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1BBackground 

Sliding mode (SM) control is a well-known nonlinear control design method. First-order SM is 
widely applied to control of mechanical systems, but second and higher-order algorithms can 
also be used. In this project, second and higher-order sliding mode control is to be studied 
together with a sliding mode observer (SMO).   
 
 

Assignment: 
 

1. Analyse the stability properties for the closed-loop dynamics for a general second-
order system in cascade with second and higher-order SMC algorithms with a state 
SMO.  

2. Apply the second and higher-order algorithms with a state SMO to a second-order 
test-system. Perform analysis on the tracking control problem, simulations and 
compare the results.  

3. Test the SM algorithms with a state SMO, for control of an underwater swimming 
manipulator with thrusters and analyse the tracking control problem. Use the model 
presented in [1]. 

4. Based on the above work, write and submit an article for the SWARM conference in 
Kyoto, Japan 2017. 
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Abstract

In this thesis sliding mode control, sliding mode observers and stability theory regarding
cascaded systems and finite-time stable properties are presented. The stability properties
for the closed-loop dynamics for a general second-order system in cascade with a second
or higher-order sliding mode control algorithm with a state sliding mode observer, are
analysed. The second-order algorithm is the super-twisting algorithm, and the higher-order
sliding mode control algorithms are the nested and the quasi-continuous third-order sliding
mode control algorithm. The state observer is included because the variables needed for
the control algorithms are not always available for measurement. To see how the state
observer affects the performance and control abilities of the algorithms, a tracking control
law where the state observer was not used, is also tested. It is shown that the error dynamics
for the test system, i.e. the mass-spring-damper system, and that the error dynamics for
an underwater swimming manipulator, a snake-like, multi-articulated, underwater robot
equipped with thrusters, fits the assumptions made for the error dynamics for the general
system, which means that the stability analysis conducted for the general system also
holds for both those systems. The closed-loop dynamics for the general system is proven
uniformly globally asymptotically stable in all cases except one.

A simulation study is performed on both the systems to verify the applicability of the
proposed control laws. The control objective is to make the state trajectories follow a
pre-defined path. The mass-spring-damper system is used to get a better understanding
of the algorithms and to easily observe what the advantages and disadvantages are with
the different algorithms. The algorithm that gave the best result was the second-order
algorithm, i.e. the super-twisting algorithm, as it gave the smallest errors in all cases and
the smoothest control input. The higher-order algorithms, i.e. the nested third-order and
quasi-continuous SMC algorithms, also gave small errors, but they had chattering in the
control input. It was possible to get a smooth control input with the quasi-continuous SMC
algorithm, but the position error was then much larger.

To the author’s knowledge, sliding mode control algorithms have only been tested
previously on an underwater swimming manipulator by the author in the project
assignment conducted in the fall 2016, Borlaug (2016). In that project only first-order and
second-order algorithms were tested. Therefore, it was interesting to see if the
higher-order algorithms performed better than a second-order algorithm, as the
second-order algorithms gave the best result in the project assignment, and a regular PD
controller. The second-order algorithm also gave the best result here, and the PD
controller did not compare to the SMC algorithms. The quasi-continuous SMC algorithm
was the better of the two HOSM controllers.
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Sammendrag

Denne avhandlingen presenterer ”sliding mode” regulatorer, ”sliding mode” observere og
stabilitetsteori knyttet til systemer i kaskade og “finite-time” stabilitetsegenskaper.
Stabilitetsegenskapene for lukket sløyfe dynamikken for et generelt andre-ordens system
i kaskade med andre- eller høyere-ordens ”sliding mode” regulatorer og en
tilstands-”sliding mode” observer er analysert. Den undersøkte andre-ordens algoritmen
er “super-twisting” algoritmen, og algoritmene av høyere-orden er “nested” og
”quasi-continuous” tredje-ordens ”sliding mode” regulatorene. Tilstandsobserveren ble
inkludert fordi variablene som behøves ikke alltid er tilgjengelige eller målbare. For å
undersøke hvordan tilstandsobserveren påvirker ytelsen og reguleringsevnen til
algoritmene ble en reguleringslov hvor tilstandsobserverenen ikke brukes også testet. Det
blir vist at feildynamikken for testsystemet, et masse-fjær-demper system, og at
feildynamikken til en undervanns svømmemanipulator passer til antagelsene som er gjort
for feildynamikken til det generelle systemet, noe som betyr at stabilitetsanalysen som er
gjort for det generelle systemet også holder for disse to systemene. Lukket sløyfe
dynamikken for det generelle systemet blir bevist uniformt, globalt, asymptotisk stabilt i
alle tilfeller, med unntak av ett.

Det blir gjort en simuleringsundersøkelse på begge testsystemene for å verifisere
anvendbarheten til de foreslåtte reguleringslovene. Reguleringsmålet er å få
tilstandsbanen til å følge en forhåndsdefinert bane. Masse-fjær-demper systemet blir
brukt til å få en bedre forståelse for de respektive algoritmene og enkelt kunne observere
fordelene og ulempene med de. Algoritmen som ga best resultat var ”super-twisting”
algoritmen, ettersom den førte til de minste feilvariablene i alle tilfeller, samt glattest
pådrag. Algoritmene av høyere orden, “nested” og ”quasi-continuous” tredje-ordens
”sliding mode” regulatorene, ga også små feilvariabler, men hadde ”chattering” i
pådraget. Det var mulig å få et glatt pådrag med ”quasi-continuous sliding mode”
algoritmen, men posisjonsfeilen ble da mye større.

Såvidt forfatteren vet, har ”sliding mode” regulatorer bare blitt testet på en
undervanns smømmemanipulator av forfatteren selv, under fordypningsprosjektet utført
høsten 2016, Borlaug (2016). I dette prosjektet ble bare første- og andre-ordens
algoritmer testet. Det var derfor interessant å se om algoritmene av høyere-orden ga
bedre ytelse enn andre-ordens algoritmen som ga best ytelse under fordypningsprosjektet,
samt en PD-regulator. Andre-ordens algoritmen ga best resultat også her, og
PD-regulatoren kunne ikke sammenlignes med ”sliding mode” regulatorene. Av de to
høyere-ordens ”sliding mode” regulatorene var ”quasi continuous” regulatoren best.
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Chapter 1
Introduction

The Sliding Mode Control (SMC) approach is a well-known non-linear control design
method that is recognized as a powerful tool to robustly control systems with uncertainties.
The advantage of SMC is that it eliminates the need for exact modelling, because it is
robust against parametric uncertainty, external disturbances and modelling error, Hung
et al. (1993). The research in this area was initiated in the former Soviet Union in the
1950’s, and since then there has been done a great deal of research in the field. Fist-order
SMC is now widely applied to control of mechanical systems, but second and higher-order
algorithms can also be used.

This thesis is an attempt to further test higher-order sliding mode (HOSM) control
algorithms studied in my project assignment conducted in the fall in 2016. The project
report can be found in the . zip folder attached to this thesis, and will hereafter be cited as,
Borlaug (2016). In the project report an in-depth study of sliding mode control is
presented. It explains sliding mode control in general and several first, second and
higher-order sliding mode control algorithms in detail. Based on the literature study some
SMC algorithms were chosen for further research. The algorithms that were chosen were
the first-order relay controller, Hung et al. (1993); the first-order saturation controller,
Hung et al. (1993); the super twisting algorithm (STA), Levant (1993); and the STA with
adaptive gains, Shtessel et al. (2010). The HOSM controllers were not investigated,
because to be able to implement them a differentiator or observer need to be used to
estimate the derivatives of the sliding surface. The first and second-order algorithms were
tested on two different systems: a test system and an underwater swimming manipulator
(USM), a snake-like, multi-articulated, underwater robot equipped with thrusters. The
first-order relay controller had large problems with chattering. Chattering is the
high-frequency switching of the control signals commonly associated with SMC.
Chattering was not an issue for the saturation control, but since sliding mode does not
exist inside the boundary layer the effectiveness of the controller is challenged when
parasitic dynamics are considered, Young et al. (1999). The STA was therefore the one
that gave the best result, as it had a smooth control input and was most robust against
modelling errors and disturbances. The largest problem with the STA is that it only works
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with bounded perturbations, and therefore a conservative upper bound had to be used
when designing the controller to ensure that sliding is maintained. To eliminate this
problem adaptive STA can be used, since the gains can then adapt to a level where they
are as small as possible but still guarantee that sliding is maintained. The STA with
adaptive gains was therefore the controller most suited for practical use, Borlaug (2016).

In this thesis some off the HOSM algorithms that were not tested in the project
assignment will be tested. They need differentiators or observers to estimate the
derivatives of the sliding surface, therefore relevant sliding mode observers (SMO) are
presented. A higher-order sliding mode observer (HOSMO) will also be used to estimate
the states of the systems, because both the position and the velocity might not always be
available for measurement. To be able to see how the state observer affects the
performance and control abilities of the algorithms, a tracking control law where the state
observer is not used will also be tested. In Borlaug (2016) such a control law was
proposed for the relay controller, the saturation controller, the STA and the STA with
adaptive gains. Since the STA gave the best result in the project assignment it will be
used to compare the performance of the HOSM controllers. To make the comparison as
fair as possible, the STA with adaptive gains will not be used, as adaptive gains will not
be used for the HOSM controllers. The stability of the overall-closed-loop dynamics for a
general system will be analysed, when the STA and when the HOSM controllers are used
for tracking control in cascade with a state observer. The algorithms will be tested on the
same system as in the project assignment, i.e. on one test system and an underwater
swimming manipulator. The test system is a mass-spring-damper system (MSDS), it will
be used to illustrate the advantages and disadvantages with the different SMC algorithms.

An USM is an underwater snake robot (USR) equipped with thrusters,
Sverdrup-Thygeson et al. (2016). The USM has a complex control design problem. This
is because the USM is subject to hydrodynamic and hydrostatic parameter uncertainties,
uncertain thruster characteristics, unknown disturbances, and un-modelled dynamic
effects, e.g. thruster dynamics and coupling forces caused by joint motion. SMC is a
robust and versatile non-linear control approach, and it will therefore be shown in this
thesis that it is well suited for control of USMs. For underwater vehicles, in general,
some important contributions are given in Antonelli and Chiaverini (1998), Fossen
(1991), Fossen and Sagatun (1991), Cristi et al. (1990), Dannigan and Russell (1998) and
Soylu et al. (2008). In Antonelli and Chiaverini (1998), a singularity-free SMC approach,
inspired by Fjellstad and Fossen (1994), is used for set-point regulation of an underwater
robot with uncertainties in the hydrodynamic parameters. In Fossen (1991) and Fossen
and Sagatun (1991), SMC is employed to cope with multiplicative uncertainty in the
thruster configuration matrix. The combination of sliding mode and adaptive control is
studied in Fossen (1991), Fossen and Sagatun (1991) and Soylu et al. (2008). In
particular, in Soylu et al. (2008), sliding mode control is combined with adaptive PID
controller gains and an adaptive update of the upper bound on the disturbances and the
parameter uncertainties. SMC is also applicable to deal with linearisation errors, Cristi
et al. (1990), and the coupling effects between an underwater vehicle and an attached
manipulator arm, Dannigan and Russell (1998). Sliding mode techniques have been
applied to land-based snake robots in Rezapour et al. (2014) to achieve robust tracking of
a desired gait pattern and under-actuated straight line path following, Borlaug et al.
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(2017). To the author’s best knowledge, sliding mode control algorithms have only been
tested previously on an USM by the author in the project assignment conducted during
the fall 2016, Borlaug (2016).

This thesis is divided into 6 chapters. Chapter 2 presents theory related to sliding mode
controllers, sliding mode observers, stability theory to investigate cascaded systems and
finite-time stability (FTS) theory. Chapter 3 presents a stability analysis for the closed-
loop dynamics for a general system in cascade with the sliding mode control algorithms
and observers that have been presented in Chapter 2. The test system, i.e. the MSDS, its
control input design, analysis of its error dynamics, implementation and the results from
each SMC algorithm are presented in Chapter 4. Chapter 5 presents the USM, its control
input design, analysis of its error dynamics, implementation and the results from each
SMC algorithm. In Chapter 6 the results for each algorithm are discussed and compared.
Conclusion and further work is found in Chapter 7.
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Chapter 2
Theory

In this chapter, sliding mode controllers (SMC), sliding mode observers (SMO) and
stability theory to investigate cascaded systems will be presented. Finite-time stability,
which is an important property of SMC algorithms, will also be presented in the stability
section. The theory presented in Section 2.1 is mainly taken from the literature study
presented in Borlaug (2016).

2.1 Sliding mode control

Sliding Mode Control (SMC) systems are designed to drive the system state trajectories
onto a particular surface in the state space, named sliding surface σ, in finite time. Once
the sliding surface is reached, SMC keeps the states on the close neighbourhood of the
sliding surface for all future time. Hence SMC is a two part controller design. The first
part involves the design of a sliding surface so that the sliding motion satisfies design
specifications. The second is concerned with the selection of a control law that will make
the sliding surface attractive to the system state, Utkin (1977). The first part is called the
reaching phase, and the second part is called the sliding phase. The state-feedback control
law is not a continuous function of time. Instead, it can switch from one continuous
structure to another based on the current position in the state space. Hence, sliding mode
control is a variable structure control (VSS) method.

The largest problem with SMC is chattering. Chattering is the high-frequency
switching of the control signals. In ideal SMC the state trajectory should reach the sliding
surface σ = 0 in finite time and stay on it forever. But as the controller cannot be
switched infinitely fast from one value to another chattering appears as a high-frequency
oscillation around the desired equilibrium point. The reason high switching control is
impossible to achieve in practical systems is because of finite time delays for control
computation and limitations of physical actuators. Chattering results in low control
accuracy, high heat losses in electrical power circuits, and high wear of moving
mechanical parts. It may also excite unmodelled high-frequency dynamics, which
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degrades the performance of the system and may even lead to instability Hung et al.
(1993).

In the following sections there will be given an introduction to first-order SMC and an
explanation of the SMC algorithms that are investigated in this thesis. For more
information regarding general SMC the project report can be consulted, Borlaug (2016).

2.2 First-order sliding mode control
The first generation of sliding modes (1960-1990) are called first-order sliding modes.
They use only the sliding surface to create a control input. First-order SMC algorithms
reduces the systems order on the sliding surface, they have finite time convergence and
they are robust with respect to matching disturbance. The challenges with these SMC
algorithms are chattering and noise sensitivity. The most common first-order SMC
algorithms are the relay controller and the saturation controller, these will therefore be
described in detail, even though they will not be investigated further as they were tested
in the project assignment. Information about the practical relay controller and the
practical saturation controller can be found in Borlaug (2016).

2.2.1 Ideal relay control

The ideal relay controller takes the form

u(σ) = −K sgn(σ) where sgn(σ) =

{
1 when σ > 0

−1 when σ < 0
(2.1)

where K is a control gain and σ is the sliding surface. The controller is ideal in the sense

Figure 2.1: Phase portrait: ideal relay control

that it switches instantly at the value σ = 0. This means that ideal sliding exist on the
line σ = 0, meaning there are no chattering, no steady-state error and that the invariance
property holds Hung et al. (1993).

The ideal SMC looks really good on paper, but it is impossible to implement because
it is impossible to achieve the high switching control that is necessary for ideal SMC to
exist. Chattering is therefore a large problem with this controller.
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2.2.2 Ideal saturation control
The ideal saturation controller takes the form

u(σ) = −Ksat(σ) where sat(σ) =





1 when σ > L
s
L when |σ| ≤ L
−1 when σ < −L

(2.2)

where L > 0 and ±L defines the threshold for entering the boundary layer, K is a control
gain and σ is the sliding surface. The ideal saturation controller is given as a solution to

Figure 2.2: Phase portrait: ideal saturation control

the chattering problem. It is a combination of ideal relay control and a high-gain linear
control that takes place within the boundary layer. This means that the state trajectories
will be driven towards the boundary layer, but once it is inside the boundary layer the
trajectories will not be forced to follow the line σ = 0, it will only be forced stay inside
the boundary layer, Hung et al. (1993). As a result sliding mode does not exist inside the
boundary layer. The effectiveness of the ideal saturation controller is therefore
immediately challenged when parasitic dynamics are considered. In order for the ideal
saturation controller to handle these type of disturbances they have to be carefully
modelled and considered in the feedback design in order to avoid instability inside the
boundary layer. If that is not possible a worst case boundary layer has to be used, which
compromises the disturbance rejection properties of the SMC, Young et al. (1999). In
conclusion, this approach eliminates the high-frequency chattering at the price of losing
invariance.

2.3 Second-order sliding mode control
Many different second-order SMC algorithms exists, some of them are gathered in
Bartolini et al. (2003) and Levant (1993). In this section only the super-twisting
algorithm (STA) will be given in detail. It was the algorithm that gave the best result in
the project assignment, and will therefore be investigated further in this thesis.
Information about the Aµ-algorithm, the twisting algorithm, the drift algorithm, an
algorithm with a prescribed law, an algorithm without the derivative of σ and a general
second-order algorithm can be found in Borlaug (2016).
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2.3.1 Super-twisting algorithm
The STA is the most powerful second-order continuous sliding mode control algorithm. It
generates the continuous control function that drives the sliding variable and its derivative
to zero in finite time in the presence of smooth matched disturbances with bounded
gradient, when this boundary is known. As the integrand of the STA contains a
discontinuous function, chattering is not eliminated but attenuated. The main drawback
of the STA is the requirements to know the boundaries of the disturbance gradient. In
many practical cases this boundary cannot be easily estimated, Shtessel et al. (2010).
Unlike other second-order sliding mode controllers, STA is applicable to a system (in
general, any order) where control appears in the first derivative of the sliding surface σ,
Chalanga et al. (2016).

In Levant (1993) the STA was introduced as

u = −k1|σ|1/2 sgn(σ) + v

v̇ = −k2 sgn(σ)
(2.3)

where ki are gains to be designed. If the input signal f(t) is a measurable locally bounded
function, and it consist of a base signal having a derivative with Lipschitz’s constant C >
0. Then sufficient conditions for the converges of σ = σ̇ = 0 is

k2 > C, k21 ≥ 4C
k2 + C

k2 − C
(2.4)

The conditions in Equation (2.4) results from a very crude estimation Levant (1998).
Calculations show that many other values, e.g. k1 = 1.5

√
C and k2 = 1.1C may also be

taken. Since this algorithm only works with bounded perturbations a conservative upper
bound has to be used when designing the controller to ensure that sliding is maintained.
This can worsen the chattering effects. If an adaptive STA is used, the gains can adapt to
a level where they are as small as possible but still guarantee that sliding is maintained.
Adaptive STA is proposed in Shtessel et al. (2010) and Shtessel et al. (2012). Information
about the STA with adaptive gains can also be found in Borlaug (2016).

2.4 Higher-order sliding mode control
Higher-order sliding mode (HOSM) generalizes the sliding mode motion and removes the
restriction that for the mode to have full output control the controller u has to appear in the
first total derivative of σ. This is the case for the standard sliding modes. HOSM is sliding
mode with sliding order higher than 2. The rth-order sliding mode is determined by the
equalities σ = σ̇ = σ̈ = · · · = σ(r−1) = 0 which impose an r-dimensional condition
on the state of the dynamic system. This realization can provide up to rth-order of sliding
precision, with respect to the measurement interval. If HOSM is properly designed the
convergence of HOSM can be asymptotic and it can totally remove the chattering effect,
Levant (2001). If the relative degree of the system is less than r, the HOSM algorithms
can still be used by artificially increasing the relative degree. This can also help remove
the chattering effect, Levant (2003a).
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There exist many HOSM control algorithms, but the ones that will be presented and
investigated in this thesis are the nested and the quasi-continuous HOSM controller. In
Defoort et al. (2009) a higher-order sliding mode control scheme for a multi-input-output
non-linear system can be found. An adaptive continuous higher-order sliding mode control
algorithm can be found in Edwards and Shtessel (2016). In Dinuzzo and Ferrara (2009)
a higher-order sliding mode control with optimal reaching is proposed. They are also
gathered in my project report, Borlaug (2016). Recently a new HOSM controller with a
Lyapunov function has been proposed in Cruz-Zavala and Moreno (2017), this is a very
interesting result, but because of too little time the idea of using the new HOSM controller
was not investigated further, and will therefore be a part of further work.

2.4.1 Arbitrary-order sliding mode controllers
The relative degree r of the system that needs to be controlled is assumed to be known and
constant, so that

σ(r) = h(t, x) + g(t, x)u. (2.5)

Assume that g(t, x) > 0 and that for some Km, KM , C < 0 the inequalities

0 < Km ≤ g(t, x) ≤ KM , |h(t, x)| ≤ C (2.6)

hold. Then the controller, both nested and quasi-continuous, takes the form

u = −αΨr−1,r(σ, σ̇, . . . , σ
(r−1)) (2.7)

where α > 0 and Ψr−1,r(σ, σ̇, . . . , σ(r−1)) is defined by a recursive procedure. With
properly chosen positive parameters the controller in Equation (2.7) leads to the
establishment of an r-sliding mode σ ≡ 0 attracting each trajectory in finite time.
Parameter α > 0 is to be chosen specifically for any fixed C, Km, KM . Note that in
practice the exact value of the parameters Km, KM , C do not have to be known, Shtessel
et al. (2014).

Nested arbitrary-order sliding mode controllers

In Levant (2001) and Levant (2003a) the building of an nested arbitrary-order sliding
controller is described. Let q be the least common multiple of 1, 2, . . . , r. Then the nested
arbitrary-order sliding controller is built by the following recursive procedure

Ni,r =
(
|σ|q/r + |σ̇|q/(r−1) + · · ·+ |σ(i−1)|q/(r−i+1)

)1/q
,

Ψ0,r = sgn(σ),

Ψi,r = sgn(σ(i) + βiNi,rΨi−1,r), i = 1, . . . , r − 1

(2.8)

where β1, . . . , βr−1 are positive numbers. The positive parameters β1, · · · , βr−1 are to be
chosen sufficiently large in the index order and may be fixed in advance for each relative
degree r. These control parameters can be chosen in advance, so that there is only one
parameter that needs to be adjusted to control a system with a given relative degree.
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Quasi-continuous arbitrary-order sliding mode controllers

In Levant (2003b) and Levant (2005) a quasi-continuous arbitrary-order sliding mode
controller is described. Let i = 0, . . . , r − 1, then the controller can be constructed by the
following recursive procedure

ϕ0,r = σ N0,r = |σ| Ψ0,r = ϕ0,r/N0,r = sgn(σ)

ϕi,r = σ(i) + βiN
(r−i)/(r−i+1)
i−1,r Ψi−1,r

Ni,r = |σ(i)|+ βiN
(r−i)/(r−i+1)
i−1,r Ψi,r = ϕi,r/Ni,r

(2.9)

where β1, . . . , βr−1 are positive numbers and are chosen sufficiently large in the list
order.

To enable implementing these controllers in real-time, robust estimation of the
higher-order total output derivatives is required. For this different types of observers
(differentiators) can be used. In Levant (2003a) there has been proposed an arbitrary
order robust exact finite-time-convergent differentiator that will solve the problem. It
allows real-time robust exact differentiation, and its performance is proven to be
asymptotically optimal in the presence of small Lebesgue measurable input noises.

2.5 Sliding mode observer
To be able to make the HOSM controllers with the algorithms described in Section 2.4, a
differentiator (observer) need to be used to calculate σ, σ̇, . . . , σr−1. In Levant (2003a) an
arbitrary-order robust exact differentiator that is finite-time stable was proposed for this
use, Section 2.5.1. Since both the position and velocity need to be available for
measurement, a state observer is used for the case when only the position measurements
are available. In Kumari et al. (2016) a HOSMO is proposed for this use, Section 2.5.2. It
insures that the sliding surface dynamics does not contain discontinuous or
non-differentiable terms.

2.5.1 Arbitrary-order robust exact differentiator
Recursive form

The algorithm for the recursive form of this differentiator is

ż0 = v0, v0 = −λ0|z0 − f(t)|(n/(n+1))
sgn(z0 − f(t)) + z1

ż1 = v1, v1 = −λ1|z1 − v0|((n−1)/n) sgn(z1 − v0) + z2

...

żn−1 = vn−1, vn−1 = −λn−1|zn−1 − vn−2|(1/2) sgn(zn−1 − vn−2) + zn

żn = −λn sgn(zn − vn−1)

(2.10)

where the parameters λ0, λ1, . . . , λn have to be chosen according to Levant (1998) and
Levant (2003a), and n = r − 1.
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2.5 Sliding mode observer

Non-recursive form

The algorithm for the non-recursive form of this differentiator is

ż0 = v0, v0 = −λ0|z0 − f(t)|(n/(n+1))
sgn(z0 − f(t)) + z1

ż1 = v1, v1 = −λ1|z0 − f(t)|((n−1)/n) sgn(z0 − f(t)) + z2

...

żn−1 = vn−1, vn−1 = −λn−1|z0 − f(t)|(1/2) sgn(z0 − f(t)) + zn

żn = −λn sgn(z0 − f(t))

(2.11)

where n = r− 1 and λ0, λ1, . . . , λn are calculated on the basis of the parameters from the
recursive algorithm, i.e. the λ in the recursive algorithm and the non-recursive algorithm
are not the same.

The differentiators can also be used as an observer for system states by replacing f(t)
with the system output.

Universal output-feedback SISO controller

By using the recursive robust exact differentiation to calculate σ, σ̇, . . . , σr−1 the HOSM
algorithm becomes:

u = −αΨr−1,r(z0, z1, . . . , zr−1)

ż0 = v0, v0 = −λ0|z0 − σ|(r−1/r) sgn(z0 − σ) + z1

ż1 = v1, v1 = −λ1|z1 − v0|((r−2)/(r−1)) sgn(z1 − v0) + z2

...

żr−2 = vr−2, vr−2 = −λr−2|zr−2 − vr−3|(1/2) sgn(zr−2 − vr−3) + zr−1
żr−1 = −λr−1 sgn(zr−1 − vr−2)

(2.12)

where λi = λ0,iL
1/r−i are chosen according to the condition |σ(r)| ≤ L, L ≥ C +

αKM . Some possible choices for the parameters are given in Levant (2003a). By changing
the way z0, . . . , zr−1 is calculated the recursive form can easily be changed to the non-
recursive form.

2.5.2 n+ 1th-order sliding mode observer

Given the nth-order perturbed multiple integrator system

ẋi = xi+1 i = 1, . . . , n− 1

ẋn = u+ ρ

y = x1

(2.13)

11



Chapter 2. Theory

an n+ 1th order SMO is proposed in Kumari et al. (2016) as

˙̂xi = x̂i+1 + zi i = 1, . . . , n− 1

˙̂xn = x̂n+1 + u+ zn

˙̂xn+1 = zn+1

(2.14)

where

zi = ki|e1|(n−i+1)/(n+1)
sgn(e1) i = 1, . . . , n

zn+1 = kn+1 sgn(e1)
(2.15)

and e1 = x1 − x̂1. By defining en+1 = −x̂n+1 + ρ the error dynamics can be defined as

ė1 = −k1|e1|n/(n+1)
sgn(e1) + e2

ė2 = −k2|e1|(n−1)/(n+1)
sgn(e1) + e3

...

ėn = −kn|e1|1/(n+1)
sgn(e1) + en+1

ėn+1 = −kn+1 sgn(e1) + ρ̇

(2.16)

The error dynamics is the same as the non-recursive form of the arbitrary order robust exact
differentiator, which means that the error dynamics have the same stability properties of
the differentiator with properly chosen gains. When e→ 0, x = x̂.

Third-order state observer

In this thesis only second-order systems will be considered. To make sure that the sliding
surface dynamics does not contain discontinuous or non-differentiable terms a third-order
sliding mode observer, is used to observe the states, Kumari et al. (2016). By using the
algorithm for the n+ 1th order SMO, a third order sliding mode observer can be designed
as

˙̂x1 = x̂2 + z1 = x̂2 + k1|e1|2/3 sgn(e1)

˙̂x2 = x̂3 + z2 + g(t, x)u = x̂3 + k2|e1|1/3 sgn(e1) + g(t, x)u

˙̂x3 = z3 = k3 sgn(e1)

(2.17)

where k1, k2 and k3 are gains to be chosen according to Levant (1998) and Levant (2003a)
and e1 = x1− x̂1. By defining e2 = x2− x̂2 and e3 = −x̂3 + f(t, x), the error dynamics
can be written as

ė1 = −k1|e1|2/3 sgn(e1) + e2

ė2 = −k2|e1|1/3 sgn(e1) + e3

ė3 = −k3 sgn(e1) + ḟ(t, x)

(2.18)
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2.6 Stability theory

2.6 Stability theory

2.6.1 Cascaded systems
The systems that will be evaluated in this thesis are defined as illustrated in Figure 2.3.

Figure 2.3: Cascade interconnection

It can be represented with equations as

∑
1

{
ẋ1 = f1(t, x1) + g(t, x)x2,

∑
2

{
ẋ2 = f2(t, x2).

(2.19)

From lemma 2.1 in Lorı́a and Panteley (2005), A.2.2 in the appendix, it is stated that if the
origin of each nominal system is uniformly globally asymptotically stable (UGAS) and
the solutions of Equation (2.19) are uniformly globally bounded (UGB) then the complete
system is UGAS.

2.6.2 Finite-time stability
Finite-time stability (FTS) is the property, where the trajectories of a non-Lipschitz system
reach a Lyapunov stable equilibrium point in finite time. This finite time point can be
calculated and is called the settling time, noted by T (x). T (x) can be a function depending
on initial states. If the equilibrium point is zero, which is the case for SMC algorithms and
SMO, the state variables can be viewed as zero after the settling time has been reached,
Polyakov and Fridman (2014).

Definition 2.6.1 (Finite-time stability, Definition 12 Polyakov and Fridman (2014)). The
origin of the system ẋ ∈ F (t, x), t ∈ R, is said to be finite-time stable if it is Lyapunov
stable and finite-time attractive.

Definition 2.6.2 (Finite-time attractivity, Definition 11 Polyakov and Fridman (2014)).
The origin of the system ẋ ∈ F (t, x), t ∈ R, is said to be finite-time attractive if for
∀t0 ∈ R there exists a set V(t0) ⊆ Rn : 0 ∈ int(V(t0)) such that ∀x0 ∈ V(t0)

• any solution x(t, t0, x0) of Cauchy problem ẋ ∈ F (t, x), t ∈ R, x(t0) = x0 exists
for t > t0;

• T (t0, x0) < +∞ for x0 ∈ V(t0) and for t0 ∈ R.

The set V(t0) is called finite-time attraction domain.

13



Chapter 2. Theory

Definition 2.6.3 (Lyapunov stability, Definition 5 Polyakov and Fridman (2014)). The
origin of the system ẋ ∈ F (t, x), t ∈ R, is said to be Lyapunov stable if for ∀ε ∈ R+ and
∀t0 ∈ R there exists δ = δ(ε, t0) ∈ R+ such that for ∀x0 ∈ B(δ)

1. any solution x(t, t0, x0) of Cauchy problem, ẋ ∈ F (t, x), t ∈ R, x(t0) = x0 exists
for t > t0;

2. x(t, t0, x0) ∈ B(ε) for t > t0.

If the function δ does not depend on t0 then the origin is called uniformly Lyapunov stable.

Proposition 2.6.1 (Proposition 3 Polyakov and Fridman (2014)). If the origin of the system
ẋ ∈ F (t, x), t ∈ R, is finite-time stable then it is asymptotically stable and x(t, t0, x0) = 0
for t > t0 + T0(t0, x0).

This means that if a system is FTS, it is also AS (asymptotically stable). For autonomous
system, uniformity in t0 is given, which means that if an autonomous system is FTS it is
also UAS (uniformly asymptomatically stable), (The National Center for Scientific
Research), personal communication, June 16-19, 2017). For globality, all properties must
hold for all x0 ∈ Rn.
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Chapter 3
Stability Analysis General System

In this section, tracking control laws based on the super-twisting algorithm
(Section 2.3.1), nested third-order SMC (Section 2.4.1) and quasi-continuous third-order
SMC (Section 2.4.1) are proposed for a general system. The tracking control objective is
to make the error dynamics origin asymptotically stable, so that when t → ∞ the error
dynamics approach zero. The different cascaded systems will be analysed by using
cascaded theory (Section 2.6.1), Lyapunov theory (Appendix A) and finite-time stable
properties (Section 2.6.2). The type of cascade systems that will be analysed are:

• Super-twisting algorithm with a state observer, when the estimated value of x2 is
used in the sliding surface.

• Super-twisting algorithm with a state observer, when the estimated value of x1 and
x2 are used in the sliding surface.

• Nested third-order sliding mode control with differentiator and a state observer,
when the estimated value of x2 is used in the sliding surface.

• Nested third order-sliding mode control with differentiator and a state observer,
when the estimated value of x1 and x2 are used in the sliding surface.

• Quasi-continuous third-order sliding mode control with differentiator and a state
observer, when the estimated value of x2 is used in the sliding surface.

• Quasi-continuous third-order sliding mode control with differentiator and a state
observer, when the estimated value of x1 and x2 are used in the sliding surface.

The state observer that will be used is described in Section 2.5.2 and the differentiator is
described in Section 2.5.1.
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Chapter 3. Stability Analysis General System

3.1 Error dynamics general system
Assume that the error dynamics for a second-order general system can be represented by

ẋ1 = x2

ẋ2 = f(t, x) + g(t, x)u
(3.1)

where |ḟ(t, x)| ≤ ∆ and g(t, x) is known and the sliding surface is

σ = c1(x1 − x1,des) + x2 − x2,des (3.2)

where c1 > 0. The desired value for the error dynamics is zero. By replacing x1,des and
x2,des with zero the sliding surface becomes

σ = c1x1 + x2. (3.3)

3.2 Analysis of the super-twisting algorithm with state
observer

3.2.1 The estimated value for x2 is used in the sliding surface
Overall closed-loop dynamics:

When the estimated value x̂2 is used in the sliding surface, it is

σ̂ = c1x1 + x̂2. (3.4)

By using the fact that x̂2 = x2 − e2, from Section 2.5.2, and that ẋ1 = x2, from
Equation (3.1), σ̂ can be written as

σ̂ = c1x1 + ẋ1 − e2 (3.5)

and
ẋ1 = σ̂ − c1x1 + e2. (3.6)

By differentiating Equation (3.4) and using the fact that ˙̂x2 = x̂3 + z2 + g(t, x)u, from
Section 2.5.2, ˙̂σ becomes

˙̂σ = c1ẋ1 + ˙̂x2 = c1x2 + x̂3 + z2 + g(t, x)u

= c1(e2 + x̂2) + x̂3 + z2 + g(t, x)u.
(3.7)

By choosing

u =
1

g(t, x)
(−c1x̂2 − x̂3 − z2 − k1|σ̂|1/2 sgn(σ̂)−

∫ t

0

k2 sgn(σ̂)dτ) (3.8)

and inserting u in Equation (3.7)

˙̂σ = c1e2 − k1|σ̂|1/2 sgn(σ̂)−
∫ t

0

k2 sgn(σ̂)dτ. (3.9)
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3.2 Analysis of the super-twisting algorithm with state observer

The overall closed-loop dynamics can then be written as

∑
1





ẋ1 = σ̂ − c1x1 + e2
˙̂σ = c1e2 − k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(3.10)

Note that
∑

2 is the error dynamics for the state observer, from Equation (2.18).

Theorem 3.2.1. Assume that the error dynamics for a second-order system has the form
as in Equation (3.1), where |ḟ(t, x)| ≤ ∆ and g(t, x) is known and the sliding surface is
as in Equation (3.4) with c1 > 0. Assume that a state observer with the form as in
Equation (2.17) is used to estimate x2. Let the control input be given by Equation (3.8).
Then the origin of the cascaded system in Equation (3.10) is uniformly globally
asymptotically stable (UGAS), which ensures asymptotic convergence of the tracking
error.

Proof. Lyapunov analysis:

Analysis of subsystem 1, with e2 = 0 : With e2 = 0, subsystem 1 can be written as

∑
1





ẋ1 = σ̂ − c1x1
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

(3.11)

This can then be divided in two subsystems:
∑

11

{
ẋ1 = σ̂ − c1x1

∑
12

{
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

(3.12)

where Lemma A.2.2 can be used. Subsystem
∑

11 with σ̂ = 0 is analysed first. For
analysis the Lyapunov function V11(x) = 1

2x
2
1 is used. The derivative of the Lyapunov

function is

V̇11(x) = x1ẋ1 = x1(−c1x1)

= −c1x21 ≤ −c1||x||2.
(3.13)

This means that the Lyapunov function satisfies:

k1||x||a ≤ V (t, x) ≤ k2||x||a
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3||x||a

(3.14)
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Chapter 3. Stability Analysis General System

with k1 = k2 = 1
2 , k3 = c1 and a = 2. By using Theorem A.1.4 subsystem

∑
11 is proven

globally exponentially stable with σ̂ = 0, when c1 > 0.
Subsystem

∑
12 has the structure of the STA algorithm, in Moreno and Osorio (2012)

a strict Lyapunov function is proposed. To be able to use that Lyapunov function a change
of variable is needed:

z =

[
z1
z2

]
=

[
|σ̂|1/2 sgn(σ̂)

v

]
(3.15)

ż =
1

|z1|
Az where A =

[
− 1

2k1
1
2

−k2 0

]
(3.16)

A is Hurwitz if k1, k2 > 0. The Lyapunov function proposed is then V12(z) = zTPz,
where it is proven that V̇12(z) = − 1

|z1|z
TQz almost everywhere. The relationship between

P and Q is related by the Algebraic Lyapunov Equation (ALE) ATP + PA = −Q. It is
proven that the origin of subsystem

∑
12 is FTS, as long as the matrix A is Hurwitz,

and that the Lyapunov function proposed is a global, strict Lyapunov function for every
P = PT > 0 that is a solution of the ALE with an arbitrary matrix Q = QT > 0. As
subsystem

∑
12 is FTS and autonomous it will be UGAS, this also implies ||σ̂(t)|| < β1.

To check if the solutions of
∑

1 are UGB, subsystem
∑

11 has to be analysed with
σ̂ 6= 0. The derivative of the Lyapunov function V11 is then

V̇11(x) = −c1||x||2 + σ̂x1

≤ −c1||x||2 + θ||x||2 − θ||x||2 + β1||x||

≤ −(c1 − θ)||x||2 ∀ ||x|| ≥ β1
θ

(3.17)

where 0 < θ < c1. The solutions are then UGB, since the inequality in Equation (A.5) in
Theorem A.1.5 is satisfied. This means that subsystem

∑
1 is UGAS since Lemma A.2.2

is satisfied.

Analysis of subsystem 2:

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(3.18)

In Moreno (2012) a Lyapunov function is proposed for a third order observer. To be able
to use that Lyapunov function a change of variable is needed:

ξ =



ξ1
ξ2
ξ3


 =



|e1|2/3 sgn(e1)

e2
|e3|2 sgn(e3)


 (3.19)

If |ḟ(t, x)| ≤ ∆, it is proven in Moreno (2012) that the Lyapunov function

V2(ξ) = ξTΓξ, where Γ =




γ1 − 1
2γ12 0

− 1
2γ12 γ2 − 1

2γ23
0 − 1

2γ23 γ3


 (3.20)
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3.2 Analysis of the super-twisting algorithm with state observer

satisfies
V̇2(ξ) = −κV 3

4 (3.21)

for κ > 0, is radially unbounded, positive definite and that it is a Lyapunov function for
subsystem

∑
2, whose trajectories converge in finite time to the origin e = 0 for every

value of |ḟ(t, x)|. This means that the origin is FTS for every value of |ḟ(t, x)|, which
means that the origin is also UGAS, this implies |e(t)|| ≤ β2.

Analysis of the complete system: To analyse the complete system Lemma A.2.2 is used.
To check if the solutions of the complete system are UGB, the boundedness of σ̂ and x1
have to be evaluated when e2 6= 0. First the boundedness of σ̂ is checked by using the
Lyapunov function V12. From earlier calculations ||e(t)|| < β2. The differentiation of the
Lyapunov function is

V̇12(z) = − 1

|z1|
zTQz +

2

|z1|
[
1
2c1e2 0

]
Pz

= − 1

|z1|
zTQz +

c1e2
|z1|

(p1z1 + p12z2)

≤ − 1

|z1|
λmin(Q)||z||22 +

c1β2
|z1|

√
p21 + p212||z||2

≤ −λmin(Q)||z||22 + θ||z||22 − θ||z||22 + c1β2

√
p21 + p212||z||2

≤ −(λmin(Q)− θ)||z||22 ∀ ||z||2 ≥
c1β2

√
p21 + p212
θ

(3.22)

where 0 < θ < λmin(Q). The solutions are then UGB, since the inequality in
Equation (A.5) in Theorem A.1.5 is satisfied. This means that σ̂(t) is still bounded when
e2 6= 0. To check the boundedness of x1 when e2 6= 0 the Lyapunov function V11 is used.

V̇11(x) = −c1||x||2 + (σ̂ + e2)x1

≤ −c1||x||2 + θ||x||2 − θ||x||2 + (β1 + β2)||x||

≤ −(c1 − θ)||x||2 ∀ ||x|| ≥ β1 + β2
θ

(3.23)

where 0 < θ < c1. The solutions are then UGB, since the inequality in Equation (A.5) in
Theorem A.1.5 is satisfied. This means that the complete system is UGAS as Lemma A.2.2
is satisfied.

The closed-loop dynamics can also be proven stable by using FTS properties, this has
been done in Chalanga et al. (2016), and will be given in the appendix, Section B.1.1.
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3.2.2 The estimated value for x1 and x2 are used in the sliding surface
Overall closed-loop dynamics:

When x̂1 and x̂2 is used in the sliding surface, it is

σ̂ = c1x̂1 + x̂2. (3.24)

By using the fact that x̂1 = x1 − e1, x̂2 = x2 − e2, from Section 2.5.2, and that ẋ1 = x2,
from Equation (3.1), σ̂ can be written as

σ̂ = c1(x1 − e1) + ẋ1 − e2 (3.25)

and
ẋ1 = σ̂ − c1x1 + c1e1 + e2. (3.26)

By differentiating Equation (3.24) and using the fact that ˙̂x1 = x̂2 + z1 and ˙̂x2 = x̂3 +
z2 + g(t, x)u, from Section 2.5.2, ˙̂σ becomes

˙̂σ = c1 ˙̂x1 + ˙̂x2 = c1(x̂2 + z1) + x̂3 + z2 + g(t, x)u. (3.27)

By choosing

u =
1

g(t, x)
(−c1x̂2 − c1z1 − x̂3 − z2 − k1|σ̂|1/2 sgn(σ̂)−

∫ t

0

k2 sgn(σ̂)dτ) (3.28)

and inserting u in Equation (3.27)

˙̂σ = −k1|σ̂|1/2 sgn(σ̂)−
∫ t

0

k2 sgn(σ̂)dτ. (3.29)

The overall closed-loop dynamics can then be written as

∑
1





ẋ1 = σ̂ − c1x1 + c1e1 + e2
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(3.30)

Note that
∑

2 is the error dynamics for the state observer, from Equation 2.18.

Theorem 3.2.2. Assume that the error dynamics for a second-order system has the form
as in Equation (3.1), where |ḟ(t, x)| ≤ ∆ and g(t, x) is known and the sliding surface is
as in Equation (3.24) with c1 > 0. Assume that a state observer with the form as in
Equation (2.17) is used to estimate x1 and x2. Let the control input be given by
Equation (3.28). Then the origin of the cascaded system in Equation (3.30) is uniformly
globally asymptotically stable (UGAS), which ensures asymptotic convergence of the
tracking error.
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3.3 Analysis of the HOSM algorithms with differentiator and state observer

Proof. Lyapunov analysis:

Analysis of subsystem 1, with e1 = 0 and e2 = 0: With e1 = 0 and e2 = 0, subsystem 1
can be written as

∑
1





ẋ1 = σ̂ − c1x1
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

(3.31)

which is proven UGAS in Section 3.2.1.

Analysis of subsystem 2: Subsystem 2 has also been analysed in Section 3.2.1 to be
UGAS.

Analysis of the complete system: To analyse the complete system Lemma A.2.2 is used.
To check if the solutions of the complete system are UGB, the boundedness of x1 has to
be evaluated when e1 6= 0 and e2 6= 0, for this the Lyapunov function V11 is used. The
boundedness of σ̂ has already been checked in Section 3.2.1, since it is not effected by e.

V̇11(x) = −c1||x||2 + (σ̂ + e1 + e2)x1

≤ −c1||x||2 + θ||x||2 − θ||x||2 + (β1 + 2β2)||x||

≤ −(c1 − θ)||x||2 ∀ ||x|| ≥ β1 + 2β2
θ

(3.32)

where 0 < θ < c1. The solutions are then UGB, because the inequality in Equation (A.5)
in Theorem A.1.5 is satisfied. This means that the complete system is UGAS because
Lemma A.2.2 is satisfied.

The closed-loop dynamics can also be proven stable by using FTS properties. This
will be shown in the appendix, Section B.1.2.

3.3 Analysis of the HOSM algorithms with differentiator
and state observer

As both the HOSM algorithms (nested and quasi-continuous) with differentiators are FTS
and autonomous, they will be UGAS and be bounded no matter what order or type that is
used. So the control structure for the HOSM algorithms with the differentiator will in this
section be called uc, and the analysis will be made with uc so that it holds for both the
HOSM controller types and all orders. The nested HOSM algorithm with differentiator is
proven FTS in Levant (2003a) and the quasi-continuous HOSM algorithm with
differentiator is proven FTS in Levant (2003b) and Levant (2005).
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3.3.1 The estimated value for x2 is used in the sliding surface
Overall closed-loop dynamics:

From Section 3.2.1:
ẋ1 = σ̂ − c1x1 + e2 (3.33)

˙̂σ = c1(e2 + x̂2) + x̂3 + z2 + g(t, x)u. (3.34)

By choosing

u =
1

g(t, x)
(−c1x̂2 − x̂3 − z2 + uc) (3.35)

and inserting u in Equation (3.34)

˙̂σ = c1e2 + uc. (3.36)

The overall closed-loop dynamics can then be written as

∑
1

{
ẋ1 = σ̂ − c1x1 + e2
˙̂σ = c1e2 + uc

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(3.37)

Note that
∑

2 is the error dynamics for the state observer, from Equation (2.18).

Theorem 3.3.1. Assume that the error dynamics for a second-order system has the form
as in Equation (3.1), where |ḟ(t, x)| ≤ ∆ and g(t, x) is known and the sliding surface
is as in Equation (3.4) with c1 > 0. Assume that a state observer with the form as in
Equation (2.17) is used to estimate x2. Let the control input be given by Equation (3.35).
Then the origin of each subsystem in the cascaded system in Equation (3.37) is uniformly
globally asymptotically stable (UGAS), but the solutions of the complete system can not
be proven bounded because there does not exist, to the authors knowledge, a Lyapunov
function, at this time, that can be used to prove it. Therefore, the complete cascaded
system can not be proven UGAS.

Proof. Lyapunov analysis:

Analysis of subsystem 1, with e2 = 0 : With e2 = 0, subsystem 1 can be written as

∑
1

{
ẋ1 = σ̂ − c1x1
˙̂σ = uc

(3.38)

this can then be divided in two subsystems:
∑

11

{
ẋ1 = σ̂ − c1x1

∑
12

{
˙̂σ = uc

(3.39)
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3.3 Analysis of the HOSM algorithms with differentiator and state observer

where Lemma A.2.2 can be used. Subsystem
∑

11 with σ̂ = 0 has been analysed in
Section 3.2.1 to be GES. Since subsystem

∑
12 is the control input directly from the HOSM

algorithm with a differentiator it is FTS, and will therefore be UGAS and |σ̂(t)| < β1. To
check if the solutions of

∑
1 are UGB, subsystem

∑
11 has to be analysed when σ̂ 6= 0.

The derivative of the Lyapunov function V11 is then

V̇11(x) = −c1||x||2 + σ̂x1

≤ −c1||x||2 + θ||x||2 − θ||x||2 + β1||x||

≤ −(c1 − θ)||x||2 ∀ ||x|| ≥ β1
θ

(3.40)

where 0 < θ < c1. The solutions are then UGB, as the inequality in Equation (A.5) in
Theorem A.1.5 is satisfied. This means that subsystem

∑
1 is UGAS because

Lemma A.2.2 is satisfied.

Analysis of subsystem 2: Subsystem 2 has been analysed in Section 3.2.1 to be UGAS.

Analysis of the complete system: To check if the solutions of the complete system are UGB,
the boundedness of σ̂ and x1 have to be evaluated when e2 6= 0. First the boundedness of
σ̂ needs to be checked. As there does not yet exist a Lyapunov function for this controller
in the literature and it would be to time consuming to try to find such a Lyapunov function
the boundedness can not be checked. Therefore, the stability proof can not be taken any
further before such a Lyapunov function is found.

The closed-loop dynamics can not be analysed by FTS properties either because there
is no way of knowing that σ̂ does not escape to infinity in finite time when e2 6= 0.

3.3.2 The estimated value for x1 and x2 are used in the sliding surface

Overall closed-loop dynamics:

From Section 3.2.2:

ẋ1 = σ̂ − c1x1 + c1e1 + e2 (3.41)

˙̂σ = c1(x̂2 + z1) + x̂3 + z2 + g(t, x)u. (3.42)

By choosing

u =
1

g(t, x)
(−c1x̂2 − c1z1 − x̂3 − z2 − k1 + uc) (3.43)

and inserting u in Equation (3.42), ˙̂σ becomes

˙̂σ = uc. (3.44)

23



Chapter 3. Stability Analysis General System

The overall closed-loop dynamics can then be written as

∑
1

{
ẋ1 = σ̂ − c1x1 + c1e1 + e2
˙̂σ = uc

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(3.45)

Note that
∑

2 is the error dynamics for the state observer, from Equation (2.18).

Theorem 3.3.2. Assume that the error dynamics for a second-order system has the form
as in Equation (3.1), where |ḟ(t, x)| ≤ ∆ and g(t, x) is known and the sliding surface is
as in Equation (3.24) with c1 > 0. Assume that a state observer with the form as in
Equation (2.17) is used to estimate x1 and x2. Let the control input be given by
Equation (3.43). Then the origin of the cascaded system in Equation (3.45) is uniformly
globally asymptotically stable (UGAS), which ensures asymptotic convergence of the
tracking error.

Proof. Lyapunov analysis:

Analysis of subsystem 1, with e1 = 0 and e2 = 0: With e1 = 0 and e2 = 0, subsystem 1
can be written as

∑
1

{
ẋ1 = σ̂ − c1x1
˙̂σ = uc

(3.46)

which is proven UGAS in Section 3.3.1.

Analysis of subsystem 2: Subsystem 2 has been analysed in Section 3.2.1 to be UGAS.

Analysis of the complete system: To analyse the complete system, Lemma A.2.2 is used.
To check if the solutions of the complete system are UGB, the boundedness of x1 has to
be evaluated when e1 6= 0 and e2 6= 0, for this the Lyapunov function V11 is used. The
boundedness of σ̂ has already been checked in Section 3.3.1, as it is not effected by e.

V̇11(x) = −c1||x||2 + (σ̂ + e1 + e2)x1

≤ −c1||x||2 + θ||x||2 − θ||x||2 + (β1 + 2β2)||x||

≤ −(c1 − θ)||x||2 ∀ ||x|| ≥ β1 + 2β2
θ

(3.47)

where 0 < θ < c1. The solutions are then UGB, since the inequality in Equation (A.5) in
Theorem A.1.5 is satisfied. This means that the complete system is UGAS since
Lemma A.2.2 is satisfied.

The closed-loop dynamics can also be proven stable by using FTS properties. This
will be shown in the appendix, Section B.2.1.
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Chapter 4
Mass-Spring-Damper System

The mass-spring damper system is a simple yet challenging motion control problem. It is
therefore used as a test system to compare different SMC algorithms. The SMC algorithms
that are to be investigated with this system are:

• Super-twisting algorithm with a state observer, when the estimated value of x2 is
used in the sliding surface.

• Super-twisting algorithm with a state observer, when the estimated value of x1 and
x2 are used in the sliding surface.

• Nested third-order sliding mode control with differentiator and a state observer,
when the estimated value of x2 is used in the sliding surface.

• Nested third-order-sliding mode control with differentiator and a state observer,
when the estimated value of x1 and x2 are used in the sliding surface.

• Quasi-continuous third-order sliding mode control with differentiator and a state
observer, when the estimated value of x2 is used in the sliding surface.

• Quasi-continuous third-order sliding mode control with differentiator and a state
observer, when the estimated value of x1 and x2 are used in the sliding surface.

The STA is tested here for comparison purposes as it gave the smoothest control input and
the smallest error in Borlaug (2016). The HOSM algorithms are tested to see if they give a
smoother control input or smaller errors than the lower-order SMC algorithm. To be able
to implement the HOSM algorithms a differentiator was also included. The recursive form
of the arbitrary-order robust exact differentiator, Section 2.5.1, was chosen for the job.
The reason is that it is the most known and common differentiator designed for HOSM
algorithms. Both the position and velocity need to be available for measurement. For
the case when only the position measurements are available a higher-order sliding mode
observer, Section 2.5.2, will be used to estimate the states. The reason for using this state
observer is to make sure that the sliding surface dynamics does not contain discontinuous
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Chapter 4. Mass-Spring-Damper System

or non-differentiable terms, Kumari et al. (2016). To be able to see how the state observer
affects the performance and control abilities of the algorithms, a tracking control law where
the state observer is not used, i.e. the actual value for the states are used in the sliding
surface, will also be tested. In Borlaug (2016) such a control law was proposed for the
relay controller, the saturation controller, the STA and the STA with adaptive gains.

Stability for the error dynamics for a second-order general system was proven in
Chapter 3, for all the algorithms given above, except for the HOSM algorithms when the
estimated value of x2 was used in the sliding surface. In Section 4.3 it will be shown that
the error dynamics for the mass-spring-damper system fits the assumptions made for the
error dynamics for the general system, which means that the theorems in Chapter 3 also
hold for the error dynamics for the mass-spring-damper system.

4.1 System

Figure 4.1: Schematic of mass-spring-damper system

The mass-spring-damper system is a second order system, where the differential equation
that describes the system can be written as

mẍ+ cẋ+ kx = u+ d(t) (4.1)

where x [m] is the position of the mass, m [kg] is the weight of the mass, c [N s/m] is the
damping coefficient, k [N/m] is the spring constant, u [N] is the force input and d(t) is a
bounded time-varying disturbance. By setting x = x1 and ẋ = x2, Equation (4.1) can be
written as

ẋ1 = x2

ẋ2 =
1

m
(−cx2 − kx1 + u+ d(t)) = f(t, x) + g(t, x)u

(4.2)
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4.2 Control design

4.2 Control design
Control problem: The control objective is to make the position of the mass x, follow a
pre-defined trajectory.

4.2.1 Sliding surface design

To design a sliding surface an error variable has to be introduced. Define the output as x1,
the error variable can then be defined as

x̃1 = x1 − xdes (4.3)

where xdes is the desired position of the mass. This can be both time-varying and time-
invariant. The sliding surface should then be selected such that the state trajectories of
the controlled system is forced onto the sliding surface σ = σ̇ = 0, where the system
behaviour meets the design specifications. The controller u should also appear in the first
derivative of σ, so that the relative degree is equal to 1. The sliding surface σ can then be
chosen as

σ = x̃1 + ˙̃x1 = x̃1 + x̃2 (4.4)

where x̃2 = x2 − ẋdes. It is assumed that only the position, x1, is available for
measurement, an observer for the states are therefore designed, Section 4.2.2. The
observer states will be used in the sliding surface, and following the structure of
Equation 4.4, the revised sliding surface is then

σ̂ = x̃1 + ˆ̃x2 (4.5)

when the estimated value of x2 is used in the sliding surface, and

σ̂ = ˆ̃x1 + ˆ̃x2 (4.6)

when both the estimated value of x1 and x2 are used in the sliding surface. ˆ̃x1 = x̂1−xdes
and ˆ̃x2 = x̂2 − ẋdes, where x̂1 and x̂2 are the estimated states. For the remaining sections
of this chapter the sliding surface in Equation (4.4) will be called sliding surface 1, the
sliding surface in Equation (4.5) will be called sliding surface 2 and the sliding surface in
Equation (4.6) will be called sliding surface 3.

4.2.2 Observer and differentiator design

State observer

In Section 2.5.2 a third-order sliding mode observer was designed as

˙̂x1 = x̂2 + z1 = x̂2 + k1|e1|2/3 sgn(e1)

˙̂x2 = x̂3 + z2 + g(t, x)u = x̂3 + k2|e1|1/3 sgn(e1) + g(t, x)u

˙̂x3 = z3 = k3 sgn(e1)

(4.7)
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Chapter 4. Mass-Spring-Damper System

where k1, k2 and k3 are gains to be chosen according to Levant (1998) and Levant (2003a)
and e1 = x1 − x̂1. One choice of parameters that meets the requirements are k1 = 6L

1/3
SO ,

k2 = 11L
1/2
SO and k3 = 6LSO, where LSO is a sufficiently large constant, Chalanga et al.

(2016).

Differentiator

To be able to use the HOSM algorithms proposed in Section 2.4 a differentiator has to be
design. By using the recursive form of the arbitrary order robust exact differentiator with
r = 3, described in Equation (2.10), a third-order differentiator for σ can be designed as

ż0 = v0 v0 = −λ2L1/3
D |z0 − σ|

2/3
sgn(z0 − σ) + z1

ż1 = v1 v1 = −λ1L1/2
D |z1 − v0|

1/2
sgn(z1 − v0) + z2

ż2 = −λ0LD sgn(z2 − v1)

(4.8)

where the gains λ0, λ1 and λ2 are to be chosen according to Levant (1998) and Levant
(2003a). One choice of parameters that meets the requirements are λ0 = 1.1, λ1 = 1.5
and λ2 = 3. Here z0 = σ, z1 = σ̇ and z2 = σ̈ in the HOSM control algorithms. LD needs
to be sufficiently large.

4.2.3 Control algorithms
The super-twisting algorithm

By choosing the gains in Equation (2.3) to be k1 = 1.5
√
K and k2 = 1.1K, where K is a

sufficiently large positive constant. The STA can be written as

uSTA = −1.5
√
K|σ|1/2 sgn(σ) + v

v̇ = −1.1K sgn(σ)
(4.9)

Higher-order sliding mode controller (third-order)

Nested third-order sliding mode: By choosing r = 3 in Equation (2.8), the nested third-
order sliding mode controller can be described as

uN = −α sgn(σ̈ + β2(|σ̇|3 + |σ|2)1/6 × sgn(σ̇ + β1|σ|2/3 sgn(σ))) (4.10)

where β2 = 2, β1 = 1 and α is a sufficiently large constant.

Quasi-continuous third-order sliding mode: By choosing r = 3 in Equation (2.9), the
quasi-continuous third-order sliding mode controller can be described as

uQ = −ασ̈ + β2(|σ̇|+ |σ|2/3)−1/2(σ̇ + β1|σ|2/3 sgn(σ))

|σ̈|+ β2(|σ̇|+ |σ|2/3)1/2
(4.11)

where β2 = 2, β1 = 1 and α is a sufficiently large constant.
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4.2.4 Control input
In Chapter 3 the control input was found for the different sliding surfaces and control
algorithms, they can be generalized so that by changing uc in the following sections to
uSTA, uN or uQ it is valid for all the control algorithms. In the case where the state
observer is not used, the sliding surface will be sliding surface 1, and the control input is
u = 1

g(t,x)uc, Borlaug (2016).

Sliding surface 1: the estimated value for x2 is used in the sliding surface

u =
1

g(t, x)
(−x̂2 − x̂3 − z2 + uc) (4.12)

Sliding surface 2: the estimated value for x1 and x2 are used in the sliding surface

u =
1

g(t, x)
(−x̂2 − z1 − x̂3 − z2 + uc) (4.13)

4.3 Stability analysis
Stability for the error dynamics for a second-order general system was proven in Chapter 3.
In this section it will be shown that the error dynamics for the mass-spring-damper system
fits the assumptions made for the error dynamics for the general system, which means that
the theorems in Chapter 3 also hold for the error dynamics for the mass-spring-damper
system. The assumptions made for the error dynamics for the second-order general system
were

Assumption 1 |ḟ(t, x)| < ∆

Assumption 2 g(t, x) known

Assumption 3 c1 > 0

The controller gains also have to be properly chosen according to Section 2.1, 2.5 and
4.2. The sliding surface for this system is σ = x̃1 + x̃2, which means that c1 = 1. This
is also the case for the sliding surfaces where the estimated states are used. Therefore,
assumption 3 hold. To check if assumption 1 and 2, hold the error dynamics has to be
found and analysed.
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4.3.1 Error dynamics

The MSDS is described by

ẋ1 = x2

ẋ2 =
1

m
(−cx2 − kx1 + u+ d(t))

(4.14)

and the error variables are: x̃1 = x1 − xdes(t) and x̃2 = x2 − ẋdes(t). By differentiating
the error variables, the error dynamics can be described as

˙̃x1 = ẋ1 − ẋdes(t) = x2 − ẋdes(t) = x̃2

˙̃x2 = ẋ2 − ẍdes(t) =
1

m
(−cx2 − kx1 + u+ d(t))− ẍdes(t)

(4.15)

by using the fact that x1 = x̃1 + xdes(t) and x2 = x̃2 + ẋdes(t) it can be rewritten as

˙̃x1 = x̃2

˙̃x2 =
1

m
(−c(x̃2 + ẋdes(t))− k(x̃1 + xdes(t)) + u+ d(t))− ẍdes(t)

=
1

m
(−cx̃2 − kx̃1 + u) +D(t) = f(t, x̃) + g(t, x̃)u

(4.16)

where D(t) = (1/m)(−cẋdes(t)− kxdes(t) + d(t))− ẍdes(t), f(t, x̃) = (1/m)(−cx̃2 −
kx̃1)+D(t) and g(t, x̃) = 1/m. Sincem is known, g(t, x) is also known, and assumption
2 is satisfied.

4.3.2 Lyapunov analysis

The error dynamic can be written with u = 0 as

˙̃x =

[
0 1
− k
m − c

m

] [
x̃1
x̃2

]
+

[
0

D(t)

]
(4.17)

The nominal system can then be written as

˙̃x = Ax̃ =

[
0 1
− k
m − c

m

] [
x̃1
x̃2

]
(4.18)

Let m = 2, k = 2 c = 5, this is the values used in the result section, Section 4.5. The
eigenvalues of A is then λ1 = −0.5 and λ2 = −2.5, this means that Re{λi} < 0, and A
is Hurwitz, Theorem A.1.1. Let Q = I to maximize the ratio λmin(Q)/λmax(P ), then a
solution to PA+ATP = −Q in Theorem A.1.1 is given by

P =

[
1.65 0.5
0.5 0.4

]
(4.19)
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4.3 Stability analysis

The Lyapunov function V = x̃TPx̃ then satisfies

λmin(P )||x̃||22 ≤ V (t, x̃) ≤ λmax(P )||x̃||22
∂V

∂x̃
Ax̃ = −x̃TQx̃ ≤ −λmin(Q)||x̃||22

∣∣∣∣∣

∣∣∣∣∣
∂V

∂x̃

∣∣∣∣∣

∣∣∣∣∣
2

≤ 2λmax(P )||x̃||2

(4.20)

which means that the nominal system has a globally exponentially stable origin, since
Theorem A.1.4 is satisfied. Lemma A.2.1 can then be used to analyse the perturbed system.
Assume that |D(t)| < δ.

V̇ (t, x̃) = 2 ˙̃xTPx̃ = 2

[
x̃2

−2.5x̃2 − x̃1 +D(t)

]T [
1.65 0.5
0.5 0.4

] [
x̃1
x̃2

]

= 2((1.65x̃1 + 0.5x̃2)x̃2 + ((−2.5x̃2 − x̃1 +D(t))(0.5x̃1 + 0.4x̃2)))

= 2((−0.5x̃21 − 0.5x̃22) + (0.5D(t)x̃1 + 0.4D(t)x̃2))

≤ −||x̃||22 + δx̃1 + 0.8δx̃2

≤ −||x̃||22 +

√
41

5
δ||x̃||2

= −||x̃||22 + θ||x̃||22 − θ||x̃||22 +

√
41

5
δ||x̃||2

≤ −(1− θ)||x̃||22 ∀ ||x̃||2 ≥
√
41
5 δ

θ

(4.21)

where 0 < θ < 1. Then, for all ||x̃(t0)|| <
√
c1/c2r, the solution x̃(t) of the perturbed

system
˙̃x = f(t, x̃) + g(t, x̃)u (4.22)

satisfies
||x̃(t)|| ≤ kexp[−γ(t− t0)]||x̃(t0)||, ∀t0 ≤ t < t0 + T (4.23)

and
||x̃(t)|| ≤ b, ∀t ≥ t0 + T (4.24)

for some finite T, where

k =

√
c2
c1
, γ =

(1− θ)c3
2c2

, b =
c4
c3

√
c2
c1

δ

θ
(4.25)

with c1 = λmin(P ), c2 = λmax(P ), c3 = λmin(Q) and c4 = 2λmax(P ). This means
that ||x̃(t)|| is ultimately bounded by b. Note that this holds for all m, k and c that makes
A Hurwitz. The assumption that D(t) is bounded holds, if the disturbance d(t) and the
desired trajectory xdes(t) are bounded. The latter is almost always bounded by design, and
d(t) is in this case assumed bounded. Since f(t, x̃) is a function of a bounded function
D(t) and bounded signals x̃(t), the function f(t, x̃) will be bounded, which means that
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ḟ(t, x̃) also will be bounded, and assumption 1 holds. The error dynamics for the mass-
spring-damper system therefore satisfy all of the assumptions made by the error dynamics
for the general system, and the theorems in Chapter 3 also holds for the error dynamics for
the mass-spring-damper system.

4.4 Implementation
For the mass-spring damper system MATLAB Simulink was used to implement the
different controllers, observers and the system model. Code for running the systems can
be found in the Appendix D.1.

4.4.1 System model

Figure 4.2: Implementation of the mass-spring-damper system

4.4.2 Sliding surface
Sliding surface 1

Figure 4.3: Implementation of sliding surface 1
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4.4 Implementation

Sliding surface 2

Figure 4.4: Implementation of sliding surface 2

Sliding surface 3

Figure 4.5: Implementation of sliding surface 3
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4.4.3 Observer and differentiator
State observer

Figure 4.6: Implementation of the state observer
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4.4 Implementation

Differentiator

Figure 4.7: Implementation of the differentiator
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4.4.4 Control input
Sliding surface 1

Figure 4.8: Implementation of the control input, sliding surface 1

Sliding surface 2

Figure 4.9: Implementation of the control input, sliding surface 2
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4.4 Implementation

Sliding surface 3

Figure 4.10: Implementation of the control input, sliding surface 3
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Super-twisting algorithm

Figure 4.11: Implementation of the STA

Third-order sliding mode control

Figure 4.12: Implementation of the third-order SMC with differentiator
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4.4 Implementation

Nested third-order sliding mode controller

Figure 4.13: Implementation of the nested third-order SMC
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Quasi-continuous third-order sliding mode controller

Figure 4.14: Implementation of the quasi-continuous third-order SMC
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4.4 Implementation

4.4.5 Complete system:
Sliding surface 1

Figure 4.15: Implementation of the complete system, sliding surface 1
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Sliding surface 2

Figure 4.16: Implementation of the complete system, sliding surface 2

42



4.5 Results

Sliding surface 3

Figure 4.17: Implementation of the complete system, sliding surface 3

4.5 Results
For the simulations the constants in the mass-spring-damper system are set to: m = 2,
c = 5 and k = 2. The disturbance is set to: d(t) = 2 sin(3t) + sin(5t) + 2, and the
reference input is set to xdes = 5 sin(2t). The sufficiently large K, LSO, LD and α that
were mentioned in the previous section were chosen with the trial and error method. This
is because it is difficult finding a bound on the disturbance. The gains were found by
starting with a very high or low gain, and then increasing or decreasing it until the error
started to increase. The gain with the lowest error was then chosen.

43



Chapter 4. Mass-Spring-Damper System

4.5.1 The super-twisting algorithm

Sliding surface 1: the actual value of x1 and x2 are used
The gain was set to: K = 100.

Figure 4.18: MSDS: Simulation of STA, sliding surface 1
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4.5 Results

The gains were set to: K = 75 and LSO = 16.
Sliding surface 2: the estimated value for x2 is used

Figure 4.19: MSDS: Simulation of STA with state observer, sliding surface 2 (a)
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Figure 4.20: MSDS: Simulation of STA with state observer, sliding surface 2 (b)
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4.5 Results

Sliding surface 3: the estimated value for x1 and x2 are used

Figure 4.21: MSDS: Simulation of STA with state observer, sliding surface 3 (a)
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Figure 4.22: MSDS: Simulation of STA with state observer, sliding surface 3 (b)
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4.5 Results

4.5.2 Nested third-order sliding mode control

Sliding surface 1: the actual value of x1 and x2 are used
The gains were set to: α = 40 and LD = 20.

Figure 4.23: MSDS: Simulation of nested third-order SMC with differentiator, sliding surface 1 (a)
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Figure 4.24: MSDS: Simulation of nested third-order SMC with differentiator, sliding surface 1 (b)
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4.5 Results

Sliding surface 2: the estimated value for x2 is used
The gains were set to: α = 28, LSO = 16 and LD = 20.

Figure 4.25: MSDS: Simulation of nested third-order SMC with differentiator and state observer,
sliding surface 2 (a)
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Figure 4.26: MSDS: Simulation of nested third-order SMC with differentiator and state observer,
sliding surface 2 (b)
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4.5 Results

Sliding surface 3: the estimated value for x1 and x2 are used
The gains were set to: α = 28, LSO = 16 and LD = 5.

Figure 4.27: MSDS: Simulation of nested third-order SMC with differentiator and state observer,
sliding surface 3 (a)

53



Chapter 4. Mass-Spring-Damper System

Figure 4.28: MSDS: Simulation of nested third-order SMC with differentiator and state observer,
sliding surface 3 (b)

54



4.5 Results

4.5.3 Quasi-continuous third-order sliding mode control

Sliding surface 1: the actual value of x1 and x2 are used
The gains were set to: α = 40 and LD = 1.

Figure 4.29: MSDS: Simulation of quasi-continuous third-order SMC with differentiator, sliding
surface 1 and α = 40 (a)
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Figure 4.30: MSDS: Simulation of quasi-continuous third-order SMC with differentiator, sliding
surface 1 and α = 40 (b)

56



4.5 Results

The gains where set to: α = 30, LSO = 16 and LD = 1.
Sliding surface 2: the estimated value for x2 is used

Figure 4.31: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 2 and α = 30 (a)
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Figure 4.32: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 2 and α = 30 (b)
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4.5 Results

Sliding surface 3: the estimated value for x1 and x2 are used

Figure 4.33: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 3 and α = 30 (a)
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Figure 4.34: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 3 and α = 30 (b)
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4.5 Results

Sliding surface 1: the actual value of x1 and x2 are used
The gains were set to: α = 46 and LD = 20.

Figure 4.35: MSDS: Simulation of quasi-continuous third-order SMC with differentiator, sliding
surface 1 and α = 46 (a)
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Figure 4.36: MSDS: Simulation of quasi-continuous third-order SMC with differentiator, sliding
surface 1 and α = 46 (b)

62



4.5 Results

Sliding surface 2: the estimated value for x2 is used
The gains were set to: α = 35.25, LSO = 16 and LD = 20.

Figure 4.37: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 2 and α = 35.25 (a)
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Figure 4.38: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 2 and α = 35.25 (b)
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4.5 Results

Sliding surface 3: the estimated value for x1 and x2 are used
The gains were set to: α = 34.2, LSO = 16 and LD = 20.

Figure 4.39: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 3 and α = 34.2 (a)
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Figure 4.40: MSDS: Simulation of quasi-continuous third-order SMC with differentiator and state
observer, sliding surface 3 and α = 34.2 (b)

66



4.5 Results

In order to better compare the different algorithms the absolute maximum value for the
error variables for each algorithm have been gather in Table 4.1, 4.2, 4.3, 4.4 and 4.5.
Here the first 15 seconds were not considered so that the absolute maximum value for the
error variables were found when the control input had stabilized.

Table 4.1: MSDS: absolute maximum value for position error

Algorithm Position error
Sliding 1 Sliding 2 Sliding 3

Super-twisting algorithm 3.3984 · 10−5 3.4021 · 10−5 3.4021 · 10−5

Nested 3rd-order SMC 3.6205 · 10−5 3.5976 · 10−5 6.2447 · 10−4

Quasi-continuous 3rd-order SMC,
α = 40/30/30 3.2918 · 10−5 5.0395 · 10−5 3.5110 · 10−4

Quasi-continuous 3rd-order SMC,
α = 46/35.25/34.2 0.1673 0.1073 0.1232

Table 4.2: MSDS: absolute maximum value for state observer error

Algorithm e1 e2
Sliding 2 Sliding 3 Sliding 2 Sliding 3

Super-twisting
algorithm 1.9451 · 10−13 1.9451 · 10−13 3.2623 · 10−8 3.3151 · 10−8

Nested 3rd-order
SMC 3.9202 · 10−13 1.2077 · 10−12 8.1141 · 10−8 1.7150 · 10−7

Quasi-continuous
3rd-order SMC, 1.9718 · 10−13 1.5124 · 10−12 3.4181 · 10−8 1.9921 · 10−7

α = 30
Quasi-continuous
3rd-order SMC, 1.9362 · 10−13 4.2633 · 10−13 3.2161 · 10−8 7.4957 · 10−8

α = 35.25/34.2

Table 4.3: MSDS: absolute maximum value for differentiator error, sliding surface 1

Algorithm z0 z1 z2
Nested 3r-order SMC 4.1483 · 10−5 7.4184 · 10−4 0.0144
Quasi-continuous 3rd-order SMC,
α = 40 4.0002 · 10−6 1.4264 · 10−4 0.0039
Quasi-continuous 3rd-order SMC,
α = 46 0.3333 0.6897 1.4675
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Table 4.4: MSDS: absolute maximum value for differentiator error, sliding surface 2

Algorithm z0 z1 z2
Nested 3rd-order SMC 3.5271 · 10−5 6.1956 · 10−4 0.0141
Quasi-continuous 3rd-order SMC,
α = 30 8.1039 · 10−7 9.8327 · 10−5 0.0030
Quasi-continuous 3rd-order SMC,
α = 35.25 0.2389 0.4962 1.0570

Table 4.5: MSDS: absolute maximum value for differentiator error, sliding surface 3

Algorithm z0 z1 z2
Nested 3rd-order SMC 0.0020 0.0128 0.0783
Quasi-continuous 3rd-order SMC,
α = 30 0.0010 0.0030 0.0045
Quasi-continuous 3rd-order SMC,
α = 34.2 0.2746 0.5746 1.2140
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Chapter 5
Underwater Swimming
Manipulator

The underwater swimming manipulator (USM), is a snake-like, multi-articulated,
underwater robot equipped with thrusters. The USM has a complex control design
problem. This is because the USM is subject to hydrodynamic and hydrostatic parameter
uncertainties, uncertain thruster characteristics, unknown disturbances, and un-modelled
dynamic effects, e.g. thruster dynamics and coupling forces caused by joint motion.
Sliding mode techniques have been applied to land-based snake robots in Rezapour et al.
(2014) to achieve robust tracking of a desired gait pattern and under-actuated straight line
path following. To the author’s best knowledge, sliding mode control algorithms have
only been tested previously on an USM by the author in Borlaug (2016). The cases that
will be tested on this system are the same as for the test system, i.e. MSDS.

In Section 5.3 it will be shown that the error dynamics for the USM system fits the
assumptions made for the error dynamics for the general system, which means that the
theorems in Chapter 3 also hold for the error dynamics for the USM.
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5.1 System

Figure 5.1: System overview USM, Sverdrup-Thygeson et al. (2016)

In this chapter the robot model presented in Sverdrup-Thygeson et al. (2016) will be
used. The model in Sverdrup-Thygeson et al. (2016) extends the 2D model proposed in
Kelasidi et al. (2014), by modelling also additional effectors and considering the force
allocation among these effectors. In this section the equation of motion for the USM and
the force allocation matrix will be explained, detailed calculations can be found in
Sverdrup-Thygeson et al. (2016). The kinematic equations are developed for 2D based on
the method outlined in Liljebäck et al. (2012). The following two Sections 5.1.1 and 5.1.2
are mainly taken from Borlaug (2016).

5.1.1 Equation of motion USM
The USM consists of n rigid links, connected by n-1 motorized joints, equipped with r
additional effectors producing forces and moments on the centre of mass (CM) of the
USM, that is moving fully submerged in a 2D virtual horizontal plane. The length of each
link is defined as 2li, were i = 1, . . . , n is the link number. The links can have different
mass and length depending on the module configuration of the USM. The joint angels are
q = [q1, . . . , qn−1]T ∈ Rn−1 and the global link angels are ψ = [ψ1, . . . , ψn]T ∈ Rn.
The kinematics and the forces and torques acting on each link is illustrated in Figure 5.2.

(a) Kinematic parameters (b) Forces and torques acting on each link

Figure 5.2: Underwater swimming manipulator, Sverdrup-Thygeson et al. (2016)
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5.1 System

Definitions that will be used:

A =




1 1
. . . . . .

1 1


 ∈ R(n−1)×n, D =




1 −1
. . . . . .

1 −1


 ∈ R(n−1)×n,

e = [1 · · · 1]T ∈ Rn, E =

[
e 0n×1

0n×1 e

]
∈ R2n×2

sinψ = [sinψ1 . . . sinψn]T ∈ Rn, Sψ = diag(sinψ) ∈ Rn×n,
cosψ = [cosψ1 . . . cosψn]T ∈ Rn, Cψ = diag(cosψ) ∈ Rn×n,
ψ̇2 = [ψ̇2

1 . . . ψ̇
2
n]T ∈ Rn.

M = diag([m1 . . . mn]) ∈ Rn×n, L = diag([l1 . . . ln]) ∈ Rn×n,
J = diag([ji . . . jn]) ∈ Rn×n

M is the mass matrix, L is the length matrix and J is the inertia matrix.

The global frame position pCM ∈ R2 of the CM of the USM is defined as

pCM =

[
px
py

]
=

[ 1
mt

∑n
i=1mixi

1
mt

∑n
i=1miyi

]
=

1

mt

[
eTMX
eTMY

]
(5.1)

where (xi, yi), i = 1, . . . , n are the coordinates of the CM of link i in global frame, mi

is the mass of link i and mt =
∑n
i=1mi is the total mass of the USM. Equation (5.1) is

valid because it is assumed that the mass of each link is uniformly distributed. The matrix
representation of the force balance for all links with different link mass is expressed by

MẌ = DThx + fx + fpx, MŸ = DThy + fy + fpy (5.2)

where fpx and fpy are the forces from the additional effectors, hx and hy are the joint
constraint forces and fx and fy are the fluid forces on all links. By differentiating
Equation (5.1) and inserting Equation (5.2), the joint constraint forces cancel out, and the
translational motion of the CM of the USM can be written as

mtp̈x = eT (fx + fpx), mtp̈y = eT (fy + fpy). (5.3)

The equation of motion can be expressed as

Mψψ̈ +Wψψ̇
2 + Vψψ̇ + Λ3|ψ̇|ψ̇ −K1µ(Sψep̈x − Cψep̈y)

+ SψK(fDx + fpx)− CψK(fDy + fpy) = DTu
(5.4)
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where

Mψ = J + V1 +K1µK
T
1 + Λ1,

Wψ = V2 −K1µK
T
2

Vψ = Λ2 −K1µ(CψV
a
x + SψV

a
y )

K1 = SψKSψ + CψKCψ, K2 = SψKCψ − CψKSψ
V1 = SψV Sψ + CψV Cψ, V2 = SψV Cψ − CψV Sψ
V = LAT (DM−1DT )−1AL

K = LAT (DM−1DT )−1DM−1 ∈ Rn×n

Λ1 = diag(λ1,1, . . . , λ1,n) ∈ Rn×n

Λ2 = diag(λ2,1, . . . , λ2,n) ∈ Rn×n

Λ3 = diag(λ3,1, . . . , λ3,n) ∈ Rn×n

µ = diag(µ1, . . . , µn) ∈ Rn×n

here V ax and V ay are the ocean current velocity expressed in inertial frame coordinates,
fDx and fDy are the drag forces (linear and non-linear) on the USM, and p̈x and p̈y can
be found by rearranging Equation (5.3). The coefficients λ2,i, λ3,i represent the drag
parameters due to the pressure difference between the two sides of the body, and the
parameters µi and λ1,i represent the added mass of the fluid carried by the moving body.

5.1.2 Force allocation

The force allocation distribution is given by

τCM =



FCM,x

FCM,y

MCM,z


 =




eT 01×n

01×n eT

eTSψK −eTCψK



[
fpx
fpy

]
= T (ψ)fp, (5.5)

where T (ψ) is the allocation matrix and fp = [fp,k1 , . . . , fp,kr ] is the vector of scalar
effector forces. It is the mapping between the effector forces and the forces and moments
acting on the CM of the USM. According to Sverdrup-Thygeson et al. (2016) the force
allocation matrix for 2D application can be expressed as

T (ψ) =




bTx
bTy

eTSψKB
T
X − eTCψKBTY


 (5.6)

where bx, by , BX and BY are configuration vectors. It is assumed that the additional
effector forces are acting through the CM of each link. The primary objective for the force
allocation method is to distribute the efforts among the additional effectors to obtain the
forces and moments required to maintain the desired heading and follow the path with
non-zero forward velocity.
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5.2 Control design
Control problem: Assume that there exist a guidance system which determines a
suitable path for the USM to follow. The task at hand is to design a motion controller that
calculates the desired forces for the translational motion FCM, and the desired moments
for the rotational motion MCM, of the USM.

A sliding mode control algorithm will be used to calculate the desired forces, FCM. To
calculate the desired moments, MCM, a proportional controller will be used. The desired
forces and moments are represented by

τCM,d =

[
FCM,d

MCM,d

]
=



FCM,dx

FCM,dy

MCM,d


 (5.7)

Since it is the tracking problem for the position of the centre of mass of the USM that will
be considered the equations of motion that are relevant for the design are the translational
motion of the CM, Equation (5.3). By dividing the equations by mt (the total mass of the
USM), and using the fact that FCM,x = eT fpx and FCM,y = eT fpy from Equation (5.5),
the equations of motion can be written as

p̈x =
1

mt
(eT fx + FCM,x) =

1

mt
eT fx +

1

mt
FCM,x (5.8)

p̈y =
1

mt
(eT fy + FCM,y) =

1

mt
eT fy +

1

mt
FCM,y (5.9)

where eT fx is the sum of all forces acting on the CM in x-direction and eT fy is the sum of
all forces acting on the CM in y-direction. These forces are hard to model exactly and will
therefore be interpreted as a time-varying bounded disturbance called f(t). The equations
can then be written as

p̈x =
1

mt
fx(t) +

1

mt
FCM,x (5.10)

p̈y =
1

mt
fy(t) +

1

mt
FCM,y (5.11)

5.2.1 Sliding surface design
First the error variable is defined. As the output variable for the translational motion of the
USM is pCM, the error variable can be defined as

p̃ =

[
p̃x
p̃y

]
= pCM − pCM,des =

[
px − px,des
py − py,des

]
(5.12)

where pCM,des is the desired position of the global frame position of the CM of the USM.
To recap the sliding surface should be selected such that the state trajectories of the
controlled system is forced onto the sliding surface σ = σ̇ = 0, where the system
behaviour meets the design specifications. The controller u should also appear in the first
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derivative of σ, so that the relative degree is equal to 1. The sliding surface σ can then be
chosen as

σ =

[
σx
σy

]
= p̃+ ˙̃p =

[
p̃x
p̃y

]
+

[
˙̃px
˙̃py

]
=

[
px − px,des
py − py,des

]
+

[
ṗx − ṗx,des
ṗy − ṗy,des

]
(5.13)

It is assumed that only the position, pCM, of the centre of mass is available for
measurement, an observer for the states are therefore designed, Section 5.2.2. The
observer states will be used in the sliding surface, and following the structure of
Equation (5.13), the revised sliding surface is then

σ̂ =

[
σ̂x
σ̂y

]
= p̃+

˙̂
p̃ =

[
p̃x
p̃y

]
+

[
˙̂
p̃x
˙̂
p̃y

]
=

[
px − px,des
py − py,des

]
+

[
˙̂px − ṗx,des
˙̂py − ṗy,des

]
. (5.14)

when the estimated value of ṗ =
[
ṗx ṗy

]T
is used in the sliding surface, and

σ̂ =

[
σ̂x
σ̂y

]
= ˆ̃p+

˙̂
p̃ =

[
ˆ̃px
ˆ̃py

]
+

[
˙̂
p̃x
˙̂
p̃y

]
=

[
p̂x − px,des
p̂y − py,des

]
+

[
˙̂px − ṗx,des
˙̂py − ṗy,des

]
. (5.15)

when both the estimated value of pCM and ṗ are used in the sliding surface. For the
remaining sections of this chapter the sliding surface in Equation (5.13) will be called
sliding surface 1, the sliding surface in Equation (5.14) will be called sliding surface 2 and
the sliding surface in Equation (5.15) will be called sliding surface 3.

5.2.2 Observer and differentiator design
State observer

By designing the observer structure as in Section 2.5.2, the state observer is

˙̂p1 =

[
˙̂p1,x
˙̂p1,y

]
=

[
p̂2,x + z1,x
p̂2,y + z1,y

]
=

[
p̂2,x + k1‖e1,x‖2/3 sgn(e1,x)
p̂2,y + k1‖e1,y‖2/3 sgn(e1,y)

]

˙̂p2 =

[
˙̂p2,x
˙̂p2,y

]
=

[
p̂3,x + z2,x + 1

mt
ux

p̂3,y + z2,y + 1
mt
uy

]

=

[
p̂3,x + k2‖e1,x‖1/3 sgn(e1,x) + 1

mt
ux

p̂3,y + k2‖e1,y‖1/3 sgn(e1,y) + 1
mt
uy

]

˙̂p3 =

[
˙̂p3,x
˙̂p3,y

]
=

[
z3,x
z3,y

]
=

[
k3 sgn(e1,x)
k3 sgn(e1,y)

]

(5.16)

where k1, k2 and k3 are gains to be chosen according to Levant (1998) and Levant (2003a),
e1,x = px − p̂1,x and e1,y = py − p̂1,y . p̂1 is the estimated value for pCM, and p̂2
is the estimated value for ṗ. One choice of parameters that meets the requirements in
Levant (1998) and Levant (2003a), is according to Chalanga et al. (2016), k1 = 6L

1/3
SO ,

k2 = 11L
1/2
SO and k3 = 6LSO, where LSO is a sufficiently large constant.
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Differentiator

To be able to use the HOSM algorithms proposed in Section 2.4 a differentiator has to be
design. By using the recursive form of the arbitrary order robust exact differentiator with
r = 3, described in Equation (2.10), a third order differentiator for σ can be designed as

ż0 =

[
z0,x
z0,y

]
=

[
v0,x
v0,y

]
,

[
v0,x
v0,y

]
=

[
−λ2L1/3

D |z0,x − σx|
2/3

sgn(z0,x − σx) + z1,x

−λ2L1/3
D |z0,y − σy|

2/3
sgn(z0,y − σy) + z1,y

]

ż1 =

[
z1,x
z1,y

]
=

[
v1,x
v1,y

]
,

[
v1,x
v1,y

]
=

[
−λ1L1/2

D |z1,x − v0,x|
1/2

sgn(z1,x − v0,x) + z2,x

−λ1L1/2
D |z1,y − v0,y|

1/2
sgn(z1,y − v0,y) + z2,y

]

ż2 =

[
z2,x
z2,y

]
=

[
v2,x
v2,y

]
,

[
v2,x
v2,y

]
=

[
−λ0LD sgn(z2,x − v1,x)
−λ0LD sgn(z2,y − v1,y)

]

(5.17)

where the gains λ0, λ1 and λ2 are to be chosen according to Levant (1998) and Levant
(2003a). One choice of parameters that meets the requirements are λ0 = 1.1, λ1 = 1.5
and λ2 = 3. Here z0 = σ, z1 = σ̇ and z2 = σ̈ in the HOSM algorithms. LD needs to be
sufficiently large.

5.2.3 Control algorithms

The super-twisting algorithm

By choosing the gains in Equation (2.3) to be k1 = 1.5
√
K and k2 = 1.1K, where K is a

sufficiently large positive constant. The control structure can be written as

uSTA =

[
ux
uy

]
= −1.5

√
K

[
|σx|1/2 sgn(σx) + vx
|σy|1/2 sgn(σy) + vy

]

v̇ =

[
v̇x
v̇y

]
= −1.1K

[
sgn(σx)
sgn(σy)

] (5.18)

Higher-order sliding mode controller (third-order):

Nested third-order sliding mode: By choosing r = 3 in Equation (2.8), the nested third-
order sliding mode controller can be written as

uN =

[
ux
uy

]
= −α

[
sgn(σ̈x + β2(|σ̇x|3 + |σx|2)1/6 × sgn(σ̇x + β1|σx|2/3 sgn(σx)))

sgn(σ̈y + β2(|σ̇y|3 + |σy|2)1/6 × sgn(σ̇y + β1|σy|2/3 sgn(σy)))

]

(5.19)

where β2 = 2, β1 = 1 and α is a sufficiently large constant.
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Quasi-continuous third-order sliding mode: By choosing r = 3 in Equation (2.9), the
quasi-continuous third-order sliding mode controller is

uQ =

[
ux
uy

]
= −α




σ̈x + β2(|σ̇x|+ |σx|2/3)−1/2(σ̇x + β1|σx|2/3 sgn(σx))

|σ̈x|+ β2(|σ̇x|+ |σx|2/3)1/2

σ̈y + β2(|σ̇y|+ |σy|2/3)−1/2(σ̇y + β1|σy|2/3 sgn(σy))

|σ̈y|+ β2(|σ̇y|+ |σy|2/3)1/2




(5.20)

where β2 = 2, β1 = 1 and α is a sufficiently large constant.

PD-controller

In order to compare the performance of the SMC algorithms to a linear controller with
respect to disturbances and modelling errors, the standard PD-controller that was
implemented Sverdrup-Thygeson et al. (2016) was used.

uPD = kCM
d

[
ṗx,des − ṗx
ṗy,des − ṗy

]
+ kCM

p

[
px,des − px
py,des − py

]
(5.21)

where kCM
d and kCM

p are controller gains. The estimated value for pCM and ṗ will also be
used here, so that the simulated cases are as similar as possible.

5.2.4 Control input

The control input can be written, by using Equation (5.5) and Equation (5.7), as

u =

[
ux
uy

]
= FCM =

[
FCM,x

FCM,y

]
(5.22)

In Chapter 3 the control input was found for the different sliding surfaces and control
algorithms, they can be generalized so that by changing uc in the following equations to
uSTA, uN , uQ or uPD it is valid for all the control algorithms. In the case where the state
observer is not used, the sliding surface will be sliding surface 1, and the control input is
u = 1

g(t,x)uc, Borlaug (2016).

Sliding surface 2: the estimated value for ṗ is used in the sliding surface

u =
1

g(t, x)
(−p̂2 − p̂3 − z2 + uc) (5.23)

Sliding surface 3: the estimated value for pCM and ṗ are used in the sliding surface

u =
1

g(t, x)
(−p̂2 − z1 − p̂3 − z2 + uc) (5.24)
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5.3 Stability analysis
Stability for the error dynamics for a second-order general system was proven in Chapter 3.
In this section it will be shown that the error dynamics for the USM fits the assumptions
made for the error dynamics for the general system, which means that the theorems in
Chapter 3 also hold for the error dynamics for the USM. The assumptions made for the
error dynamics for the second-order general system were

Assumption 1 |ḟ(t, x)| < ∆

Assumption 2 g(t, x) known

Assumption 3 c1 > 0

The controller gains also have to be properly chosen according to Section 2.1, 2.5 and 5.2.
The sliding surface for this system is σ = p̃+ ˙̃p, which means that c1 = 1. This is also the
case for the sliding surfaces where the estimated states are used. Therefore, assumption 3
hold. To check if assumption 1 and 2 hold the error dynamics in both x and y direction
have to be found and analysed.

5.3.1 Stability analysis in x-direction
Error dynamics

The translational motion in x-direction is described by

p̈x =
1

mt
fx(t) +

1

mt
FCM,x (5.25)

By setting px1 = px and px2 = ṗx, it can be written as:

ṗx1
= px2

ṗx2
=

1

mt
fx(t) +

1

mt
FCM,x

(5.26)

The error variables are: p̃x1
= p̃x = px − px,des and p̃x2

= ˙̃px = ṗx − ṗx,des. By
differentiating the error variables, the error dynamics can be described as

˙̃px1
= ˙̃px = ṗx − ṗx,des(t) = p̃x2

˙̃px2
= p̈x − p̈x,des(t) =

1

mt
fx(t) +

1

mt
FCM,x − p̈x,des(t)

(5.27)

Since the reference trajectory will be bounded by design and since fx(t) is assumed
bounded, a new bounded function called Fx(t) can be introduced,
Fx(t) = (1/mt)fx(t) − p̈x,des(t). Fx(t) is a function of two bounded signals, and
therefore will be bounded, which means that the derivative will be bounded and
assumption 1 is satisfied. Since g(t, x) is 1/mt and mt is known assumption 2 is also
satisfied. The error dynamics in x-direction for the USM therefore satisfy all of the
assumptions made by the error dynamics for the general system, and the theorems in
Chapter 3 also holds for the error dynamics in x-direction for the USM.
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5.3.2 Stability analysis in y-direction
Error dynamics

The translational motion in y-direction is described by

p̈y =
1

mt
fy(t) +

1

mt
FCM,y (5.28)

By setting py1 = py and py2 = ṗy , it can be written as:

ṗy1 = py2

ṗy2 =
1

mt
fy(t) +

1

mt
FCM,y

(5.29)

The error variables are: p̃y1 = p̃y = py − py,des and p̃y2 = ˙̃py = ṗy − ṗy,des. By
differentiating the error variables, the error dynamics can be described as

˙̃py1 = ˙̃py = ṗy − ṗy,des(t) = p̃y2

˙̃py2 = p̈y − p̈y,des(t) =
1

mt
fy(t) +

1

mt
FCM,y − p̈y,des(t)

(5.30)

Since the reference trajectory will be bounded by design and since fy(t) is assumed
bounded, a new bounded function called Fy(t) can be introduced,
Fy(t) = (1/mt)fy(t) − p̈y,des(t). Fy(t) is a function of two bounded signals, and
therefore will be bounded, which means that the derivative will be bounded and
assumption 1 is satisfied. Since g(t, x) is 1/mt and mt is known assumption 2 is also
satisfied. The error dynamics in y-direction for the USM therefore satisfy all of the
assumptions made by the error dynamics for the general system, and the theorems in
Chapter 3 also holds for the error dynamics in y-direction for the USM.

5.4 Implementation

5.4.1 System
The complete model with force allocation matrix was implemented in MATLAB. The
USM implemented has n = 16 links, each one having length 2li = 0.14 m and massmi =
0.6597 kg. The thruster configuration used corresponds to configuration 2 in Sverdrup-
Thygeson et al. (2016), this has one tail effector attached at link 1 exerting force along the
link x-axis and four additional effectors located at link number 3, 6, 11 and 14 exerting
forces normal to the links. For more details regarding the parameters used in the model,
please see Sverdrup-Thygeson et al. (2016). There has been implemented two different
case studies, one called torpedo mode, which is described in Section 5.4.1, and one called
operation mode, described in Section 5.4.1. See Appendix D.2 for the code.
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Torpedo mode

The USM will be moving as a torpedo-shaped AUV when it is moving from one place to
another. To simulate this type of behaviour, the link angles were set to zero, i.e. there was
no lateral undulation, and a line-of-sight (LOS) guidance law was used for heading
control. For information on how the LOS guidance law was incorporated into the system
and the motivation behind this choice, see Sverdrup-Thygeson et al. (2016). This was
implemented by choosing no lateral undulation in file
calculate u lateral undulation.m, i.e. alpha = 0. This simulation case is shown in
Figure 5.3.

(a) Torpedo: t = 5 (b) Torpedo: t = 15

(c) Torpedo: t = 25 (d) Torpedo: t = 35

Figure 5.3: Torpedo mode simulation

Operation mode

When the USM is in operation mode, it will use the thrusters to stay in one place or move
around, and use the end-effectors at the head of the USM to do the operation. The motion
of the joints can be seen as a disturbance to the CM position control system, as it will
inflict unwanted motion on the CM of the USM. This simulation case investigates how
well the proposed control laws attenuates the unwanted effects of the joint motion. The
simulated operation is an inspection, which entails that the head of the USM first moves
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in one direction and then the other, while the thrusters should keep the USM on the
reference path. The USM head changes direction at 10, 20 and 30 seconds. This was
implemented in calculate u lateral undulation.m by setting
heading ref = sin(π/2) for the first 10 seconds, heading ref = sin(π) from 10-20
seconds, heading ref = sin(3π/2) from 20-30 seconds, heading ref = sin(π) from
30-40 seconds and removing the no undulation restriction. The same changes were also
made in calculate desired forces moments.m for the desired heading variable
heading d. This type of simulation is shown in Figure 5.4.

(a) Operation: t = 5 (b) Operation: t = 15

(c) Operation: t = 25 (d) Operation: t = 35

Figure 5.4: Operation mode simulation

5.4.2 Sliding surface and control input
The sliding surfaces were made both by using the error variables available from the
PD-controller that was previously implemented in
calculate desired forces moments.m and the state observer variables. The
controllers, observers and differentiators were implemented in the same file. The code for
the implementation is given in Appendix D.2. The PD-controller that was previously
implemented, was kept for comparing purposes.
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5.5 Results
The sufficiently largeK, LD, LSO and α that were mentioned in the previous section were
chosen with the trial and error method. That is because it is difficult finding a bound on
the disturbance. The gains were found by starting with a very high or low gain, and then
increasing or decreasing it until the error started to increase. The gain with the lowest error
was then chosen. For the simulations an ODE5 solver, with fixed step size 10−5 was used,
because when using a variable step solver the step size got to small in the beginning of the
simulation, which then never really progressed.
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5.5.1 Torpedo mode
The super-twisting algorithm

The gains were set to: K = 10 and LSO = 50.
Sliding surface 1: the actual value of pCM and ṗ are used

Figure 5.5: USM torpedo mode: Simulation of STA, sliding surface 1
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Sliding surface 2: the estimated value for ṗ is used

Figure 5.6: USM torpedo mode: Simulation of STA with state observer, sliding surface 2 (a)
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Figure 5.7: USM torpedo mode: Simulation of STA with state observer, sliding surface 2 (b)
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Sliding surface 3: the estimated value for pCM and ṗ are used

Figure 5.8: USM torpedo mode: Simulation of STA with state observer, sliding surface 3 (a)
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Figure 5.9: USM torpedo mode: Simulation of STA with state observer, sliding surface 3 (b)
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Nested third-order sliding mode control

The gains were set to: α = 10, LD = 0.1 and LSO = 50.
Sliding surface 1: the actual value of pCM and ṗ are used

Figure 5.10: USM torpedo mode: Simulation of nested third-order SMC with differentiator, sliding
surface 1 (a)
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Figure 5.11: USM torpedo mode: Simulation of nested third-order SMC with differentiator, sliding
surface 1 (b)
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Sliding surface 2: the estimated value for ṗ is used

Figure 5.12: USM torpedo mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 2 (a)
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Figure 5.13: USM torpedo mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 2 (b)
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Sliding surface 3: the estimated value for pCM and ṗ are used

Figure 5.14: USM torpedo mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 3 (a)
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Figure 5.15: USM torpedo mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 3 (b)

92



5.5 Results

Quasi-continuous third-order sliding mode control

The gains were set to: α = 10, LD = 1 and LSO = 50.
Sliding surface 1: the actual value of pCM and ṗ are used

Figure 5.16: USM torpedo mode: Simulation of quasi-continuous third-order SMC with
differentiator, sliding surface 1 (a)
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Figure 5.17: USM torpedo mode: Simulation of quasi-continuous third-order SMC with
differentiator, sliding surface 1 (b)
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Sliding surface 2: the estimated value for ṗ is used

Figure 5.18: USM torpedo mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 2 (a)
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Figure 5.19: USM torpedo mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 2 (b)
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Sliding surface 3: Estimated value for pCM and ṗ are used

Figure 5.20: USM torpedo mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 3 (a)
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Figure 5.21: USM torpedo mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 3 (b)

98



5.5 Results

The PD-controller

The gains were set to: kCMd = 10, kCMp = 0.1 and LSO = 50.
Actual value of pCM and ṗ are used

Figure 5.22: USM torpedo mode: Simulations of PD-controller when the actual value of pCM and
ṗ are used
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Estimated value for ṗ is used

Figure 5.23: USM torpedo mode: Simulations of PD-controller when the estimated value for ṗ is
used (a)
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Figure 5.24: USM torpedo mode: Simulations of PD-controller when the estimated value for ṗ is
used (b)
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Estimated value for pCM and ṗ are used

Figure 5.25: USM torpedo mode: Simulations of PD-controller when the estimated value for pCM

and ṗ are used (a)
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Figure 5.26: USM torpedo mode: Simulations of PD-controller when the estimated value for pCM

and ṗ are used (b)
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5.5.2 Operation mode
The super-twisting algorithm

The gains were set to: K = 10 and LSO = 50.
Sliding surface 1: the actual value of pCM and ṗ are used

Figure 5.27: USM operation mode: Simulation of STA, sliding surface 1
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Sliding surface 2: the estimated value for ṗ is used

Figure 5.28: USM operation mode: Simulation of STA with state observer, sliding surface 2 (a)
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Figure 5.29: USM operation mode: Simulation of STA with state observer, sliding surface 2 (b)
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Sliding surface 3: the estimated value for pCM and ṗ are used

Figure 5.30: USM operation mode: Simulation of STA with state observer, sliding surface 3 (a)
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Figure 5.31: USM operation mode: Simulation of STA with state observer, sliding surface 3 (b)
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Nested third-order sliding mode control

The gains were set to: α = 10, LD = 0.1 and LSO = 50.
Sliding surface 1: the actual value of pCM and ṗ are used

Figure 5.32: USM operation mode: Simulation of nested third-order SMC with differentiator,
sliding surface 1 (a)
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Figure 5.33: USM operation mode: Simulation of nested third-order SMC with differentiator,
sliding surface 1 (b)
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Sliding surface 2: the estimated value for ṗ is used

Figure 5.34: USM operation mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 2 (a)
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Figure 5.35: USM operation mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 2 (b)
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Sliding surface 3: the estimated value for pCM and ṗ are used

Figure 5.36: USM operation mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 3 (a)
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Figure 5.37: USM operation mode: Simulation of nested third-order SMC with differentiator and
state observer, sliding surface 3 (b)
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Quasi-continuous third-order sliding mode control

The gains were set to: α = 10, LD = 1 and LSO = 50.
Sliding surface 1: the actual value of pCM and ṗ are used

Figure 5.38: USM operation mode: Simulation of quasi-continuous third-order SMC with
differentiator, sliding surface 1 (a)
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Figure 5.39: USM operation mode: Simulation of quasi-continuous third-order SMC with
differentiator, sliding surface 1 (b)
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Sliding surface 2: the estimated value for ṗ is used

Figure 5.40: USM operation mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 2 (a)
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Figure 5.41: USM operation mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 2 (b)
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Sliding surface 3: the estimated value for pCM and ṗ are used

Figure 5.42: USM operation mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 3 (a)
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Figure 5.43: USM operation mode: Simulation of quasi-continuous third-order SMC with
differentiator and state observer, sliding surface 3 (b)
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The PD-controller

The gains were set to: kCMd = 10, kCMp = 0.1 and LSO = 50.
Actual value of pCM and ṗ are used

Figure 5.44: USM operation mode: Simulations of PD-controller when the actual value of pCM and
ṗ are used
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Estimated value for ṗ is used

Figure 5.45: USM operation mode: Simulations of PD-controller when the estimated value of ṗ is
used (a)
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Figure 5.46: USM operation mode: Simulations of PD-controller when the estimated value of ṗ is
used (b)
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Estimated value for pCM and ṗ are used

Figure 5.47: USM operation mode: Simulations of PD-controller when the estimated value of pCM

and ṗ are used (a)
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Figure 5.48: USM operation mode: Simulations of PD-controller when the estimated value of pCM

and ṗ are used (b)
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In order to better compare the different algorithms the absolute maximum value for the
error variables for each algorithm have been gather. The position error can be found in
Table 5.1, 5.2 and 5.3, the state observer error can be found in Table 5.4, 5.5, 5.6 and 5.7
and the differentiator error can be found in Table 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13. Here
the first 15 seconds were not considered so that the absolute maximum value for the error
variables were found when the control input had stabilized.

Table 5.1: USM: absolute maximum value for position error, sliding surface 1

Algorithm Position error
Torpedo mode Operation mode

x y x y
The super-twisting
algorithm 3.6131 · 10−4 2.8766 · 10−4 3.6130 · 10−4 5.5242 · 10−4

Nested 3rd-order SMC 3.6126 · 10−4 2.8769 · 10−4 9.8822 · 10−4 9.8006 · 10−4

Quasi-continuous
3rd-order SMC 3.6144 · 10−4 2.8763 · 10−4 0.0012 3.5804 · 10−4

PD-controller 0.0107 0.0217 0.0354 0.0336

Table 5.2: USM: absolute maximum value for position error, sliding surface 2

Algorithm Position error
Torpedo mode Operation mode

x y x y
The super-twisting
algorithm 3.6129 · 10−4 2.8770 · 10−4 3.6127 · 10−4 4.5509 · 10−4

Nested 3rd-order SMC 0.0217 0.0254 0.0155 0.0146
Quasi-continuous
3rd-order SMC 3.6398 · 10−4 3.0753 · 10−4 4.2522 · 10−4 5.8820 · 10−4

PD-controller 0.0321 0.0354 0.0486 0.0359
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Table 5.3: USM: absolute maximum value for position error, sliding surface 3

Algorithm Position error
Torpedo mode Operation mode

x y x y
The super-twisting
algorithm 3.6129 · 10−4 2.8770 · 10−4 3.6128 · 10−4 4.5499 · 10−4

Nested 3rd-order SMC 0.0245 0.0248 0.0144 0.0128
Quasi-continuous
3rd-order SMC 3.8723 · 10−4 2.7268 · 10−4 3.8441 · 10−4 3.3079 · 10−4

PD-controller 0.0321 0.0354 0.0486 0.0359

Table 5.4: USM torpedo mode: absolute maximum value for state observer error, sliding surface 2

Algorithm State observer error, torpedo mode
e1 e2

x y x y
The super-twisting
algorithm 3.8267 · 10−12 5.0679 · 10−12 7.5145 · 10−7 6.9141 · 10−7

Nested 3rd-order SMC 0.0027 4.3933 · 10−4 0.4514 0.1335
Quasi-continuous
3rd-order SMC 2.7061 · 10−6 8.3924 · 10−7 0.0044 0.0020
PD-controller 3.3542 · 10−12 4.1889 · 10−12 7.4797 · 10−7 7.0394 · 10−7

Table 5.5: USM torpedo mode: absolute maximum value for state observer error, sliding surface 3

Algorithm State observer error, torpedo mode
e1 e2

x y x y
The super-twisting
algorithm 3.8183 · 10−12 5.0305 · 10−12 7.4071 · 10−7 6.9252 · 10−7

Nested 3rd-order SMC 0.0033 3.6455 · 10−4 0.5128 0.1179
Quasi-continuous
3rd-order SMC 2.4727 · 10−6 8.5851 · 10−7 0.0042 0.0021
PD-controller 3.3773 · 10−12 4.8455 · 10−12 7.3987 · 10−7 7.0306 · 10−7
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Table 5.6: USM operation mode: absolute maximum value for state observer error, sliding surface
2

Algorithm State observer error, operation mode
e1 e2

x y x y
The super-twisting
algorithm 1.3525 · 10−7 1.3044 · 10−7 6.8605 · 10−4 7.1110 · 10−4

Nested 3rd-order SMC 0.0013 0.0012 0.2778 0.2618
Quasi-continuous
3rd-order SMC 1.5046 · 10−6 2.4677 · 10−6 0.0030 0.0041
PD-controller 1.4334 · 10−7 1.6189 · 10−7 7.2829 · 10−4 7.5891 · 10−4

Table 5.7: USM operation mode: absolute maximum value for state observer error, sliding surface
3

Algorithm State observer error, operation mode
e1 e2

x y x y
The super-twisting
algorithm 1.4877 · 10−7 1.6572 · 10−7 7.3004 · 10−4 7.5646 · 10−4

Nested 3rd-order SMC 0.0015 0.0012 0.2986 0.2648
Quasi-continuous
3rd-order SMC 2.3978 · 10−6 1.4249 · 10−6 0.0041 0.0029
PD-controller 1.6783 · 10−7 2.0535 · 10−7 7.6944 · 10−4 7.9966 · 10−4

Table 5.8: USM torpedo mode: absolute maximum value for differentiator error, sliding surface 1

Differentiator error, Algorithm
torpedo mode Nested 3rd-order SMC Quasi-continuous 3rd-order SMC

x y x y
z0 3.6045 · 10−6 2.9539 · 10−6 6.2474 · 10−8 1.6923 · 10−8

z1 2.3498 · 10−5 1.7452 · 10−5 1.3899 · 10−5 6.0308 · 10−6

z2 7.4344 · 10−5 1.0770 · 10−4 6.5584 · 10−4 4.0530 · 10−4

Table 5.9: USM torpedo mode: absolute maximum value for differentiator error, sliding surface 2

Algorithm Differentiator error, torpedo mode
z0 z1 z2

x y x y x y
Nested 3rd-order
SMC 0.0360 0.0138 0.0295 0.0353 0.0122 0.0167
Quasi-continuous
3rd-order SMC 8.3460 · 10−4 3.8488 · 10−4 0.0039 0.0028 0.0177 0.0147
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Table 5.10: USM torpedo mode: absolute maximum value for differentiator error, sliding surface 3

Algorithm Differentiator error, torpedo mode
z0 z1 z2

x y x y x y
Nested 3rd-order
SMC 0.0338 0.0137 0.0304 0.0346 0.0121 0.0172
Quasi-continuous
3rd-order SMC 7.9601 · 10−4 3.8537 · 10−4 0.0038 0.0028 0.0176 0.0128

Table 5.11: USM operation mode: absolute maximum value for differentiator error, sliding surface
1

Algorithm Differentiator error, operation mode
z0 z1 z2

x y x y x y
Nested 3rd-order SMC 0.0070 0.0066 0.0157 0.0142 0.0181 0.0159
Quasi-continuous 3rd-order SMC 0.0079 0.0013 0.0164 0.0042 0.0181 0.0068

Table 5.12: USM operation mode: absolute maximum value for differentiator error, sliding surface
2

Algorithm Differentiator error, operation mode
z0 z1 z2

x y x y x y
Nested 3rd-order SMC 0.0207 0.0181 0.0254 0.0220 0.0115 0.0115
Quasi-continuous 3rd-order SMC 0.0035 0.0062 0.0162 0.0272 0.0408 0.0641

Table 5.13: USM operation mode: absolute maximum value for differentiator error, sliding surface
3

Algorithm Differentiator error, operation mode
z0 z1 z2

x y x y x y
Nested 3rd-order SMC 0.0220 0.0207 0.0218 0.0192 0.0100 0.0095
Quasi-continuous 3rd-order SMC 0.0018 0.0018 0.0100 0.0117 0.0315 0.0394
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Chapter 6
Discussion

This chapter will present a discussion regarding the stability analysis and the three
algorithms that have been tested on two different systems. The algorithms will be
compared against each other and to a regular PD-controller. The affects of using a state
observer will be discussed by comparing the results achieved with the different sliding
surfaces. A simulation issue that caused some problems will also be discussed.

6.1 Stability

Stability for the error dynamics for a second-order general system was proven in Chapter 3.
In Section 4.3 it was shown that the error dynamics for the mass-spring-damper system fits
the assumptions made for the error dynamics for the general system, which means that the
theorems in Chapter 3 also hold for the error dynamics for the mass-spring-damper system.
It was shown in Section 5.3, that the error dynamics for the USM also fits the assumptions
made for the error dynamics for the general system, which means that the theorems in
Chapter 3 also hold for the error dynamics for the USM.

The stability analysis done for the STA, can be extended to the STA with adaptive
gains, by using the Lyapunov function proposed in Shtessel et al. (2010) or Shtessel et al.
(2012). This has not been done due to lack of time, and will therefore be suggested as
further work.

The stability proof of the HOSM controller when the estimated value of x2 was used
in the sliding surface, Section 3.3.1, was not completed. This is because no Lyapunov
function exist for the HOSM algorithms. In Cruz-Zavala and Moreno (2017) a very
interesting new HOSM controller with explanations on how to create a Lyapunov
function for the controller is proposed. This can be a HOSM controller that can be proven
stable in both cases, when the estimated value of x2 is used in the sliding surface and
when the estimated value of both x1 and x2 is used in the sliding surface. Due to lack of
time it was not possible to try to prove stability with this controller or to test it. This will
therefore be a topic for further investigation.
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6.2 The super-twisting algorithm

The super-twisting algorithm gave very good results, both for the mass-spring damper
system and for the USM. The state trajectories follows the desired path almost perfectly,
and it has a very small error in all cases. This means it handles disturbances and modelling
errors very well. The control input for the mass-spring-damper system in all cases is
smooth and there is no sign of chattering. From Figures 4.18, 4.19, 4.20, 4.21 and 4.22,
one can see that there is nearly no difference between the three sliding surfaces. Tables 4.1
and 4.2 confirm this, as the position error and the observer errors are nearly the same for
all the sliding surfaces. From the figures and tables mentioned, it can be seen that the state
observer does not affect the control abilities or performance of the algorithm noticeably,
as the position errors and the control inputs are very similar.

The control input for the USM when it is in torpedo mode has some differences from
one sliding surface to another. When the state observer is not included it has a completely
smooth control input, which can be seen from Figure 5.5. In the cases where the state
observer is used, the control input does have some chattering. This can be seen from the
very thick line in Figures 5.6 and 5.8. This is most likely coming from the chattering in
the observer errors, as this is not a problem for the case without the state observer. It was
also not a problem for the mass-spring-damper system when the state observer was used,
because there the observer errors were smoother. This can be seen from Figures 6.1 and
6.2, where the observer errors from the simulation of the mass-spring-damper system and
the USM torpedo mode have been zoomed in on. In the cases where the state observer is
used, there is nearly no difference between the two sliding surfaces. Tables 5.2, 5.3, 5.4
and 5.5 confirm this.

Figure 6.1: MSDS: Zoom in on observer errors from Figure 4.20
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Figure 6.2: USM torpedo mode: Zoom in on observer errors from Figure 5.7

In the case where the USM is in operation mode, the control input is more intense and
varying. The reason being, when the USM shifts position the controller reacts fast, causing
peaks in the control input at 10, 20 and 30 seconds (Figures 5.27, 5.28 and 5.30). This
means that the super-twisting controller can handle a great deal of disturbance, but it will
affect the smoothness of the control input. These peaks can also be found in the position
errors and the observer errors. For the position errors this can be seen from Figure 6.3,
and for the observer errors this can be seen from Figures 5.29 and 5.31. This means that
the errors are not as large as in Tables 5.1, 5.2, 5.3, 5.6 and 5.7 all the time, it is only that
large when the USM shifts position. The error the rest of the time, is more like the errors
for the torpedo mode case. Here there are also some issues with chattering in the cases
when the state observer is used, that is for the same reasons as for the torpedo mode case.
In operation mode, there is also nearly no difference in the two sliding surfaces when the
state observer was used, the tables mentioned confirm that. The chattering in the control
input for the USM when the state observer is used can probably be reduced by using a
filter on the estimated states.

Figure 6.3: USM operation mode: Zoom in on position error from Figure 5.27
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The problem with this controller is that a bound on the disturbance needs to be known
to be able to find the optimal gain, which can be difficult when the disturbance is unknown.
This often leads to a very crude estimation of what the gain needs to be which leads to a
much higher gain than the optimal one. This can however be avoided by using the STA
with adaptive gains, which was tested in my project. It has the same control abilities as
the super-twisting algorithm with constant gain, the only difference is that the gains adapt,
i.e. find the optimal gain, without knowing the bound on the disturbance. The gains in the
STA with adaptive gains decides how fast the rate of convergence is, Borlaug (2016).

6.3 Nested third-order sliding mode control
The nested third-order sliding mode control algorithm gave very good tracking control
for the mass-spring-damper system. The state trajectory follows the desired path almost
perfectly, and it has a very small error. This means that in this case it handles the
disturbance very well. The control input is however filled with chattering. In Levant
(2001) it is said that if the parameters are chosen correctly, chattering will not appear.
Since the only difference between the nested third-order SMC controller and the relay
controller is that which is inside the sgn, chattering is unlikely to be removed completely,
as the relay controller has large problems with chattering. Now, if there does exist some
combination of variables that removes the chattering effect, they are certainly difficult to
find. Also for this controller there is nearly no difference between the sliding surfaces.
This can be seen from Figures 4.23, 4.24, 4.25, 4.26, 4.27 and 4.28. In Tables 4.1 and 4.2
one can however see that there is a small difference for the position error and the observer
errors. The errors are largest when both the estimated value of x1 and x2 are used in the
sliding surface. This is probably due to that when the observer errors are combined from
both estimated states it gives a larger error in the sliding surface, causing larger errors in
the differentiator, which leads to a larger position error. This is also confirmed by
Tables 4.3, 4.4 and 4.5 as the differentiator errors are largest when the position error and
observer errors are largest.

For the USM the tracking control was only good when the state observer was not used,
this can be seen from Tables 5.1, 5.2 and 5.3. This is probably because the observer errors
were quite large, as can be seen from Tables 5.4, 5.5, 5.6 and 5.7. The observer errors
are also filled with severe chattering, shown in Figures 5.13, 5.15, 5.35 and 5.37. This
is probably why the observer errors are so large. It might also be the reason why there
is so much chattering in the differentiator error, as for the case when the state observer
was not used the differentiator errors were smooth in comparison. This can be seen from
Figures 5.11, 5.13, 5.15, 5.33, 5.35 and 5.37. It can also be seen from Tables 5.8, 5.9, 5.10,
5.11, 5.12 and 5.13 that the differentiator errors are much larger when the state observer
is used. This supports the theory that the reason for the large position errors in the cases
when the state observer is used, are the large errors in the observer errors. The reason for
the severe chattering in the observer errors are difficult to find. Choice of parameters can
be one reason, as it was not possible to test that many different parameters in the given
time frame, because of a simulation issue, Section 6.8. This means that the algorithm with
a state observer might be able to perform better with other gains than what were used here,
but finding those gains can be difficult and time-consuming. The control input in both the
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torpedo mode case and in the operation mode case, were filled with chattering as it was for
the mass-spring-damper system, this can be seen from Figures 5.10, 5.12, 5.14, 5.32, 5.34
and 5.36. This supports the theory made in the previous paragraph that it is not possible to
find gains which gives a smooth control input.

6.4 Quasi-continuous third-order sliding mode control

The quasi-continuous third-order sliding mode control algorithm gave very good results,
both for the mass-spring damper system and for the USM. The state trajectories follows
the desired path almost perfectly, and it has a very small error. This means it handles
disturbances and modelling errors very well. The control input for the
mass-spring-damper system has some chattering, but there does exist gains that make the
control input completely smooth, Figures 4.35, 4.37 and 4.39. There is however a
trade-off between how smooth the control input is and how large the errors get. From
Tables 4.1, 4.3, 4.4 and 4.5 it is apparent that the position error and the differentiator
errors when the control input is smooth is much larger than for the case when there is
some chattering in the control input. Also here there is nearly no difference between the
sliding surfaces. This can be seen from Figures 4.29, 4.30, 4.31, 4.32, 4.33 and 4.34. In
Tables 4.1 and 4.2 one can see that there is a small difference for the position error and
the observer errors. The errors are largest when both the estimated value of x1 and x2 is
used in the sliding surface. This is probably because the error combined from both
estimated values gives a larger error in the sliding surface, that gives larger errors in the
differentiator, which leads to a larger position error. This is also confirmed by Tables 4.3,
4.4 and 4.5 as the differentiator errors are largest when the position error and observer
errors are largest.

From Tables 5.1, 5.2, 5.3, it is apparent that the algorithm gave very good tracking
control in all cases for the USM, as the position error is small for all of them. The control
input in both the torpedo mode case and in the operation mode case, were filled with
chattering when the state observer was used, which can be seen from Figures 5.18, 5.20,
5.40 and 5.42. In the case when the state observer was not used, there was only chattering
in the beginning for the torpedo mode case, which can be seen from Figure 5.16. In
the operation mode case there was only chattering in the beginning and when the USM
shifted position. This can be seen from Figure 5.38. This means that the chattering in
the control input in the cases when the state observer is used, is most likely because of
the state observer. It can also be seen from Figures 5.17, 5.19, 5.21, 5.39, 5.41 and 5.43
that there is more chattering in the differentiator errors when the state observer is used.
This leads to larger errors in the differentiator in the torpedo mode case, which can be seen
from Tables 5.8, 5.9, 5.10. In the operation mode case the differentiator errors are however
nearly the same, which can be seen from Tables 5.11, 5.12 and 5.13. The reason for this
might be because the error is nearly the same for all the sliding surfaces when the USM
shifts position. This algorithm does however, handle these larger errors because they do
not affect the position errors.
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6.5 Comparison between the sliding mode control
algorithms

All three algorithms managed to follow the desired path with small errors in all cases
when the state observer was not used. In the cases where the state observer was used, the
algorithms did very good for the mass-spring-damper system, but for the USM the nested
third-order SMC algorithm had large errors compared to the other two algorithms. This
was because the observer errors got very large and manifested through the system. The
biggest difference between the algorithms is regarding the smoothness of the control input.
Both the third-order SMC algorithms had chattering in the control input. The nested third-
order SMC algorithm had chattering in the control input in all cases simulated, and if it is
possible to remove the chattering phenomena it would be very difficult finding the gains
to do so. The quasi-continuous third-order SMC algorithm was not as bad as the nested
third-order SMC algorithm, as it did not have chattering in all cases. It was possible to
find a choice of gains that did remove the chattering, but it will be a trade-off between how
much error there will be in the system, and the smoothness of the control input. When
the state observer was not used it also had a smooth control input, after some time, for the
USM torpedo mode. In operation mode it had a smooth control input, except when the
USM switched positions. The STA does however give a smooth control input in all cases,
except for when the state observer is used for the USM. It then has some chattering, but it
was much smaller than the chattering in the third-order algorithms and it was because of
chattering in the estimated states. It is also easier to find controller gains that work, close
to optimal for the STA. The problem with finding the gains for these three algorithms can
be removed by using adaptive gains. There has been suggested some adaptive HOSM
algorithms, as in Edwards and Shtessel (2016), but because of a limited amount of time
they were not tested in this thesis. As mentioned in Section 6.2, the STA with adaptive
gains has already been tested and has the same control abilities as the STA, but it also finds
the optimal gains.

The simulation results from the USM in operation mode give stranger control inputs for
the STA than the other controllers. This is because the third-order SMC algorithms have
so much chattering that the infliction of the movement of the USM is not noticeable. But
since the STA has almost a smooth control input from the beginning, the affects from the
movement of the USM is very noticeable. One way of making the control input smoother
in operation mode for the STA algorithm might be to either set a bound on how fast the
controller is allowed to react, or to make the USM move slower as the changes from one
direction to another are quite fast in these simulations.

In the simulations for the mass-spring-damper system, there is nearly no difference in
the state observer errors between the different algorithms. The only thing worth noticing
is that the error for the third-order algorithm is a bit larger, than for the STA when the
estimated value for x1 and x2 are used in the sliding surface. This is probably also the
reason the position errors for the third-order SMC algorithm are a little bit bigger when the
estimated value for x1 and x2 are used in the sliding surface. The differentiator errors are
nearly the same for the two third-order algorithms. In the simulations for the USM there
are much larger differences between the algorithms. In both torpedo mode and operation
mode the STA gives the smallest observer errors. There is quite a difference from torpedo
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mode to operation mode, but the STA still has the smallest observer errors. The quasi-
continuous third-order SMC algorithm is the one that gives the second best result, and
the nested third-order SMC algorithm gives the poorest result. This is reflected in the
position error for the cases when the state observer is used. This is also reflected in the
differentiator error for the third-order algorithms. The nested third-order SMC algorithm
has the largest observer errors and the largest differentiator errors. This is also the case for
when the state observer is not used, but for that there is no obvious reason. It might be the
choice of gains.

One other thing that is worth noticing is that the quasi-continuous third-order SMC
algorithm has a bit larger settling time than the other algorithms. This can be because
of the chosen controller gains. To summarise the STA algorithm performs best in all
cases, and does have the smallest errors. The quasi-continuous third-order SMC algorithm
gives quite good results, but has some issues with chattering. The nested third-order SMC
algorithm had chattering in all cases, even in the cases where the state observer was not
used, and should therefore not be used in practice. Therefore, in the cases where it is not
possible to use the STA, i.e. in the cases where the control input does not appear in the first
derivative of the sliding surface, the quasi-continuous third-order SMC algorithm should
be used.

6.6 Comparison between the PD-controller and sliding
mode controllers

The PD-controller has much larger errors than the SMC algorithms in all simulation cases,
when the state observer is not used. This can be seen from Table 5.1 and Figure 5.22. This
means that the PD-controller does handle disturbances and modelling errors much more
poorly than the SMC algorithms. When the state observer was used, the PD-controller did
get a small increase in error, which can be seen from Figures 5.23, 5.25, 5.45, 5.47 and
Tables 5.2 and 5.2. It then gave nearly the same results for the position error as the nested
third-order SMC algorithm with a state observer. This does however say more about the
poor behaviour of the nested third-order SMC algorithm with a state observer, than about
the good behaviour of the PD-controller in this case. The STA and the quasi-continuous
third-order SMC algorithm did however work much better than the PD-controller in all
cases, i.e. with and without state observer. This means that these two SMC algorithms
are much more suited for these types of systems and that they are more robust against
disturbances. Most likely the nested third-order SMC algorithm would have also worked
better if the state observer errors were smaller. The PD-controller gains were chosen by
trial and error, same as the gains for the SMC algorithms, and should therefore give a
fair comparison between the algorithms. Since the position error for the PD-controller is
quite varying, there is no guarantee that a PID-controller would have given the SMC more
competition regarding results.
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6.7 Comparison of the sliding surfaces
The difference between the different sliding surfaces is not very large, especially for the
mass-spring-damper system. Here the errors are a bit larger for the sliding surface where
two estimated states are used. However, this is expected as the estimated states will never
be exactly the same at the actual states and it will therefore inflict more error on the system
than when one or no estimated states are used. In the USM simulations there is however
more noticeable differences. The biggest difference is between no state observer and when
a state observer is used. When the state observer is not used, the errors are noticeably
smaller for the differentiator error in the USM torpedo mode case and for the position error
in both cases, i.e. USM torpedo and operation mode, when the nested third-order SMC
algorithm is used. The control input of the quasi-continuous third-order SMC algorithm
is also much smoother. The reason for this might be that for the USM simulations there
is much more chattering in the observer errors than for the mass-spring-damper system,
Figures 6.1 and 6.2. This leads to larger errors when the estimated states are used, which
then manifest through the system. This then gives a significant difference between when
the state observer is used, and when it is not used. This is very obvious when the nested
third-order SMC algorithm is used, as it has very large observer errors, which leads to
large position errors for the cases when the state observer is used. To summarise, there
is no larger difference than expected between using one or two estimated states in the
sliding surface, but the state observer does in general have a large impact as the errors
from the state observer does have an impact on the control abilities and performance of
the algorithms. Some of that impact might be removed by using a filter on the estimated
states before using them in the sliding surface, as the impact was largest when there was
severe chattering in them.

6.8 Simulation issues
There was some trouble with the simulation of the USM. In Sverdrup-Thygeson et al.
(2016) an ODE23tb solver was used, but since that is a variable step solver the step size
got very small in the beginning of the simulation, and the simulation therefore never
progressed. The reason for this might be that the variables that are to be integrand have a
very steep curve in the beginning of the simulation. This is a known simulation problem.
The solver was therefore changed to a fixed step solver (ODE5). The ODE5 solver also
had quite a long simulation time, but at least it finished. Because of the long simulation
time, it was not possible to try as many different controller gains as wanted. The
controller gains might therefore not be optimal for the SMC algorithms, which means
that the SMC algorithms might be able to give even better results than what were
presented here.
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Conclusion and Further Work

7.1 Conclusion

In this thesis sliding mode control, sliding mode observers and stability theory regarding
cascaded systems and finite-time stable properties were presented. The stability properties
for a second-order general system, in cascade with the proposed SMC controllers and
the state observer, were analysed. The closed-loop dynamics for the general system is
proven uniformly globally asymptotically stable in all cases except one. The proposed
SMC algorithms were tested on two different systems to see how well they performed.
The SMC algorithms have also been compared to a PD-controller.

Two of the SMC algorithms, the super twisting algorithm and the quasi-continuous
third-order SMC algorithm, gave great results regarding their ability to follow a desired
path when disturbances were present. However, the nested third-order SMC algorithm
only gave good results for the mass-spring-damper system and for the USM when the
state observer was not used, i.e. the state observer had an effect on the performance of the
algorithm. The two other algorithms were not affected, but they did not have such large
observer errors. Both the nested and the quasi-continuous third-order SMC algorithms had
issues with chattering, but with properly chosen gains it was possible to make the control
input for the quasi-continuous third-order SMC algorithm smooth. This will, however, be
a trade-off between the position error and the smoothness of the control input. It also got
smoother by not using the state observer, i.e. the chattering from the estimated states can
be a reason for the chattering in the control input. The super-twisting algorithm gave the
overall best results, i.e. smallest error in all cases and smooth control input. The HOSM
controllers are therefore not better than the lower-order algorithm tested here. In the cases
when the control input does not appear in the first derivative of the sliding surface, and a
HOSM algorithm has to be used, the quasi-continuous third-order SMC algorithm should
be used as this was the one that gave the better results out of the HOSM algorithms. The
PD-controller gave some competition to the nested third-order SMC algorithm with a state
observer, but it was no competition to the other two SMC algorithms.
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7.2 Further work
Some time should be spent on trying to find more optimal gains, to see if it is possible to
improve the performance of the algorithms further. The new higher-order sliding mode
control algorithm presented in Cruz-Zavala and Moreno (2017) and the adaptive higher-
order sliding mode control presented in Edwards and Shtessel (2016), that were mentioned
in Section 2.4 should also be tested and analysed. The new higher-order sliding mode
controller should especially be analysed as there is also proposed a way to make Lyapunov
functions for that controller. The stability analysis conducted when the super-twisting
algorithm was used, should be extended to the super-twisting algorithm with adaptive
gains. The algorithms tested here, especially the super-twisting algorithm, should also be
tested on a 3D-model of the USM to see if it gives as good results as it does in 2D.
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Modeling of underwater snake robots. In: Proc. 2014 IEEE International Conference
on Robotics and Automation. Hong Kong, China, pp. 4540–4547.

Khalil, H. K., 2002. Nonlinear systems, 3rd Edition. Prentice Hall, Upper Saddle River,
N.J.

Kumari, K., Chalanga, A., Bandyopadhyay, B., Aug. 23-25 2016. Implementation of
Super-Twisting Control on Higher Order Perturbed Integrator System using Higher
Order Sliding Mode Observer. In: Proc. 10th IFAC Symposium on Nonlinear Control
Systems. Vol. 49. California, USA, pp. 873–878.

Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. International
Journal of Control 58 (6), 1247–1263.

Levant, A., 1998. Robust exact differentiation via sliding mode technique. Automatica
34 (3), 379–384.

Levant, A., 2001. Universal single-input-single-output (SISO) sliding-mode controllers
with finite-time convergence. Automatic Control, IEEE Transactions on 46 (9), 1447–
1451.

Levant, A., 2003a. Higher-order sliding modes, differentiation and output-feedback
control. International Journal of Control 76 (9-10), 924–941.

Levant, A., Dec. 9-12 2003b. Quasi-continuous high-order sliding-mode controllers. In:
42nd IEEE International Conference on Decision and Control. Vol. 5. Maui, Hawaii
USA, pp. 4605–4610.

Levant, A., 2005. Quasi-continuous high-order sliding-mode controllers. Automatic
Control, IEEE Transactions on 50 (11), 1812–1816.

142
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Young, K. D., Utkin, V. I., Özgüner, Ü., 1999. A control engineer’s guide to sliding mode
control. IEEE Transactions on Control Systems Technology 7 (3), 328–342.

143



144



Appendix A
Theorems and Lemmas

A.1 Theorems
Theorem A.1.1 (Hurwitz and Lyapunov function, theorem 4.6 Khalil (2002)). A matrix
A is Hurwitz; that is, Re{λi} < 0 for all eigenvalues of A, if and only if for any given
positive definite symmetric matrix Q there exists a positive definite symmetric matrix P
that satisfies the Lyapunov equation PA + ATP = −Q. Moreover, if A is Hurwitz, then
P is the unique solution of PA+ATP = −Q.

Theorem A.1.2 (Uniformly stable, theorem 4.8 Khalil (2002)). Let x = 0 be an
equilibrium point for ẋ = f(t, x) and D ⊂ Rn be a domain containing x = 0. Let
V : [0,∞)×D → R be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤W2(x)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0

(A.1)

∀t ≥ 0 and ∀x ∈ D, where W1(x) and W2(x) are continuous positive definite functions
on D. Then, x = 0 is uniformly stable.

Theorem A.1.3 (Uniformly asymptotically stable, theorem 4.9 Khalil (2002)). Suppose
the assumptions of Theorem A.1.2 are satisfied with the last inequality strengthened to

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x) (A.2)

∀t ≥ 0 and ∀x ∈ D, where W3(x) are continuous positive definite functions on D.
Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are chosen such
that Br = {||x|| ≤ r} ⊂ D and c < min||x||=rW1(x), then every trajectory starting in
{x ∈ Br | W2(x) ≤ c} satisfies

||x(t)|| ≤ β(||x0(t)||, t− t0), ∀t ≥ t0 > 0 (A.3)
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for some class KL function β. Finally, if D = Rn and W1(x) is radially unbounded, then
x = 0 is globally uniformly asymptotically stable.

Theorem A.1.4 (Exponential stability, theorem 4.10 Khalil (2002)). Let x = 0 be an
equilibrium point for ẋ = f(t, x) and D ⊂ Rn be a domain containing x = 0. Let
V : [0,∞)×D → R be a continuously differentiable function such that

k1||x||a ≤ V (t, x) ≤ k2||x||a
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3||x||a

(A.4)

∀t ≥ 0 and ∀x ∈ D, where k1, k2, k3, and a are positive constants. Then, x = 0 is
exponentially stable. If the assumptions hold globally, then x = 0 is globally exponentially
stable.

Theorem A.1.5 (Bounded, theorem 4.18 Khalil (2002)). Let D ⊂ Rn be a domain that
contains the origin and V : [0,∞) × D → R be a continuously differentiable function
such that

α1(||x||) ≤ V (t, x) ≤ α2(||x||)
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x), ∀||x|| ≥ µ > 0

(A.5)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions and W3(x) is continuous
positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−12 (α1(r)) (A.6)

Then there exists a class KL function β and for every initial state x(t0), satisfying
||x(t0)|| ≤ α−12 (α1(r)), there is T ≥ 0 (dependent on x(t0) and µ) such that the solution
of ẋ = f(t, x) satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀ t0 ≤ t ≤ t0 + T

||x(t)|| ≤ α−11 (α2(µ)), ∀ t ≥ t0 + T
(A.7)

Moreover, if D = Rn and α1 belong to class K∞, then (A.7) hold for any initial state
x(t0), with no restrictions on how large µ is.

A.2 Lemmas
Lemma A.2.1 (Non-vanishing perturbation, lemma 9.2 Khalil (2002)). Let x = 0 be an
exponentially stable equilibrium point of the nominal system

ẋ = f(t, x). (A.8)

Let V (t, x) be a Lyapunov function of the nominal system that satisfies

c1||x||2 ≤ V (t, x) ≤ c2||x||2
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −c3||x||2
∣∣∣∣∣

∣∣∣∣∣
∂V

∂x

∣∣∣∣∣

∣∣∣∣∣ ≤ c4||x||

(A.9)
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in [0,∞) ×D, where D = {x ∈ Rn | ||x|| < r}. Suppose the perturbation term g(t, x)
satisfies

||g(t, x)|| ≤ δ < c3
c4

√
c1
c2
θr (A.10)

for all t ≥ 0, all x ∈ D, and some positive constant θ < 1. Then, for all ||x(t0)|| <√
c1/c2r, the solution x(t) of the perturbed system

ẋ = f(t, x) + g(t, x) (A.11)

satisfies
||x(t)|| ≤ kexp[−γ(t− t0)]||x(t0)||, ∀t0 ≤ t < t0 + T (A.12)

and
||x(t)|| ≤ b, ∀t ≥ t0 + T (A.13)

for some finite T, where

k =

√
c2
c1
, γ =

(1− θ)c3
2c2

, b =
c4
c3

√
c2
c1

δ

θ
(A.14)

Lemma A.2.2 (Uniformly globally asymptotically stable of cascades, lemma 2.1 Lorı́a
and Panteley (2005)). Consider the cascaded system:

∑
1

{
ẋ1 = f1(t, x1) + g(t, x)x2

∑
2

{
ẋ2 = f2(t, x2)

(A.15)

where x1 ∈ Rn, x2 ∈ Rm and the function f1(x1, x2) is continuously differentiable in
(x1, x2). The cascade (A.15) is UGAS if and only if the systems ẋ1 = f1(t, x1) and
ẋ2 = f2(t, x2) are UGAS and the solutions of (A.15) are uniformly globally bounded
(UGB).
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Appendix B
Finite-Time Stable Analysis

B.1 Analysis of the super-twisting algorithm with state
observer

B.1.1 The estimated value for x2 is used in the sliding surface
Overall closed-loop dynamics:

The overall closed-loop dynamics can be written as

∑
1





ẋ1 = σ̂ − c1x1 + e2
˙̂σ = c1e2 − k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(B.1)

Proof. Finite-time stable:

In this section stability will be proven by using the fact that both the STA and the state
observer are FTS, and the fact that the trajectories of

∑
1 cannot escape to infinity in finite

time, as done in Chalanga et al. (2016). The closed-loop dynamics is described as in
Equation (B.1). It is proven in Levant (2003a) and Moreno (2012), that the error dynamics
represented in subsystem

∑
2 is FTS. This means that after a finite time T , e = 0. So after

this time T , the closed-loop dynamic is




ẋ1 = σ̂ − c1x1
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

(B.2)
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As the STA is also FTS, which is proven in Moreno and Osorio (2012), σ = v = 0 after a
finite time T . This leads to a closed-loop dynamic represented by

ẋ1 = −c1x1
x2 = ẋ1 = −c1x1

(B.3)

which is AS, when c1 > 0.

B.1.2 The estimated value for x1 and x2 are used in the sliding surface

Overall closed-loop dynamics:

The overall closed-loop dynamics can be written as

∑
1





ẋ1 = σ̂ − c1x1 + c1e1 + e2
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(B.4)

Proof. Finite-time stable:

The FTS analysis is exactly the same as for the system in the Section B.1.1. After a finite
time T , e = 0. So after this time T , the closed-loop dynamic is





ẋ1 = σ̂ − c1x1
˙̂σ = −k1|σ̂|1/2 sgn(σ̂) + v

v̇ = −k2 sgn(σ̂)

(B.5)

As the STA is also FTS, which is proven in Moreno and Osorio (2012), σ = v = 0 after a
finite time T . This leads to a closed-loop dynamic represented by

ẋ1 = −c1x1
x2 = ẋ1 = −c1x1

(B.6)

which is AS, when c1 > 0.
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B.2 Analysis of the HOSM algorithms with differentiator
and state observer

B.2.1 The estimated value for x1 and x2 are used in the sliding
surface:

Overall closed-loop dynamics:

The overall closed-loop dynamics can be written as

∑
1

{
ẋ1 = σ̂ − c1x1 + c1e1 + e2
˙̂σ = uc

∑
2





ė1 = −λ1|e1|2/3 sgn(e1) + e2

ė2 = −λ2|e1|1/3 sgn(e1) + e3

ė3 = −λ3 sgn(e1) + ḟ(t, x)

(B.7)

Proof. Finite-time stable:

The FTS analysis is exactly the same as for the system in Section B.1.1 and B.1.2. After a
finite time T , e = 0. So after this time T , the closed-loop dynamic is

{
ẋ1 = σ̂ − c1x1
˙̂σ = uc

(B.8)

As the HOSM algorithm with a differentiator is also FTS, σ̂ = 0 after a finite time T . This
leads to a closed-loop dynamic represented by

ẋ1 = −c1x1
x2 = ẋ1 = −c1x1

(B.9)

which is AS, when c1 > 0.
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Trajectory tracking for underwater swimming manipulators using a super
twisting algorithm
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Abstract: The Underwater Swimming Manipulator (USM) is a snake-like, multi-articulated, underwater robot equipped
with thrusters. One of the main purposes of the USM is to act like an underwater floating base manipulator. As such, it
is essential to achieve good station-keeping and trajectory tracking performance for the USM using the thrusters, while
using the joints to attain a desired position and orientation of the head and tail of the USM. In this paper, we propose
a sliding mode control (SMC) law, in particular the super-twisting algorithm with adaptive gains, for trajectory tracking
of the USMs center of mass. A higher-order sliding mode observer is proposed for state estimation. Furthermore, we
perform a simulation study to verify the applicability of the proposed control law and show that it has better tracking
performance than a linear PD-controller.

Keywords: Underwater Swimming Manipulator, Super-Twisting, Siding Mode Control, Sliding Mode Observer.

1. INTRODUCTION
An underwater swimming manipulator (USM) is an

underwater snake robot (USR) equipped with thrusters
[1]. The main purposes of the thrusters are to provide for-
ward thrust without requiring the snake robot to follow an
undulating gait pattern, which is of particular importance
in narrow, confined environments, and to provide side-
ways thrust for station-keeping and trajectory tracking.
The station-keeping and trajectory tracking capabilities
enable the USM to act like an underwater floating base
manipulator. The slender, multi-articulated body pro-
vides the USM with outstanding accessibility and flexi-
bility. As such, the USM is a crossover between a small
autonomous underwater vehicle (AUV) and an under-
water snake robot. The USM possesses the high kine-
matic redundancy of the USR, and at the same time it
has the advantages of the AUV in terms of full energy-
efficient hydrodynamic properties and tether-less opera-
tion. Moreover, the USM has the advantages of remotely
operated vehicles (ROVs) regarding full actuation and the
capability of doing intervention operations. Since the
USM can use the thrusters instead of the joints to create
forward propulsion, the joints can be used to perform ma-
nipulation tasks and, thus, exploit the full potential of the
inherent kinematic redundancy. This has been addressed
in details in [2], [3].

As a floating base manipulator, the USM can move
itself to an area of interest, position its tail at the ini-
tial base location, and then start to operate as a robotic
manipulator. When the USM carries out a manipulation
task, the overall motion of the USM and the joint angle
velocities can be determined by the desired velocities of
the end-effector, i.e. the desired motion of the head of the

† I-L. G. Borlaug is the presenter of this paper.

USM. One approach for this is described in [4], where the
base motion and the joint angle motion of the USM are
assigned using a redundancy resolution technique based
on inverse kinematics. The outputs of this procedure
are time-varying velocity references for the base and the
joints. This inverse kinematics method is only one of
many ways to calculate the velocity references.

Controller design for underwater robots (URs) such as
the USM and ROVs, is a complex problem [5]. URs
are often subject to hydrodynamic and hydrostatic pa-
rameter uncertainties, uncertain thruster characteristics,
unknown disturbances, and unmodelled dynamic effects,
e.g. thruster dynamics and coupling forces caused by
joint motion. As the USM has no separate vehicle base
and a low mass compared to an ROV, the motion of the
joints become more significant for the overall motion of
the USM as a rigid body than for the ROV. The coupling
forces are therefore more prominent for the USM, and
this increases the complexity of motion control of the
USM, compared to an ROV.

Sliding mode control (SMC) is a robust and versa-
tile non-linear control approach, and we will in this pa-
per show that it is well suited for control of USMs. For
underwater vehicles, in general, some important contri-
butions are given in [6], [7], [8], [9], [10] and [11]. In
[6], a singularity-free SMC approach, inspired by [12],
is used for set-point regulation of a UR with uncertain-
ties in the hydrodynamic parameters. In [7], [8], SMC
is employed to cope with multiplicative uncertainty in
the thruster configuration matrix. The combination of
sliding mode and adaptive control is studied in [7], [8],
[11]. In particular, in [11], sliding mode control is com-
bined with adaptive PID controller gains and an adaptive
update of the upper bound on the disturbances and the
parameter uncertainties. SMC is also applicable to deal



with linearisation errors [9] and the coupling effects be-
tween an underwater vehicle and an attached manipulator
arm [10]. Sliding mode techniques have been applied to
land-based snake robots in [13] to achieve robust track-
ing of a desired gait pattern and under-actuated straight
line path following. However, SMC have to the authors’
best knowledge, never been applied to underwater snake
robots, and in particular, to USRs with thrusters.

In this paper SMC is applied to the robot model pro-
posed in [1]. The model in [1] extends the 2D model
proposed in [14], by modelling also additional effectors
and considering the force allocation among these effec-
tors. In this paper, the linear PD-controller used in [1]
is replaced by a super-twisting algorithm (STA) for slid-
ing mode control accompanied by a higher-order sliding
mode observer. We consider the tracking problem for the
position of the centre of mass of the USM.

The first-order relay controller [15], has large prob-
lems with chattering. Chattering is the high-frequency
switching of the control signals commonly associated
with SMC. To eliminate chattering, we could have used
saturation control, but since the sliding mode does not ex-
ist inside the boundary layer, the effectiveness of the con-
troller is challenged when parasitic dynamics are consid-
ered, [16]. Therefore the super-twisting algorithm will be
used. The STA is one of the most powerful second-order
continuous sliding mode control algorithms. It was first
introduced in [17] and has thereafter been used for mul-
tiple systems. The STA attenuates chattering and will,
therefore, give a smoother control signal. A challenge
with the STA is that it only works with bounded pertur-
bations, and therefore a conservative upper bound has to
be used when designing the controller to ensure that slid-
ing is maintained. To eliminate this problem, we will use
adaptive STA [18]. The gains can then adapt to a level
where they are as small as possible but still guarantee that
sliding is maintained. Since the STA is only applicable
to systems where the control input appears in the equa-
tion for the first derivative of the sliding variable, both
the position and velocity of the USM need to be available
for measurement. For the case when only the position
measurements are available, we will use a higher-order
sliding mode observer, proposed in [19], to estimate the
states. As such, we combine the results from [18] and
[19], as done in [20], but we will replace the regular STA
with a STA with adaptive gains. We will then apply this
control structure to the USM. We also present simula-
tions that verify that the proposed approach applies well
to USMs, and also compare the results to a standard PD-
controller.

The remainder of this paper is organized as follows. In
Section 2 the robot model used will be explained in more
detail. The control and observer design is presented in
Section 3, and in Section 4 the simulation results will be
presented. Conclusions and suggestions for future work
are given in Section 5.

2. UNDERWATER SWIMMING
MANIPULATOR (USM) MODEL

In this section, the equations of motion for the USM
and the force allocation matrix will be explained. We
refer to [1] and [14] for further details.

2.1. Kinematics
The position of the center of mass (CM) of the USM,

pCM ∈ R2, expressed in the global frame is

pCM =

[
px
py

]
=

[ 1
mt

∑n
i=1mixi

1
mt

∑n
i=1miyi

]
=

1

mt

[
eTMX
eTMY

]
(1)

where (xi, yi), i = 1, · · · , n are the coordinates of the
CM of link i in the global frame, mi is the mass of link i
and mt =

∑n
i=1mi is the total mass of the USM. Eq. (1)

is valid because it is assumed that the mass of each link
is uniformly distributed. The matrix representation of the
force balance for all the links is

MẌ = DThx+fx+fpx, MŸ = DThy+fy+fpy (2)

where fpx and fpy are the forces from the additional ef-
fectors, hx and hy are the joint constraint forces and fx
and fy are the fluid forces acting on the links. By differ-
entiating Eq. (1) and inserting Eq. (2), the joint constraint
forces cancel out, and the translational motion of the CM
of the USM can be written as

mtp̈x = eT (fx + fpx), mtp̈y = eT (fy + fpy). (3)

2.2. Force Allocation
The force allocation distribution is given by

τCM =



FCM,x

FCM,y

MCM,z




=




eT 01×n

01×n eT

eTSψK −eTCψK



[
fpx
fpy

]
= T (ψ)fp,

(4)

where T (ψ) is the allocation matrix and fp =
[fp,k1 , . . . , fp,kr ] is the vector of scalar effector forces.
The allocation matrix represents the mapping between
the effector forces and the forces and moments acting on
the CM of the USM. It is assumed that the additional ef-
fector forces are acting through the CM of each link. The
primary objective for the force allocation method is to
distribute the efforts among the additional effectors to ob-
tain the desired forces and moments. In the next section,
we propose a novel method for calculation of the desired
forces and moments, together with a non-linear observer
for position and velocity.

Fig. 1 System overview USM, [1]



3. CONTROL AND OBSERVER DESIGN
Control problem: Assume that there exist a guidance

system which determines a suitable path for the USM to
follow. The task at hand is to design a motion controller
that calculates the desired forces for the translational
motion FCM, and the desired moments for the rotational
motion MCM, of the USM.

We will in the following use a super-twisting algorithm
with adaptive gains to calculate the desired forces, FCM.
To calculate the desired moments, MCM, we will use a
proportional controller. The desired forces and moments
are represented by

τCM,d =

[
FCM,d

MCM,d

]
=



FCM,dx

FCM,dy

MCM,d


 (5)

3.1. Sliding surface design
First we define the error variable. As the output vari-

able for the translational motion of the USM is pCM, the
error variable can be defined as

p̃ =

[
p̃x
p̃y

]
= pCM − pCM,ref =

[
px − px,ref
py − py,ref

]
(6)

where pCM,ref is the desired position of the CM of the
USM in the global frame. The sliding surface should be
selected such that the state trajectories of the controlled
system are forced onto the sliding surface σ = σ̇ = 0,
where the system behaviour meets the design specifica-
tions. The controller u should also appear in the first
derivative of σ, so that the relative degree is equal to 1.
The sliding surface σ can then be chosen as

σ =

[
σx
σy

]
= p̃+ λ ˙̃p =

[
p̃x
p̃y

]
+

[
λ ˙̃px
λ ˙̃py

]

=

[
px − px,ref
py − py,ref

]
+

[
λ(ṗx − ṗx,ref)
λ(ṗy − ṗy,ref)

] (7)

Since only the position, pCM, of the centre of mass is
available for measurement, an observer for the states is
designed. The observer states will be used in the sliding
surface, and following the structure of Eq. (7), the revised
sliding surface is then

σ̂ =

[
σ̂x
σ̂y

]
=

[
p̂x − px,ref
p̂y − py,ref

]
+

[
λ( ˙̂px − ṗx,ref)
λ( ˙̂py − ṗy,ref)

]
. (8)

3.2. Control input design
The control input can be written, by using Eq. (4) and

Eq. (5), as

u =

[
ux
uy

]
= FCM =

[
FCM,x

FCM,y

]
=

[
eT fpx
eT fpy

]
. (9)

By replacing eT fpx and eT fpy in Eq. (3), with ux and
uy , the translational motion of the CM of the USM can
be rewritten as

mtp̈x = eT fx + ux, mtp̈y = eT fy + uy. (10)

3.2.1. The super-twisting algorithm with adaptive gains
The STA with adaptive gains proposed in [18] can be

written as

uSTA =

[
uSTA,x
uSTA,y

]
=

[
−αx‖σx‖1/2 sgn(σx) + vx
−αy‖σy‖1/2 sgn(σy) + vy

]

v̇ =

[
v̇x
v̇y

]
=

[
−βx sgn(σx)
−βy sgn(σy)

]

(11)

where the adaptive gains are defined as

α̇ =

[
α̇x
α̇y

]
=




{
ω1

√
γ1
2 , if σx 6= 0

0, if σx = 0{
ω1

√
γ1
2 , if σy 6= 0

0, if σy = 0




(12)

and

β =

[
βx
βy

]
=

[
2εαx + λ+ 4ε2

2εαy + λ+ 4ε2

]
, (13)

where ε, λ, γ1 and ω1 are positive constants. For imple-
mentation purposes, a small boundary is put on the slid-
ing surface and the adaptive gains can be expressed as

α̇ =

[
α̇x
α̇y

]
=




{
ω1

√
γ1
2 , if ‖σx‖ > αm

0, if ‖σx‖ ≤ αm{
ω1

√
γ1
2 , if ‖σy‖ > αm

0, if ‖σy‖ ≤ αm




β =

[
βx
βy

]
=

[
2εαx + λ+ 4ε2

2εαy + λ+ 4ε2

]
(14)

where the design parameter αm is a small positive con-
stant.

3.2.2. State observer
By designing the observer structure as in [19], the state

observer is chosen as

˙̂p1 =

[
˙̂p1,x
˙̂p1,y

]
=

[
p̂2,x + z1,x
p̂2,y + z1,y

]
=

[
p̂2,x + k1‖e1,x‖2/3 sgn(e1,x)
p̂2,y + k1‖e1,y‖2/3 sgn(e1,y)

]

˙̂p2 =

[
˙̂p2,x
˙̂p2,y

]
=

[
p̂3,x + z2,x +

1
mt
ux

p̂3,y + z2,y +
1
mt
uy

]

=

[
p̂3,x + k2‖e1,x‖1/3 sgn(e1,x) + 1

mt
ux

p̂3,y + k2‖e1,y‖1/3 sgn(e1,y) + 1
mt
uy

]

˙̂p3 =

[
˙̂p3,x
˙̂p3,y

]
=

[
z3,x
z3,y

]
=

[
k3 sgn(e1,x)
k3 sgn(e1,y)

]

(15)

where k1, k2 and k3 are gains to be chosen according to
[21] and [22], e1,x = px− p̂1,x and e1,y = py− p̂1,y. One
choice of parameters that meets the requirements in [21]
and [22], is according to [20], k1 = 6L1/3, k2 = 11L1/2

and k3 = 6L, where L is a sufficiently large constant.



3.2.3. Control input
In order for the STA to be applicable, the control input

needs to be chosen such that the control appears in the
equation of the first derivative of the sliding variable. In
particular, we want to have ˙̂σ = uSTA. Taking the time
derivative of Eq. (8) and substituting ˙̂p1 and ˙̂p2, defined
in Eq. (15), we find that

˙̂σ = ( ˙̂p1 − ṗref) + ( ˙̂p2 − p̈ref)

= (p̂2 + z1 − ṗref) + (p̂3 + z2 +
1

mt
u− p̈ref)

(16)

where u is defined as in Eq. (9). By choosing u to be

u = mt(−p̂2 − z1 + ṗref − p̂3 − z2 + p̈ref + uSTA)

(17)

we obtain

˙̂σ = uSTA. (18)

3.2.4. PD-controller
We want to compare the performance of the SMC al-

gorithms to an existing controller for USMs with respect
to disturbances and modelling errors. We will to the stan-
dard PD-controller that was proposed in [1]. This is im-
plemented by replacing uSTA in Eq. (17) with

uPD = kCCM
d

[
ṗx,ref − ˙̂px
ṗy,ref − ˙̂py

]
+ kCMp

[
px,ref − p̂x
py,ref − p̂y

]
(19)

where kCMd and kCMp are controller gains.

4. SIMULATION RESULTS
4.1. Implementation

The complete model with the force allocation matrix
is implemented in MATLAB. The USM implemented has
n = 16 links, each one having length 2li = 0.14 m and
mass mi = 0.6597 kg. The thruster configuration used
corresponds to configuration 2 in [1]. This has one tail
thruster attached to link 1 exerting a force along the x-
axis of the link and four additional thrusters located at
link number 3, 6, 11 and 14, exerting forces normal to
the links. For more details regarding the parameters used
in the model, please see [1]. We have implemented two
different case studies, one called torpedo mode, which
is described in Section 4.1.1, and one called operation
mode, described in Section 4.1.2.

4.1.1. Case 1 - Torpedo mode
We want the USM to move as a torpedo-shaped AUV

when it is moving from one place to another. To sim-
ulate this type of behaviour, the link angles were set to
zero, i.e. there was no lateral undulation, and a line-of-
sight (LOS) guidance law was used for heading control.
For information on how the LOS guidance law was in-
corporated into the system and the motivation behind this
choice, see [1]. This simulation case is shown in Fig. 2.

4.1.2. Case 2- Operation mode
When the USM is in operation mode, it will use the

thrusters to stay in one place or move around, and use
the end-effector at the head of the USM to do the opera-
tion. The motion of the joints can be seen as a disturbance
to the CM position control system, as it will inflict un-
wanted motion on the CM of the USM. This simulation
case investigates how well the proposed STA attenuates
the unwanted effects of the joint motion. The simulated
operation is an inspection, which entails that the head of
the USM first moves in one direction and then the other,
while the thrusters should keep the USM on the reference
path. This type of simulation is shown in Fig. 3, where
the USM head changes direction at 10, 20 and 30 sec-
onds.

4.2. Simulations
As described in Section 3.2.2 the gain parameter L

needs to be chosen sufficiently large, and for the simu-
lations L was chosen through trial and error. The PD-
controller gains were also chosen by this method. λ in
Eq. (8) was set to 1. For the simulations an ode5 solver,
with fixed step size 10−5 was used. In Table 1 the maxi-
mum position error after settling is presented for both the

Fig. 2 Torpedo mode USM simulation

Fig. 3 Operation mode USM simulation



PD and SMC controllers.

4.2.1. The super-twisting algorithm with adaptive gains:
The gains in the super-twisting algorithm with adap-

tive gains were set to: ε = 1, λ = 1, γ1 = 1, ω1 =
8, αm = 0.05, and the observer gain was set to: L = 55.
The simulations for torpedo mode can be seen in Fig. 4,
and the simulations for operation mode can be seen in
Fig. 5.

4.2.2. The PD-controller
The gains for the PD-controller were set to: kCMd =

10 and kCMp = 0.1. The torpedo mode simulation can be
seen in Fig. 7 and the operation mode simulation can be
seen in Fig. 8.

Table 1 Absolute maximum value for position error

Algorithm Error
Torpedo Operation

x y x y
The STA with 3.6134· 2.8763· 3.6127·
adaptive gains 10−4 10−4 10−4 0.0014
PD-controller 0.0321 0.0354 0.0486 0.0359

4.3. Discussion
From Figs. 4 and 5 we can see that the proposed con-

trol law is indeed applicable. From Figs. 4 to 8 and Ta-
ble 1, we can also see that the STA algorithm with adap-
tive gains is superior to the PD-controller because it has
smaller position errors in both cases.

It is worth noticing that for case 2, operation mode, the
difference in error is not very large in y-direction. From

Fig. 4 Torpedo mode:Simulation of STA with state ob-
server

Fig. 9 and Fig. 6, it can be seen that for the PD-controller
the absolute position error is more constant around 0.04
than for the STA with adaptive gains. The reason for the
larger absolute position error in the y-direction for the
STA is the peaks that can be seen in Fig. 6. These peaks
are from when the USM shifts position, and the error is
therefore only larger in some small time period when the
USM shifts position.

5. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have discussed the use of the USM
as a floating base manipulator, for which the trajectory
tracking performance is so important, and how the com-
plexity of motion control is larger for USMs than for
ROVs. We have proposed a second-order sliding mode
control law for trajectory tracking, with the use of slid-
ing mode observer for the case when velocity measure-
ments are not available. Furthermore, we have performed
a simulation study to verify the applicability of the pro-
posed control law and shown that it gives better tracking

Fig. 5 Operation mode: Simulation of STA with state
observer

Fig. 6 Operation mode: Position error for the STA



performance than a linear PD-controller.
Future work includes investigating the best choice of

control parameters, stability analysis of the closed-loop-
dynamics, and extending the results to 3D.
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Appendix D
Attachment Description and
MATLAB code

In the ”Attachments. zip” file attached to this thesis is a folder named ”Code”, where
all the MATLAB code and Simulink models can be found. Inside the code folder, there
is two folders one named ”MSDS” and one named ”USM”, in each folder the code for
each system can be found. There is also a folder named ”Simulation videos”. Inside that
folder is two videos, one named torpedo mode and one named operation mode. The
one named torpedo mode shows how the USM torpedo mode was simulated, and the one
named operation mode shows how the USM operation mode was simulated. There is
also a file named ”Project report, Ida-Louise G. Borlaug. pdf”, which is my project report.

D.1 Mass-spring-damper system

D.1.1 Attachment description
The mass-spring-damper system folder is divided up in three folders, one for each
algorithm. The code is organized as follows:

.m-files

• find absolute max error.m - Finds the absolute maximum error for the error
variables. Run one of the following models before running this file.

STA (Super-twisting algorithm)

• STA:

– MSDS STA.slx - Contains the implementation of the super-twisting
algorithm and the mass-spring-damper system, where the actual values of x1
and x2 is used in the sliding surface.
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– run MSDS STA.m - Initializes the parameters, runsMSDS STA.slx and
plots the results.

• STA with HOSMO estimating x2:

– MSDS STA HOSMO est x 2.slx - Contains the implementation of the
super-twisting algorithm with a state observer and the mass-spring-damper
system, where the estimated value of x2 is used in the sliding surface.

– run MSDS STA HOSMO est x 2.m - Initializes the parameters, runs
MSDS STA HOSMO est x 2.slx and plots the results.

• STA with HOSMO estimating x1 and x2:

– MSDS STA HOSMO est x 1 2.slx - Contains the implementation of
the super-twisting algorithm with a state observer and the
mass-spring-damper system, where the estimated value of x1 and x2 are used
in the sliding surface.

– run MSDS STA HOSMO est x 1 2.m - Initializes the parameters, runs
MSDS STA HOSMO est x 1 2.slx and plots the results.

Nested 3rd-order SMC + differentiator (Nested third-order SMC + differentiator)

• Nested 3rd SMC with differentiator:

– MSDS 3 nested SMC.slx - Contains the implementation of the nested
third-order sliding mode control algorithm with differentiator and the
mass-spring-damper system, where the actual values of x1 and x2 is used in
the sliding surface.

– run MSDS 3 nested SMC.m - Initializes the parameters, runs
MSDS 3 nested SMC.slx and plots the results.

• Nested 3rd SMC with diff and HOSMO estimating x2:

– MSDS 3 nested SMC HOSMO est x 2.slx - Contains the
implementation of the nested third-order sliding mode control algorithm with
differentiator, a state observer and the mass-spring-damper system, where the
estimation of x2 is used in the sliding surface.

– run MSDS 3 nested SMC HOSMO est x 2.m - Initializes the
parameters, runs MSDS 3 nested SMC HOSMO est x 2.slx and plots
the results.

• Nested 3rd SMC with diff and HOSMO estimating x1 and x2:

– MSDS 3 nested SMC HOSMO est x 1 2.slx - Contains the
implementation of the nested third-order sliding mode control algorithm with
differentiator, a state observer and the mass-spring-damper system, where the
estimation of x1 and x2 is used in the sliding surface.
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– run MSDS 3 nested SMC HOSMO est x 1 2.m - Initializes the
parameters, runs MSDS 3 nested SMC HOSMO est x 1 2.slx and
plots the results.

Quasi 3rd-order SMC + differentiator (Quasi-continuous third-order SMC +
differentiator)

• Quasi 3rd SMC with differentiator:

– MSDS 3 quasi SMC.slx - Contains the implementation of the
quasi-continuous third-order sliding mode control algorithm with
differentiator and the mass-spring-damper system, where the actual values of
x1 and x2 is used in the sliding surface.

– run MSDS 3 quasi SMC.m - Initializes the parameters, runs
MSDS 3 quasi SMC.slx and plots the results.

• Quasi 3rd SMC with diff and HOSMO estimating x2:

– MSDS 3 quasi SMC HOSMO est x 2.slx - Contains the
implementation of the quasi-continuous third-order sliding mode control
algorithm with differentiator, a state observer and the mass-spring-damper
system, where the estimation of x2 is used in the sliding surface.

– run MSDS 3 quasi SMC HOSMO est x 2.m - Initializes the
parameters, runs MSDS 3 quasi SMC HOSMO est x 2.slx and plots
the results.

• Quasi 3rd SMC with diff and HOSMO estimating x1 and x2:

– MSDS 3 quasi SMC HOSMO est x 1 2.slx - Contains the
implementation of the quasi-continuous third-order sliding mode control
algorithm with differentiator, a state observer and the mass-spring-damper
system, where the estimation of x1 and x2 is used in the sliding surface.

– run MSDS 3 quasi SMC HOSMO est x 1 2.m - Initializes the
parameters, runs MSDS 3 quasi SMC HOSMO est x 1 2.slx and plots
the results.
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D.1.2 MATLAB code

STA:

run MSDS STA.m

%% Run super-twisting algorithm

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Sliding surface
c_1 = 1;

% Control gains
K = 100;

sim('MSDS_STA');

%% Plot

figure(1)
subplot(5,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(5,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(5,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(5,1,4);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

subplot(5,1,5);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])
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STA with HOSMO estimating x2:

run MSDS STA HOSMO est x 2.m

%% Run super-twisting algorithm with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Observer gains
L = 16;
k_1 = 6*Lˆ(1/3);
k_2 = 11*Lˆ(1/2);
k_3 = 6*L;

% Sliding surface
c_1 = 1;

% Control gains
K = 75;

sim('MSDS_STA_HOSMO_est_x_2');

%% Plot

figure(1)
subplot(3,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(3,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(3,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

figure(2)
subplot(4,1,1);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

subplot(4,1,2);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
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xlim([0 50])

subplot(4,1,3);
plot(e_1.time,e_1.signals.values,'b','LineSmoothing','on')
title('Observer error e_1'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,4);
plot(e_2.time,e_2.signals.values,'b','LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
xlim([0 50])

STA with HOSMO estimating x1 and x2:

run MSDS STA HOSMO est x 1 2.m

%% Run super-twisting algorithm with HOSMO to estimate x_1 and x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Observer gains
L = 16;
k_1 = 6*Lˆ(1/3);
k_2 = 11*Lˆ(1/2);
k_3 = 6*L;

% Sliding surface
c_1 = 1;

% Control gains
K = 75;

sim('MSDS_STA_HOSMO_est_x_1_2');

%% Plot
figure(1)
subplot(3,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(3,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(3,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
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title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

figure(2)
subplot(4,1,1);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

subplot(4,1,2);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,3);
plot(e_1.time,e_1.signals.values,'b','LineSmoothing','on')
title('Observer error e_1'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,4);
plot(e_2.time,e_2.signals.values,'b','LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
xlim([0 50])

Nested 3rd SMC with differentiator:

run MSDS 3 nested SMC.m

%% Run nested third-order SMC with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Sliding surface
c_1 = 1;

% Differentiator parameters
L_D = 20;
lambda_2 = 3;
lambda_1 = 1.5;
lambda_0 = 1.1;

% Control paramters

beta_1 = 1;
beta_2 = 2;

alpha = 40;

sim('MSDS_3_nested_SMC');

%% Plot
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figure(1)
subplot(3,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(3,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(3,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

figure(2)
subplot(3,1,1);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

subplot(3,1,2);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(3,1,3);
plot(z_0.time,z_0.signals.values,'r','LineSmoothing','on')
hold on
plot(z_1.time,z_1.signals.values,'b','LineSmoothing','on')
hold on
plot(z_2.time,z_2.signals.values,'g','LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2'); xlabel('Time [s]');
legend('z_0','z_1','z_2');
xlim([0 50])

Nested 3rd SMC with diff and HOSMO estimating x2:

run MSDS 3 nested SMC HOSMO est x 2.m

%% Run nested third-order SMC with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Observer gains
L_SO = 16;
k_1 = 6*L_SOˆ(1/3);

168



k_2 = 11*L_SOˆ(1/2);
k_3 = 6*L_SO;

% Sliding surface
c_1 = 1;

% Differentiator parameters
L_D = 20;
lambda_2 = 3;
lambda_1 = 1.5;
lambda_0 = 1.1;

% Control paramters

beta_1 = 1;
beta_2 = 2;

alpha = 28;

sim('MSDS_3_nested_SMC_HOSMO_est_x_2');

%% Plot
figure(1)
subplot(4,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(4,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,4);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

figure(2)
subplot(4,1,1);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,2);
plot(e_1.time,e_1.signals.values,'b','LineSmoothing','on')
title('Observer error e_1'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])
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subplot(4,1,3);
plot(e_2.time,e_2.signals.values,'b','LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
xlim([0 50])

subplot(4,1,4);
plot(z_0.time,z_0.signals.values,'r','LineSmoothing','on')
hold on
plot(z_1.time,z_1.signals.values,'b','LineSmoothing','on')
hold on
plot(z_2.time,z_2.signals.values,'g','LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2'); xlabel('Time [s]');
legend('z_0','z_1','z_2');
xlim([0 50])

Nested 3rd SMC with diff and HOSMO estimating x1 and x2:

run MSDS 3 nested SMC HOSMO est x 1 2.m

%% Run nested third-order SMC with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Observer gains
L_SO = 16;
k_1 = 6*L_SOˆ(1/3);
k_2 = 11*L_SOˆ(1/2);
k_3 = 6*L_SO;

% Sliding surface
c_1 = 1;

% Differentiator parameters
L_D = 20;
lambda_2 = 3;
lambda_1 = 1.5;
lambda_0 = 1.1;

% Control paramters

beta_1 = 1;
beta_2 = 2;

alpha = 28;

sim('MSDS_3_nested_SMC_HOSMO_est_x_2');

%% Plot
figure(1)
subplot(4,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
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hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(4,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,4);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

figure(2)
subplot(4,1,1);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,2);
plot(e_1.time,e_1.signals.values,'b','LineSmoothing','on')
title('Observer error e_1'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,3);
plot(e_2.time,e_2.signals.values,'b','LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
xlim([0 50])

subplot(4,1,4);
plot(z_0.time,z_0.signals.values,'r','LineSmoothing','on')
hold on
plot(z_1.time,z_1.signals.values,'b','LineSmoothing','on')
hold on
plot(z_2.time,z_2.signals.values,'g','LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2'); xlabel('Time [s]');
legend('z_0','z_1','z_2');
xlim([0 50])
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Quasi 3rd SMC with differentiator:

run MSDS 3 quasi SMC.m

%% Run quasi-continuous third-order SMC with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Sliding surface
c_1 = 1;

% Differentiator parameters
L_D = 1;
lambda_2 = 3;
lambda_1 = 1.5;
lambda_0 = 1.1;

% Control paramters

beta_1 = 1;
beta_2 = 2;

alpha = 40;

sim('MSDS_3_quasi_SMC');

%% Plot

figure(1)
subplot(3,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(3,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(3,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

figure(2)
subplot(3,1,1);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])
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subplot(3,1,2);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(3,1,3);
plot(z_0.time,z_0.signals.values,'r','LineSmoothing','on')
hold on
plot(z_1.time,z_1.signals.values,'b','LineSmoothing','on')
hold on
plot(z_2.time,z_2.signals.values,'g','LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2'); xlabel('Time [s]');
legend('z_0','z_1','z_2');
xlim([0 50])

Quasi 3rd SMC with diff and HOSMO estimating x2:

run MSDS 3 quasi SMC HOSMO est x 2.m

%% Run quasi-continuous third-order SMC with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Observer gains
L_SO = 16;
k_1 = 6*L_SOˆ(1/3);
k_2 = 11*L_SOˆ(1/2);
k_3 = 6*L_SO;

% Sliding surface
c_1 = 1;

% Differentiator parameters
L_D = 1;
lambda_2 = 3;
lambda_1 = 1.5;
lambda_0 = 1.1;

% Control paramters

beta_1 = 1;
beta_2 = 2;

alpha = 30;

sim('MSDS_3_quasi_SMC_HOSMO_est_x_2');

%% Plot

figure(1)
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subplot(4,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(4,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,4);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

figure(2)
subplot(4,1,1);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,2);
plot(e_1.time,e_1.signals.values,'b','LineSmoothing','on')
title('Observer error e_1'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,3);
plot(e_2.time,e_2.signals.values,'b','LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
xlim([0 50])

subplot(4,1,4);
plot(z_0.time,z_0.signals.values,'r','LineSmoothing','on')
hold on
plot(z_1.time,z_1.signals.values,'b','LineSmoothing','on')
hold on
plot(z_2.time,z_2.signals.values,'g','LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2'); xlabel('Time [s]');
legend('z_0','z_1','z_2');
xlim([0 50])
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Quasi 3rd SMC with diff and HOSMO estimating x1 and x2:

run MSDS 3 quasi SMC HOSMO est x 1 2.m

%% Run quasi-continuous third-order SMC with HOSMO to estimate x_2

% Model parameter values

m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Observer gains
L_SO = 16;
k_1 = 6*L_SOˆ(1/3);
k_2 = 11*L_SOˆ(1/2);
k_3 = 6*L_SO;

% Sliding surface
c_1 = 1;

% Differentiator parameters
L_D = 1;
lambda_2 = 3;
lambda_1 = 1.5;
lambda_0 = 1.1;

% Control paramters

beta_1 = 1;
beta_2 = 2;

alpha = 30;

sim('MSDS_3_quasi_SMC_HOSMO_est_x_2');

%% Plot

figure(1)
subplot(4,1,1);
plot(x_1_des.time,x_1_des.signals.values,'r','LineSmoothing','on')
hold on
plot(x_1.time,x_1.signals.values,'b','LineSmoothing','on')
title('X_{des} with X'); xlabel('Time [s]');ylabel('Position of mass [m]');
legend('x_{des}','x');
xlim([0 50])

subplot(4,1,2);
plot(disturbance.time,disturbance.signals.values,'b','LineSmoothing','on')
title('Disturbance'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])

subplot(4,1,3);
plot(control_input.time,control_input.signals.values,'b','LineSmoothing','on')
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
xlim([0 50])
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subplot(4,1,4);
plot(sliding_var.time,sliding_var.signals.values,'b','LineSmoothing','on')
title('Sliding variable \sigma'); xlabel('Time [s]');
xlim([0 50])

figure(2)
subplot(4,1,1);
plot(x_1.time,x_1.signals.values-x_1_des.signals.values,'b','LineSmoothing','on')
title('Position error'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,2);
plot(e_1.time,e_1.signals.values,'b','LineSmoothing','on')
title('Observer error e_1'); xlabel('Time [s]');ylabel('[m]');
xlim([0 50])

subplot(4,1,3);
plot(e_2.time,e_2.signals.values,'b','LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
xlim([0 50])

subplot(4,1,4);
plot(z_0.time,z_0.signals.values,'r','LineSmoothing','on')
hold on
plot(z_1.time,z_1.signals.values,'b','LineSmoothing','on')
hold on
plot(z_2.time,z_2.signals.values,'g','LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2'); xlabel('Time [s]');
legend('z_0','z_1','z_2');
xlim([0 50])

Absolute maximum error:

find absolute max error.m

%% Find absoulte maximum error
%Position error

max_error_position = max(abs(x_1.signals.values(1500000:5000001)-
x_1_des.signals.values(1500000:5000001)))

%% Observer error

max_error_e_1 = max(abs(e_1.signals.values(1500000:5000001)))
max_error_e_2 = max(abs(e_2.signals.values(1500000:5000001)))

%% Only for HOSM
%Differentiator error

max_error_z_0 = max(abs(z_0.signals.values(1500000:5000001)))
max_error_z_1 = max(abs(z_1.signals.values(1500000:5000001)))
max_error_z_2 = max(abs(z_2.signals.values(1500000:5000001)))
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D.2 Underwater swimming manipulator

D.2.1 Attachment description
The files that are described and attached here, are the files where changes can be made
to able to run the different algorithms that are implemented. The code for the USM is
organized as follows:

.m-files

• startSimulation ver3.m - Starts the simulation of the USM. Change the variable
ode, to change between ODE5 and ODE23tb solver. The fixed step length for the
ODE5 solver and the relative and absolute error for the ODE23tb can also be
changed her.

• calculate desired forces moments.m - Calculates and returns the desired forces
and moments, by calculating the sliding surface, state observer, differentiator and
the control input. To switch between the different algorithms, change the variable
con. To switch between torpedo mode and operation mode change the variable
mode (remember to change mode in calculate u lateral undulation.m as well).
The variable estimat can also be changed to choose witch sliding surface that is to
be used in the simulation.

• calculate u lateral undulation.m - Calculates and returns the actuator forces.
Change the variable mode to switch between torpedo mode and operation mode.

• plot simulations.m - Plots the simulation results. Run it after
startSimulation ver3.m.

• find absolute max error.m - Finds the absolute maximum error. Run it after
startSimulation ver3.m.

D.2.2 MATLAB code
Start simulation:

startSimulation ver3.m

%
% Starts the snake robot simulation.
%

global visualize_motion previous_draw_time t_previous waypoints ...
WP_switch_times t_sim theta_pathframe_sim p_pathframe_sim ...
vt_sim psi_path_sim z_sim z_dot_sim f_thr_sim tau_d_sim ...
T_allocation_sim phi_sim phi_ref_sim...
fTx_sim fTy_sim fx_sim fy_sim orientation_ref_sim...
orientation_sim px_sim py_sim phi_offset_sim ...
sigma_f_sim F_CM_sim error_pos_CM_sim p_CM_d_sim ...
observer_error_e_1_sim observer_error_e_2_sim differentiator_error
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% The stop time for the simulation.
stop_time = 40; % Straight motion
%stop_time = 200; % Turning motion

% Initializes controller parameters.
initControllerParameters;

% Initializes model parameters.
initModelParameters;

disp('Starting simulation...')

% Matlab function used to measure how long the simulation takes
tic

% The simulation time of the previous time step
t_previous = 0;

% Constructs the initial values for the state vector.
v0 = [theta0 ; p_CM0 ; theta0_dot ; p_CM0_dot ; u_CM0_2 ; x_estimat_dot;

z_dot;];

% Starts the snake robot visualization
if visualize_motion

% The time of the previously drawn sample
previous_draw_time = 0;

% Draws the initial position of the snake robot
drawSnakeRobot(0, theta0, p_CM0, 0);

% Create a slider with callback function to change \omega
% f33 = figure(33);
% set(f33,'Position', [800 600 130 30]);
% sld = uicontrol('Style', 'slider',...
% 'Min',20,'Max',100,'Value',70,...
% 'Position', [0 0 120 20],...
% 'Callback', @changeOmega);

% Waits for the figure window to display
pause(0.1);

end
%return

if 1

ode = 5;
% ode23tb solver
if ode == 23

options = odeset('Events', 'off', 'RelTol', 6e-2, 'AbsTol', 6e-2);
[t, v] = ode23tb('calculate_v_dot', [0 stop_time], v0, options);

end

% ode5 solver
if ode == 5
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nstep = 4000000;
tspan = linspace(0,stop_time,nstep);
v = ode5('calculate_v_dot',tspan,v0);

end

disp('Simulation complete...')

% Displays how long the simulation took to complete
toc

disp(['Simulated time: ' num2str(t(end, 1)) 's'])

% Extracts the states from the state vector.
theta = v(:, 1:n);
p_CM = v(:, n+1:n+2);
theta_dot = v(:, n+3:2*n+2);
p_CM_dot = v(:, 2*n+3:2*n+4);
%phi = v(:, 2*n+5:3*n+4);
%phi_dot = v(:, 3*n+5:4*n+4);
%phi_o = v(:, 4*n+5);
%psi_ref = v(:, 4*n+8);

end
%return

Calculate desired forces and moments:

calculate desired forces moments.m

function [tau_d, u_CM_2_dot,x_estimat_dot,differentiator_dot] = calculate_
desired_forces_moments(t, theta,theta_dot, p_CM, p_CM_dot,u_CM_2,x_estimat,
differentiator)
% Simple PD controller that returns the desired generalized forces and moments

global n p_CM_desired p_CM_dot_desired heading_desired ...
heading_dot_desired t_vector sigma_f F_CM error_pos_CM p_CM_d e_1 e_2

%Paramters:
m_t = 16*0.6597; %total mass

if t <= 0
tau_d = [0;0;0];
u_CM_2_dot = zeros(2,1);
x_estimat_dot = zeros(6,1); % x_1_dot = (1:2,1), x_2_dot = (3:4,1),
%x_3_dot = (5:6,1);
differentiator_dot = zeros(6,1); % z_1_dot = (1:2,1), z_2_dot = (3:4,1),
%z_3_dot = (5:6,1); Differentiator

end

%Choose controller: con = 1 (super-twisting), con = 2 (Nested third-order
%SMC), con = 3 (Quasi-continuous third-order SMC), con = 4 (PD-controller)
con = 1;

%Choose state observer: estimat = 0 (No state observer)
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%estimat = 1 (State observer, estimate velocity),
%estimat = 2 (Full state observer, estimate velocity and position).
estimat = 1;

%Choose mode: torpedo mode = 1, operation mode = 2.
mode = 1;

% Calculates the desired thrust vector in 3 DOF (transport mode)
if t > 0

%Control paramters
F_CM = zeros(2,1);

Kp_theta = 6;

%Only for super-twisting
u_CM_1 = zeros(2,1);
u_CM_2_dot = zeros(2,1);
STA_CM = zeros(2,1);

%Only for third-order SMC
third_C = zeros(2,1);
u_1 = zeros(2,1);
u_2 = zeros(2,1);

%State observer
z_1 = zeros(2,1);
z_2 = zeros(2,1);
z_3 = zeros(2,1);
e_1 = zeros(2,1);
e_2 = zeros(2,1);
x_estimat_dot = zeros(6,1);

% Differentiator
v_0 = zeros(2,1);
v_1 = zeros(2,1);
v_2 = zeros(2,1);
differentiator_dot = zeros(6,1);

if mode == 1
% Tordpedo mode
Delta=2.24;
heading_d = -atan2(p_CM(2,1),Delta);

else
% Operation mode
if (t <= 10)

heading_d = sin(pi/2);
end
if (t > 10 && t <= 20) || (t > 30 && t <= 40)

heading_d = sin(pi);
end
if (t > 20 && t <= 30)

heading_d = sin(3*pi/2);
end

end

p_CM_dot_d = interp1(t_vector,p_CM_dot_desired',t,'spline')';
p_CM_d = interp1(t_vector,p_CM_desired',t,'spline')';
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heading = theta(n);

%Observer dynamics
if estimat ~= 0

L_SO = 50;
k_1 = 6*L_SOˆ(1/3);
k_2 = 11*L_SOˆ(1/2);
k_3 = 6*L_SO;

e_1 = p_CM - x_estimat(1:2,1);
e_2 = p_CM_dot - x_estimat(3:4,1);

for i = 1:2
z_1(i) = k_1*abs(e_1(i))ˆ(2/3)*sign(e_1(i));
z_2(i) = k_2*abs(e_1(i))ˆ(1/3)*sign(e_1(i));
z_3(i) = k_3*sign(e_1(i));

end

x_estimat_dot(5:6,1) = z_3;
x_estimat_dot(3:4,1) = x_estimat(5:6,1) + z_2 + (1/m_t)*(F_CM);
x_estimat_dot(1:2,1) = x_estimat(3:4,1) + z_1;

end

% Error variables
error_pos_CM = p_CM - p_CM_d;
error_vel_CM = p_CM_dot - p_CM_dot_d;
error_heading = heading_d - heading;

error_pos_CM_estimat = x_estimat(1:2,1) - p_CM_d;
error_vel_CM_estimat = x_estimat(3:4,1) - p_CM_dot_d;

% Create sliding surfaces
c_1 = 1;
if estimat == 0

sigma_f = error_vel_CM + error_pos_CM;
elseif estimat == 1

sigma_f = error_vel_CM_estimat + error_pos_CM;
else

sigma_f = error_vel_CM_estimat + c_1*error_pos_CM_estimat;
end

%Differentiator dynamics
if (con == 2) || (con == 3)

if con == 2
L_D = 0.1;

else
L_D = 1;

end
lambda_0 = 1.1;
lambda_1 = 1.5;
lambda_2 = 3;

z_0 = differentiator(1:2,1);
z_1 = differentiator(3:4,1);
z_2 = differentiator(5:6,1);
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for i = 1:2
v_0(i) = -lambda_2*(L_D)ˆ(1/3)*(abs(z_0(i)-sigma_f(i)))ˆ(2/3)*
sign(z_0(i)-sigma_f(i))+z_1(i);
v_1(i) = -lambda_1*(L_D)ˆ(1/2)*(abs(z_1(i)-v_0(i)))ˆ(1/2)*
sign(z_1(i)-v_0(i))+z_2(i);
v_2(i) = -lambda_0*L_D*sign(z_2(i)-v_1(i));

end

differentiator_dot(5:6,1) = v_2;
differentiator_dot(3:4,1) = v_1;
differentiator_dot(1:2,1) = v_0;

end

if con == 1 %Super-Twisting controller
K_f = 10;

for i = 1:2
u_CM_1(i) = -1.5*sqrt(K_f)*sqrt(abs(sigma_f(i)))*sign(sigma_f(i));
u_CM_2_dot(i) = -1.1*K_f*sign(sigma_f(i));
STA_CM(i) = u_CM_1(i) + u_CM_2(i);

end
u_C = STA_CM;

elseif con == 2 %Nested third-order SMC
alpha = 10;
beta_2 = 1;
beta_1 = 1;

z_0 = differentiator(1:2,1);
z_1 = differentiator(3:4,1);
z_2 = differentiator(5:6,1);

for i = 1:2
third_C(i) = -alpha*(sign(z_2(i)+beta_2*((abs(z_1(i)))ˆ3+
(abs(z_0(i)))ˆ2)ˆ(1/6)*sign(z_1(i)+beta_1*((abs(z_0(i)))ˆ(2/3)*
sign(z_0(i))))));

end

u_C = third_C;

elseif con == 3 %Quasi-continuous third-order SMC
alpha = 10;
beta_2 = 2;
beta_1 = 1;

z_0 = differentiator(1:2,1);
z_1 = differentiator(3:4,1);
z_2 = differentiator(5:6,1);

for i = 1:2
u_1(i) = z_2(i) + beta_2*(abs(z_1(i))+abs(z_0(i))ˆ(2/3))ˆ(-1/2)*
(z_1(i)+beta_1*abs(z_0(i))ˆ(2/3)*sign(z_0(i)));
u_2(i) = abs(z_2(i))+beta_2*(abs(z_1(i))+abs(z_0(i))ˆ(2/3))ˆ(1/2);

third_C(i)= -alpha*(u_1(i)/u_2(i));
end
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if t < 0.01
u_C = zeros(2,1);

else
u_C = third_C;

end

else %PD-controller
Kp_pos = 10; %0.6
Kd_pos = 0.1; %0.06;

if estimat == 0
u_C = Kd_pos*(-1)*error_vel_CM + Kp_pos*(-1)*error_pos_CM;

elseif estimat == 1
u_C = Kd_pos*(-1)*error_vel_CM_estimat + Kp_pos*(-1)*
error_pos_CM;

else
u_C = Kd_pos*(-1)*error_vel_CM_estimat + Kp_pos*(-1)*
error_pos_CM_estimat;

end
end
if estimat == 0

F_CM = m_t*(u_C);
elseif estimat == 1

if con == 3
if t < 0.01

F_CM = zeros(2,1);
else

F_CM = (u_C - c_1*x_estimat(3:4,1) - x_estimat(5:6,1) - z_2);
end

else
F_CM = m_t*(u_C - c_1*x_estimat(3:4,1) - x_estimat(5:6,1) - z_2);

end
else

if con == 3
if t < 0.01

F_CM = zeros(2,1);
else

F_CM = (u_C - c_1*x_estimat(3:4,1) - x_estimat(5:6,1) - z_2
- c_1*z_1);

end
else

F_CM = m_t*(u_C - c_1*x_estimat(3:4,1) - x_estimat(5:6,1) - z_2
- c_1*z_1);

end
end
T_CM = min(Kp_theta*error_heading,100);
tau_d = [F_CM; T_CM];

end

end
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Calculate actuator forces:

calculate u lateral undulation.m

function [u, phi_ref] = calculate_u_lateral_undulation(t, phi, phi_dot,
theta,p_CM, p_CM_dot)
%
% Calculates and returns the actuator forces. This is the joint controller
% of the snake robot.
%

global n Kp_joint Kd_joint alpha omega delta heading phi_offset heading_ref

k_psi = 1*0.8;

%Choose mode: torpedo mode = 1, operation mode = 2
mode = 1;

if mode == 1
% Tordpedo mode
Delta=2.24;
heading_ref = -atan2(p_CM(2,1),Delta);

else
% Operation mode
if (t <= 10)

heading_ref = sin(pi/2);
end
if (t > 10 && t <= 20) || (t > 30 && t <= 40)

heading_ref = sin(pi);
end
if (t > 20 && t <= 30)

heading_ref = sin(3*pi/2);
end

end

% Here you choose whether you want the undulation pattern to follow a
% line-of-sight reference heading, and if you want undulation or not
heading = theta(n);
phi_offset = k_psi * (heading_ref - heading);

if mode == 1
alpha = 0; % No lateral undulation

end

% Calculates references for joint angles.
phi_ref = zeros(n-1, 1);
for i = 1:n-1

phi_ref(i, 1) = alpha*sin(omega*t + (i-1)*delta) - phi_offset;
end

% Calculates references for joint velocities.
phi_ref_d = zeros(n-1, 1);
for i = 1:n-1

phi_ref_d(i, 1) = alpha*omega*cos(omega*t + (i-1)*delta);
end
% Calculates references for joint accelerations.
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phi_ref_dd = zeros(n-1, 1);
for i = 1:n-1

phi_ref_dd(i, 1) = -alpha*omegaˆ2*sin(omega*t + (i-1)*delta);
end

% Calculates the actuator forces.
u = zeros(n-1, 1);
for i = 1:n-1

error = phi_ref(i, 1) - phi(i, 1);
error_d = phi_ref_d(i, 1) - phi_dot(i, 1);
%u(i, 1) = Kp_joint*error - Kd_joint*phi_dot(i, 1);
u(i, 1) = phi_ref_dd(i, 1) + Kd_joint*error_d + Kp_joint*error;

end

Plot simulations

plot simulations.m

%% Plot for STA
figure(1)
subplot(3,1,1);
plot(t_sim,p_CM_d_sim(:,1),'r', 'LineSmoothing','on')
hold on
plot(t_sim,px_sim,'b', 'LineSmoothing','on')
title('x_{des} with x');xlabel('Time [s]');ylabel('p_x [m]');
legend('x_{des}','x');

subplot(3,1,2);
plot(t_sim,p_CM_d_sim(:,2),'r', 'LineSmoothing','on')
hold on
plot(t_sim,py_sim,'b', 'LineSmoothing','on')
title('y_{des} with y');xlabel('Time [s]');ylabel('p_y [m]');
legend('y_{des}','y');

subplot(3,1,3);
plot(t_sim,F_CM_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,F_CM_sim(:,2),'r', 'LineSmoothing','on')
title('Control input u');xlabel('Time [s]');ylabel('Force [N]');
legend('x','y');

figure(2)
subplot(4,1,1);
plot(t_sim,sigma_f_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,sigma_f_sim(:,2),'r', 'LineSmoothing','on')
title('Sliding variable \sigma');xlabel('Time [s]');
legend('x','y');

subplot(4,1,2);
plot(t_sim,error_pos_CM_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,error_pos_CM_sim(:,2),'r', 'LineSmoothing','on')
title('Position error');xlabel('Time [s]');ylabel('[m]');
legend('x','y');
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subplot(4,1,3);
plot(t_sim,observer_error_e_1_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,observer_error_e_1_sim(:,2),'r', 'LineSmoothing','on')
title('Observer error e_1');xlabel('Time [s]');ylabel('[m]');
legend('x','y');

subplot(4,1,4);
plot(t_sim,observer_error_e_2_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,observer_error_e_2_sim(:,2),'r', 'LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
legend('x','y');

%% Plot for the third-order algorithms
figure(1)
subplot(4,1,1);
plot(t_sim,p_CM_d_sim(:,1),'r', 'LineSmoothing','on')
hold on
plot(t_sim,px_sim,'b', 'LineSmoothing','on')
title('x_{des} with x');xlabel('Time [s]');ylabel('p_x [m]');
legend('x_{des}','x');

subplot(4,1,2);
plot(t_sim,p_CM_d_sim(:,2),'r', 'LineSmoothing','on')
hold on
plot(t_sim,py_sim,'b', 'LineSmoothing','on')
title('y_{des} with y');xlabel('Time [s]');ylabel('p_y [m]');
legend('y_{des}','y');

subplot(4,1,3);
plot(t_sim,F_CM_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,F_CM_sim(:,2),'r', 'LineSmoothing','on')
title('Control input u');xlabel('Time [s]');ylabel('Force [N]');
legend('x','y');

subplot(4,1,4);
plot(t_sim,sigma_f_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,sigma_f_sim(:,2),'r', 'LineSmoothing','on')
title('Sliding variable \sigma');xlabel('Time [s]');
legend('x','y');

figure(2)
subplot(5,1,1);
plot(t_sim,error_pos_CM_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,error_pos_CM_sim(:,2),'r', 'LineSmoothing','on')
title('Position error');xlabel('Time [s]');ylabel('[m]');
legend('x','y');

subplot(5,1,2);
plot(t_sim,observer_error_e_1_sim(:,1),'b', 'LineSmoothing','on')
hold on
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plot(t_sim,observer_error_e_1_sim(:,2),'r', 'LineSmoothing','on')
title('Observer error e_1');xlabel('Time [s]');ylabel('[m]');
legend('x','y');

subplot(5,1,3);
plot(t_sim,observer_error_e_2_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,observer_error_e_2_sim(:,2),'r', 'LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
legend('x','y');

subplot(5,1,4);
plot(t_sim,differentiator_error(:,1),'r', 'LineSmoothing','on')
hold on
plot(t_sim,differentiator_error(:,3),'b', 'LineSmoothing','on')
hold on
plot(t_sim,differentiator_error(:,5),'g', 'LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2 for x'); xlabel('Time [s]');
legend('z_0','z_1','z_2');

subplot(5,1,5);
plot(t_sim,differentiator_error(:,2),'r', 'LineSmoothing','on')
hold on
plot(t_sim,differentiator_error(:,4),'b', 'LineSmoothing','on')
hold on
plot(t_sim,differentiator_error(:,6),'g', 'LineSmoothing','on')
title('Differentiator error z_0, z_1 and z_2 for y'); xlabel('Time [s]');
legend('z_0','z_1','z_2');

%% Plot for PD-controller
figure(1)
subplot(3,1,1);
plot(t_sim,p_CM_d_sim(:,1),'r', 'LineSmoothing','on')
hold on
plot(t_sim,px_sim,'b', 'LineSmoothing','on')
title('x_{des} with x');ylabel('p_x [m]');
legend('x_{des}','x');

subplot(3,1,2);
plot(t_sim,p_CM_d_sim(:,2),'r', 'LineSmoothing','on')
hold on
plot(t_sim,py_sim,'b', 'LineSmoothing','on')
title('y_{des} with y');ylabel('p_y [m]');
legend('y_{des}','y');

subplot(3,1,3);
plot(t_sim,F_CM_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,F_CM_sim(:,2),'r', 'LineSmoothing','on')
title('Control input u');ylabel('Force [N]');
legend('x','y');

figure(2)
subplot(3,1,1);
plot(t_sim,error_pos_CM_sim(:,1),'b', 'LineSmoothing','on')
hold on
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plot(t_sim,error_pos_CM_sim(:,2),'r', 'LineSmoothing','on')
title('Position error');xlabel('Time [s]');ylabel('[m]');
legend('x','y');

subplot(3,1,2);
plot(t_sim,observer_error_e_1_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,observer_error_e_1_sim(:,2),'r', 'LineSmoothing','on')
title('Observer error e_1');xlabel('Time [s]');ylabel('[m]');
legend('x','y');

subplot(3,1,3);
plot(t_sim,observer_error_e_2_sim(:,1),'b', 'LineSmoothing','on')
hold on
plot(t_sim,observer_error_e_2_sim(:,2),'r', 'LineSmoothing','on')
title('Observer error e_2'); xlabel('Time [s]');ylabel('[m/s]');
legend('x','y');

Absolute maximum error:

find absolute max error.m

%% Find absolute maximum error
% Position error

interval = 15000:39999;
max_error_x = max(abs(error_pos_CM_sim(interval,1)))
max_error_y = max(abs(error_pos_CM_sim(interval,2)))

%% Observer error
max_e_1_x = max(abs(observer_error_e_1_sim(interval,1)))
max_e_1_y = max(abs(observer_error_e_1_sim(interval,2)))
max_e_2_x = max(abs(observer_error_e_2_sim(interval,1)))
max_e_2_y = max(abs(observer_error_e_2_sim(interval,2)))

%% Only for the third-order algorithms
% Differentiator error

interval = 15000:39999;
max_z_0_x = max(abs(differentiator_error(interval,1)))
max_z_0_y = max(abs(differentiator_error(interval,2)))
max_z_1_x = max(abs(differentiator_error(interval,3)))
max_z_1_y = max(abs(differentiator_error(interval,4)))
max_z_2_x = max(abs(differentiator_error(interval,5)))
max_z_2_y = max(abs(differentiator_error(interval,6)))
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