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Abstract

In this thesis we study the propagation of cosmic rays (CR) emitted by sources in the Local Su-
perbubble (LB). There are many bursting sources of CRs inside the LB which may be modelled
as a continuous injection of CRs, and therefore we study the LB’s effect on CRs by calculating tra-
jectories of individual protons from both a continuous and a bursting source within two mod-
els of the LB’s magnetic field. These models are constructed using information from literature,
each having a regular and random component for which we assume equipartition of energy. We
find that the escape time tesc(E) has a knee-like feature around E/Z = 5 ·1015 eV for coherence
lengths of the random field smaller than the LB’s radius. Additionally, we find that tesc(E) ∝ E−α

for energies E ≤ 2 ·1015 eV where α was calculated to be α = 0.354±0.008. The results are not
entirely conclusive and we would have to run more simulations to validate that the knee-like
feature stems from the bubble itself.
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Chapter 1

Introduction

1.1 Background

According to articles (e.g. Schulreich et al., 2017), our solar system resides within a superbubble
(SB) in the interstellar medium (ISM) called the Local Bubble (LB). A SB is a low-density cavity
in the ISM, partially filled with hot, soft X-ray emitting plasma. The existence of the LB is widely
accepted today, especially after it was found by Galeazzi et al. (2014) to contribute to 60%
(± 5%) of the 0.25 keV flux in the Galactic plane. From observations the LB is estimated to extend
roughly 200 pc in the galactic plane and 600 pc perpendicular to the galactic plane (Galeazzi
et al., 2014; Schulreich et al., 2017). Its origin is still an ongoing debate within the scientific
community.

Several articles have been written on the subject of the origin of SBs. The leading thesis
is that they are created by multiple supernovae (SNe) and stellar winds (SWs) pushing against
the gas and dust in the ISM creating a low-density cavity with hot plasma (e.g. see Schulreich
et al., 2017; van Marle et al., 2015; Lingenfelter, 2013). The massive O and B stars (> 8 solar
masses, M¯), the progenitors of core collapse SNe, together with other stars down to ∼ 0.1 M¯
are born in highly compact, star formation regions, i.e. the densest parts of giant molecular
clouds (Lingenfelter, 2013). An order of up to 105 stars may be formed within a few pc over a
time span of ∼ 1 Myr, where roughly 100 are SN progenitors. The most massive stars have a
lifetime of ∼ 3 Myr, while the least massive last ∼ 35 Myr. These clusters of stars are normally
known as OB star associations (or just OB associations).

To get a deeper understanding of the structure and evolution of SBs one would need to solve
a full-blown set, or include also the effect of magnetic fields, of magnetohydrodynamical equa-
tions through numerical simulations. Schulreich et al. (2017) attempted this with the LB by
back-tracing stars in nearby OB associations who may have initially created or later entered the
LB, and then subsequently exploded as SNe, increasing the size of the LB. The result from their
model with warm ionized ISM can be seen in Fig. 1.1. Though the resulting SB does not pre-
cisely match the physical observations of the LB in size, it gives an informative evolution picture
of a SB.

The article by van Marle et al. (2015) shows that the size and shape of a bubble created by SWs
and SN explosions are dependent of the magnetic field (MF), mass density, and temperature of
the ISM. The general result was that a constant MF in the ISM is shown to prohibit the growth
of the bubble in directions perpendicular to the MF lines. The final shape of the SB is mostly

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Colour-coded maps of the logarithmic total gas column density for three different
times before present. Integrations along the y- and z-axis are shown in the upper and lower
panels, respectively. Earth’s projected position is marked by a cross. Circles indicate the
projected centres of SN explosions that occurred in the time frame before the snapshot was
taken. The sizes of the circles correspond to the initial masses of the progenitor stars (see
legend in the upper left panel). From Schulreich et al. (2017).

determined by the first SN (Schulreich et al., 2017), so any SB created will have a shape that is
highly dependent of the MF in the ISM.

Cosmic rays (CRs) are subatomic particles of extra-terrestrial origin. Though they are mostly
protons, the other CRs (e.g. gammas, neutrinos, and heavy nuclei) are also very important due
to different particle properties (e.g. electric charge, mass to charge ratio, and interaction cross
section) that make them propagate differently through the galactic and extragalatic media, while
also effect our abilities to observe them. We know that most particles originate from sources in
the local galaxy, and that the charged CRs are then being dispersed in the ISM through diffusive
motion until they finally escape into intergalactic space (Simpson and Garcia-Munoz, 1988). We
also know that the diffusion in the MF of the ISM has the property that higher energy CR diffuse
more quickly than lower energy ones, i.e. they escape faster (Gaisser et al., 2013).

The cosmic ray spectra are of great interest as their energy and composition may give in-
formation about their sources. As cosmic rays enter the Earth’s atmosphere, they collide with
air molecules generating air showers. In order to measure the CR spectrum directly, one would
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Figure 1.2: Measurements of the all-particle cosmic ray diffuse flux F (E) air shower obser-
vatories. Additionally, the positions of the "knee" and "ankle" are indicates. From Beringer
et al. (2012)

have to go to balloon borne or satellite stationed detectors. The problem with these are that
they are very small, and in the case of satellites very expensive, and therefore are limited in the
amount of CR particles that may hit them. This becomes an increasing problem with higher
energies when the flux of particles becomes decreasingly smaller, e.g. the CR flux above 100 TeV
amounts to about 5 particles per square meter per steradian per day (Gaisser et al., 2013). That
is why data for the energy spectrum for the larger energies comes from large air shower arrays
on the ground, that determine the CR energies indirectly through observations and measure-
ments of secondary particles created in air showers initiated by the CR particles. The all-particle
spectra of very high energy (VHE) cosmic rays from several air shower observatories, starting at
energy level 1013 eV, can be seen in Fig. 1.2.

The spectra of CR particles can be described by a steeply falling power law over many decades,
approximately E−3, for energies > 10 GeV (Chen et al., 2015). The smoothness of this drop of
intensity with energy is broken at 2-3 PeV where there is an index change in the power law, com-
monly referred to as the "knee". The power law indices below and above the knee are−2.72±0.02
and −2.95±0.02 respectively (Fowler et al., 2001). In addition, at ∼ 3 · 1018 eV there is a new
change in the power law index known as the "ankle". The origin of the knee and ankle are not
completely known. At energies below the knee, supernova remnants (SNRs) are thought to be
the primary sources of galactic CRs (Cardillo et al., 2016) where protons are the primary compo-
nent (Fowler et al., 2001). Above the knee, the composition of the CRs is less well known due to
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the small flux of particles. Air shower observatories are limited (at best) to acquire information
about the composition of the particles of the air shower (Gaisser et al., 2013; Fowler et al., 2001).
In order to gain the most information about the air shower particles, one must observe and
measure the air showers at as many heights as possible through different types of telescopes
and particle detectors, and then use particle theory to back-trace the cascade particles to the
initial particle. One theory is that the composition of the CRs above the knee is primarily heavy
nuclei (e.g. iron, see Fowler et al., 2001), though the acceleration source is not generally known.
It may be galactic or extra-galactic. The CRs above the ankle are believed to be of extra-galactic
origin, primarily from active galactic nuclei (AGNs) or Fermi γ-sources (e.g. Jiang et al., 2010;
Kachelrieß et al., 2017).

A less discussed potential source for features in the CR spectra is the Local Bubble. Super-
bubbles have a low density volume with a (generally) weaker MF than that of the ISM outside
(van Marle et al., 2015), while the MF in the bubble wall is stronger. Having a bubble wall with
an increased MF strength gives the possibility of reflecting CRs, trapping confined CRs inside
or reflecting away CRs from outside. Following the fact that charged particles with increasing
energy are deflected less by a MF, the relative amount of reflected CRs will also decrease with
increasing CR energy.

Superbubbles are as mentioned earlier made by SN explosions inside a low density bubble
in the ISM created by an initial SN (e.g. see Fig. 1.1). Due to the spatial extent of the SBs, both
the changing magnetic fields in the ISM outside the bubble and new SN explosions at different
locations inside and outside the bubble wall (or shell) will effect the shape and magnetic field
structure of the bubble wall (Streitmatter and Jones, 2005). This makes the bubble shell poten-
tially very non-homogeneous which leaves the possibilities for "holes" in the shell or tunnels
between neighboring bubbles, through which particles may easier escape. The inhomogeneity
of a SB’s shell may be seen in Fig. 1.1.

Problem Formulation and Objectives

Being able to explain the features of the cosmic ray spectra is of high interest to astrophysicists
as it may give much information of the sources of the CRs and the structure of our Galaxy (and
possibly others). Thus this has been a field of research for many years. The Local Bubble is
one of the less discussed and researched potential sources to the features that we see in the CR
spectra for charged particles (as neutral particles are not effected by magnetic fields in equal
magnitude), and is therefore of significant interest. Recently, it has been suggested that a local
source is visible in the CR spectra measured and, in particular, explains naturally the anomalies
observed in the antimatter fluxes (Savchenko et al., 2015; Kachelrieß et al., 2015). Such a source
would reside in the LB and, thus is especially important to understand the influence of the LB
on the CR spectra. In addition to bursting sources of CRs, cases where many sources contribute
to the CR flux may be modelled as a continuous injection of CRs. So both types of sources would
have to be considered in order to best describe the effect of the LB on CRs.

The magnetic field in the ISM (and the LB) is found to have both a regular component and
an isotropic random (turbulent) component. In order to most accurately simulate the trajec-
tories of CR particles in the Galactic medium, we will have to use literature to find and set up
a computation algorithm for the turbulent magnetic field (TMF). This type of algorithm would
also be of interest for anyone looking to simulate charged particle motion in any system with a
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TMF.
The main objectives of this thesis are thus:

1. Using literature to set up simplified models of the regular magnetic field of a superbubble
resembling the LB.

2. Using literature to set up a computational algorithm of the turbulent magnetic field com-
ponent of the models in the first objective, that is also fulfilling the requirement of isotropy
on the scales of the magnetic field models.

3. Characterize the timing and probability properties of CRs created by a continuous or
a bursting source, and the position properties of CRs from a bursting source, all from
sources inside the modelled superbubble.

1.2 Approach

For the first objective two models for the MF will be modelled, taking inspiration from van Marle
et al. (2015), Beck and Wielebinski (2013), Schulreich et al. (2017), and Streitmatter and Jones
(2005).

For the second objective the established algorithm for creating turbulent magnetic fields
(see Giacalone and Jokipii, 1999) will be used to compute TMFs using Monte-Carlo (MC) com-
putation. Then we will look at the case of small angle scattering (SAS) in TMFs. Using numerical
simulations, the scattering angle of highly energetic charged particles in MC computed TMFs
will be compared to literature on SAS (Caprini and Gabici, 2015; Harari et al., 2002) and thus set-
ting a limit on the parameters of the computed TMFs to be used in the MF model of the bubble.

To solve the third objective, first simulations of charged particle trajectories with a continu-
ous source for a few given particle energies will be performed for two MF models and the results
will be compared. If the results proves to be approximately equal for the most important en-
ergies (i.e. lower energies) only one model will be used for further studies. Then the numerical
simulations for a larger set of particle energies will be performed for a continuous source. Lastly,
based on the results from the continuous source, simulations of a bursting source for the most
interesting particle energies regions will be performed. In order to study the timing and position
properties of the CRs, a set of functions will be fitted to the computed results.

1.3 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 covers the general theory of the the-
sis, where section 2.1 introduces the theory and modelling of both the regular and turbulent
magnetic fields. Section 2.2 covers the theory magnetic scattering as well as introducing the
computation method for the particle trajectory simulations. Section 2.3 continues on scatter-
ing theory of diffusive and ballistic motion, and it introduces the different functions used for
analyzing the timing and position data from the simulations. In chapter 3, the results from the
computations are presented and discussed following the order of the objectives presented ear-
lier in this chapter. Lastly, chapter 4 gives a short summary of the most important results found
in this thesis.



Chapter 2

Theory

2.1 Magnetic Fields

Any electromagnetic system in vacuum needs to satisfy the Maxwell equations

∇·E = ρ

ε0
, (2.1)

∇·B = 0, (2.2)

∇×E =−∂B

∂t
, (2.3)

∇×B =µ0

(
J+ε0

∂E

∂t

)
, (2.4)

where E and B is the electric and magnetic field, ρ is the total electric charge density, J is the
total current density, and ε0 and µ0 is respectively the electric permittivity and the magnetic
permeability in vacuum. In the case of a static magnetic field, equation (2.3) becomes zero,
i.e. there are no induced voltages due to the magnetic field. Further, a constant magnetic field
implies that the r.h.s. of equation (2.4) must be constant, where the stable solution is a constant
electric field and a constant current density. When considering a magnetic field, equation (2.2)
is the most important, as it shows that the divergence of the magnetic field is independent of
the electric field and is always zero.

2.1.1 Regular Magnetic Field Model

In order to gain information about CR properties in a SB that may be compared to what we may
observe from the LB, we want to model our SB in resemblance with the LB. Through observa-
tions of CRs and numerical modelling of spiral galaxies, e.g. our own Milky Way, it is found that
an axisymmetric spiral magnetic field configuration best fit the observational data (Beck and
Wielebinski, 2013, ch. 3.5), including that one large-scale reversal inside about 1–2 kpc of the
solar radius is required. The local field in the spirals are oriented parallel to the galactic plane
along the spiral arms. Outside the galactic disc (in the galactic halo), the field lines are found
to point more perpendicular to the galactic plane rather than along the spiral arms (Beck and

7
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Figure 2.1: Colour-coded map of the logarithmic total gas column density from the end of an
evolutionary simulation of a low density bubble created by stellar winds and and a supernova
explosion. The field lines of the ISM magnetic field is visible as well. The initial mass of the
star in the simulation was 40 M¯ and the strength of the ISM magnetic field was 5 µG. From
van Marle et al. (2015).

Wielebinski, 2013). As the extent of the LB in the galactic plane is about 200 pc (see section 1.1)
while being located at ∼8 kpc from the galactic center, we model the regular magnetic field out-
side the bubble in the galactic disc to be constant and pointing in one direction, i.e. exclude
curvature of the spiral arm (1 kpc bend ∼7.2◦).

In van Marle et al. (2015), the bubbles created by SWs and SNe in the ISM with constant
magnetic fields take elliptical shapes with sizes depending on the magnetic field strength. The
magnetic field lines (MFLs) are pushed outward from the star creating an elliptical magnetic
field configuration of the bubble, see Fig. 2.1. For smaller values of the ISM field strength, the
field configuration of the bubble becomes more circular in the radial plane (perpendicular to
the ISM’s MFLs), i.e. more spherical in 3 dimensions.

The Local Bubble has a shape that is closer to a cylinder than a spherical bubble with the
cylinder oriented close to the perpendicular direction w.r.t. the galactic plane (Schulreich et al.,
2017). Of this reason it would be more valuable to model the SB as a(n) (elliptic) cylinder rather
than a sphere (or ellipsoid). Whether or not the LB is magnetically open at the "top" and "bot-
tom" (see Streitmatter and Jones, 2005) would also impact the effect the LB has on CRs, as CRs
would potentialy have an easier escape.

To avoid the case of having a magnetically open or closed cylinder we crate an "infinitely"
long cylinder where the field is constant perpendicularly to the radial plane (i.e. perpendicu-
larly to the Galactic disc for the LB). Following van Marle et al. (2015), the model field should
at least be an elliptic cylinder, but in order to simplify the computations and having the pos-
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Figure 2.2: The figure shows a plot of the transition function T (r ) (see eq. (2.5)). The transi-
tion point r0 = 0 and the transition width wtr = 1.0.

sibility for cylindrical symmetry, we set the shape of the model field to be circular rather than
elliptic. In addition, we introduce two models for the cylindrical field’s direction which will now
be presented.

Magnetic Field Transition and Strength

To describe the transition between the regular MF in the ISM and the MF of the SB, the following
transition function is used:

T (r ) = 1

1+exp
(−8(r−r0)

wtr

) , (2.5)

where r0 is the transition point and wtr the transition width. With the choice of 8 in the expo-
nent the transition width is then the width at which the function goes from 1.8% to 98.2% of its
maximum value of 1. A plot of equation (2.5) with wtr = 1.0 and r0 = 0 can be seen in Fig. 2.2.

In the model of the SB the MF in the ISM outside the bubble is assumed to be constant and
pointing in the direction of the spiral arm from here on referred to as the x-axis. The z-axis is
pointing along the cylindrical wall of the SB, perpendicular to the Galactic disc defined by the
x y-plane. To model the magnetic field we create a unit field representation of the MF using eq.
(2.5), and then multiply it with a model of the magnetic field strength. We introduce b̂ as a unit
vector pointing along the MFLs in the direction of the field at any position. Outside the bubble
one simply has

b̂ (r ) = b̂ out(r ) = x̂ , (2.6)

where r is the position vector.
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Figure 2.3: Unit vector field plot of the constant outer field, and a circular clockwise (y > 0)
and anticlockwise (y < 0) oriented inner field, with transition radius r0 = 50 and transition
width wtr = 1.0 between the inner and outer fields. The left shows the whole inner field while
the right is zoomed in on the right edge of the inner field (y = 0). Note: the vectors are not to
scale, but are re-sized for easier viewing.

For the bubble field we use two representations:

1. A clockwise field for y > 0 and anticlockwise for y < 0 (CW-ACW).

2. A clockwise field for all values of (x, y) (CW).

The unit vector b̂ inside the bubble then becomes

b̂ in,1(r ) = |sin(φ)|x̂ −cos(φ)
sin(φ)

|sin(φ)| ŷ (2.7)

for the first representation and

b̂ in,2(r ) = sin(φ)x̂ −cos(φ)ŷ =−φ̂ (2.8)

for the second, where φ is the angular position in the x y-plane, positive x-axis referring to φ= 0
and oriented anticlockwise. Using eq. (2.5), identifying r0 as the effective transition radius, one
can make a superposition s(r ) of the inner and outer field:

s(r ) = T (r ) · b̂ out(r )+ (1−T (r )) · b̂ in(r ), (2.9)

where r = |r |. Consequently, b̂ becomes for any position r

b̂ (r ) = s(r )

|s(r )| . (2.10)
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Figure 2.4: Unit vector field plot of the constant outer field and a circular clockwise oriented
inner field, with transition radius r0 = 50 between the fields and transition width wtr = 1.0.
The left shows the whole inner field while the right is zoomed in on the lower edge of the
inner field ((x, y) = (0,−50). Note: the vectors are not to scale, but are re-sized for easier
viewing.

Outside the effective transition region, i.e. r = r0 ± 0.5wtr (see eq. (2.5)) eq. (2.9), and conse-
quently (2.10), is reduced to either b̂ in or b̂ out. Example unit fields of eq. (2.10) are shown in Fig.
2.3 and Fig. 2.4, with the first and second representation of the inner field respectively.

The two representations of the inner field have different implications. The second one ful-
fills all of Maxwell’s equations (see eqs. (2.1)-(2.4)), but gives a sharp flip of the magnetic field at
(x, y) = (0,−r0) where the outer and inner field point in opposite directions (see Fig. 2.4). The
first representation clearly violate eq. (2.2) by having magnetic monopoles (see Fig. 2.3), which
are hypothetical particles as far as we know and that some scientist are trying to prove the exis-
tence of (e.g. see Bramwell et al., 2009). Opposite to the second, the first representation does not
have any sharp flip transitions between the outer and inner field. In addition, it follows the di-
rection of the outer field as one might expect if the bubble were to be formed in a constant field
and then pushes the external field lines outwards (see van Marle et al., 2015). To see whether
there is any difference in the results between the two representations, we will initially use both
in our computations. If they prove to be approximately equal in the results, only one will be
used for more extensive computations in order to save computing time.

The root mean square (RMS) strength of the magnetic field in the ISM surrounding the LB
is estimated to be BRMS≈5 µG (Beck and Wielebinski, 2013; Sun et al., 2008; van Marle et al.,
2015), where according to Sun et al. (2008) ≈ 60% is residing in a random turbulent field. This
distribution of the field strength has proven hard to confirm through other sources, and the
article by Sun et al. (2008) itself refers to the value of the turbulent field in some places as a
mean in the Galactic disc. Of this reason the distribution of the MF strength is chosen to be
equally divided between the turbulent and the local (regular) field. While the structure of the
turbulent field is discussed in section 2.1.2, we will here take a closer look at the BRMS value of
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Figure 2.5: From van Marle et al. (2015). The figure shows the magnetic field strength along
cuts through 2D simulation results (as described in van Marle et al., 2015) at the end of stellar
evolution (i.e. after SN). Each cut starts at the central star and moves either along the R-axis
(dashed lines) or at a 45◦ angle (continuous lines) between the R- and Z-axes (see Fig. 2.1).
The initial mass of the star in the simulation was 40 solar masses and case B corresponds to
a local magnetic field strength of 5 µG in the interstellar medium.

the MF model.
In van Marle et al. (2015) the MF strength of simulated bubbles from a single OB star (40

solar masses) in different external MFs were computed (see van Marle et al., 2015, for further
details). The resulting structure of the BRMS can be seen in Fig. 2.5. The case where the outside
MF strength is 5 µG is of most interest as this is most similar to the case of the local ISM. As
the magnetic field in this thesis is assumed to be circular, we disregard the φ-dependence of the
MF strength (i.e. angular dependence in the galactic plane, or x y-plane). Figure 2.5 also show
that the BRMS in the bubble barrier has a narrow peak at the inner side and then going over to
a more constant and weaker field strength that is still stronger than the outside field. Inside the
bubble the field is notably weaker than the field in or outside the barrier, of an order ≤ 10−2 of
the barrier strength. To simplify the field in the barrier, one could assume a constant field in the
barrier with the same integrated strength. In addition the width of the barrier could be made
narrower as well in order to get a higher strength (while not exceeding the original maximum
field strength).
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Figure 2.6: Plot showing the magnetic field strength, BRMS of the model following equations
(2.5) and (2.11). The bubble radius is set to 50 pc and the bubble width is set to 2 pc. The
width of the bubble walls (wtr) is set to 0.8 pc and 1.6 pc for the two respective plots.

Assuming for our toy model of the magnetic field that the field strength of the wall should be
similar to the strength of the 5 µG case in Fig. 2.5, the BRMS is set to follow:

BRMS(r ) =


0.1µG if r ≤ rbubble − 1

2 wbubble,

12 µG if rbubble − 1
2 wbubble < r ≤ rbubble + 1

2 wbubble,

5 µG if r > rbubble − 1
2 wbubble,

(2.11)

where rbubble is the radius to the bubble barrier’s center and wbubble is the width of the bubble
barrier. In addition, equation (2.5) is used for the transitions between the r -regions in eq. (2.11)
with r0 = rtr, i.e the respective transition radii of eq. (2.11), and wtr (transition width) equal to a
set value. The transition regions are hereby referred to as the inside and outside bubble walls.

As the Local Bubble in about 200 pc in diameter (of the "cylinder"), and the bubble in Fig.
2.5 is ∼ 50 pc in diameter for the 5 µG case, a superbubble of a scale size in between these would
be an optimal starting point. A diameter of 100 pc for the MF toy model is therefore chosen, i.e.
rbubble = 50 pc. As the MF strength of the barrier should be similar to Fig. 2.5, wbubble is set to 2
pc. In order to have suitable, yet not too sharp, bubble walls a transition width (see. eq. (2.5))
wtr = 0.8 pc is chosen. A plot of the resulting BRMS is shown in Fig. 2.6, including a plot of BRMS

with a transition width wtr = 1.6 pc (double of what is chosen). As one may see from the figure,
in the case where wtr = 1.6 pc the transition width is so large that the BRMS of the model only
reach the maximum value of 12 µG fro a very short r -interval and the transition itself becomes
so wide that it does not represent what is seen in Fig. 2.5.

For the model we assume the bubble barrier, i.e. the region with increased MF strength, is
part of the bubble field and thus the transition between the inner (circular) field and the outer
(constant) field is at the outer wall of the barrier, i.e. at r = 51 pc. Additionally, we assume the
transition width between the inner and outer field is equal to that of the of the bubble barrier’s
walls, i.e. wtr = 0.8 pc.
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2.1.2 Modelling the Turbulent Magnetic Field

The existence of a turbulent (or random) magnetic field in the ISM is widely agreed upon in the
scientific community. However, what is less agreed upon is both the strength and correlation
scale of the TMF, especially the latter. According to Sun et al. (2008), in the Galactic disc the
TMF in the ISM has a RMS strength of 3 µG, but the authors say little about the correlation scale.
There have been many attempts to characterize the TMF in the ISM or in SNR (e.g. see Rand
and Kulkarni, 1989; Padoan et al., 2016), where the correlation scale has been varying from 10
pc to 250 pc for the TMF in the ISM.

Hydrodynamic turbulence is normally modelled as eddy currents of different scale sizes,
where the energy of each eddy is depending on the eddy’s scale size. Similarly, one can model
a turbulent magnetic field as a Gaussian random field with zero mean and a RMS value BRMS

using superposition of Fourier modes (i.e. plane waves, or magnetic eddies) as

Bi (x ) =
∫

d3k

(2π)3
Bi (k )e i (k·x+φi (k)), (2.12)

where x is the position vector, Bi (x ) is the magnetic field component in direction of êi , k is the
wave vector of the Fourier modes, and φ(k) are random phases (Harari et al., 2002, p. 3). Note
that |k | = k = λ/2π were λ is the wavelength (or scale size) of each mode (i.e. magnetic eddy),
and all wave vectors have random directions independent of each other. In order for this field
to have zero divergence, see equation (2.2), the components Bi (k) must be so that

B(k ) ·k = 0, (2.13)

where
B(k) = Bx(k )êx +By (k )êy +Bz(k )êz . (2.14)

If the field is isotropic and homogeneous the random Fourier modes satisfy the relation

〈B(ki ) ·B∗(k j )〉 = B 2(ki )δ(ki −k j ). (2.15)

Further, this makes it so that the root mean square value is

B 2
RMS ≡ 〈B(x ) ·B∗(x )〉 =

∫
B 2(k)dk. (2.16)

Theoretical models suggest that the turbulent magnetic field follows a power law

E(k) ∝ B 2(k) ∝ k−γ, (2.17)

where E(k) is the energy of a mode with |k | = k, and γ is the spectral index of the power law
(γ = 5/3 corresponding to Kolmogorov turbulence which is normal in hydrodynamic turbu-
lence). We further assume that there is a maximum scale size at which the energy is fed into
the turbulent system, and then the energy is transferred to smaller scale sizes until it reaches a
point where it is lost to the surroundings (e.g. viscous heating of the charged particles creating
the eddies). This is analogous to hydrodynamic turbulence. This makes it possible to find the
energy of each eddy through the normalization of the field strength BRMS (see Harari et al., 2002,
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for more information):

B 2(k) = B 2
RMSk−γ (γ−1)kγ−1

min

1− (kmin/kmax)γ−1
, (2.18)

where the wave numbers of the turbulence is constrained by the limits kmin < k < kmax (i.e. scale
sizes λmin <λ<λmax)

For the toy model in this thesis, a single turbulent field is used both inside and outside the
bubble to simplify the computation. Also, the largest scale size of the TMF is set to 10 pc , i.e.
the lower limit of previous attempts to characterize the TMF in the ISM (Rand and Kulkarni,
1989). This is to make sure that the TMF does not have modes that is effectively constant over
the whole bubble model, while also resulting in fewer modes needed in each computation (will
be shown later).

Computational Algorithm

In order to compute a random turbulent magnetic field of the same form as the magnetic field in
equation (2.12) this report follows the algorithm presented in Giacalone and Jokipii (1999). The
algorithm in Giacalone and Jokipii (1999) computes a complex magnetic field through a super-
position of Fourier modes, each with a random polarization and a random direction defined by
two angles θ and φ. A three-dimensional realization of B(r ) which satisfies equation (2.2) may
be written

B(r ) =
nk∑
j=1

B(k j )ζ j e i (k j z ′+β j ), (2.19)

where nk is the number of modes, k j is the the mode’s wave number, and B(k j ) is the amplitude
of the respective mode and may be chosen to follow the desired power spectrum. ζ j is the
polarization vector and is given by

ζ j = cos(α j )êx ′ ± i sin(α j )êy ′ . (2.20)

Each wave propagates in its own z ′-direction with polarization in the x ′y ′-plane, where the
primed system is related to the unprimed system through the rotation

r’3D = R(θ,φ)r3D, (2.21)

with rotation matrix

R(θ,φ) =
 cos(θ)cos(φ) cos(θ)sin(φ) −sin(θ)

−sin(φ) cos(φ) 0
sin(θ)cos(φ) sin(θ)sin(φ) cos(θ)

 , (2.22)

where θ and φ are functions of k. It can easily be shown that the primed system is defined by
orthonormal basis vectors. The phases α j and β j , and the sign ± in equation (2.20), chosen
randomly, are responsible for the random polarization. Meanwhile the angles θ and φ gives the
random propagation direction. This means that for any realization of the magnetic field, and
for each k, there are five random numbers θ, φ, α, β, and s. The random numbers’ possible
values (i.e. the range) and probability distributions giving an isotropic and homogeneous field
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Table 2.1: Properties of the random parameters for an isotropic field.

Parameter Parameter range Probability distribution
α 0 <α< 2π p(α) = 1/2π
β 0 < β< 2π p(β) = 1/2π
θ 0 < θ <π p(θ) = sin(θ)/2
φ 0 <φ< 2π p(φ) = 1/2π
s {+,−} p(+) = 0.5, p(−) = 0.5

are shown in Tab. 2.1.
It should be noted that the matrix in eq. (2.22) is specific for propagation in the z ′-direction,

and the probability distribution of the random numbers is necessary for an isotropic TMF. The
rotation matrix as described in Giacalone and Jokipii (1999) is from an earlier article by the same
authors (see Giacalone and Jokipii, 1994). Though the rotation matrices from the articles are
equal (with a difference in θ ↔ −θ), the assumed propagation direction in the primed system
(exponential in eq. (2.19)) is different: x ′ for Giacalone and Jokipii (1994) and z ′ for Giacalone
and Jokipii (1999). By calculating the mean square value of ζ j in each direction using the prob-
ability distribution of the parameters as shown in Tab. 2.1, one would get 1/3 for each direction
with z ′ as the propagation direction of the field modes, but 5/12 in the x- and y-directions and
1/6 in the z-direction for x ′ as the propagation direction. As an isotropic field requires equal
mean square value in any direction, i.e. 〈ζ j ·ζ∗j 〉 = 1/3 (see eqs. (2.15), (2.16) and (2.19)). Ad-
ditionally, if one neglect the probability densities (i.e. use flat distributions, see Tautz (2012))
for the parameters and uses z ′ as the propagation direction, one would get 3/8 = 0.375 for the
mean square value of ζ j in the x- and y-directions and 1/4 = 0.25 in the z-direction which is not
isotropic.

The wave numbers k j are logarithmically distributed between kmin and kmax in order to give
each decade in scale sizes equal weighting of k numbers. This is similar to an assumption for
normal hydrodynamic turbulence, where eddies are modelled to transfer its energy into eddies
of a smaller scale size with a constant scale ratio, resulting in logarithmically spaced scale sizes.
Additionally, in order for the computed field to be approximately isotropic one need a minimum
number of modes per decade, ndec. This number increases with increasing spectral index of
the power law as each new mode with equal logarithmic spacing gets an increasingly smaller
magnetic strength than the last. In other words B(k j )/B(k j+1) (k j < k j+1) gets smaller when γ is
increased and the field becomes more defined by the smaller k j and their direction.

Normalization

The turbulent magnetic field strength should be normalized to the value BRMS. Given that the
TMF is isotropic, equations (2.22) and (2.20) show that |ζ j | = 1. Now, if for any pair {k j ,kl } the
total spatial size of the magnetic field LMF À 2π/|k j −kl |, it may be shown for the Fourier modes
that

〈(ζ j e i (k j z ′j+β j )) · (ζl e i (kl z ′l+βl ))∗〉 = δ(k j −kl ). (2.23)
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Using this result and inserting equation (2.19) into (2.16) one gets

B 2
RMS =

nk∑
j=1

B 2(k j ). (2.24)

The desired power law for the turbulence is given by equation (2.17). Using the scale sizes of the
Fourier modes one can rewrite the amplitude as

B(k) = B(kmin)

(
k

kmin

)−γ/2

, (2.25)

where B(kmin) is the amplitude of the mode corresponding to the minimum wave number kmin,
i.e. the largest turbulent structure. Inserting equation (2.25) into (2.24) one gets

B 2(kmin) = B 2
RMS∑

k j

(
k j

kmin

)−γ , (2.26)

and the square root of the r.h.s. gives the normalized value for B(kmin). In the case where the
field is not isotropic, equation (2.16) does not simply result in equation (2.24), and each mean
value of 〈B(ki ) ·B∗(k j )〉 would have to be calculated.

The magnetic field should be real. On the contrary, the field created by equation (2.19), and
presumably (2.12), is complex. In order to acquire a real field, one only has to take the real part
of the resulting field, but this will change the RMS value. Using x ·x∗ = Re2(x )+Im2(x ), equation
(2.16) gives

B 2
RMS = 〈B(r ) ·B∗(r )〉 = 〈Re2(B )〉+〈Im2(B )〉 . (2.27)

In addition, 〈Re2(B )〉 = 〈Im2(B )〉 which may be acquired by taking the mean square of the real
and imaginary part of ζ times the exponent (see eq. (2.19). Now one simply gets

〈Re2(B )〉 = 1

2
B 2

RMS. (2.28)

In order to make only the real part of the computed B-field to have a RMS value equal to BRMS

one only needs to multiply B(kmin) with
p

2. The new equations for the turbulent magnetic field
would then be

B(r ) = Re

{∑
k j

B(k j )ζ j e i (k j z ′+β j )

}
, (2.29)

B(kmin) = BRMS

 2∑
k j

(
k j

kmin

)−γ


1/2

, (2.30)

with equation (2.25) staying the same.
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2.2 Magnetic Scattering

The net force on a charged particle moving through an electromagnetic field is given by the
Lorentz force law (Griffiths, 2014, p. 212, p. 542):

FL = dp

dt
= q (E+v×B ) , (2.31)

where E and B are respectively the electric and magnetic fields, v is the particle velocity, q is
the particle’s electric charge, and p is the particle momentum. Newtons second law retains its
validity in relativistic mechanics (Griffiths, 2014, p. 542) as long as one uses the relativistic mo-
mentum given by the equation (Griffiths, 2014, p. 535)

p = γLmv, (2.32)

where m is the particle mass and γL is the (relativistic) Lorentz factor

γL = 1√
1− v2

c2

= E

mc2
, (2.33)

where E is the energy of the particle. Using eq. (2.32), eq. (2.31) can easily be rewritten for

either p or v. In the case of a zero electric field (E = −→
0 ) the acceleration of the particle due to

the Lorentz force will be perpendicular to the magnetic field lines and the particle velocity. With
no acceleration in the direction of the velocity, the kinetic energy of the particle is conserved. In
circular motion the acceleration a is a = v2

⊥/r , where v⊥ is the particle velocity perpendicular
to the acceleration and r is the radius. Using this and equation (2.31) in the case of a constant
magnetic field with straight field lines the charged particles move in helical motion around the
field lines with gyroradius Rg , a.k.a. the Larmor radius, given by

Rg = p⊥
|q|B . (2.34)

The relativistic energy of a particle is E = γLmc2, with c being the speed of light in vacuum.
Further one may use that the charge of the particle is a sum of elementary charges e, |q | = Z e
where Z is an integer, so that the gyroradius may be written

Rg = 1.081 ·10−3pc
β⊥
Z

E

1018eV

G

B
, (2.35)

where β⊥ = v⊥/c.
For a particle propagating through a turbulent magnetic field, one may define the gyroradius

of the particle through equation (2.35) using the RMS value of the magnetic field strength, i.e.
B = BRMS. If the gyroradius of the particle Rg ¿ λc , i.e. the correlation length of the field, the
particle would experience the magnetic field to be approximately constant with parallel field
lines on a scale size of the same order as the gyroradius. One would then expect the propagation
motion of the particle to be similar to a helical motion following the magnetic field lines. In the
opposite case where Rg Àλc the magnetic field change so rapidly so that the particle would not
"see" the details of the magnetic field. The particle motion would then primarily depend on the
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mean value of the field 〈B 〉. If the mean value is zero, one would expect the turbulence to induce
small (tiny) deviations from a straight particle trajectory over scale lengths ∼λc .

Caprini and Gabici (2015) give two equations for the deflection angle of electrons/positrons
propagating through a turbulent magnetic field that is statistically homogeneous and isotropic.
The deflection angle δ is set to depend on five parameters, namely the distance propagated D ,
the magnetic field’s correlation length Lc , the Larmor radius, i.e. the gyroradius Rg , and two
spectral indices (nB ,mB ) of a power law given by

PB (k) = B 2(k) ·k2 = A


(

k
k0

)nB
if k ≤ k0(

k0
k

)mB
if k > k0

(2.36)

where A is a normalization constant and k0 correspond to a characteristic scale size λB = 2π/k0.
Further they assume mB = 11/3, which here corresponds to Kolmogorov turbulence, and vary
nB .

In the two cases where the propagation distance D ¿ λB and D À λB one gets for the RMS
value of the deflection angle (Caprini and Gabici, 2015)√

〈δ2〉 ' 2p
3

D

Rg
if D ¿λB , (2.37)

√
〈δ2〉 '

√
DλB

Rg
·Π

(
D

λB
,nB

)
if D ¿λB , (2.38)

where

Π

(
D

λB
,nB

)
=

[(
λB

D

)nB+2
(

(nB +1)Γ(nB +4)sin
(
nB

π
2

)
π2(2π)nB+1nB (nB +2)2(3nB +11)

)
+ nB +3

10nB +20
+O

(
λB

D

)3
] 1

2

. (2.39)

A plot of equation (2.39) is shown in Fig. 2.7. One can see from the figure that Π(D/λB ,nB ) is
generally increasing in value with increasing D , and that for values of nB > 0 becomes approx-
imately constant at D > λB . The value of this scalar is depending on nB itself, but for nB À 1
one see that Π(D/λB ,nB ) → 10−1/2 for propagation distances D > λB . Aharonian et al. (2010)
considered the same power law of a TMF as Caprini and Gabici (2015), but through different
mathematical derivation got a function forΠ in the limit D ÀλB given by

Π

(
D

λB
À 1,nB

)
=

[
(mB −3)(nB −1)

4(mB −2)(nB −2)

] 1
2

, (2.40)

which for mB = 11/3 (Kolmogorov turbulence) and nB À 2 gives the same result as found above
(Π ≈ 10−1/2). In addition to the two sources above, Harari et al. (2002) considered a case where
there is a higher limit kmax (lower scale limit) to the power spectrum. If the kmax value is of many
orders larger than kmin = 2π/λB , this would be equivalent to the above cases, and one would
have Π(D/λB À 1) ≈ 10−1/2. In the case where kmax → kmin the correlation length λc of the field
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Figure 2.7: The function Π(D/λB ,nB ) defined in eq. (2.39) for different values of the large
scale spectral index nB : from top to bottom nB → −3 (black), nB = −2.5 (blue), nB = −2
(magenta), nB = 0 (green), nB = 2 (red). From Caprini and Gabici (2015)

changes with respect to λB like

λc = 1

2
λB

γ−1

γ

1− (kmin/kmax)γ

1− (kmin/kmax)γ−1
, (2.41)

which for Kolmogorov turbulence in the limit kmax →∞ gives λc = λB /5, and for kmax → kmin

gives λc = λB /2. Thus the value of Π(D/λB À 1) → 0.5 in the limit where kmax → kmin. For more
detail of the derivations, see the respective articles (Caprini and Gabici, 2015; Aharonian et al.,
2010; Harari et al., 2002). There are no specific expression for the RMS of the deflection angle in
the interval where D ∼λB as this is the most difficult region to characterize.

In our model of the turbulent magnetic field the power law starts at a minimum wave num-
ber kmin corresponding to a maximal scale size of the turbulence. The power law then falls of
with increasing k equivalent to Kolmogorov turbulence (γ= 5/3), see equation (2.17), to a maxi-
mum kmax (i.e. minimum scale size of the turbulence). This power law is equivalent to eq. (2.36)
with nB →∞ and a cutoff at kmax > k0, where k0 = kmin. Note the difference in γ vs. mB as the
power law in Caprini and Gabici (2015) is P (k) = E(k)k2 ∝ k−mB , while our is defined through
E(k) ∝ k−γ (i.e. mB = γ+2). To find the error of a normalization of the TMF going from kmin

to kmax rather than k → ∞, one may use eq. (2.18). By setting kmin = 1, BRMS = 1 and choos-
ing a set kmax → ∞, an integral over k of eq. (2.18) from k = kmin to k = kmax → ∞ is through
definition equal to 1. Doing the same integral with a finite upper limit kmax gives the relative
MF energy (E ∝ B 2) residing in the turbulence with k ≤ kmax. Calculations give for the first 6
decades 0.99990 = 99.990% of the MF energy, while for 11 decades it is as good as 1.

Assuming that one has a charged particle inside a turbulent magnetic field as described by
our model. Further assume that the gyroradius, as described in eq. (2.35), is such that it is much
smaller than the largest scale size of the turbulence, but still (much) greater than the smallest
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scale size, i.e. 2π/kmax ¿ Rg ¿ 2π/kmin. For propagation distances D ∼ Rg one has three cases
of deflection. The first case is for the turbulence modes with λ = 2π/k À Rg . These modes
change so slowly over the propagation distance that the combined field of these modes is ap-
proximately constant, and the particle moves along the field lines of these modes with deflection
angle proportional to the distance propagated. The second case is that of the turbulence modes
with λ¿ Rg . These modes change so fast that one effectively get small angle scattering that cre-
ates small wriggles on the larger deflections. These small deflections effectively average out over
longer propagation lengths, and we can therefore neglect them in the numerical computations.
The third case is for the turbulence scales where λ ∼ Rg . As mentioned earlier the deflections
where D ∼λB are hard to describe, but they are still large and will therefore have to be included
in the numerical computations.

2.2.1 Computation Method for the Particle Trajectories

To solve the ordinary differential equation (ODE) that is the equation of motion (EOM), de-
scribed in eq. (2.31), we use a Runge-Kutta (RK) solver as described in Press et al. (1997, ch.
16.2). The code has an adaptive stepsize control with error estimation in order to perform the
propagation with smallest possible running time.

The described computational algorithm of the TMF, see section 2.1.2, uses a set number of
modes per decade (ndec). In order to solve the EOM, the RK solver has to compute the magnetic
field at many positions. While the regular field (i.e. not the TMF) is fast to calculate, the cal-
culation of the TMF requires several computation steps for each mode, making it substantially
slower. This makes the computation time of the particle trajectories proportional to the num-
ber of modes used. As argued in the end of the previous section, modes with λ = 2π/k ¿ Rg

of the particle will have their contributions averaged out over longer propagation distances. Of
this reason we chose to disregard these modes in the trajectory computations, but one still has
to include them for the normalization of the field. We chose to draw the line at λ = Rg ,min/3,
where Rg ,min is the smallest gyroradius of the particle anywhere in the model (i.e. in the bubble
barrier where BRMS = 12 µG). One third in scale size correspond to approximately half a decade
in wave numbers. Even though the minimum gyroradius of the whole TMF (Rg ,min) is slightly
larger than the scale size of the modes we disregard, the gyroradius w.r.t. only the turbulence of
scale sizes < Rg ,min/3 gets even smaller as Rg ,min decreases, because the modes contribute less
to the total (constant) BRMS (see eq. (2.35)). For high particle energies where Rg ,min > 2π/kmin

the number of modes is set to be equal to that of half a decade, in order to have a non-vanishing
TMF with some degree of isotropy.

Particles with lower energies will have smaller gyroradii than higher energy particles. This
leads to larger deflections, which when solving the EOM demands higher precision of the RK
solver and therefore more time. Additionally, as lower energy particles require more modes to-
tal (due to more decades), the computation time gets even longer for these particles compared
to higher energies. One could use the same number of modes for all particles, i.e. regulate the
number of modes per decade, but this would not give the opportunity to test particles with dif-
ferent energies in the same fields. If the number of modes per decade has to be reduced to a
number no longer sustaining an approximately isotropic field, a solution is to run the trajecto-
ries with more realizations of the TMF, and would be comparable to a TMF changing in time,
rather than the time independent TMFs that are computed. This will also lead to better aver-
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aged statistics, although one loose information of the individual TMFs, assuming the same total
number of trajectories is used.

In De Marco et al. (2007) the authors tried to describe the propagation of high energy cosmic
rays in the Galaxy using numerical techniques. They modelled the TMF using 100 modes per
decade in order to have reasonable computation time. Their result was a TMF with anisotropy.
With access to more computational power, we have the possibility to compute TMFs with 1 000
modes per decade (or more) for most energies, possibly solving the anisotropy problem of the
TMF.

According to Haverkorn and Spangler (2013) the dissipation scale in the ISM turbulent mag-
netic field is of order 50−250 km, which compared to 10 pc is of magnitude 10−11 −10−12. In
comparison, 1 AU is of order 5 ·10−6 that of 1 pc, so one only makes a small error by normalizing
from 10 pc to turbulence scales of 1−10 AU than to ∼ 100 km as we have shown earlier in Sec.
2.2. Using eq. (2.35) one find for a proton with energy E = 1.0 · 1013 eV inside the MF model
barrier with BRMS = 12 µG that the gyroradius Rg ≈ 9.0 ·10−4 pc ≈ 180 AU. This particle energy
is the smallest used in the computations, as we want to stay at energies À E0 = mc2 to ensure
that the particles are highly relativistic (γL À 1). Setting the lower limit of the turbulence scale
sizes to 10 AU (5.3 decades from 10 pc) results in a relative error of 2.9·10−4 in the total energy of
the TMF w.r.t. lower scale size equal to ∼ 100 km. This we view as an acceptable approximation,
and the TMF is normalized from 10 pc to 10 AU.

2.3 Diffusion, Ballistic Motion, and Curve Fitting

In the propagation of the cosmic rays we will be looking at two cases. In the first case we will
be looking at a continuous source of VHE protons at the center of the bubble, and then trace
the particles until they reach an arbitrary distance in the x y-plane from the origin where they
are considered to be lost. In the second case we assume a burst of VHE protons at the origin
and trace the protons for a given amount of time. The protons with the highest energies will
have gyroradii that are (much) larger than the bubble diameter, and will consequently have a
behaviour close to ballistic particles, i.e. moving in straight lines. For the smallest energies,
even inside the bubble where the Rg is at its maximum, it will still be much smaller than the
bubble radius. In a purely turbulent field they would be expected to have a diffusive behaviour.

First we look at a bursting source case and with ballistic particles. Assuming the particles are
emitted isotropically form the origin, i.e. the unit momentum vectors are evenly distributed on
the unit sphere, the radius r of the particles position in the x y-plane after a time tp is

r = Rp sin(θ), (2.42)

where Rp = v tp ' ctp is the total distance propagated and θ is the angle between the z-axis
and the propagation direction. For an isotropic distribution the angle between the z-axis and
the position vector, θ (a.k.a. the zenith angle), has a defined value 0 ≤ θ ≤ π and it has the
probability distribution f (θ) = sin(θ)/2, while the angle φ in the x y-plane is distributed evenly
between 0 and 2π. As sin(θ) = sin(π−θ) one also gets r (θ) = r (π−θ). If we have isotropy, the
particles will be evenly distributed on a sphere of radius Rp after a time tp has passed. The area
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of a ring of the spherical shell between θ and θ+dθ is

2πRp sin(θ)dθ. (2.43)

The area of the projected spherical shell onto the x y-plane is simply

2πRp sin(θ)dr, (2.44)

with the relation dr = cos(θ)dθ. As the contribution to particle density w.r.t. the x y-plane is
equal for θ and π−θ (over and under the plane), we only have to look at θ above the x y-plane
(0 ≤ θ ≤ π/2) and normalize accordingly. As the number density of particles is proportional to
the area of the shell (i.e. constant density per area), and we have the relation between the area
of a cut of the shell (dθ, see eq. (2.43)) and its projection onto the x y-plane (see eq. (2.44)), we
get for the number density in the x y-plane for ballistic particles

nb(r,φ) ∝ dAshell

dAplane
= 2πRp sin(θ)dθ

2πRp sin(θ)dr
= 1

cos(θ)
= 1√

1− r 2

R2
p

. (2.45)

This can be normalized for the particles as 0 ≤ r ≤ Rp (Rottmann, 2003, ch. 10, eq. 51), and we
get

nb(r,φ) =


2

πRp

1√
1− r 2

R2
p

if 0 ≤ r ≤ Rp ,

0 otherwise.
(2.46)

Equation (2.46) can also easily be rewritten for propagated time instead of propagated distance.
Now looking at the lower energy case of a bursting source. If one assumes diffusion for the

particles the probability density function at a given time and in any direction is a Gaussian dis-
tribution

g (x ) = 1p
2πσ

exp

(−x2

2σ2

)
, (2.47)

where x = |x | and σ is the standard deviation (STD) in the given direction defined by

σ2 = 2Dt , (2.48)

where D is the diffusion coefficient and t is the time that the particles have diffused (or prop-
agated). In the model of the bubble field we have assumed cylindrical symmetry, so we may
assume σx =σy , and eq. (2.47) may be written for r as

gr (r,φ) = gx(x) · g y (y) = 1

2πσ2
x

exp

(−r 2

2σ2
x

)
, (2.49)

which is the probability density in the x y-plane where σx is the 1D STD (in x- or y-direction).
For particle diffusion one also has

In the case where we trace particles until they reach an arbitrary distance (in r ) away from
the origin, one will end up tracing the particles for different amounts of time. Consequentially,
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one will then loose details of the particle trajectories at specific times, but gain other information
concerning timing properties which we will now look at.

Going back to the case where the particles are traced for a certain amount of time. One
may use the probability density functions to calculate the time accumulated probability density
τ(r ), i.e. the relative amount of time spent by all particles inside an area dA (or volume dV ),
by integrating the probability density functions for the particles at any given r over time. First,
looking at the ballistic case using Rp ' ct , we integrate eq. (2.46) from 0 to t f and divide the
result on t f :

τb(r, t f ) = 1

t f

∫ t f

0
nA(r,φ)dt = 2

πct f

∫ t f

t0

dt

t
√

1− r 2

c2t 2

= 2

πct f

∫ t f

t0

dt√
t 2 − r 2

c2

= 2

πct f
ln

 t f +
√

t f − r 2

c2

t0 +
√

t0 − r 2

c2

 .

(2.50)

We recognize t f = R f /c and t0 = r /c, i.e. the time it takes for the first particles to reach r , which
simplifies eq. (2.50) to

τb(r, t f ) = 2

πR f
ln

R f

r
+

√
R f

r
−1

 if 0 ≤ r ≤ R f . (2.51)

This integration over time in not very helpful when dealing with bursting sources, as the
probability density of the particle position is defined momentarily in time. Instead it becomes
very helpful for continuous sources of CRs, where we have no information on when the particles
was ejected from the source, but may have knowledge of the potential lifetime of the particles.
The particle density may therefore be described by the integrated probability density of a burst-
ing source from t0 = 0 to the lifetime of the particles (i.e. t f ).

Another case for continuous sources is if one has a system with finite borders, and one wants
to characterize the probability density of particles inside the system. If one has a constant source
of CRs, the system will be in a steady state if the loss of particles (at the system borders) are equal
to the ejection rate from the source. Given a mean escape time of the particles, one may calcu-
late the total number of particles, and using the probability density one would get the particle
density. The difference from e.g. eq. (2.51) is that now one would only add up the time for
the particles still inside the borders of the system, and consequently the resulting probability
density is only valid inside the borders of the system.

If the particles are ballistic and one traces them to an arbitrary radius Rmax, it is easy to show
that the time spent in a given r -interval of length dr is the same for a single particle, i.e. the
relative time a particle spend inside dr compared to the propagation time of the particle is equal
for all particles, as long as each particle is allowed to reach Rmax (t f →∞). The relative amount
of time spent by all particles in r → r +dr (nr (r )) will then be constant, and the probability



CHAPTER 2. THEORY 25

density w.r.t dA is simply

τb(r ) ∝ dr

dA
= dr

2πr dr
=⇒

τb(r ) = Ar−1 if 0 ≤ r ≤ Rmax,
(2.52)

where A is a normalization constant. Through integration of τb(r ) over dA = r dr dφ it is easily
shown that

A =
[∫

r−1dA

]−1

= 1

2πRmax
. (2.53)

It is worth noting that eq. (2.52) is not possible to normalize for r →∞, as A would in this case
have to go to zero. This is what one would expect for particles propagating for infinite amount of
time, where the partial time spent in a small (or any finite area) would go to zero. With isotropic
emission (n(θ) = sin(θ)/2) of ballistic particles from the origin, the mean length 〈Lbal〉 of the
trajectories out to a given limit radius rlimit is

〈Lbal〉 =
∫ π

0

sin(θ)

2

rlimit

sin(θ)
dθ = πrlimit

2
, (2.54)

giving a mean propagation time to the limit

〈tlimit〉 =
〈Lbal〉

v
= πrlimit

2c
, (2.55)

where the particle speed v ≈ c for highly relativistic particles.
Considering the diffusion case for a given propagation time t f . Performing the same inte-

gration for eq. (2.49) as for eq. (2.46) in (2.51), using the relation in eq. (2.48), one gets

τd (r, t f ) = 1

t f

∫ t f

0
gr (r,φ)dt = 1

t f

∫ t f

0

1

4πDt
exp

(−r 2

4Dt

)
dt

= 1

4πDt f

∫ t f

0

exp
(
−r 2

4Dt

)
t

dt = 1

4πDt f
Γ

(
0,

r 2

4Dt f

)
,

(2.56)

where Γ is the upper incomplete gamma function defined by (NIST, 2017, eq. (8.2.2))

Γ (z, a) =
∫ ∞

a
xz−1e−xdx. (2.57)

In the limit z → 0 eq. (2.57) can be approximated to (NIST, 2017, eqs. (6.6.2) and (8.4.4))

Γ(0, a) =−γE M − ln(a)−
∞∑

k=1

(−a)k

k(k !)
, (2.58)

where γE M is the Euler-Macheroni constant (NIST, 2017, eq. (5.2.3))

γE M = lim
n→∞

(
1+ 1

2
+ 1

3
+ 1

2
+ ...+ 1

n
− ln(n)

)
= 0.57721566490153286060... . (2.59)
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Attempting to find a function describing the probability density for diffusion of particles
from a continuous source out to an arbitrary distance (i.e. a system with borders) is much more
complicated. One would have to perform the time integral of the Gaussian distribution (eq.
(2.49)) from t = 0 to an arbitrary large time t f →∞, while only including the particles that are
still inside r < Rmax (as argued earlier earlier). One now gets

τ̃d (r, t f ) =
∫ t f

0 gr (r,φ)dt∫ t f

0

[∫ 2π
0

∫ Rmax
0 gr (r,φ)r dr dφ

]
dt

=
1

4πDΓ
(
0, r 2

4Dt f

)
∫ t f

0

[
1−exp

(−R2
max

4Dt

)]
dt

=
1

4πDΓ
(
0, r 2

4Dt f

)
[

1−exp
(−R2

max
4Dt f

)]
t f + R2

max
4D Γ

(
0, R2

max
4Dt f

)
= τd (r, t f )[

1−exp
(−R2

max
4Dt f

)]
+ R2

max
4Dt f

Γ
(
0, R2

max
4Dt f

) .

(2.60)

Note the difference between τ̃d in eq. (2.60) and τd in eq. (2.56). Whereas τd considers particles
at all values of r , τ̃d only consider those where r ≤ Rmax.

2.3.1 Fit-Functions

Both eqs. (2.60) and (2.56) are complicated and hard to use when fitting curves to a data plot.
As eq. (2.58) rely on an infinite sum which one needs to compute to a certain precision for every
value of a. The computational program used for curve fitting in this thesis reached a limit at
k ≈ 120. This makes Γ(0, a) suddenly change in value as a approach the maximum value of k in
the series expansion, making it not appropriate to use for curve fitting. Instead of fitting using
eqs. (2.56) and (2.60), we use an other function:

f (r ) = A · r d ·exp

(−r2

2σ2

)
, (2.61)

where A is an amplitude parameter, and d and σ are other fitting parameters. The r d is inspired
by the ballistic cases and the exponent is proportional to a Gaussian distribution. In Fig. 2.8 the
fit-function f (r ) (eq. (2.61)) is fitted against τd (r, t f ) (eq. (2.56)) for two values of t f . One can
see from the plots that the fit-function is a good substitute for τd (r, t f ) in the range of the fit.

Additionally, one can see that σ in eq. (2.61) behave closely to
p

2Dt in eq. (2.56), as should be
expected as both are based on the Gaussian distribution.

To fit the probability density at a given time t we use the following function:

g (r ) = A√
1− r 2

Rm

exp

(−r2

2σ2

)
, (2.62)
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Figure 2.8: Plots of τd (r, t f ) (eq. (2.56)) and a fitted curve f (r ) (eq. (2.61)). The fitting pa-
rameters d and σ of f (r ) is shown in each plot. Left: 4Dt f = 10 (unit less length), and the
fit-function f (r ) is fitted to values of τd (r, t f ) from r = 0.5 to 10 with increments of 0.5. In
the curve fitting, each point was given an error estimate of one tenth (1/10) its value. Right:
4Dt f = 100 (unit less length). f (r ) was fitted in the same manner as in the left plot, with data
points of τd (r, t f ) from r = 1 to 40 with increments of 1.

where A is an amplitude parameter, and Rm and σ are other fitting parameters. The function is
inspired by the density functions of a Gaussian distribution and a ballistic distribution, see eqs.
(2.46) and (2.49).

When analyzing the time and position data from the trajectory simulations, we will fit using
the function in eq. (2.61) for constant CR sources, and the function in eq. (2.62) for bursting
sources. We define the following 4 cases for the curve fitting:

1. Using f (r ) with all fitting parameters, i.e. A, d , and σ.

2. Using f (r ) with d = 0, i.e. only Gaussian diffusion is considered. Fitting parameters: A
and σ.

3. Using f (r ) with σ→∞, i.e. assuming a "ballistic" case with no Gaussian diffusion. Fitting
parameters: A and d .

4. Using g (r ) with all fitting parameters, i.e. A, Rm , and σ.



Chapter 3

Results and Discussion

3.1 Small Angle Deflections

Initially, the computation of the turbulent magnetic field was tested to see whether or not the
field would give the same result for small angle scattering, as predicted by eq. (2.38). Setting the
spectral index of the power law γ= 5/3 (eq. (2.17)) to match Kolmogorov turbulence, a number
of field realizations were computed with 1000 modes per decade. Further, for each field real-
ization 50 protons were injected at a random position within a sphere with radius 1000 times
the largest turbulence scale size (Lmax, or λB ), initially set to 10 pc. Each proton was given an
isotropic starting momentum, i.e. p̂ evenly distributed on the unit sphere, and an energy corre-
sponding to a gyroradius Rg = 10000λB (e.g. E ≈ 1019 eV for BRMS = 0.1 µG). Then the protons
were traced for a total propagation distance of 300 λB and along the way the RMS deflection
angle δRMS was sampled. As the total number of modes determines the computation time of
the simulations, the number of decades had to be restricted. As both the Rg and the distance
propagated D are given in units of λB , eq. (2.38) simplifies.

Figure (3.1) shows the results of RMS deflection angles for many TMF realizations with dif-
ferent values for the TMF parameters. One using 2 decades with ndec = 1000 and a total of 6000
trajectories, the second also using only 0.5 decades with ndec = 1000 and 4800 trajectories, while
the third having no decades k j = kmin, but having 2000 modes. We see that δRMS is approx-
imately twice as large as the expected theoretical values from Caprini and Gabici (2015). We
would expect the results from the realization with 0 decades to be close to the maximum value
predicted by Harari et al. (2002) (for a small number of decades), but this is however not the
case as it is the other deflections that approximate this theoretical maximum. Why the values
are larger than the theoretical ones are not easily explained, but it might have to do with the
precision of the computation, either having too few modes or possibly errors originating in the
solving of the EOM. Further, the results also show that the δRMS is larger for a decreasing num-
ber of decades, as is expected by Harari et al. (2002). In addition, the δRMS values are following
the theory with respect to Π(D/λB ,nB À 2) ≈ constant. With respect to our regular field model
(λB = 10 pc), the range at which Π(D/λB ) is approximately constant is at least 300λB = 3000 pc
(about the width of the halo component of the Galactic MF, De Marco et al. (2007)), or approxi-
mately 9 600 years of propagation. In the case of small angle scattering we expect the protons to
move with ballistic properties, meaning 3 000 pc is more than enough for our model. We also no-
tice that the difference between 0.5 and 2 decades are small, meaning that we only make a small

28
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Figure 3.1: Plot of the RMS deflection angle, δRMS, for turbulent magnetic fields (TMFs) with
multiple realizations, each field with its own number of modes per decade (ndec) and total
number of decades (dec). For the results marked nk = 2000 the TMFs had no decades, i.e. the
wave vectors of the modes, k j , were all of the same length k = kmin = 2π/λB . The solid lines
represent the theoretical RMS scattering angles as from eq. (2.38), where Π(D/λB ,nB À 2)
holds different theoretical values: 10−1/2 (Caprini and Gabici, 2015), 0.5 (Harari et al. (2002),
ndec → 0). δ1 represent the theoretical δRMS in the limit where Π(D/λB ,nB À 2) = 1. Note
that the blue values (dec = 2) are shifted slightly to the right for easier viewing

error by only using half a decade for small angle scattering. This also saves a lot of computation
time.

From theory (see eq. (2.31)) one expect the energy (or the value of the momentum) of the
protons to be conserved, as the force is always applied perpendicular to p. To check if there was
energy conservation in the simulation, the initial and end momentum was compared for each
trajectory. If the deflection angle would be a result of an additional momentum perpendicular
to the initial momentum p , then the new momentum p’ would be

p’ = p+δRMS|p |ê ⊥, (3.1)

where ê ⊥ is a unit vector in the direction of the deflection, perpendicular to p. Assuming δRMS

is small, one further has

p ′ = |p’ | =
√

1+δ2
RMS|p | ≈

(
1+ 1

2
δ2

RMS

)
p. (3.2)

At D/λB the values of δRMS ≈ 8.7 ·10−4 which gives (p ′−p)/p ≈ 3.8 ·10−7. The maximum relative
deviation for both simulations in Fig. 3.1 was of order 10−10 which is much less than if the
momentum was added, i.e. one has energy conservation.

The small angle deflections could also be simulated for more than 2 decades in wave num-
bers and/or for smaller values of Rg , but this require a substantial amount of time (or many
processors) to compute, which in the case of this thesis was prioritized for the SB simulations.
The precision of the RK solver could also have been lowered in order to gain shorter simulation
time, but then the energy conservation could come into questioning.
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3.2 Regular Magnetic Field Models

Table 3.1: An overview of the parameter values of the regular magnetic fields (MFs) and the
turbulent magnetic fields (TMFs).

Parameter name Parameter symbol Parameter value
Bubble radius rbubble 50.0 pc
Bubble width wbubble 2.0 pc
Wall transition width wtr 0.8 pc
Transition radius, inner to outer MF rtr,io 51.0 pc
Maximum turbulent scale size, TMF λB 10.0 pc
Lower normalization scale size, TMF λmin 10.0 AU = 4.85 ·10−5 pc

From section 3.1 we learned that ndec = 1000 was a sufficient number in order for the TMF to
be approximately isotropic. To compare the two regular field models of the bubble, as described
by eqs. (2.7)-(2.10), we look at a case where we have a continuous source and trace the protons
to a set radius equal to double the bubble radius. The source was set to be located at the ori-
gin to get cylindrical symmetry w.r.t. the bubble field. The parameters for the radial magnetic
strength BRMS(r ), see eq. (2.11), was defined using the parameters found in Tab. 3.1, as well as
the transition radius between the bubble’s inner MFs and the external MF in the ISM. The TMF
scale sizes is also shown in the table and we assume Kolmogorov turbulence, i.e. spectral power
law index γ = 5/3. In order to compare the fields we looked at four proton energies: 1.8 · 1014

eV, 1.0 ·1015 eV, 1.0 ·1016 eV, and 1.0 ·1018 eV. The spread in E was to cover cases where Rg in the
barrier (see eq. (2.35)) is either much larger, of similar size, smaller, or much smaller than the
barrier width. Note that because we use protons and both eq. (2.31) and eq. (2.35) depend on
the total electric charge of the particles, any energy represented in our results will apply for any
relativistic particle with E/Z equal to the same energies (Z = number of elementary charges = 1
for protons).

Both regular fields (CW and CW-ACW, see Sec. 2.1.1) were then injected with a given number
of protons at the origin with isotropically distributed momentum vectors. The proton energies
and numbers, and the TMF parameters used for each energy can be seen in Tab. B.1 in the ap-
pendix, where the error parameter of the RK solver (εRK) is a parameter indicating the precision
in the numerical solution of the EOM (for further details see Press et al., 1997, ch. 16.2). For the
random numbers in the computation we used a random number generator with the same initial
seed for the same energies, resulting in equal TMFs for the MF models at the same energies, thus
the difference in the results would be due to the regular fields only. The protons were sent out
from the origin in isotropic directions and were traced until they reached r = 2rbubble = 100 pc
or until they had propagated for 100000 years (i.e. ≈ 31300 pc). Note in Tab. B.1 that ndec < 1000
for the smaller energies due to increasing computation time with decreasing energy. Also, as we
expect the less energetic protons to propagate for a longer time, thus contributing more data to
the probability density per trajectory, the number of trajectories is less for the smaller energies
than the higher energies. In addition, the weighting of B 2 between the regular field and the TMF
was assumed to be 50%-50% of B 2

RMS, i.e. equipartition.
The probability density (see Sec. 2.3) for each model and energy was calculated from the

simulation data, summing up the total time spent by every proton inside 20 equally spaced
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Figure 3.2: The plots show the calculated probability density as function of r from the pro-
ton trajectory simulations, each representing one proton energy. The results from the two
different models of the inner bubble field is plotted against each other for comparison: 1.
Clockwise-anticlockwise rotation (CW-ACW), 2. clockwise rotation (CW) (see Sec. 2.1.1).

r -intervals (i.e. radial distance in the x y-plane) of width ∆r = 2.41 pc inside and outside the
bubble barrier. The barrier itself was divided into 10 equal r -intervals, which was ranging from
r = rbubble−0.5wbubble−wtr to r = rbubble+0.5wbubble+wtr. This includes 0.5wtr of the inside and
outside regions, i.e. where BRMS(r ) is equal to that of the inside or outside field, see eq. (2.11).
The radial value of each bin is set to be the middle radius of each bin, in order for each circular
area to be defined by 2πr∆r . The results of the simulations of the four energies mentioned
earlier can be seen in Fig. 3.2

From the plots in Fig. 3.2 one can see several aspects. At the smallest energies the densities
are almost identical, with a slightly higher value for the CW model at the smallest radial dis-
tances (r < 10 pc). As the energy increases, the CW model tend to increase in probability density
at lower r while getting smaller at higher values of r compared to the CW-ACW model. As the
energy increases, the effect of the barrier (at r ∼ 50 pc) on the probability density gets smaller for
the CW-ACW model while it stays approximately the same for the CW model. Lastly, outside the
bubble (r > 50 pc) the shape of the probability density is close to identical for both models. The
last observation is the easiest to explain. As there is no difference between the models outside
the bubble (r > 51 pc), we expect the protons to behave equally w.r.t. the magnetic field. Note



CHAPTER 3. RESULTS AND DISCUSSION 32

Table 3.2: Propagation time results from the CW vs. CW-ACW model comparison.

Energy Model Mean total Mean time Mean time SE mean Max time
time outside inside inside inside

E 〈tp〉 〈tout〉 〈tin〉 tp,max

[eV] [yr] [yr] [yr] [yr] [yr]
1.8 ·1014 CW 17 188.0 2 903.0 14 285.0 200.0 93 957
1.8 ·1014 CW-ACW 16 266.0 2 808.0 13 458.0 186.0 90 603
1.0 ·1015 CW 15 446.0 3 268.0 12 178.0 131.0 91 799
1.0 ·1015 CW-ACW 11 020.0 3 273.0 7 747.0 93.0 69 085
1.0 ·1016 CW 8 480.0 1 791.0 6 689.0 67.0 100 000
1.0 ·1016 CW-ACW 3 871.0 1 740.0 2 131.0 10.0 18 921
1.0 ·1018 CW 905.0 285.0 620.0 39.0 100 000
1.0 ·1018 CW-ACW 540.6 264.4 276.2 3.4 9 482

that the TMFs have the same modes for each energy, and while the inner field may cause the
protons to leave the bubble at different spatial positions where the TMFs would have different
phases, these details are washed out in the statistics. It is also important to note that while the
inner fields are generally independent of angular direction φ in the x y-plane (i.e. cylindrical
symmetry), with exception of the CW-ACW model at y = 0, the outer field has no such symme-
try. This means that one would expect different probabilities outside the bubble depending on
φ. Normally one would define two probability densities, one parallel and one perpendicular to
the magnetic field lines of the outer field. However, this will not be considered in this thesis, as
we are more interested in the properties of the bubble and not the ISM.

Now, if one assumes the models of the inner fields have no preferred point at which they let
protons escape the field, then statistically the protons will leave both fields isotropically w.r.t. φ
(and θ). Consequentially the proton motion outside the bubble should be statistically equiva-
lent, with the same amount of time spent inside each r -interval. The only explanation of the
difference outside the bubble is that the total time that the protons have used is different for the
relevant energies. This is in agreement with the raw data from the simulation, as seen in Tab.
3.2, where one sees that the mean propagation time 〈tp〉 is larger for the CW model than the
CW-ACW model. Additionally, one can see that the mean time spent propagating outside the
bubble (in and outside the barrier) is approximately the same, as expected.

Looking at the maximum time of any trajectory in the two models at the different energies
(see Tab. 3.2) one sees that while at larger E the maximum time goes down for the CW-ACW
model, the maximum time in the CW model goes to the limit of 100 000 years set by the simu-
lations. This means that not all protons escaped to a distance r = 2rbubble, and are presumably
being trapped in the bubble. One possible explanation of this can be the structure of the regular
fields themselves. By extrapolating the fields seen in Figs. 2.3 and 2.4 in the z-direction and tak-
ing a cut of the x y-plane along the z-direction (i.e. through x = 0) one ends up with two pictures
of the regular field inside the bubble. One where the MFLs point into the plane for all values of y ,
i.e. the CW-ACW model looking in positive x into the plane, and one where the MFLs point into
the plane at y > 0 and out where y < 0, i.e. the CW model looking in positive x-direction into
the plane. If one excludes the TMF, any charged particle initially propagating from the origin in
this plane would only be accelerated in a direction limited by this plane, in other words the par-
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ticle would stay in the plane as long as it stays inside the bubble. Assume a proton (or another
positively charged particle) with Rg > 2rbubble that is sent fourth from the origin with an angle
θ → π w.r.t. the positive z-axis (i.e. close to negative z-direction). Depending on the model,
one of two things would happen: If the model is the CW-ACW, the proton is initially deflected
towards negative y-direction and keeps going until it hits the barrier (due to a large Rg ). If it is
the CW model, the proton would initially be deflected towards the z-axis and when it reaches
y = 0 the acceleration flips again towards the z-axis thus making the proton "resonate" around
y = 0. This may also be the case with a TMF though the filed deflects the proton into an angular
direction, because for high E values this deflection gets smaller per propagated distance.

When looking at the raw data for E = 1.0 ·1018 eV, we see that the minimum z-value for the
CW model was -29 647 pc while it was only -1 432 pc for the CW-ACW model. This indicate a
resonance in the CW model for particles propagating in negative z-direction. One may, using the
same case as above, convince one self that for the CW model all positive particles propagating
in positive z-direction are deflected away from the z-axis, while towards positive y-direction for
the CW-ACW model (both giving no resonance). Further we note that any resonance will keep
the protons inside the bubble longer thus result in higher probability density inside the bubble
(and presumably for lower values of r ) and longer mean propagation time. Both of these effects
are present in the plots and the average time data for the higher energies in Fig. 3.2 and Tab.
3.2. The resonance should not have a large impact on the smaller energies, i.e. Rg ¿ λB , as
the TMFs will contribute substantially to the deflection of the protons. For E = 1.8 ·1014 eV the
Rg ≈ 1.8 pc inside the bubble and the protons would rather turn to helical motion along the
MFLs with slight deflections due to smaller turbulence scales. Additionally, viewed against the
Local Bubble, who’s size perpendicular to the Galactic plane is estimated to approximately 600
pc (see Sec. 1.1), particles resonating for several kpc perpendicular to the Galactic plane would
soon find themselves outside the LB and the width of the halo component of the Galactic MF
(around 3 kpc, De Marco et al. (2007)).

Now we take a look at the probability density at the barrier. What is clear from the plots in Fig.
3.2 is that for the CW-ACW model the effect of the bubble barrier is decreasing with increasing
E until the protons do not seem to "see" the barrier for 1.0 ·1018 eV. For any proton with Rg in
the barrier much greater than the width of the barrier itself is likely to be only experiencing a
small deflection when propagating through the barrier. Only if the proton hits the barrier at
an angle so that it is almost parallel to the barrier, and if the orientation of the MFLs is so that
the MF deflect the proton towards the side of the barrier at which the proton entered, then the
proton is likely to be reflected from the wall. For high energies in the CW-ACW model this would
only happen for protons moving in the negative z direction at y > 0 or in positive z-direction at
y < 0 (see Fig 2.3 for spatial orientation of the CW-ACW field). When they later reach the other
side of the bubble, still propagating in the same z-direction, they will be deflected outwards
and away from the bubble and escape. While at smaller energies, where Rg < wbubble, there is
always a large possibility that the proton is reflected from the wall as the proton may perform
a full (helical) loop in the barrier and be thrown out again. In the case for E = 1.0 ·1016 eV the
gyroradius is Rg ≈ 1 pc inside the barrier. This means that the particle might be reflected by the
barrier which has a width of 2 pc. Additionally, the Rg inside the bubble is approximately 100
pc, equal to the diameter of the bubble, which puts the protons somewhere between diffusive
and ballistic (more towards the latter). As the TMF has a largest scale size of 10 pc, it could
easily deflect the protons in an angular direction in the barrier and scatter the protons around
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the bubble. Given enough reflections this could make the protons inside become approximately
equally distributed thus contributing to equally to the r -intervals of the accumulated time per
area and flattening out the probability density. This might be the case for the flattening of the
CW-ACW model in the plot as this model do not get the possible "resonances" that the CW
model may get.

In contrast to the CW-ACW model, the fall of the probability density over the barrier does
not seem to change for the CW model. Why this is, is not easily explained. It might be a result
of the earlier mentioned "resonance" where the protons also reach the wall for ballistic energies
for each crossing of the z-axis, but we can not be entirely sure.

In the end we are mostly interested at the low energy particles as these are the ones most
likely to come from supernova remnants either from within the Local Bubble or from other ad-
joined bubbles. The two models show little difference at the lower energies and subsequently
we may therefore only use one model in the further computations. Thus we choose to use the
CW-ACW model going forward.

3.3 Continuous Source

In this section we will be looking at the case where we have a continuous source of CRs inside
the magnetic SB. The source was set to be located at the origin, as in Sec. 3.2, in order to obtain
cylindrical symmetry w.r.t. the regular bubble field. As mentioned at the end of Sec. 3.2 we only
consider the CW-ACW model for the bubble field. With the case of a constant source of CRs, one
does not possess the total number of particles in the system (as one could approximate from a
bursting source like a SN), but one would be able to tell something about the production rate of
the CRs. If one knows the production rate as a function of energy and the average time a particle
would use to leave the system (i.e. the bubble in our case) one would be able to acquire a steady
state particle number thus with the probability density also get the particle density.

By increasing the number of injected energies for the protons, new simulations were per-
formed for a continuous source in the same manner as in Sec. 3.2. The model parameters was
kept the same as well, see Tab. 3.1, and the maximum radius was Rmax = 2rbubble beyond which
the particles were considered lost. The input parameters of the TMF for each proton energy can
be seen in Tab. B.2 in the appendix, while data on the change in particle momentum (due to
small numerical errors by the RK solver when solving the EOM) can be seen in Tab. B.3. Note
that at small E the relative error of the momentum increases, but in order to keep the simula-
tion time within reason some precision had to be sacrificed. We still note that the largest relative
change was≈ 7% (E = 1.8·1013 eV, with a mean relative change∼ 0.3%) in a region where we have
large angle scattering (diffusion). As will be later shown, we only have small angle scattering for
the largest energies where the relative change in momentum was small compared to δ2

RMS.
To analyze the resulting time density distributions we use the three cases of eq. (2.61) defined

in Sec. 2.3.1, i.e. cases 1, 2 and 3. Case 1 was shown to be a good substitution for eq. (2.56)
(Gaussian diffusion to a time t f ), and using the fact that the denominator in eq. (2.60) (Gaussian
diffusion to a time t f , only considering particles inside a radius Rmax) is a constant for any given
Rmax case 1 should be a good substitute for eq. (2.60) as well. Further, the ballistic time density
was described by eq. (2.52) which corresponds to case 3 (or case 1) with d =−1 (and σ→∞).

To see how these functions best fit to the different results, we first take the probability density
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Figure 3.3: Best fit of cases 1, 2, and 3 to the time density distribution inside the bubble at
proton energies E = 3.0 ·1013 eV (top) and E = 5.0 ·1016 eV (bottom). The left plots only show
the inside of the bubble, while the plots to the right show the entire system out to r = 2rbubble.
The black regions in the plots on the right correspond to the bubble barrier.

results from two energies, 3.0 ·1013 eV and 5.0 ·1016 eV, and perform curve fitting on them. In
the lower energy case the protons’ gyroradii inside the bubble are less than 1 pc and we expect
therefore diffusion like motion of the protons. At the higher energy case a protons gyroradius is
∼ 500 pc and thus we expect more ballistic motion than diffusion. The best fit to the results of all
three cases are shown in Figs. 3.3 and 3.4 where each data point (given an r -value corresponding
to the middle of the bin, see the figures) is given an uncertainty of one tenth its value. In Fig. 3.3
we see the functions fitted to the values inside the bubble while in Fig. 3.4 we see them fitted to
the outside values.

In Fig. 3.3 we see that the case 1 fit is close to perfect for both energies (note that in the
bottom plots case 1 and 3 almost completely overlap). Further, while case 3 (representing a
Gaussian-like distribution) never really fit any of the energies it is far better for the lower energy.
On the contrary, case 2 gives a good fit at the higher energy while being bad at lower. The fact
that case 2 gives such a good fit indicate ballistic-like motion at higher energies. In general, the
plots show that the case 1 fit is performing well for both high and low particle energies.

Looking at the plots in Fig. 3.4 for the curve fitting outside the bubble one can see a few
changes to the fitting cases. While case 1 still perform well it is now approximately equal to
case 2 for both energies. Case 3 on the other hand is not performing well in any of the fits. The
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Figure 3.4: Best fit of cases 1, 2, and 3 to the time density distribution outside the bubble
at proton energies E = 3.0 ·1013 eV (top) and E = 5.0 ·1016 eV (bottom). The left plots only
show the outside of the bubble, while the plots to the right show the entire system out to
r = 2rbubble. The black regions in the plots on the right correspond to the bubble barrier.

explanation to this lies in the fact that outside the bubble the BRMS = 5 µG giving a gyroradius
Rg ∼ 10 pc for E = 5.0 ·1016 eV. This is the same as λB of the TMF and is smaller than the bubble
radius thus no longer resulting in ballistic-like motion. In general this means that both cases 1
and 2 work well for curve fitting of the data outside the bubble for most of the relevant energies
(see Tab. B.2), but we would still expect case 3 to be valid (and thereby case 2 not to be) at
energies E À 5.0 · 1016 eV, i.e. ballistic particles outside the bubble. Similarly to what is seen
inside the bubble, in the case of ballistic particle outside the bubble we would expect to see an
effect in the case 1 parameters for the highest energies, i.e. that σ→∞, making case 1 equal to
case 3.

3.3.1 Curve Fitting the Probability Densities

The curve fitting was performed for each of the cases 1, 2, and 3 (see Sec. 2.3.1) on the proba-
bility densities for each E (see Tab. B.2). An error estimate of one tenth of the data values was
used (as was done in Figs. 3.3 and 3.4). The resulting values of the fitting parameters, with the
exception of the amplitude parameter A, can be seen in Fig. 3.5 for case 1 and Fig. 3.6 for cases
2 and 3. As argued earlier case 3 is not a good fit outside the bubble and would not give any
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Figure 3.5: Results from the curve fitting of the probability densities from the simulations
with a constant cosmic ray source. The plots show the fitting parameters d and σ from the
case 1 curve fitting, see Sec. 2.3.1.

valuable contribution to information about the probability densities and is therefore excluded
from the figure. The amplitude constants are not likely to be normalized with respect to the
the other parameters and the function fitted, due to the change in the probability densities over
the bubble barrier, thus are only used to gain the best possible fit and therefore we do not plot
them. All the parameter values (with estimated errors) from the case 1 curve fitting (the best fit
in general) are shown in Tabs. B.4 and B.5 in the appendix.

From the top-left and bottom plots in Fig. 3.5 we notice that the σ-parameter "diverges"
after E = 1.8 · 1015 eV inside the bubble. At this energy the gyroradius Rg of the protons are
approximately 18 pc ≈ 2λB of the TMF, and at the first energy where σ has "diverged" we find
that the gyroradius is approximately 30 pc (E = 3.0 ·1015 eV). Consequently, case 1 should equal
case 3 (Fig. 3.6) for E ≥ 3 · 1015 eV which is what we see. Additionally, we see that though the
values of d are the same for case 1 and 3 for the higher energies (inside the bubble), the error
estimate in case 1 is larger which is due to the fact that d andσ are coupled. Looking at the plots
outside the bubble barrier in Fig. 3.5 we do not see the same sudden divergence in the values
of σ, though the value of σ increases at the two largest energies. This would be expected if the
density goes towards that of a ballistic case, i.e. probability density ∝ r−1, which is what we see
for the two highest energies where d →−1 both inside and outside the bubble.

Considering the inside case of Fig. 3.5, we see that as σ "diverges" the value of d does not
sharply change to −1 (indicating ballistic motion), but changes rather smoothly from d ≈−0.25
to d = −1. From the fit function (eq. (2.61)) we see that a value 0 < d < −1 with σ→ ∞ (i.e.
exponential = 1) describes a probability density that is less decreasing than the ballistic case. To
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Figure 3.6: Results from the curve fitting of the probability densities from the simulations
with a constant cosmic ray source. The top plots show the fitting parameter σ from the case
2 curve fitting, and bottom plot shows the fitting parameter d from the case 3 curve fitting
inside the bubble, see Sec. 2.3.1.

get a better understanding of the probability density at these values, a plot of the probability
density at E = 7.5 ·1015 eV is shown in Fig. 3.7. We see straight from the plot that the probability
density has flattened out at higher r inside the bubble. As argued in Sec. 3.2, when the gyro-
radius in the barrier wall is slightly smaller than the barrier width, the particles are most likely
to be reflected by the bubble barrier while still having a gyroradius inside the bubble of similar
order to rbubble thus letting the particles move quite freely and distribute themselves relatively
fast inside the bubble. Consequently the position probability density inside the bubble will be-
come approximately constant in a short period of time (w.r.t. total propagation time) and result
in a flat(ter) probability density. In other words, as an integral of a constant particle density over
time equals the constant multiplied with the total time, thus resulting in a constant probability
density. To get a better view of how the particle trajectories look like, the trajectories of four en-
ergies (1.0 ·1014 eV, 1.0 ·1015 eV, 1.0 ·1016 eV, and 1.0 ·1017 eV) are plotted in Figs. C.2 and C.1 in
the appendix. These plots will not be discussed further here.

Looking at the plots in Fig. 3.5 we see that outside the bubble there is a sudden transition
at E ∼ 1016 eV where d goes from positive to negative values while σ gets a sudden increase in
value. Additionally, at E = 1017 eV it looks like there is almost another transition pushing the val-
ues in the opposite direction than that of the first one. As a decreasing d (more negative) would
result in a faster decreasing probability density while an increase of σ result in the opposite, the
net result of the first change in the values is hard to predict. We see that E = 1016 eV is in be-
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Figure 3.7: Best fit of case 1 to the time density distribution inside the bubble at proton
energy E = 7.5 ·1015 eV. The left plots only show the inside of the bubble, while the plots to
the right show the entire system out to r = 2rbubble. The black regions in the plots on the
right correspond to the bubble barrier.

tween the the higher energy in Fig. 3.4 and the energy in Fig. 3.7. Looking at the part of the plots
outside the bubble we see a slight tendency for the shape of the probability density to straighten
out (and possibly start to curve upwards) at higher values of r when E increases. Additionally,
we recognize that at E = 5.0 ·1016 the gyroradius outside the bubble Rg ≈λB = 10 pc. This could
mean that the transition is a result of the particles becoming more ballistic in the external MF
similarly to what was observed inside the bubble.

In an attempt to explain the mentioned transitions it is important to look at the magnetic
fields themselves. Inside the bubble we have a regular field fulfilling cylindrical symmetry while
the outside MF does not (as it points in constant x-direction, see Fig. 2.3). Therefore we do an
error in our approximation where we simplify the particle density distribution to be indepen-
dent of angle outside the bubble barrier as one would have two different diffusion constants for
diffusive motion in respectively parallel and perpendicular direction to the MFLs. If Rg À rbubble

(the distance between the barrier and Rmax) we do not expect the particles (protons) to be de-
flected in any major direction and thus we should not see a difference in the densities w.r.t.
φ within Rmax (i.e. we expect full ballistic motion). Further, in the case of Rg ¿ λ we expect
the particles to follow the MFLs. As the regular field is modelled with 50% of the total field en-
ergy, the particles are more likely to move along the direction of the regular field with some
motion perpendicular due to the TMF. Note that outside the bubble the movement in z- and
y-direction is symmetric due to the constant regular field in x-direction. The interesting case
is when Rg ≈ λ as one would would see strong deflections as helical motion around the regular
MF with additional smaller deflections induced by the TMF. Whether or not this may explain the
second transition is not certain. In order to check the effect of both λB and the partial energy in
respectively the regular or turbulent MFs, new computations would have to be performed while
changing one parameter at the time. These are computations we regrettably did not have the
time to perform.

As shown in Sec. 2.3.1, the fitting cases 2 and 3 are only equivalent to case 1 with either
d = 0 or σ→∞, but they may be able to help explain what we see in the results of case 1 (Fig.
3.5). As we have argued, case 2 is working well for mostly all energies outside the bubble and
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Figure 3.8: Plot of the σ values of curve fitting case 1 inside the bubble at lower energies.
h(E) = A ·Eα is fitted to the σ-values of the 8 lowest energies.

for the lower energies inside. Looking at the results from case 2 in the bottom plot in Fig. 3.6
(outside the bubble) we see equal tendencies of the σ values in case 2 as in case 1, and while the
transition is still there for case 2, we do not see a local maximum in the values of σ. The local
top in the values of σ in case 1 may be there because of a strong correlation between d and σ.

On the inside of the bubble, Fig. 3.3 shows that case 2 is only valuable if E is small. Conse-
quently the values for σ at higher E inside the bubble in Fig. 3.6 make no sense. On the other
hand, if one compares σ of lower energies in cases 1 and 2 (Figs. 3.5 and 3.6) inside the bub-
ble, we see that the σ values are almost equal with case 2 being slightly smaller, probably due
to the difference in values of d . As d < 0 gives a steeper fall for eq. (2.61) than d = 0, σ would
have to increase in order to (partially) negate the change. Further we see that the values of σ
for lower energies in both cases 1 and 2 approximate a linear dependence in logarithmic scale,
i.e. σ ∝ Eα. Fitting the 8 lowest values of σ in case 1 to a function h(E) = A ·Eα resulted in
α= 0.106±0.009 and the fit can be seen in Fig. 3.8.

If we were to look at what the physical meaning of σ in eq. (2.61) is, we remember that in
eq. (2.48) we have σ2 = 2Dt where D is the diffusion coefficient. For 2D Gaussian diffusion one
has for the radial distance 〈r 2〉 = 4Dt , meaning σ becomes a measure of the RMS distance. This
is easily shown by integrating r 2 multiplied with eq. (2.49) over all space (dA). For cosmic rays
propagating with diffusive motion in a purely isotropic TMF defined by Kolmogorov turbulence
(γ= 5/3, eq. (2.17)), with no regular field components and with gyroradii of the particles Rg ¿λc

(= correlation length <λB ) one has (Berezinskii et al., 1990):

D ∝ E 1/3. (3.3)

If we were to use eq. (2.48) and the result in Fig. 3.8, assuming t = t f is constant as most par-
ticles reach Rmax, we get D ∝ E 0.212. We see that it is off by a factor of ∼ 3/2. As both the gy-
roradii of the particles are not necessarily much smaller than λB (> λc ) and the fact that we
have a regular field, we do not expect to recreate eq. (3.3). Another reason to why we do not
get the result from eq. (3.3) may be because of the assumption made when equating the ex-
pected probability density for diffusive motion with the fitting function (i.e. eq. (2.60) and
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eq. (2.61)) in Sec. 2.3.1. In Fig. 2.8 we see that for 4Dt = 10 we should have σ2
fit = σ2 = 5,

but the fit gave σfit = 2.142 ⇒ σ2
fit = 4.588 = 0.918σ2. Further, for 4Dt = 100 (σ2 = 50) we got

σfit = 6.591 ⇒ σ2
fit = 43.441 = 0.869σ2, thus the σfit calculated in the curve fitting is lower than

the true value used in eq. 2.60 and seemingly increasing in relative error with increasing Dt . On
the other hand, due to an increasing MF strength in the barrier (where the diffusion coefficient
would change) we get reflection of the CRs that is not expected by diffusive motion in the MF
inside the barrier. This may in turn effect the probability density so that one get an increase in
σ (as seen when σ "diverges") though this primarily happen once the particles leave diffusive
motion. A final notation is that in addition to the requirement of diffusive motion, the σ2 ∝ D
assumption should also be viewed over scales À λc or over many realizations of the TMF to
wash out details of the TMF. We try to do the latter, but we still have a model that is of similar
scale as λB .

If we look at the values of σ at low energies for the fitting cases outside the bubble (case 1
and 3, Figs. 3.5 and 3.6), we see that contrary to inside the bubble, the values of σ has a local
minimum at E = 5·1015 eV and increase slightly with decreasing E . As mentioned when we were
looking at the transition region at E ∼ 1016 eV, the outside field does not have cylinder symmetry.
If one assumes the particles mainly follow the regular MFLs (i.e. motion in the x-direction), the
particles leaving the bubble at x = 0 will have further to go in order to reach the maximum radius
set by the model than particles leaving at y = 0. Simple calculation gives a 73% longer path for
x = 0 than y = 0 for Rmax = 2rbubble, i.e 50 pc for the first and 86.6 pc for the latter. This angular
dependent motion becomes difficult to explain using an angular independent model. Thus it is
clear that a cylinder symmetric function like eq. (2.61) will not be sufficient to truly depict the
position and time density distributions outside the bubble, especially when the particles leave
at different angles.

3.3.2 Escape Time and Particle Density

As mentioned in the beginning of Sec. 3.3 the mean escape time, or mean time spent, of the
CRs in the bubble are of high interest. Together with the accumulated time density one may
calculate the particle density when the system is in steady state. To calculate the escape time
for the protons we calculated the mean time each particle spent inside the bubble. Note that we
defined inside by the inner 20 r -intervals (48.2 pc) used when fitting the probability density, i.e.
inside of the bubble barrier (see Sec. 3.2). The resulting escape times from the simulations are
shown in Fig. 3.9. More data of the propagation time of the trajectory simulations can be seen
in Tab. B.6 in the appendix. From the table we see that for the smallest energies some protons
reached the absolute value in propagation time set by the simulation. This would possibly make
the calculated escape time smaller as the particles may still be inside the bubble. The faction of
protons that propagated for the full 100 000 yr was not more than 3% for any energy, indicating
that the calculated values are very close to the more precise escape time values if the particles
were allowed to propagate until they reached the outer boundary of r = 100 pc. To do this we
would have to increase the propagation time and thereby the total computation time. Berezin-
skii et al. (1990) states that for CR with diffusive motion the diffusion coefficient has the property
D ∝ E 1/3, thus making the mean escape time (〈tesc〉 = 〈tin〉) to a given radius 〈tesc〉 ∝ E−1/3. To
check the energy dependence of the mean escape times, the results for E ≤ 1.8·1015 eV was fitted
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Figure 3.9: Mean time spent inside the bubble (〈tin〉) for each particle energy in the sim-
ulations. The green curve represent the function t (E) = A·E−α, and is fitted to the escape
times for energies E ≤ 1.8 ·1015 eV. The blue line represent the theoretical mean time spent
by isotropically emitted, purely ballistic particles.

against a function
t (E) = A ·E−α, (3.4)

with A and α being fitting parameters. The result of the fit was a value

α= 0.354±0.008,

which is just shy off the theoretical 1/3 value, and further giving an indication of the mean es-
cape time for lower energies. As mentioned in Sec. 2.2.1 we only go down to proton energies of
E = 1.0 ·1013 eV because lower energies would require very long computation time in order to
keep up the precision of the simulations. However (see Fig. 3.9), we are already in the scaling
region w.r.t. E and we may therefore just extrapolate down to lower E .

We see from Fig. 3.9 that the escape time from the bubble (i.e. the mean time inside) starts
to drop away from that expected from diffusion (i.e. t (E) ∝ E−1/3) at energies ≥ 3.0 ·1015 eV. The
largest bend we see at E = (5−8) ·1015 eV, and the escape time thus gain a knee-like structure
around this energy. At 3.0·1015 eV the gyroradius inside the bubble is ≈ 30 pc = 3λB , while inside
the barrier it is ≈ 0.25 pc = wbubble/8. We also recognize E = 3.0·1015 eV as the energy at whichσ
"diverged" in the fitting of the probability densities (Fig. 3.5). We can therefore define an energy
limit for when the escape time of the protons deviate from the trend of diffusive motion inside
the bubble, and we set the limit to be Ediff = 2 ·1015 eV. Further, we see that the mean time has
a second "transition" where the absolute value of the derivative of 〈tin〉 w.r.t. E stops growing
and start to decrease in value, thus 〈tin〉 starts to approach a constant value. This starts at the
data point for E = 2.4·1016 eV where the gyroradius in the barrier is Rg = 2.1 pc ≈ wbubble. At this
energy limit particles are more likely to get through the barrier than being reflected by it, thus
the bubble looses most of its effect on the probability density and the fall in probability over the
wall is approaching zero (e.g. see Fig. 3.4). These "transitions" look very much like the "knee"
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and "ankle" features of the CR spectra (see Fig. 1.2), where the first feature (the "knee") being
located at approximately the same energy while the "ankle" in Fig. 3.9 is more than an order of
magnitude lower. This may indicate that the LB has some effect on the "knee" in the observed
CR spectra.

The blue line in Fig. 3.9 is a mean escape time for purely ballistic particles, calculated from
eq. (2.55) using rlimit = 48.2 pc giving 〈tlimit〉 = 246.9 yr. We see from the figure that the mean
time inside the bubble for the two highest energies are close to this value, just as expected when
the particles’ gyroradii are Rg ≥ 10000 pc inside the bubble, but still ≥ 100 pc in and outside the
barrier. This further add on to the ballistic properties to these particles energies when consider-
ing our MF model.

If we were to have a constant CR source where the injection rate of particles (into the system)
was well defined w.r.t. the particle energy, we would be able to calculate the particle density at a
position inside the bubble using the results from the probability densities from the simulations
and the escape times shown in Fig. 3.9. The resulting particle densities would then correspond
to what we would expect to see in the observed CR spectra at a radial position inside the bubble.
We stress the position to be inside the bubble as we here have cylindrical symmetry in the bubble
model in contrast to outside the bubble barrier in the ISM. Note that one would have to either
re-normalize the probability densities inside the bubble in order to use 〈tin〉 (see Tab. B.6 or
Fig. 3.9), or still use the probability densities and use the mean propagation times from the
simulations (〈tprop〉 in Tab. B.6).

The full effect of what we see from Fig. 3.9 is that if the injection rate of CRs into the bubble
from a constant source at the center of the the modelled superbubble is well defined and follows
a power law in energy (N (E) ∝ E−β), we would expect to see properties in the CR spectra similar
to the "knee" and "ankle" in our observed CR spectra (see Fig. 1.2). As we have only looked at a
single constant source inside the bubble and have not considered multiple sources (injection at
random position inside the bubble giving a more constant particle density) or any sources out-
side the bubble, the degree of the Local Bubble’s effect on the observed CR spectra are however
unclear. Additionally, we have only used a very simplified 2D model with one set of parameters
for the bubble, thus new simulation using other bubble parameters, or even a more realistic 3D
model of the bubble’s MF, must be performed in order to truly validate the effect of the LB on
the CR spectra. With the above considered, the results are a positive indication that there might
be something to the LB considering the CR spectra.

In Giacinti et al. (2015) the authors showed that the CR "knee" could be entirely explained
by energy-dependent CR leakage from the Milky Way. They did so by simulating individual CRs
trajectories in the Galactic mean field (i.e. the MF in the ISM) and found that the escape time
of the cosmic rays exhibited a knee-like structure around E/Z = few · 1015 eV (Z = number of
elementary charges). They modelled the TMF using Kolmogorov turbulence and two different
scales for the largest turbulent fluctuations (i.e. λB ), namely 10 pc and 25 pc. Their result in the
escape time of the CRs (Fig. 1 Giacinti et al., 2015) is closely resembling our result from Fig. 3.9
indicating that the LB may, in addition to diffusion of CRs in the ISM, have some effect on ex-
plaining the CR "knee". We have only used protons (Z = 1) in our simulation, but as mentioned
in the beginning of Sec. 3.2 we would expect the results to hold for any combination where
E/Z is equal (see also eqs. (2.31) and (2.35). Furthermore, we should perform new simulations
with other bubble parameters, but the same parameters for the TMF and external field (and vice
versa), to see whether or not we obtain any difference in the mean escape times. This, as earlier
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mentioned, we did not have the time to perform.

3.4 Bursting Source

Bursting sources of VHE CRs like SNe are common in the universe. One of the closest SNR to our
Sun is the Vela SNR located in an adjoined superbubble to the LB, about 250 pc away, and its age
is approximated to be 12 000 years (NASA, 2015). Knowing how the distribution of CRs from the
Vela SN (and others) would possibly look like (e.g. at the Earth today) would be of high interest.
We therefore simulate trajectories of protons emitted from a bursting source and sample their
positions at given points in time to compute the probability density of the CRs at these times.
We assume isotropic emission from the source as well as the source being located at the center
of our bubble model. The bubble model used is the CW-ACW model (see Sec. 2.1.1) with the MF
parameters as defined in Tab. 3.1 (see Sec. 3.2), i.e. the same as what was used in Sec. 3.3 for a
continuous CR source.

In Sec. 2.3 we showed that the probability density w.r.t. the x y-plane of isotropically ejected
particles at a time t follows eq. (2.46), while CRs in diffusive motion follow a Gaussian distribu-
tion (see eq. (2.49). To describe our results we fit the function in eq. (2.62), i.e. the fourth case
of curve fitting (see Sec. 2.3.1) which is a product between these two distributions. We expect
this function to explain the probability distributions well as either parameter σ or Rm may go to
infinity and thus giving either a ballistic or diffusive probability density respectively. In addition,
for a constant distribution of particles both σ and Rm would go to infinity.

From the results in Sec. 3.3 we already have a notion of what energies gives diffusive or
ballistic motion (or a combination) for our bubble model. From the results in Sec. 3.3 we choose
4 energies to simulate trajectories for: 1.0 ·1014 eV, 1.0 ·1015 eV, 1.0 ·1016 eV, and 1.0 ·1018 eV. At
E = 1.0 ·1014 eV we expect to see approximately pure diffusive motion, e.g. see Fig. 3.5, while
we at E = 1.0 ·1018 eV expect approximately pure ballistic motion. The two other energies are
chosen from Fig. 3.9 as they indicate the end of diffusive motion at E = 1.0 ·1015 eV (see Fig. 3.9
and the start of easier barrier penetration, i.e. less reflection, at E = 1.0 ·1016 eV. The details of
the specific parameters of the TMF and number of particle trajectories for each simulation can
be seen in Tab. B.7 in the appendix.

We ran simulations of the four energies mentioned earlier and sampled the positions of the
particles after they had propagated for 100, 300, 1 000, 3 000, and 10 000 years. The resulting
probability densities at each propagation time for each energy are shown in Figs. 3.10-3.13. The
probability densities was calculated in r -intervals as was done in Secs. 3.2 and 3.3 (20 bins of
∆r = 2.41 pc inside, 10 bins of∆r = 0.36 pc in the barrier), but outside the bubble the bin size was
doubled to that of the bins inside (i.e. ∆r = 4.82 pc). Each probability density was curve fitted
in the same manner as in Sec. 3.3.1, using eq. (2.62) as the fit function of which the best fits
are plotted in the same figures as the probability densities. Additionally, all fitting parameters
from the best fits of the probability densities in Figs. 3.10-3.13 are shown in Tabs. B.9-B.15 in the
appendix. The relative change in particle momentum, due to numerical error in the solving of
the EOM, can be seen in Tab. B.8. We see from the table that the relative momentum change is
substantially low for all energies. At E = 1.0 ·1018 eV has a gyroradius Rg ≈ 200pc in the outside
MF, meaning that even for the largest energy we expect total deflection angles larger than 2π
over a time period of 10 000 years (propagation length ∼ 3100 pc).
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Figure 3.10: The plots show the computed probability densities from 1.0 · 1014 eV protons
ejected from a bursting source located in the center of the modelled superbubble. The top
plots show the probability densities (n(r )) with the respective best fit from the curve fitting
(g (r ), eq. (2.62)) at respectively 100, 1 000, and 3 000 years (left), and at 300 and 10 000 (10k)
years (right) after the ejection from the origin. In the top plots g (r ) is only fitted to the prob-
ability density inside the bubble (r < 50 pc). In the bottom plot, the probability densities
after 3 000 and 10 000 years are plotted to their outer limit, and g (r ) is only fitted to the data
outside the bubble (r > 50 pc).
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First we look at the plots and results from E = 1.0 ·1014 eV seen in Fig. 3.10 and Tabs. B.9 and
B.10. From the curve fitting inside the bubble (i.e. only fitting to data points inside) we see that
the parameter Rm is close to the highest values of r (i.e. rmax) where rmax < 50 pc, but that it is
larger than 50 pc for the times where the particles have reached the wall (i.e. 3 000 and 10 000
yr). The only place where Rm seams to have a larger effect on the fitting is after a propagation
time of 1000 yr where, though only some particles have reached the wall, the best fit found it
better to cut off earlier thus cutting off the last bins. This might have been different if we were to
have more trajectories giving better precision. The more prominent feature of the fit is that σ is
well defined and do not "diverge", meaning we do not have a case where the probability density
inside the bubble becomes constant. One would from theory expect σ2 ∝ t , i.e.

σ/
p

t =
p

2D = constant

from diffusive motion (see eq. 2.48). Calculating β=σ/
p

t from the fitted parameters inside the
bubble we get

β100 = 0.373±0.002 pc s−
1
2 ,

β300 = 0.352±0.003 pc s−
1
2 ,

β1000 = 0.563±0.019 pc s−
1
2 ,

β3000 = 0.188±0.008 pc s−
1
2 ,

β10k = 0.305±0.071 pc s−
1
2 .

We see that these values do not match, indicating we do not have pure diffusive motion, but as
mentioned earlier in Sec. 3.3 we do not expect this either as we have a regular field component
in our MF and the gyroradius is not much smaller than λB . What is interesting is that the values
at 100, 300 and 10 000 yr are not too different, and in a logarithmic scaling between 100 and
10 000 yr we get a decrease in value of 0.034 per decade. With this estimation we get a value
β300 ≈ 0.356 pc s−0.5, which is not fat off from the calculated value. On the other hand, the error
in β10k is so large that it contains β100 and β300 thus one may actually have something that is
constant (i.e. the diffusion coefficient D). The fact that at both β1000 and β3000 deviate much
from the other values indicates that the values are not very stable w.r.t. the curve fitting. The
value of β at 1 000 yr might be explained due to the Rm parameter being smaller than rmax of the
particles, but how much it changes β1000 is hard to predict. Calculating β from the parameters
fitted outside the bubble one has β3000 = 0.497 pc s−0.5, and β10k = 0.621 pc s−0.5,. These values
are less well defined, due to the high relative error in the parameters and potentially bad curve
fitting (see Fig. 3.10).

As we are also interested in the distance the CR particles may traverse in 10 000 years (i.e.
about the age of the Vela SNR) we see that the first particles reach a radial distance r = 250 pc
in between 3 000 and 10 000 years after being emitted from the source. In other words, if the
model was representative of the superbubble where the Vela SNR is located and our LB, which
it is not due to assumed ISM outside the bubble, protons from Vela with energy E = 1.0 ·1014 eV
could have reached the earth by now. An additional aspect is worth noting, namely that as the
regular field outside the bubble is mainly pointing in one direction (x-direction in the case of
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Figure 3.11: The plots show the computed probability densities from 1.0 · 1015 eV protons
ejected from a bursting source located in the center of the modelled superbubble. The top
plots show the probability densities (n(r )) with the respective best fit from the curve fitting
(g (r ), eq. (2.62)) at respectively 100 and 3 000 years (left), and at 300 and 10 000 (10k) years
(right) after the ejection from the origin. In the top plots g (r ) is only fitted to the probability
density inside the bubble (r < 50 pc). In the bottom plot, the probability densities after
1 000, 3 000, and 10 000 years are plotted to their outer limit, and g (r ) is only fitted to the
data outside the bubble (r > 50 pc).

our model), the particles are most likely to move along the regular fields MFLs. This is visualized
in Figs. C.1 and C.2 in the appendix, where a single particle trajectory for four different proton
energies (1.0 ·1014 eV included) are plotted out to r = 100 pc.

Moving on to the simulations of protons with energy E = 1.0 · 1015 eV (see Fig. 3.11, Tabs.
B.11 and B.12) we go further away from diffusive motion inside the bubble (Rg = 10 pc = λB ).
This is mostly clear when we look at the probability density after 100 years (i.e. ∼ 30 pc of prop-
agation) in Fig. 3.11 where the probability density curves up for the largest values of r . The rest
of the probability densities has no local maximum towards the outer radial distances and, espe-
cially inside the bubble, we see "smoother" distributions. The best fit of this probability density
(100 yr) is regrettably quite bad as it cuts off the probability density at Rm < 20 pc. The rest of
the fitted curves perform better than the first, though the one for 1 000 yr inside the bubble is
not plotted due to data overlapping and making the plots harder to read. We see further that
the curve fitting of the probability densities outside the bubble perform better than for proton
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Figure 3.12: The plots show the computed probability densities from 1.0 · 1016 eV protons
ejected from a bursting source located in the center of the modelled superbubble. The top
plots show the probability densities (n(r )) with the respective best fit from the curve fitting
(g (r ), eq. (2.62)) at respectively 100, 1 000, and 3 000 years (left), and at 300 and 10 000 (10k)
years (right) after the ejection from the origin. In the top plots g (r ) is only fitted to the prob-
ability density inside the bubble (r < 50 pc). In the bottom plot, the probability densities
after 1 000, 3 000, and 10 000 years are plotted to their outer limit, and g (r ) is only fitted to
the data outside the bubble (r > 50 pc).

energies E = 1.0 ·1014 eV, most likely because of the fact that the higher energy particles escape
faster and thus more particles are outside the bubble after an equal amount of time. This in
turn improves the precision of the probability densities outside the bubble while decreasing the
precision inside. Additionally we notice that the particles reach 250 pc at a time t ≥ 3000 yr, i.e.
faster than for the lower energy. Lastly we notice that the probability density inside the bubble
starts to approximate a constant value after 10 000 years, but there is still some curvature in the
data.

Continuing to the next energy of the simulations, we now look at the probability densities for
the protons with E = 1.0 ·1016 eV and their fitted curves (see Fig. 3.12, Tabs. B.13 and B.14). We
see from the plot of the probability density after 100 yr that the protons are definitely behaving
more like ballistic particles than diffusive inside the bubble. Already at 300 yr many protons
have left the bubble and we see that they become more diffusive outside the bubble. Due to the
gyroradius being Rg = 2 pc =λB /5, the motion outside the bubble is closely representing that of
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Figure 3.13: The plots show the computed probability densities from 1.0 · 1018 eV protons
ejected from a bursting source located in the center of the modelled superbubble. The top
plots show the probability densities (n(r )) with the respective best fit from the curve fitting
(g (r ), eq. (2.62)) at respectively 100, 300, and 1 000 years (left), and at 3 000 and 10 000 (10k)
years (right) after the ejection from the origin. In the plots g (r ) is fitted to all the probability
density data points.

E = 1.0 ·1014 eV inside the bubble with the difference being no precisely defined starting time
for the particles outside the bubble. Further, we also see that the probability density at 10 000 yr
is deviating more from a Gaussian distribution than earlier probability densities. The reason to
this might be what we just mentioned about the particles outside the bubble not starting at the
same moment at r = 50 pc and with gyroradius Rg = 5 pc of the same order as λB of the TMF,
but could just as well be due to the fact the field strengths are different as well as the regular
field no longer fulfilling cylinder symmetry. Despite this, the fitted curves are still very close to
the simulation data. As with respect to Vela (as with the earlier energies) we see that the first
particles reach 250 pc before 3000 years have passed, which is in accordance with the notion
that higher energy particles disperse faster in TMFs (Berezinskii et al., 1990).

Looking at the results from last simulated proton energy E = 1.0 ·1018 eV (see Fig. 3.13, Tab.
B.15) we would expect to see ballistic properties. A difference between the earlier energies and
this is that the curve fitting was performed on all data points of the probability densities at once,
thus not separating the inside of the bubble from the outside. In the left plot of Fig. 3.13, where
the probability densities after 100, 300 and 1000 yr are plotted, we see that the densities are a
close match to that of ballistic motion (i.e. σÀ Rm) with Rm well defined very close to the total
propagation distance (ct ) for each time step. Also, we notice that at small radial distances for
t = 1000 yr the probability density start to become very step-like with large variance, which is
due to the number of particles in each bin as the area ∆A at lower r is smaller (∆A = 2πr∆r ).

Looking at the right plot of Fig. 3.13 (3 000 and 10 000 yr) we see that the precision of the
computation has failed due to the size of ∆r vs. the number of particles, and one would require
a greater number of particles to well describe the probability density where it is < 10−6 pc−2. To
give an analogy, with 10 000 trajectories the probability density corresponding to one single par-
ticle inside a r -interval (i.e. ∆r ) is 2.8·10−6 pc−2 at the smallest r (∆r = 2.4 pc) and 6.8·10−8 pc−2

at r = 50 pc. Outside it would be smaller due to a doubling of the radial bin size ∆r and larger r ,
giving much larger ∆A. In the curve fitting at 3 000 and 10 000 yr both parameters Rm and σ has
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"diverged" giving a constant value as a fit. Additionally we see a trend in the (imprecise) data
that the probability density tend to decrease for large radial distances. This may be because the
gyroradius is 200 pc outside the bubble, as well as the regular field pointing in the x-direction,
thus no longer making the particles ballistic over longer distances. An indication of this may be
seen already at 1 000 years where the top in the probability density r ≈ Rm are becoming less de-
fined compared to earlier times though this may just be due to the total number of trajectories
used. Lastly to cover the notion on the Vela SNR, the particles are relatively ballistic for shorter
distances (< 300 pc) and thus one would expect the particles to have passed 250 pc before 10 000
years (as an expanding shell), but the particles could still be deflected back by the magnetic field
and thus arriving at a later time as well.

3.5 Limits and Potential Improvements?

From the results in Sec. 3.3 (continuous source) and especially Sec. 3.4 (bursting source) we see
that the precision of the computed probability densities is relying heavily on the number of par-
ticle trajectories used in the simulations. This is very clear from any energy of the particles with
a bursting source given enough propagation time, but also for the very high energies for a con-
tinuous source to sample enough time for the probability density which depends on the mean
time spent in each radial interval. In the lower energies, especially for a continuous source, the
simulations require a long time to finish. This is because of long propagation time for the par-
ticles due to many modes required for the TMF (isotropy), the number of decades due to large
angle scattering by the TMF, and the fact that the momentum of the particles (i.e. the energy)
should not change more than an acceptable amount (preferably less than 1%) meaning the RK
solver need to take very small time steps when solving the EOM (calculating the MF for each
step). Because of all this, we would need much more computation time in order to improve the
precision or to look at smaller energies (which are the most numerous in particle number and
sources).

When considering the magnetic field of the bubble, we have used a very simplified model
both for the MFLs and the BRMS strength (e.g. compared to van Marle et al. (2015), see Figs. 2.1
and 2.5 vs. Figs. 2.3 and 2.6). Also, we only look at the distribution w.r.t. the Galactic plane,
excluding how the distribution of particles is perpendicular to the Galactic field. This is impor-
tant when considering the extent of the MF in the Galactic disc. To improve on this we would
have to implement a more detailed model of the MF and look at the trajectories with angular
dependence, especially in the external field. Either we could make the bubble elliptical, like in
van Marle et al. (2015), or maybe keep it cylindrical while defining upper and lower boundaries,
like lids on a tube, with MF parameters independent of the rest of the bubble (e.g. weaker BRMS).
The BRMS strength would have to be redefined as well thus most likely changing the shape of the
bubble. A first step would be to make it a two-step barrier (like in Fig. 2.5. The risk of making
the model too complex though is not only a larger demand of computation power (or time), but
it could also make any source (e.g. the bubble barrier’s width) of a property seen (e.g. a fall in
probability density over the barrier, or the mean escape time) harder to define or get a measure
of its effect.

As touched upon in Sec. 3.4, but also in the introduction, it would be of great interest to
see how the probability density of particles from a CR source outside the LB (e.g. the Vela SN)
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would look like inside the LB, i.e. modelling two adjoined bubbles and putting the source in
one of them. A different yet easier modelling would be to look at the probability density from a
CR source (or constant density, i.e. injection at random positions) in the ISM outside the LB in
order to gain a picture of how the LB effect these cases of CRs.

Another physical aspect that is not covered in the model is particle interactions. As shown in
Figs. 1.1 and 2.1 the bubble barrier itself is a region with a much higher density of particles than
the surrounding volume. In these areas, depending on density and particle energy, one would
expect a larger probability for particle interactions. This could possibly lead to other effects of
the LB on the CR spectra than what could only be described by the MF.



Chapter 4

Conclusion

In this thesis a large number of simulations of very high energy (VHE) cosmic ray (CR) particle
trajectories in two magnetic field (MF) models of a superbubble (SB) has been performed, with
the goal of describing the effect of a SB on the probability density of CR particles and thus the
observable CR spectrum. There are many different bursting sources for VHE CRs, e.g. super-
novae (SNe). At low energies, CRs stay longer in the Galaxy, thus one may see many sources
which one can approximate by a continuous source (or distribution), while at higher energies a
only few sources contribute. Thus both bursting sources and continuous sources of CRs have
been simulated.

In Sec. 2.1 two MF models of a SB was modelled with both a regular field component (1st
objective, see Sec. 1.1) and a turbulent field component (2nd objective). The regular field com-
ponent of the two MF models was inspired by van Marle et al. (2015), Beck and Wielebinski
(2013), Schulreich et al. (2017), and Streitmatter and Jones (2005) to make the SB most closely
resemble the Local Bubble (LB). The regular MF component of the external field in the inter-
stellar medium (ISM) was defined to be constant in in the direction of the Galactic MF (set to
x-direction in the models) in the Galactic plane (defined by the x y-plane). The SB’s MF was
computed as a cylindrical field around the origin with magnetic field lines parallel to the Galac-
tic plane, extending infinitely in the perpendicular direction and out to a radial distance in the
plane equal to 51 pc where the transition between the internal bubble field and the external
ISM field was modelled. In the first model (labeled CW-ACW) the magnetic field lines was set to
follow a clockwise (CW) rotation for y > 0 and an anticlockwise (ACW) rotation for y < 0, thus
making the field component in the x-direction always positive (like the external field compo-
nent). In the second model (labeled CW) the bubble field was set to follow a clockwise rotation
around the origin for all spatial positions. The MF energy (EMF ∝ B 2

RMS) of the model (inspired
by van Marle et al., 2015; Beck and Wielebinski, 2013) was distributed among the regular MF
and the TMF with equipartition, and the root mean square (RMS) strength of the MF (BRMS) was
set to be 0.1 µG inside the bubble, 12 µG in the bubble barrier (defined as the outer 2 pc of the
bubble), and 5 µG in the external field (see Fig. 2.6).

In Sec. 2.1.2 the turbulent magnetic field (TMF) was modelled using an algorithm presented
in Giacalone and Jokipii (1999) which creates turbulent magnetic fields by modelling the fields
as a superposition of Fourier modes. By spacing the wave numbers k of the modes on a log-
arithmic scale with a sufficient number of modes per decade, the algorithm produces an ap-
proximately isotropic TMF. Furthermore, the turbulence was set to follow a power law equiva-

52
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lent to Kolmogorov turbulence E(k) ∝ B 2(k) ∝ k−5/3 with a maximal wavelength of the Fourier
modes λB = 2π/kmin = 10 pc, and the TMF was normalized with a mean square (MS) strength
B 2

RMS,turb = 0.5 ·B 2
tot. In Sec. 3.1 the TMF algorithm was tested using trajectory simulations of

particles with a gyroradius Rg = 10000λB and then the resulting RMS deflection angle δRMS was
compared to theory on small angle scattering (SAS) (see Sec. 2.2 and Caprini and Gabici (2015);
Harari et al. (2002). It was found that the TMF became sufficiently isotropic with 1 000 Fourier
modes per decade, being valid down to just half a decade of modes (500 modes total) when con-
sidering the maximum propagation distance for SAS to be D = 3 kpc, which is about the width
of the halo component of the Galactic MF (De Marco et al., 2007). Furthermore, the δRMS was
shown to follow the scaling with D as expected by the SAS theory, i.e. δRMS = ΠpDλ/Rg , but
with a scaling factor Π ≈ 0.6 which is about twice that of the theory (Π = 10−1/2, Caprini and
Gabici (2015)).

In Sec. 3.2 the two MF models was compared through trajectory simulations of CRs ejected
isotropically from a continuous source (3rd objective) out to a radial distance r = 100 pc in the
Galactic plane (r = 2rbubble), with particle energies of 1.8 ·1014 eV, 1.0 ·1015 eV, 1.0 ·1016 eV, and
1.0·1018 eV. For each energy the particle probability density was computed as a function of r and
the results from both models were compared. At the lowest energy (E = 1.8 ·1014 eV) the models
showed negligible difference in probability density, but as the energy increased, the probabil-
ity density of the CW model got relatively larger than the CW-ACW model at smaller r inside
the bubble. Additionally, with increasing energy, the fall in probability density over the bubble
barrier was shown to decrease in orders of magnitude for the CW-ACW model while being ap-
proximately constant for the CW model. The explanation to the difference in probability density
with increasing energy, and thereby more ballistic particles, was shown to be caused by reso-
nance like motion across the perpendicular axis (z-axis) in the CW model when the particles
were emitted from the source with a zenith angle (w.r.t. the positive z-axis) close to π. The end
result was that some of the particles in the CW model tended to propagate far in the negative
perpendicular direction thus effectively leaving the Galactic disc while still being traced due to
no upper or lower boundary of the model. Because the models showed equal properties at the
lower energies (i.e. the most interesting) we chose to only use the CW-ACW model for further
simulations.

In Sec. 3.3 further particle trajectory simulations in the CW-ACW model was performed for
a continuous source. The simulations traced CRs out to r = 100 pc for a set of CR energies from
1.0 ·1013 eV to 1.0 ·1019 eV. It was found that the particles’ mean escape time from the bubble
was following 〈tesc〉 ∝ Eα where α = 0.354± 0.008. This result is close to the value αK = 1/3
expected from CR diffusion in a purely isotropic turbulent field defined by Kolmogorov turbu-
lence where the gyroradii of the particles are Rg ¿ λB . This time dependence was shown to
hold up to energies of E = 2 ·1015 eV where α started to decrease, thus giving a steeper curve for
〈tesc〉 and a knee-like feature to the mean escape time. At E ≈ 2.4 ·1016 eV the index α started to
increase and going towards zero (i.e. ballistic properties for the particles) for E = 1 ·1019 eV. Fur-
thermore, the 〈tesc〉 from the simulations showed similarities to Fig. 1 in Giacinti et al. (2015),
who argued the "knee" in the CR spectra could be entirely explained by the escape time of CRs
from a purely isotropic TMF alone, thus indicating that the LB may give rise to features of the
CR "knee" instead of just CR diffusion in the TMF of the ISM. This would have to be further re-
searched through new simulation with different model parameters, which we did not have time
to perform.
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In Sec. 3.4 we simulated CR trajectories from a bursting source (second part of the 3rd ob-
jective) and looked at how the particle probability density for 4 different energies evolved over
time. Using energies of 1 ·1014, 1 ·1015, 1 ·1016, and 1 ·1018 eV, we showed the following for the
probability densities. At E ≤ 1 ·1014 eV the particles move with diffusion like motion described
by a Gaussian distribution both inside and outside the bubble, but due imprecise data due to
few particle trajectories resulted in bad curve fitting and the scale size of the bubble being of
the similar scale to λB of the TMF, an estimate of the diffusion coefficient was not possible to
acquire. Further we showed that the particles disperse more like ballistic particles inside the
bubble as the CR energy increases to E ≈ 1 · 10 16 eV. Outside the bubble it was shown that
the particles only approach ballistic like motion for E ≈ 1 ·10 18 eV, but only for propagation dis-
tances of similar order to the particles’ gyroradii. To improve the precision of the bursting source
data after longer propagation times we would have to increase the number of trajectories quite
substantially, thus increasing the computation time with an equal amount.

For possible improvements of the data we would generally have to increase the number of
trajectories per particle energy as well as the number of energies to compute. For further re-
search it would be interesting to pursue the result of the mean escape time for a continuous CR
source, testing with new bubble models resembling more those from bubble creation simula-
tions (e.g. van Marle et al., 2015). It would also be necessary to view the probability densities of
the CRs with angular dependence in the Galactic plane as well as to the perpendicular direction.



Appendix A

Acronyms

CR Cosmic rays

CW Clockwise

CW-ACW Clockwise-anticlockwise

EOM Equation of motion

ISM Interstellar medium

LB Local Bubble

M¯ Solar mass

MC Monte-Carlo

MF Magnetic field

MFL Magnetic field line

MS Mean square

RK Runge-Kutta

RMS Root mean square

SAS Small angle scattering

SE Standard error

SN Supernova

SNR Supernova remnant

STD Standard deviation

TMF Turbulent magnetic field

SW Stellar wind

VHE Very high energy

55



Appendix B

Tables of Computation Parameters and
Special Results

In this chapter of the appendix the reader will find tables containing information about certain
input parameters in the numerical simulations of the particle trajectories described in the Re-
sults and Discussion chapter of this thesis (Ch. 3). The reader will also find specific results from
the said numerical simulations, as well as all the values of the fitting parameters of the best curve
fit to each of the probability densities of the trajectory simulations, see sections 3.3 and 3.4.

Table B.1: An overview of specific TMF parameters and particle trajectories in the field com-
parison simulations, see Sec. 3.2.

Energy Number of Number of TMF Number of modes RK error
trajectories realizations per decade parameter

E Ntraj Nreal ndec εRK

[eV] [1] [1] [dec−1] [1]
1.8 ·1014 3600 200 1000 1.0 ·10−7

1.0 ·1015 5000 200 1000 1.0 ·10−7

1.0 ·1016 20000 400 1000 3.0 ·10−8

1.0 ·1018 18000 360 1000 1.0 ·10−8
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Table B.2: An overview of the TMF parameters specific for each simulation in the CW-ACW
regular MF model for a continuous source, see Sec. 3.3.

Energy Number of Number of Number of modes RK error Total propagation
trajectories realizations per decade parameter time

E Ntraj Nreal ndec εRK ttot

[eV] [1] [1] [dec−1] [1] [Myr]
1.00 ·1013 900 300 300 1.0 ·10−7 36.6
1.80 ·1013 900 300 300 3.0 ·10−7 29.8
3.00 ·1013 900 300 300 3.0 ·10−7 27.8
5.00 ·1013 800 200 300 3.0 ·10−7 19.6
1.00 ·1014 1 600 200 300 1.0 ·10−6 30.4
1.80 ·1014 3 200 200 400 1.0 ·10−6 52.1
3.00 ·1014 3 200 200 500 1.0 ·10−6 48.6
5.00 ·1014 1 280 64 1000 1.0 ·10−8 17.0
1.00 ·1015 5 000 200 1000 1.0 ·10−6 55.0
1.80 ·1015 3 600 120 1000 1.0 ·10−7 33.7
3.00 ·1015 4 800 240 1000 1.0 ·10−7 36.0
5.00 ·1015 3 600 120 1000 1.0 ·10−7 22.5
7.50 ·1015 8 000 200 1000 1.0 ·10−6 39.3
1.00 ·1016 40 000 800 1000 1.0 ·10−8 155.0
1.33 ·1016 8 000 200 1000 1.0 ·10−6 23.4
1.80 ·1016 8 000 200 1000 1.0 ·10−7 16.0
2.37 ·1016 8 000 200 1000 1.0 ·10−6 12.2
3.00 ·1016 8 000 400 1000 1.0 ·10−7 10.5
3.87 ·1016 8 000 200 1000 5.0 ·10−6 9.7
5.00 ·1016 8 000 200 1000 1.0 ·10−7 9.0
7.50 ·1016 8 000 200 1000 5.0 ·10−6 8.4
1.00 ·1017 40 000 800 1000 1.0 ·10−8 37.0
1.00 ·1018 18 000 360 1000 1.0 ·10−6 9.7
1.00 ·1019 18 000 360 1000 1.0 ·10−6 9.2
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Table B.3: Specific results of the relative change in particle momentum (from injection to ex-
traction) for the trajectory simulations in the CW-ACW regular MF model with a continuous
CR source, where the particles were traced to r = 2rbubble (100 pc) or for 100 000 years, see
Sec. 3.3.

Energy Mean rel. STD rel. Max rel.
momentum momentum momentum

change change change
E 〈∆p〉/pi σp ∆pmax/pi

[eV] [1] [1] [1]
1.00 ·1013 1.51 ·10−3 2.06 ·10−3 2.26 ·10−2

1.80 ·1013 2.76 ·10−3 4.08 ·10−3 6.75 ·10−2

3.00 ·1013 1.42 ·10−3 2.58 ·10−3 5.73 ·10−2

5.00 ·1013 8.02 ·10−4 1.96 ·10−3 3.74 ·10−2

1.00 ·1014 1.04 ·10−3 1.58 ·10−3 3.78 ·10−2

1.80 ·1014 4.14 ·10−4 5.56 ·10−4 9.66 ·10−3

3.00 ·1014 1.88 ·10−4 2.47 ·10−4 5.92 ·10−3

5.00 ·1014 7.78 ·10−7 9.63 ·10−7 9.35 ·10−6

1.00 ·1015 1.84 ·10−5 2.16 ·10−5 3.84 ·10−4

1.80 ·1015 7.80 ·10−7 8.28 ·10−7 7.74 ·10−6

3.00 ·1015 3.97 ·10−7 3.89 ·10−7 4.05 ·10−6

5.00 ·1015 9.94 ·10−8 8.42 ·10−8 6.86 ·10−7

7.50 ·1015 4.03 ·10−7 4.99 ·10−7 4.00 ·10−6

1.00 ·1016 3.58 ·10−9 3.04 ·10−9 3.79 ·10−8

1.33 ·1016 1.37 ·10−7 1.47 ·10−7 1.76 ·10−6

1.80 ·1016 8.88 ·10−9 8.92 ·10−9 1.08 ·10−7

2.37 ·1016 4.72 ·10−8 4.14 ·10−8 5.59 ·10−7

3.00 ·1016 5.13 ·10−9 4.90 ·10−9 4.69 ·10−8

3.87 ·1016 7.78 ·10−9 6.77 ·10−9 8.04 ·10−8

5.00 ·1016 2.03 ·10−9 1.71 ·10−9 1.97 ·10−8

7.50 ·1016 4.89 ·10−10 4.95 ·10−10 8.27 ·10−9

1.00 ·1017 4.23 ·10−11 4.23 ·10−11 5.92 ·10−10

1.00 ·1018 4.69 ·10−13 7.55 ·10−13 8.76 ·10−11

1.00 ·1019 4.55 ·10−15 6.63 ·10−15 6.82 ·10−13
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Table B.4: Fitting parameters from the best fit of the case 1 curve fitting to the proton prob-
ability densities inside the bubble, considering a continuous CR source, see Sec. 3.3. A is
without units as its units would depend on d in order to get pc−2 for eq. (2.61).

E Ain ∆Ain σin ∆σin din ∆din

[eV] [pc] [pc] [1] [1]
1.00 ·1013 1.03 ·10−3 5.08 ·10−5 2.47 ·101 4.23 ·10−1 −4.15 ·10−1 2.16 ·10−2

1.80 ·1013 8.72 ·10−4 2.87 ·10−5 2.55 ·101 3.14 ·10−1 −3.75 ·10−1 1.45 ·10−2

3.00 ·1013 7.96 ·10−4 2.13 ·10−5 2.54 ·101 2.58 ·10−1 −3.46 ·10−1 1.18 ·10−2

5.00 ·1013 6.72 ·10−4 1.22 ·10−5 2.74 ·101 2.21 ·10−1 −3.28 ·10−1 8.03 ·10−3

1.00 ·1014 5.92 ·10−4 1.47 ·10−5 2.97 ·101 3.96 ·10−1 −3.24 ·10−1 1.10 ·10−2

1.80 ·1014 4.47 ·10−4 1.27 ·10−5 3.26 ·101 6.02 ·10−1 −2.75 ·10−1 1.26 ·10−2

3.00 ·1014 3.92 ·10−4 1.21 ·10−5 3.37 ·101 7.30 ·10−1 −2.52 ·10−1 1.37 ·10−2

5.00 ·1014 3.15 ·10−4 5.16 ·10−6 3.56 ·101 4.50 ·10−1 −2.08 ·10−1 7.30 ·10−3

1.00 ·1015 2.73 ·10−4 4.66 ·10−6 4.94 ·101 1.25 ·100 −2.49 ·10−1 7.62 ·10−3

1.80 ·1015 2.31 ·10−4 2.14 ·10−6 1.60 ·102 2.26 ·101 −2.82 ·10−1 4.12 ·10−3

3.00 ·1015 1.79 ·10−4 1.15 ·10−5 5.77 ·106 6.81 ·1015 −2.45 ·10−1 2.79 ·10−2

5.00 ·1015 1.84 ·10−4 1.47 ·10−5 5.38 ·106 6.77 ·1015 −2.60 ·10−1 3.49 ·10−2

7.50 ·1015 2.03 ·10−4 1.81 ·10−5 2.03 ·106 4.01 ·1014 −3.00 ·10−1 3.88 ·10−2

1.00 ·1016 2.28 ·10−4 2.25 ·10−5 1.44 ·106 1.58 ·1014 −3.39 ·10−1 4.27 ·10−2

1.33 ·1016 2.77 ·10−4 2.91 ·10−5 1.93 ·106 4.06 ·1014 −3.96 ·10−1 4.55 ·10−2

1.80 ·1016 3.59 ·10−4 3.96 ·10−5 2.38 ·106 7.93 ·1014 −4.81 ·10−1 4.77 ·10−2

2.37 ·1016 4.76 ·10−4 5.26 ·10−5 2.43 ·106 8.48 ·1014 −5.73 ·10−1 4.78 ·10−2

3.00 ·1016 5.42 ·10−4 5.82 ·10−5 7.91 ·106 2.84 ·1016 −6.19 ·10−1 4.64 ·10−2

3.87 ·1016 6.21 ·10−4 5.68 ·10−5 7.58 ·106 2.16 ·1016 −6.66 ·10−1 3.97 ·10−2

5.00 ·1016 6.79 ·10−4 5.29 ·10−5 6.02 ·106 9.31 ·1015 −7.07 ·10−1 3.39 ·10−2

7.50 ·1016 6.89 ·10−4 5.38 ·10−5 5.92 ·106 8.84 ·1015 −7.28 ·10−1 3.40 ·10−2

1.00 ·1017 8.44 ·10−4 4.69 ·10−5 6.20 ·106 7.35 ·1015 −7.92 ·10−1 2.43 ·10−2

1.00 ·1018 1.54 ·10−3 1.02 ·10−5 3.31 ·106 1.44 ·1014 −9.68 ·10−1 2.96 ·10−3

1.00 ·1019 1.59 ·10−3 8.79 ·10−6 8.13 ·102 1.77 ·103 −9.93 ·10−1 2.46 ·10−3
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Table B.5: Fitting parameters from the best fit of the case 1 curve fitting to the proton prob-
ability densities outside the bubble, considering a continuous CR source, see Sec. 3.3. A is
without units as its units would depend on d in order to get pc−2 for eq. (2.61).

E Aout ∆Aout σout ∆σout dout ∆dout

[eV] [pc] [pc] [1] [1]
1.00 ·1013 1.05 ·10−7 2.69 ·10−7 3.52 ·101 2.56 ·100 1.13·100 6.71 ·10−1

1.80 ·1013 1.20 ·10−3 3.22 ·10−3 4.65 ·101 6.24 ·100 −1.21·100 7.09 ·10−1

3.00 ·1013 5.21 ·10−6 1.45 ·10−5 3.79 ·101 3.46 ·100 2.50·10−1 7.31 ·10−1

5.00 ·1013 3.26 ·10−6 8.01 ·10−6 3.63 ·101 2.70 ·100 4.89·10−1 6.46 ·10−1

1.00 ·1014 3.13 ·10−5 6.76 ·10−5 3.86 ·101 2.85 ·100 −2.34·10−2 5.69 ·10−1

1.80 ·1014 3.21 ·10−6 6.52 ·10−6 3.40 ·101 1.84 ·100 7.00·10−1 5.34 ·10−1

3.00 ·1014 9.33 ·10−7 2.17 ·10−6 3.27 ·101 1.86 ·100 1.07·100 6.11 ·10−1

5.00 ·1014 8.32 ·10−7 1.74 ·10−6 3.21 ·101 1.58 ·100 1.16·100 5.49 ·10−1

1.00 ·1015 9.13 ·10−8 1.78 ·10−7 3.01 ·101 1.22 ·100 1.82·100 5.12 ·10−1

1.80 ·1015 2.07 ·10−8 4.27 ·10−8 2.90 ·101 1.16 ·100 2.27·100 5.41 ·10−1

3.00 ·1015 1.40 ·10−8 3.37 ·10−8 2.88 ·101 1.31 ·100 2.41·100 6.28 ·10−1

5.00 ·1015 9.96 ·10−9 2.24 ·10−8 2.87 ·101 1.22 ·100 2.51·100 5.90 ·10−1

7.50 ·1015 3.88 ·10−8 7.33 ·10−8 2.99 ·101 1.16 ·100 2.14·100 4.95 ·10−1

1.00 ·1016 5.71 ·10−7 8.11 ·10−7 3.25 ·101 1.12 ·100 1.41·100 3.73 ·10−1

1.33 ·1016 4.55 ·10−5 4.71 ·10−5 3.81 ·101 1.32 ·100 2.19·10−1 2.73 ·10−1

1.80 ·1016 1.84 ·10−3 1.83 ·10−3 4.81 ·101 2.56 ·100 −8.03·10−1 2.63 ·10−1

2.37 ·1016 4.11 ·10−2 3.19 ·10−2 6.81 ·101 5.65 ·100 −1.66·100 2.05 ·10−1

3.00 ·1016 7.95 ·10−2 5.15 ·10−2 8.12 ·101 8.05 ·100 −1.85·100 1.71 ·10−1

3.87 ·1016 2.37 ·10−2 1.97 ·10−2 7.23 ·101 7.38 ·100 −1.53·100 2.20 ·10−1

5.00 ·1016 1.08 ·10−4 6.80 ·10−5 4.91 ·101 1.74 ·100 −1.15·10−1 1.65 ·10−1

7.50 ·1016 5.51 ·10−6 2.59 ·10−6 4.68 ·101 1.12 ·100 6.23·10−1 1.24 ·10−1

1.00 ·1017 3.19 ·10−5 1.76 ·10−5 5.79 ·101 2.49 ·100 1.10·10−1 1.45 ·10−1

1.00 ·1018 3.77 ·10−3 7.46 ·10−4 3.85 ·102 2.63 ·102 −1.21·100 5.24 ·10−2

1.00 ·1019 1.44 ·10−3 2.33 ·10−4 2.53 ·102 6.07 ·101 −9.71·10−1 4.27 ·10−2
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Table B.6: Specific results of the propagation time for the trajectory simulations in the CW-
ACW regular MF model with a continuous CR source, where the particles were traced to
r = 2rbubble (100 pc) or for 100 000 years, see Sec. 3.3.

Energy Mean Mean Mean STD SE of Max
propagation time time time mean time

time outside inside inside inside inside
E 〈tprop〉 〈tout〉 〈tin〉 σt ,in σt ,mean,in tin,max

[eV] [yr] [yr] [yr] [yr] [yr] [yr]
1.00 ·1013 4.07 ·104 1.85 ·103 3.88 ·104 2.62 ·104 8.74 ·102 1.00 ·105

1.80 ·1013 3.32 ·104 1.99 ·103 3.12 ·104 2.10 ·104 6.99 ·102 1.00 ·105

3.00 ·1013 3.09 ·104 2.16 ·103 2.87 ·104 2.07 ·104 6.91 ·102 1.00 ·105

5.00 ·1013 2.45 ·104 2.43 ·103 2.21 ·104 1.68 ·104 5.93 ·102 9.98 ·104

1.00 ·1014 1.90 ·104 2.52 ·103 1.65 ·104 1.27 ·104 3.18 ·102 9.80 ·104

1.80 ·1014 1.63 ·104 2.81 ·103 1.35 ·104 1.05 ·104 1.86 ·102 9.06 ·104

3.00 ·1014 1.52 ·104 3.02 ·103 1.22 ·104 9.68 ·103 1.71 ·102 9.21 ·104

5.00 ·1014 1.35 ·104 3.11 ·103 1.04 ·104 8.61 ·103 2.41 ·102 5.92 ·104

1.00 ·1015 1.10 ·104 3.27 ·103 7.75 ·103 6.60 ·103 9.33 ·101 6.91 ·104

1.80 ·1015 9.36 ·103 3.32 ·103 6.03 ·103 5.32 ·103 8.87 ·101 4.41 ·104

3.00 ·1015 7.52 ·103 3.11 ·103 4.40 ·103 4.15 ·103 6.00 ·101 3.57 ·104

5.00 ·1015 6.25 ·103 2.68 ·103 3.57 ·103 3.40 ·103 5.67 ·101 3.43 ·104

7.50 ·1015 4.91 ·103 2.19 ·103 2.72 ·103 2.53 ·103 2.83 ·101 2.78 ·104

1.00 ·1016 3.87 ·103 1.74 ·103 2.13 ·103 2.02 ·103 1.01 ·101 1.89 ·104

1.33 ·1016 2.93 ·103 1.30 ·103 1.62 ·103 1.54 ·103 1.72 ·101 1.44 ·104

1.80 ·1016 2.05 ·103 9.31 ·102 1.12 ·103 1.04 ·103 1.16 ·101 1.08 ·104

2.37 ·1016 1.53 ·103 7.05 ·102 8.22 ·102 7.63 ·102 8.53 ·100 7.94 ·103

3.00 ·1016 1.32 ·103 6.22 ·102 7.02 ·102 6.68 ·102 7.47 ·100 6.94 ·103

3.87 ·1016 1.21 ·103 5.78 ·102 6.31 ·102 6.23 ·102 6.96 ·100 5.58 ·103

5.00 ·1016 1.11 ·103 5.52 ·102 5.56 ·102 5.76 ·102 6.44 ·100 5.84 ·103

7.50 ·1016 1.05 ·103 5.49 ·102 5.01 ·102 5.76 ·102 6.44 ·100 5.77 ·103

1.00 ·1017 9.22 ·102 4.82 ·102 4.40 ·102 5.12 ·102 2.56 ·100 5.21 ·103

1.00 ·1018 5.41 ·102 2.64 ·102 2.76 ·102 4.55 ·102 3.39 ·100 9.48 ·103

1.00 ·1019 5.14 ·102 2.62 ·102 2.52 ·102 4.42 ·102 3.30 ·100 2.69 ·104
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Table B.7: An overview of the TMF and trajectory parameters specific for each simulation in
the CW-ACW regular MF model for a bursting CR source, see Sec. 3.4.

Energy Number of Number of Number of modes RK error
trajectories realizations per decade parameter

E Ntraj Nreal ndec εRK

[eV] [1] [1] [dec−1] [1]
1.00 ·1014 4 000 200 300 1.0 ·10−6

1.00 ·1015 6 000 120 1000 1.0 ·10−6

1.00 ·1016 6 000 120 1000 1.0 ·10−8

1.00 ·1018 10 000 200 1000 1.0 ·10−8

Table B.8: Specific results of the relative change in particle momentum (from injection to
10 000 years) for the trajectory simulations in the CW-ACW regular MF model with a bursting
CR source, where the particles were traced for 10 000 years, see Sec. 3.4.

Energy Mean rel. STD rel. Max rel.
momentum momentum momentum

change change change
E 〈∆p〉/pi σp ∆pmax/pi

[eV] [1] [1] [1]
1.0 ·1014 5.44 ·10−3 2.70 ·10−3 4.12 ·10−2

1.0 ·1015 8.79 ·10−5 2.86 ·10−5 6.53 ·10−4

1.0 ·1016 1.09 ·10−5 1.65 ·10−6 1.58 ·10−5

1.0 ·1018 4.66 ·10−10 2.70 ·10−10 1.92 ·10−9

Table B.9: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton probability
densities inside the bubble, considering a bursting CR source and proton energy E = 1.0·1014

eV, see Sec. 3.4.

E Ain ∆Ain Rm,in ∆Rm,in σin ∆σin

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
1.0 ·102 1.06 ·10−2 2.19 ·10−4 1.80 ·101 5.56 ·10−1 3.73 ·100 1.98 ·10−2

3.0 ·102 3.90 ·10−3 2.55 ·10−4 2.84 ·101 2.96 ·10−1 6.10 ·100 5.60 ·10−2

1.0 ·103 4.43 ·10−4 1.46 ·10−5 6.03 ·101 1.06 ·101 1.78 ·101 6.10 ·10−1

3.0 ·103 1.37 ·10−3 2.63 ·10−4 3.86 ·101 2.00 ·100 1.03 ·101 4.46 ·10−1

1.0 ·104 1.35 ·10−4 4.03 ·10−6 8.61 ·101 1.17 ·102 3.05 ·101 7.05 ·100
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Table B.10: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton prob-
ability densities outside the bubble, considering a bursting CR source and proton energy
E = 1.0 ·1014 eV, see Sec. 3.4.

E Aout ∆Aout Rm,out ∆Rm,out σout ∆σout

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
3.0 ·103 1.48 ·10−5 1.05 ·10−5 1.05 ·102 5.08 ·10−1 2.72 ·101 2.31 ·100

1.0 ·104 1.36 ·10−5 4.52 ·10−6 1.94 ·102 9.64 ·100 6.21 ·101 5.26 ·100

Table B.11: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton prob-
ability densities inside the bubble, considering a bursting CR source and proton energy
E = 1.0 ·1015 eV, see Sec. 3.4.

E Ain ∆Ain Rm,in ∆Rm,in σin ∆σin

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
1.0 ·102 1.33 ·10−3 6.72 ·10−4 1.85 ·101 1.36 ·100 7.35 ·100 1.85 ·100

3.0 ·102 7.64 ·10−4 3.79 ·10−5 5.80 ·101 1.07 ·101 1.40 ·101 3.93 ·10−1

1.0 ·103 1.29 ·10−4 5.26 ·10−6 5.52 ·101 5.42 ·100 3.14 ·101 3.10 ·100

3.0 ·103 3.30 ·10−4 1.07 ·10−5 4.99 ·101 9.62 ·10−1 1.98 ·101 4.01 ·10−1

1.0 ·104 5.08 ·10−5 1.71 ·10−6 5.38 ·101 3.48 ·100 3.36 ·101 2.91 ·100

Table B.12: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton prob-
ability densities outside the bubble, considering a bursting CR source and proton energy
E = 1.0 ·1015 eV, see Sec. 3.4.

E Aout ∆Aout Rm,out ∆Rm,out σout ∆σout

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
1.0 ·103 1.46 ·10−5 3.56 ·10−6 1.17 ·102 2.03 ·100 2.99 ·101 1.01 ·100

3.0 ·103 3.05 ·10−5 6.57 ·10−6 1.95 ·102 8.36 ·10−1 4.44 ·101 1.10 ·100

1.0 ·104 1.34 ·10−5 1.29 ·10−6 3.55 ·102 7.37 ·10−1 8.56 ·101 1.11 ·100

Table B.13: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton prob-
ability densities inside the bubble, considering a bursting CR source and proton energy
E = 1.0 ·1016 eV, see Sec. 3.4.

E Ain ∆Ain Rm,in ∆Rm,in σin ∆σin

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
1.0 ·102 1.82 ·10−4 4.21 ·10−5 2.77 ·101 2.02 ·10−3 2.93 ·101 1.81 ·101

3.0 ·102 1.79 ·10−4 5.66 ·10−6 6.12 ·101 7.83 ·100 2.78 ·101 1.77 ·100

1.0 ·103 3.55 ·10−5 1.85 ·10−6 7.66 ·101 9.85 ·101 7.75 ·101 1.54 ·102

3.0 ·103 7.33 ·10−5 4.56 ·10−6 5.82 ·101 1.42 ·101 4.41 ·101 1.57 ·101

1.0 ·104 1.27 ·10−5 1.12 ·10−6 6.49 ·101 5.00 ·101 9.94 ·101 3.50 ·102
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Table B.14: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton prob-
ability densities outside the bubble, considering a bursting CR source and proton energy
E = 1.0 ·1016 eV, see Sec. 3.4.

E Aout ∆Aout Rm,out ∆Rm,out σout ∆σout

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
1.0 ·103 7.64 ·10−5 9.38 ·10−6 1.80 ·102 5.31 ·10−1 4.07 ·101 5.28 ·10−1

3.0 ·103 2.38 ·10−5 2.89 ·10−6 3.10 ·102 5.61 ·10−1 7.08 ·101 1.13 ·100

1.0 ·104 9.34 ·10−6 6.23 ·10−7 4.93 ·102 3.02 ·100 1.22 ·102 1.52 ·100

Table B.15: Fitting parameters from the best fit (case 4, see eq. (2.62)) of the proton proba-
bility densities, considering a bursting CR source and proton energy E = 1.0 ·1018 eV, see Sec.
3.4.

E Aout ∆Aout Rm,out ∆Rm,out σout ∆σout

[eV] [pc−2] [pc−2] [pc] [pc] [pc] [pc]
1.0 ·102 1.64 ·10−4 5.94 ·10−6 3.08 ·101 1.78 ·10−1 1.55 ·105 4.19 ·1011

3.0 ·102 1.75 ·10−5 9.98 ·10−7 9.09 ·101 9.45 ·10−1 5.75 ·105 4.55 ·1012

1.0 ·103 1.64 ·10−6 9.43 ·10−8 3.04 ·102 3.18 ·100 1.00 ·104 2.00 ·106

3.0 ·103 3.12 ·10−7 1.62 ·10−8 9.09 ·106 3.94 ·1016 8.44 ·107 3.16 ·1019

1.0 ·104 5.06 ·10−8 3.64 ·10−9 6.40 ·106 2.75 ·1016 6.54 ·107 2.94 ·1019
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Trajectory Plots
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Figure C.1: Single trajectory plots in 2D and 3D for protons with energy E = 1.0 · 1016 eV
and E = 1.0 ·1017 eV in the CW-ACW model. The green circles represent the inner and outer
walls of the bubble barrier, while the purple circle represent the outer radius of the constant
source model described in Sec. 3.3.
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Figure C.2: Single trajectory plots in 2D and 3D for protons with energy E = 1.0 · 1014 eV
and E = 1.0 ·1015 eV in the CW-ACW model. The green circles represent the inner and outer
walls of the bubble barrier, while the purple circle represent the outer radius of the constant
source model described in Sec. 3.3.
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