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Abstract 
This paper reports an experimental campaign that aims at measuring the evolution of bridge 
modal properties during the passage of a vehicle. It investigates not only frequency shifts due 
to various vehicle positions, but also changes in the shape of the modes of vibration. Two 
different bridges were instrumented and loaded by traversing trucks or trucks momentarily 
stationed on the bridge. The measurements were analysed by means of an output-only 
technique and a novel use of the continuous wavelet transform, which is presented here for 
the first time. The analysis reveals the presence of additional frequencies, significant shifts in 
frequencies and changes in the modes of vibration. These phenomena are theoretically 
investigated with the support of a simplified numerical model. This paper offers an 
interpretation of vehicle-bridge interaction of two particular case studies. The results clearly 
show that the modal properties of the vehicle and bridge do change with varying vehicle 
position. 
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1. Introduction 
 
It is a well-known fact that the modal properties of two separate mechanical systems change 
when both systems interact. The coupled arrangement might have significantly different 
natural frequencies and modes of vibrations, compared to the uncoupled systems [1]. This is 
also acknowledged in bridge engineering to some extent, when investigating vehicles 
crossing the structure, i.e. it is understood that natural frequencies of a bridge change when 
heavy (massive) traffic traverses it. 
 
As pointed out by Frýba [2] the fundamental frequency of a loaded beam depends not only on 
the magnitude of the mass on the deck but also on the position of the mass. A key factor in 
the scale of frequency variation that occurs for different mass positions is the ratio between 
the vehicle and bridge masses, with higher mass ratios producing larger shifts in the bridge 
frequency. Despite the general acceptance that such frequency shifts will occur, this is a 
problem not well studied in bridge engineering literature [3]. However, there have been some 
recent studies, for example [4] describes changes in the fundamental frequency of a railway 
bridge during passage of a train and provides an approximate formula to calculate changing 
bridge frequency. Yang et al. [3] study the variation of both vehicle and bridge frequencies 
and present a closed-form expression for a simply supported bridge considering only the first 
mode of vibration. Cantero & OBrien [5] investigate numerically the effect of different mass 
ratios and frequency ratios on the changes in system frequencies, where frequency ratio (FR) 
= vehicle frequency / bridge frequency and mass ratio (MR) =vehicle mass / bridge mass. 
The numerical analyses of coupled vehicle-bridge models in [5, 6] show that for certain mass 
and frequency ratios it is possible to achieve positive frequency shifts in the fundamental 
frequency of the bridge. There exist only a limited number of studies that investigate this 
problem either experimentally, or in real operational bridges. For instance, in [7] the authors 
use a variety of output-only techniques with the response of a scaled model and are able to 
obtain clear frequency evolution diagrams for the case of large mass ratios. Also [6] performs 
a controlled laboratory experiment obtaining frequency shifts that validate an approximate 
closed-form solution of the frequency shift. The study in [8] investigates how a parked 
vehicle on an operational bridge affects its fundamental frequency, reporting frequency 
reductions of 5.4%. More recently, [9] explores the non-stationary nature of a 5-span bridge 
traversed by a truck, using alternative time-frequency tools, with limited success. Frequency 
is not the only modal property changing with load and its position; for instance [10] used 
numerical simulation to show that damping of a pedestrian bridge also changes according to 
number and location of pedestrians. That said, the majority of the limited papers available on 
the topic focus only on tracking frequency changes and do not evaluate the effect of load on 
the associated mode shapes. 
 
Although a small number of authors have used numerical models to study the problem of 
frequency variation with load position, to date, no experimental investigation on full scale 
bridges has been presented. Such a study is the main contribution of this paper. Two separate 
experiments were carried out, each using a different test truck on different instrumented 
bridges. Bridge A is a three-span continuous structure monitored while a truck traverses it at 
a constant speed. The measurements from Bridge A provide only weak evidence of the 
evolution of the modal properties and hence it constitutes only a first attempt. A second 
experiment is reported on Bridge B, which is a single span bridge. For the experiment on 
Bridge B, a truck stops at certain locations on the bridge. The free vibration measurements of 
the bridge accelerations, right after the vehicle stops, allows for the precise extraction of the 
modal parameters of the coupled system. This is repeated for various vehicle stopping 
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positions to obtain the variation of the modal properties with respect to vehicle position. It is 
important to note that the variation in modal properties reported here are specific to the two 
case studies investigated; since these variations strongly depend on the particular vehicle and 
bridge. 
 
Over the course of the investigation, it is shown that a vehicle being present on the bridge 
results in a coupled system, such that modal analysis results cannot be interpreted as two 
separate systems (bridge and truck). The vehicle-bridge interaction is a non-stationary 
problem where the modal parameters change with vehicle location. In general, the ideas and 
results presented here are of interest to engineers and researchers involved in any vehicle-
bridge interaction study. However, the findings reported here have particular consequences 
for the current research thread on extracting bridge modal properties from passing 
instrumented vehicles, e.g. [11-13]. In general, these publications acknowledge that there is 
vehicle-bridge coupling, but fail to consider the changes in modal properties with vehicle 
position. In these papers modal analysis techniques are often applied to the full length of the 
signal obtained during vehicle passage. However, attempting to analyse what is in effect a 
non-stationary signal with conventional modal analysis techniques developed for stationary 
signals will necessarily result in unreliable modal properties.  
 
As well as demonstrating that the bridge acceleration signal recorded during the passage of a 
truck is non-stationary, this paper provides advice and insight on a number of related issues. 
First, a modified and novel approach for performing the Continuous Wavelet Transform 
(CWT) is presented, and is shown to be an effective signal processing technique to visualise 
variations in system frequencies. Next, the source of the additional frequency peak in the 
spectra of the forced (i.e. loaded) bridge acceleration signal is investigated. This is carried out 
using a relatively simple but insightful numerical model, and experimental data from Bridges 
A and B. Moreover, this paper shows for the first time that not only do the natural 
frequencies evolve during traffic passage, but that the shapes of the associated modes of 
vibration also evolve. For every vehicle location, the vehicle-bridge system features distinctly 
different modes. This is supported by a theoretical analysis of the problem, and carefully 
extracted experimental results. However, it should be noted that this paper only reports 
findings on the first longitudinal mode of the bridge, no torsional or higher modes are 
investigated. 
 
The remainder of this paper has four primary sections. Section 2 provides a theoretical 
background on the numerical model, modal analysis, and signal processing techniques used 
in this study. Section 3 describes an experimental test where a truck was driven across a 3-
span bridge. Additional frequencies were observed in the spectra of the recorded bridge 
response. A numerical model is used to postulate the origin of the additional frequency peak. 
However, to experimentally confirm the validity of the model predictions it was necessary to 
redo the experiment using a revised procedure where the truck would stop at a series of 
discrete locations on a bridge. The outcome of the revised experiment is reported in Section 
4. 
 
2. Methods 
 
This section provides the reader a brief overview of the tools used throughout this study. 
Section 2.1 describes the numerical model that helps explain non-intuitive changes in modal 
properties observed in the experiments. Section 2.2 provides references on the modal analysis 
procedures employed to analyse the measured acceleration signals. Finally, Section 2.3 
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describes a modified form of wavelet analysis that is used to visualise variations in the 
system frequencies for the non-stationary acceleration signals recorded on site. 
 

2.1 Numerical model 
 
The coupled vehicle-bridge model was programmed in Matlab [14] and a pictorial 
representation of the numerical model is shown in Figure 1. The truck is simulated as a 
sprung mass m supported on a spring k, where the spring represents the suspension of the 
vehicle. The bridge is simulated using a finite element beam model where each beam element 
has 4 degrees of freedom, namely a rotation and a vertical translation at each end of the 
element. Elemental matrices for this kind of element can be found in the literature, e.g. [15]. 
The beam is defined by its span L, section area A, modulus of elasticity E, second moment of 
area I and mass per unit length ρ. The location of the vehicle is defined by the distance from 
the left support (x) and in the simulations the vehicle can be positioned anywhere on the beam 
(0≤ x ≤L). The coupling between both systems, i.e. bridge and vehicle, can be written in 
terms of the beam element shape functions and the relative position of the vehicle within that 
element [16]. However, defining a sufficiently dense mesh that has a node exactly at the 
location of the vehicle reduces the complexity of the procedure. In that case the matrices of 
both systems are assembled diagonally, and the coupling terms are off-diagonal negative 
stiffness values that link together the appropriate degrees of freedom. As two different 
bridges will be modelled, (each with different boundary conditions), for now the boundary 
conditions of the model are indicated with question marks in Figure 1. Models of this type 
have previously been presented in the literature [17]. 
 

 
Figure 1: Coupled Vehicle-Bridge finite element model 

 
Fundamentally, the purpose of this model is to allow the vehicle to be moved incrementally 
across the bridge and to track how the bridge frequency changes with the position of the 
vehicle. For a given vehicle position, the bridge frequencies and associated modes of 
vibration can be determined using an eigenvalue analysis. Simulating a multi-axle truck as a 
single degree of freedom sprung mass is a simplification, and for some applications it would 
be an over simplification. However, it is shown later that for the purpose of this study, where 
the primary interest is in explaining the evolution of frequency with respect to truck position, 
the model is effective. Initially values for area (A), second moment of area (I) and mass per 
unit length (ρ) were determined from the available bridge drawings. For the Young’s 
Modulus (E), standard values for steel and concrete of 2·1011 N/m2 and 2·1010 N/m2 
respectively were used. After getting an initial estimate of bridge frequencies from the model, 
the bridge properties (in the model) are revised so that the fundamental bridge frequency of 
the model matches the free vibration frequency observed on site, this is further described in 
Sections 3 and 4. For the vehicle, the spring stiffness (k) is adjusted so that the vehicle 
frequency in the model matches the vehicle frequency inferred from the acceleration 
measurements recorded experimentally when the truck was traversing the real bridge. Table 1 
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gives a summary of relevant information about the vehicle and bridge properties used in this 
paper. It can be seen in Table 1 that the vehicle properties postulated for the test vehicles give 
body bounce frequencies that are in accordance with typical values for heavy vehicles (1 Hz 
to 4 Hz) as shown in [18].  
 
Table 1: Vehicle and bridge properties 
  Test on Bridge A Test on Bridge B 

Type 3-span continuous 1-span 
Spans (m) 18+31+18 36 

fb (Hz) 3.50 3.13 
Mass (kg) 26 000 32 000 

fv (Hz) 2.80 2.60 
Number of axles 3 4 

Axle distances (m) 1.4+4.1 2.0+3.5+1.4 
Velocity (m/s) 3.63 - 

 
2.2 Bridge modal analysis 
 
The Introduction provided an overview of literature dealing with variation in bridge 
frequency with respect to variation in mass distribution. It was also highlighted that previous 
studies have not looked at how the mode shapes associated with these frequencies change 
with respect to variation in mass distribution. To address this limitation this study attempts to 
experimentally capture the mode shape associated with a particular truck position. This is 
achieved using output-only modal analysis methods, i.e. no information on the excitation is 
measured. Due to the size/mass of road bridges, output-only methods are often the only 
logistically feasible approach to extract modal parameters, because using shakers or impact 
hammers to excite the structure is often not practical. Specific details on the theory/ 
mathematics underlying output-only modal analysis are not provided here as the topic has 
been extensively covered in other publications such as [19]. The particular method used in 
this paper is Frequency Domain Decomposition (FDD) and details on this method are given 
in [20]. 
 
2.3 Wavelets 
 
To be able to accurately visualise the variation in frequency with respect to time, some time-
frequency representation of the recorded signals is necessary. There are a number of time-
frequency analysis methods available, e.g. Short Time Fourier Transform, Hilbert-Huang 
transform and Wavelet transform. Within each of these methods, different options in their 
implementation can significantly change the time-frequency plots that are output. All time-
frequency analysis methods involve a trade-off in resolution, i.e. high resolution in the 
frequency domain typically means poor resolution in the time domain, and vice versa. 
Ultimately, it is up to the analyst to identify which method best achieves their objective. In 
this paper, the objective of the time-frequency analysis is to visualise how the bridge 
frequency changes as a truck traverses the bridge. 
In essence, the CWT compares the wavelet bases (a wave-form of finite length) to the 
analysed signal and gives a wavelet coefficient, so that the better the match, the larger the 
coefficient. This wavelet is then shifted in time to cover the whole length of the signal, 
resulting in a vector of wavelet coefficients. The wavelet is then scaled (i.e. stretched) and the 
process is repeated. For each scale used in the analysis a vector of wavelet coefficients 
results. Scale can be regarded as inversely proportional to frequency and thus can be 
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transformed approximately to frequency, or more specifically pseudo-frequency. The result 
of CWT analysis is a plot of wavelet coefficients in the time-frequency plane that are 
proportional to the energy of the signal. For additional information on wavelets and to find a 
full mathematical description, further details are provided by other authors [21,22]. 
 
When using the CWT, several wavelet basis functions are available, e.g. Morlet, Gaussian, 
Mexican hat. The results from the CWT are significantly affected by the wavelet basis used 
in the analysis so it is paramount to choose an appropriate basis. Knowing which wavelet 
basis will give the best results for a given application is not always obvious, and often there is 
a degree of trial and error involved. However, [23] showed that the Modified Littlewood-
Paley (MLP) wavelet basis was effective when analysing the acceleration signals of bridges 
subject to vehicle loading, and therefore this is the wavelet basis used in this study. 
 
In addition, this paper proposes a non-conventional normalisation step that proves very 
effective when analysing bridge signals that contain a mixture of free and forced vibration. 
Using a conventional CWT to analyse a bridge signal that has both free and forced vibration 
can be difficult. The forced vibration part of the signal has the largest amplitude, and as a 
result this will dominate the resulting CWT plot. This makes it very difficult to track the 
frequency evolution between the free and forced parts of the signal because the frequency 
from the free vibration part will be practically invisible. The novel procedure adopted here 
avoids this problem by normalising the wavelet coefficients at each time instant and is 
presented schematically in Figure 2. 
 
A signal with linearly increasing frequency and linearly decreasing amplitude is analysed 
with a conventional CWT and the result is shown in Figure 2(a). The plot represents a 3D 
wavelet surface as a 2D ‘contour’ plot where the magnitude of the wavelet coefficients are 
conveyed using colour, with darker colours implying large values of wavelet coefficient. The 
non-stationarity property and decreasing amplitude of this numerically generated signal can 
clearly be appreciated in the plot. Unfortunately, from the point of view of frequency 
tracking, the large amplitudes in the early part of the signal are resulting in high wavelet 
coefficients that are in a sense dominating the plot and making it difficult to see the frequency 
content in the latter part of the signal. However, if one is prepared to sacrifice information 
relating to amplitude, which for the purpose of this paper we are not concerned with, then this 
representation can be improved. The first step is to fit an envelope to the wavelet coefficients 
for a given scale and to accept this curve as the representative result from the CWT. An 
example of this curve fitting is shown in Figure 2(b). The blue plot in Figure 2(b) shows the 
wavelet coefficients at a particular scale, the red curve has been fitted to the blue plot. If a 
similar curve is fitted at every scale, and then if all the ‘fitted’ curves are plotted in 2D, the 
plot shown in Figure 2(c) results. The second step is to normalise each wavelet coefficient at 
a given time instant by the total energy content for that time instant. The result of applying 
this normalisation is shown in Figure 2(d). The consequence of this normalization is that it 
gives the same importance to the frequency of small amplitude vibrations as it does to the 
frequency of large amplitude vibrations. The usefulness of this normalization will become 
clear when studying the measured accelerations in Sections 3 and 4 below. Obviously, the 
substitution by the envelope curve and then later application of normalization comes with a 
cost. The final map of wavelet coefficients cannot be used for signal reconstruction. 
However, for visualization purposes these two operations greatly improve the final result 
from the CWT. 
 



8 
 

 
Figure 2: Enhancement of energy map from CWT analysis 

 
3. Experimental study of Bridge A and moving truck 
 
This section describes the first experimental investigation carried out on a 3-span road bridge. 
A truck is driven over the bridge and the bridge acceleration is recorded at a number of 
locations. This acceleration data is subsequently analysed to examine how the modal 
parameters of the bridge change as the truck crosses the bridge. Section 3.1 describes the 
bridge and experiment setup used. Section 3.2 presents the results of modal analysis carried 
out on free and forced vibration data. Finally, Section 3.3 puts forward a theoretical model to 
explain the behaviour observed in Section 3.2. Note that this experiment on Bridge A is only 
the first attempt to study the evolution of modal properties during vehicle passage and a 
plausible explanation is provided based only on weak evidence. A second experiment that 
provides stronger evidences is performed on a different bridge and is reported in Section 4. 
 
3.1 Bridge and instrumentation description 
 
The bridge used in the experiment is shown in Figure 3(a). It is a 3-span bridge carrying a 
minor road (4 m wide) over a dual carriageway. The deck consists of 2 steel girders 
supporting a concrete deck. The centre span is 31 m and each of the side spans are 18 m. 
There were two primary reasons for selecting this bridge. Firstly, the bridge deck is relatively 
light, narrow carriageway and primary members are steel. This is advantageous because a 
high (vehicle-bridge) mass ratio should lead to larger changes in modal properties. The 
second reason for selecting this bridge is that the traffic volumes on the bridge are very light, 
which made it logistically feasible to carry out the test. The vehicle used in the test is a 3-axle 
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truck with a total mass of 26 tonnes, shown in Figure 3(b). The truck crossed the bridge twice 
(once in each direction) at a crawling speed of approximately 13 km/h (3.63 m/s). Such a low 
speed effectively reduces the dynamic effects associated with (i) road profile unevenness, (ii) 
loading frequencies due to the vehicle’s axle spacing and (iii) shifting of bridge frequencies 
[24]. Despite the low speed the truck still provides sufficient excitation to the system. 
 

(a) (b) 

  
Figure 3: (a) Bridge A elevation (3-span bridge); (b) Truck used in experiment 

 
Figure 4 shows a plan view of the bridge deck. The position of the piers is indicated using 
dashed lines and for convenience the spans are labelled as spans 1-3. The bridge has a 4 m 
wide carriageway with 0.5 m wide footways on either side. Due to the impossibility of road 
closure, the instrumentation had to be installed on the footway and it was installed as close as 
possible to centre of the main beams. The location of the six accelerometers (A-F) used in the 
test are indicated in Figure 4. One accelerometer was placed at mid-span of each of the three 
spans on both sides of the bridge. The accelerometers used were tri-axial Micro-Electro 
Mechanical System (MEMS) accelerometers scanning at 128 Hz.  
 

 
Figure 4: Plan view and accelerometer layout on Bridge A. 

 

3.2 Modal analysis of free and forced vibration data 
 
The first step in analysing the data is to perform modal analysis on the free vibration data, i.e. 
no truck on the bridge. The FDD modal analysis approach described in Section 2.2 is used to 
analyse the free vibration data. Singular Value Decomposition (SVD) of the Power Spectral 
Density matrix is plotted in Figure 5(a) where a clear peak is visible at 3.5 Hz indicating the 
likely presence of a mode. Note that the poor frequency resolution is due to the short duration 
of analysed signal. The associated mode of vibration is extracted and presented in 
Figure 5(b). The square data markers represent the bridge supports, i.e. the modal amplitude 
at these locations is assumed zero. The circular data markers (from left to right) indicate the 
modal amplitudes at sensor locations A, B and C, see Figure 4. If the modal ordinates for 
sensor locations D, E and F are plotted the same mode shape is apparent. Thus it is clear that 
the mode at 3.5 Hz is the first bending mode. This result is consistently obtained for various 
different free vibration measurements. 
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(a) (b) 

 

 

Figure 5: Modal analysis of signals during free vibration of Bridge A; (a) Singular Value 
Decomposition magnitude; (b) Extracted fundamental mode 

 
Once the free vibration data was analysed the next step was to analyse the forced vibration 
response, i.e. the acceleration recorded while the truck was on the bridge. The results of 
analysing the forced vibration data is presented in Figure 6. The analysis procedures used are 
the same as those used to generate the plots in Figure 5. However, there are in this case, some 
noticeable differences in the results. The SVD analysis in Figure 6(a) identifies the presence 
of two distinct peaks at 2.63 Hz and 3.63 Hz respectively, but the fundamental bridge mode 
at 3.5 Hz identified in Figure 5 is no longer evident. The mode shapes associated with the two 
frequency peaks are shown in Figure 6(b). 
 
Starting with the mode shape for the 3.63 Hz mode, it is noticeable that it is very similar in 
shape to the mode shown in Figure 5(b), so it is reasonable to assume that this is the same 
mode. However, the presence of the truck has changed the frequency of the mode slightly. It 
is interesting to note that the fundamental frequency of the bridge has increased. Intuitively 
one would expect a slight reduction in the frequency because the truck is adding mass to the 
deck. Moving on to the mode identified at 2.63 Hz, its origins are less clear. One possibility 
is that perhaps the loading frequency produced an excitation in the region of 2.63 Hz. For this 
truck three possible axle spacings need to be considered, namely 1.4 m, 4.1 m and 5.5 m, 
which are the distances from axle-1 to axle-2, axle-2 to axle-3, and axle-1 to axle-3 
respectively. For a traversing speed 3.63 m/s the possible loading frequencies are 0.38 Hz, 
1.13 Hz and 1.52 Hz. Another possibility is that the shift in bridge frequency is due to the 
driving velocity of the vehicle, as discussed in Yang et al. [24]. This shift in frequency is 
directly proportional to the vehicle speed and inversely proportional to double the bridge 
span. Due to the low speed of the traversing vehicle, only shifts of ±0.03 Hz in the bridge 
fundamental frequency can be expected. Therefore, neither the vehicle loading frequency nor 
the frequency shift due to driving velocity explain the frequency peak at 2.63 Hz. 
 
Obviously, the origins of the 2.63 Hz frequency is likely to be related to the vehicle’s 
presence, and it is reasonable to consider that the 2.63 Hz may be the vehicle frequency 
however, it is difficult to be definitive just on the evidence of Figure 6. Interestingly the mode 
shape associated with the 2.63 Hz peak is practically a duplicate of the fundamental bridge 
mode identified in Figure 5(b). Therefore, to get a better theoretical understanding of why the 
presence of a truck is; (i) causing a slight increase in the frequency of the fundamental mode 
and (ii) resulting in the appearance of a new mode, the vehicle-bridge model described in 
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Section 2.1 is used in the next section to calculate the system frequencies for a series of 
different vehicle positions. 
 

(a) (b) 

 

 

 
 
 

 

Figure 6: Modal analysis of signals during forced vibration of Bridge A; (a) Singular Value 
Decomposition magnitude; (b) Extracted first and second modes 

 
3.3 Theoretical model of observed behaviour 
 
In an effort to better understand the frequencies observed in Figure 6 the vehicle-bridge 
model described in Section 2.1 is used here to position the vehicle model at a series of 
discrete points along the length of the beam and to examine how the frequencies of the 
system (vehicle and bridge) are affected. The bridge is modelled as a 3-span continuous beam 
with restrained vertical displacements at the ends and intermediate locations, which represent 
the support conditions at the abutments and over the piers. The bridge properties in the model 
are revised so that the fundamental frequency in the model is 3.5 Hz and the properties of the 
vehicle model have been adjusted to get a vehicle frequency of 2.8 Hz. The total mass of the 
vehicle in the model is 26000 kg. Although the exact frequency of the vehicle was not 
measured on site, based on the experimental observations in the previous section, and the 
information in the literature [18], a vehicle frequency of 2.8 Hz seems reasonable. It should 
be noted that the purpose of this model is not to exactly simulate the vehicle crossing event 
recorded experimentally. Instead, the purpose is to examine what happens to the bridge and 
vehicle frequencies if the sprung mass is placed at a series of discrete points along the length 
of the beam. This is achieved by positioning the sprung mass at a given point on the bridge 
and performing an eigenvalue analysis the system matrices of the coupled model system to 
identify the system frequencies for that vehicle position. Then the vehicle is consecutively 
moved to the next point on the bridge and the system frequencies for each new position are 
calculated. As the vehicle-bridge system is coupled, technically these frequencies should be 
termed the ‘first system frequency’, ‘second system frequency’, etc. However, for convention 
in the following discussion they are also referred to as ‘vehicle’ and ‘bridge’ frequencies.  
 
The evolution of the system frequencies for various vehicle positions is presented in Figure 7. 
The horizontal axis in Figure 7 shows the position of the vehicle relative to the left support as 
a percentage of the total bridge length L. So when the vehicle is exactly over the left support 
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its position is 0% of L, when it is half way across its position is 50% of L, and when it is 
exactly over the right support its position is 100% of L. The two dashed vertical lines in the 
figure at 26% and 73% indicate the position of the two piers. The ordinates in Figure 7 are 
frequency values. The two horizontal lines at 3.5 Hz and 2.8 Hz represent the vehicle and 
bridge frequencies in isolation, i.e. in the absence of any interaction between them. 
 
The lower solid line in Figure 7 shows the variation in the vehicle frequency as the vehicle is 
at various positions along the length of the bridge. Tracing this plot from left to right, it can 
be seen that when the vehicle is positioned over the left support its frequency (2.8 Hz) 
remains unchanged. However, when the vehicle is positioned toward the centre of span 1 
(x ≈ 13%) the vehicle frequency drops below 2.8 Hz. Then, as the vehicle is positioned at the 
first pier (x ≈ 26%), the vehicle frequency goes back up to 2.8 Hz. As the vehicle is 
incrementally moved toward the centre of span 2 the vehicle frequency shows a steady 
reduction in frequency to a minimum value of approximately 2.4 Hz at the mid-span of span 
2 (x ≈ 50%). As the position of the vehicle continues toward pier 2 the vehicle frequency 
shows a gradual increase and it recovers completely to 2.8 Hz when the vehicle is over pier 2. 
A similar reduction in vehicle frequency is evident when the vehicle is positioned in the 
centre of span 3. If the vehicle is thought of in isolation, i.e. if it is visualised as a mass 
supported on a spring, this pattern is difficult to understand. However, if, for the crossing 
event, the vehicle is thought of as a mass on two vertical springs, (one on top of the other) it 
is easier to understand. The upper spring being the vehicle suspension and the lower spring 
being the bridge, i.e. it is now a 2 degree of freedom system. The stiffness of the upper spring 
(the vehicle suspension) is constant. The stiffness of the lower spring (the bridge) is not 
constant since it depends on where the vehicle is positioned on the bridge. When the vehicle 
is over a bridge support the lower spring could be regarded as infinitely stiff so the vehicle 
behaves as an uncoupled single DOF system and the frequency remains 2.8 Hz. However, 
when the vehicle is at the mid-span of the bridge the lower spring is no longer infinitely stiff, 
as the system of springs supporting the mass is more flexible than it was before (when the 
vehicle was over a support) so the frequency of the system drops. Note that the 2 degree of 
freedom model/visualisation constitutes only an analogy that encapsulates the frequency 
evolution phenomena. Similar models have been reported in [25, 26] to study the dynamics of 
vehicle-bridge interaction systems. 
 
Turning our attention to the upper solid line in Figure 7, the result shows how the bridge 
frequency changes with respect to the position of the vehicle on the bridge. The most relevant 
thing about this plot is that for certain truck positions the bridge frequency is actually 
predicted to increase. This is counterintuitive because one would expect the bridge frequency 
to reduce slightly if a concentrated un-sprung mass was placed on the bridge deck. (This is 
indeed what would happen and this is demonstrated later in Figure 12). However, it appears 
that when the moving mass is sprung, there are situations where the bridge frequency can 
actually increase slightly. It is conceivable that the sprung mass (truck body) adds a kind of 
inertial resistance to bridge’s motion. In other words, the vehicle mass is providing some 
restraint to the upper end of the truck suspension (spring), which is touching the bridge deck. 
This can be interpreted as if the truck provides an extra spring support at the location the 
truck is located at. Obviously, from a static point of view, the number of bridge supports 
remains unchanged. For convenience in this paper we will term this apparent localised 
stiffening of the beam where the truck is parked an ‘inertial spring support’. It can be seen in 
the upper solid line in Figure 7 that when the truck is at either of the two short side spans the 
addition of this inertial spring support makes very little difference to the bridge frequency, 
indicating that it is adding relatively little stiffness to the system. However, when the truck is 
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on the longer central span, the addition of an ‘inertial spring support’ does result in a 
significant increase in frequency.  
 
Conceptualising the body of the vehicle as described above is helpful for initial visualisation 
as it allows the bridge to be idealised in a conventional static structural arrangement. 
However, in reality the vehicle-bridge system is a dynamic system so the behaviour is more 
complex and insight on the behaviour is provided by [5]. Using a simple numerical model of 
a sprung mass on a single span beam, they investigated how the system frequencies changed 
as the sprung mass was positioned at different points on the beam. The results of [5] showed 
frequency variation patterns similar to those shown in Figure 7. Moreover, they found that the 
increase and decrease in bridge and vehicle frequencies respectively was sensitive to the 
frequency ratio (FR), where FR= vehicle frequency / bridge frequency. For systems where 
the vehicle frequency was less than the bridge frequency (which is the situation here) and 
when FR was close to one (e.g. 0.95), their model shows that large shifts in bridge and 
vehicle frequencies would occur. However, when FR was not close to one (e.g. 0.5) the 
frequency shifts predicted by the model were significantly smaller. The difference in the 
magnitude of the frequency shift with respect to FR shows that it is not as simple as thinking 
of the truck mass as a restraint. It appears that the closer the vehicle frequency is to the bridge 
frequency the more pronounced this restraint is, which demonstrates the dynamic nature of 
the restraint. It was also shown in [5] that the frequency shifts predicted by the model were 
larger for higher mass ratios (MR) where MR=vehicle mass / bridge mass. 
 

 
Figure 7: Numerical frequency evolution of uncoupled system (dashed lines) and coupled 

system (solid lines). Vertical dotted lines indicate intermediate bridge supports. 
 
Although the numerical model used to generate Figure 7 is only an approximation of the real 
bridge, it does clearly show that the frequency content during a vehicle passage is likely to 
change. This variation in frequency with respect to vehicle position makes the problem non-
stationary and the acceleration signals recorded during the passage of the vehicle should 
reflect the non-stationary nature of the process, i.e. a change in frequency should be evident. 
To examine if this frequency change is evident, the acceleration response from centre of span 
3 (sensor C in Figure 4) is analysed using the wavelet approach described in Section 2.3. 
Figure 8(a) shows the acceleration time series recorded at sensor C during a truck-passing 
event. For this crossing event the first axle of the truck enters the bridge at 6 s and the last 
axle exits the bridge at 26 s. The truck entering and leaving the bridge is indicated in the 
figure by dotted vertical lines. Thus, the signal between these two lines corresponds to forced 
vibration data, whereas the acceleration after the truck leaves is the free vibration data. 
Figure 8(b) shows the conventional wavelet transform of the complete time series shown in 
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Figure 8(a) and Figure 8(c) shows the wavelet coefficients after calculating the envelope 
along scales and normalizing by instantaneous energy (see Section 2.3). In Figure 8(b) and 
Figure 8(c) the truck entering and leaving the bridge is again indicated using dotted vertical 
lines. Parts (b) and (c) of the figure also have dashed horizontal lines at 3.5 Hz and 2.8 Hz. 
The dashed horizontal line at 3.5 Hz is the uncoupled bridge frequency and the dashed 
horizontal line at 2.8 Hz is believed to be the approximate uncoupled vehicle frequency. In 
the absence of a modal test on the vehicle, one cannot say definitively that 2.8 Hz is the 
vehicle frequency, but based on the numerical model and the available experimental data the 
authors believe this is a reasonable supposition. The conventional CWT result (Figure 8(b)) 
shows only some high energy concentration within the studied frequency range when the 
vehicle is traversing the middle span. On the other hand, the processed wavelet coefficients 
(Figure 8(c)) provide a better picture of the relative energy distribution in the time-frequency 
plane. The frequency evolution is not entirely clear in the CWT plot in Figure 8(c). However, 
it is apparent that during free vibration the bridge is vibrating only at its fundamental 
frequency (3.5 Hz) as all the energy is concentrated there. On the other hand when the truck 
is on the bridge (forced vibration) there is also a significant amount of energy near what the 
authors believe to be the vehicle’s first frequency (2.8 Hz). Furthermore, a trend seems to be 
evident in Figure 8(c) similar to the one predicted Figure 7. During the period 12-20 s when 
the vehicle is crossing the central span of the bridge the vehicle frequency seems to go down 
and the bridge frequency seems to go up. 
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(a) 

 
(b) 

 
(c) 

 
Figure 8: Acceleration and frequency content for truck passage on Bridge A (a) Acceleration 

signal; (b) Raw CWT result; (c) Processed CWT; Vertical lines = start/end of forced 
vibration; Horizontal dashed lines = uncoupled system frequencies 

 
Although Figure 8 partially supports the theoretical construct presented in Figure 7, it is 
difficult to draw any firm conclusions about the validity of the suggested explanations. This 
is because the frequencies presented in Figure 7 are calculated for the vehicle model being 
situated at a series of discrete locations on the beam. Unfortunately, the experimental data in 
this section is for a moving truck and it could justifiably be argued that it is not correct to 
apply FDD to a non-stationary process to extract the modal properties. Therefore, it is not 
possible to reliably extract the modes of the coupled system while the vehicle is moving. This 
means that the frequency peaks shown in Figure 6 are likely to be a good approximation of 
the real frequencies but will not be totally accurate. To overcome these issues a new 
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experiment, where a truck is parked at a series of discrete locations on a bridge, is undertaken 
and this work is reported in the next section. 
 

4. Experimental study of Bridge B and stationary truck 
 
As explained at the end of the previous section the experimental results from Bridge A cannot 
really be used to check the validity of the concept presented in Figure 7. In the previous 
experiment the truck was moving, but in the numerical model the truck was parked at a series 
of discrete locations. To resolve this issue a second experimental campaign was undertaken 
where a truck was actually parked at a number of discrete locations on the bridge and the 
results are described herein. To make sure that the bridge behaviour observed in Section 3 
was not specifically related to Bridge A or the test truck shown in Figure 3(b), in this next 
experiment a different bridge and truck are used. It is important to note that when a vehicle is 
parked on the bridge the system is coupled but stationary, i.e. the modal parameters will 
remain constant. Therefore, using output-only modal analysis techniques such as FDD to 
extract the modal properties is appropriate. 
 

4.1 Bridge and instrumentation description 
 
A photo of the bridge used in this experiment is shown in Figure 9(a) and a plan view in 
Figure 10(a). The bridge is a half through steel girder bridge, it spans 36 m and the deck is 
simply supported. The 7.6 m wide, and 200 mm deep concrete deck is supported on a series 
of 450 mm deep steel beams, which span transversely between the main girders which are 
approximately 2 m deep. As explained in Section 3.1, for experiments of this type, a high 
vehicle-bridge mass ratio is desirable, so a light bridge deck is advantageous. The reason for 
choosing this bridge is that the deck is light compared to other bridges of the same span, i.e. 
the primary members are steel and the deck is relatively narrow. Again with the objective of 
having a high (vehicle-bridge) mass ratio, the truck selected for this test had a total weight of 
32 tonnes, which is heavier than the 26 tonnes truck used in the previous test. The test truck 
used has four axles and is shown in Figure 9(b). While the bridge was chosen for its technical 
advantages described above, logistically the disadvantage of the bridge was that it was in an 
urban area and frequently trafficked, which made finding a quiet time to carry out the test 
challenging. 
 

(a) (b) 

  
Figure 9: (a) Bridge B elevation; (b) Test truck 

 
The instrumentation used in this experiment consisted of four accelerometers attached to the 
main girders. The position of the four accelerometers (A-D) is shown in Figure 10(a). The 
accelerometers used in this test were Honeywell QA750 force balance accelerometers and the 
scanning frequency used was 128 Hz. Figure 10(b) shows accelerometer B attached to the 
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underside of the top flange of the main girder via a magnet. The vehicle was parked for short 
durations at ¼-span, mid-span and ¾-span. A full bridge closure was not permitted so the test 
was carried out early in the morning when there was little traffic. Ideally, the truck would 
stay parked at a given location for as long as possible, because the longer the time series the 
more accurate the subsequent modal analysis is likely to be. However, the fact there was no 
bridge closure meant that the stops had to be kept relatively short. Only stop durations of 10-
12 s were feasible. However, signals of this length are sufficiently long to allow the modal 
properties to be determined accurately. 
 
(a) (b) 

 
 

Figure 10: Dimensions and instrumentation details for Bridge B (a) Plan view of bridge deck 
and sensor locations; (b) Accelerometer attached to underside of the girder top flange. 

 
4.2 Evolution of Vehicle-Bridge system 
 
Analysing the ambient vibration data, the fundamental (first bending) frequency of the bridge 
was identified as 3.13 Hz. Figure 11(a) shows the time series recorded at accelerometer B for 
a full set of truck movements, namely: truck coming on to the bridge, parking at ¼-span, 
moving on and parking at mid-span, then finally moving to ¾-span and parking briefly before 
exiting the bridge. The different portions of the signal are demarcated using vertical dotted 
lines and the parts of the signal corresponding to the truck being parked at particular locations 
on the bridge can be identified using the annotations on the bottom of the figure. The 
annotations on the top of the figure have been added to allow the reader visualise what the 
truck is doing for each section of the signal. For the first 25 seconds the bridge is in ambient 
vibration (A). Then the truck moves (TM) on to the bridge arriving at the ¼-span at 
approximately 35 s. On arrival at ¼-span the truck stops and remains there for approximately 
12 seconds and this section of the signal is termed ‘loaded free vibration (LF)’. TM and LF 
are repeated in sequence so that the truck can be parked for a short duration at mid-span and 
¾-span. When the truck leaves the bridge, the bridge is in free vibration (F). For the data 
presented in Figure 11 the only vehicle on the bridge was the test truck, i.e. there was no 
other traffic crossing the bridge. Much of the bridge vibration evident in the figure is believed 
to be due to the energy input into the bridge during the four truck movements.. 
 
To observe how the bridge frequency evolves over the course of the truck movements, the 
time series in Figure 11(a) is analysed using CWT, and the results are presented in 
Figure 11(b). Again, the vertical dotted lines demarcate the different parts of the signal (i.e. 
the lines correspond to those shown in part (a) of the figure) and it can be seen that during 
ambient vibration at the start of the signal the bridge vibrates predominantly at its unloaded 
fundamental frequency (3.13 Hz) with no significant energy at any other frequency. The 



18 
 

same is true for the free vibration at the end of the signal. During the four truck movement 
phases (TM) there is no clear pattern of the energy distribution in the time-frequency domain. 
However, during the loaded free vibration events (LF), the energy is concentrated along clear 
frequency bands. For example, when the truck is parked at mid-span (65-81 s) the energy is 
concentrated in two distinct bands at approximately 2.5 Hz and 3.5 Hz. Similarly, when the 
truck is at the ¾-point (95-105 s) it can be seen that there is significant energy at these bands 
with almost no energy at the fundamental frequency, indicated by the horizontal dashed line 
in the figure. 
 

(a) 

 
(b) 

        
Figure 11: Experimental data from Bridge B; (a) acceleration signal recorded at mid-span 

during a series of truck movements; (b) CWT of acceleration signal; Vertical lines = start/end 
of forcing regime; Horizontal dashed lines = bridge’s fundamental frequencies 

 
While the CWT plot shown in Figure 11(b) is useful to visualise the frequency shift for the 
different truck positions, its frequency resolution is limited. To identify the frequencies more 
accurately the LF portions of the signal when the truck is at ¼-span, mid-span and ¾-span are 
analysed using FDD and the identified frequencies are plotted as circular data markers at 
25%, 50% and 75% of L respectively, in Figure 12. The experimental results indicate that the 
bridge and vehicle frequencies increase and decrease respectively when the truck is on the 
bridge with the largest changes occurring when the truck is in the centre of the bridge. The 
upper and lower (solid) lines in Figure 12 respectively show the bridge and vehicle 
frequencies predicted by the numerical model described in Section 2.1, for a simply 
supported single span beam. In line with the modelling philosophy described in Section 3.3, 
the bridge properties in the model were revised so that the uncoupled bridge frequency in the 
model matches the experimentally observed fundamental bridge frequency (3.13 Hz). A 
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similar approach is also used to revise vehicle properties. Based on the extracted values in 
Figure 12 an uncoupled vehicle frequency in the region of 2.6 Hz seems sensible. Therefore 
the suspension property of the vehicle model (i.e. the spring stiffness) has been amended such 
that for a sprung mass of 32,000 kg the uncoupled vehicle frequency is 2.6 Hz. As the 
numerical model is a relatively simple, the frequencies predicted by the model do not exactly 
match the frequencies observed experimentally. However, the comparison highlights that the 
trends are the same. This is important because it demonstrates that the evolution of the system 
frequencies (bridge and vehicle) predicted by the model are credible. Moreover, it shows that 
the hypothesis put forward in Section 2.3 to explain the behaviour observed in Bridge A is 
also credible. 
 

 
Figure 12: Frequency evolution during vehicle passage. Solid line = Coupled system; Dashed 
line = uncoupled system; Dotted line = Moving mass case; Red dots = experimental values 

 
Finally, the dotted plot in Figure 12 shows the bridge frequency predicted by the numerical 
model if an un-sprung mass of 32,000 kg is placed at a series of discrete locations along the 
length of the bridge. The model predicts that for an un-sprung mass the bridge frequency will 
be reduced, with the largest reduction occurring when the mass is at the centre of the bridge. 
This reduction in frequency with the addition of mass is in line with what one might 
intuitively expect for a (sprung) truck but this is clearly not what actually occurs. 
 
4.3 Modes of vibration 
 
So far previous sections have focused on studying how different truck positions affect the 
frequencies of the vehicle-bridge system. In this section, changes in the associated mode 
shapes of the vehicle-bridge system are reported. To make sense of the theoretical frequency 
predictions presented in Figure 7 the reader was prompted to visualise the body mass of the 
vehicle as supported on two springs, the upper spring representing the vehicle suspension and 
lower spring representing the bridge stiffness. While this is a useful analogy to visualise what 
is happening it is technically incorrect because the lower spring is in fact a beam. The 
significance of this is that when the sprung mass is on the bridge, the frequency that we have 
been referring to up to now as the vehicle frequency will have a mode associated with it that 
includes the deformed shape of the beam. 
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Up to now this paper has talked about ‘vehicle’ frequency and ‘bridge’ frequency because 
based on conventional thinking it is the most straightforward way to explain the experimental 
results that have been reported so far. However, to understand the modes associated with the 
observed frequencies it is important to appreciate that as soon as the vehicle is on the bridge, 
the vehicle and the bridge behave as one system, not two independent systems. Therefore, 
technically it is not appropriate to talk about vehicle and bridge modes, it would be more 
correct to talk about the coupled system’s first and second mode. However, for simplicity and 
convention, when presenting the relevant modes below they will still be referred to as 
‘vehicle mode’ and ‘bridge mode’ even though it is not totally correct. 
 
The easiest way to appreciate the mode of vibration of the coupled system is to examine the 
modes predicted by the numerical model. In particular, Figure 13 shows the modes of 
vibration for three different vehicle locations; (i) over the left support, (ii) ¼-span and (iii) 
mid-span. The eigenvalue analysis of the coupled system is carried out and modal ordinates 
of the degrees of freedom of the vehicle and bridge can easily be computed. When the vehicle 
is at the bridge’s left support, both systems are effectively uncoupled and the familiar 
(independent) modes for the vehicle (Figure 13(a)) and bridge (Figure 13(b)) are observed. In 
particular note, how the bridge part of the ‘vehicle mode’ (Figure 13(a)) remains straight. 
However, when the vehicle is at ¼-span the bridge clearly plays a role in the ‘vehicle mode’ 
as the bridge is now in a curved shape (see Figure 13(c)). Interestingly when the vehicle is at 
¼-span the deformed shape of the bridge is approximately similar for both the ‘vehicle mode’ 
(Figure 13(c)), and the ‘bridge mode’ (Figure 13(d)). A similar pattern is observed when the 
vehicle is at mid-span Figures. 13 (e) and (f). 
 

Vehicle location System 1st mode, i.e. 
“Vehicle mode” (2.6 Hz) 

System 2nd mode, i.e. 
“Bridge mode” (3.13 Hz) 

Left support 

  
 (a) (b) 

 
¼-span 

  
 (c) (d) 

 
Mid-span 

  
 (e) (f) 

Figure 13: Numerical mode evolution for coupled system 
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It should be noted that the modes of vibration plotted in Figure 13 are schematic in nature. 
Their primary purpose is to demonstrate that when the vehicle is on the bridge the system is 
coupled. The resulting modes can be more usefully thought of as the system’s 1st and 2nd 
modes. To examine in more detail how the bridge part of the full system modes of vibration 
vary with truck position, just the bridge part of the 1st and 2nd system modes are plotted in 
Figure 14. Since no acceleration was measured on the vehicle, only the bridge part of the 
mode can be examined in detail. Parts (a), (b) and (c), (d) of Figure 14 are generated using 
the numeric model and experimental data respectively. The bridge part of the system 1st mode 
(‘vehicle mode’) predicted by the numerical model for three different truck positions (¼-
span, mid-span, and ¾-span) are plotted in Figure 14(a). In the figure it can be seen that the 
bridge part of the ‘vehicle mode’ has three distinct shapes for the three different truck 
locations considered. When the truck is at ¼-span the bridge part of the mode is slightly 
skewed to the left, for the ¾-span position it is skewed to the right and when the vehicle is at 
mid-span it is symmetric. Figure 14(c) shows the equivalent modal ordinates obtained 
experimentally and for the three test points. Admittedly as the experiment only provides three 
modal ordinates it is not possible to make definitive comment on whether the mode shapes 
are skewed or not. However, for the three modal ordinates available, we can observe that they 
are behaving in a manner consistent with the equivalent location of the theoretical mode 
shapes shown in Figure 14(a).  
 
Figure 14(b) shows the bridge part of the system 2nd mode (‘bridge mode’) predicted by the 
numerical model for three different truck positions. It can be seen in the figure that the bridge 
part of the system 2nd mode does not change significantly with vehicle position but there is 
some small variation. Essentially, the numerical model indicates that the bridge part of the 
mode is slightly skewed to the opposite side of where the vehicle is located. The equivalent 
experimental modal ordinates are plotted in Figure 14(d). Similar to Figure 14(c), in Figure 
14(d) only three modal ordinates are available and therefore there is insufficient evidence to 
determine if the subtle skewing of modes evident in Figure 14(b) is also present 
experimentally. However, it can be said that the magnitude of the modal ordinates at a given 
location are quite similar for all three truck positions. This is consistent with the theoretical 
modes presented in Figure 14(b), which as mentioned previously appear relatively insensitive 
to vehicle position. Note that all the plots in Figure 14 have been normalized to have a 
minimum value of -1 at mid-span for ease of comparison. 
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 Bridge part of System 1st mode 
(‘Vehicle mode’)  

Bridge part of System 2nd mode 
(‘bridge mode’)  
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Figure 14: Bridge part of system 1st and 2nd modes for different truck positions (a) 1st mode 
calculated theoretically, (b) 2nd mode calculated theoretically, (c) 1st mode measured 

experimentally, (d) 2nd mode measured experimentally. 
 
5. Conclusions 
 
This paper investigated the changes in frequencies and modes of vibration of a vehicle-bridge 
system. Two different bridges A and B were studied. Initial experimental results observed on 
bridge A included some unexpected behaviour. In particular when the truck was on the bridge 
the fundamental bridge frequency seemed to increase and a frequency peak not present in free 
vibration appeared on the spectrum. This prompted the development of a numerical model to 
try and provide a theoretical explanation for the observed behaviour. The model provided a 
theoretical framework which seemed to explain the observed behaviour. However, to further 
investigate the phenomena a second experiment was carried out where the truck parked at a 
series of discrete locations on the bridge. This experiment was carried out on Bridge B and, 
by using time-frequency analysis and output-only modal analysis, the unexpected behaviour 
was further clarified. 
 
Furthermore, in the course of the investigation a number of interesting observations were 
made. For example, a coupled vehicle-bridge system might feature significant changes in 
natural frequencies depending on the vehicle’s position. Also when analysing forced 



23 
 

vibration signals the presence of additional frequencies on the spectrum proves system 
coupling. Moreover, it is shown numerically and experimentally, that the modes of vibration 
of the coupled system do change with the location of the vehicle. However, the amount of 
change differs for the ‘vehicle’ and the ‘bridge’ modes. In particular, it is shown that when 
the vehicle is on the bridge the ‘vehicle’ mode has a significant ‘bridge part’ associated with 
it and the shape of this part is very similar to the bridge’s fundamental mode of vibration. 
 
Numeric models indicate the magnitude of the changes in modal parameters will be more 
pronounced for situations with high vehicle-bridge mass ratios. However, this paper shows 
that it is a reality for conventional heavy vehicles and relatively light standard bridges. 
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