 5% and 10%.

While the quantitative results indicate that the incentives for bulb flexibility are limited com-

pared to robust bulb designs, the thesis has presented a novel approach for valuation of agility

in marine systems design based on large amounts of data. The methodology presented suc-

ceeded to evaluate the time aspect of flexibility, although the case-specific input yielded low

value of agility. It is concluded that the methodology met the objective of estimating the value
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of rapidly reconfigurable bulbous bows, and implicitly exemplified the value of agility in marine

systems design. However, it is emphasized that the numerous assumptions, potential uncer-

tain input parameters and marginalization of certain fuel consumption-determinants make the

analysis incomplete, underscoring that the results should be treated accordingly.

10.2 Recommendations for Further Work

Although the results in this study were less remarkable, bulb flexibility should in theory out-

perform bulb robustness. Hence, the recommendations for further work is mainly related to

finding ways of identifying valuable bulb flexibility. Section 9.1.2 addressed the decision of only

investigating bulb flexibility in the length direction, possibly delimiting the potential savings

significantly. An alternative approach is to leave the solution space open, and analyze the sen-

sitivity of geometrical changes in several, or preferably all, directions. The work of Filip et al.

(2014) suggested for example that height and width flexibility had substantial impact on the

resistance with varying sailing speed.

Draught variations should further be incorporated in the flexibility analysis. The impact of

draught may be underestimated in this study, and as these variations add another dimension of

uncertainty, including draught may increase the value of flexibility and agility. In theory, draught

variations should be easier to evaluate and account for, as it remains relatively constant during

transits. Hypothetically, this could speak in favour of the agility level where reconfiguration is

an option in port only. Analysis of draught does not rely substantially on the frequency aspect of

variations, and could be incorporated by generating probability density functions and sample

static draught values for each transit. One would obviously need resistance curves for different

draught intervals.

The value of agility with long-term trends should also be analyzed. This was not investigated in

this study, as the performance of flexibility under long-term trends should be compared to ro-

bust bulb designs. Such resistance data was not available. As discussed in section 9.1.1, the key

advantage of flexible bulbs is the ability to adapt. Although robust bulbs are designed to perform

in a wide range of operating conditions, the performance will decrease as the projected opera-

tional profile extends. They are consequently designed to a limited intended operating profile,

and subsequently a declining performance should the intended profile shift significantly. For

example if sailing speeds reverts towards the levels observed before 2008, the value of being

adaptable can increase significantly. However, when bulb flexibility is incorporated to account
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for long-term trends, the agility becomes less important. In light of the retrofit trend, an alter-

native to dynamical flexibility may be to investigate the value of rapid retrofits. That is, bow

areas engineered and structurally dimensioned to being able to rapidly retrofit the bulb, while

the ship is in water.

It is finally recommended that sailing speed variability is investigated with records of speed

through water. Ideally, the analyses of context uncertainty should be conducted in cooperation

with a ship owning company that possess large amounts of fleet performance data. In addition

to more reliable speed data, a cooperation with a liner may entail access to detailed operating

data, providing deeper insight into the correlation between speed, draught, met-ocean condi-

tions and fuel consumption.
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Appendix A

Acronyms

AIS Automatic Identification System

CFD Computational Fluid Dynamics

ETA Estimated Time of Arrival

FP Forward Perpendicular

GB Gigabytes

GPS Global Positioning System

IMO International Maritime Organization

ITTC International Towing Tank Conference

KCS KRISO Container Ship

LOC Lost Opportunity Cost

MCM Monte Carlo Method

MMSI Maritime Mobile Service Identity

OU Ornstein-Uhlenbeck

PDF Probability Density Function

RoRo Roll On Roll Off

S-AIS Satellite Automatic Identification System

SDE Stochastic Differential Equation

SFC Specific Fuel Consumption

SOG Speed Over Ground

STW Speed Through Water
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TEU Twenty-foot Equivalent

UTC Universal Time Coordinated

VHF Very High Frequency



Appendix B

Additional Information

B.1 Detailed Results

Figure B.1: Saved fuel distribution, six hours reconfiguration period

Figure B.2: Saved fuel distribution, twelve hours reconfiguration period

88



APPENDIX B. ADDITIONAL INFORMATION 89

Figure B.3: Saved fuel distribution, one day reconfiguration period

Figure B.4: Saved fuel distribution, two days reconfiguration period

Figure B.5: Saved fuel distribution, three days reconfiguration period
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Figure B.6: Saved fuel distribution, one week reconfiguration period

Figure B.7: Saved fuel distribution, two weeks reconfiguration period
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B.2 Net Present Value Analysis

The net present value (NPV) is calculated by the following formula:

NPV =°I +
NX

i=1

CF

(1+ r )i
(B.1)

Here, I represents the investment cost, and is assumed to be $600,000. CF is the cash flow, or

the monetary annual savings from bulb agility, and is $110,695 and $184,491 at a bunker price of

$300/MT and $500/MT, respectively. r is the discount rate, assumed to be 10%. N denotes the

number of periods (years) analyzed, and is in figure B.8 visualized from zero to 12 years.

Figure B.8: Net present value, two hours reconfiguration period
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DNV GL Empirical Operating Data

C.1 Fuel Consumption Per Nautical Mile

DNV GL © 2015 19 May 2017

There is a lot to be gained still in performance improvements 
(example smaller container vessels)

Februar 2016
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ECO Insight

Figure C.1: Fuel consumption per nautical Mile: smaller containerships
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C.2 Operating Profiles Containerships: 2008-2013 6/2/17
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Operational profile of an 8500TEU Container Vessel - 2009

Weighted mean speed 22 kn / weighted mean consumption 177 mt/day
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Figure C.2: Operating profile, 8500 TEU containership: 2008 and 2009
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6/2/17

1

DNV GL © 2014

Ungraded

11 November 2016

Operational profile of an 8500TEU Container Vessel - 2010
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Operational profile of an 8500TEU Container Vessel - 2011

Weighted mean speed 18,5 kn / weighted mean consumption 120 mt/day
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Figure C.3: Operating profile, 8500 TEU containership: 2010 and 2011
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6/2/17

1
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Operational profile of an 8500TEU Container Vessel - 2012

Weighted mean speed 19 kn / weighted mean consumption 127 mt/day
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Operational profile of an 8500TEU Container Vessel - 2013

Weighted mean speed 16,5 kn / weighted mean consumption 98 mt/day
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Figure C.4: Operating profile, 8500 TEU containership: 2012 and 2013



Appendix D

Python Code

This appendix presents the most important Python code programmed and used in the the-

sis.

D.1 Master Script (MasterAnalysis.py)

All files and functions are ran from the Master Script. Many of the different files have interrelated

functions, and the master script provides a user interface where the desired functions could be

ran by specifying 1 or 0. From this script one can also specify rules for the Ornstein-Uhlenbeck

parameter estimation, in addition to specifying Monte Carlo simulation characteristics. The

script imports four key files that are presented in the sections following this.

1 # ! / usr /bin/env python3
2 # °*° coding : utf°8 °*°
3 " " "
4 Created on F r i Feb 17 10:52:25 2017
5

6 @author : jonleonhardsen
7 " " "
8

9 import PlotVessels as PV
10 import OU
11 import SpeedStatsBigShips as BS
12 import SpeedStatsPanamax as P
13 import Generate_Sailingspeeds as GS
14 import Fuel_Aggregated as FA
15

16 Segment = ’ /Users/ jonleonhardsen /Documents/Documents/ Skole /AIS/ ContainerFleet . db ’
17 Vessel = ’ /Users/ jonleonhardsen /Documents/Documents/ Skole /AIS/ xyz . db ’
18

19 # A l l methods are run from t h i s scr ipt , 1 = run
20 SegmentAnalysis = 1 #1 = analyze segment , 0 = analyze vessel
21 GlobalMap = 0
22 LocalMap = 0
23 DraughtInterpolate = 0
24 TradeDirectionsSuez = 0
25 TradeDirectionPacific = 0
26 FreightRateImpact = 0
27 MonthlyAverage = 0
28 GeoDistribution = 0

96
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29 SpeedDev = 0
30 SpeedHistogram = 0
31 SpeedForAnalysis = 0
32 GeoAnalysis = 0
33 CumulatedSpeed = 0
34 DraughtAnalysis = 0
35 OrnsteinUhlenbeckGenerator = 0
36

37 BigShips = 0
38 Panamax = 0
39 MuSim = 0
40 FuelCalc = 0
41 FuelAgg = 0
42

43 P a c i f i c = [°120 ,63 ,12 ,28]
44 Atlanter = [0 ,53 ,°80 ,33]
45 MexAu = [180 ,7.75 ,°180 ,°26.10]
46 Global = [180 ,90 ,°180 ,°90]
47 asEur = [120 , 50 , °15, 0]
48

49 Loc = 4
50

51 i f Loc == 1 :
52 Pos = P a c i f i c
53 e l i f Loc == 2 :
54 Pos = Atlanter
55 e l i f Loc == 3 :
56 Pos = MexAu
57 e l i f Loc == 4 :
58 Pos = Global
59 e l i f Loc == 5 :
60 Pos = asEur
61

62 #PV c a l l s PlotVessels . py , which e s s e n t i a l l y does a l l data extracting , i n i t i a l analyses ,
63 #and v i s u a l i z a t i o n s of AIS data .
64 i f SegmentAnalysis == 1 :
65 PV . ExtractData ( Segment , Pos [ 0 ] , Pos [ 1 ] , Pos [ 2 ] , Pos [ 3 ] )
66 e lse :
67 PV . ExtractData ( Vessel , Pos [ 0 ] , Pos [ 1 ] , Pos [ 2 ] , Pos [ 3 ] )
68 i f GlobalMap == 1 :
69 PV . GlobalMap ( )
70 i f LocalMap == 1 :
71 PV . LocalMap ( )
72 i f DraughtInterpolate == 1 :
73 PV . DraughtInterpolate ( )
74 i f TradeDirectionsSuez == 1 :
75 PV . TradeDirectionSuez ( )
76 i f TradeDirectionPacific == 1 :
77 PV . TradeDirectionPacific ( )
78 i f MonthlyAverage == 1 :
79 PV . MonthlyAverage ( )
80 i f FreightRateImpact == 1 :
81 PV . FreightRateImpact ( )
82 i f GeoDistribution == 1 :
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83 PV . GeoDistribution ( )
84 i f SpeedDev == 1 :
85 PV . SpeedDev ( )
86 i f SpeedHistogram == 1 :
87 PV . SpeedHistogram ( )
88 i f SpeedForAnalysis == 1 :
89 PV . SpeedForAnalysis ( )
90 i f GeoAnalysis == 1 :
91 minspeed = 12
92 PV . GeoAnalysis ( Pos [ 0 ] , Pos [ 1 ] , Pos [ 2 ] , Pos [ 3 ] , minspeed )
93 i f CumulatedSpeed == 1 :
94 PV . CumulatedSpeed ( )
95 i f DraughtAnalysis == 1 :
96 PV . DraughtAnalysis ( )
97

98 # I f 1 , estimate Ornstein°Uhlenbeck Parameters
99 i f OrnsteinUhlenbeckGenerator == 1 :

100 MaxInterval = 12 #hours
101 MinPeriod = 7 #days
102 PlotSpeed = 1
103 PlotMap = 0 #1 = yes , 0 = no
104 OU. OrnsteinUhlenbeckGenerator (PV . AtTime , PV . AtSpeed , PV . AtLat , PV . AtLon , PlotMap ,

PlotSpeed , MaxInterval , MinPeriod )
105 i f BigShips == 1 :
106 BS . FetchSpeedStatsBigShips ( )
107 e l i f Panamax == 1 :
108 P . FetchSpeedStatsPanamax ( )
109 # I f 1 , s t a r t monte carlo simulations
110 i f FuelCalc == 1 :
111 FA . FuelCalc ( )
112 i f MuSim == 1 :
113 ShipUti l izat ion = 0.75
114 Years = 1
115 AverageTradeDuration = 14 #days
116 i t e r a t i o n s = 5000
117 GS . SimulateSail ing ( ShipUti l ization , Years , AverageTradeDuration , i t e r a t i o n s )
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D.2 Data Extraction (PlotVessels.py)

The code presented in this section is an excerpt of the file named PlotVessels.py, which is im-

ported in the aforementioned Master Script. PlotVessels.py has several functions, including ex-

traction of AIS data from SQL databases, initial filtering (erroneous data points), initial analyses

(headhaul/backhaul), and plotting of vessel movements and sailing speed time series. The fol-

lowing code is the data extraction function, which takes the file directory to the desired database

as input, in addition to coordinates defining the region we want to analyze. The entire file is ap-

pended in the zip-file.

1 # ! / usr /bin/env python3
2 # °*° coding : utf°8 °*°
3 " " "
4 Created on F r i Nov 18 17:34:45 2016
5

6 @author : jonleonhardsen
7 " " "
8

9 import s q l i t e 3
10 def ExtractData ( f i lepath , a , b , c , d) :
11 # f i l e p a t h i s direction to database , dependent on segment or vessel analysis
12 #a , b , c , d i s max and min l a t i t u d e and longitude coordinates
13 global speeds
14 global timestep
15 global l a t s
16 global lons
17

18 speeds = l i s t ( )
19 timestep = l i s t ( )
20 l a t s = l i s t ( )
21 lons = l i s t ( )
22

23 conn = s q l i t e 3 . connect ( f i l e p a t h )
24 cur = conn . cursor ( )
25 SegmentAnalysis = 1
26 with conn :
27 cur = conn . cursor ( )
28 i f SegmentAnalysis == 1 :
29 cur . execute ( " s e l e c t unixtime , sog , lat i tude , longitude , userid from Panamax1

order by userid , unixtime asc " )
30 # I f we analyze segment , r e t r i e v e desired data from database
31 e lse :
32 cur . execute ( "SELECT unixtime , sog , lat i tude , longitude , userid FROM MessageType1

ORDER BY UNIXTIME ASC" )
33 # I f we analyze vessel , r e t r i e v e desired data from database
34

35 VesselData = cur . f e t c h a l l ( )
36 maxLon = a
37 maxLat = b
38 minLon = c
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39 minLat = d
40 lowtime = 0 #Unixtime , lower l i m i t time period
41 hightime = 100000000000 #Unixtime , upper l i m i t time period
42

43 #####################################################
44 # THE FOLLOWING PARTS FILTERS ON SPEED AND POSITION #
45 #####################################################
46 for i in range ( 0 , len ( VesselData ) ) :
47 Datastrip = VesselData [ i ]
48 Speed = Datastrip [ 1 ]
49 untime = Datastrip [ 0 ]
50 l a t = Datastrip [ 2 ]
51 lon = Datastrip [ 3 ]
52 i f Speed < 30 and Speed > 0 and l a t <= maxLat and l a t >= minLat \
53 and lon >= minLon and lon <= maxLon and untime > lowtime and untime <

hightime :
54 speeds . append( Speed )
55 timestep . append( untime )
56 l a t s . append( l a t )
57 lons . append( lon )
58 cur . close ( )
59

60 i f __name__ == "__main__" :
61 ExtractData ( f i lepath , a , b , c , d)
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D.3 Ornstein-Uhlenbeck Parameter Estimation (OU.py)

The following code runs the resampling algorithm and the regression for estimation of Ornstein-

Uhlenbeck parameters. It is imported as OU.py in the Master Script. It takes time and speed

vectors as input, in addition to coordinates, some dummy parameters, and resampling criteria.

1 # ! / usr /bin/env python3
2 # °*° coding : utf°8 °*°
3 " " "
4 Created on Wed Feb 22 12:57:53 2017
5

6 @author : jonleonhardsen
7 " " "
8 #THIS CODE IS REFERRED TO AS THE RESAMPLING ALGORITHM AND PARAMETER ESTIMATION REGRESSION

IN THE THESIS
9 import matplotlib

10 import matplotlib . pyplot as p l t
11 matplotlib . s t y l e . use ( ’ c l a s s i c ’ )
12 from mpl_toolkits . basemap import Basemap
13 import numpy as np
14 from datetime import datetime
15 import math
16 import s t a t i s t i c s as s t
17

18 def OrnsteinUhlenbeckGenerator (Time , Speed , Lat , Lon ,MAP, SPEED, MaxInterval , MinPeriod ) :
19 #Time = Time vector in seconds
20 #Speed = Speed vector in knots , raw from AIS data , f i l t e r e d for speed records below

steaming l e v e l
21 # ( Lat , Lon) = Coordinates
22 #MAP, SEED = Plot dummies
23 #MaxInterval = Maximum allowed interpolat ion i n t e r v a l
24 #MinPeriod = Pre°defined time i n t e r v a l for resampling
25 global TimeSerX
26 global TimeSerY
27 global TimeLat
28 global TimeLon
29 global RevRate1
30 global MeanLev1
31 global VOL1
32 global X
33 global IntSteps
34 global IntTime
35 global IntSpeed
36 global Y
37

38 AtTime = Time
39 AtSpeed = Speed
40 AtLat = Lat
41 AtLon = Lon
42 TimeSerX = l i s t ( ) # Preallocated t r a n s i t time vector in unixtime
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43 TimeSerY = l i s t ( ) # Preallocated t r a n s i t speed vector
44 TimeLat = l i s t ( ) # Preallocated t r a n s i t l a t i t u d e vector
45 TimeLon = l i s t ( ) # Preallocated t r a n s i t longitude vector
46 StartTime = l i s t ( ) # Preallocated l i s t of t r a n s i t s t a r t times
47 EndTime = l i s t ( ) # Preallocated l i s t of t r a n s i t end times
48 d i f f s o r t = l i s t (np . d i f f ( AtTime ) ) # I n t e r v a l between speed records
49 RevRate1 = l i s t ( ) # Preallocated l i s t of mean reversion rates
50 MeanLev1 = l i s t ( ) # Preallocated l i s t of mean speed l e v e l s
51 VOL1 = l i s t ( ) # Preallocated l i s t of speed v o l a t i l i t y
52 N = 1000 #Minimum number of records in a t r a n s i t time

s e r i e s
53 for x in range ( 0 , len ( AtTime )°1) : #Loop through unmanipulated AIS data
54 i f d i f f s o r t [ x ] <= MaxInterval *3600:
55 # I f yes , append speed records to t r a n s i t time s e r i e s
56 TimeSerX . append( AtTime [ x ] )
57 TimeSerY . append( AtSpeed [ x ] )
58 TimeLat . append( AtLat [ x ] )
59 TimeLon . append( AtLon [ x ] )
60

61 e l i f d i f f s o r t [ x ] > MaxInterval *3600 and len ( TimeSerX ) > N:
62 # I f yes , cut o f f time s e r i e s and proceed to next c r i t e r i a
63 i f TimeSerX[°1] ° TimeSerX [ 0 ] > MinPeriod*12*3600 and len ( TimeSerX ) > N:
64 # I f yes , t r a n s i t time s e r i e s i s q u a l i f i e d for data resampling
65 StartTime . append( TimeSerX [ 0 ] )
66 EndTime . append( TimeSerX[°1])
67 TimeFormat = 7200 # 1 = seconds , 60 = minutes , 3600 = hours
68 TimeSpace = EndTime[°1] ° StartTime [°1]
69 TimeInt = i n t ( ( TimeSpace ) /TimeFormat )
70 SumSpeed = [ 0 ] * TimeInt
71 TimeInc = [ 0 ] * TimeInt
72 counttime = [ 0 ] * TimeInt
73

74 #The following loops creates average speed samples
75 for i in range ( 0 , len ( TimeSerX ) ) :
76 for j in range ( 0 , TimeInt ) :
77 i f TimeSerX [ i ] < TimeSerX [ 0 ] + ( j +1) *TimeFormat and TimeSerX [ i ]

>= TimeSerX [ 0 ] + j *TimeFormat :
78 SumSpeed[ j ] = SumSpeed[ j ]+TimeSerY [ i ]
79 TimeInc [ j ] = TimeSerX [0]+ j *TimeFormat
80 counttime [ j ] = counttime [ j ]+1
81 AvSpeed = [ 0 ] * TimeInt
82 for i in range ( 0 , len ( AvSpeed ) ) :
83 i f counttime [ i ] > 0 :
84 AvSpeed [ i ] = SumSpeed[ i ] / counttime [ i ]
85 e l i f counttime [ i ] == 0 :
86 AvSpeed [ i ] = 0
87 #The following loops converts unixtime to datetime
88 TimeInc = [ x for x in TimeInc i f x > 0]
89 IncSteps = l i s t ( )
90 for i in range ( 0 , len ( TimeInc ) ) :
91 Unixconv = datetime . fromtimestamp ( TimeInc [ i ] )
92 IncSteps . append( Unixconv )
93 TimeSerXX = l i s t ( )
94 AvSpeed = [ x for x in AvSpeed i f x > 0]
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95 for i in range ( 0 , len ( TimeSerX ) ) :
96 Unixconv = datetime . fromtimestamp ( TimeSerX [ i ] )
97 TimeSerXX . append( Unixconv )
98

99 #The following loops a l l o c a t e s interpolated speed records where i t i s
necessary

100 IntTime = [ 0 ] * TimeInt
101 for x in range ( 0 , TimeInt ) :
102 IntTime [ x ]=min( TimeSerX ) + x *TimeFormat
103 IntSpeed = [ 0 ] * TimeInt
104

105 for i in range ( 0 , len ( TimeInc ) ) :
106 for j in range ( 0 , len ( IntTime ) ) :
107 i f TimeInc [ i ] == IntTime [ j ] :
108 IntSpeed [ j ] = AvSpeed [ i ]
109

110 for i in range ( 0 , len ( IntSpeed ) ) :
111 count = 0
112 increments = 0
113 i f IntSpeed [ i ] == 0 :
114 count = 1
115 lower = IntSpeed [ i °1]
116 for j in range ( i +1 , len ( IntSpeed ) ) :
117 i f IntSpeed [ j ] == 0 :
118 count += 1
119 e l i f IntSpeed [ j ] > 0 :
120 upper = IntSpeed [ j ]
121 break
122 increments = ( upper°lower ) / ( count+1)
123 for x in range ( i , i +count ) :
124 IntSpeed [ x ] = increments *(1+ x°i ) +lower
125 e l i f IntSpeed [ i ] > 0 :
126 count = 0
127

128 IntSteps = l i s t ( )
129 for i in range ( 0 , len ( IntTime ) ) :
130 Unixconv = datetime . fromtimestamp ( IntTime [ i ] )
131 IntSteps . append( Unixconv )
132

133 #The following part i s the Ornstein°Uhlenbeck parameter estimation#
134 #IntSpeed i s the resampled data , including averaged and interpolated

speed samples
135 dx1 = np . d i f f ( IntSpeed )
136 dt = 2/24
137 dxdt1 = dx1/ dt
138 del IntSpeed [°1]
139 coeff1 = np . p o l y f i t ( IntSpeed , dxdt1 , 1 )
140 res1 = dxdt1 ° np . polyval ( coeff1 , IntSpeed )
141 revRate1 = °coeff1 [ 0 ]
142 meanLevel1 = s t .mean( IntSpeed )
143 vol1 = s t . stdev ( res1 ) *math . sqrt ( dt )
144 X = [ 0 ] * len ( IntTime )
145 Y = [ 0 ] * len ( IntTime )
146 Y[0]= IntSpeed [ 0 ]
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147 i f revRate1 > 0 . 0 5 :
148 for i in range ( 1 , len (X) ) :
149 Y [ i ] = Y [ i °1] + revRate1 * ( meanLevel1°Y [ i °1]) * dt + vol1 *math . sqrt (

dt ) *np . random . normal ( 0 , 1 )
150 #Y i s the simulated speed process
151 i f SPEED == 1 :
152 f i g = p l t . f i g u r e ( )
153 ax = f i g . add_subplot (111)
154 ax . plot ( TimeSerXX , TimeSerY , ’ k ’ , l ab e l = ’ AIS Data ’ )
155 ax . plot ( IntSteps , IntSpeed , c= ’ k ’ , l ab e l = ’Resampled AIS Data ’ )
156 p l t . plot ( IntSteps , Y , ’ k°° ’ , l a be l = ’ Simulated Process ’ )
157 p l t . legend ( loc= ’ upper r i g h t ’ )
158 p l t . x label ( ’Time ’ )
159 p l t . y label ( ’ Speed [ knots ] ’ )
160 p l t . show ( )
161

162 i f MAP == 1 :
163 SpeedMap( TimeLat , TimeLon)
164

165 RevRate1 . append( revRate1 ) #STORE ESTIMATED REVERSION RATE
166 MeanLev1 . append( meanLevel1 ) #STORE ESTIMATED MEAN LEVEL
167 VOL1 . append( vol1 ) #STORE ESTIMATED VOLATILITY
168 TimeSerX = l i s t ( )
169 TimeSerXX = l i s t ( )
170 TimeSerY = l i s t ( )
171 TimeLat = l i s t ( )
172 TimeLon = l i s t ( )
173 e lse :
174 TimeSerX = l i s t ( )
175 TimeSerY = l i s t ( )
176 TimeSerXX = l i s t ( )
177 TimeLat = l i s t ( )
178 TimeLon = l i s t ( )
179 e lse :
180 TimeSerX = l i s t ( )
181 TimeSerY = l i s t ( )
182 TimeSerXX = l i s t ( )
183 TimeLat = l i s t ( )
184 TimeLon = l i s t ( )
185 e lse :
186 TimeSerX = l i s t ( )
187 TimeSerY = l i s t ( )
188 TimeSerXX = l i s t ( )
189 TimeLat = l i s t ( )
190 TimeLon = l i s t ( )
191 global SpeedData
192 w, h = 3 , len (VOL1) ;
193 SpeedData1 = [ [ 0 for x in range (w) ] for y in range (h) ]
194 for i in range ( 0 ,h) :
195 SpeedData1 [ i ] [ 0 ] = MeanLev1[ i ]
196 SpeedData1 [ i ] [ 1 ] = RevRate1 [ i ]
197 SpeedData1 [ i ] [ 2 ] = VOL1[ i ]
198

199 def SpeedMap(LAT ,LON) : # Plots the areas where t r a n s i t time s e r i e s are extracted from
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200 minlon = max(°180 ,min(LON)°10)
201 minlat = max(°90 ,min(LAT)°10)
202 maxlon = min(180 ,max (LON) +10)
203 maxlat = min(90 ,max(LAT) +10)
204 l a t 0 = ( maxlat+minlat ) /2
205 lon0 = ( maxlon+minlon ) /2
206 l a t 1 = ( maxlat+minlat ) /2°20
207 f i g = p l t . f i g u r e ( )
208 ax= f i g . add_axes ( [ 0 . 1 , 0 . 1 , 0 . 8 , 0 . 8 ] )
209 m = Basemap( l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon , u r cr nr l a t =maxlat , \
210 rsphere =(6378137.00 ,6356752.3142) ,\
211 resolution= ’ l ’ , projection= ’merc ’ ,\
212 l a t _ 0 =lat0 , lon_0=lon0 , l a t _ t s = l a t 1 )
213 ax . annotate ( ’ S t a r t ’ , xy =(LAT [ 0 ] , LON[ 0 ] ) , xytext =(TimeLon [ 0 ] , TimeLat [ 0 ] + 2 ) ,
214 arrowprops= d i c t ( facecolor= ’ black ’ , shrink =0.05) , )
215 m. drawcoastlines ( )
216 m. f i l l c o n t i n e n t s ( )
217 x , y = m(LON, LAT)
218 m. s c a t t e r ( x , y , 0 . 1 , marker= ’o ’ , c= ’ k ’ )
219 m. drawparallels (np . arange (°90 ,90 ,20) , l a b e l s = [ 1 , 1 , 0 , 1 ] )
220 m. drawmeridians (np . arange (°180 ,180 ,30) , l a b e l s = [ 1 , 1 , 0 , 1 ] )
221

222 i f __name__ == "__main__" :
223 OrnsteinUhlenbeckGenerator ( )
224 SpeedMap ( )
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D.4 Monte Carlo Simulation Scripts

The following two scripts have functions for simulation of sailing speed and associated fuel con-

sumption. Generate_Sailingspeeds.py generates sailing speed sample paths according to the

Ornstein-Uhlenbeck process and parameters, and calls Fuel_Aggregated.py for calculation of

the associated fuel consumption. Fuel_Aggregated.py takes resistance data for all bulb geome-

try as input in addition to the speed sample path, and calculates the fuel consumption according

to the allowed reconfiguration period.

D.4.1 Simulation of Sailing Speed (Generate_Sailingspeeds.py)

1 # ! / usr /bin/env python3
2 # °*° coding : utf°8 °*°
3 " " "
4 Created on Thu Mar 9 13:26:51 2017
5

6 @author : jonleonhardsen
7 " " "
8 import math
9 import s t a t i s t i c s as s t

10 import numpy as np
11 import matplotlib . pyplot as p l t
12 import Fuel_Aggregated as FA
13 import scipy
14 import BulbData as BD
15

16 def SimulateSail ing ( u t i l i z a t i o n , years , avtradeduration , i t e r a t i o n s ) :
17 #This function generates sample paths that represents s a i l i n g speed
18 # u t i l i z a t i o n = Fraction of time at sea
19 #years = Number of years we want to simulate
20 #avtradeduration = Average t r a n s i t duration
21 # i t e r a t i o n s = Number of Monte Carlo simulations
22 global meanLevel
23 global revRate
24 global vol
25 global Y
26 global AverageTradeTime
27 global days
28 global AnY
29 global savedFuel2Hours
30 global savedFuelXHours
31 global savedFuelPort
32 global bulbDistribution
33 global selected_bulbs
34 global distanceSailed
35 global consumedFuelStatic
36 global FOCnm
37 global simdays
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38 meanLevel = l i s t ( )
39 revRate = l i s t ( )
40 vol = l i s t ( )
41 bulbDistribution = l i s t ( )
42 distanceSailed = l i s t ( )
43 consumedFuelStatic = l i s t ( )
44 savedFuel2Hours = [ 0 ] * i t e r a t i o n s
45 savedFuelXHours = [ 0 ] * i t e r a t i o n s
46 savedFuelPort = [ 0 ] * i t e r a t i o n s
47 simdays = l i s t ( )
48 for a in range ( 0 , i t e r a t i o n s ) : #For each Monte Carlo simulation
49 trades = round ( u t i l i z a t i o n * years *365/ avtradeduration )
50 dt = 2/24
51 Y = [ 0 ] * 1 2 * years *365 #Pre°a l l o c a t e s a i l i n g speed vector
52

53 #The following parameters represents OU parameter PDFs
54 vol_A = 10.75
55 vol_LOC = 0.27
56 vol_SCALE = 9.65
57 mean_LOC = 13.18
58 mean_SCALE = 5.31
59 mean_A = 0.42
60 mean_C =5.22
61 mean_LOC = 12.18
62 rev_K = 15.4
63 rev_LOC = 0.76
64 rev_SCALE = 0.09
65

66 for x in range ( 0 , trades ) :
67 #This loops samples OU parameters for each single t r a n s i t
68 meanLevel [ x ] = scipy . s t a t s .gengamma. rvs (mean_A, mean_C, mean_LOC, mean_SCALE)
69 revRate [ x ] = scipy . s t a t s . exponnorm . rvs ( rev_K , rev_LOC , rev_SCALE )
70 vol [ x ] = scipy . s t a t s . invgamma . rvs ( vol_A , vol_LOC , vol_SCALE )
71 x = 0
72 portTime = round((1° u t i l i z a t i o n ) *12*365/ trades ) # c a l c u l a te s the time in port /

not s a i l i n g
73 MAXSPEED = 26
74 for i in range ( 0 , len (Y) ) :
75 #This loop generates s a i l i n g speed sample paths
76 i f i >= x *12* avtradeduration+portTime and i < ( x+1) *12* avtradeduration + ( x

+1) * portTime :
77 # I f yes , the ship i s s a i l i n g ( t r a n s i t )
78 Y [ i ] = Y [ i °1] + revRate [ x ] * ( meanLevel [ x]°Y [ i °1]) * dt + vol [ x ] * math . sqrt ( dt

) *np . random . normal ( 0 , 1 )
79 i f Y [ i ] > MAXSPEED:
80 Y [ i ] = MAXSPEED
81 e l i f i >= ( x+1) *12* avtradeduration + ( x+1) * portTime and i < ( x+1) *12*

avtradeduration + ( x+2) * portTime :
82 # I f yes , the ship i s in port /not s a i l i n g
83 Y [ i ] = 0
84 e l i f i >= ( x+1) *12* avtradeduration + ( x+2) * portTime :
85 # I f yes , t r a n s i t ( including port time ) i s f inished
86 x += 1
87 i f x >= trades :
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88 break
89 e lse :
90 Y [ i ] = meanLevel [ x ]
91

92 days = [ 0 ] * len (Y)
93 for i in range ( 0 , len (Y) ) : #Time vector
94 days [ i ] = i /12
95 AnY = l i s t ( f i l t e r ( ( 0 ) . __ne__ , Y) ) #Removes zeros ( speed in port )
96 simdays = [ 0 ] * len (AnY)
97 for i in range ( 0 , len (AnY) ) : #Time vector for non°zero l i s t
98 simdays [ i ] = i /12
99

100 FA . AggFuelConsumption (AnY, simdays ) #Sends sample path to f u e l consum scrip /
function

101 savedFuel2Hours [ a ] = FA . FuelSavings #Fetches saved f u e l for 2hour a g i l i t y (
see Fuel_Aggregated for elaboration )

102 savedFuelXHours [ a ] = FA . FuelSavings1 #Fetches saved f u e l for Xhour a g i l i t y (
see Fuel_Aggregated for elaboration )

103 savedFuelPort [ a ] = FA . FuelSavingsPort #Fetches saved f u e l for port a g i l i t y ( see
Fuel_Aggregated for elaboration )

104

105

106 for i in range ( 0 , len ( savedFuel2Hours ) ) :
107 savedFuel2Hours [ i ] = 100*savedFuel2Hours [ i ]
108 savedFuelXHours [ i ] = 100*savedFuelXHours [ i ]
109 savedFuelPort [ i ] = 100* savedFuelPort [ i ]
110

111 ##################################
112 #ULTIMATE AGILITY POST PROCESSING#
113 ##################################
114 savedFuel2Hours = [ x for x in savedFuel2Hours i f s t r ( x ) != ’nan ’ ]
115 x = np . linspace (min( savedFuel2Hours ) ,max( savedFuel2Hours ) ,50)
116 acc = [ 0 ] * len ( x )
117 for i in range ( 0 , len ( acc ) ) :
118 for j in range ( 0 , len ( savedFuel2Hours ) ) :
119 i f savedFuel2Hours [ j ] <= x [ i ] :
120 acc [ i ] += 1
121 for i in range ( 0 , len ( acc ) ) :
122 acc [ i ] = acc [ i ] / len ( savedFuel2Hours )
123

124 std = round ( s t . stdev ( savedFuel2Hours ) , 5 )
125 mean = round ( s t .mean( savedFuel2Hours ) , 5 )
126 f i g , ax1 = p l t . subplots ( )
127 histval1 , binsval = np . histogram ( savedFuel2Hours , bins =50)
128 h i s t v a l = h i s t v a l 1 /sum( h i s t v a l 1 )
129 width = 0.7 * ( binsval [ 1 ] ° binsval [ 0 ] )
130 center = ( binsval [ : °1] + binsval [ 1 : ] ) / 2
131 ax1 . bar ( center , h i s t v a l , a l ign= ’ center ’ , width=width , color= ’ k ’ , alpha =0.5)
132 ax1 . s e t _ x l a b e l ( ’ Saved Fuel [%] ’ , color= ’ k ’ )
133 ax1 . s e t_ y l a b e l ( ’ Distr ibution ’ , color= ’ k ’ )
134 p l t . t i t l e ( ’%s Simulations , Change Every 2nd hour \n Mean = %s , StDev = %s ’%(

i t e r a t i o n s ,mean, std ) )
135

136 ax2 = ax1 . twinx ( )
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137 ax2 . plot ( x , acc , ’ k ’ )
138 ax2 . s e t _ x l a b e l ( ’ Saved Fuel [%] ’ , color= ’ k ’ )
139 ax2 . s e t_ y l a b e l ( ’ Probabi l i ty of Missing Target ’ , color= ’ k ’ )
140 ax2 . grid ( True )
141 p l t . show ( )
142

143 ##############################
144 #LIMITED FLEX POST PROCESSING#
145 ##############################
146 savedFuelXHours = [ x for x in savedFuelXHours i f s t r ( x ) != ’nan ’ ]
147 x1 = np . linspace (min( savedFuelXHours ) ,max( savedFuelXHours ) ,50)
148 acc1 = [ 0 ] * len ( x1 )
149 for i in range ( 0 , len ( acc1 ) ) :
150 for j in range ( 0 , len ( savedFuelXHours ) ) :
151 i f savedFuelXHours [ j ] <= x1 [ i ] :
152 acc1 [ i ] += 1
153

154 for i in range ( 0 , len ( acc1 ) ) :
155 acc1 [ i ] = acc1 [ i ] / len ( savedFuelXHours )
156

157 std = round ( s t . stdev ( savedFuelXHours ) , 5 )
158 mean = round ( s t .mean( savedFuelXHours ) , 5 )
159 f i g , ax1 = p l t . subplots ( )
160 histval1 , binsval = np . histogram ( savedFuelXHours , bins =50)
161 h i s t v a l = h i s t v a l 1 /sum( h i s t v a l 1 )
162 width = 0.7 * ( binsval [ 1 ] ° binsval [ 0 ] )
163 center = ( binsval [ : °1] + binsval [ 1 : ] ) / 2
164 ax1 . bar ( center , h i s t v a l , a l ign= ’ center ’ , width=width , color= ’ k ’ , alpha =0.5)
165 ax1 . s e t _ x l a b e l ( ’ Saved Fuel [%] ’ , color= ’ k ’ )
166 ax1 . s e t_ y l a b e l ( ’ Distr ibution ’ , color= ’ k ’ )
167 p l t . t i t l e ( ’%s Simulations , Change Every 6th Hour \n Mean = %s , StDev = %s ’%(

i t e r a t i o n s ,mean, std ) )
168 ax2 = ax1 . twinx ( )
169 ax2 . plot ( x1 , acc1 , ’ k ’ )
170 ax2 . s e t _ x l a b e l ( ’ Saved Fuel [%] ’ , color= ’ k ’ )
171 ax2 . s e t_ y l a b e l ( ’ Probabi l i ty of Missing Target ’ , color= ’ k ’ )
172 ax2 . grid ( True )
173 p l t . show ( )
174

175 ###########################
176 #PORT FLEX POST PROCESSING#
177 ###########################
178 savedFuelPort = [ x for x in savedFuelPort i f s t r ( x ) != ’nan ’ ]
179 xP = np . linspace (min( savedFuelPort ) ,max( savedFuelPort ) ,50)
180 accP = [ 0 ] * len ( xP )
181 for i in range ( 0 , len ( accP ) ) :
182 for j in range ( 0 , len ( savedFuelPort ) ) :
183 i f savedFuelPort [ j ] <= xP [ i ] :
184 accP [ i ] += 1
185

186 for i in range ( 0 , len ( accP ) ) :
187 accP [ i ] = accP [ i ] / len ( savedFuelPort )
188

189 std = round ( s t . stdev ( savedFuelPort ) , 5 )
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190 mean = round ( s t .mean( savedFuelPort ) , 5 )
191 f i g , ax1 = p l t . subplots ( )
192 histval1 , binsval = np . histogram ( savedFuelPort , bins =50)
193 h i s t v a l = h i s t v a l 1 /sum( h i s t v a l 1 )
194 width = 0.7 * ( binsval [ 1 ] ° binsval [ 0 ] )
195 center = ( binsval [ : °1] + binsval [ 1 : ] ) / 2
196 ax1 . bar ( center , h i s t v a l , a l ign= ’ center ’ , width=width , color= ’ k ’ , alpha =0.5)
197 ax1 . s e t _ x l a b e l ( ’ Saved Fuel [%] ’ , color= ’ k ’ )
198 ax1 . s e t_ y l a b e l ( ’ Distr ibution ’ , color= ’ k ’ )
199 p l t . t i t l e ( ’%s Simulations , Change In Port \n Mean = %s , StDev = %s ’%( i t e r a t i o n s ,mean,

std ) )
200 ax2 = ax1 . twinx ( )
201 ax2 . plot ( xP , accP , ’ k ’ )
202 ax2 . s e t _ x l a b e l ( ’ Saved Fuel [%] ’ , color= ’ k ’ )
203 ax2 . s e t_ y l a b e l ( ’ Probabi l i ty of Missing Target ’ , color= ’ k ’ )
204 ax2 . grid ( True )
205 p l t . show ( )
206

207 selected_bulbs = [ 0 ] *BD. bulbConfigs
208 for i in range ( 0 , len ( selected_bulbs ) ) :
209 selected_bulbs [ i ] = round ( bulbDistribution . count ( i +1) / len ( bulbDistribution ) , 3 )
210

211

212 i f __name__ == "__main__" :
213 SimulateSail ing ( )
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D.4.2 Bulb Selection and Fuel Consumption (Fuel_Aggregated.py)

1 # ! / usr /bin/env python3
2 # °*° coding : utf°8 °*°
3 " " "
4 Created on Mon Mar 13 16:41:20 2017
5

6 @author : jonleonhardsen
7 " " "
8 import numpy as np
9 import matplotlib . pyplot as p l t

10 import Generate_Sailingspeeds as GS
11 import math
12 import s t a t i s t i c s as s t
13 import pandas as pd
14 import BulbData as BD
15

16 def FuelCalc ( ) :
17 #FuelCalc c a l c u l a t e s f u e l consumption as a function of s a i l i n g speed
18 global power
19 global fuelCons
20 global bulbData
21 BD. resistanceData ( ) #Runs s c r i p t that formats and interpolates resistance data for

d i f f e r e n t bulbs
22 bulbData = BD. x #Fetch resistance data for bulb configurations
23 nH = 1.2
24 n0 = 0.55
25 nR = 1.00
26 nB = n0*nR
27 nS = 0.99
28 nT = nH*nB*nS
29 sea_margin = 0.2
30 bulbConfigs = i n t ( ( len ( bulbData [ 0 , : ] ) +1) /2)
31 power = np . zeros ( ( len ( bulbData [ : , 0 ] ) , bulbConfigs ) )
32 for i in range ( power . shape [ 0 ] ) : #Power calculat ions
33 for j in range ( 1 , power . shape [ 1 ] ) :
34 power [ i , j ] = (1+ sea_margin ) * bulbData [ i , 2 * j °1]*(0.51444) * bulbData [ i , 0 ] / ( nT

*1000)
35 power [ i , 0 ] = bulbData [ i , 0 ]
36

37 p l t . f i g u r e ( )
38 for i in range ( 1 , power . shape [ 1 ] ) :
39 p l t . plot ( power [ : , 0 ] , power [ : , i ] )
40

41 p l t . x label ( ’ Speed [ knots ] ’ )
42 p l t . y label ( ’$P_B$ [kW] ’ )
43 p l t . show ( )
44

45 #Fetches data on s p e c i f i c f u e l consumption , as presented in t h e s i s
46 x l = pd . ExcelF i le ( " /Users/ jonleonhardsen /Documents/Documents/ Skole /Python/FuelSIm/

s p e c i f i c f u e l . x l s x " )
47 x l . sheet_names
48 sfcpd = x l . parse ( "Ark4" )
49 s f c = sfcpd . as_matrix ( )
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50

51 p l t . f i g u r e ( )
52 p l t . plot ( s f c [ : , 0 ] , s f c [ : , 1 ] , c= ’ k ’ )
53 p l t . y label ( ’SFC [ g/kWh] ’ )
54 p l t . x label ( ’ Speed [ knots ] ’ )
55 p l t . show ( )
56 fuelCons = np . zeros ( ( len ( power [ : , 0 ] ) , len ( power [ 0 , : ] ) ) )
57

58 for i in range ( power . shape [ 0 ] ) : #Fuel calculat ions
59 for j in range ( 1 , power . shape [ 1 ] ) :
60 fuelCons [ i , j ] = 24*power [ i , j ] * s f c [ i , 1 ] / 1 0 * * 6
61 fuelCons [ i , 0 ] = power [ i , 0 ]
62

63 p l t . f i g u r e ( )
64 for i in range ( 1 , power . shape [ 1 ] ) :
65 p l t . plot ( fuelCons [ : , 0 ] , fuelCons [ : , i ] )
66

67 p l t . x label ( ’ Speed [ knots ] ’ )
68 p l t . y label ( ’ Fuel Consumption [MT per day ] ’ )
69 p l t . show ( )
70

71 def AggFuelConsumption ( speedBehaviour , speedDays ) :
72 #Takes in sampled speed paths from SimulateDailing ( )
73 global StatAgg
74 global FlexAgg
75 global FlexAgg1
76 global portFlexAgg
77 global bulbIDopt
78 global bulbTheoretical
79 global bulbActual
80 global bulbModePort
81 global FuelSavings
82 global FuelSavings1
83 global FuelSavingsPort
84 distance = 0
85 StatAgg = 0
86 StatAgg1 = 0
87 FlexAgg = 0
88 FlexAgg1 = 0
89 bulbIDopt = [ 0 ] * len ( speedBehaviour )
90 #############################################################
91 ## Fuel consumption with bulb change allowed every 2 hours ##
92 #############################################################
93 global triggerSpeed
94 global triggerDay
95 triggerDay = l i s t ( )
96 triggerSpeed = l i s t ( )
97 for i in range ( 0 , len ( speedBehaviour ) ) :
98 idx = (np . abs ( fuelCons [ : ,0] ° speedBehaviour [ i ] ) ) . argmin ( )
99 StatAgg += (2/24) * fuelCons [ idx , 1 ] #Adds consumed f u e l for o r i g i n a l

bulb
100 fuelData = fuelCons [ idx , 1 : ]
101 bulbIDopt [ i ] = (np . abs ( fuelData°0) ) . argmin ( ) +1 # Selects bulb configuration with

minimal f u e l cons
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102 FlexAgg += (2/24) * fuelCons [ idx , bulbIDopt [ i ] ] #Adds consumed f u e l according to
bulb config

103 distance += fuelCons [ idx , 0 ] * 2
104

105 FuelSavings = ( StatAgg°FlexAgg ) / StatAgg
106 GS . bulbDistribution += bulbIDopt
107 #############################################################
108 ## Fuel consumption with bulb change allowed every X hours ##
109 #############################################################
110 bulbTheoretical = [ 0 ] * len ( speedBehaviour ) # Preallocated l i s t for optimal bulb config

at each time index
111 bulbActual = [ 0 ] * len ( speedBehaviour ) # Preallocated l i s t for selected bulb config
112 minChangeInt = 3 #Minimum allowed switching frequency , 1 = 2 hours , 2 = 4 hours , etc
113 for i in range ( 0 , len ( speedBehaviour ) ) :
114 #This loop determines the mean speed determining the bulb configuration
115 i f i < len ( speedBehaviour ) :
116 shortTermMean = s t .mean( speedBehaviour [ i : i +minChangeInt ] )
117 e l i f i == len ( speedBehaviour ) °1:
118 shortTermMean = speedBehaviour [ i ]
119

120 real Idx = (np . abs ( fuelCons [ : ,0] ° speedBehaviour [ i ] ) ) . argmin ( )
121 idx = (np . abs ( fuelCons [ : ,0] °shortTermMean ) ) . argmin ( )
122 fuelData = fuelCons [ idx , 1 : ]
123 bulbTheoretical [ i ] = (np . abs ( fuelData°0) ) . argmin ( ) +1 #Determines optimal bulb

configuration
124 i f i > 0 and bulbActual [ i °1] ! = bulbTheoretical [ i ] : #Determines optimal and

allowed bulb configuration
125 i f i > minChangeInt°1 and len ( set ( bulbActual [ i°minChangeInt : i ] ) ) == 1 :
126 bulbActual [ i ] = bulbTheoretical [ i ]
127 e lse :
128 bulbActual [ i ] = bulbActual [ i °1]
129 e l i f i == 0 :
130 bulbActual [ i ] = bulbTheoretical [ i ]
131 e lse :
132 bulbActual [ i ] = bulbActual [ i °1]
133

134 FlexAgg1 += (2/24) * fuelCons [ realIdx , bulbActual [ i ] ]
135 FuelSavings1 = ( StatAgg°FlexAgg1 ) / StatAgg1
136 #############################################################
137 ## Fuel consumption with bulb change allowed in port ##
138 #############################################################
139 tradeDur = 14 #Average t r a n s i t duration
140 trades = math . c e i l ( len ( speedBehaviour ) / ( ( tradeDur°1) *12) )
141 avSpeed = [ 0 ] * trades
142 steps = ( tradeDur°1)*12
143 for i in range ( 1 , len ( avSpeed ) +1) :
144 #This loop c a l c u l a te s average speeds for each t r a n s i t
145 i f i * steps <= len ( speedBehaviour ) :
146 avSpeed [ i °1] = s t .mean( speedBehaviour [ ( i °1)* steps +1: i * steps ] )
147 e lse :
148 avSpeed [ i °1] = s t .mean( speedBehaviour [ ( i °1)* steps +1:°1])
149

150 bulbOptTrade = [ 0 ] * len ( avSpeed )
151 for i in range ( 0 , len ( avSpeed ) ) : #This loop s e l e c t s best bulb according to t r a n s i t
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average
152 idx = (np . abs ( fuelCons [ : ,0] °avSpeed [ i ] ) ) . argmin ( )
153 fuelData = fuelCons [ idx , 1 : ]
154 bulbOptTrade [ i ] = (np . abs ( fuelData°0) ) . argmin ( ) +1
155 bulbModePort = [ 0 ] * len ( speedBehaviour )
156 for i in range ( 1 , len ( bulbOptTrade ) +1) :
157 i f i == 1 :
158 for j in range ( ( i °1)* steps , i * steps +1) :
159 bulbModePort [ j ] = bulbOptTrade [ i °1]
160 e l i f i * steps <= len ( speedBehaviour ) :
161 for j in range ( ( i °1)* steps +1 , i * steps +1) :
162 bulbModePort [ j ] = bulbOptTrade [ i °1]
163 e lse :
164 for j in range ( ( i °1)* steps +1 , len ( speedBehaviour ) ) :
165 bulbModePort [ j ] = bulbOptTrade [ i °1]
166 portFlexAgg = 0
167 for i in range ( 0 , len ( bulbModePort ) ) :
168 idx = (np . abs ( fuelCons [ : ,0] ° speedBehaviour [ i ] ) ) . argmin ( )
169 portFlexAgg += (2/24) * fuelCons [ idx , bulbModePort [ i ] ]
170 FuelSavingsPort = ( StatAgg°portFlexAgg ) / StatAgg
171

172 i f __name__ == "__main__" :
173 FuelCalc ( )
174 AggFuelConsumption ( )
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D.5 List of Electronic Appendages

The following files are appended in the zip-file associated with the study:

• MasterAnalysis.py

• PlotVessels.py (in its entirety)

• OU.py

• Generate_Sailingspeeds.py

• Fuel_Aggregated.py

• BulbData.py (interpolates resistance data from excel-sheet)

• Bulb_data.xlsx (Resistance data for all bulb configurations)

• specificfuel.xlsx (Specific fuel consumption data)
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