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ABSTRACT

The marine environment has so far been poorly utilized in the search for (producers 

of) novel antimicrobial compounds. Marine bioprospecting might therefore be a 

promising field of research for the pharmaceutical industry as an alternative to 

terrestrial sources and synthetic production of pharmaceuticals.

In this project, over 4000 cultivable isolates have been isolated from different 

locations in the Trondheim fjord and along the coast of Trøndelag, Norway. Over 1000 

of these bacteria were isolated from the sea surface microlayer, whereas the rest 

originated from sediment samples. The diversity of the isolates from the sea surface 

microlayer have been investigated by studying cultivable bacteria from two sampling 

locations as ‘model-samples’. Whole-cell based antimicrobial assays revealed 

surprisingly high numbers of isolates displaying antagonistic activity among the 

assayed streptomycetes. 16S rDNA analyses indicated that several isolates seemed to 

be closely related, and studies on the PKS type I genes present in these samples 

revealed that recent horizontal gene transfer might have taken place. The results 

indicate that de-replication of isolates can not be performed based on 16S rDNA 

sequences alone, and the identification of unique KS-sequences in some of these 

isolates further supports this statement.  

Two streptomycete isolates from the sea surface microlayer displayed activity against a 

vancomycin-resistant Enterococcus sp. Analysis of the bacterial extracts indicated that 

this might be due to the production of a novel antibacterial compound.

Plasmids play an important role in the horizontal gene transfer among bacterial 

species. The genes involved in the biosynthesis of the antifungal polyene macrolide 

candicidin were found to be present on a linear plasmid in one on the isolated strains. 

Production of candicidin was found to be widely distributed among Streptomyces
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bacteria isolated from the Trondheim fjord, and it is thought that the plasmid might be 

involved in spreading the gene cluster in the marine environment.

A Gram-negative strain in the isolate collection showing antibacterial activity was 

show to be a new strain of the genus Collimonas. The Collimonas CT (Coast of 

Trøndelag) produces the blue pigmented compound violacein, and genome scanning 

identified genes for biosynthesis of this compound, as well as several other gene 

clusters for the production of secondary metabolites of potential industrial interest.    
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INTRODUCTION

1 INTRODUCTION

                

Over the last 20 years few  genuinely  novel  antibiotics  have  been  released  on  the 

market, while the number of bacteria becoming resistant to the ones already in use is 

increasing. The need for new antibiotics is obvious, but different parties 

(pharmaceutical companies and researchers) have different views on how this problem 

should be solved.

In the recent years, many pharmaceutical companies have focused on synthetic and 

semi-synthetic antibiotics. This approach is cheaper, faster and safer than getting 

involved in the search for new antibiotics from natural sources. The semi-synthetic 

derivatives approach mostly uses structural scaffolds from already published 

compounds as starting material for chemical modification [109]. Research 

communities, however, see the vast potential of the natural environment in terms of 

discovery of novel drug leads, but are dependent of financial support from external 

resources. Several advantages can bee seen from utilizing natural products in search 

for antibiotic, for example their chemical diversity, specificity and excellent starting 

point for chemical modification. 

1.1 MARINE BIOPROSPECTING 

Bioprospecting is a goal-oriented, systematic search for elements, bioactive 

compounds or genes in marine organisms, with the intent of developing products of 

commercial or social value (http://www.forskningsradet.no/en/Newsarticle/New+

impetus+for+bioprospecting/1231229970484).
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INTRODUCTION

1.1.1 Why marine bioprospecting 

Up until recently, the search for new compounds has mainly been focused on 

terrestrial environments. This is mainly because this is the human habitat. It has been 

thought that organisms living under the same conditions as us are more likely to 

produce compounds that can be utilized by humankind. Another reason is the low 

costs of sampling compared to the marine environment, and the lack of available 

techniques and equipment for culturing of marine organisms. Over 70 % of the earth 

surface is covered by water, and it seems likely that there one could find novel 

compounds with unique properties. 

Over the last 30-40 years the search for novel compounds in the marine environment 

has intensified. Promising antibiotic [84], anticancer [44, 51], antiparasitic [84], and 

antiviral [36, 102] compounds have been isolated from different marine sources. 

Potent producers are plants and algae [36, 51, 102], molluscs [84], bacteria [44], and 

especially bacteria living in close relationship with marine macroorganisms (e.g. 

sponges). Actually, natural products initially thought to be produced by marine 

sponges have recently been shown to be produced by bacteria living symbiotic with the 

sponge [as reviewed in 105].

1.1.2  Drugs from marine natural compounds 

The marine environment in general, and especially the marine bacteria, seems to be 

very promising as a source of new therapeutics. During 2005 and 2006 over 180 

bioactive compounds from marine sources have been reported [as reviewed in 84]

(compounds with antitumor and cytotoxic activity not included), whereof over 40 % 

exhibited anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, 

antiprotozoal, antituberculosis, or antiviral activities. The reported number of 

compounds exhibiting antibacterial or antifungal activity showed an increase from the 

previous years, suggesting an intensified effort in the search for new compounds to 

2



INTRODUCTION

compete in the race against bacterial and fungal antibiotic resistance. Compounds with 

potential therapeutic uses recently isolated from marine bacteria are listed in Table 1.1.

Table 1.1 Current status of potential marine bacterial therapeutics (adapted from 

[135])

Compound Biological
target

Therapeutic use Current
status*¤

Cyanobacteria  
Apratoxin A STAT3 Oncology
Apratoxin D Antiproliferative Oncology
Coibamide A Antiproliferative Oncology
Curacin A Antimitotic Oncology
Cryptophycins Tubilin

polymerization
Oncology

Largazole Histone
deacetylase 

Oncology,
mood stabilizer, anti-
epileptics, neurological 
disorders

Dolastatin 10 [79] Tubulin 
assembly

Oncology Phase II (ended) 

Actinomycetes  
Marinomycin Cytotoxic Oncology Not suited for 

clinical trials 
Abyssomicin p-Aminobenzoic

acid
Infectious disease

Proximicin Antiproliferative Oncology
SS-228 Y Antibacterial Infectious disease
Thiocoraline DNA

polymerase
Oncology, infectious 
disease

Salinosporamide A Proteasome 
inhibitor 

Oncology Phase I 

Proteobacteria  
Bryostatin Protein kinase C Oncology Orphan status § 

Yondelis Tubulin Oncology On market
* Current: May 2009 

¤ www.cancer.gov 

§ "Orphan drugs" = medicinal products intended for the diagnosis, prevention or treatment of life-

threatening rare medicinal conditions (http://ec.europa.eu/) 

Several compounds isolated from marine bacteria in the recent years have shown 

potential as therapeutic agents. None of these has so far reached the market/been 

approved by the FDA, but it has been speculated that the anticancer compound 

trabectedin (ET743) sold under the name Yondelis®, might be produced by a yet 
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uncultered symbiont of, rather than the tunicate Ecteinascidia turbinata it was 

isolated from, and in fact the patent describes the endosymbiont Endoecteinascidia 

frumentensis as the apparent producer [42].

Dolostatin-10 was first isolated from the sea hare Dolabella auricularia, but in 2001 

its isolation was also reported from a marine cyanobacterium Symploca species VP642 

[79]. It entered phase II clinical trials as an anticancer drug, but these trials are now

ended or closed. Another anticancer drug, Bryostatin-1 was initially thougt to be 

produced by the bryozoan Bugula neritina, but the symbiont bacteria “Candidatus

Endobugula sertula” was later shown to be responsible for its biosynthesis [33].

Bryostatin-1 is now in phase I trials for combination therapy (www.cancer.gov), and 

was granted orphan drug status by FDA in 2001 for use in combination with palitaxel 

in the treatment of esophageal cancer (www.fda.gov), and by the EC in 2002 

(http://ec.europa.eu).

Over 70 % of the marine bacterial compounds isolated between 1997 and 2008 are 

produced by cyanobacteria and actinobacteria [135]. The proteasome inhibitor 

salinosporamide A was first isolated from the actinobacteria Salinispora tropica in 

2003 [44]. It is now (by May 2009) in four different phase I clinical trials as an 

anticancer agent (www.cancer.gov), where its activity is tested against solid tumors, 

refractory lymphoma, multiple myeloma, non-small cell lung cancer, pancreatic cancer 

and melanoma. Other promising compounds from marine actinomycetes include 

abyssomicin, proximicin, SS-228 Y and thiocoraline [as reviewed in 135].

Antagonistic activity among marine microorganisms in organically rich environments, 

which are abundant in the mesotrophic and eutrophic waters or during phytoplankton 

blooms, has been reported [120]. Bacteria exhibiting such activities can be either free-

living or attached to the organic particles dispersed in the seawater. New data indicate 

that antibiotic producers are frequently found among both groups, accounting for 40-

66 % of all cultivable isolates [78]. These results underline the new opportunities for 

marine biotechnology screening programs aimed at finding novel anti-infective agent 
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producers in the sea, which, until recently, have mainly focused on microorganisms 

associated with sediments and sea animals. 

1.1.3 Norwegian coastal waters as a habitat for antibiotic-

producing bacteria 

Norway is one of the world’s northernmost countries. It has a long coast line with 

many fjords. The climate varies from temperate to arctic, with the warm currents of 

the Gulf Stream affecting the borders of the arctic zone. Considering the rather unique 

climate of Norway one might expect to find novel bacteria dwelling in this 

environment and/or novel antimicrobial compounds produced by the bacteria.

Recent results show that the polar oceans, the arctic, subarctic and the Antarctic, have 

a higher diversity of organisms than earlier assumed [17, press release: 27, 73]. These 

areas have been considered ‘deserts’, but one must now change this view. 

1.1.4 The sea surface microlayer

Below the air/water interface the aquatic surface layer contains a series of sublayers 

[54]. These sublayers include the thin surface nanolayer (<~1 m), enriched in surface 

active compounds; the surface microlayer (<~1 mm), with high densities of particles 

and microorganisms; and the surface millilayer (<~10 mm), inhabited primarily by 

small animals, eggs and larvae of fish and invertebrates. 

The life forms in the surface layer of oceans and lakes are collectively named Neuston, 

and can be divided into epineuston and hyponeuston. Epineuston organisms live on 

top of the water surface, and are naturally dependent on the surface tension of the 

water. Hyponeuston organisms live in the top few centimeters of the water column. 

High densities of metabolically active bacteria (bacterioneuston), are found in the 

surface microlayer [121, 10, 122, 25]. The reported enrichment of viable bacteria per 

unit volume in the surface microlayer relative to the underlying water varies from no 

enrichment to >1000 times, but is often 10-100 times [10, 122, 39, 94, 65]. Also, total 
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count studies after acridine orange staining have yielded enrichment factors in the 

same range [25, 55]. Several authors [10, 122, 65, 96] have suggested that the actual 

environment for the bacterioneuston is a very thin film ( 10 m), and the variation in 

the enrichment factor may partly be due to the thickness of the sampled layer which 

may vary from less than ten micrometers to a few hundred micrometers depending on 

the method employed [65, 96]. There is clear evidence that the microbial community 

of the surface microlayer differs from that of the underlying water [96, 55, 60]. In 

contrast to this another study suggested that a stable and abundant neustonic bacterial 

community is not a common trait of coastal marine environments, but still had 

evidence suggesting that the sea-surface layer may represent a rich source of new 

microorganisms [1].

High densities of metabolically active bacteria will most likely yield a competitive 

environment, and properties such as production of antibiotics may give organisms an 

advantage. There are no reports on systematic screening of the marine surface 

microlayer for antibiotic-producing organisms, although a number of antibiotic 

producers have been isolated from the marine environment [63, 106, 107].

Experimental results indicate that production of antibiotics could play an important 

role in the competitive relationship within marine bacterial populations [71]. In a 

study on antagonistic interactions among marine pelagic bacteria it has been found 

that more than a half of the isolates expressed antagonistic activity, and this trait was 

more common with particle-associated than with free-living bacteria [78]. Particles 

often tend to accumulate at the sea surface, and one could therefore expect that 

bacteria living at the sea surface might produce more antimicrobial compounds than 

other marine (i.e. pelagic) bacteria. 

1.1.5 Concerns

Although the marine environment offers exiting new opportunities, this “blue 

treasure” needs to be protected. Concerns have been raised about affecting the 

biodiversity of the sea. Habitats need to be protected and the benefits must be shared. 
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Critical voices use the word ‘biopiracy’, referring to the uncontrolled utilization of 

common resources. 

In 1992, the Convention on Biological Diversity (CBD) was opened for signature 

(www.cbd.int, accessed February 2009). The objective of the convention is ‘the 

conservation of biological diversity, the sustainable use of its components and the fair 

and equitable sharing of the benefits arising out of the utilization of genetic 

resources…’ In 2003 the Cartagena Protocol on Biosafety (CPB), a supplementary 

agreement to the CBD, was entered into force. The protocol governs movements of 

living modified organisms between countries. By now, (February 2009), the 

convention has 191 parties, and the CPB has 151 parties (Figure 1.1), both including 

Norway. The United States of America has signed the CBD, but has not ratified the 

agreement.  Effort is also put into the work of assessing and explaining the diversity, 

distribution, and abundance of life in the oceans, including the marine microbes 

(Census of marine life, www.coml.org).  

Yet another problem is the fact that most of the world’s water masses and seabeds are 

in the international waters. These areas are not controlled by any national laws. 

Exploiting the diversity of these areas might leave traces that potentially could ruin the 

uniqueness of the special environments. An international understanding and 

agreement on how to preserve these resources are therefore a matter of necessity.
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CBD Party CBD & CPB Party Non Party 

Figure 1.1. Parties of the Convention on biological diversity (CBD) and Cartagena 

protocol on biosafety (CPB) (www.cbd.int)

1.2 Antibiotics and their production in bacteria 

Infectious diseases in humans have been described as far back as in the Old and the 

New Testaments [81]. The ancient Egyptians and Greeks used different plant extracts, 

tree resins and spices as antiseptics to inhibit the degenerative effect of bacteria, but 

still the means to efficiently control and fight infectious diseases remained 

undiscovered for many years.

1.2.1 The history of antibiotics 

The words ‘antibiosis’ (‘against life’) and ‘antibiote’ were first used by the French 

biologist Vuillemin to describe the activity of one organism inhibiting another, and the 

drug killing the bacteria (a phenomenon earlier observed by Pasteur and Joubert in 

1887). The definition of ‘antibiotic’ was made by Selman Waksman in 1941, stating: ‘an 
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antibiotic is a chemical substance produced by a microorganism that has the capacity 

to inhibit the growth and even destroy bacteria and other microorganisms’.  

However, the very first antibiotics have not originated from microorganisms, but were 

chemically synthesized. The first successful antibiotic was the Salvarsan 

(Arsphenamine) [2]. By chemically modifying a compound that originally had been 

used as a dye in the textile industry, Paul Ehrlich produced a compound for the 

treatment of syphilis in 1909. Another successful antibiotic was the sulphonamide 

antibacterial Prontosil. It was synthesized by Domagk in 1932, and showed activity 

against Streptococcus and Staphylococcus. The compound could easily not have been 

detected as it was not active in the test tube, and rather had to be metabolized by the 

host to yield the active constituent. 

Despite the success of these compounds, the sulphonamides were only bacteriostatic, 

and their finding was overshadowed by the later discovery of penicillins [81]. Scottish 

microbiologist Alexander Fleming was not the first to study the biology of the 

penicillium moulds, but their properties were not paid much attention to until 

Fleming’s discovery of the efficient activity of Penicillium notatum against strains of 

Staphylococcus aureus in 1928. In 1945 Fleming received the Nobel Price in Medicine 

for the discovery of penicillin (Figure 1.2) together with Howard Florey and Ernst 

Chain, who successfully purified the compound [2]. During the 30 years following the 

discovery of penicillins, most of the main natural antibiotic chemical classes had been

discovered.   

R=

A             B 

Figure 1.2. Penicillin core structure (A), and penicillin G (B)    
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1.2.2 Main classes of antibiotics 

As listed in Table 1.2, there exist several classes of antibiotics acting against bacteria 

and fungi. Antibacterial compounds have several targets for their inhibiting action, as 

roughly sketched in Figure 1.3.

Inhibition of DNA 
and RNA synthesis 

Inhibition of
folate synthesis Inhibition of 

protein synthesis 

Figure 1.3. Schematic presentation of antibiotic targets in the bacterial cell. 

Affecting cell wall 
permeability

Inhibition of
cell wall synthesis 

Most antibiotics display their activity either by inhibiting cell wall synthesis (e.g. -

lactams), or protein synthesis (e.g. macrolides). In addition, inhibiting activity can be 

observed from compounds acting on DNA or RNA synthesis (e.g. quinolones and 

rifampicin), folate synthesis (e.g. trimethoprim) or by affecting the cell wall 

permeability (e.g. daptomycin).   
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Table 1.2. Main classes of anti-bacterial and–fungal antibiotics [2, 46]

Antibiotic class Example drug Source Antimicrobial 
use

Target

-lactams Penicillin G P. notatum G+ Cell wall synthesis 
Cephalosporin A. chrysogenum¤ G+, (G-)  
Amoxicillin Semisynthetic G+, G-

-lactamase
inhibitors 

Clavulanic acid  S. clavuligerus Inhibitors of  
-lactamase

Glycopeptides Vancomycin S. orientalis G+ Cell wall synthesis 
Teicoplanin A. teichomyceticus G+

Polypeptides Polymyxin B and E B. polymyxa G- Cell wall permeability 

Aminoglygosides Streptomycin S. griseus G+, G- Protein synthesis 

Macrolides Erythromycin Sac. Erythraea* G+, G- Protein synthesis 

Streptogramins Virginiamycin [30] S. virigniae G+, some G- Protein synthesis 
Lincomycins Linomycin S. lincolnesis G+ Protein synthesis 

Clindamycin Semisynthetic 

Tetracyclins Tetracycline S. aureofaciens G+, G- Protein synthesis 
Doxycycline Semisynthetic 

Chloramphenicol Chloramphenicol S. venezuelae G+, G- Protein synthesis 

Rifamycins Rifampicin Amycolatopsis 
rifamycinica§

G+, G- RNA synthesis 

Sulphonamides Sulphanilamide Synthetic G+, G- Folic acid synthesis 

Trimethoprim Trimethoprim Synthetic G+, G- Folic acid synthesis 

Quinolones Nalidixic acid  Synthetic G+, G- DNA replication 
Ciprofloxacin

Lipopeptides Daptomycin [90] S. roseosporus G+ Ca2+ dependent, cell 
wall permeabilizing 

Azoles Fluconazole Synthetic Fungi Ergosterol biosynthesis 
Metronidazole Anaerobic 

Fungi
DNA replication and 
transcription 

Polyenes Nystatin [15] S. noursei Fungi
Amphotericin [22] S. nodosus 

Ergosterol, cell
membrane 
permeabilization 

Pyrimidin analogs Flucytosine Synthetic Fungi DNA replication 

Echinocandins Caspofungin [37] Semisynthetic Fungi
(lipopeptides) (Glarea lozoyensis)

Fungal cell wall 

Allylamines Terbinafine Synthetic Fungi Ergosterol biosynthesis 
 G +: Gram-positive bacteria, G-: Gram-negative bacteria 

¤ Formerly known as Cephalosporium acremonium 

* Formerly known as Streptomyces erythraeus
§ Formerly known as Streptomyces mediterranei 
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1.2.3 Bacterial antibiotic biosynthetic genes  

Bacteria produce a wealth of metabolites with secondary roles in their life cycles. These

secondary metabolites are not essential for the survival of the bacteria, and typical 

examples are antibiotics and pigments [134]. Production of secondary metabolites is 

often under the control of quorum sensing. In Gram-negative bacteria the signalling 

molecules are typically N-acyl-homoserine-lactones (AHL) whereas Gram-positive 

bacteria utilize processed oligopeptides [8]. Quorum sensing among marine bacteria is 

well known [40]. Secondary metabolism is induced at different stages of the bacterial

development and in different environmental conditions [134]. Polyketide synthases 

(PKSs) and/or non-ribosomal peptide synthetases (NRPSs) or a combination of these, 

are involved in production of many antimicrobial secondary metabolites in 

Streptomyces and other bacteria, fungi, and plants. 

Polyketides have a remarkable diversity in structure and function, possessing 

pharmacologically interesting properties. They are synthesized sequentially by 

reactions catalyzed by PKSs. The PKSs can be considered as collections of enzyme 

activities with coordinated groups of active sites. The synthesis of polyketides 

resembles the synthesis of fatty acids [62]. Both syntheses are initiated by a Claisen 

condensation between a starter carboxylic acid and a dicarboxylic acid. 

The polyketide synthases are usually classified according to their mode of synthesis 

(sequential or iterative) and whether they consist of a single or multiple proteins. 

At least three different types of PKSs, named types I, II and III, have been described, 

and representatives of all three classes can be found in bacteria. Type I PKSs are single 

proteins that act either as modules performing sequential condensations, or iteratively 

as a single module. The multi-modular type PKS Is are usually found in bacteria, while 

the iterative type is more typical for fungi. These single proteins have one (iterative) or 

several (multi-modular) modules. The PKS type IIs are protein complexes consisting 

of several subunits each possessing a single mono-functional active site. More detailed 
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description of PKS types I and II is provided below.  The last type of PKSs, type III, can 

also be found in plants [118] and are single proteins with multiple active sites 

functioning in an iterative manner [6]. PKS type IIIs enzymes consist of a homodimer, 

and unlike type I and type II PKSs, these systems do not contain acyl carrier protein

components.

PKS type I

The PKSs type I resemble animal type fatty acid synthases (FAS), but unlike the FAS-

system, these PKSs contain multiple modules, each having at least the so-called 

minimal PKS type I with or without other catalytic domains [89]. The minimal PKS 

type I module consists of a -keto synthase (KS), an acyl transferase (AT) and acyl 

carrier protein (ACP) domains.  

The number of modules in type I PKS systems reflects the number of ketide units in 

the synthesized polyketide [40]. Each module is responsible for one condensation 

cycle during the synthesis of a polyketide chain. The primer substrate is bound to the 

KS active site, and condensed with the chain extender substrate [124]. Each module 

contains a dedicated AT, resulting in the possibility of different extender units being 

utilized at each elongation step. These AT domains do, however, typically have high 

specificity for malonyl or methylmalonyl-CoA. In general, the AT domain loading the 

starter unit has a more relaxed substrate specificity (e.g. can accept 2, 3 or 4 C-atom 

starters).

Before the next elongation step, the -ketoacyl product can be subjected to different -

carbon processing by the dehydratase (DH), enoylreductase (ER) and the -

ketoreductase (KR) [89]. The degree of -carbon processing can vary in each 

elongation step, adding to the diversity of the PKS products. The anchors in the 

elongation of the polyketide chain are the ACP domains. They translocate the growing 

chain both within (through condensation and -carbon-processing) and between the 

modules. Each module has one ACP domain. The final release from the 
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phosphopantetheine thiol, and cyclization of the chain is facilitated by the thioesterase 

(TE).

Actinomycete bacteria usually contain more than one PKS gene cluster [21]. Search for 

and/or mapping of PKS type I sequences within a bacterial genome would therefore

display some of the diversity of the antibiotic producing potential of these bacteria. 

Over 10000 PKSs has so far been identified [124].

PKS type II

Bacterial aromatic polyketides are synthesized by PKS type II (aromatic) polyketide 

synthases. The minimal PKS type II consists of two -ketoacyl synthase subunits, KS

and KS , an acyl carrier protein (ACP) and a malonyl-CoA:ACP transacylase (MAT) 

[88, 26]. The latter KS is often designated CLF (chain length factor), and it has been 

suggested that the polyketide chain length in bacterial aromatic PKSs is controlled by a 

substrate-binding pocket in the KS-CLF dimer interface [20]. CLF is involved in 

formation of acetyl-ACP (from the decarboxylation of malonyl-ACP) [11]. The two KS-

units catalyze the decarboxylative condensation of the malonyl building blocks 

delivered by the MAT, and the acyl carrier protein (ACP) acts as an anchor for the 

polyketide chain during the various biochemical manipulations.

Cyclases, aromatases and ketoreductases are required to fold and cyclise the chain. 

The -keto acid can be processed by -ketoacyl-reductase (KR), -hydroxy-acyl-

dehydratase (DH) and enoyl-reductase (ER) domains [24]. A combination of these 

enzyme activities will determine the structure of the final polyketide. 

NRPS (Non-ribosomal peptide synthases)

NRPSs somewhat resemble modular PKSs in their product assembly and their 

organization of modules [83]. The peptides are assembled from amino acids instead of 

acyl units as for the polyketides. Following the initiation module, the condensation 

domains (C) play a central role in the NRPS-catalysed peptide synthesis. Together with 

the adenylation domain (A) for substrate recognition and activation, thiolation or 
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peptidyl carrier protein domain (T or PCP) that holds the activated substrate, they (C,

A and PCP) constitute the minimal elongation module of the NPRS required for the 

incorporation of one amino acid into the growing peptide. In contrast to the ribosomal 

peptide synthesis, which is restricted to 20 amino acids as building blocks, NRPSs can 

utilize several hundred substrates [45]. In addition to the minimal elongation module, 

tailoring enzymes may also be involved in maturation of the peptide. NRPSs are often 

large proteins, and in bacteria syringomycin synthethase E from Pseudomonas 

syringae is the largest NRPS known [117].

In conjunction with the similarities between NRPS and PKS, it is not surprising that 

hybrids of these enzyme complexes with mixed modules can be found. Rapamycin 

[119] and epothilone [128] are examples of compounds synthesized by the hybrid 

NRPS/PKS enzyme complexes. 

1.2.4 Violacein and candicidin

Violacein is an indole-derived blue pigment dye that has first been reported in 

literature in 1882, with the chemical name 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-

yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one. The characteristic colour 

has made it easy to observe and study in its producers, whereof Chromobacterium 

violaceum is the most prominent one [108]. Other producers include the Gram-

negative Janthinobacterium lividum, Collimonas sp. and several strains of the genus 

Pseudoalteromonas [100, 92, 136]. The violacein-producing strains have been isolated 

from several different habitats, including both water and soil in arctic, subtropical and 

tropical regions, rivers, lakes and springs and from seawater at a depth of 320 m 

outside Japan. Violacein has been shown to act antibacterial (both G+ and G-) [76, 95,

111] in addition to displaying anti-protozoan, anticancer, anti-viral, and antioxidant 

[66] activities. 

Sequencing of the violacein gene cluster from Ch. violaceum and eDNA [5, 14] among 

others, has given insight into the biosynthesis of this pigment. The violacein clusters

from C. violaceum and eDNA, spanning 8 kb and 6.7 kb, were reported to contain the 
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genes vioA-D responsible for the production of violacein and deoxyviolacein (Figure 

1.4 A and B). A fifth gene (vioE) was later described as being essential for the violacein 

biosynthesis [111].

N
H

R1

NH NH

O

O

R2

A: Violacein: R1 = OH, R2 = H 
B: Deoxyviolacein: R1 = R2 = H 

Figure 1.4. Chemical structure of violacein (A) and deoxyviolacein (B) 

Candicidin (Figure 1.5) is a polyene (heptaene) macrolide antibiotic produced by 

Streptomyces griseus IMRU 3570 [23]. It has first been named antibiotic C135 by its 

discoverers, but was later renamed candicidin due to its strong activity against 

Candida species. As other glycosylated polyenes, it disrupts the membranes containing 

sterols (e.g. as in fungi) by forming organized channels, thereby inducing ion leakage 

[53].

Figure 1.5. Chemical structure of candicidin 

Candicidin is produced by a number of Streptomyces strains, including S. coelicolor

JI2159, S. coelicolor JI1157, S. griseus JI2212 and S. albus G, originating from 

different sources [47]. The biosynthetic gene cluster for the production of candicidin 
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spans approximately 140 kb, and consists of four PKS type I genes and 11 more genes 

putatively involved in the candicidin biosynthesis [23].

1.2.5 Horizontal gene transfer 

Many different bacterial species have been shown to produce the same antibiotics, 

suggesting that antibiotic biosynthesis genes can be transferred from one species to 

another. Horizontal or lateral gene transfer (HGT/LGT) is a process in which genetic 

material is transferred from one organism to another without reproduction, and thus 

can be involved in the transfer of antibiotic biosynthesis gene clusters. Multiple 

mechanisms for the physical transfer of DNA from one species to another are known, 

and the recombination mechanisms that can absorb this DNA are ubiquitous [127].

Cross-species gene transfer involves insertion of smaller genetic regions such as genes 

and parts of genes, and endosymbiotic fusion (transfer of genes from endosymbiont to 

host). Typical mechanisms for genetic transfer are transformation, transduction and 

bacterial conjugation [80]. Horizontal gene transfer is a major driving force in the 

evolution of many bacterial pathogens [143]. Virulence factors and genes involved in 

antibiotic resistance are commonly transferred between strains, but will also 

experience intrastrain genetic- (and phenotypic) variations due to point mutations, 

deletions, and pathoadaptive mutations, among other factors.

Due to horizontal gene transfer, species phylogenies derived from comparisons of 

single genes are rarely consistent with each other [41]. Within prokaryotes the 16S 

rRNA gene has been most commonly used for construction of phylogenetic 

relationships, because its sequence is thought to be conserved during evolution. 

However, differences in the 16S rRNA gene sequences within a single Heliobacter

species have been reported [132]. Based on this finding, it has been suggested that 

taxonomic analysis should be supported by other phylogenetically informative 

macromolecules, e.g. 23S rRNA, gyrase and other “housekeeping genes” when other 

credible phenotypic and genotypic data deviate from 16S rRNA analyses [38].
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1.3 Activity-based discovery of new antibiotics 

Screening microbes from natural sources in general and the marine environment in 

particular is a promising strategy for discovery of new antibiotic leads. Due to their 

antibiotic producing potential, actinomycete bacteria have been of special interest in 

this search. At least 10 000 natural products are characterized from actinomycetes, 

whereof ~70% are produced by Streptomyces [16]. Traditionally, this search has been 

performed with whole cell assays with the extracts prepared from actinobacterial 

cultures.

A typical flow chart describing the initial processes of discovering the antimicrobial 

activity of bacteria from different natural sources is shown in Figure 1.6. For many 

years, the environmental source from which to isolate the bacteria has mainly been 

terrestrial. The focus on isolation of bacteria from marine environments has increased 

during the last 20 years. The microbial diversity in this environment is thought to be 

different from what has been reported for soil communities, and some of the 

compounds they produce are novel and/or have new and interesting properties [33,

79, 135].
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Cultivation

Sampling

Isolation

Induction of production

Activity assay (whole cell or target)   

Extraction

Upscaled production, purification, assays,

Characterization of compound
(structure, activity, toxicity etc.)

Optimization of compound

   DRUG
Figure 1.6. Drug discovery from microbial sources 

Isolation of marine bacteria has been performed both from sediment [47], pelagic 

waters (both biofilm/particle associated and free-living) [78], sponges, plants, 

invertebrates and from the sea surface [19, 3, 142]. Most research on marine bacteria 

has been done on isolates from sediment and surface-associated bacteria. Collection of 

sediment samples is performed at depths varying from the intertidal zone [47, 142] to 

6500 m [74]. Traditional methods for cultivation of the isolated marine bacteria have 

involved use of minimal media, dilution to extinction and use of sea water in the 
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growth medium [3, 47, 69, 16]. When searching for producers of antimicrobial 

compounds, samples with macroorganism– or sediment-associated bacteria are often 

subjected to selective treatments prior to plating. These pre-treatments facilitate 

growth of certain types of bacteria compared to others and include among other 

methods, drying (of sediment), heat- and/or phenol treatment [47, 16].

Isolation and characterization of diverse bacteria and the increasing number of 

bacterial genomes being sequenced helps us to understand more about the different 

cultivation requirements of so far uncultivable bacteria. Use of diffusion chambers and 

encapsulation of cells in gel microdroplets (OneCell System) for cultivation of bacteria, 

intended to simulate natural conditions with respect to nutrients, physical 

environment and symbiosis, have been reported and patented [61, 72, 13, 139, 68, 12]. 

Up to 70% of the bacteria isolated from both Petri dishes and after cultivation in 

diffusion chambers were obtained exclusively from diffusion-chamber derived 

material [61].

After cultivation and isolation of the bacteria, it is important to optimize the 

conditions for production of secondary metabolites. These metabolites are not 

essential for growth [134], and might therefore be not constitutively synthesized. 

Obtaining production of interesting compounds from bacteria grown as pure cultures 

in the laboratory might therefore require some kind of induction. Results showing that 

marine particle-associated bacteria are more likely to produce inhibitory molecules 

than free-living bacteria [78] indicate that the antagonist molecule production might 

be triggered by the competitive environment. It has been shown that the antimicrobial 

activity of surface-associated marine bacteria is induced by the presence of terrestrial 

bacteria, or culture supernatants [91, 19]. It is thought that the production of 

antimicrobial compounds might be triggered by the presence of signalling molecules 

(AHLs and processed oligopeptides) from the ‘competing’ bacteria.  
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When screening the bacteria for compounds of interest, the assay design and choice of 

assay method will affect the type of compounds that can be identified. The two most 

widely used methods are cell-based and target-based assays. The former method is the 

direct search for compounds inhibiting growth of or killing the living cell/bacteria. The 

target-based method requires prior knowledge on the function of interest, availability 

of the target (usually enzyme), and a robust assay suitable for high-throughput 

screening. Positive candidates from the assays are usually inhibitors of a defined 

target. Both approaches have their own benefits and shortcomings, as listed in Table 

1.3.

Table 1.3. Pro’s and con’s of two different screening strategies [110, 29]

Cell-based assays Target based assays 
Advantages Disadvantages Advantages Disadvantages 

High chances of finding 
novel 
compounds/compounds
with novel targets 

Insensitive More sensitive (can 
detect poorly/not 
penetrating
compounds)

The drug may not 
penetrate the cell- 
(not effective in vivo) 

Finding (small) 
compounds able to 
penetrate cells 

Needs to penetrate 
the cell  

Easy screening –
enzyme inhibitors  

In vitro drug  in vivo 
drug

Fast. HTS Unknown mode of 
action. (No basis for 
compound
optimization)

Ability to do rational 
drug design  

Genetic validation 
(i.e. gene knock-out) 
can be misleading  

Eliciting desired 
phenotype  

Mixed mechanisms of 
action 

Can drive search into 
new areas of biology  

Compounds have 
acceptable 
pharmacokinetic
profiles

Most active 
compounds are toxic 
or non-specific  

Reproducible

For an antibiotic to be effective as a drug, several criterions need to be fulfilled, 

whereof it not being toxic to the host is one of the most important ones. In addition, 

the drug needs to permeate the target cell and avoid its efflux- and detoxification 

systems [130]. Once inside the cell, the drug must be stable enough to reach its target 

in high enough concentrations to inhibit its function, resulting in growth arrest or 
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death of the target cell. By using whole cell assays in the search for new antibiotics 

several of these criterions are already fulfilled. In addition, by not limiting the assay to 

predefined targets, the chances of finding compounds with novel targets and/or 

reaction mechanisms might be increased.  On the other hand, the whole-cell based 

assays are insensitive, and many potential promising leads might be missed.

When considering pathogenic bacteria, typical assay targets are functions essential for 

growth/survival and pathogenicity. As the culturing conditions in the laboratory are 

most likely different from the environment in the host, assays targeting functions that 

are essential for growth and survival might be not be sufficient to detect all compounds 

inhibiting functions essential in vivo. [29].

One combinational approach has been described [75] in which initial cell-based assays 

are followed up by assays with multicopy suppression of the inhibiting activity.

Multicopy plasmids with bacterial genomic fragments are introduced into the cells 

displaying sensitivity to the drug of interest. The inhibition is quenched either by 

multicopy expression of the target of inhibition or by expression of a resistance 

mechanism. This forward chemical genetic method has the potential of both 

identifying the cellular targets and the resistance mechanisms for the novel 

antibacterials identified in the initial cell-based assay. Identification of the resistance 

mechanism will help designing chemical modifications to be made in the antimicrobial 

compound to make it a broad-spectrum drug. In the study of Li, Zolli-Juran, et al. [75]

several compounds have been identified as substrates for efflux, indicating that in

standard whole cell assays their activity might be missed.  

1.4 Genome mining for new bioactive compounds  

With the emergence of new techniques for sequencing, the speed and cost of whole 

genome sequencing has changed inversely (to each other). More and more sequences 
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are being accessible to the public through common databases and hence enabling 

genome-based discovery of secondary metabolites.

1.4.1 Sequencing and automated annotation 

The traditional method for sequencing has been the Sanger (chain-termination) 

method, which was developed in 1975 [112]. This method is restricted to sequence 

reads of 100-1000 base pairs, and genome sequencing can only be done by 

chromosome walking or shotgun sequencing [113].

The second generation sequencing techniques produce hundred thousands to a million 

short reads of 13-300 base pairs [113]. These techniques are faster and less expensive 

than the traditional methods, but they also generate more information to be processed.  

Several of these methods are based on an initial emulsion PCR, where beads coated 

with primers and DNA molecules are contained in aqueous droplets within an oil 

phase. Companies using this method include 454 Life Sciences and Applied 

Biosystems. The SOLid sequencing (ABi) is based on ligation of immobilized marked 

oligo nucleotides to the sequence of interest 

(http://www3.appliedbiosystems.com/AB_Home/index.htm). 

Putative cluster for the production of possibly novel secondary metabolites can be 

predicted in the genome by sequence similarity to known genes and gene clusters. In 

particular, knowledge about PKS and NRPS systems allows identification of clusters 

with potential antimicrobial products. These systems also allow prediction of 

structures of the enzymes encoded by these genes and, at least partially, their 

products. This is particularly true for the multi-modular PKS type I and NPRS 

systems, where the gene organization often reflects the order of biosynthetic steps. 

However, the products of many such clusters can be difficult to detect in assays, as not 

all clusters are expressed under the conditions tested, and hence they are named 

cryptic or ‘orphan’ gene clusters. In fact, a high share of the secondary metabolites 
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encoded in the bacterial genomes remains to be discovered, as exemplified by the 

sequencing of the Streptomyces coelicolor A3(2) and Salinospora tropica CNB-440 

genomes which showed that less than 20 % of the gene clusters encoding putative 

secondary metabolites were earlier identified in these bacteria [9, 131].

Whole genome sequencing is a costly method, although the prices continue to drop,. 

By screening for PKS and NRPS gene fragments in the DNA of a bacterium of choice it 

is possible to circumvent the whole genome sequencing. PCR-scanning, using 

degenerate primers enables the potential identification of orphan gene clusters which 

can then be further examined.

1.4.2 Genome scanning  

Cryptic gene clusters involved in the production of natural products can be detected 

also without genome sequencing. A genome scanning method has been developed by 

Zazopoulos et al., and applied to detect the enediyne antitumor antibiotics 

biosynthesis genes in several actinomycetes [138]. Genomic DNA is fragmented and 

small fragments (700 bp) are maintained on plasmids in a genome sampling library, 

GSL, while larger fragments are maintained on cosmid or BAC vectors in a cluster 

identification library (CIL). Sequencing of the GSL clones allows identification of those  

harboring genes involved in production of natural products/secondary metabolism.

The gene (fragment) of interest can then be used as a probe for identification of CIL 

clones containing the gene and its surrounding sequences. Sequencing of the positive 

CIL clone(s) will then help identification of the secondary metabolite gene cluster(s). 

The sequence information can be used to make computer predictions of the chemical 

structure [43]. More than 450 secondary metabolite gene clusters have been identified 

in actinomycetes using this technique, including the biosynthetic gene clusters for the 

production of the antifungal ECO-02301 produced by Streptomyces aizunensis NRRL 

B-11277 and the antibacterial ECO-0501 produced by Amycolatopsis orientalis ATCC

43491 [85, 7]. Examples of natural products isolated after genome mining, and 
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computer predictions are listed in table 1.4. The genome scanning method can also be 

a useful tool when searching metagenomic libraries for secondary metabolite gene 

clusters. The marine microbial diversity is high and it is assumed that only 1-5 % is (so 

far) cultivable. Marine metagenomics is an emerging field allowing the access to the 

full biotechnological potential of the marine microbiota via culture independent 

techniques. Metagenomic libraries have been made from several marine sources, 

including sediment [57], sponges [115] and water samples from the Sargasso Sea [133].

Table 1.4. Natural products isolated by genome mining and computer prediction 

approaches [adapted from 70]

Natural product Class Source Activity
Diazepinomicin Dibenzodiazinone Micromonospora sp. Anticancer 
Coelichelin Tetrapeptide S. coelicolor Iron chelator 
E-837 Alkenylfuranone S. aculeolatus Anthelmintic 
E-492, E-975 Alkenylfuranones S. sp. Anthelmintic 
ECO-02301 Linear glycosylated 

polyene 
S. aizunensis Antifungal 

ECO-3396 Angular polycyclic 
ketide

Micromonospora 
echinospora 

Antibacterial 

ECO-7942 Hexadepsipeptide S. sp. Anticancer 
ECO-0501 Octaenoic acid 

glucuronide
Amycolatopsis orientalis Antibacterial 

TLN-4601 (ECO-
4601) [86]

Farnesylated 
dibenzodiazepinone 

Micromonospora sp., 
046Eco-11

Anticancer 

1.4.3 Identification and isolation of secondary metabolites 

encoded by cryptic gene clusters 

A number of strategies can be employed to identify and isolate the compounds of 

interest. The major challenge of all methods, however, is the activation of the relevant 

gene clusters. Different strategies can involve as simple methods as applying stress, 

change of growth medium and incubation conditions, or co-culturing with other 

microorganisms [114]. Allowing growth on/in several different growth mediums 

designed for the production of secondary metabolites has been shown to be effective 

[85, 138]. Production of antimicrobial compounds has also been induced by mimicking 

the natural competitive environment by adding bacteria or culture supernatants [91,
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19]. Other methods involve homologous overexpression of a pathway activator [114],

or transfer of the cluster to another host to better control the expression [32].

Heterologous expression of putative secondary metabolite gene clusters is also an 

alternative for Metagenomic libraries prepared from environmental DNA samples.

Several methods for discovering the products of cryptic gene clusters have been 

employed in the recent years. Tools for the isolation of these natural products have 

been summarized as follows [28]:

1) In vitro reconstitution 

2) Heterologous gene expression/ comparative metabolic profiling 

3) Gene knock-out/ comparative metabolic profiling

4) Prediction of physio-chemical properties from genetics 

5) Genomisotopic approach 

As mentioned, the structure of the polyketides synthesized by PKS type I systems can 

be predicted based on the primary sequence of the gene cluster. This was done by 

McAlpine et al. [85] and Banskota et al. [7] when discovering the antifungal ECO-

02301 and the antibacterial ECO-0501 respectively. The gene clusters putatively 

encoding the biosynthetic genes of the novel compounds were detected in the genome 

and predictions of the structure and physiochemical properties of the product allowed 

the detection of the metabolite in the fermentation extracts.   

In vitro reconstitution involves prediction of the precursors, purification of the 

enzymes involved and mixing of the components for in vitro biosynthesis.

This method might be most suitable for smaller clusters as the procedure is more 

laborious than the others. On the other hand, the biosynthesis of the compound of 

interest can be studied in a more controlled manner. The two-component lantibiotic 

haloduracin is encoded by the genome of Bacillus halodurans C-125 [87]. Haloduracin 

was produced by overexpression of the prepeptides and the modifying enzymes in E.

coli followed by purification and in vitro reconstitution. 
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Also the genomisotopic approach relies on the prediction of the precursor. The latter 

approach is based on labeling putative precursors of the metabolic product with 

isotopes, feeding the precursor to the bacteria, followed by isotope-guided 

fractionation by NMR [50]. In the study by Gross et al. a cryptic gene cluster 

containing a NRPS responsible for the production of an antimicrobial lipopeptide 

encoded in the Pseudomonas fluorescens Pf-5 genome was identified. The amino acid 

precursors predicted from the NRPS sequence were labeled and aided the 

identification of the cyclic lipopeptide orfamide A.

Several of the listed techniques rely on credible prediction of the precursors. In some 

cases, as for the iterative PKS type II systems, substrate specificity can not easily be 

predicted. The comparative metabolic profiling techniques (number 2 and 3) 

circumvent this problem by comparing production versus no production of a 

biologically or analytically detectable compound. 



AIMS OF THE STUDY 

2 AIMS OF THE STUDY 

The overall aim of this project was to isolate bacteria from the sea surface microlayer 

that produce valuable products, in particular antibiotics, and might have an industrial 

potential. However, the culture collections built up in this project will be a good 

starting point for later bioprospecting for other products as well. The project aims at 

the utilization of Norwegian marine resources for the development of national 

industry, by building a national culture collection of marine microorganisms from the 

sea surface microlayer. The Norwegian marine ecosystems have developed in a rather 

cold and severe climate, suggesting that selective pressure on the microorganisms 

comprising part of such systems must have been quite unique (cold seawater 

environment). Because of this, it might be that these microorganisms have developed 

antibiotic biosynthesis pathways that differ from those utilized by terrestrial 

microorganisms.

We wanted to isolate new microbial strains of commercial interest for production of 

antibiotics by studying marine bacteria from the sea surface microlayer collected in the 

Trondheim fjord, Norway. The individual isolates would then be screened for 

antibiotic activity against bacteria and fungi. Secondary screening would aim at 

selection of the producers of the candidate anti-microbials, and their taxonomical 

characterization. A further sub-goal has been small-scale production, purification, 

structural and biological characterization of antimicrobial compounds.  

The project has been set to serve two purposes: (i) to evaluate the potential of the 

microorganisms living in the surface microlayer to produce antibiotics; (ii) to isolate 

and characterize the producers of novel antimicrobial agents with commercialization 

potential. Logical continuation of this project might include strain development for 

commercial production of the new antimicrobials, and cloning and manipulation of 

the genes for their biosynthesis. 
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3 SUMMARY OF RESULTS & DISCUSSION

3.1 Construction of a marine isolate collection and 

detection of antimicrobial activity 

A library of over 1ooo bacterial isolates recovered from the sea surface microlayer of 

the Trondheim fjord and the coast of Trøndelag was constructed. Both rich- and 

minimal media were used in the initial isolation of the bacteria, and the collection 

contained bacteria that were able to grow on different selective media supporting 

growth of actinomycetes. To increase bacterial diversity in the collection, isolation was 

performed on both media with and without seawater added. In parallel, a collection of 

over 3200 sediment isolates sampled at different depths in the Trondheim fjord was 

constructed by Harald Bredholt. These samples were subjected to pre-treatments 

before plating on the selective media.

To screen the library for bacteria producing compounds with antimicrobial activity, a 

whole-cell-based growth inhibition assay was chosen. By using this simple function-

driven method, a larger number of bacteria could be assayed at the same time. In 

addition, by choosing a cell-based over a target-based assay the chances of finding a 

novel compound or a compound with a novel action mechanism/target would be 

optimized, since the assay is not restricted by an already defined target. Preferred 

qualities of the potential drug(s) (ability to penetrate the target cell, to reach and act 

upon its target) would also be naturally selected for in these assays. In the initial 

bioassays isolate extracts were tested for growth-inhibiting activity against several 

indicator organisms. To maximize the number of possible antimicrobial compounds 

extracted from the cells, both polar and nonpolar, DMSO was chosen as a solvent. 

Antagonistic activity in the extracts was assayed in agar diffusion- and liquid culture 
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assays against representatives of non-filamentous fungi (Candida albicans ATCC

10231), Gram-positive (Micrococcus luteus ATCC 9341) and Gram-negative bacteria

(Escherichia coli K12). Liquid culture assays were performed with the indicator 

organisms C. albicans (CCUG 39343), C. glabrata (CCUG 39342) and two strains of 

Enterococcus faecium (CCUG 37832 and CTC 492), whereof the former is 

vancomycin-resistant.

The bacterial sample collection was incubated on several solid growth media prior to 

extraction to stimulate the production of different antimicrobial compounds. Initial 

studies were performed by Espen Fjærvik and Harald Bredholt to determine the ability 

of four different production media to promote the production of antimicrobial 

compounds in the marine isolates (unpublished results). The tests, performed with 

over 450 sediment isolates, indicated high frequency of antimicrobial activity among 

the bacterial extracts tested (~78 %). Of the total antimicrobial activities detected on 

the four production media, 70 % could be recovered using a combination of any of 

the two media. Cultivating the isolates on a production medium containing dry yeast 

seemed to increase the number of bacterial extracts having antifungal activity. It is 

known that the presence of other bacteria and/or culture supernatants thereof might 

induce the antimicrobial compound production in marine bacteria [78, 19, 91]

3.2 Diversity among Streptomyces spp. in the Trondheim 

fjord surface microlayer (paper I) 

Isolates from two sampling sites were selected for studies on the diversity among the 

Streptomyces spp. from the sea surface microlayer in the Trondheim fjord. Total 

number of bacteria isolated from the two sampling sites where 2.5x103 and 1.2x104

cells/ml seawater, whereof presumed (based on macromorphology) actinomycetes 

accounted for 9.8x102 and 1.3x103 cells/ml, respectively.
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Re-streaks of the bacteria were performed on agar media with and without 50 % 

seawater. None of the isolates were restricted to growth on seawater-containing media, 

but the seawater seemed to induce better/faster growth of all the isolates. The 

seawater was added to mimic natural conditions and to allow isolation of marine 

actinomycetes. The resulting enhanced growth of the isolates suggests that they might 

have adapted to the marine environment and may occur naturally in the surface 

microlayer.  

3.2.1 Antimicrobial activity among streptomycete bacteria  

Isolated bacteria morphologically similar to streptomycetes were assayed for their 

antibiotic producing potential. 217 colonies from the two sampling sites (134 and 83 

isolates from samples 1 and 2, respectively) were selected for the analysis. Antagonistic 

activity could be detected against at least one of the indicator organisms for 79% 

(sample 1) and 85% (sample 2) of the sample isolates, displaying considerably higher 

numbers than in earlier reports.

Previous studies have reported 44-50 % antibacterial activity among streptomycetes 

from marine sediments [101] and pelagic bacteria [78], whereas the antifungal activity 

among Streptomyces species isolated from sediment was considerably lower than the

antibacterial activity [101, 125]. In our study, over 50% of the isolates from both 

sample 1 and 2 showed antifungal activity. Among the sediment-associated 

streptomycetes from the Trondheim fjord (paper II), about 28 % of the isolates were 

found to display antifungal activity.

Several of the isolates showing antimicrobial activity were active against more than 

one indicator organism, and this may indicate production of several antimicrobial 

compounds and/or production of compounds with multiple microbial targets. In 

particular, 80% of all the antibacterial activity detected was against both Gram-

positive and Gram-negative bacteria.  
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The isolates were grouped and sub-grouped based on colony morphology (colour of 

substrate and aerial mycelia, pigment production) and the displayed antagonistic 

activity (Table 2, paper I). Isolates from group G1 dominated the samples, indicating 

that the sampling/isolation conditions were best suited for these isolates and/or that 

they are abundant in the surface microlayer. 

3.2.2 Phenotypic grouping and molecular taxonomy discrepancy 

Analysis of partial 16S rDNA sequences (1351 bases) from 46 assumed non-identical 

streptomycete isolates distinguished by colony morphology and antimicrobial activity 

was performed, as shown in Figure 3.1. Several of these isolates displayed 100% 

identical 16S rDNA sequences, suggesting that they are very closely related. These 

isolates, however, did not share the same colony morphology or the same 

antimicrobial inhibition patterns. Some Streptomyces strains can have very similar 

16S rDNA sequences, and still be classified as different species [67]. It has also been 

shown that sequencing of 16S rRNA genes can not be used as the only tool for 

dereplication of bacteria [132].

BLAST searches revealed that all except four isolates displayed 99 % identity to 16S 

rDNA sequences from Streptomyces spp isolated from marine sediments and 

sponges [141, 59, 56, 140], which is in agreement with the fact that they thrive on 

seawater-containing media.   
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Figure 3.1. Phylogenetic tree constructed for partial 16S rDNA sequences of 46 

Streptomyces species isolated from the surface microlayer in the Trondheim 

fjord, Norway. The tree also contains some of the closest matches from BLAST 

searches. The 16S rDNA sequence from Micromonospora sp DSM 44397 is 

included to root the tree. Numbers in brackets (x-y-z) refers to x: morphology 

group (Table 1, paper I), y: inhibition pattern (Table 2, paper I), and z: sample 

number. Arrows indicate the different branches of the tree. Bold font indicates 

sequences representing several isolates. Strains of marine origin are underlined.
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3.2.3 Possible horizontal gene transfer of bacterial type I 

(modular) PKS genes

Closely related isolates displaying 100 % identical 16S rDNA fragments were subjected 

to further analysis. The presence of PKS type I (modular) genes were investigated in a 

group of seven of these isolates displaying different inhibition patterns to possibly 

elucidate any diversity in their potential to produce polyketide/macrolide compounds 

(Table 3, paper I). 16 rDNA sequences from the seven isolates are represented by the 

one from the isolate MP6A8 in branch 1, Figure 3.1.

A total of 13 different sequences were obtained which, upon phylogenetic analysis, 

formed 6 clades, representing 6 different types of KS domains as shown in Figure 3.2. 

For each of the isolates one to six unique PKS type I sequences could be identified. The 

clustering of KS domains in phylogenetic trees are known to be affected both by 

evolutionary relatedness and substrate specificity [93], indicating that one or more of 

the KS sequences in the clade might belong to the same PKS type I gene cluster.

Five of the PKS type I sequences from one isolate (isolate MP8E7) displayed 71-83 % 

identity (at amino acid level) to three PKS’s involved in the biosynthesis of the 

commercially interesting compounds meridamycin (neuroprotectant) [126]

(sequences MP8E7 PKSI-1 and -6), filipin (antifungal) [97] (sequences MP8E7 PKSI-2  

and -3), and an antibacterial of a new chemical class [7] (sequence MP8E7 PKSI-4). 

The first two KS sequences (sequence -1 and -6) cluster with two other KS sequences 

from the same isolate, but not with their closest matches from the BLAST search. 

These four sequences that are 68-95 % identical might be amplified from the same 

cluster, potentially encoding a novel polyketide. 
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Figure 3.2. Phylogenetic relationship between PKS type I amino acid sequences 

from Streptomyces isolates with identical partial 16S rDNA sequences. Closest 

matches from the BLAST searches are also included. Putative distinct KS domain 

types are indicated with letters (A, B, C etc).  

Three of the KS sequences shared by two or more isolates were highly similar (91-100 

%) indicating that their genes might have been subject to a relatively recent horizontal 

gene transfer. In two of these (cluster F and C, Figure 3.2) there is no correlation 

between the observed antimicrobial activity of the isolates and the presence of the 

different KS types. This incongruity might have been caused by our inability to detect 
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the compound produced using the inhibition assays employed, or by the lack of PKS 

clusters expression under the conditions tested.

Analysis of the KS domains clearly shows that, despite sharing identical 16S rDNA 

sequences, some of the isolates display unique KS types (cluster B, D and E, Figure 

3.2).  This further supports the view that de-replication can not be done by 16S rDNA 

analysis alone. 

3.3 Antifungal polyene compounds production by 

streptomycetes isolated from the Trondheim fjord 

(paper II) 

A high number of Streptomyces bacteria isolated from different samples in the 

Trondheim fjord and assayed for antifungal activity were found to produce polyene 

compounds. Polyene macrolide antibiotics are naturally occurring, antifungal 

compounds [52].

Extracts from 3708 isolates from the sediments and sea surface microlayer of the 

Trondheim fjord were assayed, whereof 28 % displayed antifungal activity. Possible 

polyene production was detected by the UV/VIS spectrophotometry in 63 % of the 

isolates displaying antifungal activity, and the majority of those (70 %) presented the 

same unique heptaene-like UV absorbance spectrum. LC-DAD-MS-TOF analysis 

performed on the latter isolates identified the same three compounds in extracts from 

52 of 62 isolates, with accurate masses corresponding to candicidin D and two 

candicidin analogues. Two potentially new pentaene macrolides were also detected in 

the extracts from two polyene-producing isolates in the collection.    
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3.3.1 The candicidin biosynthetic cluster 

A 16S rDNA sequence analysis was performed to determine the molecular taxonomy of 

the morphologically different candicidin producers sampled at different locations. 

Seven out of eight isolates analyzed had very similar 16S rDNA sequences, and were 

also similar to that of the candicidin producer Streptomyces griseus IMRU 3570

(99.4-100 %). 

The presence of the candicidin cluster in two of the isolates was proven by 

amplification and sequencing of gene fragments from the can biosynthetic cluster. 

Primers were made based on the DNA sequences of canRA (ABC-transporter), pabAB

(p-aminobenzoic acid synthetase) and canP3 (polyketide synthase) from S. griseus.

Sequencing of the partial pabAB and canP3 amplified from the two isolates 

demonstrated their 99 % identity to the sequences from S. griseus.

Southern blot analysis with the pabAB and canP3 gene fragments as probes shown 

hybridization (for both probes) to the total DNA from S. griseus. No hybridization with 

the pabAB was detected to total DNA from a candicidin non-producer and an isolate 

producing another polyene macrolide, indicating that this probe is specific for the 

candicidin gene cluster. The canP3 probe was less specific, hybridizing to the PKS-

cluster of the isolate producing polyene other than candicidin. Both probes hybridized 

to total-DNA from the eight candicidin producers, confirming that candicidin 

biosynthetic genes are present in all of them.

Seven candicidin producers with similar 16S rDNA sequences showed hybridization 

patterns with the pabAB probe similar to that of S. griseus, indicating that the region 

containing this fragment is conserved among these isolates. The isolate showing a 

more distinct 16S rDNA sequence did also have a different hybridization pattern, 

suggesting a different organization of the pabAB region in this strain. 
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3.3.2 The candicidin biosynthetic genes are located on a linear 

plasmid in one of the isolates 

Due to the close phylogenetic relationship between seven of the eight candicidin 

producing isolates it seemed possible that the can genes might have originated from a 

common ancestor or that they might have been transferred by a mobile genetic 

element among the isolates. The can gene cluster spans ca 140 kb, and due to its large 

size a giant linear plasmid could be a possible vehicle for transferring it.

Linear plasmids were identified in six out of the eight candicidin producers analyzed 

by pulsed-field gel electrophoresis (PFGE) of their total DNA. The plasmids ranged 

from 50 to 820 kb in size. No plasmid could be detected in the candicidin non-

producing strain, the isolate producing another polyene, or S. griseus IMRU 3570.

Only the 250-kb plasmid from one of the isolates hybridized to both the pabAB- and 

canP3-probe, whereas the other candicidin producers demonstrated hybridization to 

the chromosome, indicating chromosomal location of the can genes, or integration of 

the plasmid into the chromosome. Integration of giant linear plasmids into the 

chromosome has earlier been reported [49, 64].

3.3.3 Transfer of the can cluster-containing plasmid  

In order to demonstrate the transfer of the plasmid carrying can genes, mating 

experiments were performed with both S. lividans TK64 (pSET152) and a closely 

related non-producing strain (identical 16S rDNA) as recipients, but plasmid transfer 

could not be demonstrated. Attempts were therefore made to “cure” the can-plasmid

containing strain.

Incubating the strain at elevated temperature (37 °C) resulted in the loss of the 

plasmid, as earlier reported for Streptomyces [99]. A RifR mutant of the plasmid-free 

strain was used as a recipient in a new mating experiment, and the mating resulted in 
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restoration of candicidin production in the recipient. The result was confirmed by 

hybridization of the total DNA to the pabAB probe and candicidin accurate mass 

determination by LC-MS-TOF. It is assumed that the inability to demonstrate the 

transfer of the can-plasmid to other strains might be due to plasmid instability, or that 

the recipient stains are unable to produce candicidin and are therefore not recognized 

during the selection.

3.4 A putative novel antibacterial compound produced 

by a Streptomyces sp. isolated from the water 

surface microlayer (unpublished results) 

3.4.1 Identification of the bacteria 

Two Streptomyces bacteria were isolated from the sea surface microlayer at two 

sampling sites in the Trondheim fjord, Norway. Cultivating the isolates on seawater-

containing medium greatly enhanced their growth, giving rise to colonies with red 

substrate mycelium and gray aerial mycelium. The surface microlayer held the 

temperatures 4.3 C and 5.8 C at the time of sampling, but the growth optimum for 

the isolates, MPS05-B41 and MPS06-B66, was found to be between 20 and 25 C, as 

for most of the other streptomycetes isolated from the Trondheim fjord. Incubation at 

30 C inhibited growth of the isolates when cultivated on solid medium.

3.4.2 Detection of antimicrobial activity 

Antimicrobial assays were performed both on solid media and in liquid media. In solid 

medium-based assays, activity against M. luteus and E. coli, but not C. albicans could 

be detected. Lack of antifungal activity against C. albicans was confirmed in liquid 

medium-based assays, but week activity against C. glabrata could be detected. LC-

DAD analysis of the extracts showed them being quite complex, and the demonstrated 

antifungal activity might be caused by another component in the extracts than the 
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compound(s) exhibiting the antibacterial activity. Activity against Gram-positive 

bacteria was confirmed in liquid medium-based assays by showing activity against a 

vancomycin resistant Enterococcus faecium. Liquid cultures of MPS05-B41 and 

MPS06-B66 were pelleted before extraction, and both pellet and supernatant were 

subjected to analysis. Antimicrobial activity could be found both in pellet and 

supernatant extracts, indicating that the active compound(s) are secreted into the 

growth media and suggesting that it might be water-soluble. The inhibiting activity 

was found to be higher in extracts of the supernatant than in the pellet extracts. The 

active compound(s) was shown to be poorly soluble in methanol, and attempts to 

extract with 1-butanol gave extracts with no activity at all. Extraction was therefore 

performed with methanol and 1-butanol prior to extraction with DMSO, in order to get 

rid of most of the other metabolites in the extracts.

3.4.3 Identification of antimicrobial compound 

Fractionation of bacterial extracts from both MPS05-B41 and MPS06-B66 followed by 

the bioassay of the fractions were performed. The red pigment was found in fraction 

12, whereas the bioactivity was found in two neighbouring fractions 13 and 14, showing 

that the pigment and the bioactivity are not linked. Fractions 13 and 14 were further 

subjected to LC-MS-TOF analyses and the ion mass of the compound in the bioactive 

fraction of bacterial extracts of MPS05-B41 was determined with a deviation of 0.15 

ppm between two subsequent rounds of analysis. Corresponding masses were also 

found in the MPS06-B66 extracts, and the active compound(s) is therefore thought to 

be identical. Search in the Dictionary of Natural Product (DNP) database with this 

accurate mass indicated one possible hit. However, the difference between the 

measured ion mass of the bioactive compound and the ion mass for the compound 

from DNP was 11 ppm. Considering the minimal deviation between the two rounds of 

analysis, this indicates that the active compound might be novel. In addition, the DNP 

hit compound has reportedly better UV-absorbance than measured for MPS05-B41-

derived antibacterial, is not reported to have antibacterial activity, and is soluble in 
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methanol and poorly soluble in H2O. These characteristics do not correlate with the 

data obtained for the antibacterial compound in MPS05-B41 and further support the 

assumption that the active compound produced by MPS05-B51 might be a different, 

presumably new, compound.  

A genome cosmid library of Streptomyces TF MPS05-B41 has been constructed 

with the aim of identification of genes involved in the biosynthesis of this 

presumably novel antibacterial compound.  

3.5 A violacein producing Collimonas sp. and its 

secondary metabolite producing potential

(paper III) 

3.5.1 Isolation, identification and detection of antimicrobial 

activity in Collimonas CT 

A new strain belonging to the genus Collimonas was identified within the isolate 

collection. Other Collimonas spp. have earlier been isolated from terrestrial sources 

[35, 58], stream water, and submarine ikaite coloumns in Finland and Greenland, 

respectively [92, 116]. The Collimonas CT (Coast of Trøndelag) displayed highest 

growth rates at 20-25 °C. A blue pigment synthesized by the bacteria was not produced 

when bacteria was incubated at 30 °C. No growth could be observed when the 

bacterium was incubated at 37 °C. These observations are in accordance with other 

reports on Collimonas bacteria [35, 92]

Collimonas CT isolates grew slower or displayed no growth on media containing 

seawater (50 %), indicating that they might be of terrestrial origin, and have been 

washed off shore. Antagonistic activity only against Micrococcus luteus could be 

detected in bacterial extracts when assayed against M. luteus, Candida albicans,
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Escherichia coli, and Enterococcus faecium. The antibacterial activity of violacein 

against E. coli is reported to be low, even at high concentrations [95, 34].

3.5.2 Identification and characterization of antimicrobial 

compound and pigment 

Extracts from Collimonas CT showing antibacterial activity were analyzed by LC-MS.  

The UV (DAD) absorbance plot shown in Figure 3.5 displayed four peaks. The main 

compound in the sample had an m/z = 342.0882 (retention time 12.5 min), whereas a 

compound with similar UV profile had an m/z value of 326.0938 (retention time 15.5 

min), resulting in the stoichiometric formulas ([M-H]– ion) of C20H12N3O3 and 

C20H12N3O2. Based on the MS-analysis, colour of the substrate and the UV-profile 

similar to that of violacein, the two main compounds were assumed to be violacein 

(C20H12N3O3) and deoxyviolacein (C20H12N3O2).

m/z = 342.0882 
m/z = 326.0938 

 n
m

 

Time, min 

Figure 3.5. Diode array UV absorbance isoplot of Collimonas CT extract. The four 

main eluting peaks have retention times of 9.5, 12.5, 13 and 15.5 min, 

respectively, and are marked with arrows. Exact masses m/z (M-H- ion) of the 

putative violacein and deoxyviolacein are given. 
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Colourless colonies of Collimonas CT were at one point observed in restreaks and 

when incubated at high temperatures (30 ˚C) as reported for other violacein producers 

[31, 137]. It has been suggested that this phenomenon might be due to interclonal 

polymorphism [77]. pH and agitation are also known to affect violacein production 

[137]. No antimicrobial activity could be detected in extracts from these colonies, and 

the UV-profile confirmed that no violacein was present in the samples. In support to 

these findings, antimicrobial assays performed with fractionated bacterial extracts 

revealed that the antibacterial activity was found in the same fractions as the blue 

pigment. These results indicate that pigment production is not essential for growth, 

and that the colour and antimicrobial activity are linked. Violacein is also not essential 

for growth in other violacein producers [123]. The reported antibacterial activity of 

violacein is mostly against Gram-positive bacteria, which corresponds with the 

observed activity against M. luteus. These findings confirm that the observed 

antibacterial activity of the Collimonas CT isolates most probably is not caused by 

several compounds, and that the main bioactive compound is violacein.  

Violacein has earlier been found in bacteria isolated from marine environment. As the 

Collimonas CT displays inhibited growth on seawater containing media, this might 

suggest that they are growing as biofilm in the tidal zone of brackish water, or in 

soils/fresh water and had been washed out into the sea.  Several of the violacein 

producers seem to prefer sessile microbial communities as they produce more 

violacein during growth in biofilm than during planktonic growth [82].

3.5.3 The violacein biosynthetic gene cluster in Collimonas CT 

In order to assess the ability to synthesize secondary metabolites, draft 

sequencing of the Collimonas CT genome was performed. The 5.8 million base pair 

genome was assembled to 257 contigs. As expected, the genes constituting the 

violacein biosynthetic cluster could be identified in the draft genome. The genes vioA,

vioB, vioC, vioD and vioE, are arranged in a cluster spanning 7.3 kb. Among the 
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known violacein producers, 16S rDNA from Collimonas CT shows highest similarity to 

Janthinobacterium lividum (94 %), and Chromobacterium violaceum (88 %). This is 

also the case with the VioA/B/C/D/E proteins; displaying ~81 and ~64 % identity to 

the corresponding proteins from the two strains, respectively.

The flanking sequences of the violacein cluster Ch. violaceum ATCC12472, J. lividum

DSM 1522 and Pseudoalteromonas tunicata D2 were compared to those of 

Collimonas CT. 42, 43 and 27 kb long sequences (including the vio-clusters) from the 

violacein producers were studied. No direct resemblance to the predicted proteins 

from Collimonas CT could be seen in the flanking sequences of Ch. violaceum.

Downstream the vio-cluster in Collimonas CT an ABC-transporter system (ORF10-13) 

can be found. Genes involved in drug transport are also encoded in the flanking 

sequences of J. lividum DSM 1522 and P. tunicata. As the violacein is associated with 

the outer membrane and accumulates in the periplasma in P. tunicata, it is assumed 

that it functions as a defence mechanism against predators when growing in a biofilm 

[82, 129]. It has been speculated that the MATE pump encoded by P. tunicata might 

provide a mechanism for export of violacein [129].  Both J. lividum and Collimonas CT 

encode a TonB-dependent receptor upstream the violacein cluster. A role for the

TonB-dependent receptor in the biosynthesis of violacein in J. lividum has not been 

determined.

The vio-cluster flanking sequences in the violacein producers differ from each other. 

The flanks in Collimonas CT shows highest similarity to the flanks in J. lividum, which 

is the violacein producer most closely related to Collimonas CT based on 16S rDNA-

sequence analysis. The codon usage in the Collimonas CT vio-cluster and the rest of 

the genome (predicted) are similar, indicating that violacein biosynthesis is an old 

characteristic of Collimonas CT bacteria.
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3.5.4 Putative other secondary metabolite biosynthesis genes in

Collimonas CT

Searching the Collimonas CT genome revealed (in addition to violacein) genes and 

gene clusters possibly involved in the production of secondary metabolites, as 

summarized in table 3.1 (Table 5, paper III). 

Table 3.1. Gene clusters identified in the Collimonas CT genome, putatively 

involved in the production of secondary metabolites.  

Cluster 
no.

ORFs
no.

Size
(Kb)

Genes identified 
(putative) Putative function 

1 04929-04931 3.1
Phytoene synthases and 
dehydrogenase 

Production of lycopene/ 
carotenoid biosynthesis 

2 05750-05752 4.8 Cyanophycin synthetase Cyanophycin synthesis 

3 05144-05156 26.6 
NRPS (siderophore), and 
transport

Siderophore biosynthesis 
and transport 

4 03557 4.0 NRPS, adenylation domain Unknown 

5 03015-03020 25.3

Acetyltransferase, NRPS 
(18.8 kb), tailoring enzymes, 
thioesterase and a 
transcription regulator 

6 05502-05505 12.5*

Partial NRPS* (10 kb) 
related to arthrofactin/ 
syringomycin synthethase C 
module and a thioesterase 
superfamily protein 

7 05573+05575 3.7*
Partial NRPS* related to 
arthofactin/syringomycin 
synthethase C module 

8 01844 2.2*
Partial NRPS*, 
syringopeptin synthetase C 
related

Syringomycin, syringopeptin 
and arthrofactin -related 
peptide biosynthesis 

9 02224-02232 7.1
Minimal PKS type II, 
modifying and post-PKS 
modifying enzymes 

Aromatic polyketide 
biosynthesis 

10 03611-03629 16.8 
Minimal PKS type II, 
modifying and post-PKS 
modifying enzymes 

Aromatic polyketide 
biosynthesis 

* Encoding partial genes, due to end of sequencing contigs. 
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Cluster number 1 is putatively involved in carotenoid biosynthesis. The genes encode 

putative phytoene synthase and putative squalene/phytoene dehydrogenase, enabling 

the production of lycopene [103]. The reaction catalyzed by the phytoen synthase is 

considered the first reaction unique to carotenoid biosynthesis [4].  

Two genes encoding putative cyanophycin synthetase was identified in gene cluster 

number 2. Cyanophycin (multi-L-arginyl-poly-L-aspartic acid), accumulates in the 

cytoplasma in cyanobacteria, and is thought to function as a nitrogen reserve [104].

Production of a water-soluble polymer, similar to cyanophycin in amino acid 

composition and chemical structure has been reported for non-cyanobacterial 

eubacteria [144]. These polymers are produced from strains harbouring genes with 

considerable homology to cphA, encoding cyanophycin synthetase. Cyanophycin is of 

potential industrial interest as a source of (poly) aspartic acid. 

A gene cluster (number 3) putatively involved in the biosynthesis of a siderophore was 

identified. The cluster contained genes involved in the transport of siderophore/iron 

(Fe3+) compounds and a putatively siderophore-related NRPS followed by a 

monooxygenase and a TonB-dependent siderophore receptor. Another NRPS (cluster 

number 4) putatively encode an amino acid adenylation domain, but a potential 

product is not known.  

Four clusters (number 5 to 8) harboured ORFs encoding non-ribosomal peptide 

synthases (NRPS) putatively related to biosynthesis of arthrofactin/ syringomycin. 

Syringopeptins and syringomycin are related phytotoxic lipodepsipeptides. Three of 

the ORFs only encode partial NRPS genes due to the gaps in the genome sequence. 

Two ORFs situated at the ends of their contigs are probably associated with each other. 

They both encode partial genes putatively related to arthrofactin/syringomycin 

synthethase C module. In the case of Pseudomonas syringae pv. syringae it is thought 

that the gene clusters for syringomycin and syringopeptin form genetic islands [117]. 

One might therefore speculate that the clusters identified in Collimonas CT might be 
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linked. The clusters are most likely involved in the production of a peptide related to 

syringomycin, syringopeptin and arthrofactin. 

Two putative aromatic polyketide biosynthesis gene clusters are encoded in the  

Collimonas CT genome (clusters number 9 and 10). The clusters could not be 

associated with the production of any known natural products. Bacterial aromatic 

polyketides are synthesized by PKS type II (iterative) polyketide synthases. A minimal 

PKS type II is encoded in cluster number 9, followed by genes encoding proteins for 

modification and post-PKS modification of the polyketide chain. However, both 

ketosynthases contain conserved domain of initiating KAS III. 

A minimal PKS type II was also identified for the second putative aromatic PKS 

cluster. A putative 4’-phosphopantetheinyltransferase is thought to modify and 

activate the acyl carrier proteins. Several genes are found within the minimal PKS, 

including genes involved in modification and post-PKS modification of the polyketide 

chain. Despite not being common in type II PKS systems, a putative thioesterase 

superfamily protein was identified. It has been suggested that they are involved in 

chain release, or function as an esterase for the hydrolysis of the ester intermediates 

[98].

Even though genes for several secondary metabolites with potential antimicrobial

activity could be found in the genome, only activity against M. luteus could be detected 

in the inhibition assays. This activity is thought to be associated with the production of 

violacein. Production of the other secondary metabolites might not be induced under 

the conditions tested, or their activity is not detected in the assays employed. However, 

the genome analysis demonstrates that Collimonas CT might have an industrial 

potential for production of diverse secondary metabolites.



CONCLUSION

4 CONCLUSIONS

The sea surface microlayer in the Trondheim fjord is rich in streptomycetes with 

antimicrobial activity. 16S rDNA analyses indicated that several of these isolates are 

closely related. Sequencing and phylogenetic analysis of PSK type I fragments 

suggested that horizontal gene transfer between closely related species might have 

taken place. Identification of unique PKS genes in assumed identical isolates (based on 

partial 16S rDNA sequences) implies that de-replication can not be performed based 

solely on the 16S rDNA sequences.  

Production of the antifungal polyene macrolide candicidin is widely distributed among 

Streptomyces bacteria isolated from/inhabiting different environmental niches in the 

Trondheim fjord. It was shown that the genes involved in the biosynthesis of 

candicidin are present on a linear plasmid in one of the strains. Reintroduction of the 

genes after curing the strain of the plasmid restored candicidin production, indicating 

that the plasmid might be responsible for the spreading of the candicidin biosynthetic 

gene cluster in the marine environment.

Two Streptomyces isolates displaying antibacterial activity against a vancomycin-

resistant Enterococcus sp. have been identified. LCMS-TOF-analysis of the bioactive 

fraction of the bacterial extracts revealed that the compound might be a novel 

antibacterial antibiotic. Construction of a genome cosmid library of this isolate shall 

allow identification, cloning and manipulation of the genes involved in the 

biosynthesis of this potentially novel compound.  

A new strain of the genus Collimonas was isolated from the sea surface microlayer. 

The strain produced the blue pigmented compound violacein. Genome scanning 

identified several genes for the production of secondary metabolites of potential 
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industrial interest, indicating that Gram-negative bacteria should not be excluded 

from isolate collections when screening for bioactive secondary metabolites.  

The results obtained in this study clearly suggest that bacteria inhabiting the sea 

surface layer along the coast of Trøndelag might be a considerable resource of new 

bioactive secondary metabolites. With only 1-5 % of the marine bacteria so far being 

cultivable and only 10 % of the chemical potential of the already cultivated bacteria 

revealed, it is clear that a large amount of natural products still remain to be 

discovered. Currently, the technical issues are limiting the efficient 

exploration/exploitation of the marine microbial resources. The main challenges will 

be defining new ways of scanning the environment and the genomes of the microbes 

living there, in addition to designing assays optimized for the detection of a wide range 

of biologically active compounds, and activation of the gene clusters involved in their 

production.  
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Abstract: The water surface microlayer is still poorly explored, although it has been shown to 
contain a high density of metabolically active bacteria, often called bacterioneuston. 
Actinomycetes from the surface microlayer in the Trondheim fjord, Norway, have been 
isolated and characterized. A total of 217 isolates from two separate samples morphologically 
resembling the genus Streptomyces have been further investigated in this study. Antimicrobial 
assays showed that about 80% of the isolates exhibited antagonistic activity against non-
filamentous fungus, Gram-negative, and Gram-positive bacteria. Based on the macroscopic 
analyses and inhibition patterns from the antimicrobial assays, the sub-grouping of isolates 
was performed. Partial 16S rDNAs from the candidates from each subgroup were sequenced 
and phylogenetic analysis performed. 7 isolates with identical 16S rDNA sequences were 
further studied for the presence of PKS type I genes. Sequencing and phylogenetic analysis of 
the PKS gene fragments revealed that horizontal gene transfer between closely related species 
might have taken place. Identification of unique PKS genes in these isolates implies that de-
replication can not be performed based solely on the 16S rDNA sequences. The results 
obtained in this study suggest that streptomycetes from the neuston population may be an 
interesting source for discovery of new antimicrobial agents. 

Keywords: Sea surface microlayer, streptomycetes, antimicrobial activity, phylogenetic 
analysis.
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1. Introduction

Search for new biologically active microbial secondary metabolites is important in order to meet the 
increasing demand for new antibiotics. Actinomycetes, especially those belonging to the genus 
Streptomyces, are known to produce a wide variety of biologically active compounds. Streptomyces
bacteria were reported to produce ~70% of the currently characterized actinomycete natural products 
[1]. However, most of the Streptomyces characterized up to date were isolated from the terrestrial 
environment, while those originating from marine sources still remain poorly explored. 

In an environment with high densities of metabolically active bacteria, competition is likely to be 
fierce, and properties such as production of antibiotics may give organisms an advantage. A number of 
antibiotic producers have been isolated from the marine environments [2, 3], and experimental data 
indicate that production of antibiotics could play an important role in the competitive relationship 
within the marine bacterial populations [4]. Antagonistic interactions among soil-living 
microorganisms are well documented, and are attributed to the production of antibiotics by certain 
bacteria and fungi in environments rich in organic material [5, 6]. Recently, the same trend has been 
discovered for marine microorganisms, which are abundant in mesotrophic and eutrophic waters or 
during phytoplankton blooms [7]. 

In a study of antagonistic interactions among marine pelagic bacteria it was found that more than 
half of the isolates expressed antagonistic activity, and this trait was more common among particle-
associated (66%) than free-living bacteria (40%) [8]. Particles often tend to accumulate at the sea 
surface, and the aquatic surface layer contains a series of sub layers [9]. Neuston is a collective name 
for the life forms in the surface layer of oceans and lakes, and can be divided into epineuston and 
hyponeuston. Epineuston organisms live on the top of the water surface, and are naturally dependent 
on the surface tension of the water. Hyponeuston organisms live in the top few centimetres of the 
water column. High densities of metabolically active bacteria, often called bacterioneuston, are found 
in the surface microlayer [10-13].  

Norwegian marine ecosystems have developed in a rather cold and severe climate, suggesting that 
the selective pressure on microorganisms comprising parts of such systems must have been quite 
unique (cold seawater environment). Because of this, it seems likely that these microorganisms have 
developed antibiotic biosynthesis pathways that differ from those utilized by terrestrial 
microorganisms. Even though the diversity of microorganisms in the marine environment is high, only 
a minor fraction (less than 1 %) can be cultivated in the laboratory, presumably because of failure to 
mimic the natural growth conditions [14]. In this work we isolated Streptomyces bacteria from the 
surface microlayer in the Trondheim fjord (Norway). The isolates were characterized using molecular 
taxonomy, assays for antimicrobial activity and presence of polyketide synthase genes. 

2. Results and Discussion 

2.1. A large proportion of cultivable neuston actinomycetes produce antimicrobial compounds 

Bacteria morphologically similar to streptomycetes were isolated from surface microlayer collected 
at Steinvikholmen (a small islet) and in the Åsen fjord in the Trondheim fjord, Norway. The water 
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temperatures during sampling were 4.3 and 5.8 °C, respectively, and the air temperature was 3 °C in 
both cases. Water was sampled from two sites, both to increase the number of isolates and to possibly 
detect any spatial variations in diversity. Collecting water samples close to the shore increases the risk 
of cultivating terrestrial bacteria that have been washed into the sea. Initial isolation of the bacteria 
was therefore performed on agar media with 50 % seawater to increase the chance of isolating bacteria 
adapted to the marine environment. 

Total numbers of bacteria isolated on Actinomycete isolation seawater agar with cycloheximide and 
nalidixic acid added to inhibit the growth of fungi and Gram-negative bacteria, were 2.5x103 and 
1.2x104 cells/ml seawater from the two sites, respectively. Presumed actinomycetes (based on colony 
morphology) accounted for 9.8x102 and 1.3x103 cells/ml, respectively. From these, a total of 217 
colonies from samples 1 and 2 represented by 134 and 83 isolates, respectively, were selected for 
further analyses. 

Previously, it has been reported that bacteria isolated from the surface microlayer at coastal stations 
in the north-western Mediterranean Sea, contained an average of Gram-positive cultivable bacteria 
ranging from 2.3x103 (France) to 3.0x104 (Spain) ml-1 [15], indicating that the cell number can vary 
considerably depending on the sampling site. Based on these reports, the total number of isolates in the 
samples collected in this study is assumed to reflect at least some of the diversity in the Trondheim 
fjord.

Based on the colony morphology (colour of substrate and aerial mycelia, pigment production), the 
isolates could be divided into 10 groups, shown in Table 1. 

Table 1. Characteristics of the different isolate groups, when grown on ½ISP2 medium 
with 50% seawater for up to 14 days. SM = substrate mycelium, AM = aerial mycelium  

Group Characteristics 

SM AM Other

1 Colourless White  

2 Colourless White Produces yellow metabolite diffusing in solid media 

3 Colourless Greenish-white  

4 Colourless Greenish-white Produces yellow metabolite diffusing in solid media 

5 Light brown Light grey  

6 Brown /greenish Grey  

7 Colourless /light brown Light purple  

8 Red None  

9 Red White  

10 Yellow None Flaky 

Cultivation of the isolates on agar medium with and without seawater, showed that they all grew 
better/faster on media with 50 % seawater added, as exemplified on Figure 1. Actinomycetes isolated 
from marine sediments have earlier been analyzed for their seawater requirement for growth [16]. The 
detected requirement has been interpreted as indication of marine origin or marine adaptation. None of 
the isolates in this study demonstrated inhibited growth on salt-containing media, suggesting that all 
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isolates are marine bacteria or terrestrial bacteria adapted to the marine environment, and presumably 
occur naturally in the surface microlayer.  

Figure 1. Growth of isolated actinomycetes after 7 days of incubation at 30 ˚C on ½ ISP2 
agar with (A) and without (B) 50% seawater. 

                             A                                     B 

In order to explore the potential of the isolates to produce antimicrobial compounds, extracts from 
the colonies grown on three different solid agar media were tested in microbial inhibition assays. After 
an appropriate incubation time (depending on the growth rate), the plates with cells were dried, and 
extracted with DMSO. The extracts were tested in agar diffusion assays for antimicrobial activity. The 
initial assays were performed with Micrococcus luteus ATCC 9341, Candida albicans ATCC 10231 
and Escherichia coli K12 as indicator organisms. The antimicrobial activity, presented in Table 2, is 
the total combined activity displayed by the isolates when grown on any of the 3 agar media. As 
expected, a high share of the isolates exhibited antimicrobial activity. In particular, 79% of the sample 
1 isolates, and 85% of the sample 2 isolates showed antagonistic activity against at least one of the 
indicator organisms. Several of the isolates showing antimicrobial activity were active against more 
than one indicator organism, as shown in Table 2. This was particularly evident for the isolates with 
antibacterial activity, where around 80% of the isolates inhibiting Gram-negative bacteria also 
inhibited Gram-positive bacteria, and vice versa. Table 2 shows how the different inhibition patterns 
are distributed among the isolates from different morphological groups. The fact that some isolates 
displayed activity against more than one indicator organism may indicate production of several 
antimicrobial compounds and/or production of compounds with multiple microbial targets. 

The percentage of neuston actinomycete isolates displaying antimicrobial activity was found to be 
considerably higher than those reported previously. In the earlier studies, about 50% of isolated marine 
pelagic bacteria exhibited antagonistic properties against other pelagic bacteria [8], and only 44 % of 
streptomycetes from the marine sediments have shown antibacterial activity [17]. In the latter study, 
17% of the isolates displayed antifungal activity. A noticeably lower degree of antifungal compared to 
antibacterial activity among Streptomyces species isolated from marine sediments has also been 
reported by [18]. In our study, about 40% of the assumed (based on morphology and inhibition 
patterns) non-identical isolates from both sample 1 and 2 showed antifungal activities.  
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Table 2. Total number of streptomycete-like isolates from bacterioneuston, sample 1 and 
2, grouped and sub-grouped according to antimicrobial activity and colony morphology. 
DMSO-extracts from all strains were tested for activity against C. albicans (C), M. luteus
(M) and E. coli (E). Samples 1 and 2 contain 134 and 83 isolates, respectively S1 and S2 
indicate sample 1 and sample 2, and G1-G10 indicate morphology groups 1- 10, (see Table 
1). The percentages (S1 and S2 combined) of antifungal, antibacterial and no activity in 
each of the groups, G1-G10, are also given. 

Inhibition

Nr C M E S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2  Tota l

1 x x x 6 7 0 1 5 0 2 0 1 0 0 0 0 0 1 4 0 2 0 0 29
2 x x 6 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8
3 x x 9 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 14
4 x 28 14 4 0 0 2 0 0 4 3 3 3 0 0 0 1 0 0 0 0 62
5 x x 4 7 1 3 2 2 7 2 1 0 0 1 0 0 2 8 3 1 1 0 45
6 x 5 2 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 1 0 11
7 x 2 0 0 0 0 0 4 0 1 1 0 0 0 0 0 0 0 0 0 0 8
8 12 7 2 0 1 0 0 0 5 4 7 2 0 0 0 0 0 0 0 0 40

72 42 7 4 8 5 13 2 13 8 11 6 2 0 3 13 3 3 2 0 217

G8 G9 G10
Group (G1-10) and sample number (S1, S2)

G1 G2 G3 G4 G5 G6 G7

066
46

45 54 0
45 77 100 24 12 100 94

13 43

0
100 100

17 18 8 0 43 53 0

2
Sum, no of isolates
Sum, no of isolates 21 17 2 16114 11 13
Antifungal (%)
Antibacterial (%)
No activity (%)

615

00

38 3341

The methods chosen for surface sampling and cultivation may facilitate isolation of some types of 
bacteria over others. This will affect both the quantity and the diversity of the samples. Isolates from 
group G1 were frequently found in both samples. This may be due both to the fact that the selected 
growth conditions were best suited for the G1 isolates, and that they were in fact abundant in the 
surface microlayer. The diversities of streptomycete-like bacteria within the samples 1 and 2, at least 
as judged from colony morphology and inhibition patterns, were quite similar. This is probably not 
surprising, considering that the currents in the fjord continuously mix the water, thereby homogenizing 
the content of bacterioneuston to some extent.  

Groups G5 and G6 had the highest share of isolates without any detectable antimicrobial activity 
under the conditions used. About half of these isolates displayed neither antifungal nor antibacterial 
activity. In both groups, one third of the isolates showed antifungal activity. Similarity in inhibition 
patterns was also noticeable between the G8 and G9 isolates. In these two groups, all isolates exhibited 
antimicrobial activity, whereof two thirds showed activity against both M. luteus and E. coli, and the 
rest also had activity against C. albicans. In addition G3 and G4 isolates showed a high degree of 
antibacterial activity, 77 % and 100 %, respectively. In total these results display a weak connection 
between morphology and antimicrobial activity to some extent.  

Analysis of the 16S rDNA from the isolated bacteria reveals discrepancy between phenotypic grouping 
and the molecular taxonomy. 

In order to reveal the diversity among isolated actinomycetes, a limited analysis of 1351 nt 16S 
rDNA gene fragments was performed. In total, 16S rDNA fragments from 46 isolates representing 
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different groups distinguishable by morphology and inhibition patterns were amplified and sequenced. 
Alignment of the sequences showed a relatively high degree of homology within the candidate 
collection, suggesting replication of some isolates. However, several of the isolates representing 
potential replicates based on the 16S rDNA sequence, displayed unique inhibition patterns, indicating 
that they are not identical.

BLAST searches for the obtained sequences showed that the 16S rDNAs from all except 4 isolates 
had at least 99 % identity to sequences from Streptomyces spp isolated from marine sediments and 
sponges [19-22]. A widespread distribution of these bacteria in marine environments is consistent with 
the fact that they thrive on the salt-containing media.  

A phylogenetic analysis of the partial 16S rDNA sequences, displayed in Figure 2, was performed 
to reveal the taxonomic relationship between the different subgroups. In cases where several isolates 
had identical sequences, only one sequence was included in the analysis, without regard to differences 
in the morphology and inhibition patterns. As noted above, at least 10 morphologically different 
groups could be distinguished among the isolates. No clustering of these groups was observed in the 
phylogenetic analysis. Only minor grouping of isolates sharing the same inhibition patterns could be 
found. However, some clustering of isolates displaying either antifungal or antibacterial activity could 
be identified. In several cases, the “closest match” strains were reported to have antimicrobial activity 
that may be interesting from a commercial point of view.   

Sequence for the isolate MP7A10 represents a group of six isolates, whereof five appear to have the 
same morphology (group G6). These isolates display different inhibition patterns, strongly suggesting 
that 16S rDNA gene sequences alone can not be used for dereplication of isolates.

Sequence for the isolate MP6A8 represents ten isolates with varying morphology (group G1-G5 and 
G10), of which eight were shown to have antibacterial activity. Including the remaining isolates in 
branch 1, a total of 17 out of 23 isolates in this branch displayed antibacterial activity, of which 15 
were active against Gram–positive, and 2 against Gram-negative bacteria. 

Three out of four isolates in branch 3 displayed antibacterial activity. The deviating isolate did not 
show any antimicrobial activity under the conditions tested. Sequence for isolate MP7E8 represents an 
additional isolate with the same inhibition pattern. Branch 4 and 5 consisted of isolates displaying both 
varying morphology and inhibition patterns. Isolate MP5D9 represents a group of 13 isolates whereof 
8 displayed antifungal activity. There was a considerable variation in morphology among these 
isolates.

Several of the isolates with antibacterial activity (MP8F7, MP7E10, MP7B7, MP7E8 and MP9C8) 
showed 99 and 100% identity to Streptomyces species isolated from coastal sediments [19], but no 
antimicrobial activity has been reported for these species.  

The sequence from isolate MP5F10 having antifungal activity showed 99% identity to Streptomyces
olivoviridis and Streptomyces sp. N0028. The cultural appearance of S. olivoviridis agrees with that of 
MP5F10. This strain has been shown to produce a new antitumor antibiotic, thioviridamide, 
stimulating apoptosis signalling [23].  

16S rDNA from the isolate MP9D2, which inhibits growth of Gram-positive bacteria, was 100% 
identical to that of S. drozdowiczii and Streptomyces sp. WL-2 (1351 bases). S. drozdowiczii NRRL B-
24297 was reported to have cellulolytic activity [24], while Streptomyces sp. WL-2 produces xylanase 
[25].
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Figure 2. Phylogenetic tree constructed for partial 16S rDNA sequences (1351 bp) of 46 
streptomycetes isolated from the surface microlayer in the Trondheim fjord, Norway. The 
tree also contains some of the closest matches from BLAST searches. The 16S rDNA 
sequence from Micromonospora sp DSM 44397 is included to root the tree. Numbers in 
brackets (x-y-z) refers to x: morphology group, y: inhibition pattern (see table 2), and z: 
sample number. Arrows indicate the different branches of the tree. Bold font indicates 
sequences representing several isolates. Strains of marine origin are underlined. 
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  16S rDNA from the isolate MP8F10 was 99% identical to S. zaomyceticus XSD-118. Different S.
zaomyceticus strains have been shown to produce foroxymithine, narbomycin, picromycin and 
methymycin. Foroxymithine is an inhibitor of angiotensin-converting enzyme produced by 
actinomycetes, and may be of interest for medical use [26]. 16S rDNA from the isolate MP5H12 
shows 99 % similarity to S. microflavus 173958.

Branch 1 

Branch 2 

Branch 3 

Branch 4

Branch 5 
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2.3. Analysis of PKS gene fragments from selected streptomycetes isolates suggests horizontal gene 
transfer between closely related species 

Polyketide synthases (PKSs) and/or non-ribosomal peptide synthetases (NRPSs) or a combination 
of these, are involved in production of many antimicrobial secondary metabolites in Streptomycetes
and other bacteria, fungi, and plants. Screening for and analysis of PKS-I, PKS-II and NRPS genes in 
marine metagenomic libraries as well as soil samples have earlier been reported [27-30]. These 
analyses have been performed both to elucidate diversity and to pre-screen soil samples for identifying 
the ones most likely to contain producers of novel bioactive molecules.  

  Based solely on the 16S rDNA sequence analysis of our isolates, several of them seemed to be 
very closely related (i.e. had 100 % identical 16S rDNA fragments). At the same time, they showed 
different inhibition patterns in addition to displaying different morphology (Table 3). This fact 
prompted us to investigate the presence of PKS type I genes in a selected group of such isolates, which 
were chosen without considering morphology. In the phylogenetic analysis of 16S rDNA sequences 
(Figure 2), these isolates are represented by the isolate MP6A8 in branch 1.

Table 3. Names and inhibition patterns of isolates selected for PKS analysis. Activity is 
shown against C. albicans (C), M. luteus (M) and E. coli (E). Morphology group and 
sample number are indicated. 

Isolate
Morphology  

group

Sample

number

Inhibition

C M E 

MP6A2 G4 S1  x x 

MP6A8 G3 S1 x x x 

MP6C6 G4 S1  x  

MP6C10 G1 S1 x x  

MP6D1 G2 S1 x   

MP8E7 G10 S1   x 

MP9E12 G1 S2    

Bacterial type I (modular) PKS gene fragments were amplified with the degenerate primers KSMA-
F and KSMB-R [31], which can be used to amplify -ketoacyl synthase (KS) domain encoding 
fragments of ca 700 bp. PCR with these primers resulted in amplification of fragments of expected size 
from all isolates, indicating their potential for production of polyketide secondary metabolites. Since 
PKS type I genes encode modular enzymes, and actinomycete strains usually contain more than one 
PKS gene cluster [28], it was expected that PCR products obtained with the KS-specific primers would 
represent mixtures of the KS-coding sequences. Therefore, sequencing of these gene fragments would 
be required for a better understanding of the diversity within the selected group of isolates and their 
dereplication.

PKS type I PCR fragments were cloned in Escherichia coli vector, and for each isolate 12 clones 
were sequenced. A total of 13 different sequences were obtained from 7 selected isolates. Six different 
KS-encoding sequences were amplified from the total DNA of the isolate MP8E7. BLAST search of 
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the corresponding amino acid sequences revealed that fragments PKSI-1 and PKSI-6 from this isolate 
encode 95% identical KS domains showing 83% identity to the KS domain of MerC, a PKS involved 
in biosynthesis of the neuroprotectant meridamycin in S. violaceusniger [32]. The amino acid 
sequences for PKSI-2 and -3 fragments displayed 72% and 71% identity, respectively, to the PKS 
from Saccharopolyspora erythraea (unknown product) [33] and PteA2 PKS responsible for 
biosynthesis of antifungal polyene macrolide filipin in S. avermitilis [34]. Amino acid sequences of the 
PKSI-1, 2, 3 and -6 products were 68% to 95% identical, and might have been amplified from the 
same PKS gene cluster. The PKSI-4 and -5 fragments amplified from MP8E7 were quite different 
from each other and from the rest of the PKS sequences from this isolate. The amino acid sequence for 
PKSI-4 displayed 72% identity to the PKS from Amycolatopsis orientalis involved in the biosynthesis 
of the antibacterial compound ECO-0501 of a new chemical class [35]. The amino acid sequence for 
PKSI-5 displayed 96% identity to the PKS part of the NRPS-PKS fusion protein from Streptomyces
griseus subsp. griseus NBRC 13350 (NC_010572.1) 

The isolates MP6A2 and MP6D1 yielded 2 PKS sequences each. Both on the nucleotide and amino 
acid levels, MP6A2 PKSI-1 and MP6D1 PKSI-1 sequences were 100% identical to each other, and 
shared 83% identity with S. coelicolor cryptic PKS type I [36] The identity of the sequences suggests 
recent horizontal gene transfer between the two isolates, which has involved a PKS gene cluster. Two 
other PKS sequences amplified from these isolates, MP6A2 PKSI-2 and MP6D1 PKSI-2, encoded KS 
domains showing 94% and 96% identity, respectively, to the PKS and NRPS-PKS proteins encoded by 
two different gene clusters in Streptomyces griseus subsp. griseus NBRC 13350 [37]. Interestingly, the 
MPS06-A2 PKSI-2 sequence displayed 94% identity to the MP8E7 PKSI-5 sequence, also suggesting 
a relatively recent transfer of the corresponding gene between MP6A2 and MP8E7 isolates.

Isolates MP6A8, MP6C6, MP6C10 and MP9E12 each yielded one distinct KS domain encoding 
sequence. MP6A8 and MP6C6 PKSI sequences were 98% identical, suggesting recent horizontal gene 
transfer, and displayed 83% identity to the PKS type I from the cryptic gene cluster from S. coelicolor.
The latter gene was different from the one showing closest match to the MP6A2/D1 PKS-1 sequences 
(see above), although apparently belonged to the same PKS cluster.  

Both MP6C10 and MP9E12 PKS sequences were closely related (96% and 98% identity, 
respectively), to the NRPS-PKS fusion protein from Streptomyces griseus subsp. griseus NBRC 13350 
[37]. They were also very similar to the PKS sequences MP6A2 PKSI-2 and MP8E7 PKSI-5, showing 
93% and 96% identity, respectively.

In order to visualize taxonomic relationship between the amino acid sequences encoded by the 
PCR-amplified fragments, a phylogenetic tree was constructed, which also included sequences from 
the best matches according to the BLAST search. The architecture of the tree, presented in Figure 3, 
clearly shows some discrepancy between the BLAST search and the phylogenetic analysis. For 
example, the PKSI-1,-2,-3 and -6 sequences from the isolate MP8E7 do not cluster with the 
corresponding best matches from the BLAST search, and form a separate branch on the tree. This 
suggests that the PKS gene cluster represented by these sequences might have evolved separately, and 
potentially can encode a novel polyketide metabolite. 
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Figure 3. Phylogenetic relationship between PKS type I amino acid sequences from 
streptomycete isolates with identical partial 16S rDNA sequences. Closest matches from 
the BLAST searches are also included. Putative distinct KS domain types are indicated 
with letters (A, B, C etc). Numbers at tree nodes represent the number of times the 
topology to the right of the node was recovered in 1000 bootstrap re-samplings. 
Accession numbers for the sequences are given in parentheses. Scale bar represents the 
number of changes per amino acid position. 
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 Both BLAST and phylogenetic analyses suggest that we have been able to identify 6 distinct types 
of KS domains in 7 closely related (according to the 16S rDNA sequences) isolates. This does not 
necessarily mean that each type represents a distinct PKS gene cluster. In phylogenetic analysis, the 
KS domains are known to cluster not only according to their evolutionary relatedness, but also 
according to their substrate specificity [38]. Interestingly, one of the KS types belonging to the NRPS-
PKS fusion protein (F) seems to be shared by at least 4 isolates and its coding DNA might have been 
subject to a relatively recent horizontal gene transfer. There is, however, no correlation between the 
presence of this KS type and antimicrobial activity profiles of the four isolates (Table 3). The latter 
suggests that the corresponding PKS cluster might be either not expressed in the conditions tested, or 
governs biosynthesis of a compound which is not detectable by the assays employed. The same might 

A

B

C
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be true for the KS type C represented by the sequences MP6A2 PKSI-1 and MP6D1 PKSI-1, since the 
corresponding isolates have different inhibition patterns (see Table 3).
 The analyses of the KS domains from selected isolates with identical 16S rDNA sequences do not 
enable solid conclusions about the nature of the compounds that may potentially be produced. 
However, the fact that unique KS types, such as B, D and E, seem to be isolate-specific, further 
supports the notion that streptomycete isolates can not be distinguished on the basis of 16S rDNA 
sequences alone. A more complex approach that includes PCR-based PKS and NRPS genome 
“scanning”, inoculation in a wide range of growth/production media, metabolite profiling and diverse 
biological assays with fractionated extracts is required to reveal the true potential for production of 
medically useful secondary metabolites.  

3. Experimental Section 

3.1. Sampling and isolation of Streptomycete bacteria from sea surface microlayer (Sampling sites and 
sample collection) 

Samples were collected on the 22nd of March 2004 at two sites (63°32,511 N, 010°48,797 E and 
63º56,009 N, 010º91,020 E) in the Trondheim fjord, Norway. Steinvikholmen (sample 1) is a small 
islet situated approximately 200 m from the mainland, whereas the other sampling point was close to 
shore. The surface microlayer was collected using Teflon plates as earlier described [39]. The plates 
were immersed in water, gently lifted through the water surface, and the bacterioneuston scraped off 
using a rubber edge. Both samples were collected early in the morning during low tide, and 2 to 3 
meters from the shoreline.  
Samples were plated on selective agar plates (2% w/v), within 24 hours after collection, and was 
incubated at 20 ºC. Three different media was used; ½ ISP2; Malt extract (5 g), yeast extract (2 g), 
glucose (2 g), natural sea water (0.5 L) and distilled water (0.5 L), Kusters streptomycete isolation 
medium (modified); Glycerol (10 g), Casein (0.3 g), KNO3 (2 g), FeSO4*7 H2O (0.25 mg), H2SO4 (0.5 
mg), natural sea water (0.5 L) and distilled water (0.5 L) and Actinomycete isolation medium without 
MgSO4 [40]. The pH of the isolation media was adjusted to pH 8.2. All media contained 50% sea 
water and was supplied with Cycloheximide (50 µl/ml) and Nalidixic acid (30 µl/ml). Selected isolates 
were transferred to ½ ISP2 agar to ensure pure colonies, and incubated for 16 days before storing as 
glycerol stock in micro well plates at -80 C.

3.2. Extraction and antimicrobial assay 

The selected strains were transferred to microwell filter plates (Nunc Silent screen nr 256073, 
Loprodyne 3.0 m) with 80 µl of three different 1% agarose media (production media) to facilitate 
production of secondary metabolites. The production media (PM) were: PM2; Mannitol (20 g), soya 
bean flour (20 g), Clerol (antifoam, 0.5 g), dry yeast (3.4 g), agarose (10.0 g), tap water (1 L), PM3; 
Oatmeal (20 g), glycerol (2.5 g), FeSO4·7H2O (0.1 mg), MnCl2·4H2O (0.1 mg), ZnSO4·7H2O (0.01 
mg), H2SO4 (0.1 mg), agarose (10 g), tap water (1 L), PM4; glucose (0.5 g), glycerol (2.5 g), oatmeal 
(5.0 g), soybean meal (5.0 g), yeast extract (1 g), casaminoacids (2.0 g), CaCO3 (1.0 g), Clerol (0.2 g), 
agarose (10 g) and tap water (1 L). 
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After an appropriate incubation time, 3 mm glass beads were added to the plates, and the strains 
were dried in the dark over night before extraction with 150 µl DMSO. The plates were shaken for 2 h 
at 1000 rpm before vacuum filtration (Event 4160, Eppendorf). These extracts were stored at -20 °C, 
and tested in agar diffusion assays for content of antagonistic compounds active against Micrococcus
luteus (ATCC 9341), Candida albicans (ATCC 10231) and Escherichia coli K12 . 
A variant of Burkholder agar diffusion assay [41] was used when screening for antimicrobial activity. 
Indicator agarose was prepared by mixing 1% agarose medium with 0.5-1% v/v indicator organism 
culture (OD600 = 3,6 M. luteus, 5,0 C. albicans, 3,0 E. coli.), and poured into Petri dishes. LB agarose medium 
was used for E. coli, M19 for C. albicans and M1 for M. luteus. The media contained: M1; peptone 
(6.0 g), trypton (4.0 g), yeast extract (3.0 g), beef extract (1.5 g), dextrose (1.0 g), agarose (10 g) and 
tap water (1 L), pH 6,6. M19; beef extract (2.4 g), yeast extract (4.7 g), peptone (9.4 g), dextrose (10.0 
g), NaCl (10.0 g), agarose (10 g) and tap water (1 L), pH 6,1.

DMSO-extracts were stamped manually from microwell plates onto the indicator agarose with the 
selected indicator organism. Approximately 2 µl of each extract was applied onto plates with 1.3 cm 
thick indicator agarose. The plates were preincubated for 3 to 4h at 4 °C, before incubating at 30 ºC 
over night. Extracts were defined as inhibiting if inhibition zones were  2mm larger than the diameter 
of the applied sample.  

3.3 Cloning, sequencing and phylogenetic analysis 

Based on morphology and inhibition patterns from the antimicrobial assays, subgrouping was 
performed, and candidates from each subgroup sequenced. PCR was performed directly on colonies or 
with isolated total-DNA as template. Total-DNA of the bacteria was isolated using DNeasy Blood & 
Tissue Kit (Qiagen) according to manufacturer’s protocol. 

The primers BP_F27: 5’-AGA GTT TGA TCM TGG CTC AG-3’ and BP_R1492: 5’-TAC GGY 
TAC CTT GTT ACG ACT T-3’ [42], were used to amplify 1,5 kb of the 16S rRNA gene. The PCR 
was performed using initial denaturation at 94 °C for 4 minutes, followed by 35 cycles of 94 °C for 45 
seconds, 55 °C for 20 seconds and 66 °C for 2 minutes. A final extension was performed at 70 °C for 5 
minutes. PCR products were purified directly or after excision from agarose gel, using QIAquick Spin 
Kits according to the manufacturer’s instructions (Qiagen). Purified PCR-products were transformed 
into E. coli EZ competent cells after ligation into the pDrive cloning vector using the QIAGEN PCR-
cloning Kit (Qiagen). 

The 16S rRNA fragments were sequenced either from the pDrive-clones or directly after PCR. The 
primer M13 reverse: 5'-AACAGCTATGACCATG-3' described in the Qiagen PCR Cloning Handbook 
(04/2001) was used for the pDrive-clones. Sequencing directly on the PCR products were performed 
with the same primers as for the PCR. The sequencing was performed using BigDye® Terminator v3.1 
Cycle Sequencing Kit (Applied Biosystems). The sequencing program consisted of a initial step at 96 
°C for 3 minutes, and 25 cycles of 96 °C for 30 seconds, 50 °C for 20 seconds and 60 °C for 4 minutes.  

The phylogenetic analyses of the cloned sequences were performed using MEGA 4. A phylogenetic
tree was constructed using neighbour-joining with 500 bootstrap replicates. Comparisons of the 
sequences with other available 16S rDNA sequences were done by BLAST searches to determine 
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strain homology. The 16S rDNA sequence from Micromonospora sp DSM 44397 was included to root 
the tree.

3.4 PCR amplification of PKS and NRPS-genes 

Bacterial modular type I PKS genes were amplified with the degenerate primers KSMA-F (5’-TS 
GCS ATG GAC CCS CAG CAG-3’) and KSMB-R (5’-CC SGT SCC GTG SGC CTC SAC-3’) [31]. 
PCR with these primers, amplifying the -ketoacyl synthase (KS) domain (~700 bp), was performed 
using initial denaturation at 96 ˚C for 5 min, 35 cycles of 95 ºC for 1 min, 60 ºC for 1 min and 72ºC for 
2 min. Final extension was performed at 72 ºC for 5 min.  

For each reaction 200 µM dNTPs 20-40 ng total-DNA and 200 nM of each primer were used. 
Cloning of the fragments was performed as described for 16S rDNA Sequencing was performed by 
Eurofins MWG Operon. 

3.5 Nucleotide sequence accession numbers 

DNA sequences reported in this study have been deposited to GenBank under accession numbers 
FJ190540-FJ190569
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Abstract

A new strain belonging to the genus Collimonas was isolated from the sea surface 

microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, 

produced a blue pigment with antibacterial activity identified as violacein. Draft genome 

sequencing for this bacterium followed by genome mining allowed identification of several 

gene clusters potentially governing biosynthesis of secondary metabolites, including the 

complete gene cluster for the biosynthesis of violacein (vio). These findings prompt further 

studies on Collimonas CT, which may reveal its full potential as a producer of biologically 

active secondary metabolites.  

Introduction 

The genus Collimonas was described for the first time in 2004 [14]. These bacteria were 

isolated from slightly acidic dune soils in the Netherlands, and are strictly aerobic, Gram-

negative rods. Collimonas fungivorans gen. nov., sp. nov., are chitinolytic and able to grow 

on living hyphae of several soil fungi. Based on 16S rDNA sequences, the most closely 

related genera are Herbaspirillum and Janthinobacterium.

Violacein (3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-

dihydro-2H-indol-2-one) is a blue-black indole-derived pigment described already in 1882. 

The violacein carbon skeleton is produced from two molecules of L-tryptophan, and 

molecular oxygen is required for production of the pigment [16, 38, 15]. The role of 
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violacein production in the bacteria is not understood, but it has been suggested that it gives 

a survival advantage in the competition with other microorganisms in the environment [34].

Other suggestions include involvement in protection against visible radiation [4] and 

regulation of tryptophan production, which is toxic for bacteria at high concentrations [17].

Violacein is produced by several bacterial species, including the Gram-negative species 

Chromobacterium violaceum, Janthinobacterium lividum, Pseudoalteromonas

luteoviolacea, Ps. sp 520P1 and Ps. sp. 710P1 [45, 42, 56]. These strains have been isolated 

from water and soil in tropical and subtropical regions, rivers, lakes and springs and from 

seawater at a depth of 320 m outside Japan. 

The gene cluster for violacein biosynthesis has been sequenced from several of the 

violacein producers, including Ch. violaceum and environmental DNA [6, 8]. The 8 kb and 

6.7 kb violacein clusters have been reported to contain four genes (vioA-D) responsible for 

the production of violacein and deoxyviolacein [15] (Fig. 1). A fifth gene (vioE) has later 

been described as being essential for violacein biosynthesis [47].

Violacein has shown anti-protozoan [33, 30], anticancer [20, 26], anti-viral [1],

antibacterial (both G+ and G-) [31, 39, 47] and antioxidant [28] activities. The antibacterial 

activity includes inhibition of Staphylococcus aureus, Neisseria meningitidis, 

Streptococcus spp., Bacillus spp., Mycobacterium and Pseudomonas, among others.  

Based on these properties, violacein would seem to be commercially interesting for 

therapeutic purposes and it has in fact been proposed for dermatological purposes [4].

It has been suggested that violacein should be considered an in vitro genotoxic compound 

to mammalian cells, (due to its toxicity in VERO and FRhK-4cells), but further 
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investigations are needed before drawing any conclusions on violacein’s future 

pharmaceutical potential [2].

Up until now Ch. violaceum, which is the best studied violacein producer, has not been 

widely utilized for commercial purposes. One reason might be that it can act as an 

opportunistic pathogen in humans [46]. New producers of violacein would therefore be 

interesting to isolate. 

In this study, a new strain of the genus Collimonas has been isolated, and examined for its 

antimicrobial potential. The production of a characteristic blue pigment and the 

demonstrated antibacterial activity seems to be ascribed to the violacein cluster. Other 

genes for the production of secondary metabolites have also been identified in the 

Collimonas CT genome. These findings suggest that this bacterium might have a potential 

as a producer of biologically active compounds of interest to the biotechnological industry, 

and prompt further studies.  

Materials and methods 

Sampling sites and sample collection 

The Collimonas CT strains were isolated from the sea surface microlayer at two locations 

along the coast of Trøndelag, Norway. Water samples were collected on 18th of June 2004 

in Snillfjord (63º 23,755 N, 009º 29,327) and 1th of July 2004 at Sula (63º 50,595 N, 008º 

27,552 E). The water temperatures were 12.4 and 13.8 ºC respectively, and the salinity 

corresponded to 18.5 and 33.1 practical salinity units (psu). The surface microlayer was 
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collected using teflon plates and the bacteria isolated as earlier described [22]. Table 1 lists 

the microbial strains and plasmids used in this study. 

Both samples were collected around high tide and 2 to 3 meters from the shoreline.  

The Collimonas CT strains were initially isolated from Kusters streptomycete isolation agar 

(2 % w/v) (modified); Glycerol (10 g), Casein (0.3 g), KNO3 (2 g), FeSO4 · 7 H2O (0.25 

mg), H2SO4 (0.5 mg), natural sea water (0.5 L) and distilled water (0.5 L), pH 8.2, supplied 

with Cycloheximide (50 µl/ml) and Nalidixic acid (30 µl/ml).  

Preparation of bacterial inoculums 

A mixture of 1-4 colonies with 5 g glass beads and 2.5 ml 0.9 % NaCl with 0.1 % Tween 

20, was whirlmixed for one minute. Whirlmixing was repeated after 15 min. The cell-

material was centrifuged and washed twice with sterile water, before resuspension in 1.5 ml 

sterile water.  

Culture conditions for production and extraction of secondary metabolites 

The isolates were cultivated on different 1% agarose (production) media to facilitate 

production of secondary metabolites. Initial cultivation, extraction and antimicrobial assays 

were performed as described earlier [22]. A fourth production medium (PM1) was 

included, containing: Malt extract (5 g), yeast extract (2 g), glucose (2 g), agarose (10 g) 

and tap water (1 L), pH 8.2. PM1 is identical to ½ ISP2 medium used in the initial 

cultivation of the bacteria, except for the use of tap water, and exchanging the agar (2 %) 

with agarose (1 %). Cultivation on production media with 50 % seawater was also 
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performed. To identify the optimal incubation time for production of bioactive compounds, 

different incubation time points (1 to 9 days) and two incubation temperatures (20 and 30 

C) were tested for each medium. Extraction was performed with both ethyl acetate and 

methanol in parallel with DMSO.  

Upscaled tests, with reduced number of production parameters, were performed by 

cultivation in flat 6-well Tissue Culture Plates (Sarstedt nr 83.1839.500) with 1.5 ml 

agarose media in each well, inoculated with 25 µl inoculum. Extraction was performed with 

2.5 ml DMSO. Dried cultures on agarose media was crushed, and incubated with DMSO 

and glass beads on a rotator for 2 hours in the dark.   

Cell extracts for liquid assays were prepared from supernatant and pellet of liquid cultures. 

Initial tests based on results from cultivation on solid media and agar diffusion assays, were 

performed to determine the optimal incubation time and production medium. Precultures of 

Collimonas CT were prepared by picking colonies from plates, and growing them in PM2 

(production medium 2) for 16 hours at 20 ºC. PM2 contained; Mannitol (20 g), soybean 

flour (20 g), Clerol (antifoam, 0.5 g), dry yeast (3.4 g), and tap water (1 L). Fresh medium 

(30 ml) was inoculated 3 %, and incubated for three days at 20 ºC. The bacteria were 

pelleted by centrifugation (10 000 x g, 10 minutes). The pellet and the supernatant were 

freeze dried separately. Freeze dried material was extracted with equal volumes of DMSO. 

Antimicrobial assay 

The bacterial extracts were stored at -20 °C, and tested in agar diffusion (a.d.) and liquid 

assays (l.a.) for antagonistic activity against Micrococcus luteus (ATCC 9341), Candida 
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albicans (ATCC 10231) and Escherichia coli K12 (a.d. only), and Enterococcus faecium

CCUG 37832 and CTC 492 (l.a. only). Agar diffusion- and liquid assays were performed as 

described earlier [22, 25]. Only DMSO extracts from bacteria grown on PM2 and PM3 

were tested in the liquid assays.

Fractionation and LC-MS-TOF analysis of bacterial extracts 

Samples of selected DMSO-extracts were fractionated using an Agilent 1100 series HPLC 

system equipped with a diode array detector (DAD) and a fraction collector. Each sample 

was fractionated using 2 different types of LC-columns: (1) Agilent ZORBAX Eclipse 

XDB-C18, 5 um, 4.6 x 150 mm and (2) Agilent SB-CN 3.5 um, 4.6 x 75 mm. For both 

types of columns, a flow of 1 ml/min of a mixture of 0.005 % formic acid in deionized 

water and acetonitrile was used as mobile phase. In both cases the concentration of 

acetonitrile was kept at 25 % the first minute, then increased linearly from 25 to 95 % 

during the next 11 minutes and kept at a concentration of 95 % for the rest of the run. The 

fraction collector was used to collect 12 fractions of the eluent from 1 minute until 13 

minutes from injection. The samples were first fractionated using LC-column (1). The 

fractions displaying antibacterial activity (see below) were further fractionated in parallel 

using conditions (1) and (2). 

The samples from LC-fractionation were dried in a vacuum centrifuge (Savant Speed-Vac), 

dissolved in DMSO and the bioactivity of the fractions determined in an agar diffusion 

assay using M. luteus as indicator organism [22]. Selected samples from the second LC-

fractionation that showed bioactivity were further analysed using an Agilent 1100 series 
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HPLC system connected to a diode array detector (DAD) and a time of flight (TOF) mass 

spectrometer. The column and buffer conditions used were as described for condition (2) 

above. Electrospray ionization was performed in negative mode. The DAD plots were used 

to identify the approximate retention times of the bioactive compounds in the fractionation 

runs and in the LC-MS-TOF analysis. Molecular masses corresponding to significant peaks 

identified in bioactive samples from parallel fractionations (C18 and CN columns) were 

compared and molecular masses common to fractions from the C18 and CN columns were 

identified. These molecular masses (10 ppm window) were submitted to the online version 

of the Dictionary of Natural Products (http://dnp.chemnetbase.com/) in order to search for 

previously characterized compounds with bioactivity. 

Bacterial DMSO extracts were purified on a C18 solid-phase extraction column, 55-105 µm 

(Waters nr. WAT036945), and eluted with methanol. The methanol solutions of the 

unknown compound were analyzed on an Agilent 1100 HPLC system equipped with a 

diode array detector (DAD) and an Agilent time-of-flight (TOF) mass spectrometer with an 

electrospray ion source run in negative mode. For the LC separation, a Bonus-RP column 

(2.1 50 mm, Agilent Technologies, USA) was used. The mobile phase consisted of 10 mM 

ammonium acetate pH 4.0 and a linear gradient of acetonitrile from 25 to 90 %.

Cloning, sequencing and phylogenetic analysis

Total-DNA of the bacteria was isolated using DNeasy Blood & Tissue Kit (Qiagen) 

according to manufacturer’s protocol. PCR with bacteria specific primers, BP_F27: 5’-
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AGA GTT TGA TCM TGG CTC AG-3’ and BP_R1492: 5’-TAC GGY TAC CTT GTT 

ACG ACT T-3’, was performed to amplify 1.5 kb of the 16S rRNA gene [29]

The PCR was performed using initial denaturation at 94 °C for 4 minutes, followed by 35 

cycles of 94 °C for 45 seconds, 55 °C for 20 seconds and 66 °C for 2 minutes. A final 

extension was performed at 72 °C for 8 minutes. PCR products were purified after excision 

from agarose gel, using QIAquick Spin Kits according to the manufacturer’s instructions 

(Qiagen). Purified PCR-products were transformed into E. coli EZ competent cells after 

ligation into the pDrive cloning vector using the QIAGEN PCR-cloning Kit (Qiagen).

The 16S rDNA fragments were sequenced from the pDrive-clones using the primers M13 

reverse: 5'-AACAGCTATGACCATG-3' and M13f forward: 5’-

GTAAAACGACGGCCAGT-3’ described in the Qiagen PCR Cloning Handbook 

(04/2001). The sequencing was performed using BigDye® Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems). The sequencing program consisted of a initial step at 

96 °C for 1 minute, and 25 cycles of 96 °C for 30 seconds, 45 °C (M13r) or 50 °C (M13f)

for 15 seconds and 60 °C for 4 minutes.  

Degenerate primers for amplification of parts of vioA and vioB genes were designed based 

on the VioA and VioB amino acid sequences from different violacein producers, retrieved 

from the GenBank. For amplification of a ~1.0 kb segment encoding the flavoenzyme 

VioA, the degenerate primer pair VPA3: 5'-CCRCAGCTSCAYCCGCATTTCCAG-3' and 

VPA4: 5'-CAGGCYGCCCTCCATCCAGCCRCA-3' were used. Parts of vioB, encoding 

the heme protein VioB was amplified using two primerpairs. The primerpair VPB1: 5'-

CTGTTCAATATGTCGACGCCGC-3' and VPB2: 5'-
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GCGGATCGCACATCTGCCACATC-3' amplificated a ~900 bp strech, and the degenerate 

primers VPB3: 5'-CCGGCCGGCCGSCTGCTGC-3', VPB4: 5'-

GSCGCGAGCGSCKSAGGCTGC-3' amplificated a ~1.85 kb segment of vioB. The 1.0 kb 

segment of vioA and the ~900 bp segment of vioB were cloned as described for 16S rDNA–

sequences. Sequencing was performed by Eurofins MWG Operon. 

The phylogenetic analyses of the cloned sequences were performed using MEGA 4 [53].

Sequences were aligned with their closest hits from BLAST searches, trimmed to the same 

length, and the phylogenetic trees constructed using neighbour-joining with 2000 bootstrap 

replicates. Comparing the sequences with other available 16S rDNA and vioA/B/C/D/E 

sequences were done by BLAST searches to determine strain homology and identity.  

Sequencing and automated annotation of the Collimonas CT genome 

Isolated total-DNA from the Collimonas CT isolate MP11E8 was sequenced and de novo

assembled by Fasteris SA (Switzerland). Sequencing was performed using Solexa 

technology, in paired-ends channel. The library was sequenced twice, yielding ~ 45 x 

coverage of the ca 5.8 million base pair genome. De novo assembly was performed by 

Velvet, MAQ and EDENA software. The resulting 257 contigs were combined randomly 

into a ‘pseudogenome’ by adding a linker sequence (jcvi.org) that creates stop-codons in all 

six reading frames. Automated annotation of the “pseudogenome” was performed by 

BASys: Bacterial annotation system [55]. The annotations are made by BASys using over 

40 programs and databases listed on their webpage 

(http://wishart.biology.ualberta.ca/basys/cgi/submit.pl). ORFs of interest were further 
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analyzed by nucleotide BLAST and BLASTX online searches at NCBI web pages 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Codon usage in the genome was estimated using 

the CountCodon program in the CUTG Database (Codon Usage Tabulated from GenBank) 

(http://www.kazusa.or.jp/codon/). The estimate was based on open reading frames in the 

submitted genome sequence, with ATG as start codon and TAA, TAG and TGA as stop 

codons. Codon usage tables for other bacteria of interest were retrieved from the same site 

[40]. NRPS Domain Search program (www.nii.res.in/nrps-pks.html) was used to predict 

structural domains encoded by the putative NRPS clusters [3]. DNA sequences reported in 

this study were deposited to GenBank under accession numbers FJ965828-965838, 

FJ985255, FJ985256, GQ160908 and GQ160909. 

Results and discussion 

Isolation of Collimonas CT 

In this study, four bacteria producing a blue pigment were isolated from the sea surface 

microlayer at the coast of Trøndelag, Norway. Sequencing of partial 16S rDNA sequences 

(1490 bases) from the 4 strains revealed two unique sequences that were 99.3 % identical. 

Both displayed 98.8 % identity to Collimonas fungivorans CTE227. The isolates are 

therefore named Collimonas CT (Coast of Trøndelag) in this article. Other Collimonas sp.

has been isolated from terrestrial sources, mainly soil [14, 24]. One extremofile Collimonas

sp. has been isolated from submarine ikaite columns in Greenland [48] and one from stream 

water in Finland [35]. Initial cultivation of the seawater samples from the coast of 
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Trøndelag was performed on media containing nalidixic acid, to minimize growth of Gram-

negative bacteria. Isolation of the Gram-negative Collimonas CT from these samples 

indicates that the bacteria are able to grow in the presence of this antibiotic at the 

concentrations used. Resistance to nalidixic acid has been observed for Janthinobacterium 

lividum and Chromobacterium violaceum [50, 19]

C. fungivorans strains show high sequence similarity to representatives of the genus 

Janthinobacterium (~95 %) and Herbaspirillum (~96 %), and are reported to display the 

highest growth rates at 20-30 ºC [14]. As for Collimonas CT, an increase in incubation 

temperature from the water temperature at the sampling site (ca 13 ºC) to 20 ºC and 25 ºC 

did not inhibit growth or pigment production. The CT bacteria did not produce pigment 

when cultivated at 30 ºC and did not grow at 37 ºC. Loss of pigment production when 

incubated at 25 ºC or higher has been observed by others [35].

To optimize the conditions for production of antimicrobial compounds, the isolates were 

cultivated on four different production media, with or without 50 % seawater. Interestingly, 

the isolates grew slower or displayed no growth on media containing seawater. Some 

pigment production could be seen in the growing cultures, but probably due to the poor 

growth the antimicrobial activity was very low in the extracts of such cultures.

Antimicrobial activity was assayed with Micrococcus luteus (ATCC 9341), Candida 

albicans (ATCC 10231), Escherichia coli K12, Enterococcus faecium CCUG 37832 and E.

faecium CTC 492 as indicator organisms. Activity could only be detected against M.luteus

under the production and assay conditions tested.  
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Identification and characterization of antimicrobial compound and pigment

Extracts from Collimonas CT showing antibacterial activity were analyzed by LC-MS. The 

UV (DAD) absorbance plot shown in Figure 3 displayed four peaks, of which the peaks at 

12.5 and 15.5 minutes showed similar UV profiles. The main compound in the sample, 

eluting at 12.5 minutes, had an m/z = 342.0882, whereas the compound eluting at 15.5 

minutes had an m/z value of 326.0938. The measured masses deviates 0.6283 and 0.9188 

ppm from the stoichiometric formulas ( [M-H]– ion ) of C20H12N3O3 and C20H12N3O2

Based on measurements at the UV absorbance maximum of 572 nm, the relative abundance 

of the latter compound was 49.6 % of the former. Based on the MS-analysis, colour of the 

substrate and a UV-profile similar to that of violacein (http://dnp.chemnetbase.com/), the 

two main compounds were assumed to be violacein (C

.

.

20H12N3O3) and deoxyviolacein

(C20H12N3O2).

The compounds eluting at 9.5 minutes and 13 minutes had m/z values deviating less than 

1.4 ppm from the molecular ion stoichiometries of C15H9O4 and C15H9O5, respectively

Relative amounts of these two compounds could not be estimated from the UV data as their 

extinction coefficients are not known. 

As previously mentioned, Collimonas CT isolates did not produce pigment when grown at 

30 ˚C. Temperature, agitation and pH also affect violacein production in Ch. violaceum [as 

cited by 57]. Colourless colonies were also at one point observed in re-streaks of the CT-

isolates. This phenomenon is not unknown among violacein producers [12, 57]. Sequencing 

of 16S rDNA, and PCR with degenerate primers for vioA- and vioB- biosynthesis genes 

confirmed that these isolates were in fact potential violacein producing Collimonas sp.
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Inhibition assays revealed that antimicrobial activity was lost in extracts from the white 

colonies, indicating that colour and antimicrobial activity might be linked. The UV-profile 

of extracts from the colourless mutants confirmed that no violacein was present in the 

sample, and that the production of violacein was lost. These experiments show that 

violacein is not essential for growth as also reported earlier for other violacein producers 

[51]

Fractionation of the bacterial extracts followed by antimicrobial assays revealed that the 

antibacterial activity was found in the same fractions as the blue pigment, indicating that 

the activity found in Collimonas CT extracts is due to the blue pigment. The reported 

antibacterial activity of violacein is mostly against Gram-positive bacteria, which is in 

accordance with the observed activity against M. luteus and lack of activity against E. coli.

These results confirm that the observed antibacterial activity of the Collimonas CT isolates 

most probably is not caused by several compounds, and that the main bioactive compound 

is violacein.

As earlier described, Collimonas CT 16S rDNA is highly similar to Janthinobacterium and 

Herbaspirillum. Production of violacein is a characteristic of Janthinobacterium [52].

Despite the close relationship, C. fungivorans has not been reported to produce violacein 

even though assumed violacein producing strains of Collimonas has been described [35].

Violacein non-producing strains of both Janthinobacterium and Chromobacterium

violaceum have also been described [32, 51]. The phylogenetic relationship between the 

partial 16S rDNA sequences from the aforementioned species is shown in Figure 2. 
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Despite that the Collimonas CT bacteria were isolated from marine samples, the isolates 

show inhibited growth on seawater-containing media. Violacein has earlier been found in 

bacteria isolated from marine environment, and this might suggest that the Collimonas CT 

are growing as biofilm in the tidal zone of brackish water, or in soils/fresh water and had 

been washed out into the sea not long before sampling. 

The violacein biosynthetic gene cluster in Collimonas CT 

Initial screening for vioA and vioB sequences was performed to substantiate the assumption 

that the produced pigment was in fact violacein. vioA- and vioB-fragments were obtained 

by PCR with degenerate primers. It is reported that disruption of vioA or vioB would 

completely abrogate the biosynthesis of violacein [6]. Attempts to inactivate vioB by 

homologous recombination in this study gave rise to white colonies without antimicrobial 

activity. Results from the following Southern blotting with the vioB fragment as probe were 

inconclusive, probably due to large deletion in the mutants.  

The genome was sequenced in order to identify the full secondary metabolite biosynthesis 

potential of the bacterium. The 5.8 million base pair genome of Collimonas CT has a GC-

content of ~60 %, and automated annotation of the genome yielded 5831 ORFs. All the 

genes for biosynthesis of violacein, vioA, vioB, vioC, vioD and vioE could be found in the 

genome and the cluster spanned 7.3 kb. Phylogenetic analyses of amino acid sequences of 

vioA-E genes from different violacein producers were performed. The resulting trees were 

very similar, suggesting that the vio genes in the different strains share the same 

evolutionary history. Only the tree for the vioB genes is shown in Figure 4. A comparison 
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of the similarity of the proteins in the violacein cluster from different violacein producers to 

violacein genes from Collimonas CT is shown in Table 2. ORFs1-13 and vioA-E are 

numbered ORFs05301-05318 in the annotated sequences submitted to GenBank.

16S rDNA of Collimonas shows higher degree of identity to Janthinobacterium lividum (94 

%) (formerly Chromobacterium lividum [52]), than to Chromobacterium violaceum (88 %). 

This is also the case with the proteins in the violacein cluster. In average the proteins 

displayed ~81 % identity to VioA/B/C/D/E from J. lividum and ~64 % identity to 

VioA/B/C/D/E from C. violaceum.

The carbon skeleton of violacein is produced from two molecules of tryptophan, and in Ch.

violaceum the genes for tryptophan biosynthesis are not organized in an operon [4] The 

organization of genes for the biosynthesis of tryptophan varies from whole-pathway 

operons to dispersed genes, among different species [37].

As for Ch. violaceum the trp-genes in Collimonas CT are not assembled in one operon, and 

the organization of the genes resembles that of Janthinobacterium sp (GI:152979768), and 

is somewhat similar to what is found among other betaproteobacteria [37], including Ch.

violaceum. Also for these genes (trpA/B/C/D/E/F) Collimonas CT show higher similarity 

to J. lividum (~82 %) than to Ch. violaceum (~76 %). 

The codon usage in the violacein cluster in Collimonas CT does not differ substantially 

from the predicted codon usage in the rest of the genome of this bacterium, Table 3. The 

codon bias (main codon) in the related species Collimonas fungivorans (not violacein 

producer) and J. lividum is somewhat similar to that of Collimonas CT whereas the more 

distantly related Ch. violaceum and Pseudoalteromonas tunicata display an increasing 
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difference in codon-bias (main codon). This indicates that the violacein cluster is unlikely 

to have been recently transferred to the isolates. In view of this, it was interesting to study 

the sequences flanking the violacein cluster. The organization of the violacein cluster in 

Collimonas CT including flanking sequences is shown in Figure 5. Analysis of the 

surrounding open reading frames (ORF’s) was also performed, and predicted gene products 

are listed in Table 4. 

The flanking sequences of the violacein cluster in Chromobacterium violaceum

ATCC12472 (GI:34105712), Janthinobacterium lividum DSM 1522 (GI:71726055) and 

Pseudoalteromonas tunicata D2 (GI:88821000) are known. The predicted genes 

CV_3292 3275 and CV_3269 3256, spanning 42 kb including the violacein cluster, in 

Ch. violaceum display no direct resemblance to the predicted proteins in the flanking 

sequences in Collimonas CT. This is also the case for the flanking genes 

PTD2_09264 09314 and PTD2_19467 19607, spanning 43 kb including the violacein 

cluster in the P. tunicata genome. As for the 27 kb (including the violacein cluster) flanking 

sequences in J. lividum, some similarities with the Collimonas CT sequence can be seen. 

Genes encoding amino acid transport proteins can be found upstream the violacein cluster 

in J. lividum and Collimonas CT. In addition, both J. lividum and Collimonas CT encode a 

TonB-dependent receptor upstream the violacein cluster. TonB-dependent receptors lie in 

the outer membrane of Gram-negative bacteria and transmit signals (energy dependent) to 

the cytoplasm, resulting in transcriptional activation of target genes [27]. A role for the 

TonB-dependent receptor in the biosynthesis of violacein in J. lividum has not been 

determined.  
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Both J. lividum and P. tunicata encode proteins for drug transport in their flanking 

sequences. A putative transmembrane drug/metabolite transporter is situated (4.5 kb) 

downstream the violacein cluster in J. lividum, while a Multi-Antimicrobial and Toxic 

compound Extrusion (MATE) family efflux pump is encoded directly upstream of the 

cluster in P. tunicata. It has been shown for P. tunicata that violacein is associated with the 

outer membrane and accumulate in periplasma [54, 34], assumingly as a defense 

mechanism against predators when growing in a biofilm. It has been speculated that the 

MATE pump encoded by P. tunicata might provide a mechanism for export of violacein 

[54]. In the flanking sequences of Collimonas CT, genes encoding a putative ABC-

transporter system (ORF10-13) can be found.

Downstream of the violacein cluster in both J. lividum and Ch. violaceum (8 kb and 15 kb 

downstream) a gene for a LysR transcription regulator can be found. The genome of Ch.

violaceum contains a large number of transcriptional activators that may interact with 

alternative sigma factors involved in bacterial stress response, such as LysR [23]. It has 

been suggested that the bacterium produces violacein as a response to stress [4]. A similar 

transcription regulator was not found in Collimonas CT. The variation of genes in the 

flanking sequences among the different violacein producers might indicate the biosynthesis 

of violacein being an old characteristic of Collimonas CT. 
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Putative secondary metabolite biosynthesis genes in Collimonas CT 

In addition to the genes in the violacein biosynthetic cluster, also genes that might be 

involved in the biosynthesis of other secondary metabolites were identified in the draft 

genome, as summarized in Table 5.

NRPS-related metabolites; Seven putative NRPS gene clusters were identified. A graphic 

representation of six of these is shown in Figure 6. Four contigs harbouring genes 

putatively related to the production of syringomycin, syringopeptin and/or arthofactin were 

identified in the Collimonas CT genome. An 18.8 kb-long non-ribosomal peptide 

synthetase (NRPS) gene (ORF03016 in cluster 5) with 65 % identity to putative 

syringomycin synthetase from Burkholderia pseudomallei Pasteur was identified, 

presumably containing six modules. Immediately upstream of the NRPS gene, an ORF 

encoding a putative acetyltransferase was found. The two ORFs downstream the NRPS 

gene encodes proteins with 68 % and 85 % identity to carbamoyltransferase and penicillin 

amidase, respectively. Further downstream, two ORFs encoding a putative thioesterase and 

a two component transcription regulator of the LuxR family were identified. The two 

aforementioned proteins display 58 and 44 % identity, respectively to the corresponding 

homologues encoded by Burkholderia phytofirmans and Pseudomonas entomophila

genomes. Syringopeptins and syringomycin are related phytotoxic lipodepsipeptides. 

Production of both syringomycin and syringopeptins has been reported from isolates of 

Pseudomonas syringae pv. syringae [18]. Syringomycin biosynthesis is not reported from 

Burkholderia pseudomallei.
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Partial sequence of ORF05502 (10 kb) on another contig (cluster 6) was found to encode an 

apparent NRPS with 48 % identity to a protein from Ralstonia solanacearum. This NRPS 

apparently contain at least 3 modules. The downstream ORF05503 encodes a protein with 

40 % identity to a putative NRPS domain from a Bradyrhizobium sp., and ORF05505 

encodes a thioesterase superfamily protein. The synthetase in ORF05502 is probably 

associated with ORFs05573-05575, also situated at the end of a contig. ORFs05573 and 

05575 in cluster 7 constituting one module, encode parts of a single gene (probably one 

base missing due to sequencing errors). Both ORFs05502 and 05573 + 05575 are putatively 

arthofactin/syringomycin synthethase C module related. ORF01844 in cluster 8 encodes 

adenylation domain of a NRPS that might be related to syringopeptin synthetase C (57 % 

identity). Based on these similarities, it is likely to assume that Collimonas CT can produce 

a peptide related to syringomycin, syringopeptin and arthofactin. It is conceivable that these 

clusters might be linked, as in the case of P. syringae pv. syringae, where syringomycin and 

syringopeptin gene clusters apparently form a genomic island [49].

Yet another putative NPRS is encoded by ORF03557 (cluster 4), deduced product of which 

displays 69 % identity to the amino acid adenylation domain from Dechloromonas

aromatica RCB3534. A potential product of this NRPS is not known. 

Cluster 3 (ORFs05144-05156) span 26.6 kb, and presumably represent a siderophore 

biosynthetic cluster. MbtH-like domains as encoded in ORF05144 are often found in 

antibiotic synthesis gene clusters (http://pfam.sanger.ac.uk/). Putative dioxygenases can 

also be identified, as Taurine catabolism dioxygenase encoded by ORF05145. The 

downstream ORFs05146-05151 encode proteins involved in transport of siderophore/iron 
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(Fe3+) compounds. ORFs05152 to 05154 most likely encode one NRPS, putatively 

siderophore-related. This NRPS conatins at least four modules, as illustrated in Figure 6. 

The last two ORFs encode, L-ornithin-5-monooxygenase and a TonB-dependent 

siderophore receptor. All ORFs in this cluster display 61-85 % identity to proteins from 

different Burkholderia strains.

A putative cyanophycin synthetase was found to be encoded by ORFs05750-05752 (cluster 

2), displaying 75 and 45 % identity to the corresponding synthetases from Cupriavidus

taiwanensis. The ORFs05750 and 05751 probably represent one gene, appearing as two, 

due to a sequencing error. Cyanophycin (multi-L-arginyl-poly-L-aspartic acid) is a non-

ribosomically synthesized peptide, which in cyanobacteria accumulate in the cytoplasma as 

granules during stationary phase or starvation conditions (except shortage of nitrogen). 

[44]. It is thought to function as a nitrogen reserve for the bacteria. Cyanophycin is of 

potential industrial interest as a source of (poly) aspartic acid. 

Carotenoid biosynthesis; Cluster 1 (ORFs04929-04931), spanning ca 3.1 kb encodes genes 

presumably involved in carotenoid biosynthesis. ORF04931 and 04930 encode putative 

phytoene synthases, and their products display 70-83 % identity to corresponding proteins 

from Herminiimonas arsenicoxydans. Product of ORF04929 displays 63 % identity to a 

putative squalene/phytoene dehydrogenase; carotene 7,8-desaturase from the same 

bacterium. Phytoen synthase catalyzes the condensation of two molecules of geranyl 

geranyl pyrophosphate to C40 phytoene which is considered the first reaction unique to 

carotenoid biosynthesis, whereas the phytoene desaturase catalyzes the desaturation steps 
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from phytoene to lycopene [5, 43]. Clustering of carotenoid biosynthetsis genes is not a 

universal rule, as they are not necessarily confined to a single cluster in cyanobacteria [13].

Putative aromatic polyketides; Two putative aromatic polyketide biosynthesis gene clusters 

were identified in the genome, shown in Figure 7. Cluster 9 (ORFs02224-02232) and 

cluster 10 (ORFs03611-03629) spans 7.1 and 16.8 kb respectively inside larger contigs. 

Based on the bioinformatics analysis, we could not associate these clusters with the 

production of any known natural products. Bacterial aromatic polyketides are synthesized 

by PKS type II (iterative) polyketide synthases. A typical minimal PKS type II consist of 

two -ketoacyl synthase subunits, KS  and KS , an acyl carrier protein (ACP) and a 

malonyl-CoA:ACP transacylase (MAT) [36, 11]. The latter KS is often designated CLF 

(chain length factor), and it has been suggested that the control of chain length in bacterial 

aromatic PKSs is controlled by a substrate-binding pocket in the KS-CLF dimer interface 

[9]. CLF is involved in formation of acetyl ACP (from the decarboxylation of malonyl-

ACP) [7]. The two KS-units catalyze the decarboxylative condensation of the malonyl 

building blocks delivered by the ACP and the acyl carrier protein (ACP) acts as an anchor 

for the polyketide chain during the various biochemical manipulations.

In order to fold and cyclize the chain genes as cyclases, aromatases and ketoreductases are 

required. The -keto acid can be processed by -ketoacyl-reductase (KR) domains, -

hydroxy-acyl-dehydratase (DH) domains and enoyl-reductase (ER) domains [10]. A 

combination of these genes will determine the structure of the new polyketide. 

ORFs02224-02227 in cluster 9 encode a putative minimal PKS type II. However, the 

ketosynthases in ORFs02224 and 02227 both contain conserved domain of initiating KAS 
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III. They display 59 % identity to a -ketoacyl-acyl-carrier-protein synthase I from 

Methylobacterium extorquens and 58 % identity to 3-oxoacyl-(acyl-carrier protein) 

synthase from Burkholderia xenovorans, respectively. The putative acyl carrier protein of 

ORF02226 displays 47 % identity to the protein from Burkholderia phytofirmans. The 

downstream ORFs (02228-02232) encode proteins for modification of the polyketide chain, 

including a reductase, acetyltransferase of the hexapeptide transferase family, 

hydroxylating dioxygenase related iron-sulphur cluster-binding protein (Rieske family), 

and a 3-deoxy-D-manno-oct-2-ulosonic acid transferase homologue, belonging to the 

glycosyl transferase 1 family. All ORFs display around 50 % identity to known proteins.

ORFs03611-03629 constitutes a 16.8 kb putative PKS II gene cluster, cluster 10. The 

putative aromatic minimal PKS is encoded in ORF03612 ( -ketoacyl synthase II), 

ORF03615 ( -ketoacyl synthase I/II) and ORF03627 + 03628 (ACP). Both ketosynthases 

contain the conserved domain of elongating, condensing KAS I/II. ORF03611 encode a 

putative 4’-phosphopantetheinyltransferase required for the post-translational modification 

of ACP and the resulting activation of the acyl carrier domains (thioester) in ORFs03627 

and 03628. [21]. ORFs for a -ketoacyl reductase and a -hydroxyacyl-(ACP)-dehydratase

were also identified. Genes for modification of the polyketide were also identified, 

including a monooxygenase and glycosyl tranferases, as illustrated in Figure 6. ORF03621 

displays 56 % identity to a thioesterase superfamily protein from Ralstonia metallodurans.

Thioesterases are not common in type II PKS systems, but at least five genes associated 

with such gene clusters have been reported [41]. It was suggested that the thioesterease 

could be involved in chain release, or function as an esterase for the hydrolysis of ester 
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intermediates. The phospholipid/glycerol acyltransferase encoded by ORF03629 

presumably borders the cluster.  

Only activity against Gram-positive bacteria could be detected in extracts from Collimonas

CT. This activity is thought to be due to the production of violacein. In addition to the gene 

cluster for violacein biosynthesis, genes for several other secondary metabolites with 

potential antimicrobial activity could be identified. The inability to detect the activity of 

these compounds in the antimicrobial assays might be due to that their production was not 

induced under the conditions tested.

Conclusion

A new violacein producer has been isolated from the sea surface microlayer at the coast of 

Trøndelag, Norway. The bacterium is a new strain belonging to the genus Collimonas. A 

limited analysis of the genome of Collimonas CT indicates that the violacein biosynthesis is 

an old characteristic of the Collimonas CT isolates. Genes for the production of other 

interesting secondary metabolites have also been identified in the Collimonas CT genome. 

A further study of the bacterium and its genome is necessary to fully elucidate its 

biotechnological potential. 

Acknowledgements

This work was supported by the Research Council of Norway. We are grateful to M. Lando 

and G.M.B. Thomassen for help with some of the sequencing work. 

24



References

1. Andrighetti-Fröhner, C. R., R. V. Antonio, T. V. Creczynski-Pasa, C. R. M. 

Barardi, and C. M. O. Simões. 2003. Cytotoxicity and Potential Antiviral 

Evaluation of Violacein Produced by Chromobacterium violaceum. Mem Inst 

Oswaldo Cruz. 98:843-848

2. Andrighetti-Fröhner, C. R., J. M. Kratz, R. V. Antonio, T. B. Creczynski-Pasa, 

C. R. M. Barardi and C. M. O. Simões. 2006. In vitro testing for genotoxicity of 

violacein assessed by Comet and Micronucleus assays. Mutation Research. 603: 97-

103

3. Ansari, M. Z., G. Yadav, R. S. Gokhale, and D. Mohanty. 2004. NRPS-PKS: a 

knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic 

Acids Res. 32 (Web Server Issue):W405-W413; doi:10.1093/nar/gkh359 

4. Antônio, R. V., and T. B. Creczynski-Pasa. 2004. Genetic analysis of violacein 

biosynthesis by Chromobacterium violaceum. Genet. Mol. Res. 3:85-91

5. Armstrong, G. A., and J. E. Hearst. 1996. Carotenoids 2. Genetics and molecular 

biology of carotenoid pigment biosynthesis. FASEB J. 10:228–237

6. August, P. R., T. H. Grossman, C. Minor, M. P. Draper, L. A. MacNeil, J. M. 

Pemberton, K. M. Call, D. Holt, and M. S. Osburne. 2000. Sequence Analysis 

and Functional Characterization of the Violacein Biosynthetic Pathway from 

Chromobacterium violaceum. J. Mol. Microbiol. Biotechnol. 2:513-519

25



7. Bisang, C., P. F. Long, J. Corte´s, J. Westcott, J. Crosby, A.-L. Matharu, R. J. 

Cox, T. J. Simpson, J. Staunton and P. F. Leadlay. 1999. A chain initiation factor 

common to both modular and aromatic polyketide synthases. Nature. 401:502-505

8. Brady, S. F., C. J. Chao, J. Handelsman, and J. Clardy. 2001. Cloning and 

Heterologous Expression of a Natural Product Biosynthetic Gene Cluster from 

eDNA. Org. Lett. 3:1981-1984

9. Burson, K. K., and C. Khosla. 2000. Dissecting the chain length specificity in 

bacterial aromatic polyketide synthases using chimeric genes. Tetrahedron. 

56:9401-9408

10. Cane, D. E. 1997. Polyketide and nonribosomal polypeptide biosynthesis. Chem. 

Rev. 97:2463–2706

11. Carreras, C. W., and C. Khosla. 1998. Purification and in vitro reconstitution of 

the essential protein components of an aromatic polyketide synthase. Biochemistry 

37:2084–2088

12. Corpe, W. A. 1953. Variation in pigmentation and morphology of colonies of 

gelatinous strains of Chromobacterium species from soil. J. Bacteriol. 66:470–477 

13. Cunningham, F. X., Jr., Z. Sun, D. Chamovitz, J. Hirschberg, and E. Gantt.

1994. Molecular Structure and Enzymatic Function of Lycopene Cyclase from the 

Cyanobacterium Synechococcus sp Strain PCC7942. Plant Cell. 6:1107-1121

14. de Boer, W., J. H. J. Leveau, G. A. Kowalchuk, P. J. A. Klein Gunnewiek, E. C. 

A. Ablen, M. J. Figge, K. Sjollema, J. D. Janse, and J. A. van Veen. 2004. 

26



15. DeMoss, R. D., and N. R. Evans. 1959. Physiological aspects of violacein 

biosynthesis in nonproliferating cells. J. Bacteriol. 78:583-586

16. DeMoss, R. D., and N. R. Evans. 1960. Incorporation of C14-labeled substrates 

into violacein. J. Bacteriol. 79:729-733

17. DeMoss, R. D. 1967. Violacein. Antibiot. 2:77-80 (as cited by 4)

18. Di Giorgio, D., L. Camoni, K. A. Mott , J. Y. Takemoto and A. Ballio. 1996. 

Syringopeptins, Pseudomonas syringae pv. syringae phytotoxins, resemble 

syringomycin in closing stomata. Plant Pathology. 45:564 – 571 

19. Fantinatti-Garboggini, F., R. de Almeida, V. doA. Portillo, T. A. P. Barbosa, P. 

B. Trevilato, C. E. R. Neto, R. D. Coêlho, D. W. Silva, L. A. Bartoleti, E. S. 

Hanna, M. Brocchi, and G. P. Manfio. 2004. Drug resistance in 

Chromobacterium violaceum. Genet. Mol. Res. 3:134-147

20. Ferreira, C. V., C. L. Bos, H. H. Versteeg, G. Z. Justo, N. Durán, and M. P. 

Peppelenbosch. 2004. Molecular mechanism of violacein-mediated human 

leukemia cell death. Blood. 104:1459-1467

21. Garcia-Estráda, C., R. V. Ullán, T. Velasco-Conde, R. P. Godio, F. Teijeira, I. 

Vaca, R. Feltrer, K. Kosalková, E. Mauriz, and J. F. Martín. 2008. Post-

translational enzyme modification by the phosphopantetheinyl transferase is 

required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid 

formation in Penicillium chrysogenum. Biochem. J. 415:317–324

27



22. Hakvåg, S., E. Fjærvik, K. D. Josefsen, E. Ian, T. E. Ellingsen, and S. B. 

Zotchev. 2008. Characterization of Streptomyces spp. Isolated from the Sea Surface 

Microlayer in the Trondheim Fjord, Norway. Mar Drugs. 6:620–635

23. Hungria, M., M. F. Nicolás, C. T. Guimarães, S. N. Jardim, E. A. Gomes, and 

A. T. R. de Vasconcelos. 2004. Tolerance to stress and environmental adaptability 

of Chromobacterium violaceum. Genet. Mol. Res. 3:102-116

24. Höppener-Ogawa1, S., W. de Boer, J. H. J. Leveau, J. A. van Veen, E. de 

Brandt, E. Vanlaere, H. Sutton, D. J. Dare and P. Vandamme. 2008.

Collimonas arenae sp. nov. and Collimonas pratensis sp. nov., isolated from (semi-

) natural grassland soils. Int J Syst Evol Microbiol. 58:414-419

25. Jørgensen, H., E. Fjærvik, S. Hakvåg, P. Bruheim, H. Bredholt, G. 

Klinkenberg, T. E. Ellingsen and S. B. Zotchev. 2009. Candicidin biosynthetic 

gene cluster is widely distributed among Streptomyces spp. isolated from the 

sediments and the neuston layer in the Trondheim fjord, Norway. Appl Environ 

Microbiol. 75:3296-3303

26. Kodach, L. L,  C. L. Bos, N. Durán, M. P. Peppelenbosch, C. V. Ferreira, and 

J. C. H. Hardwick. 2006. Violacein synergistically increases 5-fluorouracil 

cytotoxity, induces apoptosis and inhibits Akt-mediated signal transduction in 

human colorectal cancer cells. Carcinogenesis. 27:508-516

27. Koebnik, R. 2005. TonB-dependent trans-envelope signaling: the exception or the 

rule? TRENDS in Microbiol. 13:343-347

28



28. Konzen, M., D. De Marco, C. A. S. Cordova, T. O. Vieira, R. V. Antônio, and 

T. B. Creczynski-Pasa. 2006. Antioxidant properties of violacein: Possible relation 

on its biological function. Bioorg. Med. Chem. 14:8307–8313

29. Lane, D. J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt and 

M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley 

& Sons Ltd., Chichester, UK 

30. Leon, L. L., C. C. Miranda, A. O. De Souza, and N. Duràn. 2001. 

Antileishmanial activity of the violacein extracted from Chromobacterium

violaceum. J. Antimicrob. Chemother. 48:449-450

31. Lichstein, H. C., and V. F. Van De Sand. 1946. The Antibiotic Activity of 

Violacein, Prodigiosin, and Phthiocol. J. Bacteriol. 52:145-6

32. Lincoln, S. P., T. R. Fermor, and B. J. Tindall. 1999. Janthinobacterium

agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int. J. Syst. 

Bacteriol. 49:1577-1589

33. Matz, C., P. Deines, J. Boenigk, H. Arndt, L. Eberl. S. Kjelleberg, and K. 

Jürgens. 2004. Impact of Violacein-Producing Bacteria on Survival and Feeding of 

Bacterivorous Nanoflagellates. Appl. Environ. Microbiol. 70:1593-1599

34. Matz, C., J. Webb, P. J. Schupp, S. Y. Phang, A. Penesyan, S. Egan, P. 

Steinberg, and S. Kjelleberg. 2008. Marine biofilm bacteria evade eukaryotic 

predation by targeted chemical defense. PLoS ONE 3(7):e2744. 

doi:10.1371/journal.pone.0002744

29



35. Männistö, M. K., and M. M. Häggbloma. 2006. Characterization of 

psychrotolerant heterotrophic bacteria from Finnish Lapland. System. Appl. 

Microbiol. 29:229-243

36. McDaniel, R., S. Ebertkhosla, D. A. Hopwood, and C. Khosla. 1995. Rational 

design of aromatic polyketide natural-products by recombinant assembly of 

enzymatic subunits. Nature. 375:549–554

37. Merino, E., R. A. Jensen and C. Yanofsky. 2008. Evolution of bacterial trp 

operons and their regulation. Curr. Opin. Microbiol. 11:78-86 

38. Momen, A. Z. M. R., and T. Hoshino. 2000. Biosynthesis of Violacein: Intact 

Incorporation of the Tryptophan Molecule on the Oxindole side with Intramolecular 

Rearrangement of the Indole Ring on the 5-Hydroxyindole Side. Biosci. Biotechnol. 

Biochem. 64:539-549

39. Nakamura, Y., C. Asada, and T. Sawada. 2003. Production of Antibacterial 

Violet Pigment by Psychrotropic Bacterium RT102 Strain. Biotechnol. Bioprocess 

Eng. 8:37-40

40. Nakamura, Y., T. Gojobori, and T. Ikemura. 2000. Codon usage tabulated from 

the international DNA sequence databases: status for the year 2000. Nucl. Acids 

Res. 28 :292

41. Pang, X., B. Aigle, J.-M. Girardet, S. Mangenot, J.-L. Pernodet, B. Decaris, 

and P. Leblond. 2004. Functional angucycline-like antibiotic gene cluster in the 

terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. 

Antimicrob. Agents Chemother. 48:575-588

30



42. Pantanella, F., F. Berlutti, C. Passariello, S. Sarli, C. Morea, and S. Schippa

2007. Violacein and biofilm production in Janthinobacterium lividum. J. Appl.

Microbiol. 102:992-999

43. Phadwal, K. 2005. Carotenoid biosynthetic pathway: molecular phylogenies and 

evolutionary behavior of crt genes in eubacteria. Gene. 345:35-43

44. Picossi, S., A. Valladares, E. Flores, and A. Herrero. 2004. Nitrogen-regulated 

Genes for the Metabolism of Cyanophycin, a Bacterial Nitrogen Reserve Polymer. 

Expression and mutational analysis of two cyanophycin synthetase and 

cyanophycinase gene clusters in the heterocyst-forming cyanobacterium Anabaena

sp. PCC 7120. J. Biol. Chem. 279:11582-11592

45. Rettori, D., and N. Durán. 1998. Production, extraction and purification of 

violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J. 

Microbiol. & Biotechnol. 14:685-688

46. Richard, C. 1993. Chromobacterium violaceum, opportunist pathogenic bacteria in 

tropical and subtropical regions. Bull. Soc. Pathol. Axot. 86:169-173

47. Sánchez, C., A. F. Braña, C. Méndez, and J. A. Salas. 2006. Reevaluation of the 

Violacein Biosynthetic Pathway and its Relationship to Indolocarbazole 

Biosynthesis. ChemBioChem. 7:1231-1240

48. Schmidt, M., A. Prieme´, and P. Stougaard. 2006. Bacterial diversity in 

permanently cold and alkaline ikaite columns from Greenland. Extremophiles. 

10:551–562

31



49. Scholz-Schroeder, B. K., J. D. Soule, S. E. Lu, I. Grgurina, and D. C. Gross. 

2001. A physical map of the syringomycin and syringopeptin gene clusters 

localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. 

syringae strain B301D. Mol Plant Microbe Interact. 14:1426-35

50. Shivaji, S., M. K. Ray, G. Seshu Kumar, G. S. N. Reddy, L. Saisree, and D. D. 

Wynn-Williams. 1991. Identification of Janthinobacterium lividum from the soils 

of the islands of Scotia Ridge and from Antarctic Peninsula. Polar Biol. 11:267- 271 

51. Sivendra, R., and H. S. Lo.1975. Identification of Chromobacterium violaceum:

pigmented and non-pigmented strains. J. Gen. Microbiol. 90:21-31

52. Sneath, P. H. A. 1984. Genus Janthinobacterium De Ley, Seegers and Gillis 1978, 

164AL, p. 376-377. In N. R. Krieg and J. G. Holt (ed.), Bergey's manual of 

systematic bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore 

53. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular 

Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 

24:1596-1599

54. Thomas, T., F. F. Evans, D. Schleheck, A. Mai-Prochnow, C. Burke, A. 

Penesyan, D. S. Dalisay, S. Stelzer-Braid, N. Saunders, J. Johnson, S. Ferriera, 

S. Kjelleberg, and S. Egan, S. 2008. Analysis of the Pseudoalteromonas tunicata

genome reveals properties of a surface-associated life style in the marine 

environment. PLoS ONE 3(9):e3252. doi:10.1371/journal.pone.0003252 

55. Van Domselaar G. H., P. Stothard, S. Shrivastava, J. A. Cruz, A. Guo, X. 

Dong, P. Lu, D. Szafron, R. Greiner, and D. S. Wishart. 2005. BASys: a web 

32



56. Yada, S., Y. Wang, Y. Zou, K. Nagasaki, K. Hosokawa, I. Osaka, R. Arakawa, 

and K. Enomoto. 2008. Isolation and characterization of two groups of novel 

marine bacteria producing violacein. Mar. Biotechnol. 10:128-132

57. Yang, L. H., H. Xiong, O. O. Lee, S.-H. Qi, and P.-Y. Qian. 2007. Effect of 

agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from 

a marine sponge. Lett. Appl. Microbiol. 44:625-630

33



TABLE 1. Bacterial strains and plasmid used in this study 

Strain or plasmid Description Source or reference 

Candida albicans Cyhr AmBs, Hps, Nyss † ATCC• (strain 10231) 

Micrococcus luteus Amoxs, Amps, Cms, Ccls, Nbs,

Oles, Pens, Pcns, Rifs, Tys £

ATCC• (strain 9341) 

E. coli K12 

Enterococcus faecium Ampr, Ctcr, Eryr,Lcmr, Vcmr,

Amr, Bacr, Csr, Spr § 

CCUG* (strain 37832) 

Enterococcus faecium Amr, Bacr, Csr, Spr CTC (strain 492)

Collimonas CT This study

• The American type Culture Collection 

† Cyh: cycloheximide, AmB: amphotericin B, Hp: haloprogin, Nys: nystatin 

 Amox: amoxicillin, Amp: ampicillin, Cm: clindamycin, Ccl: cyclacillin, Nb:     

   novobiocin, Ole: oleandomycin, Pen: penicillamine, Pcn: penicillin, Rif: rifamycin, Ty:   

   tylosin

§ Amp: ampicillin, Ctc: chlortetracyclin, Ery: erythromycin, Lcm: lincomycin, Vcm:  

   vancomycin, Am:apramycin, Bac: bacitracin, Cs: cycloserine, Sp: spectinomycin 

* Culture Collection, Gothenburg University. 
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TABLE 2. Identity of the proteins from the violacein cluster in different violacein 

producers, to the violacein-proteins from Collimonas CT

% identity at amino acid-level 

VioA VioB VioC VioD VioE Average

Janthinobacterium lividum¤ 76 83 84-87 84-86 74-76 80-82

Uncultured bacterium 76 78 83 81 NA* 80

Chromobacterium violaceum‡ 54 62 73 70 61 64

Pseudoalteromonas tunicata† 40 51 61 55 50 51

¤ GI:71726055 and GI:118161378 

‡ ATCC 12472 

† Pseudoalteromonas tunicata D2

* Not available
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TABLE 3. Estimated codon usage in the Collimonas CT genome, based on 1934710 

condons. Frequency is given in numbers per thousand. 

Triplet Frequency Triplet Frequency Triplet Frequency Triplet Frequency

UUU 13.4 UCU 8.8 UAU 7.2 UGU 10.0

UUC 16.0 UCC 13.1 UAC 7.0 UGC 25.4

UUA 4.5 UCA 14.6 UAA 4.5 UGA 14.4

UUG 16.1 UCG 21.8 UAG 4.9 UGG 20.2

CUU 13.9 CCU 14.2 CAU 16.2 CGU 14.0

CUC 8.5 CCC 9.9 CAC 13.2 CGC 37.5

CUA 4.9 CCA 20.5 CAA 16.3 CGA 21.6

CUG 24.6 CCG 29.5 CAG 24.8 CGG 29.4

AUU 11.2 ACU 7.3 AAU 11.2 AGU 7.3

AUC 18.3 ACC 15.0 AAC 11.0 AGC 22.3

AUA 7.6 ACA 10.4 AAA 13.5 AGA 9.0

AUG 16.3 ACG 14.2 AAG 13.7 AGG 13.9

GUU 11.1 GCU 22.5 GAU 18.2 GGU 14.7

GUC 15.0 GCC 35.2 GAC 14.9 GGC 34.9

GUA 6.9 GCA 25.4 GAA 15.8 GGA 13.0

GUG 13.2 GCG 37.9 GAG 8.4 GGG 9.9
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TABLE 4. Predicted proteins encoded by the genes in the violacein cluster and the flanking 

sequences.

ORF

number

Strand Predicted protein Id§ to known 

sequences

1 + putative N-acyl-D-amino-acid deacylase 54 %

2 - Mercuric reductase,  

putative pyruvate/2-oxoglutarate dehydrogenase 

complex 

69 %

and 67 %

3 + TonB-dependent receptor 48 % 

4 + acyl CoA thioester hydrolase 77 % 

5 - amino acid transporter, periplasmic ligand binding 

protein

62 % 

6 - Putative acetyltransferase 41 % 

VioA-E +

7 - Putative acetyltransferase 57 % 

8 - SPFH domain / Band 7 family protein 31 % 

9 + Fatty acid desaturase 58 % 

10 + substrate binding transport protein, ABC type 74 % 

11 + an integral membrane subunit, ABC type 64 % 

12 + ATP-binding protein, ABC type 68 % 

13 + periplasmic part of phosphate /phosphonate transport 

system, ABC type 

46 %

and 63 %

§ Identity 
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TABLE 5. Gene clusters identified in the Collimonas CT genome, putatively involved in the 

production of secondary metabolites.  

Cluster

no.

ORFs

no.

Size

(Kb)

Genes identified 

(putative)
Putative function 

1 04929-04931 3.1
Phytoene synthases and 

dehydrogenase 

Production of lycopene/ 

carotenoid biosynthesis 

2 05750-05752 4.8 Cyanophycin synthetase Cyanophycin synthesis 

3 05144-05156 26.6
NRPS (siderophore), and 

transport

Siderophore biosynthesis and 

transport

4 03557 4.0 NRPS, adenylation domain Unknown 

5 03015-03020 25.3

Acetyltransferase, NRPS (18.8 

kb), tailoring enzymes, 

thioesterase and a transcription 

regulator

6 05502-05505 12.5* 

Partial NRPS* (10 kb) related to 

arthrofactin/ syringomycin 

synthethase C module and a 

thioesterase superfamily protein 

7 05573+05575 3.7*

Partial NRPS* related to 

arthofactin/syringomycin 

synthethase C module 

8 01844 2.2*
Partial NRPS*, syringopeptin 

synthetase C related 

Syringomycin, syringopeptin 

and arthrofactin -related peptide 

biosynthesis 

9 02224-02232 7.1
Minimal PKS type II, modifying 

and post-PKS modifying enzymes 

Aromatic polyketide 

biosynthesis 

10 03611-03629 16.8
Minimal PKS type II, modifying 

and post-PKS modifying enzymes 

Aromatic polyketide 

biosynthesis 

* Encoding partial genes, due to end of sequencing contigs. 
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Figure legends 

Figure 1. Chemical structures of violacein (A) and deoxyviolacein (B)

Figure 2. Phylogenetic relationship between 16S rDNA sequences (1368 bp) of known 

violacein producers, using the neighbor-joining method with 2000 bootstrap replicates. 

Closest matches from the BLAST search, Collimonas fungivorans CTE227, and 

Herbaspirillum sp. Hg1 (both not known to produce violacein) are also included in the tree. 

Two Collimonas sp from this study are displayed, while Pseudomonas aeruginosa

NGKCTS is included as an out-root. 

Figure 3. Diode array UV absorbance isoplot of bacterial extract. UV absorbance is shown 

in heat-map style as function of HPLC retention time and wavelength. The HPLC injection 

peak (void peak) at far left has been omitted for clarity of visualisation. The four main 

eluting peaks have retention times of 9.5, 12.5, 13 and 15.5 minutes, respectively, and are 

marked with arrows. Exact masses m/z (M-H- ion) of the putative violacein and 

deoxyviolacein are also given.

Figure 4. Phylogenetic tree constructed of the amino acid sequence (1013 amino acids) of 

vioB genes from known violacein producers. The analysis is performed using the neighbor-

joining method with 1000 bootstrap replicates.

Figure 5. Organization of the violacein cluster in Collimonas CT (A) and 

Janthinobacterium lividum (GI:71726055) (B). Open reading frames (ORF’s), in the 

flanking sequences are also shown, and a total of 23 kb (A) and 25.5 kb (B) is shown. (t) = 

TonB-dependent receptor, (a) = genes for amino acid transport, (e) = efflux encoding 
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genes. vio-genes are marked with dark blue arrows, and homologous genes in the flanking 

sequences are marked with green arrows. The genes in the two bacteria are numbered 

sequentially, not by function.

Figure 6. Prediction of functional elements of NRPSs encoded in the Collimonas CT 

genome. A: Adenylation domain, C: condensation domain, T: Thiolation domain, E: 

epimerisation domain, TE: Thioesterase domain. Asterisk indicates partial sequence due to 

end of sequencing contig. (A): Putative NRPS (ORF03016) in cluster 5. (B): Putative 

partial NRPS(s) (ORF05502 and 05503) in cluster 6. (C): Putative partial NPRS 

(ORF05573+05575) in cluster 7. (D): Putative partial NRPS (ORF01844) in cluster 8. (E):

Putative part of NRPS (ORF03557) in cluster 4. (F): Putative NPRS (ORFs 05152-05154) 

in cluster 3. 

Figure 7. Organization of putative aromatic polyketide gene clusters, cluster 9 (A) and 10 

(B), in Collimonas CT. KS: -Ketoacyl synthase. ACP: Acyl carrier protein. (A) KR: 

oxioreductase, short chain dehydrogenase/reductase. AT: Acetyl transferase. Hyp: 

Hypothetical protein. (B) PT: Phosphopantetheniyl transferase. KR: -Ketoacyl reductase. 

DH: dehydratase. 16: Hypothetical protein. 17: Monooxygenase FAD-bind. 18+26: 

Transmembrane protein. 20: outer membrane lipoprotein carrier protein, LolA. TE: 

Thioesterase. GT: Glycosyl transferase. 25: AMP dependent synthetase and ligase. AT: 

Phospholipid/glycerol acyltransferase. Numbering of genes refers to last two numbers in 

ORF numbering (16 = ORF03616).  
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Figure 3
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