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Abstract
Computational creativity is a field of research that is primarily focused on music com-
position, art and linguistics. However, research pertaining to computational creative
behaviour is sparse. There is no clear, established methodology when it comes to mak-
ing agents behave creatively, or how to apply machine learning techniques to make them
do so.

Using Evolutionary Algorithms (EAs), agents were evolved using different modular parts.
The parts were several sensors and actuators that the agents used to solve tasks given
to them. Their behaviour was determined by three different Artificial Intelligence (AI)
methods. This thesis looks into how these three AI methods, namely Continuous Time
Recurrent Neural Network (CTRNN), Fuzzy Logic, and NeuroEvolution of Augmenting
Topologies (NEAT), performed when evolving behaviour in the evolving agents. In or-
der to investigate this, a system capable of evolving and visualising agents in different
environments was developed.

The results of using these methods show few signs of the evolution of creative behaviour.
Instead, the agents simply evolved to solve a given task. However, some unexpected
actions can arguably be considered creative.

This thesis contains the following contributions: A study of how different AI meth-
ods perform when evolving creatures to behave creatively, and an implemented system
that evolves creatures in different environments using the three AI methods mentioned
above.
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Sammendrag
Datamaskinell kreativitet er et forskningsfelt som hovedsaklig er fokusert på komposisjon
av musikk, kunst og lingvistikk. Derimot er forskning rundt kreativ oppførsel mangelfull.
Det er ingen tydelig og etablert metodologi når det kommer til å få agenter til å oppføre
seg kreativt, eller hvordan man skal bruke maskinlæring til å få dem til å gjøre det.

Ved å bruke evolusjonære algoritmer (EA), ble agenter utviklet med modulære deler.
Delene var flere sensorer og aktuatorer som agentene brukte til å løse problemstillingen
gitt dem. Oppførselen deres ble bestemt av tre forskjellige kunstig intelligens (AI) me-
toder. Denne masteroppgaven tar for seg hvordan disse tre metodene, nemlig CTRNN,
Fuzzy Logikk og NEAT, yter når oppførsel utvikles i de utviklende agentene. For å ut-
forske dette ble et system utviklet for å utvikle og visualisere agenter i forskjellige miljøer.

Resultatene av å bruke disse metodene viser få tegn på utvikling av kreativ oppførsel.
Agentene blir istedenfor utviklet til å kun løse den gitte problemstillingen. Det finnes
derimot noen uventede handlinger som kan argumenteres for å være kreative.

Denne masteroppgaven inneholder følgende bidrag: En studie av hvordan forskjellige
AI metoder yter når man utvikler agenter til å oppføre seg kreative, og et implementert
system som utvikler agenter i forskjellige miljøer med å bruke de tre AI metodene nevnt
over.
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1. Introduction
This thesis is about creative behaviour and explores some possibilities of achieving and
evaluating computational creativity. In this section the motivation behind the thesis is
presented and the various project goals are explained. The contributions are listed, and
lastly the structure of this thesis is given.

1.1. Background and motivation
Most work on computational creativity is related to the fields of art, music composition
and linguistics, such as ThePaintingFool1, DeepArt2, Experiments in Musical Intelligence
(Cope, 1996), and poetry generation in Bengali (Das and Gambäck, 2014). However, the
topic of computational creativity in agent behaviour is less studied. Maher et al. (2008)
described how computational models based on curiosity could be used to create creative
behaviour in learning agents. They investigated how a computer controlled agent (a
sheep) would behave and act using curious reinforcement learning. This is one example
of creative behaviour, which may have applications in artificial life, simulations, complex
systems and video games. However, this thesis is focused on the comparison between
different computational models and initial configurations in order to investigate differ-
ences in the resulting agent behaviour when applying Evolutionary Algorithms (EAs).

Creativity is in many ways a subjective understanding; what may be considered cre-
ative by some, may be considered unoriginal by others. There are however some mutual
properties about creativity that most people agree with, such as novelty, uniqueness
and usefulness. An interesting topic is how to capture these aspects in a computational
model of Artificial Intelligence (AI) and display the result as the behaviour of an agent.
The evaluation of creativity is also equally important and complex, and probably cap-
tures the key aspects of creativity better than the computational models themselves.
Evaluating creativity in the context of agent behaviour is a complex undertaking, where
human intervention and evaluation is likely to take place.

1http://thepaintingfool.com/
2https://deepart.io/
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1. Introduction

1.2. Project goals
In this section, the four goals of the thesis are defined as follows.

G1: Evolve creative behaviour in custom agents3

The agents will be able to develop their own attributes and thereafter maximize
their behaviour to a given task. The goal here is that given enough exploration,
the solutions will be diverse and somewhat novel. A more well-defined form of this
goal is:
Implement a system using AI methods to evolve creatures that exhibit creative
behaviour in a strictly defined environment.

G2: Implement a system to evolve and visualise creature performance
In order to test several AI methods a system needs to be implemented that can
interchange between methods for evolving creatures. The system should be able
to visualise all of the required scenarios and give a good indication on how the
creatures are performing.

G3: Study several AI methods and their influence on evolving creative be-
haviour
Testing several different AI methods should give insight to the properties that are
important for evolving creative behaviour. Both in terms of performance regarding
the evolution, and how creative the results can be considered.

G4: Study how different environments and tasks affect a creature’s ability
to perform creatively
The creature’s task is defined by the current scenario. Looking at the degrees
of creativity achieved in different scenarios should show how a task’s complexity
affects the creature’s ability to evolve in a novel direction.

1.3. Contributions
The contributions for this thesis are:

C1: A study of how different AI methods perform when evolving creatures to behave
creatively.

C2: An implemented system that evolves creatures using different selectable AI meth-
ods and environments.

3Also referred to as creatures.
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1.4. Thesis structure

1.4. Thesis structure
The relevant theory for this thesis, such as EAs and Artificial Neural Networks (ANNs)
is presented in Chapter 2.

Then, in Chapter 3, related work and the current state-of-the-art is looked further into.
It contains work done on creativity and AI in general and work that share similarities
with this thesis.

Chapter 4 describes the architecture of the implemented system, called Creative Creature
Behaviour (CreBe). Here it is explained how the EA and the different behaviour-modules
were implemented, and the different scenarios that the creatures will be tested in.

The experiments performed are presented in Chapter 5. This includes how they were
performed, such as experimental parameters and setup. The chapter also includes the
result for each experiment, with a small discussion of the results.

In chapter 6, the various results are discussed in more detail and depth. Also included
in this chapter is a project evaluation, where each project goal is addressed and evaluated.

Lastly, chapter 7 contains the final conclusions with contributions and possible future
work.
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2. Background Theory
This chapter will explain different concepts and theories used throughout the thesis.
The first part is about evolutionary algorithms, before a section about artificial neural
networks. Then the NeuroEvolution of Augmenting Topologies (NEAT) method is de-
tailed, followed by a section about fuzzy logic. Lastly, some theory on how to evaluate
computational creativity is presented.

2.1. Evolutionary Algorithms
Evolutionary Algorithms (EAs) is a class of optimization algorithms, widely used in
Artificial Intelligence (AI) and machine learning systems. It mimics the biological process
of evolution and natural selection in order to find solutions to predefined optimization
and search problems.

2.1.1. Key principles

In an EA context, a candidate solution is called an individual because of its residence
within a population at a given time. Artificial evolution is based on many of the same
principles as natural evolution (Floreano and Mattiussi, 2008):

• Maintenance of a population; a collection of individuals or solution candidates to
our problem. The population is changed at each generation, i.e. each iteration of
the algorithm. Based on configuration and type of EA in use, the population can
be partially or completely replaced at each generation.

• Creation of diversity, in order to explore different solutions and cover the whole
search space. A lack of diversity can lead to the evolution getting stuck in a
suboptimal solution.

• A selection mechanism, responsible for evaluating and assigning each individual a
quantitative score called the fitness value, which reflects how well this individual
solves the given problem. The best individuals are then selected for reproduction,
having their genetic code transferred to new individuals in the next generation.

• Genetic inheritance, which ensures that beneficial properties of individuals are
transferred to and inherited by their offspring.

The evolutionary process in an EA is guided by the fitness function, which aims to rank
an individual on how well it satisfies or solves the optimization problem. As in real world
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2. Background Theory

natural evolution, the fitness value of an individual describes how likely this individual
is to reproduce and pass on its genetic information to the next generation. The goal is
to assign a high number of offspring to the best individuals, making the next genera-
tion generally more fit to solve the optimization problem (Floreano and Mattiussi, 2008,
chapter 1).

The procedure of an EA is an iterative process, where the population is first filled with
randomly generated individuals. It is vital that the generated individuals are evenly
spread across the search space, in order to avoid the search to get trapped in subop-
timal solutions (local maxima). The selection mechanism will assign a fitness value to
each individual and use a selection strategy to select individuals to reproduce. Genetic
operators duplicates and combines the genetic code of the best individuals, and applies
a small random mutation in order to explore variations and introduce diversity. The
newly created individuals are put back in the population in place for the old ones, and
the next generation starts. This procedure is repeated until a satisfying or good enough
solution is found.

2.1.2. Genotype

In EA terms, the genetic information of an individual is referred to as the genotype.
It is responsible for transmitting features from parent to offspring, as well as for stor-
ing the genetic code that will define all aspects of an individual. There are different
types and formats of genotypes used in EA. Some of the most commonly used genotype
representations are:

Discrete representation, which consists of n values drawn from a set (alphabet) with
cardinality k. A binary representation has a cardinality of 2, and alphabet [0,1].
The binary representation is often appreciated for its data-density and high per-
formance on binary computers. Other discrete representations include the integer
and character representations, with alphabets [0,1,2,...] and [A,B,C,...] respect-
ively.

Figure 2.1.: Discrete representation, showing binary and character representation, re-
spectively. In this example, n = 8.

Real-valued representation stores a series of n real-valued numbers. It is up to the EA
designer to decide a legal range for each of these values, if any restrictions at all.
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Figure 2.2.: Real-valued representation, with n = 8.

Tree representation is used to represent structures that require a hierarchical order.
This genotype representation is typically used to represent mathematical expres-
sions, a computer program, electronic circuits or other structures that require
branching. The elements stored in the tree may be discrete values, real numbers
or of other custom formats.

Figure 2.3.: Tree representation.

2.1.3. Phenotype

The physical manifestation of a genotype is called a phenotype, and represents an actual
individual, or in an artificial evolutionary context, a candidate solution to the predefined
problem. The fitness evaluation procedure of the EA system will operate on phenotypes
explicitly, and only phenotypes are selected for reproduction. The terms phenotype and
individual are often used interchangeably. They both contain the genotype, that is, the
genetic information necessary to define an individual.

2.1.4. Selection and genetic operators

As mentioned before, the selection mechanism is used to allocate a bigger portion of the
population to more fit individuals, in order to motivate for the evolution of beneficial
genes and individuals. The selection pressure is the percentage of individuals that will
create offspring for the next generation (Floreano and Mattiussi, 2008). A high selection
pressure means few individuals get to reproduce, which can deteriorate the diversity of
the population over time. On the other hand, a too low selection pressure may prohibit
the evolution of beneficial genes because the best individuals are prevented from repro-
ducing.
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2. Background Theory

Different selection methods include:

• Proportionate selection. The probability of an individual reproducing and
make a copy of its genetic code is the ratio between its own fitness and the total
fitness of all individuals in the population:

p(i) = f(i)∑N
i f(i)

(2.1)

where p(i) is the probability of individual i reproducing, f(i) is the fitness value
of individual i, and N is the population size (Floreano and Mattiussi, 2008).

• Rank-based selection. This method ranks all individuals from best to worst
and then assign a reproduction probability based on this rank. This has the effect
of neglecting the absolute difference in fitness values of individuals, which may
negatively affect the selection pressure.

• Truncated rank-based selection. This method is identical to the regular rank-
based method, but only the top n individuals in the ranked list is considered for
reproduction.

• Tournament selection. For each offspring to be produced, a smaller subset of k
individuals are selected randomly from the population, where the best individual
in each tournament is allowed to reproduce. The k individuals are then placed back
in the population and eligible for entry in new tournaments. This method offers a
good compromise between selection pressure and genetic diversity (Floreano and
Mattiussi, 2008), but can be somewhat computationally heavy, especially if k and
the population size N are relatively big.

• Elitism. Not a complete method per se, but rather optional functionality in
addition to the selection method. The strategy propose retaining n individuals
from the previous generation, which will automatically be inserted into the new
generation without modification.

Genetic operators, such as mutation and crossover, allow the algorithm to improve di-
versity, explore the search space and find novel solutions. Mutation is implemented as
introduction of small, random changes to the genotype after reproduction. The amount
of mutation to introduce, and the percentage of genomes to mutate, are often left out
as a configuration option of the evolutionary system.

Crossover, or recombination, is responsible for the inheritance of features from parents
during reproduction. Crossover requires a pair of genomes, which are selected randomly
among the newly created offspring. There are many different ways to chose what part of
the genotype to inherit from one parent and what part to inherit from the other. Some of
these methods are: One-Point, Uniform and Arithmetic. The one-point crossover oper-
ator randomly selects a point in the two genomes, where the genetic material is swapped
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between the two genotypes. Uniform crossover selects n random points in which the ge-
netic information is swapped. Arithmetic crossover only applies to real-valued genotype
representation, by taking the average of the two genotypes at any given position.

2.1.5. Types of Evolutionary Algorithms

There are several types of EAs, tailored towards different optimization problems. The
main difference between them is the choice of genotype representation and genetic op-
erators. The best choice of type depends on the properties of the problem to be solved
(Floreano and Mattiussi, 2008). The most relevant EA types are:

• Genetic algorithms, where the choice of genetic representation is binary or dis-
crete, which makes the crossover methods simple and effective.

• Genetic programming, which operates on tree-based genotype representation.
This method is often used on more complex optimization problems, such as com-
puter programs and electronic circuit design.

• Evolutionary programming, which is used to optimize a set of problem or
program parameters. A real-valued genotype representation is suited in this type
of EA. Mutations are drawn from a zero-mean Gaussian distribution, making small
mutations more common than large.

• Island model, where multiple independent populations are maintained and evolved
in parallel. Every generation, some genotypes are exchanged between the popula-
tions in order to introduce variations and exploit potential synergies.

2.1.6. Algorithm

Even though multiple types of EAs exist, they share the same high level steps during
execution (Floreano and Mattiussi, 2008, chapter 1).

1. The initial population is filled with N randomly generated individuals. It is im-
portant that the random population covers the whole search space, and that the
generated individuals are evenly distributed in the search space. Low diversity in
the initial population may lead to important features being missed in the evolution.

2. Evaluation of the population, using the fitness function. High fitness value entails
that the individual is well suited to solve the optimization problem.

3. The best individuals are selected for reproduction. Many strategies exist, but they
are all based on the principle that individual with higher fitness should have a
higher probability of being selected for reproduction. This step is called parent
selection.

4. If more than n individuals exists at this point, the population is reduced in order
to fit in the original population. This selection is called adult selection, and is also
based on the fitness value of the individual.
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5. The selected individuals undergo crossover and mutation, which is responsible for
inheritance of parent features, and of small random changes. This ensures that the
search space is explored during the evolutionary process.

6. The evolution halts if the highest fitness in the population reaches a predefined
threshold, or after a set number of generations. Otherwise, continue the evolution
by going to step 2.

2.2. Artificial Neural Networks
An Artificial Neural Network (ANN) is a computational model and classification al-
gorithm that tries to emulate the features of a biological nervous system. ANNs consist
of nodes, called neurons, that are structured and interconnected in specific patterns us-
ing weighted connections. Most commonly, the neurons are separated into layers. In
this case, a designated layer called the input layer is responsible for receiving external
information and forward it to the next layer. Such networks are called feed forward net-
works, due to the way data and signals are always propagated forward in the network.
Other layers are to a certain degree connected to the previous layer of the network. Fig-
ure 2.4 presents a simple feed-forward neural network, where information is forwarded
from left to right. This is a fully-connected network, meaning all neurons in one layer
is connected to every neuron in the next layer. (Floreano and Mattiussi, 2008, chapter 3).

Notable features of ANNs are (Floreano and Mattiussi, 2008):

• Adaptiveness. A neural network can be trained to recognize and react to different
input patters, by running a so called training set multiple times on the network.
A training set includes a high number of data-label pairs randomly sampled from
a larger data domain, where the label denotes the “correct” network output for
the corresponding input data. The resulting error term obtained when running a
data-label example, is used to alter connection weights in the network in a way that
will minimize future error terms. This procedure is known as the backpropagation
algorithm (Werbos, 1974).

• Robustness. A neural network is to some degree resilient from signal noise, input
degradation and malfunctioning of connections and neurons. Even if such events
occur, the network responds by decreasing its output accuracy and increasing the
error rates. Neural networks can also, to some degree, be trained to compensate
for damages and input noise.

• Flexibility, in that neural networks can be used in a variety of domains and solve
different types of problems. However, some types and configurations of neural
networks are more or less applicable to certain problem types.

• Generalization. A neural network can successfully classify input patterns that has
never been seen before, given that the input shares similarities to training patters.
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2.2. Artificial Neural Networks

Figure 2.4.: A simple ANN with two hidden layers (gray nodes). The input layer (red)
takes a vector of length 3 and feeds each of the values into the neurons of
the first hidden layer. The output layer (green) outputs a vector of length
2, and is considered the output of the network. The configuration of this
network is [3, 3, 2, 2], which specifies the number of neurons in each layer
and the total number of layers.

2.2.1. Neurons and connections

Each neuron uses a function, called an activation function, that takes in the weighted
input sum and calculates the output of the neuron. This value is then forwarded to all
neurons connected to it. An activation threshold can be specified so that the weighted
input must be greater than this constant value in order to activate. By using different
configurations of connections in the network, one can decide which neurons should be
affected by other activated neurons. This often creates an emergent pattern that neurons
activated together, often activate together again, showing similarities to how the human
brain operates (Floreano and Mattiussi, 2008, chapter 3). Figure 2.5 shows a schematic
illustration of a neuron, with internal functionality presented.
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2. Background Theory

Figure 2.5.: Schematic illustration of a neuron, with input vector ~x, connection weights
~w, activation threshold ϑ and output y. Φ is the activation function.

Every connection in the network has a multiplier factor tied to it, usually referred to as
a weight. These weights determine how important another neuron’s activation should
be for the current neuron activation. It is by altering these weights that ANNs exhibit
learning capabilities (Floreano and Mattiussi, 2008, chapter 3).

The activation ai of a neuron i is given by the scalar product between its input weights
~wi and the input vector ~x:

ai = ~wi · ~x =
N∑

j=1
wijxj (2.2)

where N is the number of weights/inputs to the neuron.

The output signal yi of a neuron i is computed using the activation function Φ(·), with
the weighted neuron input ai. The neuron threshold ϑi is subtracted from the weighted
input sum:

yi = Φ(ai − ϑi) (2.3)
The activation function Φ(·) can take many different forms, which will affect the per-

formance and behaviour of the network. Some of the most common activation functions
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are linear functions, the step function and the ’S’-shaped sigmoid function.

2.2.2. Continuous Time Recurrent Neural Networks (CTRNNs)

A subset of ANNs are CTRNNs. The keywords here, continuous time and recurrent
refer to the attributes of these specific networks.

A network can be either continuous or discrete in how its output changes in regards
to time. A continuous-time model will mean that the network output changes continu-
ously, while a discrete-time model means that the network output changes discretely
(Beer, 2006).

When it comes to the architecture of a network, it is often split into feed-forward and
recurrent. Feed-forward is what is most commonly associated with ANN. Here the in-
formation from the input is fed forward through layers in the network and processed in
each of them, before resulting in the output. In the recurrent architecture, there can also
be connections that go in the opposite direction, i.e. allows for feedback loops (Beer,
2006).

A neuron i in a CTRNN has an internal activation state yi, which is persistent between
successive activations. Equation 2.4 shows the derivative of yi, i.e. the change in internal
activation with respect to time:

dyi

dt
= 1
τi

(−yi + ai + ϑ) (2.4)

where:

• yi is the current internal activation of neuron i.

• t is time, which is represented as discrete timesteps. Each successive run of a
CTRNN constitutes a timestep.

• τi is the time constant, where a low value entails fast change and more spontaneous
reactions from input. A high value creates more memory in the system as the
internal activation undergoes less “leakage” between each timestep.

• ai is the weighted neuron input given in equation 2.2.

• ϑi is the activation threshold of neuron i.

The output value of a CTRNN neuron i is calculated using the sigmoid function:

oi = 1
1 + e−giyi

(2.5)

Notice that yi is multiplied with the gain term gi, which is a neuron specific coefficient
for the activation.
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In CTRNN, in addition to being connected to the previous layer, each neuron can also
be connected to itself and other neurons in the same layer. These connections signify a
connection to the previous state of said neuron. Compared to regular ANNs, neurons
in a CTRNN retain some of their activation between successive runs, resembling simple
forms of memory. Because of this, a CTRNN may not produce equal results for equal
input (Beer, 1995).

2.3. NEAT

NeuroEvolution is the concept of evolving ANN by using genetic algorithms. Most of-
ten, this involves using a kind of EA in order to develop weights for a fully connected
ANN, i.e. the topology of the network is decided beforehand. The argument for not
using a fully connected network is that there will be a lot of unnecessary connections
and weights, leading to more computation required.

In order to increase performance in neuroevolution, Stanley and Miikkulainen intro-
duced the NEAT method. The increase in efficiency is due to three main factors: The
crossover method for different topologies, the protection of structural innovation us-
ing speciation, and the fact that the growth always happens from a minimal network
(Stanley and Miikkulainen, 2002).

2.3.1. Topology in NEAT

The third factor given by Stanley and Miikkulainen is pertaining to the superfluous
nodes and connections in a fully connected network with hidden layers. Due to this, a
network in NEAT always starts with the same topology: All input nodes are directly
connected to the outputs, meaning no hidden nodes are used. This insures that the
population of networks always evolve from minimal structures. In order to increase the
complexity, the networks will have to undergo mutation during evolution.

There are two types of mutation for the topology in NEAT; adding a new node and
adding a new connection. When a mutation results in a new node, it splits an existing
connection with a node, resulting in two new connections. The old connection is set to
be disabled, while its weight is transferred to the connection leading out of the new node.
The connection weight leading into the new node is set to 1 (Stanley and Miikkulainen,
2002).

As can be seen in figure 2.6, each new connection is added to the end of a list. This
list is what allows crossover between networks with different topologies. Each mutation
is given a so called innovation number. This number serves as an identification for the
related mutation. Whenever a mutation occurs, it is given an incremented number to be
its innovation number. Within each generation, a table keeps track of all the mutations,
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Figure 2.6.: Mutation in NEAT. Red shows the selected spot for mutation and green
shows the resulting additions. The big numbers in each cell indicate the
innovation number.

in order to ensure that a particular mutation is not assigned multiple innovation numbers.

For crossover, the innovation numbers are used to guide the topology inheritance. The
system can now know how connections from different genotypes match up. The con-
nections can also be called genes. Genes can be separated into three groups: Matching,
disjoint and excess genes. Matching genes are genes that are in both of the parents.
Disjoint and excess genes are genes that only one of the parents have. The difference
between them being that disjoint genes have an innovation number between the other
parents lowest or highest innovation number, while excess genes have innovation number
outside of the range of lowest to highest innovation number in the other parent (Stanley
and Miikkulainen, 2002).

All of the matching genes are passed down to the offspring, and the weights are randomly
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chosen from either parent for each gene. The disjoint and excess genes are only passed
down from the most fit parent (Stanley and Miikkulainen, 2002). When both parents
have the same fitness, the non-matching (disjoint and excess) genes are passed down
from both, as can be seen in figure 2.7.

Figure 2.7.: Crossover in NEAT where both parents are equally fit. Lighter colours
indicate a disabled connection. The big numbers in each cell indicate the
innovation number.
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2.3.2. Speciation

When a network develops a new structure, it is very likely that it will not survive before
it is optimized. In order to protect structural innovation, NEAT uses what is called
speciation. This is the concept that groups similar solutions together. For each species,
NEAT uses explicit fitness sharing. That is, within each species, all solutions have the
peak fitness. The height of the peak determines how many solutions that can exist in a
species. For measuring compatibility with a species, the number of non-matching genes
are used. If the compatibility is too low for every existing species, then a new species is
created (Stanley and Miikkulainen, 2002).

2.4. Fuzzy Logic

Fuzzy logic can be considered a generalization of classical logic, in the way that fuzzy
propositions can represent degrees of truth, in contrast to the binary truth values found in
classical logic. The truth value of a proposition can take any real value in the range [0, 1],
where the values 0 and 1 maps to the classical logical values false and true respectively.

2.4.1. Fuzzy sets

Consider a universal, classical set X = {x1, x2, ..., xn}, n ∈ N. A subset A of X has
a binary membership vector Z(A) = {m1,m2, ...,mn}, where the i’th element mi spe-
cify whether or not element xi is in the subset A. For example, a membership vector
Z(A) = {1, 0, 1, ..., 0} tells us that the elements x1 and x3 are members of A, because
the first and third element is set to 1. A zero element denotes that the respective ele-
ment is not part of the subset. In classical set theory, only the values 0 and 1 are
allowed in a membership vector, i.e. an element is present in the subset or not. In
fuzzy set theory however, no such limitation is imposed. Elements have a degree of
membership (fuzziness), specified as a real value between 0 and 1. A fuzzy set B may
have a membership vector Z(B) = {0.3, 0.9, ..., 0.0}, which implies that element x1 has a
somewhat small membership of B (0.3), while x2 has almost complete membership (0.9).

A special kind of function, the membership function, is responsible for assigning mem-
bership value to each element of a fuzzy set. In classical logic, the membership function
is only allowed to assign a membership value of 1 or 0, that is, if an element is in the
set or not, respectively:

fA(x) =
{ 1, if x ∈ A

0, if x /∈ A (2.6)

where A is some classical set.

In fuzzy sets, an element can have any degree of membership in the range [0, 1]. A
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fuzzy set A of the universal set X is defined by the membership function µA(x):

µA(x) : X → [0, 1] (2.7)

where x ∈ X. The membership function describes the degree of membership for an
element x in the fuzzy set A, which is all pairs (x, µA(x)) where x ∈ X. Figure 2.8
shows two examples of membership functions. The classical logic analogy is presented
in figure 2.9.
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Figure 2.8.: A membership function operating on the universal set of all real-numbers R.
The dashed line at x = 19 indicates that the value 19 has membership 0.5 in
fuzzy set A, and 0.0 in set B. The shape of these membership functions are
trapezoidal and triangle, respectively. Figure 2.10 presents the most relevant
membership function shapes.
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Figure 2.9.: The classical analogy to the membership functions shown in figure 2.8. Note
the restriction to only horizontal and vertical lines, due to boolean logic.

2.4.2. Rules and fuzzy inference

In a fuzzy system, knowledge is captured in rules, specifically in the form:

IF x is X1
THEN y is Y1

Where x and y are linguistic variables, and X1 and Y1 are values defined by fuzzy
sets. Consider the example of indoor temperature. Here, temperature is a linguistic
variable, whilst the concepts cold, ideal and warm are values of this domain. A rule may
consist of multiple propositions, using the intersection operation AND, and the union
operation OR. The unary operation NOT is defined as the complement of a set:

IF x is X1
AND y is NOT Y3
THEN z is Z2

IF x is X1
OR y is Y3
THEN z is Z2

IF x is X1
OR (y is Y3 AND z is Z3)
THEN v is V2

(Negnevitsky, 2005)
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Figure 2.10.: The membership functions trapezoidal, grade, triangular, gaussian, sig-
moidal and S-formed polynomial. The asymmetric examples also have
reversed versions of themselves.

In practice, the rules of a fuzzy system are defined by experts in the appropriate field
of work. The fact that the fuzzy variables, values and rules resemble human reasoning,
makes it easier for an expert to produce efficient rules, compared to for example training
a neural network (Rojas, 1996, p. 290).

2.4.3. Mamdani-style reasoning

The most commonly used fuzzy inference method is the Mamdani method, named after
professor Ebrahim Mamdani who was one of the first to design a fuzzy system for a
practical application (Negnevitsky, 2005; Mamdani and Assilian, 1975). This inference
method consists of four steps:

1. Fuzzification of the input.

2. Rule evaluation.

3. Aggregation of the rule outputs.

4. Defuzzification.

In the first step, input variables (typically measurements or sensor data) are transformed
into fuzzy membership sets using their respective membership function. Referencing fig-
ure 2.8, a measurement of x = 19 produces the fuzzy set {0.5/A, 0.0/B}1.

1Note that the symbol "/" does not denote a fraction or division, but is merely used as a syntactical
delimiter between the membership value and a fuzzy concept.
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The second step is rule evaluation, where the fuzzified inputs are applied to each rule of
the system. Each rule evaluates to a single real number, describing the degree of mem-
bership for a particular output value. In a rule, each clause evaluates to a real number,
which is the membership for that particular value. For example, consider the fuzzy set
{0.7/X1, 0.2/X2}, which is the fuzzified input of some system. The rule:

IF x is X1 THEN y is Y2

can be broken down into simple, mathematical operations. The output of the rule
is the real-valued membership of Y2: Y 2 = X1 = 0.7→ 0.7/Y 2.

When a rule consists of multiple propositions, the max operation is used in place for
the union operator (OR), and the min operation is used in place for the intersection
operator (AND). The rule:

IF x is NOT X1 OR x is X2 THEN y is Y2

evaluates to: Y 2 = max(1−X1, X2) = max(1− 0.7, 0.2) = 0.3→ 0.3/Y 2.

In general, the different operations permitted on fuzzy sets are:

µA(x) ∩ µB(x) = µA∩B(x) = min[µA(x), µB(x)] (AND)
µA(x) ∪ µB(x) = µA∪B(x) = max[µA(x), µB(x)] (OR)
µ¬A(x) = 1− µA(x) (NOT)

where x ∈ X, the universal set.

The third step of the inference process is to aggregate all rule outputs into one fuzzy
set, which is then converted into a crisp2 number. This is done by copying the output
variable set, clipping each value at their respective membership degree. See figure 2.11.
In order to obtain the crisp output value, the centroid technique is applied to the ag-
gregated set. This method finds a point where a vertical line would split the set into
two equal masses; the Center Of Gravity (COG):

COG =

∫ b

a
µA(x)xdx∫ b

a
µA(x)dx

(2.8)

where a and b are the start and end-points of the set, respectively (Negnevitsky, 2005).

2A single value, not fuzzified.
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Figure 2.11.: Example plot of aggregated rule outputs, where two of the values are
clipped at y = 0.5. The full membership shapes are shown in dashed
lines.

In computer systems, the COG is estimated numerically using a fixed number of sample
points, using the formula (Negnevitsky, 2005):

COG =

b∑
x=a

µA(x)x

b∑
x=a

µA(x)
(2.9)

In figure 2.12, the center of gravity is calculated on an example plot using equation 2.9.
The COG is shown as a dashed, vertical line in the figure, at x = 6.75. This is the crisp
output of a fuzzy system.
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Figure 2.12.: Center of gravity calculated for an example aggregated plot. The set is the
same as shown in figure 2.11.
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2.4.4. Sugeno-style reasoning

Another method of rule inference is the Sugeno-style reasoning, introduced by Michio
Sugeno in 1985 (Takagi and Sugeno, 1985). The main steps of the algorithm remain
identical to the Mamdani-reasoner, but with some key differences in the rule format and
evaluation. In Sugeno-reasoning, the consequent part of a rule, that is, the clause in the
THEN -part, is instead defined as a function of the input parameters.

IF x is X1
AND y is Y1
THEN z is f(x, y)

where x and y are input variables, X1 and Y1 are fuzzy set values, z is the out-
put variable, and f(x, y) is a function that calculates the value of the output singleton
set. When f(x, y) = k, where k is constant, the system is called a zero-order Sugeno
fuzzy model (Negnevitsky, 2005).

The main advantage of the Sugeno-model is the computational efficiency over Mamdani-
reasoning. Instead of calculating the COG using equation 2.8, the crisp output is cal-
culated as a Weighted Average (WA) of all singleton outputs. In a zero-order Sugeno
model, the WA is calculated using the equation:

WA = µ(k1)k1 + µ(k2)k2 + ...+ µ(kn)kn

µ(k1) + µ(k2) + ...+ µ(kn) =

n∑
i=0

µ(ki)ki

n∑
i=0

µ(ki)
(2.10)

where n is the number of output singleton sets, ki is the i’th singleton constant value,
and µ(ki) is the i’th rule output.

The compuational complexity of equation 2.10 scales linearly with the number of output
sets, whereas the COG formula in equation 2.8 must be estimated numerically using an
appropriate number of iterations. This makes the Sugeno-style inference more compu-
tational efficient in the vast majority of cases, because it generally needs less iterations
to compute.

2.5. Evaluating computational creativity

In the field of measuring and evaluating computational creativity, different models have
been suggested by Pease and Colton (2011). Namely the FACE model and the IDEA
model. Building on this, Jordanous (2013) writes about a standardised procedure for
evaluating creativity, Standardised Procedure for Evaluating Creative Systems (SPECS).
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2.5.1. The FACE model

This model is about separating creativity into different generative acts. By generative
acts, Pease and Colton (2011) mean a creative act. They call it generative due to the
fact that if the question of creativity arises, something new has to have been created,
i.e., generated. The different generative acts in the FACE model are:

• F: Framing information

• A: Aesthetic measures

• C: Concepts

• E: Expressions of a concept

As can be seen here, the FACE model splits the creative evaluation into several different
parts. These four aspects each contain two generative acts: An act for the item of the
aspect, and an act for a method of generating said item. Pease and Colton (2011) also
point out that a single creative act, as they call it, will not necessarily fulfill each of the
aspects in this model. They also specify that this model can be used both quantitatively,
i.e. counting the creative acts, and qualitatively, i.e. comparing the acts against a given
measure (Pease and Colton, 2011).

2.5.2. The IDEA model

IDEA is short for Iterative Development Execution Appreciation. The concept for this
model is that one develops software and presents it to an audience in a cyclical fashion.
The idea is that a measure of the creativity can be evaluated every cycle and be steered
towards different aspects of creativity.

In order to calculate aesthetic criteria, Pease and Colton (2011) say that for an ideal
audience, every individual can evaluate the effect an act had upon them. This is split
into an indication of change in well-being from -1 to 1, and between 0 to 1 by how much
cognitive effort they spent in order to appreciate it. These are then used in various
formulas to calculate a score for different topics. Some examples of these topics are the
shock-factor, disgustedness, popularity and how opinion-splitting the act was (Pease and
Colton, 2011).

2.5.3. SPECS

Jordanous (2013) has also done some research on the evaluation of creative works. She
came up with SPECS, the Standardised Procedure for Evaluating Creative Systems. In
this, she specifies three main steps for evaluating the creativity of a system.

1. Identify the correct definition of creativity. This would be the definition that would
determine if the system could be considered a creative system. After that, one
should focus on the aspects of creativity that are most important for the system.
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2.5. Evaluating computational creativity

The definition of creativity used should reflect the domain of the creative work.
An example of this can be of a computer creating a painting. The domain would
then be the picture created. A definition of creativity for this, could be that the
system creates something new and that it gets a reaction from a viewer.

2. Find each criteria from the definition found in step one, and use each of them as
a standard to test the system.

3. Evaluate the system against the standards found in step two. One needs to consider
each aspect of the definition while testing, and weigh the importance against each
other. Notice that it is no need to combine all of the test results into one final
score.

All these methods have one thing in common. Namely that they separate the evaluation
into the different aspects of creativity, rather than evaluating the system as a whole
(Jordanous, 2013).
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3. Related work
This chapter will look into existing work and development in the field of computational
creativity and computational creative behaviour. It will be focused on the current state
of creative behaviour research, computational creativity evaluation research and pre-
viously used relevant Artificial Intelligence (AI) methods. There has been a modest
amount of work in the field of creative behaviour evolution recently, compared to other
related fields such as sentiment and linguistic analysis, art and music composition. How-
ever, a substantial amount of research has been conducted regarding the definition and
measurement methods of computational creativity (Aguilar and Pérez y Pérez, 2014).

3.1. Creative behaviour

A great number of explanations and definitions have been proposed for creativity. Ma-
her et al. (2008) define creative behaviour as behaviour that results in a product that
is unique or somehow valuable to an individual or society. In a more behaviouristic
context, creativity may be defined as a unique and valuable response or pattern of re-
sponses to a characteristic external input (Razik, 1976). That is, behaviour and actions
that are considered unexpected and novel, but simultaneously valuable and meaningful
for the acting entity. A clear definition of creative behaviour is useful in this thesis
because one goal is to evolve creative behaviour for different worlds and scenarios. Am-
abile and Collins (1999) propose that there may be different types of creativity, namely
extrinsically and intrinsically motivated creativity. Extrinsically motivated creativity
revolves around external reward, recognition and direction from a supervising entity,
much like reinforcement learning, in order to motivate creative behaviour. On the other
hand, intrinsically motivated creativity is characterised by actions that are satisfying or
in other ways interesting to the individual. The latter also motivates for a higher level
of creativity, while extrinsic motivation can have a negative effect on the emergence of
creativity, because it relies on external and/or human-like guidance (Amabile, 1996).

3.2. Curious learning agents

Computational creativity involves both the creation of some sort of creative product,
such as art and poems, but also creative behaviour. Maher et al. (2008) focused on the
latter in their work on curious learning agents. They considered two approaches, the
first using reinforcement learning to train the agents, and the other supervised learning.
The immediate difference is that supervised learning requires example data in order to
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exert learning capabilities. Such data can be hard to implement in an intrinsically mo-
tivated system, because the strategy entails high levels of intervention from an external
source. This contradicts some aspects of the found definition of creativity, which states
that human and other external influence should be avoided.

Maher et al. (2008) also experimented using reinforcement learning in curious agents.
They used a computational model in order to detect the novelty of stimuli in real time
(Saunders, 2001). The novelty figure is then used to calculate the curiosity value for
this particular stimulus, and to to ultimately focus the attention of the perceiving agent.
The goal is to teach the agent to explore its surroundings, and repeat interesting events
that may have a positive influence on the individual. As seen in figure 3.1, the model
incorporates multiple steps in order to convert a perceptual state into an action to be
performed by the agent. As data is received from the environment through sensors, it is
parsed by the Sensation module into an attribute based state representation, where each
attribute represent some property of the observed world. As each state attribute take
a numeric value, it allows for one state to be ’subtracted’ from the previous, yielding
the change between two states. This vector is referred to as an event by Maher et al.,
and is used to calculate the curiosity value for that particular event. Curiosity is used
to update a policy using table-based Q-learning (Watkins, 1989). Actions are selected
using a policy that maps states to actions, where the action with the highest curiosity
value is selected. However, there is small chance that a random action is selected instead.

Maher et al. (2008) consider behaviour and patterns of behaviour that is new and unex-
pected as creative. In order to consider a particular behaviour as adopted and learned,
the agents must be able to reproduce the behaviour at least five times to identical stim-
uli. In the validation of creative behaviour, Maher et al. consider emergent behaviour
in terms of its focus, novelty and unexpectedness. Their first experiment considers the
behaviour of a sheep in a computer game simulation, where the players are asked to
build objects that attract the attention of the sheep. One such object is a food-machine,
where food appears once a button is pressed. One observed behaviour was:

• Press the button, move to the food, eat the food, move back to the button...

This is more or less the expected behaviour of the sheep, and is not considered very
creative, given the situation. Another observed behaviour was:

• Move to the food outlet, press the button, eat the food, press the button, eat the
food...

In this situation, the sheep were able to repeatedly eat without having to move between
the button and the food tray. Maher et al. found this behaviour particularly creative,
because it was unexpected and demonstrates that the sheep was able to utilize a limit-
ation in the food-machine that the designers were unaware of.

Another observed pattern of behaviour was that the sheep pressed the button multiple
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times to eject more than one food at a time. However, it was never observed that the
sheep pressed the button more than three times before eating the food. This behaviour
suggest that the curious learning approach has limitations in emergence of longer action
sequences. If models of curiosity have the ability to support more complex behaviour, is
still an open question. The findings of Maher et al. (2008) suggest that the evolution of
creative behaviour is limited to short action sequences in simple microworlds. According
to Russel and Norvig, Q-learning agents are seriously restricted in their ability to learn,
due to their inability to look ahead and anticipate the outcome of their actions (Russel
and Norvig, 2009, p. 874). This supports the conclusion of Maher et al., that the agents
struggle to learn longer action-command chains. If one wishes to evolve a greater level
of creativity, a more sophisticated level of curiosity is needed in order to motivate such
behaviour. In other words, it is relatively easy to achieve simple creative behaviour, but
a lot more complex if the goal is to evolve truly creative behaviour. This may limit the
result of this thesis to simple agent behaviour, or behaviour that is subject to human
intervention, which should be avoided in a computational creativity context.

Figure 3.1.: The process model of a curious learning agent (Maher et al., 2008).
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3.3. Creativity in AI

In Boden (1998), creativity is defined as something that is novel, surprising and valu-
able. There is also a distinction between psychological(P)-creativity and historical(H)-
creativity. Here, P-creativity is something that produces novelties on a personal level,
while H-creativity pertains to something that is novel for the entirety of history. It fol-
lows that AI should focus on P-creativity, as if an agent manages to model this, then it
will lead to H-creativity in some cases.

Boden (1998) also separates creativity into three different types, namely combinational,
exploratory and transformational creativity. The first of these being a novel combin-
ation of familiar ideas, such as poetic imagery and analogies. The two latter types of
creativity separates from the first, but still have a lot of commonalities towards each
other. Exploratory creativity contains novel ideas that search, or rather explore, a pre-
existing structured conceptual space. The last type of creativity according to Boden
(1998), transformational creativity, transforms the dimensions of the concept space it-
self. Looking at creativity in humans, it can be seen that a lot of human creativity falls
into the second type, such as artists and musicians. However, by using transformational
creativity, one can create unexpected and shocking results.

“Jape” is an AI specified in Binsted (1996) that falls into the first type of creativity
defined by Boden (1998). This program is focused on generating humorous riddles using
puns. “Jape” uses nine general sentences in order to generate jokes. An example of this
is "What do you get when you cross X with Y?". Tests showed that people did not have
too much difficulty in separating “Jape”’s jokes from human-made jokes, as the human
jokes were often better. However, if the results of “Jape” were pruned to only contain
the best jokes, the difference between the generated and human-made jokes began to
disappear (Binsted, 1996).

When it comes to exploratory creativity, there are a lot of existing AI programs. Amongst
others, (Boden, 1998) mentions the following: EMI(Experiments in Musical Intelligence),
a program that creates new music in the styles of famous composers (Cope, 1991), and
AARON, which produces both line-drawings and colour using specific styles (Cohen,
1995)(McCorduck, 1991).

There is not a lot of programs that can be called transformational compared to ex-
ploratory. However, some exist in the form of programs that use genetic algorithms
(Boden, 1998). This leads into Boden’s conclusion, namely that there currently are two
bottlenecks for further development. These are the requirement of domain-expertise and
valuation of results. The latter being especially the case for transformational creativ-
ity(Boden, 1998).
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3.4. Real Time NeuroEvolution of Augmenting Topologies
(rtNEAT) and NERO

Stanley et al. developed the video game NeuroEvolving Robotic Operatives (NERO),
a game using machine learning as its mechanics. The point in this game was to train
AI agents to win against another team of trained agents. Each player had to design se-
quential tasks or scenarios that would gradually teach the agents to perform increasingly
complex behaviour (Stanley et al., 2006).

In order to achieve these mechanics, Stanley et al. made an extension to NeuroE-
volution of Augmenting Topologies (NEAT) called Real Time NEAT (rtNEAT). Due to
the agents needing to evolve during training, and while the scenarios were changing, the
system had to be able to make improvements on the fly. This new method, rtNEAT,
continuously breeds two agents with high fitness at a specified tick rate. The offspring
replaces the currently worst individual.

Using a pre-designed collection of scenarios, behaviour evolved quickly in NERO. It
could be observed that agents were able to learn diverse skills and perform complex
strategies that dominate simpler tactics. This makes a strong case that the speciation
in NEAT promotes diversity in strategies, and does not kill off any individuals that has
yet to optimize their behaviour (Stanley et al., 2006).
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4. Architecture
In order to work towards the project goals, a system capable of evolving, testing and
visualising agents was implemented, called Creative Creature Behaviour (CreBe). This
chapter contains the architectural structure and rationale for this project. First, the
world in which the agent simulation takes place is described. Then, the implemented
system and its algorithms are presented. Also included is a short description of the
different configuration files used by the system. The system was implemented solely for
this project.

Figure 4.1.: A creature with a motor, two noses, two eyes and a mouth. Each eye is
attached to a fork, which enables branching of entities. The black dots
indicate empty attachment points, where other entities may be attached.

4.1. Agent world

In order to stimulate the evolution of intelligent behaviour, a virtual world is created
where agents can move, roam and act freely. This world is mostly empty, with the
exception of other agents and scenario specific entities, such as food and poison. One
part of the research is to investigate different prerequisites for the emergence of creative
and intelligent behaviour. For this, different world types with different goals can be
experienced by the agents. These world types act as different scenarios when evaluating
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the performance of an agent. It is more likely that a multi-objective scenario will inspire
the agents to behave creatively, which is why different scenarios and goals are designed.
This pertains to the project goal of studying different environments and tasks in order
to motivate for the emergence of creative behaviour.

This project models agents as animal-like entities, known as creatures. See figure 4.1.
The fitness score of a creature is calculated by running a simulation of a specific world
type scenario. These simulations are independent operations, meaning multiple creatures
can be evaluated in parallel on multiprocessor systems.

4.1.1. Food world

This is the world that represents the most simple scenario. It contains several bits of
food, and only one agent is present in the world at a time. The goal for the agent in this
world is to eat as many food pieces as possible, within a predefined timeframe. Creatures
in a food world can see and smell food using the eye and nose entities respectively, but
needs a mouth entity in order to eat the food. The number of foods eaten is stored as
the agent’s fitness value. This scenario requires only very simple behaviour, and acts
more as a benchmark and test scenario during the implementation of the system.

4.1.2. Poison world

The poison world scenario is very similar to the food world scenario. The only difference
being that there are also bits of poison among the food scattered around. In addition
to this, not all sensors can differentiate between the two. Due to this, the behaviour of
the agents need to be a bit more complex. A creature sees food and poison as equal,
but smells them differently. This constitutes a big advantage for creatures that evolve a
nose entity, given that they are able to use this information in a useful way.

4.1.3. Arena world

In contrast to the other food and poison scenarios, this is a multi-agent environment,
meaning more than one creature is present at a time. The main idea behind this world
is that two different agents can fight against each other, develop strategies and incre-
mentally improve their fighting skills. Using damage-inflicting entities such as the spike,
the goal is to kill the other creature. In this environment, the energy level of a creature
doubles as health, or Hitpoints (HP). A creature dies when its HP reaches zero. The op-
ponent in an arena world can be changed to a pre-designed creature with pre-determined
behaviour to train the current agent to win against certain strategies. Due to the multi-
agent property of this scenario, the idea is that self-improvement will produce creatures
with richer and more complex behaviour over time.
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4.2. Algorithms and AI-methodologies

This section aims to describe the different algorithms used and implemented, the system
architecture and overall architectural design.

4.2.1. Physical agent evolution

In order to evolve the physical appearance of agents, that is, the collection of entities1

that makes up a creature, a custom Evolutionary Algorithm (EA) was implemented.
The algorithm uses a predefined set of entities, each with different purpose, functional-
ity and mutable properties. See figure 4.2 and table 4.1 for an overview of the different
entity types available during evolution. Some entities (body, arm and fork) have attach-
ment points where other entities of any type can attach. The evolutionary task is to try
different combinations of entities together, while also mutating their properties slightly
in order to cover a bigger search space. All creatures have a body as the root entity,
while other body parts are attached to this. This makes up a tree of entities, making the
genotype of this evolution process a tree representation. The only restriction on physical
evolution is that entities may only attach to other entities with a free attachment point
(see figure 4.2).

Each entity is equipped with an energy upkeep cost, which is calculated from mut-
able properties of the specific entity. For example, an eye with a big Field Of View
(FOV) will have higher associated upkeep than an eye with normal FOV. The relation
between upkeep and mutation of properties is linear, meaning an eye with double FOV
and double max range, will have double entity upkeep. The upkeep system is intended
to place a cost on evolving numerous entities, to limit the number of entities that a
creature can sustain. A creature that is able to replenish energy quickly will be able
to support more and “better” entities, which in turn enables for further performance
improvements. During creature simulation, that is, when a creature is placed in a world,
the total upkeep is subtracted from the creature energy level at each timestep2. In the
food world scenario, creatures that are not able to gather enough food to support their
entity upkeep will die sooner and therefore receive a lower fitness value.

1Body parts.
2Tick.
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Figure 4.2.: An overview of all the different entity types available in the system. See table
4.1 for explanations. Entities attach at attachment points, as illustrated in
the figure.

Name Purpose/functionality Mutable properties Type
Arm An arm with rotation. Can attach

one other entity at the end.
Arm length, maximum
rotation angle and rota-
tion speed.

Actuator

Body Acts as the base entity for the agent.
Other entities may be attached to
the body.

Body size and creature
rotation speed.

Actuator &
sensor

Ear Can “hear” other agents within
range.

Hearing range. Sensor

Eye Can see objects in the world, such
as food and other creatures.

Visual range and FOV. Sensor

Fork Splits an entity attachment point to
two attachment points.

Fork branch length and
angle.

None

Motor Creates a force to propel the agent. Motor strength. Actuator
Mouth Can eat food and poison. None Sensor
Nose Can “smell” food and poison. Smelling range. Sensor
Spike Used to inflict damage based on the

speed of the entity to other agents.
Spike length and dam-
age.

None

Touch
sensor

Sense touch from other agents. None Sensor

Table 4.1.: An overview and explanation of the different entity types available during
evolution.
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The fitness evaluation procedure associated with the physical agent evolution is a key
research point in this project, as it is highly responsible for the evolutionary outcome.
A poorly designed fitness function may not stimulate for the evolution of intelligent
and creative behaviour. However, physical agent evolution is not responsible for the
evolution of behaviour and action inference. This is handled by a second evolutionary
system. The fitness evaluation procedure of physical evolution is therefore the process
of running an entire behavioural evolution.

4.2.2. Behaviour evolution

A second evolutionary algorithm is responsible for the cognitive and behavioural evolu-
tion of an agent. This algorithm seeks to construct the action inference systems, referred
to as brain modules. These modules can be injected into any creature whose input and
output variables are compatible. That is, the number of input and output variables of
both the creature and the brain module must match. Sensors are considered input vari-
ables, while actuators are considered output variables (table 4.1). Figure 4.3 illustrates
the high level essentials of the system.

The system features three different types of brain modules; Artificial Neural Network
(ANN), fuzzy logic and NeuroEvolution of Augmenting Topologies (NEAT).

ANN-module

For the purpose of this project, a minimalistic and simple Continuous Time Recurrent
Neural Network (CTRNN)(see section 2.2.2) system was implemented. The produced
networks can have any layer configuration, input and output size. It also features func-
tionality to retrieve and update connection weights, as well as taus (τ), gains (g) and
bias (ϑ) terms of every neuron. This is to enable adjustments of network parameters
during evolution in order to exhibit learning capabilities of the system as a whole. The
interface of a CTRNN consists of a vector input and output.

The aim of the ANN brain module is to evolve weights and accompanying paramet-
ers to be used in a CTRNN. Because this EA is evolving network weights, the genotype
is a real-valued representation. The layer configuration of the network is left to the
human operator to decide, and is specified in the system configuration files. Other prop-
erties, such as input layer size and output layer size, are implicitly derived from the
creature that this brain module is created for. Each sensor entity constitutes an input
node, while every actuator represent an output node of the evolved network.

Genetic mutation of an ANN-module consists of adding to every parameter, a small,
random value drawn from a zero-mean normal distribution with configurable stand-
ard deviation, usually around 0.1. This is done for every weight and parameter of the
CTRNN-genotype. Crossover is implemented as drawing each parameter from either of
the two genotypes in question, with equal probability.
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Fuzzy-module

The second type of brain-module is based on fuzzy logic, using zero-order Sugeno-style
inference (see section 2.4.4). Upon initialization, the fuzzy-module genotype is filled
with random rules based on the statically defined action fuzzy sets3. For every action
of every present actuator (e.g. arm rotation or body movement), 1-3 randomly gener-
ated fuzzy rules are added to the rulebase. This is to ensure that every action has at
least one reference to a rule, in order for all actions to have a chance to fire. During
rule generation, the sensor variables, sensor values, the number of clauses to generate
as well as rule clause operation are selected randomly. Mixing of rule clause opera-
tions are not permitted within a single rule, meaning the whole rule consists of either a
series of AND or OR clauses. An example of a randomly generated rule with two clauses:

IF Distance IS Close AND HP IS Low THEN Move is Forward.

Or more generally:

IF sensor variable IS sensor value AND/OR ...
THEN actuator variable IS action

Mutation of a fuzzy-module genotype involves iterating through the rulebase, bumping
sensor value or action fields either up or down for every clause of the rule in question.
For example, this may turn “HP IS Moderate” into “HP IS High”. The probability of
this mutation happening is configurable. There is also a chance rules are removed or
added, by the same procedure as the initial rules were generated. The crossover operator
between two fuzzy genotypes selects a rule from either the first or second genotype with
equal probability.

NEAT-module

Lastly, the third brain-module uses the NEAT method (see section 2.3). This is also an
ANN, however, unlike the CTRNN implementation, this cannot be structured in layers.
NEAT is about evolving the topology of the network, something which creates a need
for a more flexible structure. Here, each neuron contains a list of its connections to other
neurons that affect its activation.

When a NEAT-module genotype is initialized, input neurons for each of the creature’s
sensor entities, and output neurons for each of the creature’s actuators are created.
Every output neuron gets a connection to each input neuron, i.e. the network becomes
like a fully connected network with no hidden layers. This is the minimal structure that
the NEAT implementation uses as a basis for evolution.

3Consult appendix A, page 91 for the definition of these sets.
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In every NEAT-genotype the data for the network is stored as a list of unique neur-
ons and another list for unique connections. During mutation a neuron or connection
can be added, and the weights of existing connections can be changed. When adding
a neuron, an existing connection is first selected that the new neuron will split. This
creates two new connections and the old one is tagged as disabled. Adding a new con-
nection requires more work. First all of the possible new connections are found, and
then one of them is selected randomly.

All of the different connections are assigned a number from a global counter. This
becomes the innovation number for the connection, and is necessary during the mating
process.

4.2.3. Run mode

The system supports two different run modes; designed and full (figure 4.4). In the
designed mode, the physical appearance of a creature is predefined in a configuration file
specified when running the system. In this case, only the behaviour evolution procedure
(either CTRNN, fuzzy or NEAT) is performed in order to produce the behaviour of the
creature. In the full run mode, physical creature appearance is evolved through physical
agent evolution, detailed in section 4.2.1. The designed mode allows for significantly
larger population sizes and more generations for behaviour evolution, because only one
EA has to be performed.

4.3. System configuration

The system can be configured by different configuration files, one for the physical entity
EA, one for each of the brain-module subsystems and lastly a general configuration for
the system and neural network configuration. Consult appendix B for an example of
how these configuration files are structured.

• Physical entity EA configuration:
Contains parameters that apply to the entity evolution EA; the population size,
max fitness/generations, selection strategies, mutation- and crossover rates.

• Brain-module configuration:
These configuration files apply to the brain-module subsystems, which is respons-
ible for the evolution of behaviour. As they also are EA configuration files, they
contain the same parameters as the physical entity EA configuration file.

• General system and ANN configuration:
This configuration file contains general options for the system, including entity
mutation factors, world options such as food spawn rate, the simulation length for
evaluation, and ANN layer configuration.
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Figure 4.4.: Difference between a designed run and a full run. In the designed case, a .txt
file is manually devised in order to define the physical entity layout, while
a behavioural EA will create the appropriate brain-module. In the full-run
case, physical creature layout is evolved using the physical agent EA.
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4.4. System limitations
There are some clear and some more hidden limitations of the implemented system. One
obvious is the computational performance limitation. The system relies on utilization of
multiple processors in order to complete the simulations in a reasonable amount of time.
This applies especially to the full-run computation, where two EAs are nested together
to produce both creature entities and behaviour. The long execution times are partic-
ularly noticeable when running a high number of generation with a large population.
This may put a practical limit on these configuration parameters, potentially limiting
the behaviour of the evolved creatures.

Another limitation of the system, which is less exposed, is the fact that behaviour is
not inherited and carried over to the next physical EA generation. This limitation may
restrict the behavioural performance of the creatures, because the behaviour-EA is reset
every time an entity is changed, added or removed. However, this limitation only applies
to the full-run mode, where entities actually undergo evolution.
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This chapter details all of the experiments that were designed and performed during the
thesis. Along with experimental setup, parameters and results, a short discussion of the
results it also present.

5.1. Experimental plan

In order to test the performance, evolvability and creative capabilities of the system, a
number of experiments was designed using the world scenarios discussed in section 4.1,
and recapped in table 5.2. For each scenario, four different creatures were manually de-
signed before they were to be optimized for their given task. The experiments performed
for each scenario in the designed runs, were as follows:

For every designed creature, 10 runs of 100 generations with a population size of 200
were performed. This procedure was repeated 3 times, one for each brain module; Con-
tinuous Time Recurrent Neural Network (CTRNN), fuzzy logic, and NeuroEvolution
of Augmenting Topologies (NEAT). The most relevant configuration parameters are
presented in table 5.1. For the complete configuration, consult appendix B.2 (page 95).

Table 5.1.: The most relevant configuration options used in the designed creature exper-
iments.

Parameter Value
Population size 200
Generations 100
Elitism 1 (0 for NEAT)
Crossover type Uniform
Adult selection Generational mixing
Parent selection Fitness proportionate

In addition, experiments were performed in order to test the full-evolve capability of the
system. In this case, no creatures were manually designed, but evolved using physical
agent evolution as explained in section 4.2.1. These tests are expected to show the
highest level of creativity and novelty, as both the physical creature layout and behaviour
is left for the system to devise. In these full-run experiments, the system performed four
runs of 50 generations with a population size of 16, as stated in table 5.3. This was
again repeated for each scenario. In order to produce brain-modules for these creatures,
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Table 5.2.: A recap of the different world scenarios and behaviour brain-modules in the
system.

Scenarios Brain-modules
Food world CTRNN
Poison world Fuzzy logic
Arena world NEAT

a behaviour evolution was performed with a population size of 20 for 20 generations.
Because of this nested EA-operation, the number of generations and population sizes
had to be reduced in order to keep the run-times on a manageable level. Complete
configuration for the full-run experiments are available in appendix B.3 (page 96).

Table 5.3.: The most relevant configuration options used in the full evolution experi-
ments.
Parameter Physical evolution Behaviour evolution
Population size 16 20
Generations 50 20
Elitism 0 1 (0 for NEAT)
Crossover type Uniform Uniform
Adult selection Generational mixing Generational mixing
Parent selection Fitness proportionate Fitness proportionate

The following sections contain the experimental parameters and results, presented one
scenario at a time. In order to get a sense of the fitness landscape of an evolution,
the maximum fitness is presented as a plot for each of the brain-modules, along with
standard error at each generation, which is calculated using equation 5.1.

SE = SD√
n

(5.1)

where SE is the standard error, SD is the standard deviation of the recorded maximum
fitness values in a generation, and n is the number of runs, which is 10 for both the
designed and full-run experiments.
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5.2. Food world scenario
In the food world, the objective is to eat as many food pieces as possible while the
creature is alive, or within a predefined maximum timeframe. Only one creature is
present in the world during simulation. The fitness function for the food world is given
in equation 5.2.

f(c) = nc,foods (5.2)

where c is the creature in question, and nc,foods is the total number of foods consumed
during the simulation. The maximum fitness is 100, because 100 food pieces spawn in
the world.

5.2.1. Designed food world creatures

Designed food creature 1 Designed food creature 2

Designed food creature 3 Designed food creature 4

Figure 5.1.: Designed creatures used in the food world scenario.
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Food creature 1

Figure 5.2.: Food world
Designed creature 1

The first designed creature in the food scenario is
a very simple one, equipped with two eyes and a
mouth (figure 5.2).

The average maximum fitness at each generation is
presented in figure 5.3, along with standard error.
The plot shows that all three behaviour systems
more or less stabilized their maximum fitness after
100 generations, with CTRNN marginally achiev-
ing the highest fitness and fuzzy logic by far the
lowest. It also presents the best evolvability of the
three, showing a steady increase throughout the
run. The highest possible fitness in the food world
is 100.
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Figure 5.3.: Food world scenario results for designed creature 1.
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Food creature 2

Figure 5.4.: Food world
Designed creature 2

The second designed creature in the food scenario
has four mouth entities, producing a larger area
for collecting food. However, the creature was not
able to utilize this advantage, as it usually used its
central mouths to eat. All brain-modules behaved
more or less equally, with fuzzy logic performing
somewhat behind the two others.
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Figure 5.5.: Food world scenario results for designed creature 2.
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Food creature 3

Figure 5.6.: Food world
Designed creature 3

The third designed creature in the food scen-
ario has four nose entities and no eyes, in or-
der to investigate agent performance with lim-
ited sensory input. The creature is able to
collect food using only its many noses, how-
ever, not as efficiently as the other designed
creatures in the food scenario experiment. The
fuzzy logic behaviour was able to improve its
performance by decreasing its speed, making
the turning radius smaller and more likely to
intercept a food piece. The NEAT based
creature was able to eat by spinning rapidly
when encountering food, making it likely that
the mouth would intersect it. We also see a
higher than usual standard error, probably due
to limitations in only using noses as sensor in-
put.

The discrete sensor value of a nose entity1 may appeal to fuzzy logic because of the
simple rule-base. With this particular designed creature, the number of sensor states
the creature can perceive is relatively low, which can be effectively captured by fuzzy
rules.

1Nose entity will only report the value 0 or 1.
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Figure 5.7.: Food world scenario results for designed creature 3.
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Food creature 4

Figure 5.8.: Food world
Designed creature 4

The fourth designed creature in the food scen-
ario has mouths attached to arms, in or-
der to investigate complex arm behaviour.
Only the NEAT based creature showed re-
mote signs of this, moving one of its arms
in front of the eye when observing a food
piece, allowing for easier navigation to the
food.

The sudden rise in maximum fitness for CTRNN
at the end of the run may be explained by the evol-
ution escaping a suboptimal solution. Figure 5.10
shows that three out of ten individual runs exper-
ience a sudden increase in fitness at generation 95,
96 and 97 respectively. The other seven runs do
not experience the same increase in fitness at this particular point, which suggest that
the somewhat unexpected jump in fitness is just a product of random improvements in
three out of ten runs. Figure 5.11 shows three re-runs of the same experiment, which
further suggest that the fitness jump is just a random coincidence. In fact, it appears
the original CTRNN experiment performed poorly, and that the sudden jump is just a
correction to more “normal” levels.
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Figure 5.9.: Food world scenario results for designed creature 4.
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Figure 5.10.: Plot showing the maximum fitness of the individual runs of food creature
4-CTRNN experiment. Notice the coloured plots highlighting the three
irregular runs. The other seven runs are painted in black.
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Figure 5.11.: Plot showing maximum fitness of three re-runs of the food creature 4-
CTRNN experiment. The blue line shows the original CTRNN experiment,
as presented in figure 5.9. The original run consistently performs lesser in
the generation range 40-90, but manage to escape this mediocre fitness
level towards the end of the run.
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5.2.2. Fully evolved food creatures

In the full-run mode, both physical features and behaviour is subject to evolution, as
explained in section 4.2.3. The fitness plots in figure 5.12 show a steady improvement in
maximum fitness for all three behaviour models. Notice that elitism is disabled in this
experiment, which explains why the maximum fitness may slightly decline in local areas
throughout the run. All behaviour models performed acceptable in terms of number of
foods eaten, but NEAT showed the greatest potential after 50 generations. However,
Fuzzy logic is able to produce the most consistent results, with the lowest standard error.

The evolved creatures in figure 5.13, 5.14 and 5.15 show that multiple mouths is an
important factor in the food world scenario. This will increase the collection area for
food, and thereby increase the possibility for capturing a food piece. Additionally, three
of the creatures evolved a bigger body, probably in order to spread out the mouth en-
tities for an even bigger collective area. All four creatures also evolved an eye entity
with increased Field Of View (FOV) and maximum range, in order to easier locate food.
Some of the creatures also evolved arms with eyes attached, but were not able to utilize
this combination in a particularly intelligent or creative way.

The observed behaviour is not considered very creative. The food world is the simplest
of all scenarios, with all three brain-modules behaving almost identical. The exception
is CTRNN, which displays some signs of exploration when food become scarce.
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Figure 5.12.: Food world scenario for the evolved creatures
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CTRNN

Iteration 1 Iteration 2 Iteration 3

Figure 5.13.: The evolved creatures from the food world scenario runs with CTRNN as
behaviour module.
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Fuzzy Logic

Iteration 1 Iteration 2 Iteration 3

Figure 5.14.: The evolved creatures from the food world scenario runs with fuzzy logic
as behaviour module.
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NEAT

Iteration 1 Iteration 2 Iteration 3

Figure 5.15.: The evolved creatures from the food world scenario runs with NEAT as
behaviour module.
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5.3. Poison world scenario
In the poison world, much like the food world, the objective is to eat as many food
pieces as possible. However, in this scenario there also exist poisonous food, that can
be identified by smell. Eating a piece of poison will subtract as much as eating a piece
of food will add to the fitness of the creature. Also here, there is only one creature
present in the world during simulation. The fitness function for the food world is given
in equation 5.3.

f(c) = nc,foods − nc,poison (5.3)

where c is the creature in question, nc,foods is the total number of foods consumed
during the simulation, and nc,poison is the total number of poison consumed during the
simulation. The maximum fitness is 50, as there are 50 pieces of food and 50 pieces of
poison.

5.3.1. Designed poison world creatures

Designed poison creature 1 Designed poison creature 2

Designed poison creature 3 Designed poison creature 4

Figure 5.16.: Designed creatures used in the poison world scenario.
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Poison creature 1

Figure 5.17.: Poison world
Designed creature 1

The first designed creature in the poison scenario
is almost identical to the first food creature, with
the exception of added noses on each side. This
is to enable the detection of poison, because the
eye entity is unable to differentiate poison from
food.

This creature manages to avoid poison and steer
away from it. However it sometimes steers
away too late and eats the poison anyway.
It also does not trust its own eyes, result-
ing in less food eaten. All three brain mod-
ules arrived at approximately the same beha-
viour.

In the results of the poison world simulations, the
creature did not manage to evolve behaviour com-
plex enough to have a good solution to the scenario. The data shows that all three brain
modules performed poorly in this task. CTRNN shows the best evolvability by a small
degree, just beating NEAT.
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Figure 5.18.: Poison world scenario results for designed creature 1.
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Poison creature 2

Figure 5.19.: Poison world
Designed creature 2

The second designed creature in the poison scen-
ario is equipped with two mouths and two noses.
The idea is that it should be able to use its two
noses to know where food is and separate out the
poison.

This creature does not evolve behaviour good
enough to solve the task with any of the three
brain modules. When observing the differ-
ent modules, it is difficult to see any reason
as to why one performs better than the oth-
ers. None of them manages to use their senses
well.

Also, as with the first poison creature, the plot
shows poor performance. However, there is a vis-
ible difference between the brain modules. Both
CTRNN and fuzzy logic show at least some evolvability, but NEAT does not manage to
evolve anywhere from where it started.
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Figure 5.20.: Poison world scenario results for designed creature 2.
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Poison creature 3

Figure 5.21.: Poison world
Designed creature 3

The third designed creature in the poison scenario
is equal to the third used in the designed food scen-
ario run, with four noses as its only sensory input.
The performance of CTRNN and NEAT is very
poor in this run, not able to properly differentiate
between food and poison. However, the Fuzzy lo-
gic based creature is able to marginally separate
the two, making it the best performer in this test.
As with food creature 3, the limited sensory input
space of the four nose entities may appeal to the
rules of fuzzy logic.
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Figure 5.22.: Poison world scenario results for designed creature 3.

58



5.3. Poison world scenario

Poison creature 4

Figure 5.23.: Poison world
Designed creature 4

The fourth designed creature in the poison scenario
has noses attached to arms. These may be utilized
in the search for food and poison by rotating the
arms to cover a bigger search space. The behaviour
is very similar to food creature 4, which also has
nested arm entities. However, in this test NEAT
showed signs of more complex behaviour by using
its arms to “look around”. Unfortunately this be-
haviour did not impact the performance of NEAT
positively, as the fitness plot shows. Out of the
three behaviour modules, CTRNN produced the
highest fitness, and also showed a healthy evolvab-
ility throughout the run.
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Figure 5.24.: Poison world scenario results for designed creature 4.
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5.3.2. Fully evolved creatures

Here, using the fully evolved run mode, there were no evolved creatures that could solve
the poison world scenario well. However, looking at the data in the graph 5.25, NEAT
achieves significantly higher results than when used with the designed creatures.

One thing that sticks out in these results, is that although NEAT performs better, the
other two brain modules perform at about the same level as when used with the designed
creatures. It is worthy to note that these runs do multiple behavioural Evolutionary Al-
gorithm (EA) runs that have much fewer generations than the designed creature runs.
Therefore these differing results may have something to do with how quickly a brain
module optimizes for a given task. Another thing to note, is that by looking at the
creatures produced in this scenario (figures 5.26, 5.27 and 5.28), it can be observed that
there does not exist any pattern or similarities to the evolution. This falls in line with
the idea that this scenario is really difficult for the creatures to solve. The differences
signify that the solution space is more explored than if the creatures all looked the same.
Some creatures try to brute force their way to better fitness by having a lot of mouths,
similar to the results of the food world scenario. Others try to combine eyes and noses
as sensors, while some test out entities like the ear that does not really have an effect in
this scenario. When it comes to the creatures’ behaviour, they behave as expected with
their current sensors. The creatures with only eyes tries to eat both food and poison,
although not as surely as the creatures in the food world scenario, and the creatures
that use both eyes and noses try to avoid the poison with varying degrees of success.

However, the standard error on NEAT is really high compared to the designed creature
runs. This suggests that it is a bit reliant on luck in order to evolve quickly to fit the
current task.
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Figure 5.25.: Poison world scenario for the evolved creatures
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CTRNN

Iteration 1 Iteration 2 Iteration 3

Figure 5.26.: The evolved creatures from the poison world scenario runs with CTRNN
as behaviour module.
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Fuzzy Logic

Iteration 1 Iteration 2 Iteration 3

Figure 5.27.: The evolved creatures from the poison world scenario runs with fuzzy logic
as behaviour module.
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NEAT

Iteration 1 Iteration 2 Iteration 3

Figure 5.28.: The evolved creatures from the poison world scenario runs with NEAT as
behaviour module.
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5.4. Arena world scenario
In the arena world, the objective for a creature is to defeat another creature while
staying as healthy as possible itself. In this world there are two creatures present during
simulation. One is the creature to be tested, and the other is a predefined creature with
a predetermined behaviour (from now on called benchmark creature). The benchmark
creature has two eyes looking forward, a spike in the front and a motor at the back.
Its behaviour is really simple. For every tick, the benchmark creature will move a bit
forward and either turn a bit left or right. This is enough to give the tested creature
a target that moves unpredictably and is somewhat dangerous to approach due to the
spike. In the arena world, the fitness is calculated using equation 5.4.

f(c, b) = Hc −Hb − nc,ticks

100 (5.4)

where c is the tested creature, b is the benchmark creature, Hc is the health of the
tested creature, Hb is the health of the benchmark creature and nc,ticks is the number
of ticks the tested creature lived. This is divided by 100 to make the fitness a more
reasonable number. The maximum fitness is 20, due to the initial health of 2000. If a
test creature is able to instantly defeat the benchmark creature, while not losing any
health itself, it is awarded a fitness of 20.

5.4.1. Designed arena world creatures

Designed arena creature 1 Designed arena creature 2

Designed arena creature 3 Designed arena creature 4

Figure 5.29.: Designed creatures used in the arena world scenario.
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Arena creature 1

Figure 5.30.: Arena world
Designed creature 1

The first designed creature in the arena scenario
has four eyes and spikes, which should give the
creature the ability to locate the adversary in al-
most all directions. However, that is not the ob-
served behaviour. The CTRNN-based creature
simply moves in a straight line, vibrating its spikes
in a hope to randomly hit its adversary. On the
other hand, the fuzzy logic creature seems to be
aware of the adversary by stopping its movement
when observed.
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Figure 5.31.: Arena world scenario results for designed creature 1
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Arena creature 2

Figure 5.32.: Arena world
Designed creature 2

The second designed creature in the arena scenario
is very simple, with two eyes and a spike in the
center to inflict damage. This design is similar to
the benchmark creature used in the arena scenario
tests. The behaviour in this test is very much sim-
ilar to the arena creature 1, where the preferred
behaviour is to simply move in a straight line. The
three different behaviour models perform very sim-
ilar.
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Figure 5.33.: Arena world scenario results for designed creature 2.
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Arena creature 3

Figure 5.34.: Arena world
Designed creature 3

The third designed creature in the arena scenario
has three motors to propel it forward, potentially
increasing the damage output of its spikes in the
front.

This creature performs as expected with every
brain module. It finds the target with its eye,
and then launches itself toward the other creature.
As damage is based on the speed of the impact,
the result is that the creature does more dam-
age.

Looking at the results, it can be seen that all three
brain modules evolve to their maximum after a few
generations. In addition to this, they all have very
small standard error, something that says that this
creature was easy to optimize for the given task.
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Figure 5.35.: Arena world scenario results for designed creature 3.
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Arena creature 4

Figure 5.36.: Arena world
Designed creature 4

The fourth designed creature in the arena scen-
ario has six arms. Each equipped with an-
other arm, creating a joint, and a spike at the
end. The behaviour between fuzzy logic and
CTRNN differs greatly here. Using CTRNN
as the brain module, the creature systemat-
ically goes after the target creature and de-
feats it with several small hits. On the other
hand, using fuzzy logic as the brain module,
the creature spins in place, using its arms to
cover a large area in order to hit the other
creature.

The behaviour difference is reflected in the graph
of the data. Although not by more than 1.5 points
in fitness, it can be seen that the behaviour of fuzzy
logic is slightly more efficient.
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Figure 5.37.: Arena world scenario results for designed creature 4.

68



5.4. Arena world scenario

5.4.2. Fully evolved creatures

The arena world is probably the most complex scenario in the test suite, however, the
observed behaviour of the fully evolved creatures does not coincide with the scenario
complexity. The established behaviour is to move in circles, hoping for the adversary to
hit one of its spikes in order to inflict damage. Two of the four evolved NEAT creatures
have no means for receiving sensory data, because they lack the appropriate entities (fig-
ure 5.41). In spite of this simple, repetitive and non-intelligent behaviour, all behaviour
models achieve an acceptable fitness value as shown in figure 5.38.

Even though the evolved behaviour is not considered creative, the evolution of spe-
cific entities and structural configuration may be considered creative. For example, the
second fuzzy logic creature (figure 5.40) and third NEAT creature (figure 5.41) have
evolved large structures of fork and spike entities in order to reach longer and gain more
momentum in their attacks. Another example is the first CTRNN based creature (fig-
ure 5.39), which has adopted a vibrating arm with an attached spike. This vibration
increases the net traveling speed of the spike, effectively increasing its damage output.
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Figure 5.38.: Arena world scenario for the evolved creatures
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CTRNN

Iteration 1 Iteration 2 Iteration 3

Figure 5.39.: The evolved creatures from the arena world scenario runs with CTRNN as
behaviour module.
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Fuzzy Logic

Iteration 1 Iteration 2 Iteration 3

Figure 5.40.: The evolved creatures from the arena world scenario runs with fuzzy logic
as behaviour module.
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NEAT

Iteration 1 Iteration 2 Iteration 3

Figure 5.41.: The evolved creatures from the arena world scenario runs with NEAT as
behaviour module.

72



5.5. Additional experiments

5.5. Additional experiments

In addition to the systematic experiments performed in section 5.2 through 5.4, some
independent experiments are presented in this section. These tests make up a selection
of interesting scenarios, system configurations, run-times and initial conditions that do
not naturally fit in the previous sections.

5.5.1. Nose navigation in a food world

This experiment seeks to investigate the possibility of using nose entities as a substitute
for eyes. The main difference between the two entity types are sensory range, FOV, and
the value of the returned sensor data. An eye entity reports both distance and direction
to the nearest object in view, whereas a nose only reports a value of 1 when a food
piece is inside its sensory radius. This seriously limits the amount of useful information
coming from a nose, versus an eye. Figure 5.42 shows the designed creature used in
this experiment. Five nose entities with different sensory ranges (shown in red, dashed
lines) is used. Table 5.4 contains the most relevant configuration parameters of this
experiment. See appendix section B.4 (page 98) for the full configuration file.

Figure 5.42.: Designed creature used in the nose navigation experiment.

Table 5.4.: System configuration used in the nose navigation experiment.
Parameter Value
Scenario Food world
Neural network configuration Two hidden layers: 6,6
Population size 50
Generations 2000
Elitism 0
Parent selection strategy Tournament selection
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The systematic nose placement in the designed creature, along with custom sensory
ranges, allows the creature to perform well in the food world. Figure 5.43 shows the
maximum fitness out of ten runs, along with standard error2. Around generation 1880,
the evolution reached a maximum average fitness of 20.2 using CTRNN, and a peak
fitness of 45.0 at generation 1802 which translates into 45 eaten food pieces. This is
far greater than the comparable food creature 3 experiment (page 48), which peaked
at 15.0. The main difference between these experiments are the number of generations,
selection strategy and the fact that the nose navigation experiment utilize nose entities
with modified sensory ranges and optimal nose placement. The nose creature is able
to eat most of the food it encounters, and handles multiple food pieces residing inside
the sensory range, which is generally something creatures struggle to handle. However,
this can only be said about the CTRNN-based creature. Using fuzzy logic, the creature
performs acceptable with a maximum average fitness of 10.6. We see that CTRNN out-
performs fuzzy logic, compared to the food creature 3 experiment where fuzzy behaviour
outperformed CTRNN. These findings suggest that CTRNN present the greatest level
of evolvability, as the other two behaviour models struggle to increase their maximum
fitness in the same manner as CTRNN.
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Figure 5.43.: Maximum fitness of the nose navigation experiment.

2The NEAT-run was only performed once due to extensive run-times, and therefore lacks error bars.
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Using NEAT-based behaviour, the evolution was not able to improve its maximum fit-
ness throughout the run. The exact reason for this is unknown. The suspicion is that
this creature requires close coordination between the different noses, i.e. the network
needs to be very interconnected. As NEAT starts out with no hidden nodes, it has a
bigger challenge in evolution than CTRNN that already starts fully connected with hid-
den layers. However, this is something that should be solved with evolution. The fact
that it does not manage to evolve a solution for this creature may suggest that there are
hidden factors yet to be revealed, which could be worth investigating in the future.

As mentioned earlier, the nose-navigation creature shows many physical similarities with
food creature 3. However, the nose-navigation creature performs better in terms of max-
imum achieved fitness. This may be explained by the change of parent selection strategy,
from fitness proportionate to tournament selection, or the deduction of elitism. In order
to investigate the change in fitness that these parameters represent, the food creature 3
experiment were re-run with tournament selection. In figure 5.44, the resulting fitness
landscapes are presented, showing that tournament selection with elitism produces the
highest fitness.
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Figure 5.44.: A re-run of the food-creature 3 experiment, using tournament selection
with/without elitism enabled. The plot shows average maximum fitness at
each generation for ten runs.
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It appears in figure 5.43 that the fitness value has not fully converged within the 2000
generations the experiment were conducted. Therefore, a new run of 10000 generations
is presented in figure 5.45. This is using the same configuration parameters as stated
in table 5.4, but for 10000 generations instead of 2000. For CTRNN, we see that the
fitness value quickly rose to about 30 before 1000 completed generations, and that the
simulation were not able to evolve beyond an average fitness of around 40. The highest
recorded fitness throughout the run was 49.0 for CTRNN, and 10.3 for fuzzy logic. It is
clear that the fuzzy behaviour module struggles to obtain a fitness level on a par with
CTRNN. Other experiments, such as food creature 3 and poison creature 3, favours the
fuzzy-based behaviour, suggesting that the scenario and creature design choices may
greatly influence the evolutionary outcome.
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Figure 5.45.: Nose-navigation experiment executed for 10000 generations.
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6. Evaluation and Discussion
In the introduction to this master’s thesis, four goals were devised:

G1: Evolve creative behaviour in custom agents.

G2: Implement a system to evolve and visualise creature performance.

G3: Study several Artificial Intelligence (AI) methods and their influence
on evolving creative behaviour.

G4: Study how different environments and tasks affect a creature’s ability
to perform creatively.

This chapter contains evaluations around the results of the experiments and a discussion
on how well they lined up with the thesis goals. In addition to this, there will be a
discussion on the merits and the limitations of the system.

6.1. Evaluation

In this section, the results of the experiments will be evaluated in relation to the project
goals. Each world scenario of the system will be evaluated separately, using the Standard-
ised Procedure for Evaluating Creative Systems (SPECS)(Jordanous, 2013) (see section
2.5.3). Both designed- and full-runs will be considered in the evaluation. The system as
a whole will also be evaluated.

• Step 1: Identify an applicable definition of creativity:
The definition that is going to be used, is the one that was specified in section 3.1.

Creative behaviour is behaviour that results in a product that is unique or
somehow valuable to an individual or society (Maher et al., 2008).

• Step 2: Find the standards to test from the definition in step 1.
From the definition, it is possible to extract three different standards. These are:
1. Uniqueness
2. Valuable to an individual
3. Valuable to society

• Step 3: Test the system on the given standards.
For creatures in the three different scenarios, only the uniqueness standard will be
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tested. This is because there is very little intrinsic value in the difference between
a food, a poison and an arena based creature. This is instead discussed somewhat
in the system evaluation later in this section. When evaluating the entire system,
all three standards will be used.

6.1.1. Food world evaluation

Here, the fully evolved creatures clearly outperform the designed creatures when it comes
to gathering food. Considering that most of the designed creatures performed well,
this points to that the Creative Creature Behaviour (CreBe)-system is very capable of
evolving and adapting creatures to solve a given task.

In the designed creature runs, the best brain module changes from creature to creature.
However Continuous Time Recurrent Neural Network (CTRNN) seems to often get the
upper hand given enough time. In the fully evolved runs, NeuroEvolution of Augmenting
Topologies (NEAT) leads by a substantial margin. This is due to its ability to evolve
behaviour in few generations.

Evaluating with SPECS:

Uniqueness:
Almost all of the creatures evolved here utilize the same strategy in order to gather
food. They use one or more eyes to locate food, and evolve several mouths in
strategic locations in order to sweep up as much food as possible. The creatures
all display the same behaviour. When they see food, they all approach it with
varying degrees of success. In addition to this, they do not differ that much from
the designed creatures. I.e. they evolved in a predictable way. The argument
could be made, that the creatures are unique physically, as it is something we
would have never designed ourselves. However, that brings on the discussion of
where randomness ends and where creativity begins.

6.1.2. Poison world evaluation

In this scenario the fully evolved creatures perform better than the pre-designed ones
with every brain module. Looking at the results, it is clear that this is a very difficult
task for the creatures to solve, as they need to learn to rely on multiple sensors. When
the scenario is at this difficulty, the creatures’ ability to evolve their physical attributes
plays a bigger role. It appears that the pre-designed creatures were not good enough.

NEAT performs a lot better than the other two brain modules in the fully evolved
runs than in the designed creature runs. This points to that with fewer generations to
evolve behaviour, NEAT evolves faster to solve the given task.

Evaluating with SPECS:
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Uniqueness:
Given that none of the creatures really managed to solve the task at hand, it is
difficult to see the differences in their behaviour. The best performing creatures
sometimes managed to make a quick turn if they smelled a poison. Some creatures
tried a brute forcing route, where they just tried eating everything and relying on
luck to eat more food than poison. There was no creature that stood out, either
in physical appearance or behaviour. So for uniqueness, these creatures showed
none.

6.1.3. Arena world evaluation

The results for the fully evolved creatures are consistent with the results of the designed
creatures. The performance of NEAT vary a lot with each creature. It sometimes per-
forms really well, and other times gets stuck at a bit lower fitness that the two other
brain modules. CTRNN and fuzzy logic are both produce really consistent results, how-
ever on average, fuzzy logic comes out on top. This is reflected in the fully evolved
creatures results. Here, fuzzy logic clearly performs the best, while NEAT and CTRNN
are about the same somewhat lower in fitness. However, the standard error is a lot smal-
ler with CTRNN as brain module. In some cases, NEAT experiences poor evolvability
and struggles to gain evolutionary momentum. Maybe the creature behaviour problem
domain does not fit well with NEAT, but more tests and experiments have to be con-
ducted before extensive conclusions can be drawn on this matter.

Evaluating with SPECS:

Uniqueness:
As can be seen in the results of the fully evolved creatures (5.39, 5.40 and 5.41),
they are quite different from the designed creatures (5.29). Thus the results can be
called somewhat unique. However, comparing the fully evolved creatures against
each other, it can be seen that they do not differ that much. They all evolve
towards having spikes to cover as large an area as possible. On the other hand,
some of the fully evolved creatures evolve motors in order to move faster. This was
partly the idea with some of the designed creatures. From this, it can be observed
that the fully evolved creatures showed some uniqueness that separated them from
the designed creatures.

6.1.4. System evaluation

The system as a whole (CreBe) has shown in the experiment its capabilities to produce
independent agents, with different types of behaviour modules. The architectural choices
of the software enables for the implementation of multiple action-inference mechanisms
with relative ease. This also applies to the different scenarios available in the system,
where new world types with different rules can easily be implemented.
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The world scenarios presented in this thesis are relatively simple, with no to little world
dynamics. However, the type of world is alone responsible for defining the different
objectives for which the agents are optimized against. Eating food and avoiding poison
are the primary objectives in the food/poison world, which is of course, the observed
behaviour in this kind of world. An important question is, can this scenario-behaviour
relation be applied to more real-world problems? By introducing different entity types,
better world physics and scenario rules, the system should be able to be tailored towards
custom problem domains where emergent behaviour is a favourable property. The entity
objects are in fact abstract input and output interfaces to a simulation, which can be
tailored towards a range of applications where CTRNN, fuzzy logic and NEAT would
be applicable.
Evaluating with SPECS:

Uniqueness:
When evaluating uniqueness, there are two different concepts to consider. The
first is artifacts, or in the context of this system, the produced creatures. Their
appearance are inspired by animals and insects, which includes most of the entity
types apart from the touch sensor and motor. The different types of sensors and
actuators are also heavily inspired by biological entities, along with the quality of
their input and output interfaces. For example, the nose entity can not sense the
direction of a smell, which is also difficult in real-life.
The second concept of uniqueness is related to the system implementation itself,
which is somewhat limited in the sense that the different algorithms used are
well-known and established outside of this thesis. However, the way that differ-
ent action-inference models can be inserted into and control creatures, makes the
system somewhat new and unique.

Valuable to an individual:
In order for the system to be valuable to an individual, it must be able to pro-
duce some sort of product, sensation or experience that positively affects said
individual. These are highly subjective topics, but also includes more objectively
better aspects, for example better health care. According to the found definition of
creativity, this product can pertain to any aspect of life. For example increased life
expectancy, better health, amusement and art. It is clear that the CreBe system is
unable to directly increase ones health, but it may have some value as amusement
and in recreational use. For example as a toy for children who find the creatures
cute and funny.

Valuable for society:
When it comes to evaluating if something is valuable for society, it has to be
impactful in some way or another. The CreBe system evolves creatures to solve
certain tasks, and given the right circumstances, the solution might have an impact.
However, as the simulation of the system is somewhat simple and does not model
reality very accurately, the tasks the system tries to solve do not reflect the real
world. This makes it unlikely for the system to give some value to society. On the
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other hand, if the system could be valuable to a lot of individuals within a society,
it could be argued that the system is valuable to the society itself.

6.2. Discussion

In this section, we discuss each project goal separately, evaluating the degree to which
they have been accomplished.

G1: Evolve creative behaviour in custom agents.
The first goal of this thesis applies to a very broad spectrum in the field of computa-
tional creativity. In order to work towards this goal, a more specific subgoal was casually
defined, namely:

Implement a system using AI methods to evolve creatures that exhibit creative be-
haviour in a strictly defined environment.

One immediate limitation of the implemented system is that the various world scen-
arios are indirectly subject to human intervention, in the way that the world rules are
static and strictly defined. This contradicts a key aspect of the found definition of com-
putational creativity, namely to limit human intervention. It is clear from the results of
this thesis that the amount of creativity exhibited by the evolved agents is in fact very
limited. The food world scenario offers few opportunities in regard to creative beha-
viour, because eating food is the only motivated action in that world type. Introducing
poison, which can be hard for creatures to separate from ordinary food, motivates for
more complex behaviour. The arena world expands on this even more, by introducing a
multi-agent environment. However, these complex scenarios did not affect the cognitive
abilities and creativity of creatures the way we hoped. The system still struggles to
produce creative behaviour in evolved agents, which suggests that this project goal is
not accomplished.

The claim that the implemented system is capable of producing creative behaviour in
agents is hard to justify, considering the output results. Even though it shows some
capabilities, the conclusion is that the system comes up short in reaching the original
project goal of producing creative behaviour.

G2: Implement a system to evolve and visualise creature performance.
The need for a system to evolve and visualise agents in real time arose early in the project
period. The implemented system (called CreBe), fulfills these requirements and thereby
accomplishes this project goal. Although not all planned features were implemented in
the final version of the software, e.g. behaviour inheritance between generations, human
intervention in fitness evaluation and creature vs. creature evaluation in the arena scen-
ario (currently creature vs. benchmark). Overall, the implementation served its purpose
during the experiments.
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G3: Study several AI methods and their influence on evolving creative be-
haviour.
The three different AI techniques considered in this thesis are:

• CTRNNs.

• Fuzzy logic.

• NEAT.

That are commonly referred to as behaviour models or brain-modules in this thesis. In
order to compare these methodologies, a number of experiments were conducted in order
to study their influence and decide what method performed the best in the context of
creative behaviour. In the designed creature experiments, CTRNN has a tendency of
achieving the highest fitness of the three models, except for the designed food and poison
creature 3, where fuzzy logic were the best performer. In the full-evolution experiments,
NEAT really shines, and outperforms both CTRNN and fuzzy logic in the food and
poison scenarios.

Because CTRNN is the only computational model that implements forms of memory (us-
ing recurrent connections), this model produces slightly different behaviour in creatures.
Sometimes, without any change in sensory input, a creature may spontaneously perform
an action like changing direction and/or speed. This is due to the nondeterministic
nature of a CTRNN, which does not apply to the two other computational models.
These will produce a predicable output for given input in all cases, resembling the cog-
nitive level of a simple reflex agent.

G4: Study how different environments and tasks affect a creature’s abil-
ity to perform creatively.
The different test environments considered in the experiments are:

• Food world scenario.

• Poison world scenario.

• Arena scenario.

These scenarios represent different complexity levels, and present different requirements
in behaviour in order to perform well. The simplest scenario, the food world, was mainly
implemented as a test and benchmark scenario during the development phase. Never-
theless, each behaviour model generally performed respectable in this scenario, but did
not show notable levels of creativity in their behaviour. CTRNN arguably shows signs
of creativity in its ability to explore the environment for food, something that NEAT
and Fuzzy logic do not show. This can be partially explained by CTRNN having simple
forms of memory, enabling for a richer and less reflex driven behaviour.
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In the poison scenario, we see a very similar behaviour as in the food world, although
with a reduction in fitness levels. This is due to the introduction of poison, reducing the
amount of food pieces and effectively making the maximum achievable fitness lower. The
density of food pieces is also reduced, increasing the general difficulty of the scenario. It
is expected that the reduced density would further motivate for exploratory behaviour,
in order to locate food, but that is not the observed case. It appears that the creatures
are very careful in their navigation, probably in order to avoid poison. Further experi-
ments with varying degrees of poison ratios may confirm this.

The arena scenario is arguably the most complex scenario of the three. However, it
appears that the level of creativity evolved in the arena world is very limited. The
established behaviour is simply to move in a straight or circular motion, until the ad-
versary randomly hits one of its spikes. This behaviour may be a result of limitations
in the scenario and its rules, or that the behaviour models need to be scaled up (e.g.
increase the number of neurons and hidden layers in CTRNN).

Although the different scenarios produce and motivate for the evolution of different
behaviour, it is hard to support the claim that the observed behaviour is creative.
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7. Conclusion
In this thesis, a system was developed that is able to evolve animal-like agents called
creatures using modular parts. Both action-inference and physical creature layout are
subject to evolution, using a series of simulations in specific world scenarios. The ob-
served behaviour in the experiments indicate that the capability of the system is limited
in terms of creativity, and that the agents are simply solving a task rather than explor-
ing novel and unexpected behaviour. This shows that the type of scenario used in the
evolution may have a big impact on the final behaviour of the agents.

The rest of this chapter will go into the contributions of the thesis and possible future
work that can expand on the findings and work of this thesis.

7.1. Contributions
The contributions of this thesis are:

C1: A study of how different AI methods perform when evolving creatures to behave
creatively.

C2: An implemented system that evolves creatures using different selectable AI meth-
ods and environments.

These contributions form a basis for future work that build upon this thesis. Contribu-
tion C1 is the results achieved through the experiments, and C2 is the CreBe system
itself.

7.2. Future work
In this section, possible future work on the thesis is discussed. This consists of improve-
ments to the CreBe system and possible more experiments that can be conducted.

7.2.1. Further experiments

Due to how modular the scenarios of the CreBe system are, creating more interesting
and complex ones are definitively something that could be investigated further. The
original thought was to have creatures fight against each other in the arena world scen-
ario, but due to time restraints it was not implemented. It could be interesting to see
how different the creatures would evolve when their opponent also is able to evolve and
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adapt. Maybe different strategies and counter strategies could emerge. In addition to
this there are a lot of different configurations with the existing scenarios that could be
experimented with. The density and distribution of food and poison could be changed
to be tied to certain areas instead of being uniformly random. Different world sizes and
the ability to wrap around the world are also things that could be worth looking into.

In order to make the creatures evolve creative behaviour, more work needs to be done
on fitness functions. Looking into a function that could measure some sort of novelty
factor for the creatures would better be able to steer the evolution towards creativity.

The experiments conducted in chapter 5 test only a small fraction of the available sys-
tem configuration and evolutionary parameters. The initial configuration of a simulation
can have a great impact on the evolution and final state of the system, which is why
different combinations of parameters should be tested. Example of such parameters are
population size, number of generations, selection strategies, Artificial Neural Network
(ANN)-topologies and the number of fuzzy rules used. This also includes new world
scenarios and world rules, which may be tailored towards a specific problem domain. In
this thesis, only a small portion of the available initial configuration were tested, which
is why further experiments should be conducted in order to investigate the full potential
of the system.

7.2.2. System improvements

In the fuzzy-logic based behaviour module, a current limitation of the system lies in the
mutation and crossover aspect of the fuzzy genotype. Currently, the system is unable
to apply evolutionary operators to the fuzzy sets themselves. These sets are manually
defined, as seen in appendix A, page 91. With the ability of fuzzy set mutation and
crossover, the system would be able to itself define and vary what constitutes ’close’
distance or ’moderate’ Hitpoints (HP), to name examples. It is however unknown how
big impact such an implementation would have to the evolutionary performance and
creature behaviour, but it could be worth investigating. The increased search-space
caused by the introduction of more evolutionary variables may have a negative impact
on computational performance, the number of sub-optimal solutions, and how fast the
population would converge to an acceptable fitness level.

As they are now, the creatures have a fair share of entities available (see 4.1) for them
to evolve and use to solve their given task. However, there are a lot of possibilities for
new entities and improvements to the old ones. From the results of our experiments,
it is clear that the nose entity does not perform as well as desired. The way it is im-
plemented in the current system, is that it outputs a discrete value that coincides with
the sum of good smelling objects with the bad smelling objects subtracted. The nose’s
functionality could be expanded to behave more like the eye entity does. Outputting
more information regarding the position of the smelly object in a continuous interval.
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When it comes to the evolutionary runs, the system has already been improved to
be able to pause an ongoing run and resume it later. It would also be beneficial to be
able to save an ongoing run in order to continue it at a later time. This would help
in very long runs, as one could continue old short runs instead of starting from scratch
every time. Having this functionality would improve experimentation with the system
due to not having to decide on how many generations to run the evolution before it starts.

In the current system, a lot of the configuration are hidden away in separate files. Some
of this has been alleviated with a Graphical User Interface (GUI), however there are still
many options that can only be changed by editing the configuration files. Looking into
how all of the configuration variables could be presented graphically and have them be
easily editable would be something that could be done in the future.
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Appendices
A. Static fuzzy sets

Eye direction. Eye distance. Mouth detection of food.

HP, energy. Ear noise. Nose smell.

Touch sensor.

Figure 1.: Static fuzzy sets used in the fuzzy brain-modules, referencing sensor variables
of the different entities. These sets are defined at compile time and are not
changed during system execution.
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Figure 2.: Static sugeno fuzzy sets for every action of all actuator entities. These are
defined at compile time and are not changed during system execution.
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B. Configuration files

B.1. CreBe general configuration

Listing 1: General configuration of the CreBe system, used in all designed and full-
evolution experiments.

# mutation f a c t o r f o r e n t i t y mutat ions
mutation_factor = 0 .8
# number o f e n t i t i e s on crea ture at i n i t (max 8)
num_start_ent it ies = 6
# max number o f t i c k s during f i t n e s s e va l
s imu la t i on_t i ck s = 9999
# s t a r t energy o f c r ea tu r e s
start_energy = 2000
# amount o f energy g iven per food
food_nourishment = 200
# t i c k s between each food spawn
food_spawnrate = 0
# number o f foods spawned at s t a r t up
num_start_foods = 100
# the f r a c t i o n o f num_start_foods t ha t shou ld be poison
po i son_rat io = 0 .5
# number o f s imu la t i on runs to perform per f i t n e s s e va l
f i tne s s_eva l_runs = 3
# see WorldType enum fo r p o s s i b l e va l u e s
world_type = <d i f f e r e n t values>

# prob o f removing a l r eady e x i s t i n g e n t i t y
ent_remove_mp = 0.02
# prob o f change an e n t i t y to something e l s e
ent_changetype_mp = 0.02
# prob o f adding new en t i t y in empty a t t ach po in t
ent_add_mp = 0.3
# de f a u l t behav iour i s to r e t a i n the e n t i t y

# neura l network
ann_hidden_config = 6 ,6
ac t i va t i on_func t i on = mod_sigmoid

# crea ture expor t d i r
export_dir = exported

# en t i t y mutate f a c t o r s
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arm_length_mf = 10
arm_speed_mf = 15
arm_strength_mf = 0.05
arm_jointangle_mf = 10
body_radius_mf = 5
body_rot_speed_mf = 0.02
ear_range_mf = 50
eye_fov_mf = 1
eye_range_mf = 50
eye_measdist_mf = 0.05
fork_forkangle_mf = 12
fork_armlength_mf = 8
motor_speed_mf = 10
motor_strength_mf = 0 .1
mouth_canshoot_mf = 0.05
mouth_shootrange_mf = 20
mouth_shootdmg_mf = 0 .1
nose_range_mf = 60
spike_length_mf = 4
spike_damage_mf = 0 .1
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B.2. Designed experiments configuration

Listing 2: Evolutionary Algorithm (EA) configuration file used in the designed-creature
experiments.

# requ i r ed con f i g
popu lat ion_s i ze = 200
overprod_factor = 1 .0
t a r g e t_ f i t n e s s = 99999
max_generations = 100
crossover_type = UNIFORM
adu l t_s e l e c t i on = GENERATIONAL_MIXING
parent_se l e c t i on = PROPORTIONATE
cros sover_rate = 0 .5
mutation_rate = 1 .0
tournament_size = 10
tournament_prob = 0 .8
i n v e r s e f i t n e s s = f a l s e

weight_mutation_std = 0 .3

# op t i ona l c on f i g
e l i t e s = 1
verbose = f a l s e
qu i e t = f a l s e
threads = 0
dynamicworkload = true
r e c a l c u l a t e_ f i t n e s s = f a l s e
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B.3. Full-evolution experiments configuration

Listing 3: EA configuration file used in the evolution of physical creature entities in the
full-evolution experiments.

# requ i r ed con f i g
popu lat ion_s i ze = 16
overprod_factor = 1 .0
t a r g e t_ f i t n e s s = 99999
max_generations = 50
crossover_type = UNIFORM
adu l t_s e l e c t i on = GENERATIONAL_MIXING
parent_se l e c t i on = PROPORTIONATE
cros sover_rate = 0 .5
mutation_rate = 0 .5
tournament_size = 10
tournament_prob = 0 .8
i n v e r s e f i t n e s s = f a l s e

# op t i ona l c on f i g
e l i t e s = 0
verbose = f a l s e
qu i e t = f a l s e
threads = 0
dynamicworkload = true
r e c a l c u l a t e_ f i t n e s s = f a l s e
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Listing 4: EA configuration file used in the behaviour evolution part of the full-evolution
experiments.

# requ i r ed con f i g
popu lat ion_s i ze = 20
overprod_factor = 1 .0
t a r g e t_ f i t n e s s = 99999
max_generations = 20
crossover_type = UNIFORM
adu l t_s e l e c t i on = GENERATIONAL_MIXING
parent_se l e c t i on = PROPORTIONATE
cros sover_rate = 0 .5
mutation_rate = 1 .0
tournament_size = 10
tournament_prob = 0 .8
i n v e r s e f i t n e s s = f a l s e

weight_mutation_std = 0 .3

# op t i ona l c on f i g
e l i t e s = 1
verbose = f a l s e
qu i e t = f a l s e
threads = 0
dynamicworkload = true
r e c a l c u l a t e_ f i t n e s s = f a l s e
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B.4. Nose-navigation configuration

Listing 5: Configuration used in the designed nose-navigation experiment.
#Mon May 22 11 :25 :15 CEST 2017
paren t_se l e c t i on=TOURNAMENT
i n v e r s e f i t n e s s=f a l s e
qu i e t=true
max_generations=2000
popu lat ion_s i ze=50
mutation_rate=1.0
c ro s sove r_rate =0.5
dynamicworkload=true
verbose=true
overprod_factor =1.0
crossover_type=UNIFORM
tournament_prob=0.8
t a r g e t_ f i t n e s s =99999
e l i t e s=0
adu l t_s e l e c t i on=GENERATIONAL_MIXING
tournament_size=10
r e c a l c u l a t e_ f i t n e s s=f a l s e
threads=0
weight_mutation_std=0.3
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C.   Creative Creature Behaviour (CreBe) software guide 
 

This is a short documentation on how to setup and run the Creative Creature Behaviour 

(CreBe) software system. This includes installing the Java runtime environment, run the 

system and how to configure the various software parameters. 

System requirements, setup and installation 

The CreBe software is written in the Java programming language. In order to run this 

software, the Java Runtime Environment (JRE) or Java Development Kit (JDK) needs to be 

installed on the system. However, JDK is only needed if you intend to alter the source code 

and recompile the software. The JRE is sufficient for simply running the software.  

The newest version of JRE and JDK can be downloaded from Oracle’s website: 

• JRE: https://java.com/en/download/ 

• JDK: http://www.oracle.com/technetwork/java/javase/downloads/index.html 

It is recommended to always use the newest version of Java provided by Oracle. 

Running the software 

Once Java (either JRE or JDK) is installed on the host system, the CreBe software can be 

started by simply double-clicking the CreativeBehaviour.jar file. When run for the first time, 

five configuration files will be automatically generated and placed in the same folder as 

CreativeBehaviour.jar. These files contain all configuration for the software system, and are 

initialised to some standard configuration. 

The software can also be started from command line, as 

 java -jar CreativeBehaviour.jar <params…> 

Note that starting from command line require Java to reside in the system PATH-variable. 

Possible parameters for the software are: 

Parameter Description 

-debug Start the system in debug mode (visible sensory ranges, brain-module 

input/output values etc.) 

-headless Start the system in headless mode, meaning no GUI will be shown. 

Creatures are automatically exported to disc. Suitable for servers where 

no graphics context is available. 

-seed Sets the seed of the random number generator. Same seed will always 

produce the same simulation results. Suitable for development and 

during debugging. Note that this parameter only works as intended in 

single thread operation. 

-presentation Presentation of one or more creatures. No simulation or evolution is 

performed. Specify creatures to present using -designed <txt_files> 

where txt_files are the list of manually defined creatures to present. 
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Figure 1 shows the main window of the application. 

 

Figure 1: Screenshot of the main window. Consult the following table for a description of the various 

parts. 

 Main window explanation 

1 Evolved creatures window. When a new best creature is found, it is added to this list. 

Double click on an element in this list to run a simulation of that creature. 

2 Control buttons. Export a creature to disk by selecting it from the creature list, then 

click the “Export creature” button. Start a new run by clicking “New evolution…”, 

which brings up the configuration window. 

3 Live telemetry from the current evolution: maximum fitness, average fitness, fitness 

standard deviation and current generation. 

4 Progress bars for the current evolution. The upper progress bar applies to the current 

run, the lower applies to the whole evolution. 
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System configuration 

Clicking the “New evolution…” button brings up the configuration window, and the ability to 

start a new evolution. Some configuration options are not available in this user interface, and 

must be manually specified in the configuration files before the application is started.  

 

Figure 2: Configuration window. 

 

 Configuration window explanation 

1 Brain module and world scenario selection. 

2 Run mode. Designed: evolve behaviour only. Use a predefined set of entities for the 

creature. Full: evolve both behaviour and entities. 

3 Population size and number of generations. Separate configuration for behaviour and 

physical evolution. 

4 If run mode is set to “Designed”, select a text file containing the entity specification. 

5 Number of runs to perform (repetitions). 

6 “Dump fitness data to disk” will dump maximum, average and fitness standard 

deviation to log files. “Use multiple threads” will allow the system to utilize multiple 

processor cores. 
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In order to run a simulation of a creature, double click on some creature in the creature list. 

The simulation will begin automatically, using the world scenario that was used to evolve that 

particular creature. Figure 3 shows a simulation example. 

 

Figure 3: Simulation of a creature. 

Control the simulation with the following keys: 

Key Description 

D Toggle debug information, such as sensor ranges, eye field-of-view, 

actuator activation values, etc. 

V Centre the camera and follow a creature. If multiple creatures are 

present in the world, repeatedly press to cycle through all creatures. 

+ Speed up simulation. 

- Slow down simulation. 

Drag with mouse Look around the world (disabled if camera is centred on a creature). 

Mouse scroll wheel Zoom in and out. 

 


