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Abstract

In the field of systems and synthetic biology there has been an increas-
ing interest for the use of genetic circuits during the last decade. Several
circuits have been successfully put together, many of which were based on
models. During this thesis a model for a toggle switch was analysed both
deterministically and stochastically.

The HOM2-circuit approximation for a bistable tuneable switch from
Ghim and Almaas (2009) was re-derived in order to make it asymmetrical.
Deterministic analysis was conducted yielding stability diagrams, describ-
ing the phase plane showing bistability for the genetic switch. Furthermore,
stochastic simulations of the approximation were conducted. This gave a
somewhat narrower bistable area than the deterministic analysis, possibly
due to the nature of saddle-node bifurcations. Parameter values for a switch
based on experiments were estimated for the approximation, and these were
used in a stochastic simulation. The result from this simulation was in cor-
respondence with the deterministic analysis. A stochastic simulation of the
complete circuit was conducted based on parameter values found in litera-
ture. For this simulation bistability was not shown.

In order to further explore the circuit, and validity of the approxima-
tion, experimental investigation is needed. This has been planned together
with Rahmi Lale, PhD, and Professor Eivind Almaas at the Department of
Biotechnology NTNU.
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1 Introduction

1.1 Thesis objectives
During the 90s the high throughput technologies in genetics laid the foun-
dation for the fields of systems and synthetic biology, and in year 2000 there
were published two genetic circuits. Among these was the genetic toggle
switch made by Gardner et al. (2000) consisting of two repressors able to
control each others expression [1].

In Ghim and Almaas (2009) there was introduced a model for a sym-
metric genetic switch, named HOM2, having very similar design as the one
produced by Gardner et al. (2000). In the model they included dimerisation
of the repressor before cooperative binding at two operator sites within the
promoter of the opposite gene. The model was made by starting out with a
total of 40 reactions and 20 coupled ordinary differential equations (ODEs)
and then making an approximation reducing the system to a set of only two
ODEs. Simulations of this approximation showed good agreement compared
to simulations for the entire system. In the approximation a few important
parameters were introduced which can be readily tuned by genetic modi-
fication, such as base gene expression and promoter leakage [2]. However,
the model assumed symmetrical values for the parameters for both promoter
and repressor pairs, somewhat restricting the ease in which the model can
be related to an acutal circuit. During this thesis the circuit will be made
asymmetrical, allowing the different promoters to have different values to
their parameters. The parameter space allowing for bistability, where the
circuit will function as a switch, will be predicted using deterministic anal-
ysis, followed by stochastic simulations of both the approximation and the
complete circuit, having estimated parameters for both.

The use of genetic switches in genetic circuits have been proposed in
different systems like for instance biosensors [3]. In order to put these to-
gether and achieve the desired functionality they need to have predictable
dynamics. This is often done through modelling, although a lack of kinetic
parameters highly restricts the use of such models in addition to a high need
for computational power. If the approximation is shown to be predictive it
could become a base for further development of genetic circuits consisting of
genetic switches, needing only to estimate a few parameters instead of about
40 and also reducing the amount of computational power. Additionally, the
approach used for making the approximation could also be used for other
components in a genetic circuit.

The following parts will introduce the fields of systems and synthetic bi-
ology, give a general description of basic modelling approaches, some more
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details regarding how genetic circuits are put together, description of ro-
bustness and stochasticity in biological systems and additionally some of the
basics to mathematics behind the analysis will be described.

1.2 Systems and synthetic biology
The scientific discipline of systems biology is described as a merging of the
growing array of biological data with sophisticated engineering applications
and analysis methods [4]. The systems approach provide descriptions of
organisms as integrated and interacting network of genes, as opposed to
describing the isolated genetic elements and their products alone [5]. From a
biochemical perspective, it is described as a study of the many biochemical
changes that occur in a cell as a function of genetic or environmental stress
[6]. For the purpose of this thesis the term systems biology will be used
to describe biological research focusing on the interactions between different
biological components and how these interactions make a complete system.
This research aims to generate predictive knowledge about the system to be
applied in both research and industry.

Attempts of understanding the nature of biology in terms of mathemat-
ics was made already in 1948 by Norbert Wiener, while he at the same time
laid the foundations for the field known as cybernetics [7]. A little more
than a decade later, Jacques Monod and François Jacob suggested that the
total level of enzymes in a cell was regulated by feedback mechanisms on
the transcription of elements resident at the level of genes [8]. This was
one of the reasons for that they, together with André Lwoff, in 1965 was
awarded the Nobel Prize in Physiology or Medicine, "for their discoveries
concerning genetic control of enzyme and virus synthesis" [9]. Further com-
putational studies of biological systems was performed throughout the 1970s,
for instance by making biologically descriptive models by the use of logical
(Boolean) algebra [10] and the nonlinearity of the chemical reactions within
a cell [11]. Although descriptive, the amounts of data needed to verify these
models somewhat restricted their use.

During the 90s high-throughput technologies emerged, allowing the ge-
netic interactions of many thousands of genes to be investigated at the same
time [4]. These technologies enabled the researchers to experimentally check
the agreement between computational models and the real biological sys-
tems [12].The high-throughput technologies have caused enormous amounts
of data to be produced, as illustrated by the number of sequenced genomes
and base pairs of DNA stored in GenBank as shown in Fig. 1 [13]. These
data needs to be analysed in order to have any significance, and this can not
be accomplished by the reductionist approach that was very popular before
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the emerging of the high-throughput methods. In order to get useful infor-
mation from these huge amounts of data there became a need to make use of
an approach focusing on the system as a whole. In this approach one gives
less attention to the individual parts themselves and rather focus on how
their interactions formed a complete functional biological unit (this biologi-
cal unit may be anything from a single metabolic pathway to a multicellular
organism) [14]. As the gene copy numbers are normally small, the cells are
vulnerable to stochastic effects affecting their genes, potentially this could
completely alter the phenotypic behaviour of a cell. This has been theoreti-
cally proposed previously, although it has been difficult to prove experimen-
tally. Due to recent technological advancements in developing techniques for
single-cell experiments the stochastic effects have been validated and have
put down a platform giving insight to what processes that give rise to these
effects [15, 16]. The topic of stochasticity in gene expression is discussed
more carefully in Sec. 1.6.

Figure 1: The growth of GenBank from 1982–2008. The number of sequences
and base pairs obtained in GenBank during the period 1982–2008 are shown in
the graph by a red dotted line and a blue bar [13]

The genetic toggle switch and the repressilator, see Sec. 1.4, were pub-
lished in the same volume of Nature in 2000, establishing functional genetic
circuits with properties reflecting computational models that were made in
advance. These computational models predicted the circuit dynamics before
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the actual circuits were built [1, 17]. The modelling that was performed in
the making of the genetic toggle switch and the repressilator was carried
out using traditional methods from engineering and their tools, like Matlab
(Mathworks). During the rise of systems biology there have been developed
a myriad of programs that are specifically designed to model and analyze bi-
ological systems. Examples include Dizzy for making stochastic simulations
of genetic regulatory networks [18], Cytoscape for visualization and analysis
of complex networks [19] and the cellular modelling software PySCeS [20].
To enable the researchers to share their models and cooperate, the Systems
Biology Markup Language (SBML) was established in 2003 as a common
language all platforms could be translated to [21].

The modelling of systems can be used to generate synthetic circuits from
novel genes and transcription factors as in the repressilator, consisting of
three repressors acting on each others expression in a cyclic fashion, as de-
scribed in Sec. 1.4 [17]. These genetic circuits can be called synthetic in the
sense that they are not occurring in nature, and the creation of such genetic
circuits is a part of the field called synthetic biology. Synthetic biology is the
creation of novel biological systems based on principles from engineering and
components from biology. A defining goal for this new field appears to be
the generation of new genetic systems based upon computational modelling
[22]. The biological system that is being built can be in any scale, from a
simple genetic circuit to a whole multicellular organism. This is usually ac-
complished by making use of rational modifications to the genetic material.
Compared to classical biotechnology the advance lies in the use of the engi-
neering methodology allowing for rational modifications to complex systems
with effects elucidated before the system is put together [23, 24, 25].

An illustration of the power and accessibility of synthetic biology is the
creation of Escherichia coli cells that are able to process images. This was
performed by the introduction of three genes from different origins put to-
gether with the existing signalling cascades of the host E. coli. Bacteria
expressing these genes were then enabled to produce pigments if not exposed
to light [26]. It has been said that an ultimate goal for synthetic biology
would be to create a living cell from only synthetic components [23]. A
major leap towards that goal was made by J. Craig Venter and his team
in 2010, with the synthetic production of an entire functional genome that
was transplanted into restriction-minus Mycoplasma capricolum recipient cell
[27].

In order to complete the project Venter and his co-workers had to engi-
neer an entire genome. This has, in close resemblance to the sequencing of
genomes, become significantly more feasible through techniques developed in
the later years. The development of synthesis of synthetic genes and genomes
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has gone through several steps from producing only short oligo-sequences by
means of organic synthesis to synthesizing entire genes by biochemical assis-
tance. Recent improvements have led to the use of in vivo synthesis of DNA,
enabling synthesis of complete genomes. These advances have made the pro-
duction cost of synthetic DNA drop significantly. This reduction in sequence
cost may prove crucial in verifying different models of genetic circuits and
help understanding the basics of life [28, 29, 30].

One of the most famous contributions from synthetic biology to medicine
so far is the production of the antimalarial drug precursor artemisinic acid
in Saccharomyces cerevisiae. The summarized modifications that were made
to the metabolic pathways of S. cerevisiae to produce the artemisinin drug
precursor artemisinic acid are depicted in Fig. 2 [31]. Although this undoubt-
edly was a great achievement for the field, the amount of work it took to get
there provides a glimpse of the complexity of such tasks. Jay Keasling, the
leader of the group who made this strain, has made a rough estimate that
150 person-years have been spent in the making of the final pathway.

There are great expectations related to synthetic biology, although some
major limitations still remain. One of them is concerning that many of the
parts or modules in use are not defined sufficiently to perform as they are
supposed to. It seems like many of the elements that are used are not char-
acterized well enough to the parameters needed for accurate modelling of
for instance a genetic circuit [32, 33]. Host incompatibility is also named
as a challenge where for instance codon-bias may affect the success rate for
having a functional genetic element in a different species than its origin [32].
Additionally, the design of genetic circuits based on classical engineering
principles may not be compatible with the fact that the cells are self repli-
cating, making evolution of implemented sequences to a potential challenge
[33]. Another hindrance is that parts put together may not function as one
would expect. This problem might be reduced by modelling a system be-
fore putting it together [32]. Further problems are caused by the enormous
complexity of biological systems. Labour-intensive work is required for elu-
cidating how genes, proteins and metabolites affect each other in order to
make precise and effective changes to the systems. Finally, the process of
making the cells behave as expected is impeded by the cells vulnerability to
stochastic fluctuations [32, 33]. All of these challenges need to be addressed,
and using computational tools of systems biology could be at least part of
the solution for some of them.

Important aspects that could help the development of synthetic biology
include expanding the available toolkit for synthetic biology and standard-
izing it, modelling and fine-tuning the properties of the synthetic gene net-
works, development of probes/tags to quantify the behaviour of the synthetic
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Figure 2: The engineered pathway in Saccharomyces cerevisiae to pro-
duce artemisinic acid, a precursor to the antimalarial drug artemisinin.
The genes from the mevalonate pathway that are directly upregulated are shown
in blue, the ones that are indirectly upregulated are shown in purple and the
downregulated ones are shown in red. Genes that are shown in green were intro-
duced to S. cerevisiae from Artemisia annua L. and constitute the biochemical
pathway from farnesyl pyrophosphate (FPP) to artemisinic acid. The artemisinic
acid is efficiently transported out of the cell, and can be purified from the culture.
The conversion of arteminisic acid to arteminisin is done by known high yielding
chemical reactions [31].
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network and creating test platforms for characterizing the interactions within
the network. Furthermore, decoupling of the field’s processes could show use-
ful and proving to standardize the parts even further. In this sense decoupling
involves the separation of different steps in the process of creating synthetic
systems, having different groups or companies specializing on one field, for
instance the production of DNA sequences could be one such field [33, 3, 34].

For further development of the field it seems necessary to produce a
strong educational system for synthetic biology. In 2003 the first Interna-
tional Genetically Engineered Machine (iGEM) competition was arranged at
Massachusetts Institute of Technology (MIT). This competition has grown a
lot from having only participants from MIT, to expanding having 155 teams
participating in 2011. During the iGEM undergraduate students are given
standardized parts from the Registry of Standard Biological Parts to develop
novel biological devices or parts. These are supposed to be stored in the reg-
istry and be freely accessible for anyone afterwards. The 2010 competition
winners, Slovenia, were able to create a repressilator using zinc-finger re-
pressors. Other examples from 2010 include the Kyoto team’s E.coli pen,
which make use of fluorescent proteins produced from H2O2 inducible pro-
teins to make colourful drawings. The competition demonstrates the accessi-
bility of synthetic biology by having undergraduate students able to produce
completely new devices from standardized parts, and further establishes the
standard which is produced by The Registry of Standard Biological Parts
[34, 35, 36, 37]

The field of synthetic biology has many potential applications, ranging
from environmental and medical purposes, food and pharmaceutical indus-
try, to the production of biomaterials and biosensing using bioreporters
[34, 25, 38]. The possible environmental benefits from synthetic biology
are vast. For instance, chemical synthesis may be performed with a much
lower energy requirement, leading to a more sustainable synthesis industry.
Other examples include biodegradation of waste products and creation of
biodegradable plastics and biofuels [34, 25]. Bioreporters have been made to
detect both heavy metals and organic compounds that are potentially harm-
ful or toxic for the environment and humans. For improving the generation
of new and more efficient bioreporters there is a need for more streamlined
production, mechanisms to exploit noise, enhancement of the properties of
the regulatory cascades that enhance the signal and tune the strength of
the reporter signal. Even though these bioreporter assays prove to be both
efficient and cheap there are legislations in many countries restricting their
use because of their synthetic nature [39]. Medical purposes include both
virus detection and vaccine development. The food industry could bene-
fit from synthetic biology through the production of important metabolites
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and nutrients, development of better preservatives and decrease the waste
production from the food industry. Biosensors could also be used in food
industry for detection of molecules giving rise to smell or taste in food prod-
ucts, may it be to control that the good taste is still preserved or that the
degradation of the food compounds have not started [34, 25]. Analysis tools
have been utilized to explore expression patterns of tomatoes when compar-
ing metabolic patterns of tomatoes overexpressing the Psy-1 gene compared
to the wild type, and its effect on carotenoid levels in the tomatoes. Results
of such system analysis together with modelling of the metabolic pathways
may help set future directions for where in the pathway the most effective
changes can be done to improve productivity of important nutrients, laying
the foundations for synthetic biology [40].

1.3 Modelling approaches in systems biology
When modelling genetic circuits there are three common approaches; logical
(Boolean), continuous and stochastic modelling [41].

Boolean descriptions of genetic regulatory networks are constructed of
discrete entities which are either on (1) or off (0). Predictions can be made
to such networks by the use of well developed analysis techniques for dis-
crete mathematics [41]. This type of logical analysis has been employed for
decades already, as mentioned previously. Although seemingly simple, it can
still provide useful information and is highly applied by systems biologists
around the world. For instance Réka Albert and her group at Pennsylvania
State University have recently published Boolean descriptions of G-protein
action in plants based on transcriptome data [42] and how segment polar-
ity genes affect the development of Drosophila segmentation [43]. These
Boolean models are well suited for making large-scale descriptions as they
are less computational costly than more complex modelling. Although, the
Boolean models can only give qualitative information about a circuit, and for
smaller systems continous models are often preferred as they can give more
accurate predictions [41].

There are several different continuous modelling approaches including lin-
ear models and models of transcription factor activity, although the most
common apporoach for continuous modelling is by the use of ordinary diffren-
tial equations (ODEs). By describing the systems in a continous manner the
rate constants and concentration of all the species involved in each reaction
describing the circuit are accounted for. The high usage of detail enables
the models to be very accurate in their predictions giving good quantita-
tive predictions as an addition compared to Boolean models. ODEs can be
used for calculating steady state solutions for the system in hand and their
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corresponding stabilities, as described in Sec. 1.7. Examples for different
genetic circuits and how to model them can be found in [44]. Although the
predictions will seem accurate and can give good results compared to exper-
imental results, there are still areas that need improvement. As the genetic
elements involved in genetic circuits may be scarce in numbers (low copy
numbers), the circuits may be highly affected by stochastic mechanisms and
the determinism produced by the continuous models may not be sufficiently
descriptive [41].

When the stochastic effects become significant a stochastic modelling ap-
proach may be able to capture a good picture of the behaviour of the cir-
cuit. Good examples of descriptions of genetic regultatory circuits described
by stochastic models are the development of the sea urchin [45] and of the
lambda phage [46]. Stochastic models are also called single-molecule level
models as they take the fluctuating concentrations of single molecules into
account when describing a circuit. The stochastic models are built up much
like the ODEs but instead of a reaction rate they make use of a reaction prob-
ability. The system can then be run with a stochastic simulator, like Dizzy
[18], using algorithms made for stochastic simulation of coupled chemical
reactions like the Gillespie Direct [47] or Gibson-Bruck algorithms [48].

In summary the choise of what modelling appproach one wants to use
depends on what is being modelled. If the system is big and complex and
mostly qualitative information is required the ideal modelling approach would
probably be Boolean. If the system is of intermediate size and the amount of
quantitative information is higher one would prefer a continous representa-
tion of the system, possibly using ODEs to describe the system. If the system
is relatively small it could be possible to perform single-molecule level simu-
lations of the system taking stochasticity into account, giving highly accurate
predictions of the system [41].

1.4 Genetic circuits
As synthetic biology is a merging between biology and engineering, so is ge-
netic circuits a merging between genetics and electrical engineering. Electri-
cal circuits are based upon mathematical models and so are genetic circuits,
and many of the techniques in predicting outcomes of genetic circuits are
directly derived from electric circuits. Electric circuits often contain mod-
ular parts such as switches and oscillators, which have strong resemblance
to the two first published genetic circuits, a genetic toggle switch and the
repressilator respectively.

The genetic toggle switch consists of two mutually repressible promoters,
as schematically illustrated in Fig. 3a. In the experiment the LacI-repressor
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was used as Repressor 2, repressing the promoter Ptrc-2 being inducible by
IPTG working as Inducer 2. Promoter 2 encodes either a heat inducible
cI repressor or anhydortetracycline (aTc) inducible tetR repressor that will
repress Promoter 1. If there is expression from Promoter 2 (the Ptrc-2 pro-
moter) there will be expression of a reporter protein, in this case in the form
of the GFPmut3 gene. The vector design used by Gardner et al. is shown in
Fig. 3b. By using the construct design in E. coli strain JM2.300, they cre-
ated a genetic circuit with two separate stable expression states (bistable) in
which could be switched between by adding an inducer (chemical or physical)
to the medium [1].

(a) (b)

Figure 3: A genetic toggle switch. (a) A schematic presentation of the genetic
toggle switch made by Gardner et al. Promoter 1 is repressed by the Inducer 1
inducible Repressor 1. Promoter 2 is repressed by the Inducer 2 inducible Repressor
2. (b) The vector design applied for demonstration of a genetic toggle switch. Both
figures are adapted from [1].

The repressilator was constructed by Elowitz and Leibler as a synthetic
oscillatory network of trancriptional regulators, a biological oscillator. Here
it was used three repressors acting in sequence on each other, as depiced
in Fig. 4a. If it is being transcribed from the PLtet01 promoter in the
beginning there will be produced λ cI repressor and reporter protein. The cI
repressor will repress the λ PR promoter, and therefore there will be no lacI
repressor produced and the RNA polymerase will transcribe from the PLlac01
promoter, and the tetR repressor will be produced. This repressor will repress
both PLtet01 promoters stopping the production of the reporter protein and
the λ cI repressor. This will leave open the λ PR promoter and there will be
produced lacI repressors. This will stop the production of the tetR repressor,
and thereby rendering the transcription from the PLtet01 promoters again
producing the reporter protein. This cyclic fashion of repression gives the
circuit an oscillating behaviour, as the fluorescence density graph in Fig. 4b
illustrates. The two plasmids illustrated in Fig. 4c was contained by a culture
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of E. coli strain MC4100 to produce the oscillating behaviour.

(a)

(b) (c)

Figure 4: The repressilator. (a) A schematic representation of the repressila-
tor. One of the two PLtet01 promoters encodes the λ cI-lite gene. The λ cI-lite
repressor can repress the λ PR promoter which encodes the lacI-lite gene. The
lacI-lite repressor can repress the PLlac01 promoter which encodes the tetR-lite
gene. The tetR-lite repressor can repress both the PLtet01 promoters and thereby
the expression of the reporter gene gfp-aav. This repression will occur in a cyclic
fashion creating oscillating patterns of reporter gene readouts. The -lite notation
on the repressors refer to the attachment of LVA-tails to the repressors to give rapid
degradation. Adapted from [17]. (b) The repressilator produced the fluorescence
plotted in the graph. Fluorescence is produced by the GFP-aav protein. From
[17]. (c) The vetor design applied for the creation of the oscillating repressilator
and reporter construct. From [17].

The inspiration from electronic circuits has continued in the last decade
and some of the circuits can be described as digital logic evaluators [49, 50].
There has also been produced a genetic bandpass filter, by the combination
of lowpass and highpass filters in series [51], more oscillators [22] and sev-
eral other electronic circuit inspired genetic circuits. In addition one can
imagine getting these working as modular parts generating bigger systems,
as described by Lu et al. (2009) [3].
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1.5 Robustness in biological systems

The term robustness is used differently in litterature, but for the purpose
of systems biology it was defined by Hiroaki Kitano as; "Robustness is a
property that allows a system to mantain its functions despite external and
internal pertubations" [52].

Robustness is a feature often observed when studying biological systems.
Observable phenomena that characterize such robustness is adaptability, in-
sensitivity to parameter changes and resistance to structural damages. Adap-
tive biological systems have the ability to change mode in a changing envi-
ronment but still maintain the same phenotype. It is often observed that or-
ganisms have a wide range of rate parameters for the catalysation of the same
biologcal reactions, although still able to produce very similar phenotypes.
Damage to the network structure of a biological organism is not necessarily
fatal, and usually consecutive random mutations would lead to a gradual
decrease in functional phenotype, called graceful degradation [12, 52, 53].

These robust phenomena emerges from the underlying properties of sys-
tem control, alternative mechanisms, decoupling and modularity resident in
the organism. System control is the primary feature for having a robust
system, and consist of mechanisms such as feedback and feed-forward loops.
This control makes it possible to regulate the flow of metabolites through
a system with a relatively constant flux, regardless of changes in internal
parameters or fluctuations in the metabolite availability. Alternative mecha-
nisms in biological systems can be divided in two different categories; one is
the existence of isozymes, enzymes able to catalyse the same reaction, mean-
ing the system will be able to survive despite a nonsense mutation in one of
the isozymes; the other is the existence of alternative pathways, where sev-
eral pathways lead to the same end product. Robust biological systems have
often developed ways to decouple the phenotype from the genetic material
to a certain extent. This allows mutations to occur in the DNA, although
the mutated DNA is not necessarily affecting the phenotype of the organism,
as proteins such as Hsp90 identifies and destroys misfolded proteins. Such
decoupling mechanisms therefore allow genetic diversity while maintaining
the phenotype. Modularity of biological systems is a property derived from
the spacial distribution of components separating different chemical species
from interaction. This can be illustrated by both membranebound proteins,
protein complexes and the compartementalization observed in eucaryotes.
When designing and studying biological systems these properties will be able
to ensure or explain the robustness of the system [12, 52, 53].

Robustness against external pertubations can be highly advantageous in
certian conditions, but it could also increase the fragility of an organism [52].
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This can be illustrated for for extremophiles, organisms adapted to extreme
conditions, as they are extremely difficult to cultivate. This is because they
are very robust to the pertubations that may happen in the extreme en-
vironment, but when exposed to an unexpected pertubation (more normal
growth conditions) they are unable to survive [23]. In additon, robustness
can cause proliferation of unwanted organisms and cells. For instance cancer
cells are highly robust, and the structure of the cell’s metabolism and defence
mechanisms of the body itself help them prevail [52].

1.6 Stochasticity in genetic circuits
Gene expression is exposed to stochasticity, caused by fluctuations in tran-
scription and translation, despite constant environmental conditions giving
rise to diversity and diffrentiation of cell types. As the cells only have a
few copies of every gene, the gene expression is vulnerable to fluctuations
and these can significantly alter the cells phenotypical behaviour [15]. The
total noise in a cellular environment can be divided in the noise arising from
the gene expression itself, intrinsic noise, and that of the fluctuations in all
the other components of a cell, extrinsic noise, like transcription factors and
RNA polymerase abundancy. These have been experimentally validated and
measured [16]. The sources for intrinsic noise in gene expression have been
shown to mainly be caused by translation, as each copy of mRNA can give
rise to many proteins [54]. The cellular processes have to be robust in order
to cope with the noise, and the general mechanisms described in Sec. 1.5
ensures that the cells are finetuned despite all the stochastic processes. Ad-
ditionally, cells are able to exploit noise by using it to give a phenotypic
diversity in cell cultures that seems to give the species an edge for surviving
changes in the environmental conditions. As an example many pathogenic
organisms show stochastically driven phase variations that makes it more dif-
ficult for the body to create antibodies against them. For instance Neisseria
gonorrheae have two different pili genes and which one being the active at
the time seems to be stochastically driven [55].

There are different ways to measure stochasticity, but some common mea-
sures include the coefficient of variation (CoV) and Fano Factor,

CoV = σ/x (1)
Fano Factor = σ2/x (2)

where σ is the standard deviation and x is the mean [15]. Additionally a
presentation of the effective potential lanscape is sometimes used [2].
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In order to model the effects of stochasticity in gene expression there have
been developed stochasitc models as described in Sec. 1.3 and there has also
been developed software to handle simulations of these models as described
in Sec. 2.2.

1.7 Mathematical approaches
1.7.1 Characetization of points in a in linear systems

A definition of two-dimensional linear systems is stated as

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2 (3)

where the dot notation represents the operation d
dt
. By introducing boldface

notation for vectors the system above becomes

ẋ = Ax (4)
where

A =
(
a b
c d

)
and x =

(
x1
x2

)
(5)

Solutions of the two-dimensional linear system can be illustrated as trajec-
tories in a phase plane, making a phase portait, with vectors from the tra-
jectories having a direction in relation to fixed points, x∗. The fixed points,
x∗, for a system are the values of x that satisfies Ax = 0 meaning both time
derivatives are zero. For a linear system the point x∗ = 0 will always be
a fixed point. These fixed points can have different behaviours as; nodes,
spirals, centers, stars, non-isolated fixed points, saddle points or degenerate
nodes. Their individual stability can be either stable or unstable, except
saddle points which are always unstable. To classify a fixed point it can be
evaluated as a two-dimensional linear system, ẋ = Ax, and find the trace, τ ,
and the determinant, ∆, to the matrix A. For a matrix descibed as A the
trace and the determinant values are found by

τ = trace(A) = a+ d (6)
∆ = det(A) = ad− bc (7)

and the vaules can be evaluated in Fig. 5 to determine what type of point
the fixed point is in the phase plane. From these predictions a phase portrait
of the system could be created [56].
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Figure 5: Classification of fixed points from the ∆ and τ values. By
deciding the value of the trace, τ , and the determinant, ∆, of the matrix A for a
fixed point, the diagram plotted can be used to decide what type of fixed point x∗
is. A fixed point with ∆ < 0 is a saddle point, and if ∆ = 0 it is a non-isolated
fixed point. For a fixed point with a ∆ > 0 the classification depends upon the
values of τ and τ2 − 4∆. A fixed point with τ = 0 is a center. If τ2 − 4∆ = 0
the point is either a star or a degenerate node, if τ2 − 4∆ > 0 it is a node and if
τ2 − 4∆ < 0 it is a spiral. The stability of a spiral, a node, a star or a degenerate
node is dependent upon the value of τ . If τ < 0 it is a stable point but if τ > 0 it
is an unstable point. From [56].
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1.7.2 Non-linear systems

Non-linear systems can be expressed as a vector field on a phase plane as

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) (8)

where f1 and f2 are given functions. This can be written as

ẋ = f(x) (9)
where x = (x1, x2), and f(x) = (f1(x), f2(x)). For this system x represents
a point in the phase plane and ẋ represents the velocity vector at that point.
The fixed points, x∗, for this system are the points that satisfy f(x) = 0,
thereby representin the steady state of a system.

The system described in Eq. (8) can be linearized to(
u̇
v̇

)
=
(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)(
u
v

)
(10)

Where

A =
(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
(x∗1,x∗2)

(11)

is called the Jacobian matrix. This matrix can be used to classify fixed
points for the system using the same methods as described for fixed point
classification for linear systems above. Although, the fixed points described
in Fig. 5 as non-isolated fixed points, centers, star nodes and degenerate
nodes are borderline cases, in which for a non linear system based solely on
the Jacobian are not necessarily correct. Methods for correct characteriza-
tion of such borderline cases can be found in the litterature, like "Nonlinear
Dynamics and Chaos" by Steven H. Strogatz (1994) [56].

1.7.3 Bifurcations

The number and stability of the steady states may change as the value of some
control paramter changes value. The critical value at which the qualitative
change of the steady states occur is called a bifurcation point. There are
different types of bifurcations, and they are described below using the simple
base functions of one-dimensional bifurcations to establish the terms. All the
bifurcations described are in essence the same for any dimensionality of the
system.
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The saddle-node bifurcations are the bifurcations where by changing the
control parameter two steady states, one stable and one unstable, will coa-
lesce and disappear. This can also happen the other way around where two
steady states suddenly appears as the control parameter is changed through
some critical value. An example of a saddle-node bifurcation is served by the
one-dimensional system described in Eq. (12).

ẋ = r + x2 (12)
where r is the control parameter. This system will have two steady states at
r < 0, one "half-stable" fixed point for r = 0 and when r > 0 there are no
steady states, as shown in Fig. 6.

(a) r < 0 (b) r = 0 (c) r > 0

Figure 6: Saddle-node bifurcation. Stable steady states are marked as filled
circles and unstable ones as open circles. (a) When r < 0 there are two steady
states, one unstable and one stable. (b) When r = 0 there is only one fixed point,
which is "half stable". (c) When r > 0 there are no steady states, shown by the
curve for ẋ that never cross the x-axis From [56]

A different way of visualising the bifurcation is by plotting the variable
values of the steady states as a function of the control parameter as shown
in Fig. 7.

Transcritical bifurcations will have qualititative change of the stability of
a steady state. This can be exemplified by the one-dimensional system

ẋ = rx− x2 (13)
where r again is the control parameter. This system will always have one
steady state x∗ = 0. In addition, there will be one fixed point at r = x∗. The
respective stabilities of the steady states will change as the control parameter
changes. While r < 0 the steady state x∗ = 0 will be stable and the other
steady state have a negative value and will be unstable. When r > 0 the
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Figure 7: Saddle-node bifurcation diagram. Shows how the steady state val-
ues of x varies as a function of the control parameter r. The stippled curve repre-
sents unstable steady states, while the unbroken curve is stable steady states. For
r > 0 the two steady states that existed for r < 0 have coalesced and disappeared,
leaving no steady states. From [56]

steady state x∗ = 0 will become unstable, while the other steady state will
have a positive value and will be stable. The stability have been transferred
and hence the bifurcation point is transcritical. Fig. 8 shows the vector field
around the steady states as r changes, while the bifurcation diagram for the
system is shown in Fig. 9.

(a) r < 0 (b) r = 0 (c) r > 0

Figure 8: Transcritical bifurcation. (a) When r < 0 there are two steady
states, with one stable residing in x = 0 and one unstable at x < 0. (b) When
r = 0 there is only one steady state in x = 0 (c) When r > 0 there are two steady
states, whith one unstable residing in x = 0 and one stable at x > 0. From [56]

There also exists bifurcations where one steady state gives rise to three
new steady states. These are called a pitchfork bifurcations, as the bifurca-
tion diagram will resemble a pitchfork. There exists two different pitchfork
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Figure 9: Transcritical bifurcation diagram. Shows how the steady state
values of x varies as a function of the control parameter r. The steady state in
x = 0 changes stability in r = 0, and goes from stable to unstable for increasing
r. There is another steady state for r 6= 0 which is unstable and have x < 0 for
r < 0, but becomes stable and x > 0 for r > 0. From [56]

bifurcations; supercritical and subcritical. In the supercritcal bifurcation one
stable steady state will give rise to two new stable steady states and one
unstable steady state in the middle of them. One supercritical pitchfork is
the system

ẋ = rx− x3 (14)

where r is the control parameter. The vector plot of the system in Fig. 10
describes the system for different values of r. When r < 0 there is only
one steady state which is stable, at the bifurcation point r = 0 the system
changes, and for r > 0 there is 3 steady states where the steady state at
x = 0 is unstable and there are two stable steady states symmetrically placed
around the unstable steady state.

The bifurcation diagram for the supercritical pitchfork is shown in Fig. 11,
illustrating why the bifurcation is called a pitchfork bifurcation.

A subcritical pitchfork bifurcation will have one unstable steady state
giving rise to one stable and two unstable steady states. The steady states
at different parameter values for the system described by

ẋ = rx+ x3 (15)

where r is the control parameter, will give rise to the bifurcation diagram in
Fig. 12.

Stability diagrams are often used to illustrate the behaviour of a system
with more than one control parameter. For instance the system
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(a) r < 0 (b) r = 0 (c) r > 0

Figure 10: Supercritical pitchfork bifurcation. (a) When r < 0 there is only
one steady state in x = 0 which is stable. (b) When r = 0 there is still only
one steady state. (c) When r > 0 there are three steady states, where the steady
state in x = 0 is unstable, and two stable steady states are at equal distance from
x = 0.From [56]

Figure 11: Supercritical pitchfork bifurcation diagram. The stable steady
state in x = 0 splits up into three steady states for r > 0. The shape of the curve
resembles a pitchfork. From [56]
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Figure 12: Subcritical pitchfork bifurcation diagram. Three steady states,
one stable at x = 0 and two unstable symmetrically aligned around x = 0 merges
when r = 0, and for r > 0 there is only one steady state which is unstable. From
[56]

ẋ = h+ rx− x3 (16)
have the two control parameters h and r. As one may vary either of the pa-
rameters it could be of use visualising where the bifurcations occur at certian
values of each parameter. This can be illustrated in a stability diagram as in
Fig. 13 for Eq. (16) [56].

Figure 13: Stability diagram. Two separarate areas of the parameter space,
where one space contains 1 fixed point, while the other contains three fixed points.
Bifurcations giving rise to such patterns may be a saddle-node bifurcation or a
pitchfork bifurcation. From [56]

1.7.4 Nondimensionalisation of an equation

When describing a large system using ODEs there are sometimes numerous
parameters which are hard to handle and will complicate the analysis of the
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system. Then a possible solution would be to nondimensionalise the system,
using dimensionless parameters. This would involve using the existing pa-
rameters to formulate new dimensionless parameters. A famous example is
the spruce budworm outbreak described by Ludwig et al. (1979) [57] and
also described in Strogatz (1994) [56]. Here a one-dimensional description is
formulated as,

Ṅ = RN
(

1− N

K

)
− BN2

A2 +N2 (17)

where the change in the variable N ([# budworms]) per unit of time (the
dot operation d

dt
, [months−1]) is described by the parameters R ([# bud-

worms/month]) for growth rate, K ([# budworms]) population carrying
capacity, A ([# budworms]) critical level for preditation and B ([# bud-
worms/month]). This equation can be nondimensionalised by first substitut-
ing the variable to a dimensionless variable

x = N

A

giving

A

B

dx

dt
= R

B
Ax

(
1− Ax

K

)
− x2

1 + x2 (18)

Furthermore, one can introudce dimensionless time τ and two dimensionless
parameters r and k

τ = Bt

A
, r = RA

B
, k = K

A

and inserting them into Eq. (18) yielding,

dx

dτ
= rx

(
1− x

k

)
− x2

1 + x2 . (19)

And the expression from Eq. (17) have been nondimensionalised and hav-
ing only two parameters instead of four, and the expression has become
much more feasible for further analysis like the ones of bifurcation described
above.
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2 Materials and Methods

2.1 Deterministic analysis - MATLAB
The deterministic analysis was used to find bifurcation points for different
values of certain parameter values, and thereby giving stability diagrams
(also called phase planes) as described in Sec. 1.7.3.

Deterministic analysis of the genetic circuit was performed using MAT-
LAB. Especially, bifurcation analysis was performed using the built in func-
tion fsolve, solving a given non-linear set of equations for zero. The ’trust-
region-dogleg’ algorithm was chosen to be utilised with fsolve, as this is the
only algorithm specially designed to solve non-linear problems. This works
by giving fsolve an equation, fun, and initial values, x0, and tries to solve the
equations described by fun. The function proceeds in an iterative fashion un-
til the equation is solved within some predefinable limits. These limits can be
described as how close to zero the solution must be in order to be accepted.
fsolve gives the output solution as x [58]. The fsolve-function is a numerical
solver, as opposed to an analytical solver, such as Maple or Mathematica.

A general approach to how the stability diagrams were made can be
described as follows. First, the function was defined along with several limits
for fsolve and some other constants used by user defined functions. The
function stestasea can be described as a brute force way of finding steady
states of the system at the given parameter values. Solving the system at
some initial parameter values gave a solution that was employed by later
functions.

Following, a log-log linear variation of the parameter values was per-
formed, and steady states were found using the rwrthom2nextss function.
This function takes in fun, the last computed solutions for steady states and
some values describing how far from the previous solution the new x0 values
will be. The funtion will return the steady states at the next set of parameter
values. The rwrthom2nextss function uses the simplhom2scan function with
different resolution, depending upon if simplhom2scan gives satisfying results
at the first set of resolution. If there is observed a change in the number of
steady states the resolution is increased to verify this change. The stability of
the individual steady states was determined by using the stabilityss function.

The log-log linear scan was then used as a base to find bifurcation points.
Starting from points that were bistable, the parameter values were varied
one at a time until monostability was found, again using the rwrthom2nextss
function. When monostability occurred, the last bistable point was again
used as input, and then taking smaller steps towards the monostable point,
thereby increasing the resolution to what point the bifurcation had occurred.
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The mean between the next identified monostable state and bistable state
was determined as a bifurcation point. The resulting set of bifurcation points
were used to plot stability diagrams as depicted in Sec. 3.5.

All the above mentioned functions, except the built-in function fsolve,
were defined by the candidate.

2.2 Stochastic analysis - Dizzy
Dizzy is a stochastic simulator of chemical reactions, and was used for stocha-
stic simulations of the genetic circuit described in Sec. 3.1. Both the com-
plete circuit and the approximation were simulated. All simulations were
performed using the Gibson-Bruck stochastic algorithm for stochastic simu-
lation of chemical systems [18, 48].
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3 Results

3.1 General circuit description

The analysed system is a genetic circuit composing of two genes each en-
coding a repressor controlling the other gene as homodimers, as depicted in
Fig. 14. Each promoter has two operator domains for repressor binding, spe-
cific for the repressor encoded by the other gene. The homodimers will bind
cooperatively at the two binding sites.

Figure 14: Genetic Toggle Switch. Promoter 1, D1
ab, is the promoter for Gene

1, which encodes a repressor with specific binding for Promoter 2. Promoter 2,
D2
ab, is the promoter for Gene 2, which encodes a repressor with specific binding

for Promoter 1.

Reactions used for describing the system are listed in Tab. 1. Here, the
promoter encoding the gene i is described as Di

ab, where a = number of
repressors bound at the promoter (0,1 or 2), and b is representing if the RNA
polymerase (RNAp) is bound (1), or unbound (0) at the promoter. All these
reactions can be described by using ordinary diffrential equations (ODEs) as
can be seen in the Eqs. (20) – (40). In the ODEs the dot notation will be
used, where ẋ = dx

dt
, is describing the change in species x per unit of time.

The reversible reactions are listed in the table with arrows pointing in both
directions. For these reactions the parameters are ki for the forward rate and
qi for the reverse rate. These can be combined in one dissociation parameter
Ki = qi/ki which can be seen later in the derivation. Many of the species
are in squrare brackets denoting that it describes the concentration of that
species. Although, note that the promoter elements are not in brackets, but
describe the exact number of that species.
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Table 1: Reactions for Toggle Switch with homodimerizarion. In the first
coulumn the reaction is described in words. The reactions associated with Gene 1
are listed in the second column. The reactions associatied with Gene 2 are listed
in the third coulumn. The reaction rates are written above or below the arrows
describing the forward and reverse rate respectively.

Type of reaction Gene 1 Gene 2
Repressor binding D1

00 + P 2
2
k1.2


q1.2

D1
10 D2

00 + P 1
2
k2.2


q2.2

D2
10

D1
10 + P 2

2
k1.4


q1.4

D1
20 D2

10 + P 1
2
k2.4


q2.4

D2
20

RNAp binding D1
00 +RNAp

k1.3


q1.3

D1
01 D2

00 +RNAp
k2.3


q2.3

D2
01

D1
10 +RNAp

k1.5


q1.5

D1
11 D2

10 +RNAp
k2.5


q2.5

D2
11

D1
20 +RNAp

k1.7


q1.7

D1
21 D2

20 +RNAp
k2.7


q2.7

D2
21

Transcription initiation D1
01

α1.m→ E1 +D1
00 D2

01
α2.m→ E2 +D2

00
D1

11
α1.m→ E1 +D1

10 D2
11

α2.m→ E2 +D2
10

D1
21

α1.m→ E1 +D1
20 D2

21
α2.m→ E2 +D2

20

Elongation E1 α′1.m→ M1 +RNAp E2 α′2.m→ M2 +RNAp

Translation M1 α1.p→ P 1 +M1 M2 α2.p→ P 2 +M2

Dimerization P 1 + P 1 k1.1


q1.1

P 1
2 P 2 + P 2 k2.1



q2.1

P 2
2

Degradation M1 γ1.m→ � M2 γ2.m→ �
P 1 γ1.p→ � P 2 γ2.p→ �
P 1

2
γ1.p/σ1→ � P 2

2
γ2.p/σ2→ �
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˙[P 1
2 ] =k1.1[P 1]2 + q2.2D

2
10 + q2.4D

2
20 − (γ1.p/σ1)[P 1

2 ]
− q1.1[P 1

2 ]− k2.2D
2
00[P 2

2 ]− k2.4D
2
10[P 1

2 ] (20)
˙[P 1] =α1.p[M1] + 2q1.1[P 1

2 ]− 2k1.1[P 1]2 − γ1.p[P 1] (21)
Ḋ1

00 =q1.2D
1
10 + q1.3D

1
01 + α1.mD

1
01

− k1.2D
1
00[P 2

2 ]− k1.3D
1
00[RNAp] (22)

Ḋ1
10 =k1.2D

1
00[P 2

2 ] + q1.4D
1
20 + q1.5D

1
11 + α1.mD

1
11

− q1.2D
1
10 − k1.4D

1
10[P 2

2 ]− k1.5D
1
10[RNAp] (23)

Ḋ1
20 =k1.4D

1
10[P 2

2 ] + q1.7D
1
21 + α1.mD

1
21

− q1.4D
1
20 − k1.7D

1
20[RNAp] (24)

Ḋ1
01 =k1.3D

1
00[RNAp]− q1.3D

1
01 − α1.mD

1
01 (25)

Ḋ1
11 =k1.5D

1
10[RNAp]− q1.5D

1
11 − α1.mD

1
11 (26)

Ḋ1
21 =k1.7D

1
20[RNAp]− q1.7D

1
21 − α1.mD

1
21 (27)

˙[E1] =α1.m(D1
01 +D1

11 +D1
21)− α′1.m[E1] (28)

˙[M1] =α′1.m[E1]− γ1.m[M1] (29)
˙[P 2
2 ] =k2.1[P 2]2 + q1.2D

1
10 + q1.4D

1
20 − (γ2.p/σ2)[P 2

2 ]
− q2.1[P 2

2 ]− k1.2D
1
00[P 2

2 ]− k1.4D
1
10[P 2

2 ] (30)
˙[P 2] =α2.p[M2] + 2q2.1[P 2

2 ]− 2k2.1[P 2]2 − γ2.p[P 2] (31)
Ḋ2

00 =q2.2D
2
10 + q2.3D

2
01 + α2.mD

2
01

− k2.2D
2
00[P 1

2 ]− k2.3D
2
00[RNAp] (32)

Ḋ2
10 =k2.2D

2
00[P 1

2 ] + q2.4D
2
20 + q2.5D

2
11 + α2.mD

2
11

− q2.2D
2
10 − k2.4D

2
10[P 1

2 ]− k2.5D
2
10[RNAp] (33)

Ḋ2
20 =k2.4D

2
10[P 1

2 ] + q2.7D
2
21 + α2.mD

2
21

− q2.4D
2
20 − k2.7D

2
20[RNAp] (34)

Ḋ2
01 =k2.3D

2
00[RNAp]− q2.3D

2
01 − α2.mD

2
01 (35)

Ḋ2
11 =k2.5D

2
10[RNAp]− q2.5D

2
11 − α2.mD

2
11 (36)

Ḋ2
21 =k2.7D

2
20[RNAp]− q2.7D

2
21 − α2.mD

2
21 (37)

˙[E2] =α2.m(D2
01 +D2

11 +D2
21]− α′2.m[E2] (38)

˙[M2] =α′2.m[E2]− γ2.m[M2] (39)
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˙[RNAp] =q1.3D
1
01 + q1.5D

1
11 + q1.7D

1
21 + α

′

1.m[E1]
+ q2.3D

2
01 + q2.5D

2
11 + q2.7D

2
21 + α

′

2.m[E2]
− k1.3D

1
00[RNAp]− k1.5D

1
10[RNAp]− k1.7D

1
20[RNAp]

− k2.3D
2
00[RNAp]− k2.5D

2
10[RNAp]− k2.7D

2
20[RNAp] (40)

The total reaction set consist of 40 reactions described by 21 coupled
differential equations. Calculation the steady states for this system requires
a lot of computational power and a high degree of insight to the values
of the rate constants. Although, this set of ODEs can be re-written quite
extensively by making the following assumptions.

3.2 Assumptions related to the circuit
Firstly the concentration of free RNAp, [RNAp], was assumed to be constant.

˙[RNAp] = 0 (41)
As the circuit is symmetrical all the following assumptions and the deriva-

tion later on will relate to both genetic elements and their transcripts, but
for simplicity only the regulation, transcription, translation etc. at genetic
element one will be described and the species index will be emitted for sim-
plicity. The active dimeric repressor controlling the gene 1 -expression, P 2

2 ,
will be named TF. Further, it is assumed that there is only one copy of each
genetic element.

∑
ab

Dab = D00 +D10 +D20 +D01 +D11 +D21 = 1 (42)

With one copy of each gene in each cell, there will be only two binding
sites for each repressor. It can be condsidered a reasonable assumption that
with so few binding sites there will be almost no binding if the concentration
of the repressor is low. If the repressor concentration is high there might
be binding at the operator sequences, although at a high concentration the
binding of one repressor will cause only a small change in the total amount
of repressor. This lead to the assumption that the terms describing repressor
binding and unbinding to the promoter was left out from the expression in
Eq. (20) giving the following expression,

˙[P2] =k1[P ]2 − q1[P2]− (γp/σ)[P2] (43)
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In order to simplify algebraic aspects of non-dimensionalising the system
(see Sec. 3.3) two more assumptions were made; the repressor dimerisation
dissociation constants are assumed to be equal i.e. K1.2 = K2.2 = K2 and
the degradation rates of each monomer is assumed to be equal i.e. γ1.p =
γ2.p = γp. If both protein repressors contain the LVA degradation tail [59]
the assumption of equal degradation rate seems more reasonable, although
not unreasonable by itself.

Additionally, in order to decrease the amount of different non-dimension-
alised parameters K5 is assumed to be equal to K7.

3.3 Derivation of the approximative expression
By using the above mentioned assumptions it were possible to derive a system
consisting of two coupled differential equations instead of the 21 mentioned in
Sec. 3.1. This was done by assuming steady state for all the equations, apart
from the two final ones, and also a non-dimensionalisation of the system.

As a starter, it was assumed that all the binding reactions at the DNA
are in steady state, giving the following expression for ˙[E]

˙[E] = αm(D01 +D11 +D21)− α′m[E] = 0
α
′

m[E] = f([TF ]) = αm(D01 +D11 +D21) (44)

By then setting Eqs. (22)-(27) = 0 (at steady state) and solving for D10*,
D20*, D01*, D11* and D21*, where * denotes that it represents the steady
state condition of the related species, one gets

D10
∗ = k2D00[TF ]

q2
= D00[TF ]

K2
(45)

D20
∗ = k2k4D00[TF ]2

q2q4
= D00[TF ]2

K2K4
(46)

D01
∗ = k3D00[RNAp]

q3 + αm
= D00[RNAp]

K3
(47)

D11
∗ = k2k5D

1
00[RNAp][TF ]

q2(q5 + αm) = D00[RNAp][TF ]
K2K5

(48)

D21
∗ = k2k4k7D00[RNAp][TF ]2

q2q4(q7 + αm) = D00[RNAp][TF ]2
K2K4K7

(49)

where the dissociation constant have been defined as Ki = qi/ki, and as
Ki >> αm (see Sec. 3.8), (qi + αm)/ki ≈ qi/ki = Ki. The expressions in
Eqs. (47), (48) and (49) can be inserted into Eq. (44)
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f([TF ]) = αmD00[RNAp]( 1
K3

+ [TF ]
K2K5

+ [TF ]2
K2K4K7

) (50)

The steady state concentrations of the different states of the promoter, Eqs.
(45)–(49), can be inserted into Eq. (42), before solving for the number of free
promoter

1 = D00

(
1 + [TF ]

K2
+ [TF ]2
K2K4

+ [RNAp]( 1
K3

+ [TF ]
K2K5

+ [TF ]2
K2K4K7

)
)

D00
−1 = 1 + [RNAp]

K3
+ (1 + [RNAp]

K5
) [TF ]
K2

+ K2

K4
(1 + [RNAp]

K7
)( [TF ]
K2

)2

(51)

By introducing the following dimensionless parameters

s = K3

K5
, u = K3

[RNAp] , T = [TF ]
K2

, r = K2

K4
, µ = u+ s

1 + u

where s is a measure for promoter leakage, u is the RNAp-promoter dissoc-
itation constant scaled by the concentration of free RNA, T is the dimen-
sionless concentration of the repressor and r is a measure for cooperativity
in repressor-DNA binding. By using the assumption that K5 = K7, these
parameters can be substituted into Eq. (51) and give the following expression

D00
−1 = 1 + u−1 + (1 + su−1)(T + rT 2)

= (1 + u−1)(1 + µ(T + rT 2)) (52)

Plugging this expression back into Eq. (50) and making use of the same
parameters again gives

f([TF ]) = αmD00( [RNAp]
K3

+ [RNAp][TF ]
K2K5

+ [RNAp][TF ]2
K2K4K7

)

f([TF ])
αm

= D00(u−1 + u−1sT + u−1srT 2)

= u−1 + su−1(T + rT 2)
(1 + u−1)(1 + µ(T + rT 2))

= 1
(1 + u/s)

(
1 + ν

1 + µ(T + rT 2)

)
(53)
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where ν = u(1−s)
s(1+u) . The steady state concentration of mRNA, [M ]∗, can be

expressed as

α
′

m[E]− γm[M ] = 0
[M ]∗ = (γm)−1f([TF ])

[M ]∗ = αm
γm(1 + u/s)

(
1 + ν

1 + µ(T + rT 2)

)
(54)

The system can be non-dimensionalised by scaling all concentrations with
K2 and time with γ−1

p . By further restoring the species indices, Eq. (21) can
be rewritten as

ṗ1 =α1.p[M1]∗ + 2q1.1K2T1 − 2k1.1(K2p1)2 − γpK2p1

γpK2

=α1.p[M1]∗
K2γp

− p1 −
2

K2γp
(k1.1(K2p1)2 − q1.1K2T1)

= α1.pα1.m

K2γpγ1.m(1 + u1/s1)

(
1 + ν1

1 + µ1(T2 + r1T 2
2 )

)
− p1 − 2ψ(p1, T1) (55)

Now the variable p1 is dimensionless and the dot over the variable denotes
the operation γ−1

p
d
dt

and ψ is a function of p1 and T1. By further introducing
the parameters

λ1 = β1

1 + (u1/s1) , β1 = α1.pα1.m

K2γ1.mγp

where β1 is the gene expression efficiency of gene 1, the expression becomes

ṗ1 = λ1

(
1 + ν1

1 + µ1(p2
1 + r1T 2

2 )

)
− p1 − 2ψ(p1, T1) (56)

By then calculating the steady state for the dimensionless form of Eq. (43)

Ṫ1 = k1.1(K2p1)2 − q1.1T1K2 − γp/σ1T1K2

γpK2

= −(1/σ1)T1 + 1
K2γp

(k1.1(K2p1)2 − 2q1.1K2T1)

= −(1/σ1)T1 + ψ(p1, T1) = 0
ψ(p1, T1) = (1/σ1)T1 (57)
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Inserting Eq. (57) into Eq. (56) gives

ṗ1 = λ1

(
1 + ν1

1 + µ1(T2 + r1T 2
2 )

)
− (p1 + (2/σ1)T1) (58)

The steady state for Ṫ1 also gives

Ṫ1 = k1.1(K2p1)2 − q1.1T1K2 − (γp/σ1)T1K2

γpK2

= k1.1K2p
2
1 − q1.1T1 − (γp/σ1)T1

γp
= 0

p2
1 = T1(q1.1 − γp/σ1)

K2k1.1
≈ T1K1.1

K2
= T1/θ1

p1 =
√
T1/θ1 (59)

where θ1 = K2/K1.1. The following conditions must be satisfied

p1 =
√
T1/θ1,

Ṫ1 = dT1

dp1

dp1

dt
⇒ ṗ1 = dp1

dT1
Ṫ1 = 1

2
√
θ1T1

Ṫ1

in order to perform a variable change on Eq. (58);

Ṫ1 = 2
√

(θ1T1)λ1

(
1 + ν1

1 + µ1(T2 + r1T 2
1 )

)
− 2

√
θ1T1(

√
T1

θ1
+ 2T1

σ1
)

= 2
√

(θ1T1)λ1

(
1 + ν1

1 + µ1(T2 + r1T 2
2 )

)
− 2(T1 + 2

√
θ1T

(3/2)
1

σ1
)

= 2
√

(θ1T1)λ1

(
1 + ν1

1 + µ1(T2 + r1T 2
2 )

)
− 2(T1 + 2T (3/2)

1√
θ1κ1

) (60)

where κ1 = σ1/θ1. All the same operations can be performed on the equations
describing reactions at Gene 2, giving the following dimensionless expression
for the repressor 2

Ṫ2 = 2
√

(θ2T2)λ2

(
1 + ν2

1 + µ2(T1 + r2T 2
1 )

)
− 2(T2 + 2T (3/2)

2√
θ2κ2

) (61)



3.4 Numerical instability 33

By setting T1 = x and T2 = y one gets the expressions

ẋ = 2
√

(θ1x)λ1

(
1 + ν1

1 + µ1(y + r1y2)

)
− 2(x+ 2x(3/2)

√
θ1κ1

)

ẏ = 2
√

(θ2y)λ2

(
1 + ν2

1 + µ2(x+ r2x2)

)
− 2(y + 2y(3/2)

√
θ2κ2

) (62)

being close to the expression describing the HOM2 circuit in Ghim and Al-
maas (2009) [2]. In this article all parameters were assumed having the exact
same values as it is investigated as a completely symmetrical circuit. This
assumption is probably not too realistic, although the expressions describing
the circuit could still be valid, even by making the circuit asymmetrical.

3.4 Numerical instability
The equation set in Eq. (62) was solved for steady state setting ẋ = 0 at
different sets of parameter values. Although for some parameter values the
solutions became very small (<10−5) and these steady state solutions were
difficult to find using the numerical solver in Matlab. This numerical problem
was caused by having the variables in the denominators of the expression. In
order to find the correct steady states the equation set had to be rewritten
to

ẋ = 2
√

(θ1x)λ1(1 + µ1y + µ1r1y
2 + ν1)− 2x

(
1 + 2

κ1

√
x

θ1

)
(1 + µ1y + µ1r1y

2)

ẏ = 2
√

(θ2y)λ2(1 + µ2x+ µ2r2x
2 + ν2)− 2y

(
1 + 2

κ2

√
y

θ2

)
(1 + µ2x+ µ2r2x

2)

(63)

3.5 Deterministic analysis
By solving a set of ODEs for the steady state at different parameter values the
number of steady states was deduced. By determining the stability of each
steady state the number of stable steady states at those particular parameter
values was found. The parameter values at which the number of steady states
change is called the critical value (a bifurcation point). These critical can
be used for analysing system behaviour at different parameters, and these
values correspond to the curves in stability diagrams, like the one in Fig. 13
in Sec. 1.7.3. The deterministic analysis of the gentic circuit, described by



34 3 RESULTS

Eq. (63), was composed of such analysis giving stability diagrams for some
important parameter values. Unless otherwise noted the parameter values
used are the same as in [2] (based on the cI repressor from bacteriophage λ)
and as listed in Tab. 2. These parameter values will also serve as a bistable
reference point in the phase plane (stability diagrams).

Table 2: Parameter Values. The parameter values used for deterministic analy-
sis of the system, in order to compute stability diagrams. All the values are based
on the values used in [2]. The bistable state with all these parameter values serve
as a reference point in the following graphs.

Parameter Value
K2 20 nM
K1.1 10 nM
r1 25
s1 0.01
β1 17.5
u1 3
σ1 10
K2.1 10 nM
r2 25
s2 0.01
β2 17.5
u2 3
σ2 10

The leakage from each of the promoters, described by the parameters s1
and s2, can have values independent of the other and can to a quite high
extent be modified by genetic manipulation. Therefore, it could be very
interesting to explore the stability diagram composed of these two parame-
ters. The stability diagram for s1 vs s2 was computed using Matlab running
the file s1vss2rwrthom2.m from the folder DeterminitsticAnalysis/s1s2 in the
attached zip-file, and is shown in Fig. 15.

Similarly, the individual gene expression from each of the promoters,
described by the parameters β1 and β2, are able to vary independently of
each other. This can also be highly modified by genetic manipulation, es-
pecially by modifiying the 5’UTR region, making the β1 vs β2 stability dia-
gram highly interesting. This was computed using Matlab running the file
beta1beta2rwrthom2.m from the folder DeterministicAnalysis/beta1beta2assym
in the attached zip-file and is shown in Fig. 16.

Furthermore, one of the promoters and the corresponding gene can be
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Figure 15: Stability diagram for s1 vs s2. The system is bistable in the shaded
area. All other parameters are as noted in Tab. 2. The red cross indicates the
reference point, where all the parameter values are as in Tab. 2.

Figure 16: Stability diagram for β1 vs β2. The system is bistable in the shaded
area. All other parameters are as noted in Tab. 2. The red cross indicates the
reference point, where all the parameter values are as in Tab. 2.
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kept untouched, while only modifying the properties of leakage and gene
expression of the other gene, corresponding to the parameters s2 and β2
respectively. By predicting the gene expression and the leakage of another
repressor and promoter pair (other than the cI-repressor, with two binding
sites for the repressor) relative to the cI parameters, it could be possible
to predict if the system would be bistable or not using a stability diagram
mapping the s2 vs β2. This was computed using Matlab running the file
s2vsbeta2.m from the folder DetetrministicAnalysis/s2beta2 in the attached
zip-file and is shown in Fig. 17.

Figure 17: Stability diagram for s2 vs β2. The system is bistable in the shaded
area. All other parameters are as noted in Tab. 2. The red cross indicates the
reference point, where all the parameter values are as in Tab. 2.

Additionally, stability diagrams for s1 vs s2 with different values for both
β-values and for β1 vs β2 with different values for s was generated. The s1 vs
s2-diagrams were was computed by running the file runthemall.m from the
folder DeterministicAnalysis/s1s2assym. The β1 vs β2-diagrams were com-
puted running the file beta1beta2rwrthom2.m from each of the subfolders in
DeterministicAnalysis/beta1beta2assym. The resulting plots are illustrated
in Figs. 18 and 19 respectively.

3.6 Approximative parameter values
For the HOM2 circuit described by Ghim and Almaas (2009) all the param-
eters were derived from the phage lambda repressor, cI. This lead to the
following values,
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Figure 18: Stability diagram for s1 vs s2 with different values for β. The
system is bistable within the borders of each curve, as in Fig. 15. The different
curves corresponds to different values of β1 and β2 (both parameters are set to the
same value). The values of β are 2, 3, 17.5, 100 and 900 represented by the black,
green, red, blue and cyan curves respectively. All other parameters are as noted
in Tab. 2.

Figure 19: Stability diagram for β1 vs β2 with different values for s.The
system is bistable in the area of the curves, as in Fig. 16. The different curves
correspond to different values of s1 and s2 (both paramters are equal for each
curve). The values of s are 0.002, 0.01, 0.03 and 0.1 represented by the black, red,
green and blue curves respectively. All other parameters are as noted in Tab. 2.
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s = 0.01, u = 3, β = 17.5, r = 25.
In the supplementary material to the first genetic toggle switch there

were made several measurements for promoter expression and leakage. Here
they tested both λ cI- (cI for simplicity) and TetR-controlled promoters.
This can be used as a base for designing a system composing of these two
repressors operating on each others promoters, fitting well with the model.
Some chosen measurements for the cI-controlled promoters were assumed
to be proportional to the gene expression (β1) and leakage (s1) of one of
the genes in the model. These reference values were estimated from the
experiments involving plasmids pBRT123 and pTAK107. By comparison to
the measurements made with the TetR-controlled promoters in the plasmids
pBAG103 and pIKE108, the parameters β2 and s2 were estimated. The
following relationship was used to estimate the β2 parameter;

β1

β2
= expression from bare cI-controlled promoter

expression from bare tetR-controlled promoter

β2 = β1 · bare tetR-controlled
bare cI-controlled

β2 = 17.5 · 660
390 = 30 (64)

Further was be assumed that s is proportional to the leakage from the
repressed promoters relative to the expression from the bare promoters, so
that

s1

s2
= (repressed cI-controlled /bare cI-controlled)

(repressed tetR-controlled /bare tetR-controlled)

s2 = s1 · (repressed tetR-controlled /bare tetR-controlled)
(repressed cI-controlled /bare cI-controlled)

s2 = 0.01 · (5.8/660)
(2.0/387) = 0.005 (65)

These values assume a linear relationship between the expression and
leakage of cells containing the promoters in high and low copy numbers,
which is usually not true [60].

3.7 Stochastic analysis of the approximation
The approximation can be explored further by exposing it to stochastic fluc-
tuations, to verify the existence of bistable regions and the stability of the
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stable steady states therein. In the stochastic simulations an expression using
the monomers as variables were used and the expression was redimension-
alised. For p1 this is done by inserting the relation from Eq. (59) into Eq. (58)

ṗ1 = λ1

(
1 + ν1

1 + µ1(θ2p2
2 + r1θ2

2p
4
2)

)
− (p1 + (2/σ1)θ1p

2
1) (66)

As the expression can be divided into one positive and one negative term,
ṗ1 = F (p2) − G(p1), this can be interpreted as one term for the synthesis
and one for the degradation of the monomer. The syntesis and degradation
terms were redimensionalised

F (P2) = K2λ1

(
1 + ν1

1 + µ1(θ2(P2/K2)2 + r1θ2
2(P2/K2)4)

)
G(P1) = (K2(P1/K2)(1 + (2/σ1)θ1(P1/K2))

= P1(1 + 2(P1/K2)
κ1

) (67)

before incorporating them in the Dizzy model files. After each simulation
the monomers numbers were converted into dimer numbers by using the
equilibrium relation stated as

[P 1
2 ] = [P 1]2

K1.1
(68)

The stability diagram in Fig. 15 can be explored by keeping one of the
leakage parameters at the reference value, s2 = 0.01 while varying the other
leakage parameter from a the lower to the higher limits of the stability dia-
gram, s1 = [0.001...1]. The variation in the parameter was done in discrete
steps,s1 = 10(−3+0.1(floor(time∗0.0001))). This simulation have two possible differ-
ent starting points, the protein repressor (the variable) can be in either high
state with many copies (switch is turned on) or in low state (switch is turned
off), as can be seen in the attached files ’cItetRmodelvars1cIhigh.cmdl’ and
’cItetRmodelvars1cIlow.cmdl’ respectively. The simulations were performed
in the Dizzy package with the gibson-bruck algorithm, with start = 0.0, stop
= 3000000, number of result points = 300000 and stochastic ensemble size =
1, giving the data for the plot in Fig. 20. The data for these two simulations
can be combined in one dataset to calculate the potential effective landscape,

Veff = −ln(P(P 1 − P 2)) (69)
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Figure 20: Stochastic simulation result plot, potential landscape at differ-
ent s1 values. At low s1-values there are two possible states for the P 1

2 -variable.
As the s1-value increase the lower stable steady state suddenly disappears, in
strong resemblance to a saddle-node bifurcation. The errorbars represent the stan-
dard deviation around the mean value.

[2], at different values of s1 giving rise to the plot shown in Fig. 21.
Furthermore, one can inspect the stability diagram in Fig. 16 in the same

manner keeping one of the gene expression parameters at the reference value,
β2 = 17.5, while varying the other gene expression parameter, β1 = [1...100].
In this situation, it could seem from the stability diagram, Fig. 16, that there
should be two bifurcations, and bistability only in an intermediate area. This
can be explored by performing two stochastic simulations. In one simulation
β1 = 102−0.1∗floor(time∗0.0001), while in the other β1 = 100+0.1∗floor(time∗0.0001),
as can be seen in the attached files ’cItetRmodelbeta1vardecreasing.cmdl’
and ’cItetRmodelbeta1varincreasing.cmdl’ respectively. This means one will
make discrete steps in the β1-value for every 10000th time point, starting
at β1 = 100 and β1 = 1 for the two simulations respectively. By running
the simulations with the gibson-bruck algorithm, start = 0.0, stop = 200000,
number of result points = 200000 and stochastic ensemble size = 1 data
for the plot in Fig. 22 was obtained. Here the simulation corresponding to
starting with β1 = 100 is represented by the red curve, and the one starting
at β1 = 1 by the blue curve. By combining the two datasets the effective
potential landscape can be calculated for different values of β1 as well, as
illustrated in Fig.23.

Finally, the estimated values for β and s from Sec. 3.6 can be used in a
stochastic simulation. This was done by running two simulations where the
expression of cI was turned on and off in the files ’cItetRmodelassymGard-
nercIon.cmdl’ and ’cItetRmodelassymGardnercIoff.cmdl’ respectively. Both
simultaions were performed with the gibson-bruck algorithm, start = 0, stop
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Figure 21: Stochastic simulation result plot, effective potential landscape
at different s1-values. The double welled potential at lower values describe the
presence of two stable steady states. As one disappears with increasing s1 the
other still remains, now with twice as many result points taking the well to a
higher potential, although the well remains at almost the same values for p1 and
p2.
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Figure 22: Stochastic simulation result plot of P 1
2 as a function of β1. For

increasing values of β1 the steady state suddenly shifts to a higher state at β ≈ 40,
as if the lower state disappeared like a saddle-node bifurcation. For decreasing
values of β1 the high state is reduced until it the P 1

2 -number is reduced to 0. The
errorbars represent the standard deviation around the mean value.

= 1000000, number of result points = 100000, stochastic ensemble size = 1.
It was not observed a single switch even with those log run times, and the
effective potential landscape created by using the data from the two simula-
tions is shown in Fig. 24.

3.8 Complete circuit parameters

In order to do a full system simulation (simulating the entire system as de-
scribed in Tab. 1) there was a need for intensive litterature studies for correct
rate parameters. The repressors chosen were the cI and TetR repressors, as
both of them have two operator sites for their respective homodimers and
are frequently used in genetic circuits [1, 17, 22]. For most of the reversible
reaction there was no information about the single rates, so these were cho-
sen abritarily from the dissociation constants, trying to keep all single rate
constants > 1.

3.8.1 Dimerisation of the cI-repressor — K1.1

In Burz et al. (1994) the dimerization equilibrium constant of the λ cI
repressor was measured to Keq = 1.8 · 108 M. Since the K1.1 parameter is the
dissociation constant of this reaction following the relationship,
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Figure 23: Stochastic simulation result plot, effective potential landscape
at different β1-values. At low β1-values there is only one well in the potential
landscape. As the β1-value increases another arises, giving the system the double-
welled landscape characterising a bistability. At even higher values for β1 the well
where p2 is highest disappears, and the p1 is now far higher in numbers as the
system is now monostable having only one well.
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Figure 24: Stochastic simulation result plot, effective potential lanscape
at β1 = 30 and s1 = 0.01. The simulations showed a distinct double-well pattern,
as there was no switching between the two different states. The asymmetry of the
system is also evident, as the well with cI dominating TetR is located further from
the center than the well where TetR is higher than cI.

Kd = Keq
−1 (70)

the parameter K1.1 = 5.6 · 10-9 M = 5.6 nM. Although in the same arti-
cle they also showed that single-site mutations could cause a change in the
dimerization dissociation constant up to a value of K1.1 = 2.7 µM [61]. As
this large interval has been shown experimentally it was assumed resonable
to keep using the K1.1-value used in Ghim and Almaas (2009) [2] where K1.1
= 10 nM. As no dimerisation constant for TetR was found it was assumed
to be equal to the one for cI, yielding K2.1 = 10 nM.

3.8.2 Binding of the cI repressor to DNA — K2

Sauer reported in 1979 that Kd = 20 nM for cI2 dissociation from the OR1
operator site. However, this reference was not avilable, but several others
have cited the same value [46, 62]. The value was assumed to be the same
for OL1 the operator site in the PL-promoter, which gives a K2 = 20 nM.

Although, the assumption that K1.2 = K2.2 is not really valid when com-
paring cI to the Tet repressor (TetR). The TetR have a dissociation constant
of Kd = 0.005 nM [63], being a 4000-fold difference to the one reported for
cI.

As cI was chosen as repressor 1, it will bind to promoter 2, thereby the
rates for the model became K2.2 = 20 nM and K1.1 = 0.005 nM.
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3.8.3 Co-operative binding to the second operator site — r and
K4

According to Johnson et al. (1979) the co-operativity between two cI repres-
sor dimers when binding to OR1 and OR2 will decrease the two dissociation
constants with a factor of two and 12.5 respectively [64]. As the model is
made for sequential binding to the two binding sites these two factors are
combined to one co-operative factor r2 = 25. As r = K2

K4
this gives K2.4 =

0.8 nM.
In order to explain the operation of the Tn10 regulon, regulated by TetR,

it is not necessary to include cooperativity to the binding of the repressor to
the two repressor sites. This gives r1 = 1 giving K1.4 = K1.2 = 0.005 nM.

3.8.4 Binding of the RNAp to the PL-promoter and transcription
initation — K3 and αm

Giladi et al. (1990) reported both the equilibrium constant for RNAp bind-
ing to the PL-promoter and the forward rate constant for the isomerization
of closed to open RNAp-promoter complexes. The reported values were
8.94 · 107 M and 4.38 · 10-3 s−1 respectively. These values can be used to esti-
mate the parameters K1.3 = 11.2 nM and α1.m = 6.6 · 10-3 nM s−1 [65]. The
K1.3-parameter was estimated using the relationship from Eq. (70), while the
α1.m-parameter was estimated based on the existence of one promoter in one
E. coli-cell with average cell volume on 1.1 µm3 [66].

As the planned second promoter is PLtet-O both values can be assumed
to be equal for the second promoter as well, which gives K2.3 = 11.2 nM and
α2.m = 6.6 · 10-3 nM s−1.

3.8.5 Rate of transcription — α′m

The rate of transcription in E. coli is usually 50–90 bp/s. Assuming an
average transcript length of 1000 bp, and an average transcription rate of
70 bp/s, gives α′m = 0.07 s−1 [6].

3.8.6 Rate of translation — αp

The rate of translation have been determined to about 17 amino acids/second
(aa/s) [67]. Although, as the step of ribosome binding to the mRNA is not
included in this model the translation rate is assumed to be 15 aa/s. As the
coding regions of TetR and λ cI is 660 and 750 base pairs (bp) respectively
[68], the translation rates becomes α1.p = 0.068 and α2.p = 0.060 s−1.
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3.8.7 Rate of mRNA degradation — γm

An average half-life for mRNA in E. coli have been determined to 3.69 min
[69]. In lack of more accurate data this was assumed to be an average value
for both mRNA transcripts, giving γm = 0.0031 s−1.

3.8.8 Rate of protein degradation — γp

The rate of protein degradation was assumed to be the same for both tran-
scripts and in correspondence with previous modelling of the λ-phage switch
[46], giving γp = 0.0007 s−1.

3.8.9 Concentration of free RNAp — [RNAp]

The concentration of free RNAp was assumed to be the same as for previous
modelling of the λ-phage switch [46], [RNAp] = 30 nM.

3.8.10 Remaining parameters — s, K5, K7, σ

Due to limited time the remaining parameters were chosen as in Ghim and
Almaas (2009), meaning a monomer to dimer lifetime rato σ = 10 and the
leakage parameter s = 0.01. The leakage parameter is defined as s = K3/K5,
thereby giving a K5 = 1100 nM [2].

3.9 Stocahstic analysis of the complete circuit
A Dizzy-model file was created with parameter-values according to Sec. 3.8.
Two simulations were performed having different initial conditions, having
the cI-repressor being turned on or off as shown if Figs. 25a and 25b re-
spectively. The simulations of model files ’cItetRfullcIon_notetrcoop.cmdl’
and ’cItetRfullcIoff_notetrcoop.cmdl’ were performed with the gibson-bruck
algoritm, start = 0, stop = 100000, number of result points = 100000 and
stochastic ensemble size = 1. Both the model files and the files containing
the data results are in the attached zip-file folder StochasticSimulations/Full.

It seems from Fig. 25 as the circuit is dominated by the presence of TetR2
which will after a while control the switch, regardless of the circuits initial
state.
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(a) (b)

Figure 25: Stochastic simulation result plot of complete circuit. (a) The
simulation started with cI2 initially being in high state, although as time in the
simulation pass the cI2-concentration decrease, and the TetR2 takes over as active
repressor. (b) The simulation started with cI2 initially being in low state, and
staying that way for the entire simulation.
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4 Discussion

4.1 General description of the circuit
What level of detail used when making a model depends on the level of ac-
curacy sought after and what parameters that are reasonable to include. For
instance, in the model described in this thesis it was assumed average trans-
lation rates, instead of incorporating all the different amino acids addition
to the growing polypeptide chain. Although this model incorporates most of
the processes at the protein level, the folding of the peptide chains to active
proteins is not included. This is a step that has previously been reported to
have a good impact on improving the accuracy of a model [22]. Addition-
ally, the model could be improved by adding a step for ribosome binding to
transcripts before the translation process.

In order to make the model better suited for switching, an inducer could
be included to each of the two repressors. This would enable simulations with
inducers to investigate whether some of the less stable steady states (regions
where switching occurred) could be more stable if inducer was added to the
system, restricting the binding of the induced repressor at its operator sites.

4.2 Validity of assumptions
Most of the assuptions made in Sec. 3.2 were made so that the nondimen-
sionalisation of the system would become easier. Here it was suggested using
LVA-tail to both the repressors in order to make sure the γp is very similar
in both cases. Although, LVA-tails are not ideal for systems with low copy
number, i.e. ∑D = 1, giving a 30-fold increase in the degradation rate [70].
As the degradation rate of the proteins, γp, is inversely proportional to the
β-parameters, this gives an unfortunate effect to the range of the leakage
parameters, s1 and s2, giving bistability, as can be observed in Fig. 18. The
discrepancies between the native degradation rates are not necessarily too
different, so this could be a reasonable assumption even without the LVA-
tail.

The assumption that K1.2 = K2.2 = K2 was not necessarily a good one,
as binding affinities of repressors to DNA vary widely. For instance the TetR
repressor have reportedly a KD = 0.005 nM [63], about 4000 times lower
than the one reported for cI [61]. However, this property can be modified
by manipulation of both the operator sequences and the coding sequences of
the repressors in order to match the model more tightly.

The assumption that K5 = K7 can be considered somewhat reasonable
as both constants probably have quite high values. Assuming an average for
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both, somewhat higher for K5 and lower for K7, would give a decent picture
of the system.

The concentration can seemingly be considered to be in constant supply,
as have been done previously [46, 2]. This also seems reasonable as it is indis-
pensable for the cell, being responsible for the extremely important process
of transcription.

4.3 Stochastic analysis compared to deterministic
From Figs. 20 and 22 it was observed that when the P1-expression is re-
pressed (switched off) there are no dimers present, in correspondence with
the bifurcation plots giving rise to the stability diagrams, in Sec. 3.5. Al-
though these bifurcation plots were deterministic and gave rise to a steady
state concentration for the dimers, these were all <1, meaning they were
virtually not present.

The stochastic analysis gave a narrower bistable area than what was pre-
dicted using the deterministic approach. This could be explained by the
nature of the bifurcation giving rise to the bistability. Most of the bifurca-
tions for the asymmetrical model are saddle-node bifurcations, as described
in Sec. 1.7.3. As the P 1

2 -concentration is lowered with a decreasing β-value
the stable steady state is approaching an unstable steady state (a saddle
point), while the "unoccupied" steady state for P 1

2 is getting further away
from its unstable steady state. A stochastic fluctuation pushing either one
of the two variables beyond the saddle point would help pushing the system
towards the other stable steady state. Hence, a stable steady state lying close
to an unstable one is less stable than a stable steady state far away from the
unstable steady state.

4.4 Full circuit simulations
The modelling of the full circuit with all steps included did not show a bistable
system. This could be explained by the fact that many of the parameters were
not properly accounted for. Furthermore, the repressor-promoter dissociation
constant for TetR,K1.2, was estimated for values for its operator sequences in
its native system, the Tn10 regulon [63]. In the planned system the operator
sequences are incorporated with the PL-promoter from the bacteriophage λ,
the PLtetO − 1 [1, 60]. It can be assumed that the dissociation constant
to the operator sequences in this promoter is not as low as to the native
operator sequences.

The lack of bistability to the full system is in correspondence with the
approximative model, as the K2 parameter is inversely proportional to the
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β parameter. The β-value is extremely high, β1 = 36000, and far outside of
the bistable region depicted in Fig. 17.

4.5 Future prospects
As to this model itself there are many interesting features that could be
tested. For instance one could try adding a folding step to the model, as
suggested in Sec. 4.1, to increase accuracy to models. Another interesting
feature would be to change the copy number to a somewhat higher value, as
many expression vectors have high copy numbers.

Switches have been proposed to be used as submodules to many more
complex circuits, such as bioswiches and digital counters [3], and investiga-
tions to check if the model is able to predict these kind of patterns putting
several switches together could show very profitable.

Last but not least, experimental testing of the model is planned in cor-
respondence with NTNU researcher Rahmi Lale, PhD, and Professor Eivind
Almaas. As the effective potential landscape illustrated in Fig. 24 was clearly
double-welled (bistable) one would expect a combination of cI and TetR as
repressors having the right ribosomal binding sites (RBS) could function as
a switch. Although, as mentioned in Sec. 3.6 there is probably not a lin-
ear relationship between the expression and leakage from high copy number
plasmids (as applied by Gardner et al. [1]) and low copy numbers. Therefore,
prior to actually putting the repressor genes together to a switching module,
the expression and leakage should be tested using either low copy number
plasmids or chromosomal integration of the genes and promoters. These re-
sults could give further directions to if the switch would function properly or
not.
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5 Conclusion
The HOM2-circuit approximation for a bistable tuneable switch from Ghim
and Almaas (2009) was re-derived in order to make it asymmetrical. Deter-
ministic analysis was conducted yielding stability diagrams, describing the
phase plane showing bistability for the genetic switch. Furthermore, stochas-
tic simulations of the approximation were conducted. This gave a somewhat
narrower bistable area than the deterministic analysis, possibly due to the
nature of saddle-node bifurcations. Parameter values for a switch based on
experiments were estimated for the approximation, and these were used in a
stochastic simulation. The result from this simulation was in correspondence
with the deterministic analysis. A stochastic simulation of the complete cir-
cuit was conducted based on parameter values found in literature. For this
simulation bistability was not shown.

In order to further explore the circuit, and validity of the approxima-
tion, experimental investigation is needed. This has been planned together
with Rahmi Lale, PhD, and Professor Eivind Almaas at the Department of
Biotechnology NTNU.
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