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Abstract

In this study, we introduce new Bayesian Model Averaging (BMA) approaches to con-
struct probabilistic discharge forecasts. The approaches are tested for a case study from
the Osali catchment in south-western Norway during the period from June, 24 2014 to
June 22, 2015, with hydrological deterministic forecasts generated from a HBV-model
using ensemble forecasts from European Centre for Medium-Range Weather Forecasts
(ECMWF). In the classical BMA approach for postprocessing of ensemble forecasts, a
probability density function is associated with each individual ensemble member forecast,
and a sliding window training period is used to estimate model parameters, such as the
mean and the variance of the individual ensemble member probability density functions.
In hydrological forecasting, extreme events caused by snow melting or heavy rainfall, af-
fect the BMA parameters in the following days, resulting in poor predictive performance.
We suggest to model the mean in the BMA methodology with a varying coefficient regres-
sion (VCR) model to smooth parameter estimates and to better reflect changing weather
patterns. Furthermore, we suggest to apply the Climatology Cumulative Probability Re-
gression (CCPR) methodology to construct probabilistic discharge forecasts for each en-
semble member, and then combine them with the BMA methodology. The calibration
of the probabilistic forecast is assessed using the probability integral transform (PIT) and
the predictive performance is assessed according to the continuous rank probability score
(CRPS). The results from the case study showed that the predictive performance can be
improved by including a varying coefficient regression model and/or the CCPR model in
the BMA methodology for postprocessing of hydrological ensemble forecasts.

i



ii



Sammendrag

I dette studiet introduserer vi nye Bayesian Model Averaging (BMA) metoder for å lage
sannsynlighetsvarsel for tilsig. Metodene er testet i et casestudie av Osalifeltet sør-vest i
Norge i perioden fra 24. juni 2014 til 22. juni 2015. Hydrologiske prognoser er gener-
ert av en HBV-model ved å bruke ensembleprognoser fra European Centre for Medium-
Range Weather Forecasts (ECMWF). I den klassiske BMA-metoden til postprosessering
av ensembleprognoser blir hvert ensemblemedlem tilegnet en sannsynlighetsfordeling der
gjennomsnittet og variansen blir estimert basert på en treningsperiode i form av et gli-
dende vindu. For hydrologiske sannsynlighetvarsel vil ekstreme hendelser, forårsaket av
mye regn eller snøsmelting, påvirke BMA-parametrene i dagene som følger. Det vil føre
til at sannsynlighetsvarslene vil stemme dårlig overens med observasjonene. Vi foreslår
å modellere gjennomsnittet av sannsynlighetsfordelingen assosiert med ensembleprog-
nosene med en Varying Coefficient Regression (VCR) modell, slik at parameterestimatene
glattes ut og slik at vi lettere kan tilpasse modellen til varierende værmønster. Videre så
foreslår vi å bruke Climatology Cumulative Probability Regression (CCPR) metoden til
å lage sannsynlighetsfordelinger for hvert ensemblemedlem, og deretter kombinere dem
med BMA-metoden. Kalibrering av det totale sannsynlighetsvarselet blir vurdert ved å
bruke Probability Integral Transform (PIT) og kvaliteten på sannsynlighetsvarslene blir
vurdert gjennom Continuous Rank Probability Score (CRPS). Resultatene fra casestudiet
viste at sannsynlighetsvarslene stemmer bedre overens med observasjonene ved å inklud-
ere en VCR modell og/eller CCPR modellen i BMA-metoden til bruk av postprossesering
av hydrologiske ensembleprognoser.
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Chapter 1
Introduction

Hydrological forecasting plays an important role in a variety of applications, ranging from
flood prevention to water resource management and hydropower production. Therefore,
reliable hydrological forecasts are of great importance. Deterministic hydrological models
are commonly used for discharge simulations to generate discharge forecasts. In this study,
the Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Bergström, 1992) is used.
Furthermore, the European Center for Medium-Range Weather Forecasts (ECMWF) pro-
vides temperature and precipitation forecasts, which is used as inputs in the HBV model.
The forecasts from ECMWF are generated by running the ECMWF numerical weather
prediction model which is based on the physical atmosphere. However, the resulting fore-
casts are not perfect. Forecasts errors originating from errors in the initial state from which
the forecast is run, increases as the forecast horizon increases. In addition, the model for-
mulation is only an approximation to the atmosphere, which also is a source of error. In
order to determine the uncertainty of a forecast, ECMWF uses an ensemble of forecasts
with perturbations made for both the initial state and the model formulation for each mem-
ber of the ensemble (Woods, 2005). The ensembles are used as inputs in the HBV-model
to produce an ensemble of discharge forecasts. From the ensemble forecasts, the uncer-
tainty can be assessed, and the resulting ensemble can be interpreted as a probabilistic
forecast.

Studies have shown that ensemble forecasts tend to be underdispersive, meaning that the
observed value too often lies outside the ensemble range (Raftery et al., 2005). Therefore,
the need of statistical postprocessing methods is essential in order to obtain reliable prob-
abilistic forecasts. Different methods have been proposed in scientific papers. Examples
are the Hydrological Uncertainty Processor (Krzysztofowicz and Kelly, 2000), the Hydro-
logical Model Output Statistics (Regonda et al., 2013), Quantile Regression (Weerts et al.,
2011), Climatology Cumulative Probability Regression (Borhaug, 2014), and Bayesian
Model Averaging (Raftery et al., 2005). This study focuses on the two latter methodolo-
gies.
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The use of Bayesian Model Averaging (BMA) for statistical postprocessing of meteo-
rological forecast ensembles was introduced by Raftery et al. (2005). They generated
probabilistic forecasts for temperature by combining deterministic forecasts from differ-
ent models. In the context of probabilistic weather forecasting, each ensemble member
deterministic forecast is considered as a statistical model. Each deterministic forecast is
associated with a probability density function (pdf) and the BMA probabilistic forecast,
is given by a weighted average of the individual ensemble member pdfs. When model-
ing temperature, the normal distribution is a natural choice for the individual ensemble
member pdfs, but in hydrological forecasting, discharge values are non negative. Hence a
normal distribution is not likely to represent the data well.

Extensions of the BMA technique have been developed for cases when the quantity of in-
terest deviates from the normal assumption. Sloughter et al. (2007) modified the method to
apply for precipitation forecasts by introducing a discrete-continuous model which com-
bines a logistic regression model and the gamma distribution as individual pdfs for the
ensemble member forecasts. Furthermore, Rings et al. (2012) preprocessed the data using
the Box-Cox transformation and suggested a more flexible representation of the condi-
tional pdf in the BMA methodology using a joint particle filtering and mixture Gaussian
modeling framework.

In the classical BMA methodology, the mean of the individual ensemble member pdfs are
the bias-corrected ensemble forecasts, where the bias-correction parameters are estimated
from a sliding window training period. In hydrological forecasting, extreme events caused
by snow melting or heavy rainfall affects the BMA parameters in the following days,
resulting in poor predictive performance. In Figure 1.1a, the BMA predicted mean and a
90% prediction interval for the Osali catchment during the period from October 8, 2014
to December 2, 2014, are plotted in red. The corresponding observations are given in
blue. Lead time is the time between the day when the forecast was made, and the day
when the forecast is valid, and the lead time of the probabilistic forecasts in Figure 1.1a
are 9, but the forecasts are plotted against the day when they are valid. The day when
the forecast is made is called issue time. The analysis was carried out in the student
project during the autumn 2016. The bias-correction parameters, α and β, for each day
are shown in Figure 1.1b and 1.1c, respectively. The horizontal lines indicate the bias-
correction values if the ensemble forecasts are perfectly calibrated. The vertical lines
show the time delay between the issue time and lead time. It is seen that 90% prediction
interval of the BMA probabilistic forecast does not increase much until 10 days after the
large forecast-observation error at October 28, since the days between the issue time and
lead time is not included in the sliding window training period for the model parameters.
Furthermore, the slope parameter β ranges from below 0 to above 1.5. This is not desirable
since when β is zero, the mean of the individual ensemble members pdfs are based on α
solely, which means that the mean of the probabilistic forecast is just the average observed
discharge value in the training period. We further observe that α is large. The model
parameters are further described in Chapter 3.2. We suggest to model the mean with a
varying coefficient regression model to smooth parameter estimates and to better reflect
changing weather patterns. Varying coefficient regression (VCR) is a class of generalized
linear regression models where the coefficients are allowed to vary as functions of other
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variables (Hastie and Tibshirani, 1993). Examples on applications include nonparametric
regression (Cleveland, 1979), dynamic linear models (West, 1996) and spatial and spatio-
temporal models (Blangiardo and Cameletti, 2015).
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Figure 1.1: BMA probabilistic forecast using the method developed by Raftery et al. (2005) with a
60 days sliding window training period, and model parameter estimates for lead time 9 at the Osali
catchment in the period from October 8 to December 2, 2014.

We further suggest to use the Climatology Cumulative Probability Regression (CCPR)
methodology by Borhaug (2014) to generate the individual ensemble member pdfs and
combine them with the BMA methodology to one probabilistic forecast. The CCPR
method uses the information available in the climatology, combined with different de-
terministic forecasts, to fit a beta distribution on the unit scale and then transform the pdf
back to original scale.

Before using the probabilistic forecast, it is important to evaluate the quality. The quality
can be measured by calibration and sharpness. Calibration is the consistency between
the ensemble forecasts and the corresponding observed values. Sharpness is a measure
of uncertainty of the probabilistic forecast. When assessing the quality of deterministic
forecasts, sufficient measures are scoring rules such as the mean absolute error (MAE)
and the root mean square error (RMSE). For probabilistic forecasts, both calibration and
sharpness need to be assessed. The continuous rank probability score (CRPS) is a proper
scoring rule that is widely used for evaluating probabilistic forecasts, and addresses both
calibration and sharpness (Hersbach, 2000; Gneiting and Raftery, 2007). Furthermore the
probability integral transform (PIT) (Rosenblatt, 1952), is often used to assess calibration
of probabilistic forecasts (Raftery et al., 2005; Gneiting et al., 2005).

In this work three new postprocessing models are suggested: BMA with the beta pdf as the
individual ensemble member pdfs (Beta-BMA), BMA with varying coefficient regression
(BMA-VCR), and Bayesian model averaging with the beta pdf as the individual ensemble
member pdf and varying coefficient regression (Beta-BMA-VCR). These models, together
with the classical BMA methodology for forecast ensembles by Raftery et al. (2005), are
tested and compared in a case study of the Osali catchment. Discharge observations are
provided by Statkraft, which is the largest hydropower producer in Norway.

The thesis consists of seven chapters. In Chapter 2, the data available and a brief ex-
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ploratory analysis of the forecast error are presented. In Chapter 3, the background mate-
rial for the new models is presented, including evaluation methods for probabilistic fore-
casts, the BMA and CCPR postprocessing methodologies, regression models, and an in-
ference section. The new postprocessing approaches are given in Chapter 4. Chapter 5
gives the models and methods used in the case study, and the results of the case study
are presented in Chapter 6. In the last chapter, Chapter 7, the results are summarized and
discussed.
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Chapter 2
Data and Brief Exploratory
Analysis

In this chapter, the data used in the case study is presented. We first give some information
about the catchment, and then proceed with introducing the discharge observations and
the runoff model used to obtain discharge forecasts. A brief exploratory analysis of the
forecast error is presented in the end.

2.1 The Osali Catchment

In this study we consider the Osali catchment which is a part of the Ulla-Førre hydropower
complex in south-western Norway. Figure 2.1 shows where Osali is located. The catch-
ment is located at high altitude, and the mean temperature in the area ranges from −2 ◦C
on average in February to 13 ◦C on average in July. The amount of precipitation also
varies seasonally, where June has the smallest amount and November the highest with 111
mm and 481 mm, respectively. Furthermore, annual runoff is measured to be 3200 mm
on average where the highest average streamflow is in May and November (Engeland and
Steinsland, 2014; Engeland et al., 2016).
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Osali

Figure 2.1: Map over southern Norway. The red dot is the location of the Osali catchment.

2.2 Discharge Observations

Daily discharge, in unit m3/s, during the period April 4, 2014 to January 27, 2016 is
recorded and the data is provided by Statkraft. Figure 2.2a shows the daily observed
discharge. We observe that there are two large spikes. One during the fall of 2014, and
one late in 2015. This is typical for catchments in the south-western part of Norway. Large
streamflows are caused by a major snow melt period during the spring and heavy rain fall
during late autumn. We notice that there also are differences from one year to another,
e.g. the observed discharge was a lot higher during the summer of 2015 compared to the
summer of 2014. Figure 2.2b shows the histogram of discharge values. The majority of
days has less than 10 m3/s observed discharge.
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Figure 2.2: Daily discharge in the period April 4, 2014 to January 27, 2016.
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2.3 The HBV Model and Discharge Ensemble Forecasts

The ensemble forecasts used in this study are generated from the Hydrologiska Byråns
Vattenbalansavdelning (HBV) model (Bergström, 1992). The HBV model is a determin-
istic hydrological runoff model that is used for simulations. A simple illustration of the
HBV-model is provided in Figure 2.3.

Observed quantities from respective days Forecasts from day i

R
u
n
of

f

... i-1i-2

Te
m

p
er

at
u
re

Pe
rc

ip
it
at

io
n

...i i+9

y
i-2

xi,1,0xi,2,0xi,3,0xi,4,0xi,5,0

xi,1,9xi,2,9xi,3,9xi,4,9xi,5,9
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Figure 2.3: Simple illustration of the HBV-model. Inputs are temperature and precipitation, includ-
ing rain and snow, and runoff is the output. The states before state i use observed quantities from
respective days as inputs, and the states after state i use a set of deterministic forecasts from day i
as inputs. The straight arrows pointing towards the box at each state represent the inputs and the
arrows pointing away from the box represent the output. Temperature- and precipitation forecasts
are obtained from ECMWF.

The model takes precipitation and temperature as inputs. Furthermore, the model has a
number of free hydrological parameters that are estimated from training data (Engeland
et al., 2016). The start state is estimated using observed precipitation and temperature up
until yesterday (day i− 1). Ensembles of temperature and precipitation forecasts from the
European Centre for Medium-Range Weather Forecasts (ECMWF) are used as input in the
HBV-model. In Figure 2.3 there are five input arrows representing temperature forecasts
and five arrows representing precipitation forecasts from day issue i. The resulting output
is an ensemble of five discharge forecasts.

In this study, the ensemble size is M = 51, and the ensemble forecasts are treated equally,
i.e. they are exchangeable. For each day in the period April 4, 2014 to January 27, 2016,
there are initialized forecasts for L = 10 days, including the issue day. Throughout this
chapter, we let i denote issue time, l lead time, m ensemble member number, and N the
total number of days in the period. Lead time is the time between the the day when the
forecast was made, and the day when the forecast is valid, i.e. the forecast horizon. The
day when the forecast is made is called issue time. Thus, an ensemble forecast is denoted
xi,m,l and the corresponding observation is denoted yi+l. Raw ensemble forecasts for
discharge are provided by Statkraft.
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Figure 2.4 shows observed discharge before May 31, 2014, and the 51 ensemble forecasts
for lead time 0 to 9, issued on May 31, together with the corresponding observations. We
observe that the uncertainty in the raw ensemble forecasts increases with the lead time.
The ensemble forecasts during May 2014 are plotted at lead time 0 and lead time 9 in
Figure 2.5a and 2.5b, respectively. In both figures, there are 51 blue points plotted each
day, representing the ensemble forecasts. Corresponding observed discharges are plotted
as red dots. We observe that the forecasts seem to be biased. Furthermore, we observe that
for lead time 0, the ensemble forecasts are concentrated around the same value and do not
represent the uncertainty well. The ensemble spread is much larger for lead time 9.
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Figure 2.4: Predictions from issue time May 31, 2014 in blue. The solid red points are the corre-
sponding, yet to be observed, observations. The open red points are historically observed discharge.
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Figure 2.5: Ensemble forecasts in blue and verifying observation in red during May, 2014 for
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8



2.4 Brief Exploratory Analysis of the Forecast Error

In this section, a brief exploratory analysis of the error between forecast and observed
values is presented. Since the ensemble members are assumed to be exchangeable we
expect the error to behave in a similar manner for all ensemble members. The error, εi,m,l,
between a forecast, xi,m,l (at issue time i, ensemble member m, and lead time l), and the
verifying observation, yi+l (at time i+ l), is

εi,m,l = xi,m,l − yi+l. (2.1)

The mean error εi,m,l at each day in the period April 4, 2014 to January 27, 2016, is plotted
in Figure 2.6. The line inside the box represents the median, and the boxes show the 25th
and 75th percentile. The points are outliers. Negative error indicates that the forecasts
more often are smaller than the corresponding observed values.
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Figure 2.6: The error between forecast and corresponding observation for one ensemble member.
The line represents the median, and the boxes show the 25th and 75th percentile. The points are
outliers.

We further consider the mean of the ensemble forecasts at each day. The forecast error
between the mean of the ensemble forecasts and the corresponding observation is

εi,l =
1

M

M∑
m=1

xi,m,l − yi+l. (2.2)

The mean absolute value (MAE) and the root mean square error (RMSE) between the
mean of the ensemble forecasts at each day and the corresponding observation yi+l at lead
time l,

MAE =
1

N

N∑
i=1

|εi,l| and RMSE =

√√√√ 1

N

N∑
i=1

ε2i,l

9



are plotted in Figure 2.7. We observe that the MAE and RMSE increase as the lead time
increases.
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Figure 2.7: The mean absolute error and root mean square error as a function of lead time.

10



Chapter 3
Background

This chapter describes different approaches for evaluating probabilistic forecasts, and
we further describe the original Bayesian Model Averaging (BMA) approach which is
a widely used postprocessing technique for ensemble forecasts. Furthermore, some theory
from regression models and the Climatology Cumulative Probability Regression (CCPR)
approach are presented. In the end of the chapter, the two main inference paradigms, fre-
quentist and Bayesian inference, are described. We use the same notation as introduced
in the previous section. The predicted value for model m, issued at time i, and valid for
lead time l, is xi,m,l, and the corresponding observed value at time i + l is yi+l. How-
ever, in this chapter we only consider one issue time and one lead time, and we therefore
simplify notation for the ensemble forecasts and corresponding observation to xm and y,
respectively.

3.1 Probabilistic Forecasting

Forecasting future quantities is of great importance in many applications, and forecasts
reduce the uncertainty of a future event, but generally not eliminate it, and therefore,
forecasts should be probabilistic (Gneiting et al., 2007). Probabilistic forecasts take the
form of predictive probability density functions or predictive cumulative distribution func-
tions, and in order for the forecast to be useful, it is important to assess the predictive
performance. When evaluating probabilistic forecasts, Gneiting et al. (2005) suggest to
maximize sharpness of the probabilistic forecast subject to calibration. Calibration is the
statistical consistency between the predictive distributions and the corresponding observed
values. Sharpness is a measure of uncertainty of the predictive distributions. Common
tools for measuring the calibration of probabilistic forecasts are the verification rank his-
togram (VRH) (Anderson, 1996), and the probability integral transform (PIT) (Dawid,
1984). Furthermore, the continuous rank probability score (CRPS) is often used when
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evaluating the predictive performance of a probabilistic forecasts (Gneiting and Raftery,
2007).

3.1.1 Calibration

Dawid (1982) define a forecast to be well calibrated if the observed empirical frequencies
of an event coincides with the forecasted probabilities. The VRH is often used when
assessing calibration of ensemble forecasts (Anderson, 1996; Hamill, 2001). The VRH
is computed by arranging the ensemble forecasts and the corresponding observation in
increasing order. If an ensemble is calibrated, then the observation is equally likely to take
any place among the ensemble forecasts.

The probability integral transform (PIT) is common to use for assessing calibration of the
probabilistic forecast. Rosenblatt (1952) introduces the probability integral transform, and
Dawid (1984) suggested to apply it to assessment of probabilistic forecasts. Let Fi be
the predictive cumulative distribution function (cdf) of the observation yi. The probability
integral transform is the value of the predictive cdf at the observation yi, that is

pi = Fi(yi). (3.1)

The probabilistic forecast is calibrated if the PIT values, pi, is uniformly distributed. Uni-
formity can be assessed by plotting the histogram of PIT values, which we refer to as the
PIT histogram.

Considering at the shape of the VRH ans the PIT histogram, gives us an indication whether
the probabilistic forecast is calibrated (Gneiting et al., 2007). Hump-shaped histograms
indicate that the probabilistic forecast is overdispersed, which means that the prediction
intervals on average are too wide. U-shaped histograms indicates underdispersion, mean-
ing that the prediction intervals on average are too narrow. Asymmetrical histograms occur
when the probabilistic forecast is biased. Figure 3.1 shows examples of histograms when
the probabilistic forecast is calibrated, biased, underdispersed and overdispersed.

3.1.2 The Continuous Rank Probability Score

Proper scoring rules are often used to assess the predictive performance of a probabilistic
forecast. A scoring rule is proper if the expected score is minimized when the issued
forecast is the true distribution of the quantity to be forecast (Gneiting and Raftery, 2007).
The Continuous Rank Probability Score (CPRS) is a proper scoring rule that measures
both calibration and the sharpness of a probabilistic forecast. If F is the predictive cdf and
y is the corresponding observation, the CRPS is defined as

crps(F, y) =

∫ ∞
−∞

(F (t)− 1{t≥y})2dt, (3.2)
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Figure 3.1: Illustrations of PIT histograms.

where 1{t≥y} is the step function that attains value 1 if t ≥ y and 0 otherwise. The CRPS
measures the difference between the predicted and occurred cumulative distributions. The
value of the CRPS is non-negative and the smaller value the better quality of the proba-
bilistic forecast.

Gneiting and Raftery (2007) show that the CRPS can be written as

crps(F, y) = E|Y − y| − 1

2
E|Y − Y ∗|, (3.3)

where Y and Y ∗ are independent random variables with cumulative distribution function
F . The CRPS generalizes the absolute error and does therefore provide a way to compare
deterministic and probabilistic forecasts. For exchangeable ensemble forecasts of size M
with discrete cumulative density function Fens, Equation (3.3) can be written as (Grimit
et al., 2006)

crps(Fens, y) =
1

M

M∑
m=1

|xm − y| −
1

2M2

M∑
m=1

K∑
k=1

|xm − xk|, (3.4)
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where y is the observation and xm, m = 1, ...,M , are the ensemble members. Further-
more, if F is the cdf of a normal distribution, Gneiting et al. (2005) show that there exists
an analytic expression for the CRPS.

When evaluating probabilistic forecasts the CRPS is averaged over N days with Fi, i =
1, ..., N , being the predictive cdf of the quantity of interest, yi. The mean CRPS is given
as

CPRS =
1

N

N∑
i=1

crps(Fi, yi). (3.5)

The CRPS reduces to the mean absolute error (MAE) for deterministic forecasts and is
defined as

MAE =
1

N

N∑
i=1

|yi − xi|, (3.6)

for observation-forecast pairs yi and xi.

3.2 Bayesian Model Averaging

The use of Bayesian Model Averaging (BMA) for statistical postprocessing of meteorolog-
ical forecast ensembles was introduced by Raftery et al. (2005). The technique generates a
probabilistic forecast for a quantity of interest by combining forecasts from different mod-
els. In the context of probabilistic weather forecasting, each ensemble member forecast,
xm, is considered as a statistical model. Each ensemble member forecast is associated with
a probability density function (pdf) g(y|xm), and the BMA predictive pdf of any future
weather quantity, y, is given by a weighted average of the individual ensemble member
pdfs,

f(y|x1, ..., xM ) =

M∑
m=1

wmg(y|xm), (3.7)

where the weights, wm, are non-negative and satisfy
∑M
m=1 wm = 1. The weights are

determined from a training period, and they reflect the performance of each ensemble
member forecast in the training period relative to the other ensemble members.

The choice of the individual pdfs, g(·), is dependent on the quantity of interest. Raftery
et al. (2005) consider temperature where the normal distribution seems to be a reasonable
choice. In parts of this study we follow Raftery et al. (2005) and use the normal distribution
with mean αm + βmxm and standard deviation τm. We denote this as

Y |xm ∼ N (αm + βmxm, τ
2
m). (3.8)

Dealing with exchangeable ensemble members simplifies the BMA procedure (Fraley
et al., 2010). If all the ensemble members are exchangeable, Equation (3.8) can be written
as
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Y |xm ∼ N (α+ βxm, τ
2), (3.9)

and the ensemble BMA probabilistic forecast, Equation (3.7), takes the form

f(y|x1, ..., xM ) =

M∑
m=1

wg(y|xm), (3.10)

where w = 1/M . The mean of the BMA probabilistic forecast is given by

E[y|x1, ..., xM ] =

M∑
m=1

w(α+ βxm), (3.11)

and the variance of the BMA probabilistic forecast can be written as (Raftery et al.,
2005)

Var[y|x1, ..., xM ] =

M∑
m=1

w

(
(α+ βxm)−

M∑
i=1

w(α+ βxi)

)2

+ τ2. (3.12)

The BMA predictive variance consists of two terms. The first term is a measure of how
much spread there is between the ensemble forecasts, and the second term represents the
uncertainty within each model.

To illustrate the BMA technique, an example of the BMA probabilistic forecast with five
ensemble members is provided in Figure 3.2. Each of the five bias-corrected ensemble
forecasts, has an associated normal pdf, and BMA probabilistic forecast is a weighted
average over the five individual pdfs. In this example, the weights are w = 1/5, and the
parameters are α = 0.50, β = 1.34, and τ = 1.29. We observe that the observation lies
close to the mean of the BMA probabilistic forecast.

The model parameters in the BMA setting with g(y|xm) defined in Equation (3.9), is α,
β, and τ . The parameters α and β are estimated by linear regression, and τ is estimated
by maximum likelihood estimation (MLE) from training data.

Since the ensemble members are exchangeable, the parameters α and β are restricted to
be the same for all ensemble members, and they are estimated by linear regression from
a sliding window training period. The linear regression estimates for α, β correspond to
the estimates obtained from maximizing log-likelihood function of M · (K − 1) normally
distributed random variables with mean µm = α+ βxm and standard deviation τ ′

(α̂ML, β̂ML, τ̂
′
ML) = arg max

α,β,τ ′

t−1∑
k=t−K

(
1

M

M∑
m=1

log(g(yk|xk,m))

)
, (3.13)

where M is the total number of ensemble members, K is the length of the training period,
and g(·) in this case denotes the normal pdf with mean α+βxk,m and variance τ ′2.
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Figure 3.2: An illustration of the BMA probabilistic forecast for January 9, 2015. The filled circles
are the raw ensembles, and the empty circles are bias corrected. The yellow vertical line is the
verifying observation, and the black vertical line is the mean of the BMA probabilistic forecast.
The orange lines are the weighted normal distributed ensemble pdfs, centered at the individual bias-
corrected forecast. The vertical stapled lines show the standard deviation of the probabilistic forecast.

The estimate τ̂ ′ML is not useful in the BMA context. However, after obtained the bias-
correction estimates, the variance parameter τ2 can be estimated from the log-likelihood
function of the BMA probabilistic forecast. The maximum likelihood estimate for τ
is

τ̂ML = arg max
τ

t−1∑
k=t−K

log

(
1

M

M∑
m=1

g(yk|xk,m)

)
, (3.14)

where g(·) denotes the normal pdf with mean α+βxk,m and variance τ2, i.e. the individual
ensemble member pdfs. This expression can be optimized numerically.

Extensions of the BMA technique have been developed for cases when the quantity of
interest deviates from the normal assumption. Sloughter et al. (2007) modified the method
to apply for precipitation forecasts. Because the amount of precipitation is highly skewed
and has a non-zero probability of being equal to zero, a normal distribution is not appro-
priate for precipitation. Sloughter et al. (2007) therefore introduce a discrete-continuous
model which combines a logistic regression model and the gamma distribution as individ-
ual pdfs for the ensemble member forecasts. Furthermore, Ajami et al. (2007) uses BMA
to obtain reliable probabilistic hydrological forecasts using the box-cox transformation of
streamflow values.
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3.3 Generalized Linear Models

Generalized linear models (GLM) was introduced by Nelder and Baker (1972). For a
thoroughly review of GLM, we refer to the book by Hardin et al. (2007). GLM is a class
of models where the response variable y has a distribution that belongs to the exponential
family, but not necessarily the normal distribution. The exponential family is a class of
random variables with pdf on the form

π(y|θ) = h(y)c(θ)exp

(
K∑
k=1

wk(θ)tk(y)

)
, (3.15)

where θ is the parameter vector, and y is a scalar or a vector. The functions h(y) and tk(y)
do not depend on θ, and c(θ) ≥ 0. Most of the commonly used random variables belongs
to the exponential family (Blangiardo and Cameletti, 2015).

In a generalized linear model there is a linear predictor

η = α+

K∑
k=1

βkxk, (3.16)

for a set of K explanatory variables xk. The mean µ of of the random variable Y is
connected to the linear predictor η through a link function g(·), i.e.

E(y) = µ = g−1(η). (3.17)

The link function g(·) describes the relationship of between the linear predictor η and the
mean of the distribution function µ, and is chosen based on problem specific matters, e.g.
the domain of the pdf of y should match the range of possible values that µ can take.

3.4 Beta Regression

Regression models, such as the linear regression model, is commonly used for application
where data is related to other variables. A regression model describes the relationship
between a dependent variable, or response variable, which in our case corresponds to the
observation y, and one or more independent variables, or explanatory variables, which in
our case correspond to the individual ensemble member forecasts xm. However, when the
response variable y is restricted to the standard unit interval, i.e. the interval from 0 to 1,
the linear regression model is not appropriate since it may lead to response values outside
the unit interval. Ferrari and Cribari-Neto (2004) proposed a regression model where the
response variable is beta distributed, and it is useful for modeling continuous variables that
take values in the interval between 0 and 1.
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The pdf of a beta distributed random variable y is given by

π(y; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1, (3.18)

where a and b are shape parameters. The expected value is

E(Y ) =
a

a+ b
, (3.19)

and the variance is
Var(Y ) =

ab

(a+ b)2(a+ b+ 1)
, (3.20)

The beta regression model is based on an alternative parametrization of the beta distribu-
tion, in terms of a mean parameter µ and a precision parameter φ. By setting µ = a

a+b and
φ = a+ b we get

π(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1. (3.21)

Hence, the mean and the variance of y are

E(Y ) = µ (3.22)

Var(Y ) =
µ(1− µ)

1 + φ
, (3.23)

respectively. The advantage of using µ and φ instead of a and b is that it has an easier
interpretation which makes the modeling easier. The parameter φ is called a precision
parameter since for fixed µ, the larger value of φ, the smaller variance of Y . The idea be-
hind the beta regression model is to model the mean µ as a function of the linear predictor
η defined in Equation (3.16), and the mean µ of the random variable Y is connected to
the linear predictor η through a link function g(·). Since µ ∈ (0, 1) for the beta distribu-
tion, the logit link is a common choice for the beta regression model. Using the logit link
function leads to

µ = g−1(η) =
1

1 + e−η
. (3.24)

Figure 3.3 shows examples on the beta pdf and cdf for different values of the mean param-
eter µ and precision parameter φ. We observe that the beta distribution is flexible.
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Figure 3.3: Examples of pdfs and cdfs of a beta distributed random variable with parameters µ and
φ.

3.5 Climatology Cumulative Probability Regression

The Climatology Cumulative Probability Regression (CCPR) method was developed by
Borhaug (2014). The methodology is inspired by Gneiting et al. (2013) who combined
predictive pdfs using the beta-transformed linear pool. The CCPR method utilizes the
information available in the climatology, combined with different deterministic forecasts.
In this section, we consider one ensemble member forecast x and we do therefore suppress
subscripts i,m, l.

Let Y denote the random variable representing the probabilistic discharge and let GY (·)
denote the climatology cdf. The climatology cdf is based on historical observations and
can be constructed in different ways, e.g. by fitting a distribution to the data (Borhaug,
2014). The idea behind the CCPR method is that given a deterministic forecast x and a
climatology cdf, we fit a pdf on the unit scale according to a beta regression model
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Z|x∗ ∼ Beta(µ, φ) (3.25)

µ = logit−1(α+ βx∗), (3.26)

where x∗ is the value of the climatology cdf at the the deterministic forecast x, i.e. x∗ =
GY (x), which means that the climatology is used to transform the original ensemble fore-
cast x to the unit scale. We let fbeta(·) and Fbeta(·) denote the pdf and cdf of Z|x∗,
respectively. Note that the uniform distribution is a special case of the beta regression
model, by setting µ = 0.5 and φ = 2. The interpretation of fitting a pdf on unit scale is
that it gives the probability that the observed value y falls into different intervals of the
climatology cdf, i.e. it is a pdf for GY (y).

The interpretation of the bias-correction parameters α and β in Equation (3.26) can be
difficult since the logit link is involved. Note that α determines the mean when x∗ = 0,
i.e. µ = logit−1(α). The slope parameter β has an important impact on the shape of µ.
This can be seen in Figure 3.4. The mean µ is plotted against the deterministic forecast on
unit scale x∗ for different values of α = 0,−3, and β = 0, 1, 3, 5. The dashed lines have
α = −3 and the solid lines have α = 0. From the figure it is seen that α determines the
intersection with the y-axis, and the lower values of α the closer to zero is the intersection
point. The red solid line, which corresponds to α = 0 and β = 0, is an example of poor
predictive performance where µ is constant and equal to 0.5. An appealing property of
the CCPR model is what we would get for a non-informative forecast: The postprocessed
forecast is then the climatology, and the climatology is calibrated. On the other hand, if
the predictive performance in the training period is good, β is estimated to be large and
α small, which means that x∗ has a large impact on µ. The dashed purple line, which
corresponds to α = −3 and β = 5 shows this. A drawback with the CCPR method is that
it does not include the special case of perfect forecast (Borhaug, 2014).
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Figure 3.4: The mean µ as a function of the deterministic forecast on unit scale, x∗, for different
values of α and β. The dashed lines have α = −3 and the solid lines have α = 0.
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After fitting a pdf on the unit scale, it is transformed back to original scale and the post-
processed cdf on original scale, denoted GY |x(·), is given by

GY |x(y) = G−1Y (Fbeta(z|x∗)), (3.27)

where Fbeta(·) is the cdf of Z|x∗, and Z|x∗ is defined in Equation (3.25) and (3.26).
From this expression we find that the special case when Fbeta(z|x∗) correspond to the
uniform cdf, which happens when the prediction in the training period is without any
information, thenGY |x(·) andGY (·) are equal by the inverse integral transform. However,
since the beta distribution is flexible, the postprocessed cdf GY |x(·) can take a wide range
of different shapes.

We illustrate the method with an example where we have one deterministic forecast x and
an empirical climatology cdf GY (y) based on historical observations (y1, ..., yn). This
means that the empirical cdf jumps 1/n at observation values. The transformation is shown
in Figure 3.5. The deterministic forecast x generate a beta cdf Fbeta(z), which is illustrated
by the blue line to the left in the Figure 3.5. Since Fbeta(z) is the cdf ofGY (y), it is rotated
counterclockwise by 90◦. To generate the postprocessed forecast GY |x(y), each value
GY (yi) is assigned the value at the beta cdf, i.e. Fbeta(GY (yi)). The purple line shows
the postprocessed cdf GY |x(y). The transformation procedure is described in details for
the point (7, GY (7)), and the procedure is similar for all points (yi, GY (yi)). We observe
in the figure that after the transformation, the probability of observing a streamflow of at
most 7 m/s3 is reduced from 0.9 to 0.5.
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Figure 3.5: Illustration of the transformation procedure from the climatology cdf GY (y) in red, via
the unit scale cdf Fbeta(z) rotated counterclockwise 90◦ in blue, resulting in the postprocessed cdf
GY |x(y) in purple.

The estimation of the model parameters is in the original CCPR method by Borhaug (2014)
performed by minimum CRPS estimation which is a procedure of fitting model parame-
ters which minimizes the CRPS over a training period. An alternative procedure is to do
maximum likelihood estimation from a training period, i.e
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(α̂ML, β̂ML, φ̂ML) = arg max
α,β,φ

(
K∑
i=1

`i(µi, φ)

)
, (3.28)

where

`i(µi, φ) = logΓ(φ) + logΓ(µiφ)− logΓ((1− µi)φ) (3.29)
+ (µiφ− 1)log(yi) + ((1− µi)φ− 1)log(1− µi), (3.30)

and µ is defined in Equation (3.26). Bayesian inference is described later in this chapter,
and is a third alternative.

3.6 Varying Coefficient Regression

Varying coefficient regression (VCR) models is a class of generalized linear regression
models where the coefficients are allowed to vary as functions of other variables (Hastie
and Tibshirani, 1993). Let Y be a random variable, and let the mean be defined as a
function of a structured additive predictor η via a link function g(·), such that g(µ) = η.
A varying coefficient model with explanatory variables X0, ..., Xp, R0, ..., Rp takes the
form

η = α(R0) + β1(R1)x1 + · · ·+ βp(Rp)xp, (3.31)

where functions α(·) and βj(·), depend on the explanatory variables Rj , which implies
that there are some interaction between each Rj and xj . The varying coefficient model
in Equation (3.31) is general and includes a wide range of regression models. Examples
include the generalized linear regression model which is obtained if βj(Rj) = βj , i.e. the
constant function. If βj(Rj) = βjRj is a linear function, then the model has a product
interaction on the form βjRjxj . Furthermore, if Rj = Xj we end up with a common
model for smoothing or nonparametric regression (Cleveland, 1979).

The main focus in this thesis is the model where the regression coefficients are allowed
to vary over time, denoted by t. The explanatory variables Rj are then the same variable,
which is time t. The model takes the form

η = α(t) + β1(t)x1 + · · ·+ βp(t)xp, (3.32)

for time steps t = 1, ..., n. As an example of a varying coefficient model with time varying
parameters, we consider the varying coefficient model

Yt = β(t)Xt + νt νt ∼ N(0, Vt), (3.33)

where β(t) is the vector of regression coefficient functions, and Xt is the vector of ex-
planatory variables at time t.
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This model needs to be imposed some structure in order to be useful. An example is the
dynamic linear model (DLM) (West, 1996). The DLM is usually formed by an equation
describing the relationship between the response variable Yt and the explanatory variables
Xt, and a system equation describing the evolution of the vector of parameters βt through
time. One version of the DLM is

Yt = βtXt + νt, νt ∼ N(0, Vt) (3.34)
βt = βt−1 + ωt, ωt ∼ N(0,Wt), (3.35)

where Vt and Wt are independent of each other.

3.7 Inference

There are two main paradigms for estimation of parameters. In the classical approach, the
unknown vector of parameters θ = (θ1, ..., θn) is fixed and is estimated by techniques such
as maximum likelihood estimation. In the Bayesian approach, θ is random and assigned a
prior π(θ). It can then be estimated from the posterior distribution

π(θ|y) =
π(y|θ)π(θ)

π(y)
. (3.36)

Throughout this thesis we let π(·) denote a pdf.

3.7.1 ML, MAP and Bayes Estimators

A linear regression model assumes a linear relationship between the predictors and the
outcome. As an example we consider the case where the outcome yi is normally distributed
with mean parameter µi and variance τ2. The model setup is

yi ∼ N (µi, τ
2) (3.37)

µi = α+ βxi. (3.38)

Let θ = (α, β, τ2) denote the vector of parameters. In the classical approach we are
looking for optimal values of parameters by maximizing the likelihood function. The
maximum likelihood estimator θ̂ML is given by

θ̂ML = arg max
θ

∏
i

π(yi|θ). (3.39)

In the Bayesian approach, priors need to be specified for the regression parameters α, β
and the variance parameter τ . The maximum a posteriori estimator (MAP) allows us
to include our prior beliefs on the parameter vector θ by returning the maximum of the
posteriori distribution, i.e. the mode
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θ̂MAP = arg max
θ

π(y|θ)π(θ)

π(y)
= arg max

θ

∏
i

π(yi|θ)π(θ). (3.40)

By assigning a non-informative prior to the parameter vector, i.e. π(θ) ∝ 1, the ML
estimate and MAP estimate coincide. However, both ML and MAP returns single and
specific values for the parameter vector. In contrast, Bayesian estimation computes the
full posterior distribution π(θ|y). From the joint posterior distribution one can obtain
marginal distribution for each element in the parameter vector, and point estimates can
then be found by minimizing the posterior expected loss

θ̂i = arg min
θ̂i

= E(L(θ̂i, θi)), (3.41)

where L(·) is the loss function, and θi denotes an element in θ. Such an estimator is
called a Bayes estimator. A common choice for the loss function is the quadratic error loss
function L(θ̂i, θi) = (θ̂i−θi)2, or the absolute error loss function L(θ̂i, θi) = |θ̂i−θi|. By
inserting into equation (3.41), the quadratic error loss function, yields the posterior mean
(PM) as parameter estimate

θ̂iPM = E(θi|y), (3.42)

while the absolute error loss function yields the median of the posterior density (MPD),

θ̂iMPD = median(π(θi|y)). (3.43)

However, it is important to remember that in the Bayesian framework, the parameters θ are
characterized by a probability distribution, while in the frequentest framework, the param-
eters are fixed unknown quantities, and only the estimator θ̂ML is a random variable. The
main advantage of using Bayes estimators is that they allow us to express our confidence
in any value we choose to use as parameter estimate through the prior.

3.7.2 Integrated Nested Laplace Approximation

The Integrated Nested Laplace Approximation methodology (INLA) was introduced by
Rue et al. (2009). It is a method for performing approximate Bayesian inference. The
method performs a direct numerical calculation of the posterior distributions for latent
Gaussian models. As an alternative to simulation-based Monte Carlo integration, INLA
uses the analytic approximation with the Laplace method. For further elaboration of the
approximation procedure we refer to Blangiardo and Cameletti (2015), and our introduc-
tion is based on this book.

Given some observed data y = (y1, ..., yn), a model for yi can be characterized by a mean
parameter µi which is defined as a function of a structured additive predictor ηi via a link
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function g(·), such that g(µi) = ηi. The structured additive predictor η has the following
form

ηi = α+

K∑
k=1

βkxki +

J∑
j=1

fj(Rji), (3.44)

where βk is the linear effect of the covariates xk and fj(·) are unknown functions of the
covariates Rj . This structured additive predictor is comparable to the VCR predictor in
Equation (3.31), and similar to the VCR-model, it has a wide range of applications due
to the numerous forms of the unknown functions fj(Rj). If the fj(Rj) terms are omit-
ted, the predictor coincides with the predictor in the generalized linear model in Equation
(3.16).

The Latent Gaussian models can be described in a hierarchical structure. At first level,
the model of the observations y is assumed to be conditional independent and identi-
cally distributed given the latent field ξ = (α,β,f) and some hyperparameters θ1. The
hyperparameters θ1 typically are the measurement error precision. The model of the n
observations are given by the likelihood

π(y|ξ,θ1) =

n∏
i=1

π(yi|ξi,θ1). (3.45)

At the second level, the latent field ξ is characterized by a multivariate Normal distribution
given the remaining hyperparameters θ2

ξ|θ2 ∼ MVNormal(0,Q−1(θ2), (3.46)

where Q−1 is the covariance matrix reflecting dependence structure of the model. We let
π(ξ|θ2) denote the pdf. Finally, at the third level of the hierarchical model, appropriate
priors are assigned to the hyperparameters θ = (θ1,θ2), denoted π(θ).

The three-level hierarchical structure is visualized in Figure 3.6. The unobservable quanti-
ties characterized by a probability distribution is represented as circles, and the observable
quantities, i.e. the data, are represented as squares. The lines represent the conditional
dependence structure. Furthermore, the latent Gaussian field in the second level can be
assigned a dependence structure from the functions fj(·).

25



...y
1 y

2
y
i

y
n

1 2 i n

θ

...

...

...ξ ξ ξ ξ

Figure 3.6: The three level hierarchical structure. The upper level is the observable variable yi,
represented by squares. The latent Gaussian field ξ is in the middle. The lower level is the hyper
parameters θ. The two lower levels are unobservable quantities characterized by a pdf, and are
represented by circles. The lines represent the dependence structure.

The joint posterior for the latent field ξ and the hyperparameters θ takes the form

π(ξ,θ|y) ∝
∏
i

π(yi|ξi,θ)π(ξ|θ)π(θ) (3.47)

∝ π(θ)|Q(θ)|n/2exp

(
−1

2
ξTQ(θ)ξ +

∑
i

log (π(yi|ξi,θ))

)
. (3.48)

We are interested in finding the marginal posterior pdfs for each element of the latent
Gaussian field ξ and the hyperparameters θ. The marginal distributions can be defined
as

π(ξi|y) =

∫
π(xi|θ,y)π(θ|y)dθ i = 1, ..., n (3.49)

π(θj |y) =

∫
π(θ|y)dθ−j j = 1, ..., n. (3.50)

The INLA procedure to approximate these marginals is described in details by Blangiardo
and Cameletti (2015).

3.7.3 Gaussian Markov Random Fields

Some latent Gaussian models satisfy the conditional independence property. A Gaussian
Markov random field (GMRF) is a vector γ = (γ1, γ2, ..., γn) with Markov properties,
which means that γi, γj are conditional independent given γ−ij where γ−ij denotes all the
elements in γ but γi and γj (Rue et al., 2009). The conditional independence assumption
makes it computational easier. The joint density of the GMRF simplifies to
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π(γ) = π(γn|γ1, ..., γn−1)π(γn−1|γ1, ..., γn−2) · · ·π(γ2|γ1)π(γ1) (3.51)
= π(γn|γn−1)π(γn−1|γn−2) · · ·π(γ2|γ1)π(γ1). (3.52)

As an example of a GMRF we consider the random walk model of order 1. We assume
constant time steps t = 1, 2, ..., T . The first order random walk model is constructed
assuming independent increments

∆γt ∼ N (0, κ−1), (3.53)

where κ−1 is a precision parameter. This implies that

γs − γt ∼ N (0, (s− t)κ−1) s > t. (3.54)

The density of γ is derived from the T − 1 increments in Equation (3.53)

π(γ|κ) ∝ κ(T−1)/2exp

(
−κ

2

T−1∑
t=1

(∆γt)
2

)
(3.55)

∝ κ(T−1)/2exp

(
−κ

2

T−1∑
t=1

(γt+1 − γt)2
)
, (3.56)

which leads to

γt|γ−t, κ ∼ N
(

1

2
(γt−1 + γt+1),

1

2κ

)
(3.57)

3.8 Software

For computations, we use existing software in R. Ensemble forecasts and observations
are loaded from R-files, and then converted to an ensembleData object. The R package
ensembleBMA (Fraley et al., 2007) is used for simulations and estimation of parameters
for the BMA approach for Gaussian ensemble member pdfs with aK days sliding training
period. Inference and simulations for the VCR-models and the CCPR-models, is done
using the R-package R-INLA (Rue et al., 2009) which can be downloaded from www.
r-inla.org. For optimization of the variance/precision parameter, we use the function
optimize in stats (R Development Core Team, 2008). The function uses Brent’s method
(Brent, 2013) for numerical optimization.
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Chapter 4
New BMA Postprocessing
Approaches

In this chapter we suggest new postprocessing models based on the theory described in
the previous chapter. Subscript for lead time l and issue time i are suppressed from the
notation since the postprocessing models are presented for one specific day. Some of the
parameters in the new postprocessing techniques are evolving through time and a sub-
script t is therefore included on these parameters. Subscript m denotes ensemble member
number.

4.1 BMA with Beta Probability Density Functions

In the BMA methodology, each ensemble member is associated with a pdf g(y|xm). The
form of g(·) is chosen to fit the response variable y. Discharge values are non nega-
tive and therefore, the normal distribution is not appropriate. In academic papers sev-
eral proposals for g(y|xm) for discharge forecasting have been made. Examples include
the normal distribution combined with a box-cox-transformation of the streamflow values
(Ajami et al., 2007), the gamma distribution (Vrugt and Robinson, 2007), and particle
filtering with Gaussian mixture modeling (Rings et al., 2012). We suggest to apply the
CCPR-methodology developed by Borhaug (2014) as the individual ensemble member
pdfs.

We transform the ensemble forecasts xm to the unit scale through the climatology cdf
GY (·), and we denote the transformed forecast x∗m. The beta distribution as the individual
ensemble member pdfs on unit scale. The same notation as in Section 3.5 is being used,
and the model setup is
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Zm|x∗m ∼ Beta(µm, φ) (4.1)

µm = logit−1(α+ βx∗m) m = 1, ...,M. (4.2)

The interpretation of the intercept parameter α and slope parameter β discussed Sec-
tion 3.5. The forecasts are then combined using the BMA methodology with exchange-
able ensemble members. On unit scale, the Beta-BMA probabilistic forecast takes the
form

f(z|x∗1, ..., x∗M ) =
1

M

M∑
m=1

fbeta(z|x∗m), (4.3)

where fbeta(·) is the beta distribution with mean µm defined in (4.2) and precision φ.

Figure 4.1 shows five weighted ensemble pdfs being combined according to Equation
(4.3).
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Beta−BMA pred. pdf
Weighted ensemble pdfs

Figure 4.1: Five ensemble member pdfs, the orange lines, being combine to one pdf, the blue line,
on unit scale.

The Beta-BMA probabilistic forecast is then transformed back to original scale according
to the transformation procedure described in Section 3.5. To the left in Figure 4.2 the
ensemble member cdfs, corresponding to the pdfs in Figure 4.1, are combined, and then
the combined cdf on unit scale is transformed to original scale.
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Figure 4.2: Illustration of the transformation procedure from the climatology cdf GY (y) in red, via
the unit scale cdf Fbeta(z) rotated counterclockwise 90◦ in blue, resulting in the postprocessed cdf
GY |x(y) in purple. The unit scale cdf Fbeta(z) is a combination of five unit scale ensemble member
pdfs.

The Beta-BMA cdf on original scale takes the form

F (y|x∗1, ..., x∗M ) =
1

M

M∑
m=1

G−1Y (Fbeta(z|x∗m)), (4.4)

where GY (·) is the climatology cdf, and Fbeta(·) denotes the cdf of Z|x∗, where Z|x∗ is
defined in (4.1).

The estimation of the parameters in Beta-BMA can be done the same way as for original
BMA. Recall that M denotes the total number of ensemble members and K is the length
of the training period. First, the bias-correction parameters α and β are estimated by max-
imizing the log-likelihood function of M · (K − 1) independent Beta-distributed random
variables with bias-correction parameters α and β and precision parameter φ′

(α̂ML, β̂ML, φ̂′ML) = arg max
α,β,φ′

(
K∑
k=1

1

M

M∑
m=1

log
{
fbeta

(
zk|x∗k,m

) })
.

An alternative way of getting estimates for the bias-correction parameters is to use Bayesian
inference. The priors are

π(α) ∼ N (0, σα) (4.5)
π(β) ∼ N (0, σβ) (4.6)
π(φ′) ∼ Gamma(p, q), (4.7)

where p, q, σα, σβ needs to be specified. The joint posterior distribution takes the form
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π(α, β, φ′|z) ∝
K∏
k=1

fbeta(zk|α, β, φ′)π(α)π(β)π(φ′), (4.8)

Posterior marginals can then be obtained. We are interested in point estimates, and if we
use the Bayes estimator that minimizes the posterior expected loss with the MSE as loss
function, which is the posterior mean, we get

α̂PM = E(α|z) =

∫
απ(α|z)dα (4.9)

β̂PM = E(β|z) =

∫
βπ(β|z)dβ. (4.10)

(4.11)

After obtained bias-correction estimates, we fix them and φ can be estimated from the same
training period based on the likelihood function of the Beta-BMA probabilistic forecast on
unit scale, i.e.

φ̂ML = arg max
φ

K∏
k=1

1

M

M∑
m=1

fbeta(zk|x∗k,m). (4.12)

This expression can be optimized numerically.

4.2 BMA with Gaussian Probability Density Functions and
Varying Coefficient Regression

In the third method we apply the VCR model to the BMA methodology. Instead of esti-
mating the bias-correcting-parameters from a sliding window training period, we let them
evolve according to a VCR model.

When specifying the form of µm we use the same notation as in Section 3.7.2 where the
INLA methodology is described. The mean µm takes the form of a structured additive
predictor defined in Equation (3.44) with the identity link g(µm) = µm. With one deter-
ministic forecast xm, µm takes the form

µm = α+ βxm +

J∑
j=1

fj(Rj). (4.13)

Furthermore, let the modifying variable Rj represent time, denoted by t, and we define
αt = f1(t) and βt = f2(t). We now impose the first order random walk structure on αt
and βt,
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αt|αt−1 ∼ N (αt−1, A) (4.14)
βt|βt−1 ∼ N (βt−1, B). (4.15)

This corresponds to the DLM model described in Section 3.6 with constant smoothing
parameter A and B. We refer to the parameters A and B as smoothing parameters
since a smaller value of A and B implies less flexibility for the state variables, or bias-
correction parameters, αt and βt, respectively. If we gather the parameters for time steps
t = 1, ..., T , the vectors α = (α1, ..., αT ) and β = (β1, ..., βT ) form Gaussian Markov
random fields.

To summarize, if Ym denotes the random variable representing the probabilistic discharge
for ensemble member m, the model takes the form of a dynamic linear model, i.e.

Ym|xm ∼ N (µm, τ
2|xm) (4.16)

µm = (α+ αt) + (β + βt)xm m = 1, ...,M (4.17)
αt = αt−1 + at, at ∼ N(0, A) (4.18)
βt = βt−1 + bt, bt ∼ N(0, B). (4.19)

The interpretation of the intercept parameter α+ αt is the same as discussed in the CCPR
method in Section 3.5. However, in the Beta-BMA-VCR approach, the intercept parameter
consists of two terms, where the first term, α, represent the total bias between the deter-
ministic forecasts and corresponding observations if the smoothing parameter C = 0, and
αt are evolving according to a dynamic linear model, and determines how much the total
intercept parameter should be allowed to vary based on the smoothing parameter A. The
same is valid for the slope parameter β + βt.

A challenging issue with the original BMA methodology for streamflow forecasting is that
the sliding window estimation process leads to poor bias-correction after the ensemble
forecasts predicted wrongly. This happens after extreme events caused by heavy rainfall
or snow melting. By including the random walk structure, one can easier control the range
of values on the intercept and slope parameters by tuning A and B.

The bias-correction parameters are now random, in contrast to original BMA, where the
bias-correction estimates are fixed but unknown. The third and last parameter, the variance
parameter τ2, is still considered as a fixed quantity. It is possible to include a random walk
structure for the variance parameter as well, but the inference gets a lot more complicated
as the variance parameter is on the upper level of the INLA hierarchical structure described
in the previous chapter.

In the BMA-VCR model, the probabilistic forecast takes the form

f(y|x1, ..., xM ) =
1

M

M∑
m=1

g(y|xm), (4.20)
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where Y |xm ∼ N (µm, τ
2) and µm is given in Equation (4.17), and τ2 is the variance.

The parameter estimation in BMA-VCR is done in a Bayesian framework. The procedure
for obtaining marginal distributions for each element of the latent field ξ is described in
Section 3.7.2. As for the original BMA, we first estimate the Gaussian latent field pa-
rameters ξ = (α, β, αt, βt) and then the variance parameter. Similar to the BMA model,
when modeling the mean, we use a temporary variance parameter τ ′ instead of the vari-
ance parameter τ for the individual ensemble member pdfs. The first step in the estimation
procedure is to assign priors to the the hyperparameters τ ′, A and B. However, to avoid
overfitting we let the hyperparameters A and B be fixed and set these by optimizing the
predictive performance according to mean CRPS. Furthermore, note that the standard de-
viation of the individual ensemble member pdfs in the BMA-VCR model, τ is assumed
to be fixed, but the temporary variance parameter τ ′ is random and needs to be assigned a
prior. The priors are

π(α) ∼ N (0, σα) (4.21)
π(β) ∼ N (0, σβ) (4.22)

π(αt|αt−1, A) ∼ N (αt−1, A) (4.23)
π(βt|βt−1, B) ∼ N (βt−1, B) (4.24)

π(τ ′) ∼ Gamma(p, q). (4.25)

The joint posterior distribution takes the form

π(α, β, αT , βT , τ
′|y) ∝

T∏
t=1

π(yt|α, β, αt, βt, τ ′)π(α)π(β) (4.26)

× π(αt|αt−1, A)π(βt|βt−1, B)π(τ ′), (4.27)

where A and B are assumed fixed. Posterior marginals can then be obtained. We are
interested in point estimates, and we use the Bayes estimator that minimizes the pos-
terior expected loss with the MSE as loss function, which corresponds to the posterior
mean,

ξ̂iPM = E(ξi|y) =

∫
ξiπ(ξi|y)dξi, (4.28)

where ξi denote an element in ξ = (α, β, αt, βt). The variance parameter τ is then esti-
mated by maximum likelihood estimation from a training period of length K. By optimiz-
ing we get

τ̂ML = arg max
τ

K∑
k=1

log

(
1

M

M∑
m=1

g(y|xk,m)

)
, (4.29)
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where g(y|xm) is normally distributed with mean µk,m, given in Equation (4.17), and
variance τ2. This expression can be optimized numerically.

4.3 BMA with Beta Probability Density Functions and
Varying Coefficient Regression

We have presented two postprocessing approaches, each of them dealing with issues that
need to be considered in streamflow forecasting. Beta-BMA accounts for the fact that
streamflow values are non negative, and BMA-VCR makes it possible to make better pa-
rameter estimates after extreme events. In the third model, Beta-BMA-VCR, we combine
the two new postprocessing techniques.

The structured additive predictor is

ηm = α+ βxm +

J∑
j=1

fj(Rj), (4.30)

and the mean parameter µm is connected to the linear predictor through the logit link func-
tion. As for BMA-VCR, let Rj represent time, and define the same nonlinear functions
αt = f1(t) and βt = f2(t). This results in the following model

Zm|x∗m ∼ Beta(µm, φ) (4.31)

µm = logit−1 ((α+ αt) + (β + βt)x
∗
m) m = 1, ...,M (4.32)

αt = αt−1 + at, at ∼ N(0, A) (4.33)
βt = βt−1 + bt, bt ∼ N(0, B), (4.34)

and the probabilistic Beta-BMA-VCR cdf on original scale takes the form

F (y|x∗1, ..., x∗M ) =
1

M

M∑
m=1

G−1Y (Fbeta(z|x∗m)), (4.35)

The estimation procedure is similar to the procedure in the BMA-VCR model where the
posterior mean is used as point estimates for the Gaussian latent field ξ = (α, β, αt, βt),
and the precision parameter φ is estimated by maximum likelihood estimation. Further-
more, the smoothing parameters A and B are determined by optimizing the predictive
performance according to the CRPS over a training period.
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Chapter 5
Case Study: Postprocessing Models
and Methods for the Osali
Catchment

In this chapter, the models and methods used in the case study are presented. Four dif-
ferent models are considered. The period from June 24, 2014 to June 22, 2015 is ana-
lyzed. Subscript characters that are specific for the case study are included: Issue time
i = 1, ..., 364, ensemble member number m = 1, ..., 51, lead time l = 0, 4, 9, and valida-
tion day t = i+ l.

5.1 Model 1: BMA

The first model is the original BMA methodology used by Raftery et al. (2005) to produce
probabilistic forecasts for temperature. The BMA probabilistic forecast is given by

f(y|xi,1,l, ..., xi,M,l) =
1

M

M∑
m=1

g(y|xi,m,l) (5.1)

Y |xi,m,l ∼ N (µt,m, τ
2) (5.2)

µt,m = α+ βxi,m,l m = 1, ...,M, (5.3)

and parameter estimates are obtained from a sliding window training period of length K.
The estimation procedure is described in Chapter 3.2.
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5.2 Model 2: Beta-BMA

The Beta-BMA model is described in Section 4.1. The empirical cumulative cdf GY (y)
is based on observations in the period from April 24, 2014 to January 27, 2016 from the
Osali catchment, and it is shown in Figure 5.1a. The empirical pdf gY (y) is seen in Figure
5.1b.
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(a) Empirical climatology cdf.
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Figure 5.1: The climatology based on observations in the period April 24, 2014 to January 27 2016.

The Beta-BMA cdf at day t = i+ l becomes

F (y|x∗i,m,l, ..., x∗i,M,l) =
1

M

M∑
m=1

G−1Y (Fbeta(z|x∗i,m,l)) (5.4)

Z|x∗i,m,l ∼ Beta(µt,m, φ) (5.5)

µt,m = logit−1(α+ βx∗i,m,l) m = 1, ...,M. (5.6)

For the case study, posterior mean estimates are used for the Beta-BMA model. The priors
are given in Equation (4.5), (4.6), and (4.7). For φ′, a vague prior is chosen, the gamma
distribution with shape parameters p = 1 and q = 0.00005. For α and β we choose
σα = 0 and σβ = 10−5, respectively. The estimation procedure is described in Section
4.1.

5.3 Model 3: BMA-VCR

The BMA-VCR model is provided in Section 4.2, and the probabilistic forecast takes the
form
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f(y|xi,1,l, ..., xi,M,l) =
1

M

M∑
m=1

g(y|xi,m,l) (5.7)

Y |xi,m,l ∼ N (µt,m, τ
2) (5.8){

µt,m = (α+ αt) + (β + βt)xi,m,l
µt,m = αt + (1 + βt)xi,m,l

(5.9)

αt = αt−1 + at, at ∼ N(0, C) (5.10)
βt = βt−1 + bt, bt ∼ N(0, C), (5.11)

where Equation (5.9) describes two different forms for µt,m. The smoothing parameter C
is restricted to be the same for the αt and the βt process.

The random walk parameter βt is plotted for different values of C over the period from
October 3 to November 3 in Figure 5.2. The lightest blue line has smoothing parame-
ter C = 0.14. The darkest blue line has smoothing parameter C = 0, which gives no
flexibility, meaning βt = 0 for all days in the period. The other lines has smoothing pa-
rameter values in between. The lightest blue line is an example of overfitting, where the
regression model provides a good fit to the given data, but does generally not provide good
predictions.
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Figure 5.2: The random walk parameter βt, plotted for smoothing parameter values between C = 0
and C = 0.14 in the period from October 3 to November 3.

One way to obtain an estimate for the smoothing parameter C is to minimize the CRPS.
The special case C = 0 correspond to different cases depending on the mean model. The
first mean model in Equation (5.9) simplifies to µt,m = α + βxi,m,l, which corresponds
to the original BMA technique using all historical observations as training period for bias-
correction estimates, instead of a sliding window. The second mean model in Equation
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(5.9) simplifies to µt,m = xi,m,l which corresponds to the original BMA technique with-
out any bias-correction. The advantage with the second mean model is that for the Osali
catchment, there is only a small total forecast-observation bias as seen in Figure 2.6, and by
only including the time-varying parameters in the mean model, the model is less affected
by events with large forecast-observation errors.

Posterior mean estimates are used as bias-correction estimates for the BMA-VCR model.
The same priors as for Beta-BMA are used. The estimation procedure for the bias-
correction parametersα, αt, β, βt and variance parameter τ2 is described in Section 4.2.

An alternative to fitting the variance of the probabilistic forecast is to only bias-correct
the raw ensemble forecast according to the BMA-VCR model. For the Osali catchment
we include an approach where the mean model µt,m = αt + (1 + βt)xi,m,l is the bias-
corrected ensemble member, without imposing variance. The CRPS of the raw ensemble,
and the bias-corrected raw ensemble can be obtained using Equation (3.4) and it can be
compared with the CRPS for the probabilistic forecasts of the BMA approaches.

5.4 Model 4: Beta-BMA-VCR

The last model is the Beta-BMA-VCR model which is a combination of the previous two.
The Beta-BMA-VCR model is described in Chapter 4.3 and the predictive cdf is

F (y|x∗i,1,l, ..., x∗i,M,l) =
1

M

M∑
m=1

G−1Y (Fbeta(z|x∗i,m,l)) (5.12)

Z|x∗i,m,l ∼ Beta(µt,m, φ) (5.13)

µt,m = logit
(
(α+ αt) + (β + βt)x

∗
i,m,l

)
m = 1, ...,M (5.14)

αt = αt−1 + at, at ∼ N(0, C) (5.15)
βt = βt−1 + bt, bt ∼ N(0, C). (5.16)

Posterior mean estimators are used as parameter estimates. The estimation procedure is
described in Chapter 4.

5.5 Training Period

In BMA and Beta-BMA, the bias-correction parameters, α and β are estimated by maxi-
mum likelihood estimation from a K days sliding window training period, i.e. from day
t = i− l−K to t = i− l−1. In BMA-VCR and Beta-BMA-VCR, the bias-correction pa-
rameters, α, αt, β, and βt are estimated by the Bayes estimator being the posterior mean
of the respective marginal distributions which uses all days available as training period,
i.e. from day t = 1 to t = i − l − 1. After obtained bias-correction estimates, we fix
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these and then estimate the variance parameter τ , or the precision parameter φ, from the
same K days sliding window training period as the bias-correction parameters in BMA
and Beta-BMA. This applies to all models in this study.

One way to choose the length of the training period is to setK such that CRPS is minimal.
However, since we are exploring several models, and to reduce the computational effort,
we choose to consider a short training period with K = 10 days and a longer one with
K = 60 days for each model, and compare the results.

5.6 Predictive Performance

The smoothing parameterC is being optimized based on predictive performance according
to the CRPS, given in Equation (3.3). The smoothing parameter C is fixed for all days in
the period being analyzed, and we use the same valueC for both the evolution processes αt
and βt. It is being optimized by trying different values for C, keeping in mind that a large
C-value leads to overfitting, and by choosing C = 0, the mean parameter are not allowed
vary locally. The smoothing parameter C influence all other model parameter estimates.
First, it affects the bias-correction parameters α, β, αt, βt by determining how much αt
and βt can vary. This again affect the variance parameter τ , or precision parameter φ, be-
cause they are estimated based on fixed values of bias-correction parameters. Furthermore,
the parameter estimates at given days changes as more data becomes available, meaning
that the estimation procedure does not allow a sequential update of parameter estimates.
The optimization in the case study for the Osali Catchment is done by trying different val-
ues for C, and then model one year from June 24, 2014 to June 22, 2015. The C-value
corresponding to the lowest mean CRPS has the best predictive performance, according to
mean CRPS. The results are provided in the next chapter.
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Chapter 6
Case Study: Results from the Osali
Catchment

In this chapter, the results from the case study of the Osali Catchment is presented. The
period from June 24, 2014 to June 22, 2015 is analyzed. In order to distinguish between
the BMA postprocessing approaches, we use color codes and abbreviations for each ap-
proach:

• BMA and Beta-BMA with 60 days training period for all model parameters (BMA-
K60, Beta-BMA-K60) are given in orange in the figures.

• BMA and Beta-BMA with 10 days training period for all model parameters (BMA-
K10, Beta-BMA-K10) are given in purple in the figures.

• BMA-VCR and Beta-BMA-VCR with mean model µt,m = (α+αt)+(β+βt)xi,m,l
and 60 days training period for the variance/precision parameter (BMA-VCR-M1-
K60, Beta-BMA-VCR-K60) are given in blue in the figures.

• BMA-VCR and Beta-BMA-VCR with mean model µt,m = (α+αt)+(β+βt)xi,m,l
and 10 days training period for the variance/precision parameter (BMA-VCR-M2-
K10, Beta-BMA-VCR-K10) are given in red in the figures.

• BMA-VCR with mean model µt,m = αt + (1 + βt)xi,m,l and 60 days training
period for the variance parameter (BMA-VCR-M2-K60) is given in brown in the
figures.

• BMA-VCR with mean model µt,m = αt+(1+βt)xi,m,l and 10 days training period
for the variance parameter (BMA-VCR-M2-K10) is given in green in the figures.

This Chapter is divided into five sections. The first section, presents the results for the
deterministic raw ensemble forecasts for lead time 0, 4, and 9. Further, there are three
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sections with the results for the BMA postprocessing approaches for each of these lead
times separately. The last section contains a comparison between the approaches.

6.1 The Raw Ensemble

The VRH for lead time 0, 4, and 9 for the raw ensemble forecasts is seen in Figure 6.1a,
6.1b, and 6.1c, respectively. It can be seen that the VRH for lead time 0 is strongly U-
shaped and slightly biased. If the histogram is U-shaped it means the corresponding ob-
servation too often is outside the range of ensemble member forecasts. The VRH for lead
time 4 is less U-shaped. For lead time 9 we observe that the observation more often takes
place within the ensemble range, compared to lead time 0 and 4, resulting in a VRH that
is closer to uniform, but slightly U-shaped. The VRHs indicate that the need of statistical
postprocessing approaches is important to obtain calibrated forecasts, specially for for lead
time 0 and lead time 4.
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(a) Lead time 0.
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(b) Lead time 4.
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(c) Lead time 9.

Figure 6.1: Verification rank histograms.

Mean CRPS for the raw ensembles was calculated to 0.57, 0.89, and 0.98 for lead time 0, 4,
and 9, respectively. The CRPS for the raw ensemble for each lead time is given as a black
horizontal line in Figure 6.2, 6.6, 6.10, 6.11, 6.12, 6.16, in the following sections.

6.2 BMA Postprocessing Approaches for Lead Time 0

In this section, the results when applying the BMA postprocessing approaches from Sec-
tion 5 for lead time 0 are presented. We let the optimal value C refer to the value of C
with the lowest mean CRPS of the values tested.

6.2.1 Results using Gaussian Probability Density Functions and Vary-
ing Coefficient Regression

Figure 6.2 shows the CRPS for the BMA-VCR approaches for different values of the
smoothing parameterC. The BMA-K10 and BMA-K60 approaches do not have a dynamic
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linear model structure for the bias-correction parameters, the CRPS is therefore given as
horizontal lines Figure 6.2. Where lines intersects means that the predictive performance,
according to mean CRPS is equally good. It can be seen that a high value of C leads
to overfitting and gives poor predictive performance. We further observe that the BMA-
VCR-M2-K10 has a minimum around C = 0.09, and that the minimum for BMA-VCR-
M1-K10 is slightly higher. Recall that the M1-model is µt,m = (α+αt) + (β+βt)xi,m,l
and the M2-model is µt,m = αt + (1 + βt)xi,m,l. Smoothing parameter value C = 0.09
is used for further analysis. The black dashed varying line is mean CRPS of the bias-
corrected ensemble from mean model M2, and the black dashed horizontal line is the raw
ensemble.
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Figure 6.2: The CRPS for the BMA-VCR approaches during the period June 24, 2014 to June 22,
2015 as a function of the precision parameterC in Equation (5.10) and (5.11). The orange and brown
dashed lines show the CRPS using the standard BMA methodology, using the normal distribution as
the individual ensemble member pdfs, with parameter estimates from a 60 days and 10 days training
periods, respectively. The bias-corrected raw ensemble, according to mean model M2, is given by
the black dashed varying line, and the raw ensemble is the black dashed horizontal line. The lead
time is l = 0.

Figure 6.3a and 6.3b show the PIT histogram using a sliding window training period of
60 days and 10 days, respectively. We observe that the histogram of the BMA-K10 ap-
proach is U-shaped, indicating underdispersion. The dashed line show the case when the
probabilistic forecast is perfectly calibrated. The histogram for the BMA-K60 approach is
closer to uniform. Figure 6.3c and 6.3d show the PIT histograms for the BMA-VCR-M2-
K10 approach and BMA-VCR-M1-K10 approach, respectively, with smoothing parameter
C = 0.09, which is a optimal value for the BMA-VCR-M2-K10 approach. We observe
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that the forecasts obtained from both approaches are well calibrated.
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(a) BMA-K60.
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(b) BMA-K10.
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(c) BMA-VCR-M2-K10.
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(d) BMA-VCR-M1-K10.

Figure 6.3: PIT histograms for different BMA approaches for lead time 0.

Figure 6.4a and 6.4b show the intercept parameter and slope parameter, respectively, for
the original BMA approach, plotted against the day the parameter estimates are valid, i.e.
day t = i + l. The dashed horizontal lines show the intercept and slope values when the
mean parameter equals the ensemble member forecasts. We notice that using 60 days as
a training period leads to less variation in the intercept and slope parameter. The intercept
and slope parameter for the BMA-VCR-M1-K10 approach are seen in Figure 6.4c and
6.4d for different values of the precision parameter C. We observe that a relative large
value gives high flexibility, which leads to overfitting. The less value the less flexibility.
The yellow box indicates the optimal value for C for the BMA-VCR-M2-K10 approach
from Figure 6.2. The parameters for the BMA-VCR-M2-K10 approach are seen in Figure
6.4e and 6.4f. It can be seen that the intercept parameter varies around 0 for the intercept
and around 1 for the slope, as specified in the mean model. If C is small, we observe that
the parameters do not deviate from 0 and 1, respectively, meaning that the mean of the M2
model is the individual ensemble member forecasts. However, for an optimal value for C,
the parameters vary more.
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(b) Slope β for BMA-K60 and BMA-K10.
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(c) Intercept α+ αt for BMA-VCR-M1.
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(d) Slope β + βt for BMA-VCR-M1.
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Figure 6.4: Parameter estimates plotted against validation day t = i+ l. The yellow box shows an
optimal value for the smoothing parameter C based on the BMA-VCR-M2-K10 approach. The lead
time is l = 0.

Figure 6.5 shows the the variance parameter τ . For the VCR approaches the smoothing
parameter C is set to be C = 0.09. We refer to τ as a variance parameter, but τ denotes
the standard deviation of the individual ensemble member pdfs. We observe that for the
K10 approaches, the variance varies more. For the K60 approaches, the variance remains
large for K = 60 days after large forecast-observation errors. For the BMA-K60 and
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the BMA-VCR-M2-K60 approaches, τ is estimated from the same training period, but
the bias-correction parameter are set to be different, since they are estimated differently
for the two approaches. This leads to similar trend, but different ML-estimates for τ ,
as seen in the figure. The same is valid for the BMA-K10 and the BMA-VCR-M2-K10
approaches.
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Figure 6.5: The variance parameter τ , which refers to the standard deviation of the individual
ensemble member pdfs, plotted against the validation day t = i + l, for four different BMA post-
processing approaches. The lead time is l = 0.

6.2.2 Results using Beta Probability Density Functions and Varying
Coefficient Regression

The CRPS for the Beta-BMA-VCR-approaches for different values of the smoothing pa-
rameter C is given in Figure 6.6. It is seen that the Beta-BMA-VCR-K10 approach
performs better than the Beta-BMA-VCR-K60 approach for smoothing parameter values
around the optimal value C = 0.11. The purple and orange horizontal line is the CRPS
for the Beta-BMA-K10 approach and the Beta-BMA-K60 approach, respectively.
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Figure 6.6: The CRPS for the Beta-BMA-VCR approaches from the period June 24, 2014 to June
22, 2015 as a function of the precision parameter C in equation (5.15) and (5.16). The orange and
brown dashed lines show the CRPS using the Beta-BMA approach, with parameter estimates from
a 60 days and 10 days training periods, respectively. The lead time is l = 0. The horizontal black
line is the CRPS of the raw ensemble.

Figure 6.7a and 6.7b show the PIT histograms for the Beta-BMA approaches with 60 days
training period and 10 days training period, respectively. Using 10 days sliding window
as training period results in a U-shaped histogram, indicating underdispersion. A 60 days
sliding window yields a calibrated forecast. Figure 6.7c and 6.7d give the PIT histograms
for the Beta-BMA-VCR-K60 approach and the Beta-BMA-VCR-K10 approach, respec-
tively. We observe that the histogram in Figure 6.7c is hump-shaped, meaning that the
variance of the probabilistic forecast on average is too large. For the Beta-BMA-VCR-
K10 approach, the forecast is well calibrated.
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(a) Beta-BMA-K60.
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(b) Beta-BMA-K10.
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(c) Beta-BMA-VCR-K60.
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(d) Beta-BMA-VCR-K10.

Figure 6.7: PIT histograms for Beta-BMA approaches for lead time 0.

The intercept parameter α and the slope parameter β for the Beta-BMA approaches are
seen in Figure 6.8a and 6.8b, respectively. The intercept parameter α + αt and slope pa-
rameter β+ βt for the Beta-BMA-VCR-K10 approach are shown in Figure 6.8c and 6.8d,
respectively. For the optimal value C = 0.11 we observe that the the intercept parame-
ter varies around −3 and the slope parameter around 5, which means that the individual
ensemble member forecasts has a large impact on the mean parameter, as discussed in
Section 3.5.
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(c) Intercept α+ αt for Beta-BMA-VCR.
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Figure 6.8: Parameter estimates plotted against the validation day t = i+ l, for different Beta-BMA
postprocessing approaches. The lead time is l = 0. The yellow box shows the optimal value for the
smoothing parameter C.

The inverse of the precision parameter φ is plotted in Figure 6.9. The inverse of the preci-
sion parameter, can be thought of as a variance parameter, i.e. the larger value, the larger
variance. However, the interpretation of φ, or φ−1, is difficult since it is a precision, or
variance, parameter for a pdf on unit scale. On original scale, the variance of the prob-
abilistic forecast will in addition depend on the shape of the climatology cdf. For the
Beta-BMA-VCR approaches the smoothing parameter C is set to be C = 0.11. We ob-
serve that the Beta-BMA-VCR-K60 approach has large variance parameter compared to
the other approaches.
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Figure 6.9: The variance parameter φ−1, plotted against the validation day t = i + l, for four
different Beta-BMA postprocessing approaches. The lead time is l = 0.

6.3 BMA Postprocessing Approaches for Lead Time 4

In this section, the results for lead time 4 is presented. We only present the CRPS for each
approach. Figures related to parameter estimates and PIT histograms for lead time 4 can
be seen in Appendix A.

6.3.1 Results using Gaussian Probability Density Functions and Vary-
ing Coefficient Regression

The CRPS for the BMA-VCR approaches for different smoothing parameter values is
shown in Figure 6.10. We observe that the BMA-VCR-M2-K10 and the BMA-VCR-
M2-K60 approaches have the lowest CRPS, with an optimal smoothing parameter value
close to C = 0.09. It is further seen that the CRPS for the raw ensemble forecasts is
slightly larger than the CRPS for the forecast obtained from the best performing method,
the BMA-VCR-M2 approach. Furthermore, we observe that the bias-corrected ensemble
forecasts, without being assigned an associated pdf, perform better than all the BMA-
VCR approaches for C = 0.09. The bias-corrected raw ensemble, according to mean
model M2, is given by the black dashed varying line, and the raw ensemble is the black
dashed horizontal line.
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Figure 6.10: The CRPS for the BMA-VCR approaches during the period June 24, 2014 to June 22,
2015 as a function of the precision parameterC in Equation (5.10) and (5.11). The orange and brown
dashed lines show the CRPS using the standard BMA methodology, using the normal distribution as
the individual ensemble member pdfs, with parameter estimates from a 60 days and 10 days training
periods, respectively. The bias-corrected raw ensemble, according to mean model M2, is given by
the black dashed varying line, and the raw ensemble is the black dashed horizontal line. The lead
time is l = 4.

6.3.2 Results using Beta Probability Density Functions and Varying
Coefficient Regression

The CRPS for different values of the smoothing parameter C for the Beta-BMA-VCR
approaches is shown in Figure 6.11. It can be seen that the Beta-BMA-VCR-K10 approach
performs better than the Beta-BMA-VCR-K60 approach for C < 0.11, indicating that a
long training period for the precision parameter is better than a short one, in contrast to
the results for lead time 0. We further observe that mean CRPS for the Beta-BMA-VCR
approaches are lower than the CRPS for the raw ensemble forecasts.
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Figure 6.11: The CRPS for the Beta-BMA approaches during the period June 24, 2014 to June 22,
2015 as a function of the precision parameterC in equation (5.15) and (5.16). The orange and brown
dashed lines show the CRPS using the standard Beta-BMA approach, with parameter estimates from
a 60 days and 10 days training periods, respectively. The lead time is l = 4. The horizontal black
line is the CRPS of the raw ensemble.

6.4 BMA Postprocessing Approaches for Lead Time 9

The results for lead time 9 are presented in this section.

6.4.1 Results using Gaussian Probability Density Functions and Vary-
ing Coefficient Regression

The CRPS for the BMA-VCR approaches for different smoothing parameter values are
given in Figure 6.12. We observe that BMA-VCR-M2-K10 and BMA-VCR-M2-K60 ap-
proaches have the lowest CRPS among the BMA postprocessing approaches, similarly to
lead time 4. However, the raw ensemble has better predictive performance. We further
observe that it is possible to obtain a lower mean CRPS by bias-correct the raw ensem-
ble with mean model M2, i.e. µt,m = αt + (1 + βt)xi,m,l, and smoothing parameter
C = 0.09.
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Figure 6.12: The CRPS for the BMA-VCR approaches during the period June 24, 2014 to June 22,
2015 as a function of the precision parameterC in Equation (5.10) and (5.11). The orange and brown
dashed lines show the CRPS using the standard BMA approach, using the normal distribution as the
individual ensemble member pdfs, with parameter estimates from a 60 days and 10 days training
periods, respectively. The bias-corrected raw ensemble, according to mean model M2, is given by
the black dashed varying line, and the raw ensemble is the black dashed horizontal line. The lead
time is l = 9.

Figure 6.13a and 6.13b show the PIT histograms for the BMA-K60 and BMA-K10 ap-
proaches, respectively. The PIT histogram for the BMA-VCR-M2-K10 approach and
the BMA-VCR-M1-K10 approach are seen in Figure 6.13c and 6.13d, respectively, with
smoothing parameter C = 0.09. We observe that the probabilistic forecast for all four
approaches are worse calibrated than the raw ensemble forecasts, which can be seen by
the VRH in Figure 6.1c.
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(a) BMA-K60.
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(b) BMA-K10.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

R
el

at
iv

e 
F

re
qu

en
cy

Rank

(c) BMA-VCR-M1-K10.
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(d) BMA-VCR-M2-K10.

Figure 6.13: PIT histograms for BMA approaches for lead time 9.

Figure 6.14a and 6.14b show the intercept parameter and slope parameter, respectively,
plotted against the day they are valid, i.e. day t = i+ l. We observe the sudden increase in
the slope parameter after the large streamflow in October, as discussed in Chapter 1. The
intercept and slope for the BMA-VCR-M1-K10 approach are given in Figure 6.14c and
6.14d for different values of the smoothing parameter C. The parameters for the BMA-
VCR-M2-K10 approach are seen in Figure 6.14e and 6.14f. We observe that the parameter
estimates, for the optimal value C = 0.09 are smoother compared the parameter estimates
for the BMA-K60 approach. This results in a slightly better calibrated forecast, which is
found by comparing the PIT histograms from Figure 6.13a and Figure 6.13c. However,
both approaches are worse calibrated and have a higher CRPS than the raw ensemble
forecasts.
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(a) Intercept α for BMA-K60 and BMA-
K10.
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(b) Slope β for BMA-K60 and BMA-K10.
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(c) Intercept α+ αt for BMA-VCR-M1.
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(d) Slope β + βt for BMA-VCR-M1.
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(e) Intercept αt for BMA-VCR-M2.
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(f) Slope 1 + βt for BMA-VCR-M2.

Figure 6.14: Parameter estimates plotted against validation day t = i+ l. The yellow box shows a
optimal value for the smoothing parameter C based on the BMA-VCR-M2-K10 approach. The lead
time is l = 9.

Figure 6.15 shows the variance parameter τ plotted against the validation day t = i + l.
For the BMA-VCR approaches the smoothing parameter C is set to be 0.09. We observe
that the standard deviation of the probabilistic forecast for the K10 approaches is varying
more than for the K60 approaches.
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Figure 6.15: The variance parameter τ , which refers to the standard deviation of the probabilis-
tic forecast, plotted against the validation day t = i + l, for four different BMA postprocessing
approaches. The lead time is l = 9.

6.4.2 Results using Beta Probability Density Functions and Varying
Coefficient Regression

The CRPS for the Beta-BMA approaches for different values of the smoothing parameter
C is shown in Figure 6.16. It is seen that the Beta-BMA-VCR-K60 approach performs
better than the Beta-BMA-VCR-K60 approach for C < 0.11. However, there is no clear
optimal value for C. For the following analysis, we use C = 0.06. We further observe
that the Beta-BMA-VCR-K60 approach obtains the same CRPS value as the raw ensemble
forecasts, while all other approaches has higher mean CRPS.
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Figure 6.16: The CRPS from the period June 24, 2014 to June 22, 2015 as a function of the smooth-
ing parameter C in equation (5.15) and (5.16). The orange and brown dashed lines show the CRPS
using the Beta-BMA, with parameter estimates from a 60 days and 10 days training periods, respec-
tively. The lead time is l = 9. The black horizontal line is the CRPS for the raw ensemble.

The PIT histograms for the Beta-BMA-K60 and Beta-BMA-K10 approaches are seen in
Figure 6.17a and 6.17b, respectively. We observe that the probabilistic forecast for the
Beta-BMA-K10 approach is underdispersed, meaning that the variance on average is too
small. A 60 days training period gives a better calibrated forecast. Figure 6.17c and
6.17d show the PIT histogram for the Beta-BMA-VCR-K60 and the Beta-BMA-VCR-
K10 approaches, respectively. Both forecasts are well calibrated. Comparing Figure 6.17c
with the VRH for the raw ensemble forecasts in Figure 6.1c we find that the forecast from
the Beta-BMA-VCR-K60 approach is better calibrated.
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(a) Beta-BMA-K60.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

R
el

at
iv

e 
F

re
qu

en
cy

Rank

(b) Beta-BMA-K10.
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(c) Beta-BMA-VCR-K60.
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(d) Beta-BMA-VCR-K10.

Figure 6.17: PIT histograms for Beta-BMA approaches for lead time 9.

The intercept parameter α and slope parameter β for the Beta-BMA-K10 and Beta-BMA-
K60 approach are seen in Figure 6.18a and 6.18b, respectively. The intercept parameter
α + αt and slope parameter β + βt for the Beta-BMA-VCR-K10 approach are seen in
Figure 6.18c and 6.18d, respectively for the optimal value C = 0.06. We observe that the
intercept parameter varies around −1 and the slope parameter around 3, which means that
the individual ensemble member forecasts has less impact on the mean parameter than for
lead time 0. Hence, the climatology is more important.
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Figure 6.18: Parameter estimates plotted against the validation day t = i + l, for different Beta-
BMA postprocessing approaches. The lead time is l = 9. The yellow box shows the optimal value
for the smoothing parameter C.

The variance parameter φ−1 is plotted in Figure 6.19. For the VCR approaches the smooth-
ing parameter C is set to be C = 0.06. As explained earlier, the interpretation is difficult.
We observe that the K10 approaches vary much. We further observe that the estimates
from the BMA-K60 and Beta-BMA-VCR-K60 approaches are close to each other because
the smoothing parameter value C is small.
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Figure 6.19: The variance parameter φ−1, plotted against the validation day t = i + l, for four
different Beta-BMA postprocessing approaches. The lead time is l = 9.

6.5 Comparison Between Approaches

The CRPS for each approach and for the raw ensemble are given in Table 6.1. For each
lead time, the lowest CRPS is highlighted. We find that the BMA-VCR-M2-K10 approach
has the best predictive performance for lead time 0, and Beta-BMA-VCR-K60 has the
best predictive performance for lead time 4. For lead time 9, the Beta-BMA-VCR-K60
approach and the raw ensembles perform equally good, but the bias-corrected raw ensem-
ble preforms slightly better. Furthermore, in the analysis we found that general trend is
that for higher lead times, the less optimal smoothing parameter value. The optimal value
seemed to range from C = 0.11 for lead time 0 to C = 0.06 for lead time 9.

CRPS L0 L4 L9
BMA-K60 0.47 0.96 1.17
BMA-K10 0.44 1.13 1.35
BMA-VCR-M2-K60 0.43 0.88 1.08
BMA-VCR-M2-K10 0.38 0.89 1.06
Beta-BMA-K60 0.46 0.78 1.03
Beta-BMA-K10 0.49 1.02 1.29
Beta-BMA-VCR-K60 0.45 0.76 0.98
Beta-BMA-VCR-K10 0.42 0.80 1.05
Raw ensemble 0.57 0.89 0.98
Bias corr. raw ensemble 0.45 0.85 0.96

Table 6.1: CRPS for eight different BMA approaches and for the raw ensemble in the period from
June 24, 2014 to June 22, 2015.
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We compare the ensemble forecasts with the probabilistic forecast obtained from the two
approaches having the lowest CRPS in Table 6.1, i.e. BMA-VCR-M2-K10 and Beta-
BMA-VCR-K60.

The raw ensemble forecasts for lead time 0, 4 and 9 are shown in Figure 6.20a, 6.20b and
6.20c, respectively. The blue line in the figures are the corresponding observations, and
the red lines are the ensemble forecasts. We observe that for lead time 0, the ensemble
forecasts are following the observation curve closely, but the ensemble forecasts are not
predicting the magnitude of the large streamflows late in late October. For lead time 4, the
ensemble forecasts are only partly able to detect the late October streamflows, and for lead
time 9, there are few signs indicating the large streamflow late in October.

The postprocessed forecasts for lead time 0, 4 and 9 for the BMA-VCR-M2-K10 are seen
in Figure 6.20d, 6.20e and 6.20f, respectively. The blue line is the observation curve, and
the red line is the mean of the probabilistic forecast. The red area around the red line
is a 90% prediction interval. The width of the 90% prediction interval is a measure of
sharpness of the postprocessed probabilistic forecast. The BMA-VCR-M2-K10 approach
at lead time 0 provides good predictions with some errors at days at the days with large
streamflow late in October. When the forecast is wrong we observe that the prediction
interval for the next K = 10 days is wider than usual. For lead time 4, the forecast-
observation error late in October is larger than for lead time 0, and since the days between
the issue time and lead time are not included in the training period for the variance pa-
rameter, we observe that the variance of the probabilistic forecast does not increase until
4 days after the large forecast-observation error. For lead time 9, we observe that this late
effect increases.

The postprocessed forecasts using the Beta-BMA-VCR-K60 for lead time 4 and 9 are seen
in Figure 6.20g, 6.20h and 6.20i, respectively. For lead time 0, we observe that the mean
of the probabilistic forecast is corresponding well with low streamflow values. We fur-
ther observe that there is a large variance for the days with large streamflows. For lead
time 4 we observe that the mean of the probabilistic forecast is following the trend of the
corresponding observation curve, and as for lead time 0, we observe that when the mean
of the probabilistic forecast is large, the uncertainty is large. For lead time 9, we observe
that the ensemble forecasts are not detecting the large streamflow at October 28, resulting
in a large forecast-observation errors around October 28. However, the probabilistic fore-
casts the following days are not affected the same way as for the BMA and BMA-VCR
approaches.

The postprocessed probabilistic forecasts for the rest of the year, from June 24, 2014 to
June 22, 2015, are provided in Appendix B.
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Figure 6.20: Raw ensembles and postprocessed probabilistic forecasts for the period from October
6, 2014 to December 10, 2014. The blue line is the observation curve, and the red line is the mean
of the probabilistic forecast. The red area around the red line is a 90 % prediction interval.
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Chapter 7
Discussion and Conclusion

In this study, three new BMA postprocessing approaches have been developed. We have
applied the BMA methodology combined with the CCPR methodology and VCR models
to generate probabilistic forecasts for discharge. The approaches were tested in a case
study for the Osali catchment for lead times 0, 4 and 9.

VCR models have been studied when modeling the mean parameter instead of a sliding
window training period. The sliding window training period in the original BMA method-
ology makes the parameter estimates sensitive to large forecast-observation errors, which
for the Osali catchment often happens during the fall due to heavy rainfall, and during the
spring because of snow melting. The results showed that it is possible to obtain better
calibrated and sharper probabilistic forecasts by imposing a dynamic linear structure for
the bias-correction parameters in the BMA methodology.

To assess calibration of the probabilistic forecast we considered the PIT histogram. We
found that the BMA-VCR approaches had close to uniform PIT histograms for lead time 0.
By considering the PIT histograms for lead time 4 and 9 we found for the BMA-VCR ap-
proaches that the probabilistic forecast lack calibration. The Beta-VCR approaches were
well calibrated for all lead times. Mean CRPS were used to assess the predictive perfor-
mance. The smoothing parameter C was estimated based on predictive performance, and
a value close to the optimal value for each approach were used for evaluation of the prob-
abilistic forecast. For lead time 0 it was the BMA-VCR-M2-K10 approach with a relative
high smoothing parameter C = 0.09 that gave the lowest CRPS. This means that a flexible
model which adapts easily to recent weather patterns is favorable for lead time 0. For lead
time 4 and 9, the Beta-BMA-VCR-K60 approach obtained the lowest CRPS among the
BMA approaches, with smoothing parameter C = 0.09 and C = 0.06, respectively. This
means that the Beta-BMA model with a long training period for the model parameters and
a strict smoothing parameter, which is a model that are less influenced by local variations,
provides better results for lead time 4 and 9.
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Two mean models were suggested for the BMA-VCR approaches. The first model (M1)
included the total bias between forecasts and observations based on all data available,
as well as bias-correction parameters with a dynamic linear structure. This means that
the smoothing parameter C determines to what extent the model should learn from much
data, i.e. small C, or adapt locally with high flexibility for the bias-correction parameters.
The second mean model (M2) only included the dynamic linear model structure param-
eters, meaning that the mean parameter varied around the individual ensemble member
forecasts. It was seen that mean model M2 performed better than mean model M1 for all
lead times. One reason is that model M2 recovers faster after huge forecast-observation
errors compared to mean model M1.

The variance of the probabilistic forecast for lead time 4 and 9 using the normal distri-
bution as the individual ensemble member pdf with a sliding window training period, is
difficult to estimate since the days between the issue time and lead time are not included
in the training period. Two lengths of the training period were tested. For the BMA-VCR
models, it was only the variance parameter τ that was estimated from a sliding window
training period. The results showed that a short training period provides better results for
lead time 0, and a long training period is better for lead time 4 and lead time 9. A short
training period makes the variance parameter more adaptable to changing weather patterns,
or local adjustments, and for lead time 0, this is desirable. A long training period generally
estimate the model parameters better because of more data, and since the days between the
issue time and lead time is not included in the training period, local adjustments are less
important. However, for lead time 9, the raw ensemble forecasts have a lower CRPS than
the forecasts obtained from the BMA-VCR approaches. This is despite the fact that the
BMA-VCR-M2 approach includes the raw ensemble forecasts as a special case, by letting
C = 0. Hence, we need a better way to estimate the variance of the probabilistic forecast
in order to improve calibration and sharpness. By only model the mean, i.e. by bias-correct
the raw ensemble forecast according to mean model µt,m = αt+(1+βt)xi,m,l, we found
that for a smoothing parameter value C = 0.09, the predictive performance for lead time
9 improved slightly compared to the raw ensemble, indicating that the ensemble forecasts
have some benefits of local adjustments.

For the Beta-BMA approaches, the CCPR methodology is applied to each individual en-
semble member and combine them with the BMA methodology. The postprocessed prob-
abilistic forecast in the CCPR methodology is based on the climatology and deterministic
forecasts, and provides a flexible representation of the individual ensemble member pdfs,
because of the many forms of the beta distribution. However, the interpretation of the pa-
rameters is difficult because the pdfs are fitted on the unit scale. The beta distribution was
parametrized by a mean parameter µ and a precision parameter φ, and the shape of the
beta distribution depends on both parameters. In addition, the shape of the postprocessed
probabilistic forecast on original scale is affected by the shape of the climatology.

The precision parameter φ was estimated from a sliding window training period. On the
unit scale, the larger φ the sharper forecast. On original scale, however, the mean of the
beta distribution µ and the shape of the climatology cdf have a large impact on the total
variance. This makes the interpretation of φ difficult. If the mean µ is low, then the
certainty of the discharge value to be forecasted increases since the climatology for the
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Osali catchment mainly consists of low discharge values. On the other hand, if µ is large,
the uncertainty is large. This effect is beneficial since high streamflows often are more
difficult to predict than low streamflows.

For the Beta-BMA approaches, a small intercept parameter α combined with a large slope
parameter β, gave a wide range for µ, which means that the deterministic forecast has a
large impact on the mean parameter. If β is zero µ is constant and independent of the
deterministic forecast. For the Beta-BMA-K60 approach for lead time 0, α was estimated
to be close to −3 and β close to 5. For lead time 9, the estimates were around −1 and 2,
respectively, indicating less influence of the deterministic forecast for increasing lead time.
By including the VCR model, the probabilistic forecast was sharper and better calibrated
for certain values of the smoothing parameter C.

There are several ways to further develop the BMA-VCR and Beta-BMA-VCR models.
For the BMA-VCR model, a dynamic linear structure could also be imposed to the vari-
ance parameter, instead of being estimated from a sliding window training period with
fixed size. We did not consider this case since the inference gets complicated and is not
supported by the INLA framework. Furthermore, as seen in the case study, the variance of
the probabilistic forecast often is too small in periods with high discharge forecasts. This
could be solved by modeling the variance parameter τ as a function of the deterministic
ensemble forecasts (Sloughter et al., 2007) or the ensemble spread. The precision param-
eter for the Beta-BMA-VCR model could also be modeled the same way. In addition, it
is possible to construct the climatology pdf differently. In our case study, the domain of
the climatology pdf only ranges from 0 to the largest observed value in the period from
April 4, 2014 to January 31, 2016. The climatology pdf should have a larger domain,
e.g. by letting the tail of the climatology decay exponentially (Borhaug, 2014). Further, if
there are data from several years available, it could be interesting to have a more flexible
representation of the climatology pdf by including seasonal variations.
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Appendix A
Results for Lead Time 4

Figure A.1a and A.1b show the PIT histograms for the BMA-K60 and BMA-K10 ap-
proaches using a sliding with a sliding window training period of 60 days and 10 days,
respectively. Figure A.1c and A.1d show the histogram of pit values for the BMA-VCR-
M2-K10 approach and BMA-VCR-M1-K10 approach, respectively, with smoothing pa-
rameter C = 0.09.

Figure A.2a and A.2b show the intercept parameter and slope parameter, respectively. The
intercept and slope for the BMA-VCR-M1-K10 approach is seen in Figure A.2c and A.2d
for different values of the precision parameter C. The yellow box indicates the optimal
value for C or the BMA-VCR-M2-K10 approach from Figure 6.10. The parameters for
the BMA-VCR-M2-K10 approach are seen in Figure A.2e and A.2f

Figure A.3a and A.3b show the PIT histograms for the Beta-BMA approach using the
using a sliding with a sliding window training period of 60 days and 10 days, respectively.
Figure A.3c and A.3d are the pit-histograms for the Beta-BMA-VCR-K60 approach and
the Beta-BMA-VCR-K10 approach, respectively.

The intercept parameter α and slope parameter β are seen in Figure A.4a and A.4b, re-
spectively, for the approaches Beta-BMA-K10 and Beta-BMA-K60. Figure A.4c and
A.4d show the intercept parameter α + αt and slope parameter β + βt for the approach
Beta-BMA-VCR-K10, respectively for the optimal value C = 0.09. We observe that the
intercept parameter varies around −2 and the slope parameter around 4, which means that
the individual ensemble member forecasts has less impact on the mean parameter than for
lead time 0, but more than for lead time 9.
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(a) BMA-K60.
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(b) BMA-K10.
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(c) BMA-VCR-M2-K10.
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(d) BMA-VCR-M1-K10.

Figure A.1: PIT histograms for lead time 4
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(b) Slope β for BMA-K60 and BMA-K10.
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(c) Intercept α+ αt for BMA-VCR-M1.
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(d) Slope β + βt for BMA-VCR-M1.
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(e) Intercept αt for BMA-VCR-M2.
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(f) Slope 1 + βt for BMA-VCR-M2.

Figure A.2: Parameter estimates for lead time 4.
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(a) Beta-BMA-K60.
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(b) Beta-BMA-K10
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(c) Beta-BMA-VCR-K60.
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(d) Beta-BMA-VCR-K10.

Figure A.3: PIT histograms for lead time 4.
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(a) First subfigure
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(b) Intercept α for Beta-BMA-K60 and
Beta-BMA-K10.
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(c) Third subfigure
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(d) Slope β + βt for Beta-BMA-VCR.

Figure A.4: Parameter estimates for lead time 4.
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Appendix B
Postprocessed Probabilistic
Forecasts

The postprocessed probabilistic forecast for the period from June 24, 2014 to June 22,
2015, for the BMA-K60, BMA-VCR-M2-K10, the Beta-BMA-VCR-K60 approaches for
lead time 0, 4 and 9, are provided in the following figures. The red line is the mean of the
postprocessed probabilistic forecast, and the red area around is a 90% prediction interval.
The blue line is the corresponding observations.
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(a) Beta-BMA-VCR-K60 lead time 0
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(b) BMA-K60 lead time 4
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(a) BMA-VCR-M2-K10 lead time 4
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(a) BMA-K60 lead time 9
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(a) Beta-BMA-VCR-K60 lead time 9
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