
Higher Order Sliding Mode Control
A literature study and application to

underwater snake robots

Ida-Louise G. Borlaug

December 2016

PROJECT REPORT
Department of Engineering Cybernetics

Norwegian University of Science and Technology

Supervisor: Professor Jan Tommy Gravdahl





  

NTNU Fakultet for informasjonsteknologi, 
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk 
universitet Institutt for teknisk kybernetikk 
  
 

  
  

PROSJEKTOPPGAVE 
 
 

Kandidatens navn: Ida-Louise G. Borlaug 
 
Fag: Teknisk Kybernetikk 
 
Oppgavens tittel:  Higher order sliding mode control: a literature study and                
application to underwater snake robots 
 
 

1BBackground 

Sliding mode (SM) control is a well-known nonlinear control design method. First order SM 
is widely applied to control of mechanical systems, but second and higher order algorithms 
can also be used. In this project, sliding mode control is to be studied.  
 

Assignment: 
 

1. Perform a detailed literature study covering sliding mode control. First, second and 
higher order SM is to be researched. 

2. Chose the appropriate methods found in 1. and apply them to a second order test-
system. Perform simulations and compare the results.  

3. Test the SM algorithms selected in 2. for control of an underwater swimming 
manipulator with thrusters. Use the model presented in [1]. 
  

  
 
Besvarelsen leveres innen: 21. Desember 2016 
  
 
[1] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, Sliding mode control of 
Underwater Swimming Manipulators with thrusters, submitted to the 2017 IEEE International conference on 
Robotics and Automation. 
 
 

Trondheim, Autumn, 2016 
 
 
 

Tommy Gravdahl 
Faglærer 

 





Abstract

In this report an in-depth study of sliding mode control is presented. It explains sliding
mode control in general and several first, second and higher-order sliding mode control
algorithms in detail. The first-order relay controller, the first-order saturation controller,
the super-twisting algorithm, with and without adaptive gains, are tested on two different
systems. A test system and an underwater swimming manipulator, a snake-like,
multi-articulated, underwater robot equipped with thrusters. The control objective is to
make the state trajectory follow a pre-defined path. The test system is a
mass-spring-damper system, and it is used to get a better understanding of the algorithms
and to easily observe what the advantages and disadvantages are with the different
algorithms. The best results was achieved by using the second-order algorithms. To the
author’s knowledge, second-order algorithms have not been previously tested on an
underwater swimming manipulator. Therefore, it was interesting to see if the
second-order algorithms performed better than the first-order algorithms and a regular PD
controller. As expected the second-order algorithms gave the best results. Of the two
second-order algorithms, the super-twisting algorithm with adaptive gains gave the best
result for practical use, as there is no problem with finding the optimal gain.

i



ii



Table of Contents

Abstract i

Table of Contents iii

List of Tables vii

List of Figures ix

List of Abbreviations xi

List of Symbols xiii

1 Introduction 1

2 Literature Study: Sliding Mode Control 3
2.1 General sliding mode control . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Sliding mode control for linear systems . . . . . . . . . . . . . . 5
2.1.3 Sliding mode control for non-linear systems . . . . . . . . . . . . 10
2.1.4 Characteristics of sliding mode control . . . . . . . . . . . . . . 13
2.1.5 Observer-based sliding mode control . . . . . . . . . . . . . . . 15

2.2 First-order sliding mode control . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Ideal relay control . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Ideal saturation control . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Practical relay control and practical saturation control . . . . . . . 16

2.3 Second-order sliding algorithms . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Aµ-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Twisting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Drift algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Algorithm with a prescribed law . . . . . . . . . . . . . . . . . . 21
2.3.5 Algorithm without derivative of σ . . . . . . . . . . . . . . . . . 21

iii



2.3.6 General second-order sliding mode . . . . . . . . . . . . . . . . 22
2.3.7 Super-twisting algorithm . . . . . . . . . . . . . . . . . . . . . . 24
2.3.8 Twisting-like controllers . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Higher-order sliding mode . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Higher-order sliding mode for a universal

single-input-single-output uncertainty system . . . . . . . . . . . 27
2.4.2 Higher-order sliding mode control scheme for a multi-input-multi-

output non-linear system . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Adaptive continuous higher-order sliding mode control . . . . . . 33
2.4.4 Higher-order sliding mode control with optimal reaching . . . . . 34

3 Mass-Spring-Damper System 37
3.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Sliding surface design . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Control input design . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Control input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 The relay controller . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 The saturation controller . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 The super-twisting algorithm . . . . . . . . . . . . . . . . . . . . 46
3.4.4 The super-twisting algorithm with adaptive gains . . . . . . . . . 47

4 Underwater Swimming Manipulator 49
4.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Equation of motion USM . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Force allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Sliding surface design . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Control input design . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Sliding surface and control input . . . . . . . . . . . . . . . . . . 56

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Torpedo like USM . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Operation like USM . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Discussion 69
5.1 The relay controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 The saturation controller . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 The super-twisting algorithm . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 The super-twisting algorithm with adaptive gains . . . . . . . . . . . . . 70
5.5 Comparison between the sliding mode control algorithms . . . . . . . . . 70
5.6 Comparison between the PD-controller and sliding mode control . . . . . 71

iv



6 Conclusion and Further Work 73
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 75

A Attachment Description and MATLAB code 77
A.1 Mass-spring-damper system . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1.1 Attachment description . . . . . . . . . . . . . . . . . . . . . . . 77
A.1.2 MATLAB code . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2 Underwater swimming manipulator . . . . . . . . . . . . . . . . . . . . 82
A.2.1 Attachment description . . . . . . . . . . . . . . . . . . . . . . . 82
A.2.2 MATLAB code . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



vi



List of Tables

3.1 Mass-spring-damper system: absolute maximum value for error variable . 48

4.1 ode23tb solver: relative and absolute error tolerance . . . . . . . . . . . . 57
4.2 USM: absolute maximum value for error variable . . . . . . . . . . . . . 68

vii



viii



List of Figures

2.1 Phase portraits system 2.7 and 2.9 . . . . . . . . . . . . . . . . . . . . . 5
2.2 Chattering due to delay in control switching . . . . . . . . . . . . . . . . 14
2.3 Phase portrait: ideal relay control . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Phase portrait: ideal saturation control . . . . . . . . . . . . . . . . . . . 16
2.5 Phase portrait: practical relay control . . . . . . . . . . . . . . . . . . . . 17
2.6 Phase portrait: practical saturation control . . . . . . . . . . . . . . . . . 17
2.7 Phase portrait: twisting algorithm . . . . . . . . . . . . . . . . . . . . . 20

3.1 Schematic of mass-spring-damper system . . . . . . . . . . . . . . . . . 38
3.2 Implementation of mass-spring-damper system in Simulink . . . . . . . . 41
3.3 Implementation of relay control in Simulink . . . . . . . . . . . . . . . . 41
3.4 Implementation of saturation control in Simulink . . . . . . . . . . . . . 42
3.5 Implementation of super-twisting algorithm in Simulink . . . . . . . . . 42
3.6 Implementation of super-twisting algorithm with adaptive gains in Simulink 43
3.7 Results mass-spring-damper system: relay controller . . . . . . . . . . . 44
3.8 Results mass-spring-damper system: saturation controller . . . . . . . . . 45
3.9 Results mass-spring-damper system: super-twisting algorithm . . . . . . 46
3.10 Results mass-spring-damper system: super-twisting algorithm with

adaptive gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 System overview USM, Sverdrup-Thygeson et al. (2016a) . . . . . . . . 49
4.2 Underwater swimming manipulator, Sverdrup-Thygeson et al. (2016a) . . 50
4.3 Torpedo like USM simulation . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Operation like USM simulation . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Results torpedo like USM: relay controller . . . . . . . . . . . . . . . . . 58
4.6 Results torpedo like USM: saturation controller . . . . . . . . . . . . . . 59
4.7 Results torpedo like USM: super-twisting algorithm . . . . . . . . . . . . 60
4.8 Results torpedo like USM: super-twisting algorithm with adaptive gains . 61
4.9 Results torpedo like USM: PD-controller . . . . . . . . . . . . . . . . . . 62
4.10 Results operation like USM: relay controller . . . . . . . . . . . . . . . . 63

ix



4.11 Results operation like USM: saturation controller . . . . . . . . . . . . . 64
4.12 Results operation like USM: super-twisting algorithm . . . . . . . . . . . 65
4.13 Results operation like USM: super-twisting algorithm with adaptive gains 66
4.14 Results operation like USM: PD-controller . . . . . . . . . . . . . . . . . 67

x



List of Abbreviations

SMC Sliding mode control

STA Super-twisting algorithm

HOSM Higher-order sliding mode

VSS Variable structure systems

SISO Single-input-single-output

MIMO Multi-input-multi-output

BIBO Bounded-input, bounded-output

USM Underwater swimming manipulator

LOS Line-of-sight

CM Centre of mass

xi



xii



List of Symbols

Symbol Description Vector
x Position of the mass
m Mass [kg]
c Damping coefficient [N s/m]
k Spring constant [N/m]
u Control input
d(t) Time-varying disturbance
y Output variable mass-spring-damper system
ydes Desired position mass-spring-damper system
n Number of links
li The half length of a link L ∈ Rn×n
mi Mass of each link M ∈ Rn×n
ji Moment of inertia of each link J ∈ Rn×n
ψi Angle between link i and the global x axis ψ ∈ Rn
qi Angle of joint i q ∈ Rn−1
(xi, yi) Global coordinates of the CM of link i X, Y ∈ Rn
(px, py) Global coordinates of the CM of the robot pCM ∈ R2

(fx,i, yy,i) Fluid force on link i fx, fy ∈ Rn
(fpx,i, ypy,i) Added force on link i fpx, fpy ∈ Rn
(hx,i, hy,i) Joint constraint force on link i from link i+ 1 hx, hy ∈ Rn−1
−(hx,i−1, hy,i−1) Joint constraint force on link i from link i− 1 hx, hy ∈ Rn−1
e Error variable
σ Sliding surface
K Control gain
α, β Adaptive control gains
ε, λ, γ1, ω1 Arbitrary positive constants

xiii



xiv



Chapter 1
Introduction

The Sliding Mode Control (SMC) approach is a well-known non-linear control design
method that is recognized as a powerful tool to robustly control systems with uncertainties.
The advantage of SMC is that it eliminates the need for exact modelling, because it is
robust against parametric uncertainty, external disturbances and modelling error, Hung
et al. (1993). The research in this area was initiated in the former Soviet Union in the
1950’s, and since then there has been done a great deal of research in the field. Fist-order
SMC is now widely applied to control of mechanical systems, but second and higher-order
algorithms can also be used.

This report is an attempt to gather information about the research done in the field
related to SMC. Based on the literature study some higher-order SMC algorithm will be
chosen for further research. The algorithms will be tested on one test system and an
underwater swimming manipulator (USM), a snake-like, multi-articulated, underwater
robot equipped with thrusters. The test system is a mass-spring-damper system. It will be
used to easily see the advantages and disadvantages with the different SMC algorithms.
The USM has a complex control design problem. That is because the USM is subject to
hydrodynamic and hydrostatic parameter uncertainties, uncertain thruster characteristics,
unknown disturbances, and un-modelled dynamic effects, e.g. thruster dynamics and
coupling forces caused by joint motion. There have been cases where SMC has been used
to control a snake-like manipulator. In Rezapour et al. (2014), a relay inspired controller
was used for a snake robot, and in Sverdrup-Thygeson et al. (2016b), the saturation
controller was used for an USM. To the authors knowledge no second or higher-order
SMC algorithm has been tested on an USM.

This report is divided into 6 chapters. Chapter 2 presents a detailed literature study
covering sliding mode control. SMC is presented in general, and first, second and higher-
order SMC is researched. Chapter 3 presents why the different SMC algorithms were
chosen for further research, the test system, i.e. the mass-spring-damper system, its control
input design and the results from each SMC algorithm. Chapter 4 presents the USM, its
control input design and the results from each SMC algorithm. In chapter 5 the results
for each algorithm is discussed and compared. A conclusion and future work is found in
chapter 6.

1



Chapter 1. Introduction

2



Chapter 2
Literature Study: Sliding Mode
Control

SMC systems are designed to drive the system state trajectories onto a particular surface in
the state space, named sliding surface, in finite time. Once the sliding surface is reached,
sliding mode control keeps the states on the close neighbourhood of the sliding surface
for all future time. Hence the sliding mode control is a two part controller design. The
first part involves the design of a sliding surface so that the sliding motion satisfies design
specifications. The second is concerned with the selection of a control law that will make
the sliding surface attractive to the system state, Utkin (1977). The state-feedback control
law is not a continuous function of time. Instead, it can switch from one continuous
structure to another based on the current position in the state space. Hence, sliding mode
control is a variable structure control method.

In the following chapters there will be given an introduction to SMC and an
explanation of different types of SMC algorithms that have been proposed over the years.
There will be given detailed explanations of first, second and higher-order sliding modes.
Remark that the symbols used to represent the different variables can be somewhat
different from one algorithm to another. This is because the variables used will be the
ones that were used in the article where the algorithm first was presented. The symbols
used in this chapter will therefore not be found in the list of abbreviations.

Since SMC is such a big field, it was impossible to read every relevant article. The
selected articles that have been used as a basis for the literature study are therefore survey
papers, articles that emphasize the different algorithms with good mathematical
explanation where the stabilization of the algorithm was shown or where the different
algorithms were compared.

3



Chapter 2. Literature Study: Sliding Mode Control

2.1 General sliding mode control

2.1.1 Basics
In Variable Structure Control: A Survey, Hung et al. (1993), the basic idea behind SMC is
illustrated by using a second-order system

ẋ = y (2.1)

ẏ = 2y − x+ u (2.2)

u = −ψx (2.3)

where

ψ = 4 when s(x, y) > 0

= −4 when s(x, y) < 0
(2.4)

and

s(x, y) = xσ, σ = 0.5x+ y (2.5)

s(x, y) is called a switching function, this function describes lines that divide the phase
plane into regions where s(x, y) has different signs. These lines are called switching lines.
The lines define the sliding surface. The sliding surface is the set of points in the phase
plane where the switching function s(x, y) = 0.

The system is analytically defined in two regions of the phase plane, since the feedback
gain ψ is switched according to the sign of s(x, y). When s(x, y) = xσ > 0, the model is

ẋ = y (2.6)

ẏ = 2y − x− 4x = 2y − 5x (2.7)

When s(x, y) = xσ < 0, the model is

ẋ = y (2.8)

ẏ = 2y − x+ 4x = 2y + 3x (2.9)

The phase portraits from both models can be seen in figure 2.1.

4



2.1 General sliding mode control

(a) System 2.7 (b) System 2.9

Figure 2.1: Phase portraits system 2.7 and 2.9

From the figure, it is easy to see that both equilibrium points are unstable.
To get the phase portrait from the complete system, the trajectory of the system on

the set s(x, y) = 0 must be described. When s(x, y) = 0 then x = 0, on this line, the
trajectories of both models are joined together without any ambiguity. This means that the
phase portrait is a trajectory along the switching line σ = 0.

The motion that makes the trajectories of the system move toward the line σ = 0 is
called reaching mode, and the motion along the line σ = 0 is called a sliding mode. The
reaching mode makes the state trajectory, starting from anywhere on the phase plane, move
toward a switching line and it makes the state trajectory reach the line in finite time. The
sliding mode makes the trajectory asymptotically tend to the origin of the phase plane,
Hung et al. (1993).

2.1.2 Sliding mode control for linear systems
Problem

Hung et al. (1993) formulates the SMC problem as:
For a given control system represented by the state equation

ẋ = A(x, t) +B(x, t)u (2.10)

where dim-x = n and dim-u = m, find:

1. m switching functions, represented in vector form as s(x), and

2. a SMC

u(x, t) = u+(x, t) when s(x) > 0

= u−(x, t) when s(x, y) < 0
(2.11)

5



Chapter 2. Literature Study: Sliding Mode Control

such that the reaching modes satisfy the reaching condition, namely, reach the set
s(x) = 0 (sliding surface) in finite time.

The physical meaning of above statement is as follows:

1. Design a sliding surface s(x) = 0 to represent a desired system dynamics that is of
lower order than the given plant.

2. Design a SMC u(x, t) such that any state x outside the sliding surface is driven
to reach the surface in finite time. On the sliding surface, the sliding mode takes
place, following the desired system dynamics. In this way, the overall SMC system
is globally asymptotically stable.

Switching schemes, reaching conditions and control laws

In this section different switching schemes, their reaching laws and control laws that have
been presented in Hung et al. (1993) will be explained. In these explanations, SE will be
the eventual sliding mode, that is the sliding surface that has dimension n−m, where n is
the dimension of u, and m is the dimension of x.

A switching scheme is a method to make the sliding motion begin in a SMC
algorithm. The condition under which the state will move towards and reach a sliding
surface is called a reaching condition. The system trajectory under the reaching condition
is called the reaching mode or reaching phase. The control law is what makes the state
trajectories stay on the close neighbourhood of the sliding surface for all future time. In
SMC the design of the control law is affected by two factors: the choice of a sliding mode
entering scheme (switching scheme) or whether or not the structure of the control law has
been pre-specified.

Effect of switching schemes:

Fixed-order switching scheme: In this scheme, sliding mode takes place in a fixed
order. It moves from the initial state x0 into the switching surface S1, with dimensions
n−1. It then moves to the switching surface S12 = (S1∩S2), with dimension n−2. The
sliding moves progressively to sliding surfaces with lower dimensions until it reaches the
surface SE , which has dimension n−m:

x0 → S1 → (S1 ∩ S2)→ (S1 ∩ S2 ∩ S3)→ . . .→ SE (2.12)

This scheme is called the hierarchical SMC scheme. It is slow and has a poor transient
response in general, resulting in large magnitude for control effort, and great difficulty in
its solution.

To determine the controller U for this scheme m pairs of inequalities has to be solved:

ṡi =
∂si
∂x

(Ax+Bu) =

{
> 0 when si < 0

< 0 when si > 0
for i = 1, · · · ,m (2.13)

Let bi be the ith column vector of the B matrix. By differentiating 2.13

6



2.1 General sliding mode control

cT1 Ax+ cT1 b1u1+ · · ·+ cT1 bmum

{
< 0 when s1 > 0

> 0 when s1 < 0

...

cTmAx+ cTmb1u1+ · · ·+ cTmbmum

{
< 0 when sm > 0

> 0 when sm < 0

(2.14)

this gives 2m conditional inequalities for 2m unknowns. The unknowns are the control
signals ui(x), i = 1 to m. Every ui(x) has two values for two different conditions. This
means that solving 2.13 for ui(x) is very difficult. The solutions are also very often
conservative, meaning that the magnitudes are large. Therefore, this scheme is not often
used.

Free-order switching scheme: In this scheme the order is not fixed but it follows the
natural trajectory on a first-reach-first-switch scheme. The switching occurs on the
location of the initial state in the state space. The scheme is much easier to use then the
fixed-order-scheme. This is because the solution of SMC is easily determined, the
dynamic characteristics of the reaching mode is better and the magnitude of the resulting
control effort is smaller.

The reaching law that results in the free-order-switching scheme is the reaching law
method. In this method the dynamic of the switching functions is directly specified as:

ṡ = −Qsgn(s)−Kf(s) (2.15)

where the gains Q and K are diagonal matrices with positive elements, and

sgn(s) = [sgn(s1) · · · sgn(sm)]T (2.16)

f(s) = [f1(s1) · · · fm(sm)]T (2.17)

The scalar functions f , satisfy the condition

sifi(si) > 0 when si 6= 0, i = 1 to m (2.18)

Equation 2.15 is called the reaching law. By varying Q and K different rates for s can be
specified, this results in different structures in the reaching law. Three examples are

1. The constant rate reaching law

ṡ = −Qsgn(s) (2.19)

2. The constant plus proportional rate reaching law

ṡ = −Qsgn(s)−Ks (2.20)

7



Chapter 2. Literature Study: Sliding Mode Control

3. The power rate reaching law

ṡi = −ki|si|αsgn(si) 0 < α < 1, i = 1 to m (2.21)

In the reaching law approach the reaching conditions are established and the dynamic
characteristics of the system are specified during the reaching phase. The approach
provides a simple SMC solution and a measure for the reduction of chattering.

The controller for this scheme is solved directly from the reaching law specification
described by 2.15

ṡ =
∂s

∂x
(Ax+Bu) = −Qsgn(s)−Kf(s) (2.22)

The controller is easily solved from 2.22 as

u(x) = −

(
∂s

∂x
B

)[
∂s

∂x
Ax+Qsgn(s) + kf(s)

]
(2.23)

Eventual sliding mode switching scheme: In this scheme the SMC takes place on the
eventual sliding surface SE . The state is driven from any initial state to SE . There can
also be other sliding surfaces. The scheme is easy to implement and the control is easy to
make smooth, but it does not guarantee good transient characteristics.

The reaching condition for the eventual sliding mode switching scheme can be found
by choosing the Lyapunov function candidate:

V (x, t) = sT s (2.24)

A global reaching condition is given by

V̇ (x, t) < 0 when s 6= 0 (2.25)

Finite reaching time is guaranteed by modifying 2.25 to

V̇ (x, t) < −ε when s 6= 0, (2.26)

where ε is positive. The control law for the eventual sliding mode switching scheme is
designed by satisfying a Lyapunov stability criteria

V̇ =
d

dt
(sT s) = 2sT ṡ = 2sT

∂s

∂x
(Ax+Bu) < 0 (2.27)

Finding the solution for the control law here is harder than for the free-order switching
scheme but is easier than that for the fixed-order switching.

Decentralized switching scheme: In this scheme the system is treated as m single-
input subsystems, where each subsystem has a scalar switching function and an associated
sliding mode. The subsystems are coupled in general. The combined vector switching
function has the form

8



2.1 General sliding mode control

s(x) = [s1(x1), · · · , sm(xm)]

si(xi) = cTi xi, i = 1 to m
(2.28)

where xi and ci are ni-dimensional vectors with

m∑
i=1

ni = n (2.29)

In the decentralized switching scheme the controller for each subsystem are designed
separately. The controller for each subsystems can be obtained using any of the schemes
above. Consider an n-th-order large-scale system with m single-input subsystems

ẋi = Aixi +Biui +

m∑
j=1,j 6=i

Aijxj i = 1, · · · ,m (2.30)

here dim-xi = ni, and n1 + n2 + · · · + nm = n. For the ith subsystem, Ai represents
dynamics internal to the subsystem, Bi is the input vector, and Aij represents coupling to
other subsystems. Let there be m switching functions, one for each subsystem

si(xi) = CTi xi (2.31)

The overall system sliding mode then consists of m independent sliding modes, each
moving on its own sliding surface si(xi) = 0 such that xi → 0. This scheme is meant for
large-scale systems, and works better than the free-order switching scheme for these
types of systems.

Effect of structure of the control-law

Free structure control: In the free structure approach, the control u(x) can be solved
by constraining the sliding function to any one of the following conditions:

1. Direct switching approach: siṡi < 0.
This reaching condition is global but does not guarantee a finite reaching time.

2. Lyapunov function approach: V̇ = d
dt (s

T s) < 0

3. Reaching law approach: ṡi = −qisgn(si)− kifi(si)

4. V̇ = −q − kV V = sT s

5. d
dts

3
i ≤ −η|si|

6. ṡ = −F (s)

the latter three forms are seldom used in practice.

Relay control: The SMC for each element of the control vector U takes the form of a
relay. The relay gain may be either fixed or state dependent

9



Chapter 2. Literature Study: Sliding Mode Control

ui(x) = k+i , when si(x) > 0

= k−i , when si(x) < 0 i = 1, · · · ,m
(2.32)

the values of k+i and k−i are chosen to satisfy the desired reaching condition.

Linear feedback switched gains: The preassigned structure is

u(x) = ψ(x)x (2.33)

where ψ = [ψij(x)] is an m× n matrix of state-dependent gains. A popular structure for
the gain is

ψij(x) = αij , when si(x)xj > 0

= βij , when si(x)xj < 0 for

{
i = 1, · · · ,m
j = 1, · · · , n

(2.34)

parameters αij and βij are chosen to satisfy the desired reaching condition. The details of
2.34 can be varied to suit the problem at hand.

Augmenting the equivalent control: The SMC control takes the form

u = ue + ∆u (2.35)

where ue is the equivalent sliding mode control, whereas ∆u is added to satisfy the
reaching condition. A commonly used ∆u is a relay control.

2.1.3 Sliding mode control for non-linear systems
The most general state equation for a non-linear system is

ẋ = f(x, u, t) (2.36)

where dim-x = n and dim-u = m. The basic concepts and the fundamental theory
for SMC for non-linear systems are similar to those for linear system. It is simple and
straightforward to find the controller u(x), but it is difficult to find the sliding function and
to analyse the sliding mode. To analyse the stability of sliding modes in non-linear systems
the states of the system has to be transformed to reduced form, controllability form, the
input-output decoupled form or normal form. The characteristics of the canonical form
used, can then be used to design a reaching law, Hung et al. (1993).

Sliding mode control for canonical forms

In Hung et al. (1993) optimal sliding mode approaches are given based on the canonical
form of the system, they are described as follows:

10



2.1 General sliding mode control

Reduced form: Let the state vector be partitioned according to

ẋ1 = A1(x) dim-x1 = n−m (2.37)

ẋ2 = A2(x) +B∗(x)u dim-x2 = dim-u = m (2.38)

Consider a general m-dimensional sliding surface equation

s(x) = s(x1, x2) = 0 (2.39)

Theoretically, this equation can be solved for x2 in terms of x1 in the form of x2 = w(x1).
This is equivalent to expressing the sliding function as

s(x) = x2 − w(x1) (2.40)

The problem of determining the sliding function s(x) then reduces to find w(x1) such
that the sliding mode is asymptotically stable. This means that the system 2.37, with
x2 = w(x1) has to be asymptotically stable. It can be difficult to find a desired w(x1),
but if A1 in 2.37 is in a special structure it gets easier. When w(x1) is found so is s(x).
To design the controller a reaching law can be used in a similar manner as for the linear
systems. Using the reaching law 2.15 in system 2.37-2.38 yields the SMC control law

u(x) = −
(
∂s

∂x2
B∗(x)

)−1(
Qsgn(s) + kf(s) +

∂s

∂x1
A1(x) +

∂s

∂x2
A2(x)

)
(2.41)

Controllability form: In this form, the entire system is decomposed intom subsystems,
so it is useful to use a decentralized sliding mode scheme with decoupled sliding functions,
such as

si = cTi xi i = 1, · · · ,m (2.42)

The stability of the sliding mode of each subsystem is guaranteed if cTi is chosen correctly.
If the system is on controllable canonic form, then x is a sub-state vector in the phase
variable form and the equations of the subsystem are

ẋi1 = xi2

ẋi2 = xi3

...
ẋi(ni + 1) = xini

ẋini = αi(x) + βiui i = 1, · · · ,m

(2.43)

Therefore the switch plane cTi xi = 0 becomes

x
(ni)
il + cilx

(ni−1)
il + · · ·+ ci(ni−1)ẋi + cinixi = 0 (2.44)

11



Chapter 2. Literature Study: Sliding Mode Control

The SMC can then be obtained from

x =

x
T
1
...
xTm

 , dim-xi = ni and
m∑
i=1

ni = n (2.45)

ẋi = Aixi + αi(x) + βi(x)u i = 1, · · · ,m (2.46)

where

Ai =

[
0 Ini−1
0 0

]
dim-Ai = ni × ni

αi =


0
...
0

αi0(x)

 dim-αi = ni

βi =


0
...
0

βi0(x)

 dim-βi = ni ×m

and 2.42 by using the reaching law method. Since each subsystem is in controllable
canonic form, the dynamics of the sliding modes are easily determined. The model is also
in controllable canonic form, and the characteristic polynomial is specified by the
coefficients of the vector ci. The stability of each sliding mode can therefore be
determined by choosing the elements of ci, to match a desired characteristic equation.

The input-output decoupled form: This case is just like the one for the controllability
form case, the only difference is the meaning of the transformed state variables. The SMC
control issues are the same. In this case the sliding functions takes a specific form:

si(xi) = (p+ λ)ni−1xi p ≡ d

dt
(·), λ > 0 (2.47)

Here it is advisable to apply the centralized SMC where a set of subsystem switching
function is given by

si(xi) = cTi xi i = 1 to m (2.48)

Normal form: The system dynamics for normal form are given as

żi,j = zi,j+1, j = 1, · · · , ri − 1

...

żi,ri = αi(z, η)+

m∑
k=1

βi,k(z, η)uk i = 1, · · · ,m

12



2.1 General sliding mode control

η̇ = γ(z, η) dim η = n− r (2.49)

When the system is in normal form the stability of the zero dynamics is assumed stable.
Zero dynamics is dynamics of the system under the condition that outputs and their
derivatives are equal to zero. Zero dynamics is therefore described by the internal
dynamic variables with z = 0:

η̇ = γ(0, η) (2.50)

then, the switching function for a system in the normal form can be chosen as

si = cTi zi i = 1, · · · ,m (2.51)

How to guarantee the stability of the zero dynamics and how to relate to the formulation
of the output vector functions y = c(x) are the problems with this approach.

2.1.4 Characteristics of sliding mode control
Robustness

Robustness is one of the most important properties of SMC systems. If a system is
represented by either a linear or non-linear high-order differential equation, the
differential equation of the sliding mode can be entirely independent of effects due to
modelling error and external disturbances. It can therefore be said that the sliding mode is
invariant (better than just robust) to modelling error and disturbances. The invariance
property requires that certain matching conditions are satisfied; Hung et al. (1993)
examines these and states that for linear system on the form

ẋ = (A+ ∆A)x+Bu+ f(t) (2.52)

where ∆A and f(t) represent the modelling error and external disturbance. If there exist
∆Ã and f̃(t) such that matching conditions

∆A = B∆Ã and f(t) = B∆f̃ (2.53)

are satisfied, then the sliding mode is invariant. The physical meaning of 2.53 is that all
modelling uncertainties and disturbances enter the system through the control channel.

The same result has been extended to non-linear systems

ẋ = A(x, t) + ∆A(x, p, t) +B(x, t)u+ ∆B(x, p, t)u+ f(x, p, t) (2.54)

where p is an uncertain parameter vector, it has been shown in Hung et al. (1993) that
invariance hold true if the following matching conditions are satisfied

∆A(x, p, t) = B(x, t)∆Ã(x, p, t)

∆B(x, p, t) = B(x, t)∆B̃(x, p, t)

f(x, p, t) = B(x, t)∆f̃(x, p, t)

(2.55)

13



Chapter 2. Literature Study: Sliding Mode Control

for certain ∆Ã, ∆B̃ and f̃ .

Chattering

In ideal SMC the state trajectory should reach the sliding surface s = 0 in finite time and
stay on it forever. But as the controller cannot be switched infinitely fast from one value to
another chattering appears as a high-frequency oscillation around the desired equilibrium
point. The reason high switching control is impossible in practical systems is because of
finite time delays for control computation and limitations of physical actuators. Chattering
results in low control accuracy, high heat losses in electrical power circuits, and high wear
of moving mechanical parts. It may also excite unmodelled high-frequency dynamics,
which degrades the performance of the system and may even lead to instability Hung et al.
(1993).

Figure 2.2: Chattering due to delay in control switching

The reason chattering appears as a result of delays in control computations is because
when the state trajectory first hits the sliding surface it is supposed to stay on the sliding
surface. But instead there will be a delay between the time the sign of s changes and
the time the control switches. During this delay the state trajectory will cross the sliding
surface, and reach the other region. When the control switches, the trajectory changes its
direction and again heads toward the sliding surface. It then crosses the sliding surface
again, and repetition of this process creates the oscillation called chattering Khalil (2002).
This process is shown in figure 2.2.

14



2.2 First-order sliding mode control

2.1.5 Observer-based sliding mode control

Observer-based sliding mode control is proposed as a solution to chattering. Observers
can either be used to estimate states that are not measurable, or to lock the chattering
inside a high-frequency loop that bypasses the plant. This is done by localization of the
high-frequency phenomenon in the feedback loop by introducing a discontinuous feedback
control loop which is closed through an asymptotic observer of the plant. This will cause
the chattering to be localized inside the loop because the observer has less modelling error
than the plant and the control is discontinuous only with respect to the observer variable.
It is assumed that the observer can be designed in a way that makes the observation error
converge to zero asymptotically. Observer-based sliding mode control can also be used to
create a disturbance compensator that will estimated the disturbance. If the disturbance
is sufficiently compensated, there will be no need for a discontinuous feedback control to
achieve sliding mode. This will also remove the chattering problem, Young et al. (1999).
The research done in this field show that it is possible, but there are still a lot of engineering
issues do be dealt with. This is an interesting topic that should be given some thought, but
as observers are beyond the scope of this report the topic will not be discussed further.

2.2 First-order sliding mode control

2.2.1 Ideal relay control

The ideal relay controller takes the form:

u(s) = sgn(s) =

{
1 when s > 0

−1 when s < 0
(2.56)

Figure 2.3: Phase portrait: ideal relay control

The controller is ideal in the sense that it switches instantly at the value s = 0. This
means that ideal sliding exist on the line s = 0, meaning there are no chattering, no
steady-state error and that the invariance property holds Hung et al. (1993).

The ideal SMC looks really good on paper, but it is impossible to implement because
it is impossible to achieve the high switching control that is necessary for ideal SMC to
exist. Chattering is therefore a large problem with this controller.

15



Chapter 2. Literature Study: Sliding Mode Control

2.2.2 Ideal saturation control

The ideal saturation controller takes the form

u(s) = sat(s) =


1 when s > L
s
L when |s| ≤ L
−1 when s < −L

(2.57)

where L > 0 and ±L defines the threshold for entering the boundary layer.

Figure 2.4: Phase portrait: ideal saturation control

The ideal saturation controller is given as a solution to the chattering problem. It is a
combination of ideal relay control and a high-gain linear control that takes place within the
boundary layer. This means that the state trajectories will be driven towards the boundary
layer, but once it is inside the boundary layer the trajectories will not be forced to follow
the line s = 0, it will only be forced stay inside the boundary layer, Hung et al. (1993).
As a result sliding mode does not exist inside the boundary layer. The effectiveness of the
ideal saturation controller is therefore immediately challenges when parasitic dynamics are
considered. In order for the ideal saturation controller to handle these type of disturbances
they have to be carefully modelled and considered in the feedback design in order to avoid
instability inside the boundary layer. If that is not possible a worst case boundary layer has
to be used, which compromises the disturbance rejection properties of the SMC, Young
et al. (1999). In conclusion, this approach eliminates the high-frequency chattering at the
price of losing invariance.

2.2.3 Practical relay control and practical saturation control

The practical relay controller takes the form

u(s) = hys(s) =

{
1 when s > ∆, or when ṡ < 0 and |s| < ∆

−1 when s < ∆, or when ṡ > 0 and |s| < ∆
(2.58)

where 2∆ > 0 is the amount of hysteresis in s.

16



2.2 First-order sliding mode control

Figure 2.5: Phase portrait: practical relay control

In the practical relay controller the switching does not occur on the surface s = 0, it
takes place on the lines s = ±∆, this is because of the hysteresis characteristic. This leads
to non-ideal sliding, which means that there will always be chattering present, and it will
be impossible to eliminate. The system also has limit cycle behaviour in the steady-state
mode, and the origin will no longer be an equilibrium point, Hung et al. (1993).

Figure 2.6: Phase portrait: practical saturation control

As the practical relay controller the practical saturation controller exhibits hysteresis.
An analysis of the practical saturation control is very difficult, especially in the case of
non-linear systems. An analysis has been done in Hung et al. (1993), where it is stated
that in the practical relay controller the sliding mode does not exist at all. This means
that the invariance characteristics do not exist. It is stable in the large sense, but it has
two equilibrium points, which results in steady state error. In conclusion it eliminates the
high-frequency chattering at the price of losing invariance. With a small boundary width
some robustness can be maintained, but because of delays in the control actuator it may be
necessary with a wider boundary layer. As a result the system may gain large amplitude
low-frequency oscillation, and the system may lose all variable structure behaviour.

17



Chapter 2. Literature Study: Sliding Mode Control

2.3 Second-order sliding algorithms
The second-order sliding algorithms are given by a continuous function U and a bounded
discontinuous function ψ. This gives the system a continuous control that reduces
chattering considerably. Consider the closed loop control system

ẋ = f(t, x, u) (2.59)

u = U(t, x, ξ) (2.60)

ξ = ψ(t, x, ξ) (2.61)

where U is a feedback operator, ξ is a special operator variable. Equation 2.60 and 2.61
are called the second-order sliding algorithm on the constraint σ = 0 if a stable sliding
mode of the second-order on the surface σ = 0 is achieved, and with every initial condition
(t0, x0) the state x is transformed to the sliding mode in a finite time, Levant (1993).

In second-order sliding with σ = 0, the system is described by the equation

ẋ = f(t, x, ueq(t, x)) (2.62)

where ueq is the equivalent control Utkin (1977) that is evaluated from the equation

σ̇ = σ′t(t, x) + σ′x(t, x)f(t, x, ueq) = 0 (2.63)

which is assumed to have a unique solution.

Problem

In Levant (1993) the second-order sliding mode problem is formulated as:
Assume σ ∈ R, u ∈ R and t, σ(t, x(t)), u(t) are available. The goal is to force the

constraint σ to vanish. Assume positive constant σ0, Km, KM and C0 are given. The
following conditions are imposed:

1. Concerning the constraint function σ and equation 2.59. Assume the following:
|u| ≤ k, k = constant > 1, f is a C1 function, σ(t, x) is a C2 function. Here,
x ∈ X , where X is a smooth finite-dimensional manifold. Any solution of 2.59 is
well defined for all t provided u(t) is continuous and satisfies |u(t)| ≤ k for each t.

2. Assume there exists u1 ∈ (0, 1) such that for any continuous function u with
|u(t)| > u1 for all t, σ(t)u(t) > 0 for some finite time t. This condition implies
that there is at least one t such that σ(t) = 0 provided u has a certain structure.

3. There are positive constants σ0, Km, KM , u0, u0 < 1, such that if |σ(t, x)| < σ0
then 0 < Km ≤ ∂σ̇

∂u ≤ KM for all u, and the inequality |u| > u0 implies σ̇u > 0.
The set {t, x, u|σ(t, x)| < σ0} is called the linearity region.

18



2.3 Second-order sliding algorithms

4. Consider the boundedness of the second derivative of the constraint function σ with
every fixed value of control. Within the linearity region |σ < σ0| for all t, x, u the
inequality |LuLuσ(t, x)| < C0 holds. Where Lu is the total derivative defined as:
Lu(·) = ∂

∂t (·) + ∂
∂x (·)f(t, x, u).

The SMC theory deals with the following class of systems

ẋ = a(t, x) + b(t, x)u (2.64)

where x ∈ Rn. The task of keeping the constraint σ = 0 is reduced to the problem stated
above. A new control µ and a constraint function φ are to be defined in this case by the
transformation u = µkΦ(x), φ = σ(t, x)/Φ(x), where Φ(x) = [xtDx+ h]1/2, k, h > 0
are constants, D is a non-negative definite symmetric matrix.

From section 2.3.1 to section 2.3.7 u = −sgn(σ).

2.3.1 Aµ-algorithm
In Levant (1993) the Aµ-algorithm is stated as follows:

u̇ =

{
−u with |u| > 1

−αsgn(σ) with |u| ≤ 1
(2.65)

Assume that conditions (1), (3) and (4) is satisfies and let the control algorithm be

u̇ = ψ(t, x, u) (2.66)

where ψ is a bounded measurable (Lebesgue) function. Assume also that for every second-
order sliding point M and for every neighbourhood V (M)

µ(V (M) ∩ ψ−1((−∞,−C0/Km])) > 0

µ(V (M) ∩ ψ−1([C0/Km,∞))) > 0

where µ is a Lebesgue measure. Then there is a second-order siding mode on the constraint
σ = 0 and the motion in this mode is described by equation 2.62. This implies that there
exist a second-order sliding mode for system 2.59 with control input as in equation 2.65 for
any sufficiently large α. But it is only stable in some cases. When the sliding mode is stable
|σ| and |σ̇| will exponentially decay to zero. The Aµ-algorithm algorithm approximates
the properties of the regular first-order-sliding algorithm when α→∞.

2.3.2 Twisting algorithm
In Levant (1993) the twisting algorithm is stated as follows:

u̇ =


−u with |u| > 1

−αmsgn(σ) with σσ̇ ≤ 0, |u| ≤ 1

−αMsgn(σ) with σσ̇ > 0, |u| ≤ 1

(2.67)

19



Chapter 2. Literature Study: Sliding Mode Control

where αM > αm > 0. Assume

αm > 4KM/σ0, αm > C0/KM

KmαM − C0 > KMαm + C0

(2.68)

Under the assumptions (1)-(4) in the problem statement and conditions 2.68 the twisting
algorithm is a second-order sliding algorithm.

Figure 2.7: Phase portrait: twisting algorithm

As it can be seen in figure 2.7 the state paths for system 2.59 with control input as
in equation 2.67 are encircling the sliding surface σ = σ̇ = 0, and it will converge to
the surface in finite time. This is achieved by switching α in 2.67. As the derivative σ̇
is difficult to calculate, the difference ∆σ is often used instead. To be able to use the
difference the algorithm has to be made in discrete time, and the σ̇ in 2.67 has to be
replaced with:

∆σ(ti) =

{
0, i = 0

σ(ti, x(ti))− σ(ti−1, x(ti−1)), i ≥ 1
(2.69)

where the measurements of σ are being made at times t0, t1, t2, . . . , ti − ti−1 = τ > 0.

2.3.3 Drift algorithm

In Levant (1993) the drift algorithm is stated as follows:

u̇ =


−u(ti), |u(ti)| > 1

−αMsgn(∆σ(ti)), σ(ti)∆σ(ti) > 0, |u(ti)| ≤ 1

−αmsgn(∆σ(ti)), σ(ti)∆σ(ti) ≤ 0, |u(ti)| ≤ 1

(2.70)

Here, αM > αm > 0. This is similar to the twisting algorithm in discrete time, but σ(ti)
is replaced with ∆σ(ti). This will ensure a real sliding on σ̇. Let

ti+1 − ti = τi+1 = τ(σ(ti)), i = 0, 1, 2, . . . (2.71)

and let

20



2.3 Second-order sliding algorithms

τ(S) =


τM , v|S|p ≥ τM
v|S|p, τm < v|S|p < τM

τm v|S|p ≤ τm
(2.72)

where 0.5 ≤ p ≤ 1, τM > τm > 0, v > 0. The region |σ| ≤ σ0 − δ where δ is any
real number, such that 0 < δ < σ0, is called the reduced linearity region. With initial
conditions within the reduced linearity region, v and αm/αM sufficiently small and αm
sufficiently large, the algorithm 2.70, 2.71, 2.72 constitutes a second-order real sliding
algorithm on the constraint σ = 0 with respect to τm → 0.

2.3.4 Algorithm with a prescribed law
In Levant (1993) an algorithm with a prescribed law of variation of σ is stated as follows:

u̇ =

{
−u, |u| > 1

−αsgn(σ̇ − g(σ)), |u| ≤ 1
(2.73)

where α > 0, and the continuous function g(σ) is smooth everywhere except on σ = 0.
Assume that all the solutions of the equation σ̇ = g(σ) vanish in a finite time, and the
function g′(σ)g(σ) is bounded. With initial conditions within the reduced linearity region
and for α sufficiently large, the algorithm 2.73 constitutes a second-order sliding algorithm
on the constrain σ = 0. By making algorithm 2.73 in discrete time and replacing σ̇− g(σ)
with ∆σ(ti)− τg(σ(ti)), it becomes a real sliding algorithm.

2.3.5 Algorithm without derivative of σ
In Levant (1993) an algorithm that does not utilize the derivative of σ is stated as follows:

u = u1 + u2 (2.74)

u̇1 =

{
−u, |u| > 1

−αsgn(σ), |u| ≤ 1
(2.75)

u2 =

{
−λ|σ0|ρsgn(σ), |σ| > σ0

−λ|σ|ρsgn(σ), |σ| ≤ σ0
(2.76)

where α, λ > 0, ρ ∈ (0.1), and the initial values u1(t0) are to be chosen from the
condition |u| = |u1(t0) + u2(t0, x0)| ≤ k. The following inequalities are to be satisfied

α > C0/km, α > 4KM/σ0 (2.77)

ρ(λKm)
1
ρ > (KMα+ C0)(2KM )

1
ρ−2 (2.78)

Assume that conditions 2.77, 2.78 are satisfies and 0 < ρ ≤ 1/2. Then the algorithm 2.74,
2.75, 2.76 is a second-order sliding algorithm.

21



Chapter 2. Literature Study: Sliding Mode Control

It can be remarked that by selecting ρ = 0.5 this algorithm is the super-twisting
algorithm that will be explained in section 2.3.7.

2.3.6 General second-order sliding mode
Problem:

In Bartolini et al. (2003) the second-order sliding mode control problem is stated as
follows:

Consider an uncertain system, possibly non-linear, characterized by the dynamics

ẋ(t) = F (x(t), t) +G(x(t), t)u(t) (2.79)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ R is the scalar control variable,
F : Rn+1 → Rn and G : Rn+1 → Rn are uncertain, sufficiently smooth, vector fields.
Assume that the control specifications are fulfilled by constraining to zero a suitable output
variable i.e. the sliding variable

σ(t) = σ(x(t), t) (2.80)

having well-defined relative degree r = 2 with respect to the control variable u, and that a
diffeomorphism Ψ : Rn−2 ×R2 → Rn exists such that the dynamics of the internal state
w(t) ∈ Rn−2 are bounded-input, bounded-output (BIBO) stable. Therefore, system 2.79
can be reduced to the normal form

σ̈(t) = ϕ(w(t), σ(t), σ̇(t), t) + γ(w(t), σ(t), σ̇(t), t)u(t)

ẇ(t) = ψ(w(t), σ(t), σ̇(t), t)
(2.81)

with

x(t) = Ψ(w(t), σ(t), σ̇(t)) (2.82)

Assume that the second-order input-output dynamics

σ̈(t) = ϕ(w(t), σ(t), σ̇(t), t) + γ(w(t), σ(t), σ̇(t), t)u(t) (2.83)

are globally bounded, and let also the sign of the control gain γ(·) be constant and known.
Then, the second-order sliding mode control problem for system 2.79 entails the finite-
time stabilization of system 2.83, that satisfies the global boundedness condition

|ϕ(w, σ, σ̇, t)| ≤ Φ

0 < Γm ≤ γ(w, σ, σ̇, t) ≤ ΓM
(2.84)

Let the sliding variable σ and the sign of its total time derivative σ̇ be available for
feedback. Bartolini et al. (2003) have assumed that the conditions in equation 2.84 hold
globally.

22



2.3 Second-order sliding algorithms

Control law:

In Bartolini et al. (2003) a general control law has been proposed, where setting the
parameters of the control properly can practically implement a large number of
second-order sliding mode control algorithms. The control law is as follows:

u(t) = −α(t)Usgn(σ − βσM )

α =

{
1, if (σ − βσM )σM ≥ 0

α∗, if (σ − βσM )σM < 0

β ∈ [0; 1)

(2.85)

where U > 0 is the minimum control magnitude, α∗ > 1 is called the modulation factor,
β is the anticipation factor, and σM is the last extremal value of the sliding variable σ (i.e.
the value of σ at the last time instant at which a local maximum, minimum or horizontal
flex point of σ(t) has occurred). U , α∗ and β are control parameters that need to fulfil the
inequalities

U >
Φ

ΓM

α∗ ∈ [1; +∞) ∩
(

2Φ + (1− β)ΓMU

(1 + β)ΓmU
; +∞

) (2.86)

The first part of 2.86, the dominance condition, ensures that the control can sufficiently
effect the sign of σ̈. The second part of 2.86, the convergence condition, ensures two
things. First of all it ensures that the controller can sufficiently guarantee the stability
of the sliding mode and secondly it determines the rate of convergence. This leads to
transient trajectories twisting around the origin of the σ̇ − σ plane. By imposing an even
stricter inequality than 2.86, the monotonic convergence to zero of the sliding variable is
also fulfilled. The stricter inequality can be:

U >
Φ

ΓM

α∗ ∈ [1; +∞) ∩
(

Φ + (1− β)ΓMU

βΓmU
; +∞

) (2.87)

Controller 2.85 satisfying either conditions 2.86 or 2.87 assured the establishment of the
second-sliding mode behaviour in a finite time.

Some of the algorithms that can be made by changing the variables in this general
formulation are:

Twisting algorithm: Bartolini et al. (2003) states that by choosing β = 0 the control
law 2.85 causes the system to have the same trajectories of the twisting algorithm, that was
mentioned earlier in section 2.3.2, with α2 = U and α1 = α∗U . The algorithm is then:

u = −α1sgn(σ) + α2sgn(σ̇) (2.88)

23



Chapter 2. Literature Study: Sliding Mode Control

The convergence conditions of for the twisting algorithm are easily obtained by setting
β = 0.

U >
Φ

ΓM

α∗ ≥ 2Φ + ΓMU

ΓmU

(2.89)

Sub-optimal algorithm: Bartolini et al. (2003) states that by choosing β = 0.5 the
control law 2.85 causes the system to have the same trajectories of the sub-optimal
algorithm. The convergence conditions of for the sub-optimal algorithm are easily
obtained by setting β = 0.5.

U >
Φ

ΓM

α∗ ∈ [1; +∞) ∩
(

4Φ + ΓMU

3ΓmU
; +∞

) (2.90)

2.3.7 Super-twisting algorithm
One of the most powerful second-order continuous sliding mode control algorithms is the
super-twisting algorithm (STA) that handles a relative degree equal to one. It generates
the continuous control function that drives the sliding variable and its derivative to zero in
finite time in the presence of the smooth matched disturbances with bounded gradient,
when this boundary is known. As the integrand of the STA contains a discontinuous
function, chattering is not eliminated but attenuated. The main drawback of the STA is
the requirements to know the boundaries of the disturbance gradient. In many practical
cases this boundary cannot be easily estimated, Shtessel et al. (2010).

Unlike other second-order sliding mode controllers, STA is applicable to a system (in
general, any order) where control appears in the first derivative of the sliding variable,
Chalanga et al. (2016).

In Levant (1993) the STA was introduced as:

u = −k1|σ|1/2sgn(σ) + v

v̇ = −k2sgn(σ)
(2.91)

where ki are gains to be designed.
Let the input signal f(t) be a measurable locally bounded function, and let it consist

of a base signal having a derivative with Lipschitz’s constant C > 0. Then sufficient
conditions for the converges of σ = σ̇ = 0 is:

k2 > C, k21 ≥ 4C
k2 + C

k2 − C
(2.92)

Condition 2.92 results from a very crude estimation Levant (1998). Calculations show that
many other values, e.g k1 = 1.5

√
C and k2 = 1.1C may also be taken.

24



2.3 Second-order sliding algorithms

Since this algorithm only works with bounded perturbations a conservative upper
bound has to be used when designing the controller to ensure that sliding is maintained.
This can worsen the chattering effects. If an adaptive STA is used, the gains can adapt to
a level where they are as small as possible but still guarantee that sliding is maintained.
An STA with adaptive gains is therefore proposed.

STA with adaptive gains

Problem
In Shtessel et al. (2010) the problem has been formulated as:

Consider a single-input uncertain non-linear system,

ẋ = f(x, t) + h(x, t)u (2.93)

where x ∈ Rn is a state vector, u ∈ R is a control function, f(x, t) ∈ Rn is a
differentiable, partially known vector-field. Assume that

1. A sliding variable σ = σ(x, t) ∈ R is designed so that the system’s (2.93) desirable
compensated dynamics are achieved in the sliding mode σ = σ(x, t) = 0.

2. The system’s (2.93) input-output (u → σ) dynamics are of a relative degree one,
and the internal dynamics are stable. Therefore, the input-output dynamics can be
presented as

σ̇ =
∂σ

∂t
+
∂σ

∂x
f(x, t) +

∂σ

∂x
h(x)u →

σ̇ = ϕ(x, t) + b(x, t)u → (2.94)

σ̇ = ϕ(x, t) + ω, ω = b(x, t)u ↔ u = b−1(x, t)ω

The solution of system 2.94 is understood in the sense of Filippov, (Filippov and
Arscott (1988)).

3. The function b(x, t) ∈ R is known and not equal to zero ∀ x and t ∈ [0,∞).

4. The function ϕ(x, t) ∈ R is bounded

|ϕ(x, t)| ≤ δ|σ|1/2 (2.95)

where the finite boundary δ > 0 exists but is not known. The problem is to drive the
sliding variable σ and its derivative σ̇ to zero in finite time in the presence of the bounded
perturbation with the unknown boundary by means of continuous control.

Control structure
In Shtessel et al. (2010) the following STA was proposed:

ω = −α|σ|1/2sgn(σ) + v

v̇ = −βsgn(σ)
(2.96)

25



Chapter 2. Literature Study: Sliding Mode Control

where the adaptive gains

α = α(σ, σ̇, t)

β = β(σ, σ̇, t)
(2.97)

are to be defined. The control system given by eq. 2.94 and 2.96 is presented in a form

σ̇ = −α|σ|1/2sgn(σ) + v + ϕ(x, t)

v̇ = −βsgn(σ)
(2.98)

The control design problem is reduced to designing an adaptive STA 2.96, 2.97 that
drives σ, σ̇ → 0 in finite time in the presence of the bounded perturbation with the
unknown boundary. Consider system 2.98 and assume that the perturbation ϕ(x, t)
satisfies assumption (4), for some unknown constant δ > 0. Then for any initial
conditions x(0), σ(0) the sliding surface σ = 0 will be reached in finite time with the
STA as 2.96 and adaptive gains as

α̇ =

{
ω1

√
γ1
2 , if σ 6= 0

0, if σ = 0

β = 2εα+ λ+ 4ε2

(2.99)

where ε, λ, γ1, ω1 are arbitrary positive constants. The proof can be found in Shtessel
et al. (2010).

In Shtessel et al. (2012) another super-twisting algorithm with adaptive gains was
proposed. The problem was formulated a little bit different, but the control structure used
where nearly the same, the difference was that the adaptive gain β was multiplied by 1

2 ,
so that the control structure became:

ω = −α|σ|1/2sgn(σ) + v

v̇ = −β
2
sgn(σ)

(2.100)

where α and β are the same adaptive gains as in 2.97. For this formulation the adaptive
gains become:

α̇ =

{
ω1

√
γ1
2 sgn(|σ| − µ), if α > αm

η, if α ≤ αm
β = 2εα

(2.101)

where ε, λ, γ1, ω1, η are arbitrarily positive constants and the parameter αm is an
arbitrarily small positive constant. This controller with adaptive gains as in 2.101 ensures
real second-order sliding mode, and that the sliding surface will be reached in finite time.

26



2.4 Higher-order sliding mode

2.3.8 Twisting-like controllers

There exist some different types of twisting, super-twisting and integral-twisting-like
controllers. Mostly they are quite similar to the original algorithms, but a linear or
non-linear link is added. As there are a lot of them, and as they are built on other
algorithms that are mentioned here, they will not be stated here. Some examples of these
algorithms can be found in: Basin et al. (2016), Edwards and Shtessel (2016a), Plestan
et al. (2010) and Yan et al. (2016).

2.4 Higher-order sliding mode
Higher-order sliding mode (HOSM) generalizes the sliding mode motion and removes the
restriction that for the mode to have full output control the controller u has to appear in the
first total derivative of σ. This is the case for the standard sliding modes. HOSM is sliding
mode with sliding order higher than 2. The rth-order sliding mode is determined by the
equalities σ = σ̇ = σ̈ = · · · = σ(r−1) = 0 which impose an r-dimensional condition
on the state of the dynamic system. This realization can provide up to rth-order of sliding
precision, with respect to the measurement interval. If HOSM is properly designed the
convergence of HOSM can be asymptotic and it can totally remove the chattering effect,
Levant (2001).

2.4.1 Higher-order sliding mode for a universal single-input-single-
output uncertainty system

In Levant (2001) and Levant (2003) a HOSM controller for a single-input-single output
(SISO) system is presented. For this controller only a qualitative model for the system
is needed, because the controller only needs the relative degree of the uncertain SISO
system and the bounds of two input-output differential expressions. For uncertain SISO
minimum-phase dynamic systems with known relative degree, the controller provides full
real-time output control. This controller provides rth-order precision with respect to the
sampling time step and it increases the relative degree of the system artificially. This can
completely remove the chattering effect, Levant (2001).

Problem

In Levant (2001) and in Levant (2003) the problem is formulated as:
Consider a dynamic system of the form

ẋ = a(t, x) + b(t, x)u σ = σ(t, x) (2.102)

where x ∈ Rn, u ∈ R is control, the smooth functions a, b, σ and the dimension n
are unknown. The relative degree r of the system is assumed to be constant and known.
The task is to make the measured output σ vanish in finite time and to keep σ ≡ 0 by
discontinuous feedback control. As the relative degree is equal to r, the control input
u will appear explicitly in the rth total derivative of σ. The regularity condition is then

27



Chapter 2. Literature Study: Sliding Mode Control

satisfied and (∂/∂u)σ(r) 6= 0 at that given point. The output σ then satisfies an equation
of the form

σ(r) = h(t, x) + g(t, x)u (2.103)

It is easy to see that g = LbeL
r−1
ae σ = (∂/∂u)σ(r), h = Lraeσ. This means that h is the

rth total time derivative of σ calculated with u = 0. The unknown functions h and g can
therefore be defined using only input-output relations. Because of the heavy uncertainties
in the problem, 2.102 cannot be reduced to standard forms based on the knowledge of a, b
and σ. The problem is then to find a discontinuous feedback u = U(t, x), that will cause
the appearance of an attracting r-sliding mode in finite time. The new controller has to
generalize the standard first-order relay controller u = −Ksgnσ. Thus, we require that
for some Km, KM , C > 0

0 < Km ≤
∂

∂u
σ(r) ≤ KM , |Lraσ| ≤ C (2.104)

where Lraσ is the rth total time derivative of σ calculated with u = 0. Hence, conditions
2.104 can be defined in input-output terms only.

An arbitrary-order sliding controller

In Levant (2001) and Levant (2003) the building of an arbitrary-order sliding controller is
formulated as:

Let p be the least common multiple of 1, 2, . . . , r. Denote

N1,r = |σ|(r−1)/r,

Ni,r =
(
|σ|p/r + |σ̇|p/(r−1) + · · ·+ |σ(i−1)|p/(r−i+1)

)(r−i)/p
, i = 1, . . . , r − 1

Nr−1,r =
(
|σ|p/r + |σ̇|p/(r−1) + · · ·+ |σ(r−2)|p/2

)1/p
,

φ0,r = σ,

φ1,r = σ̇ + β1N1,rsgn(σ),

φi,r = σ(i) + βiNi,rsgn(φi−1,r), i = 1, . . . , r − 1

(2.105)

where β1, . . . , βr−1 are positive numbers. Let system 2.102 have relative degree r with
respect to the output function σ and 2.104 be fulfilled. Suppose also that trajectories of
system 2.102 are infinitely extendible in time for any Lebesgue-measurable bounded
control function. Then with properly chosen positive parameters β1, . . . , βr−1, α the
controller

u = −αsgn
(
φr−1,r

(
σ, σ̇, · · · , σ(r−1)

))
(2.106)

leads to the establishment of an r-sliding mode σ ≡ 0 attracting each trajectory in finite
time. The positive parameters β1, · · · , βr−1 are to be chosen sufficiently large in the index

28



2.4 Higher-order sliding mode

order and may be fixed in advance for each relative degree r. Parameter α > 0 is to be
chosen specifically for any fixed C, Km, KM . These control parameters can be chosen in
advance, so that there is only one parameter that needs to be adjusted to control a system
with a given relative degree. Controller 2.106 requires the availability of σ, σ̇, · · · , σ(r−1).
The information demand may be lowered if the measurements are carried out at times ti
with constant step τ > 0. Let

u =− αsgn
(

∆σ
(r−2)
i + βr−1τNr−1,r

(
σi, σ̇i, · · · , σ(r−2)

i

)
×

sgn
(
φr−2,r

(
σi, σ̇i, · · · , σ(r−2)

i

))) (2.107)

where σ(j)
i = σ(j)(ti, x(ti)), ∆σ

(r−2)
i = σ

(r−2)
i − σ(r−2)

i−1 , t ∈ [ti, ti+1). Under the same
conditions as algorithm 2.106, with discrete measurements both algorithms 2.106 and
2.107 provide in finite time for fulfilment of the inequalities |σ| < a0τ

r,
|σ̇| < a1τ

r−1, · · · , |σr−1| > ar−1τ for some positive constants a0, a1, · · · , ar−1. This
accuracy is the best possible with discontinuous σ(r) separated from zero.

To enable implementing the controller real-time robust estimation of the higher-order
total output derivatives is required. For this different types of observers (differentiators)
can be used. In Levant (2003) there has been proposed an arbitrary order robust exact
finite-time-convergent differentiator that will solve the problem. It allows real-time robust
exact differentiation, and its performance is proven to be asymptotically optimal in the
presence of small Lebesgue measurable input noises. In Levant (2005) a robust
homogeneous differentiator is included in the control structure thus yielding robust
output-feedback controllers with finite time convergence. It is also demonstrated that the
homogeneity features significantly simplifies the design and investigation of the HOSM.
These differentiators will not be presented further, as they are beyond the scope of this
report.

2.4.2 Higher-order sliding mode control scheme for a
multi-input-multi-output non-linear system

In Defoort et al. (2009) a higher-order sliding mode control scheme for a class of uncertain
multi-input-multi-output (MIMO) non-linear systems is proposed.

Problem

In Defoort et al. (2009) the problem is formulated as:

Consider the following general multi-input-multi-output non-linear uncertain system

29



Chapter 2. Literature Study: Sliding Mode Control

ẋ = f(x) +

m∑
i=1

gi(x)ui

y1 = σ1(x)

...
ym = σm(x)

(2.108)

where x ∈ Rn and u = [u1, . . . , um]T ∈ Rm are the state variable and the control input,
respectively. f(x) and g(x) = [g1(x), . . . , gm(x)]T are uncertain smooth functions,
σ(x) = [σ1(x), . . . , σm(x)]T ∈ Rm is a smooth measurable output vector. The
uncertainties on f(x) and g(x) are due to parameter variations, un-modelled dynamics or
external disturbances and do not satisfy the well-known matching condition. The control
objective consists in the vanishing of output σ(x) in finite time.

Assume:

1. The relative degree vector r = [r1, . . . , rm]T of system 2.108 with respect to σ(x)
is assumed to be constant and known. It means that the m×m matrix:

B(x) =

 Lg1L
r1−1
f σ1(x) · · · LgmL

r1−1
f σ1(x)

...
...

Lg1L
rm−1
f σm(x) · · · LgmL

rm−1
f σm(x)


is non-singular and LgjL

k
fσi(x) = 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ m and 0 ≤ k ≤

r1−1. Moreover, it is supposed that the associated zero dynamics are asymptotically
stable.

2. Consider the non-linear system 2.108 and sliding variable σ(x). Assume that the
time derivatives σi, σ̇i, . . . , σri−1i for all i = 1, . . . ,m are continuous functions.
The manifold defined as

sT =



∣∣∣ σ1(x) = σ̇1(x) = · · · = σ
(r1−1)
1 (x) = 0

x :

∣∣∣∣∣ ...∣∣∣ σm(x) = σ̇m(x) = · · · = σ
(rm−1)
m (x) = 0


is called the rth-order sliding set. If it is non-empty and locally an integral set in
the Filippov sense (Filippov and Arscott (1988)), the motion on sT is called
rth-order sliding mode with respect to the sliding variable σ. The rth-order SMC
approach allows the finite time stabilization of each variable σi and its r1 − 1 first
time derivatives by defining a suitable discontinuous control law. The rith time
derivative of each function σi yields:[

σ
(r1)
1 (x), . . . , σ(rm)

m (x)
]T

= A(x) +B(x)u (2.109)

30



2.4 Higher-order sliding mode

with
A(x) = [Lr1f σ1(x), . . . , Lrmf σm(x)]T

Assume that the solutions of the state differential equation 2.109 with discontinuous
right-hand side are defined in the sense of Filippov (Filippov and Arscott (1988)).

3. Vector A(x) and matrix B(x):{
A(x) = A(x) + ∆A(X)

B(x) = B(x) + ∆B(X)
(2.110)

are partitioned into nominal part (i.e. A and B), known a priori, and uncertain
bounded functions ∆A and ∆B . MatrixB is non-singular. Furthermore, there are an
a priori known non-linear function ρ(x) and an a priori known constant 0 < α ≤ 1
such that the uncertain functions satisfy the following inequalities:{

||∆A(x)−∆B(x)B
−1

(x)A(x)|| ≤ ρ(x)

||∆B(x)B
−1

(x)|| ≤ 1− α
(2.111)

for x ∈ χ ⊂ Rn, χ being an open subset of Rn within which the boundedness of
the system trajectories is ensured.

Then by applying to system 2.109 the following preliminary feedback:

u = B
−1{−A+ w} (2.112)

where w = [w1, . . . , wm]T ∈ Rm is the auxiliary control input. This feedback partially
decouples the nominal system (i.e without uncertainty). Thus system 2.109 can be
expressed as follows:

[σ
(r1)
1 , . . . , σ(rm)

m ]T = [Im + ∆BB
−1

]w −∆BB
−1
A+ ∆A (2.113)

where Im denotes the m ×m identity matrix. The rth-order SMC of system 2.108 with
respect to the sliding variable σ is equivalent to the finite time stabilization of the multi-
variable uncertain system:




ż1,i = z2,i

... ∀i = {1, . . . ,m}
żri−1,i = zri,i

[żr1,1, żr2,2, . . . , żrm,m]T = [Im + ∆BB
−1

]w −∆BB
−1
A+ ∆A

(2.114)

with 1 ≤ i ≤ m, 1 ≤ j ≤ ri, zj,i = σ
(j−1)
i , zi = [z1,i, z2,i, . . . , zr1,i]

T and z =
[zT1 , . . . , z

T
m]T .

31



Chapter 2. Literature Study: Sliding Mode Control

Design of HOSM controller

In Defoort et al. (2009) a robust finite time controller design is proposed. The higher order
SMC algorithm is designed in two steps:

1. The design of a finite time controller wnom(z) which guarantees the finite time
stabilization of nominal system

∀i ∈ {1, · · · ,m},


ż1,i = z2,i

...
żri−1,i = zri,i

żri,i = wnom,i

at the origin

2. The design of discontinuous control wdisc(z) which enables to reject the
uncertainties of system 2.114 and ensures that control objectives are fulfilled.

In order to stabilize in finite time uncertain system 2.114, define the following control law:{
w(z) = wnom(z) + wdisc(z, zaux)

żaux = −wnom(z)
(2.115)

Auxiliary function zaux ∈ Rm will be used in the design of the sliding variable associated
with the discontinuous control law wdisc(z, zaux) ∈ Rm. The control law for the nominal
system is

wnom(z) = [wnom,1(z1), . . . , wnom,m(zm)]T ∈ Rm (2.116)

where

wnom,i(zi) = −k1,isgn(z1,i)|z1,i|ν1,i − · · · − kri,isgn(zri,i)|zri,i|
νri,i

where ν1,i, · · · , νri,i satisfies:

νj−1,i =
νj,iνj+1,i

2νj+1,i − νj,i
, j ∈ {2, . . . , ri}

with νri+1,i = 1 and νri,i = νi. Define the sliding variable s(z) ∈ Rm associated with
wdisc as follows:

s(z) = [zr1,1, zr2,2, . . . , zrm,m]T + zaux (2.117)

The time derivative of s along the system trajectories, can be expressed as:

ṡ = [żr1,1, żr2,2, . . . , żrm,m]T + żaux

= [Im + ∆BB
−1

]w −∆BB
−1
A+ ∆A − wnom

= [Im + ∆BB
−1

]wdisc −∆BB
−1
A+ ∆A + ∆BB

−1
wnom

(2.118)

32



2.4 Higher-order sliding mode

The control law wdisc is defined to ensure the sliding mode on {x ∈ χ : s = 0} is
guaranteed despite uncertainties, and given as:

wdisc = −G(z)sgn(s) (2.119)

where the gain satisfies:

G(z) ≥ (1− α)||wnom(z)||+ ρ+ η

α
(2.120)

with η > 0. The notation sgn([s1, . . . , sm]T ) denotes [sgn(s1), . . . , sgn(sm)]T .
Consider the non-linear system 2.108 and assume that assumptions 1-3 are fulfilled.
Then, the control law

u = B
−1{−A+ wnom(z) + wdisc(z, zaux)} (2.121)

where żaux = −wnom(z), wnom(z) and wdisc(z, zaux) are given by equation 2.116 and
2.119, respectively. This ensures the establishment of a higher order sliding mode with
respect to σ in finite time. The proof is shown in Defoort et al. (2009), with the use of
Lyapunov functions.

2.4.3 Adaptive continuous higher-order sliding mode control
In most controllers a bound on the disturbance has to be know, therefore when a controller
is designed, a conservative upper bound is used to ensure that sliding takes place. This
conservative choice worsens the chattering associated with the implementation. This has
led to adaptive SMC, where the adaptive gains can adapt to a level where they are as small
as possible but still guarantee that sliding is maintained. In Edwards and Shtessel (2016b)
an adaptive continuous HOSM control has been proposed as:

Consider the generic sliding mode equation

σ(n)(t) = u(t) + a(t) (2.122)

where the integer n > 2, and u(t) represent the control variable while a(t) is an unknown
disturbance. The objective is to force σ, σ̇, · · · , σ(n) = 0 in finite time. Consider the
control law comprising two parts:

u(t) = −ub(t)− us(t) (2.123)

where

ub(·) = γ1|σ|α1sgn(σ) . . .+ γn|σ(n−1)|αnsgn(σ(n−1)) (2.124)

and

us(t) = λ|s|1/2sgn(s(t)) +

∫ t

0

k(t)sgn(s(τ))dτ (2.125)

where the auxiliary sliding variable

33



Chapter 2. Literature Study: Sliding Mode Control

s(t) = σ(n−1)(t) +

∫ t

0

ub(τ)dτ (2.126)

In 2.124 the scalars γ1, γ2, . . . , γn must be chosen such that the polynomial pn+γnp
n−1+

· · ·+ γ2p+ γ1 is Hurwitz and the scalars α1, α2, . . . , αn are chosen recursively as

αi−1 =
αiαi+1

2αi+1 − αi
, i = 2, . . . , n (2.127)

with αn+1 = 1 and αn = ᾱ. In 2.125 the positive scalar λ must be chosen sufficiently
large and the time varying gain k(t) adapts according to the dual layer structure:

k̇(t) = −ρ(t)sgn(δ(t))

ρ(t) = r0 + r(t)

ṙ(t) =

{
γ|δ(t)| if |δ(t)| > δ0

0 otherwise

(2.128)

where δ(t) is an error variable, r0 is a fixed positive scalar and r(t) is an adaptive law
where γ and δ0 are positive scalars. Consider the system in 2.122 with uncertainty a(t)
that is twice differentiable and subject to |ȧ(t)| < a1 and |ä(t)| < a2. Using the control
law from 2.123 in 2.122 where k(t) adapts according to the dual layer equations 2.128,
and assume that

1

4
ε2 > δ20 +

1

γ

( q̄a2
α

)2
is satisfied, where q̄ > 1 represents a user defined gain. Then for sufficiently large λ, there
exists an εb ∈ (0, 1) such that for every ᾱ ∈ (1− εb, 1) the origin σ, σ̇, . . . , σ(n) is a finite
time stable equilibrium point. Proof is given in Edwards and Shtessel (2016b).

2.4.4 Higher-order sliding mode control with optimal reaching
In Dinuzzo and Ferrara (2009) a higher-order sliding mode control is proposed by solving
the Robust Fuller’s problem.

The Robust Fuller’s Problem

In Dinuzzo and Ferrara (2009), the Robust Fuller’s Problem is formulated as:

min
||u||∞≤α

max
||f1||∞≤C

Km≤f2(t)≤KM
a.e

∫ +∞

0

|σ(0)(t)|νdt (2.129)

subject to

σ̇ =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

σ +


0
...
0

f1 + f2u

 and σ(0) = σ0 (2.130)

34



2.4 Higher-order sliding mode

where f1(t) ∈ [−C,C], f2(t) ∈ [Km,KM ]. Under the assumptions of matched bounded
disturbance, seek the control law that guarantees optimality for the worst-case trajectory,
that is the trajectory of the differential inclusion 2.130 such that the maximum with respect
to f1 and f2 is attained. It turns out, that independently of ν, the worst-case trajectory is
such that f1 = −Csgn(u) and f2 = Km almost everywhere. This means that in the worst-
case trajectory, the additive uncertainty f1 always opposes the control u with, maximum
amplitude, while the multiplicative uncertainty reduces the control amplitude αf2 to the
smallest possible value αKm.

Introduce the reduced control amplitude αr := αKm−C, suppose that αr > 0. Then,
if v∗ is an optimal control for

min
||ν||∞≤1

∫ +∞

0

|z1(t)|νdt (2.131)

subject to

ż =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 z +


0
...
0
v

 , z ∈ Rr and z(0) = z0 = α−1r σ0, (2.132)

then an optimal control u∗ for 2.129 is given by

u∗(t) = αv∗(t) (2.133)

Relation 2.133 still hold when u∗ and v∗ are the limiting optimal controls for ν → 0+.

Generic order sliding mode algorithm

In Dinuzzo and Ferrara (2009) it is shown that the solution to the Robust Fuller’s problem
with ν → 0+ is given by the following rth order HOSM algorithm:

U(σ) = α(−1)r+1Ũ(σ) (2.134)

where Ũ ∈ {−1,+1} is such that the system of equations and inequalities

zr−i+1
1 + 2

r∑
n=2

(−1)n+1zr−i+1
n = Ũ

(r − i+ 1)!

αr
σ(i−1),

i = 1, . . . , r z1 ≤ . . . ≤ zr ≤ 0

(2.135)

admits solution. The complexity of the switching surface grows very fast with r.

35



Chapter 2. Literature Study: Sliding Mode Control

36



Chapter 3
Mass-Spring-Damper System

The mass-spring damper system is a simple yet challenging motion control problem. It
is therefore used as a test system to investigate the main advantages and disadvantages
of different SMC algorithms. The SMC algorithms that are to be investigated with this
system is:

• the relay controller

• the saturation controller

• the super-twisting algorithm

• the super-twisting algorithm with adaptive gains

The reason for choosing the relay controller is that it was the first SMC algorithm
proposed. The saturation controller was chosen because it is the most used SMC
algorithm. These two algorithms is also important for comparison purposes. The
super-twisting algorithm was chosen because it is the best known and most widely used
second-order algorithm. The super-twisting algorithm with adaptive gains was chosen
because it gives all the same properties as the super-twisting algorithm, but in addition
the bound on the disturbance does not need to be known. The reason for not choosing any
algorithms that have higher order than two, is that for a second order system it is not
possible to implement a higher-order SMC algorithm without observers (differentiators),
which is out of the scope of this report.

37



Chapter 3. Mass-Spring-Damper System

3.1 System

Figure 3.1: Schematic of mass-spring-damper system

The mass-spring-damper system is a second order system, where the differential equation
that the describes the system can be written as:

mẍ+ cẋ+ kx = u+ d(t) (3.1)

where x is the position of the mass, m [kg] is the weight of the mass, c [Ns/m] is the
damping coefficient, k [N/m] is the spring constant, u [N ] is the force input and d(t) is a
time-varying disturbance.

3.2 Control design
Control problem: The control objective is to make the position of the mass x, follow a
pre-defined trajectory.

3.2.1 Sliding surface design
To design a sliding surface an error variable has to be introduced. Define the output as

y = x (3.2)

The error variable can then be defined as:

e = y − ydes (3.3)

where ydes is the desired position of the mass. This can be both time-varying and time-
invariant. The sliding surface should then be selected such that the state trajectories of
the controlled system is forced onto the sliding surface σ = σ̇ = 0, where the system
behaviour meets the design specifications. The controller u should also appear in the first
derivative of σ, so that the relative degree is equal to 1. The sliding surface σ can then be
chosen as:

38



3.2 Control design

σ = ė+ e (3.4)

By inserting the states into the equation for the sliding surface, the sliding surface becomes:

σ = ė+ e = ẏ − ẏdes + y − ydes (3.5)

The derivative of the sliding surface σ̇ is then:

σ̇ = ÿ − ÿdes + ẏ − ẏdes =
1

m
(−cẏ − ky + u+ d(t))− ÿdes + ẏ − ˙ydes (3.6)

The objective is to get σ = σ̇ = 0. As the model for the mass-spring-damper is known, a
new controller could have been introduced as u = ueq+u0, where u0 would be the control
input, and ueq would cancel out the known terms in equation 3.6. The ueq controller is
described in section 2.3, and was first introduces in Utkin (1977). But since one of the
properties that need to be tested is how well the different controllers handle unknown
models, the ueq controller will not be used in these simulations. This implies that when
simulating, the controller’s ability to handle disturbances and modelling errors are tested.
The states y and ẏ are available for measurement.

3.2.2 Control input design

The sufficiently large constant K that will be mentioned in the following sections can be
found by finding an upper bound on the disturbance as mentioned in previous sections. As
this is difficult, the trial and error method has been used instead.

The relay controller

When using the relay controller, the control input can be written as:

u = −Ksgn(σ) (3.7)

where K is a sufficiently large positive constant and sgn(σ) is defined as in equation 2.56.

The saturation controller

When using the saturation controller, the control input can be written as:

u = −Ksat(σ) (3.8)

where K is a sufficiently large positive constant, and sat(σ) is defined as in equation 2.57
with L = 0.01.

39



Chapter 3. Mass-Spring-Damper System

The super-twisting algorithm

By choosing the gains in equation 2.91 to be k1 = 1.5
√
K and k2 = 1.1K, where K is a

sufficiently large positive constant. The control input can be written as:

u = −1.5
√
K|σ|1/2sgn(σ) + v

v̇ = −1.1Ksgn(σ)
(3.9)

The super-twisting algorithm with adaptive gains

By using the STA with adaptive gains proposed in Shtessel et al. (2010) the control input
can be written as:

u = −α|σ|1/2sgn(σ) + v

v̇ = −βsgn(σ)
(3.10)

where the adaptive gains are defined as:

α̇ =

{
ω1

√
γ1
2 , if σ 6= 0

0, if σ = 0

β = 2εα+ λ+ 4ε2

(3.11)

where ε, λ, γ1, ω1 are arbitrary positive constants. Since the sliding surface is nearly never
equal to zero, a small bound is put on the sliding surface for implementation purposes, and
the adaptive gains can be expressed as:

α̇ =

{
ω1

√
γ1
2 , if |σ| > αm

0, if |σ| ≤ αm
β = 2εα+ λ+ 4ε2

(3.12)

where the parameter αm is an arbitrarily small positive constant, in this case chosen to be
0.1.

40



3.3 Implementation

3.3 Implementation

For the mass-spring damper system MATLAB Simulink was used to implement the
different controllers and the system model.

3.3.1 System model

Figure 3.2: Implementation of mass-spring-damper system in Simulink

3.3.2 Control input

The relay controller

Figure 3.3: Implementation of relay control in Simulink

41



Chapter 3. Mass-Spring-Damper System

The saturation controller

Figure 3.4: Implementation of saturation control in Simulink

The super-twisting algorithm

Figure 3.5: Implementation of super-twisting algorithm in Simulink

42



3.4 Results

The super-twisting algorithm with adaptive gains

Figure 3.6: Implementation of super-twisting algorithm with adaptive gains in Simulink

3.4 Results
For the simulation the constants in the mass-spring-damper system are set to: m = 2,
c = 5 and k = 2. The disturbance is set to: d(t) = 2 sin(3t) + sin(5t) + 2, and the
reference input is set to ydes = 5 sin(2t).

43



Chapter 3. Mass-Spring-Damper System

3.4.1 The relay controller

The gain K for the relay control was set to 60.

Figure 3.7: Results mass-spring-damper system: relay controller

44



3.4 Results

3.4.2 The saturation controller

The gain K for the saturation control was set to 65.

Figure 3.8: Results mass-spring-damper system: saturation controller

45



Chapter 3. Mass-Spring-Damper System

3.4.3 The super-twisting algorithm

The gain K for the super-twisting algorithm was set to 100.

Figure 3.9: Results mass-spring-damper system: super-twisting algorithm

46



3.4 Results

3.4.4 The super-twisting algorithm with adaptive gains
The gains for the super-twisting algorithm with adaptive gains were set to: ε = 1, λ = 1,
γ1 = 1 and ω1 = 20.

Figure 3.10: Results mass-spring-damper system: super-twisting algorithm with adaptive gains

47



Chapter 3. Mass-Spring-Damper System

In order to better compare the different algorithms the absolute maximum value for the
error variable for each algorithm have been gather in table 3.1. Here the first 5 seconds
were not considered so that the absolute maximum error was found when the control input
had stabilized.

Table 3.1: Mass-spring-damper system: absolute maximum value for error variable

Algorithm Error
Relay controller 0.0229
Saturation controller 0.0441
Super-twisting algorithm 0.0195
Super-twisting algorithm with adaptive gains 0.0206

48



Chapter 4
Underwater Swimming
Manipulator

The underwater swimming manipulator, is a snake-like, multi-articulated, underwater
robot equipped with thrusters. The USM has a complex control design problem. That is
because the USM is subject to hydrodynamic and hydrostatic parameter uncertainties,
uncertain thruster characteristics, unknown disturbances, and un-modelled dynamic
effects, e.g. thruster dynamics and coupling forces caused by joint motion. There have
been cases where SMC has been used to control a snake like manipulator. In Rezapour
et al. (2014), a relay inspired controller was used for a snake robot, and in
Sverdrup-Thygeson et al. (2016b), the saturation controller was used for an USM. To the
author’s knowledge no second-order SMC algorithm has been tested on an USM. The
algorithms that will be tested on this system are the same as for the test system.

4.1 System

Figure 4.1: System overview USM, Sverdrup-Thygeson et al. (2016a)

In Sverdrup-Thygeson et al. (2016a) a model of an USM with additional effectors is
presented together with a force allocation matrix for a 2D applications. In this section the

49



Chapter 4. Underwater Swimming Manipulator

equation of motion for the USM and the force allocation matrix will be explained,
detailed calculations can be found in Sverdrup-Thygeson et al. (2016a). The kinematic
equations in Sverdrup-Thygeson et al. (2016a) are developed for 2D based on the method
outlined in Liljeback et al. (2012).

4.1.1 Equation of motion USM
The USM consists of n rigid links, connected by n-1 motorized joints, equipped with r
additional effectors producing forces and moments on the centre of mass (CM) of the
USM, that is moving fully submerged in a 2D virtual horizontal plane. The length of each
link is defined as 2li, were i = 1, . . . , n is the link number. The links can have different
mass and length depending on the module configuration of the USM. The joint angels are
q = [q1, . . . , qn−1]T ∈ Rn−1 and the global link angels are ψ = [ψ1, . . . , ψn]T ∈ Rn.
The kinematics and the forces and torques acting on each link is illustrated in figure 4.2.

(a) Kinematic parameters (b) Forces and torques acting on each link

Figure 4.2: Underwater swimming manipulator, Sverdrup-Thygeson et al. (2016a)

Definitions that will be used:

A =

1 1
. . . . . .

1 1

 ∈ R(n−1)×n, D =

1 −1
. . . . . .

1 −1

 ∈ R(n−1)×n,

e = [1 · · · 1]T ∈ Rn, E =

[
e 0n×1

0n×1 e

]
∈ R2n×2

sinψ = [sinψ1 . . . sinψn]T ∈ Rn, Sψ = diag(sinψ) ∈ Rn×n,
cosψ = [cosψ1 . . . cosψn]T ∈ Rn, Cψ = diag(cosψ) ∈ Rn×n,
ψ̇2 = [ψ̇2

1 . . . ψ̇
2
n]T ∈ Rn.

M = diag([m1 . . . mn]) ∈ Rn×n, L = diag([l1 . . . ln]) ∈ Rn×n,
J = diag([ji . . . jn]) ∈ Rn×n

50



4.1 System

M is the mass matrix, L is the length matrix and J is the inertia matrix.
The global frame position pCM ∈ R2 of the CM of the USM is defined as

pCM =

[
px
py

]
=

[ 1
mt

∑n
i=1mixi

1
mt

∑n
i=1miyi

]
=

1

mt

[
eTMX
eTMY

]
(4.1)

where (xi, yi), i = 1, · · · , n are the coordinates of the CM of link i in global frame, mi is
the mass of link i and mt =

∑n
i=1mi is the total mass of the USM. This is valid because

it is assumed that the mass of each link is uniformly disturbed. The matrix representation
of the force balance for all links with different link mass is expressed by

MẌ = DThx + fx + fpx, MŸ = DThy + fy + fpy (4.2)

where fpx and fpy are the forces from the additional effectors, hx and hy are the joint
constraint forces and fx and fy are the fluid forces on all links. By differentiating 4.1 and
inserting 4.2, the joint constraint forces cancel out, and the translational motion of the CM
of the USM can be written as

mtp̈x = eT (fx + fpx), mtp̈y = eT (fy + fpy). (4.3)

The equation of motion can be expressed as

Mψψ̈ +Wψψ̇
2 + Vψψ̇ + Λ3|ψ̇|ψ̇ −K1µ(Sψep̈x − Cψep̈y)

+ SψK(fDx + fpx)− CψK(fDy + fpy) = DTu
(4.4)

where

Mψ = J + V1 +K1µK
T
1 + Λ1,

Wψ = V2 −K1µK
T
2

Vψ = Λ2 −K1µ(CψV
a
x + SψV

a
y )

K1 = SψKSψ + CψKCψ, K2 = SψKCψ − CψKSψ
V1 = SψV Sψ + CψV Cψ, V2 = SψV Cψ − CψV Sψ
V = LAT (DM−1DT )−1AL

K = LAT (DM−1DT )−1DM−1 ∈ Rn×n

Λ1 = diag(λ1,1, . . . , λ1,n) ∈ Rn×n

Λ2 = diag(λ2,1, . . . , λ2,n) ∈ Rn×n

Λ3 = diag(λ3,1, . . . , λ3,n) ∈ Rn×n

µ = diag(µ1, . . . , µn) ∈ Rn×n

here V ax and V ay are the ocean current velocity expressed in inertial frame coordinates,
fDx and fDy are the drag forces (linear and non-linear) on the USM, and p̈x and p̈y can be
found by rearranging 4.3. The coefficients λ2,i, λ3,i represent the drag parameters due to
the pressure difference between the two sides of the body, and the parameters µi and λ1,i
represent the added mass of the fluid carried by the moving body.

51



Chapter 4. Underwater Swimming Manipulator

4.1.2 Force allocation
The force allocation distribution is given by:

τCM =

FCM,x

FCM,y

MCM,z

 = T (ψ)fp, (4.5)

where T (ψ) is the allocation matrix and fp = [fp,k1 , . . . , fp,kr ] is the vector of scalar
effector forces. It is the mapping between the effector forces and the forces and moments
acting on the CM of the USM. According to Sverdrup-Thygeson et al. (2016a) the force
allocation matrix for 2D application can be expressed as:

T (ψ) =

 bTx
bTy

eTSψKB
T
X − eTCψKBTY

 (4.6)

where bx, by , BX and BY are configuration vectors. It is assumed that the additional
effector forces are acting through the CM of each link. The primary objective for the force
allocation method is to distribute the efforts among the additional effectors to obtain the
forces and moments required to maintain the desired heading and follow the path with
non-zero forward velocity.

4.2 Control design
Control problem: Assume that there exist a guidance system which determines a
suitable path for the USM to follow. The task at hand is to design a motion controller, by
using a SMC algorithm, that calculates the desired forces for the translational motion
FCM . To calculate the desired moments for rotation motion of the USM MCM , the P
controller defined in Sverdrup-Thygeson et al. (2016a) will be used. The desired forces
and moments is defines as:

τCM,d =

[
FCM,d

MCM,d

]
(4.7)

.

4.2.1 Sliding surface design
First of all an error variable has to be introduced. As the output variable for the
translational motion of the USM is pCM , the error variable can be defined as:

e =

[
ex
ey

]
= pCM − pCM,d =

[
px − px,ref
py − py,ref

]
(4.8)

where pCM,d is the desired position of the global frame position of the CM of the USM. To
recap the sliding surface should be selected such that the state trajectories of the controlled
system is forced onto the sliding surface σ = σ̇ = 0, where the system behaviour meets

52



4.2 Control design

the design specifications. The controller u should also appear in the first derivative of σ,
so that the relative degree is equal to 1. The sliding surface σ can then be chosen as:

σ =

[
σx
σy

]
= ė+ e =

[
ėx
ėy

]
+

[
ex
ey

]
=

[
ṗx − ṗx,ref
ṗy − ṗy,ref

]
+

[
px − px,ref
py − py,ref

]
(4.9)

For the same reasons as for the mass-spring-damper system the ueq controller will not be
used her either. The states pCM and ṗCM is available for measurement.

4.2.2 Control input design

The control input u = FCM,d. To find the sufficiently large constant K that will be
mentioned in the following sections, the trial and error method was used for the same
reasons as for the mass-spring-damper system.

The relay controller

When using the relay controller, the control input can be written as:

u =

[
ux
uy

]
= −K

[
sgn(σx)
sgn(σy)

]
(4.10)

where K is a sufficiently large positive constant and sgn(σ) is defined as in equation 2.56.

The saturation controller

When using the saturation controller, the control input can be written as:

u =

[
ux
uy

]
= −K

[
sat(σx)
sat(σy)

]
(4.11)

where K is a sufficiently large positive constant, and sat(σ) is defined as in equation 2.57
with L = 0.3.

The super-twisting algorithm

By choosing the gains in equation 2.91 to be k1 = 1.5
√
K and k2 = 1.1K, where K is a

sufficiently large positive constant. The control input can be written as:

u =

[
ux
uy

]
= −1.5

√
K

[
|σx|1/2sgn(σx) + vx
|σy|1/2sgn(σy) + vy

]

v̇ =

[
v̇x
v̇y

]
= −1.1K

[
sgn(σx)
sgn(σy)

] (4.12)

53



Chapter 4. Underwater Swimming Manipulator

The super-twisting algorithm with adaptive gains

By using the STA with adaptive gains proposed in Shtessel et al. (2010) the control input
can be written as:

u =

[
ux
uy

]
=

[
−αx|σx|1/2sgn(σx) + vx
−αy|σy|1/2sgn(σy) + vy

]

v̇ =

[
v̇x
v̇y

]
=

[
−βxsgn(σx)
−βysgn(σy)

] (4.13)

where the adaptive gains are defined as:

α̇ =

[
α̇x
α̇y

]
=


{
ω1

√
γ1
2 , if σx 6= 0

0, if σx = 0{
ω1

√
γ1
2 , if σy 6= 0

0, if σy = 0


β =

[
βx
βy

]
=

[
2εαx + λ+ 4ε2

2εαy + λ+ 4ε2

] (4.14)

here ε, λ, γ1, ω1 are arbitrary positive constants. As the sliding surface is nearly never
equal to zero, a small boundary is put on the sliding surface for implementation purposes,
and the adaptive gains can be expressed as:

α̇ =

[
α̇x
α̇y

]
=


{
ω1

√
γ1
2 , if |σx| > αm

0, if |σx| ≤ αm{
ω1

√
γ1
2 , if |σy| > αm

0, if |σy| ≤ αm


β =

[
βx
βy

]
=

[
2εαx + λ+ 4ε2

2εαy + λ+ 4ε2

] (4.15)

where the parameter αm is an arbitrarily small positive constant, in this case chosen to be
0.05.

PD-controller

In Sverdrup-Thygeson et al. (2016a) a PD-controller is proposed to find FCM,d:

u = FCM,d = kCMd

[
ṗx,ref − ṗx
ṗy,ref − ṗy

]
+ kCMp

[
px,ref − px
py,ref − py

]
(4.16)

where kCMd and kCMp are controller gains. The PD-controller will be used to compare how
well the SMC algorithms work compared to a linear controller with regards to disturbances
and modelling errors.

54



4.3 Implementation

4.3 Implementation

4.3.1 System
The complete model with force allocation matrix was implemented in MATLAB, this was
done by Sverdrup-Thygeson et al. (2016a). The USM implemented has n = 16 links, each
one having length 2li = 0.14m and mass mi = 0.6597 kg. The thruster configuration
used is configuration 2 in Sverdrup-Thygeson et al. (2016a), this has one tail effector at
link 1 exerting force along the link x axis and four additional effectors located at link
number 3, 6, 11 and 14 exerting forces normal to the links. For more details regarding the
parameters used in the model see in Sverdrup-Thygeson et al. (2016a). See appendix A.2
for the code.

Torpedo like USM

The USM will be used as a torpedo when it is moving from one place to another. To
simulate this type of behaviour the link angels where set to zero, and a LOS guidance
law was used for the heading. This was done by choosing no lateral undulation in file
calculate u lateral undulation.m, i.e. alpha = 0. This type of simulation is shown in
figure 4.3.

(a) Torpedo: t = 5 (b) Torpedo: t = 19

(c) Torpedo: t = 29 (d) Torpedo: t = 42

Figure 4.3: Torpedo like USM simulation

55



Chapter 4. Underwater Swimming Manipulator

Operation like USM

When the USM is doing an operation, it will use the thrusters to stay in one place or move
around and the end-effectors to do some type of operation. The undulation effects from
the operation can be seen as a disturbance, as it will to some degree be random, depending
on what type of operation the USM is performing. This means that the undulation effect
will not help the USM to keep its place, it will make it harder. To simulate that the USM
is doing an operation while the thrusters are keeping the USM on the reference path, the
LOS guidance law was changed. This was done in calculate u lateral undulation.m
by changing heading ref to sin(t) (random movement), and removing the no undulation
restriction. This type of simulation is shown in figure 4.4.

(a) Operation: t = 2 (b) Operation: t = 16

(c) Operation: t = 27 (d) Operation: t = 38

Figure 4.4: Operation like USM simulation

4.3.2 Sliding surface and control input

The sliding surface was made by using the error variables available from the
PD-controller that was previously implemented in
calculate desired forces moments.m. The controllers were implemented in the same
file. The code for the implementation is given in appendix A.2. The PD-controller that
was previously implemented, was kept for comparing purposes.

56



4.4 Results

4.4 Results
The relative and absolute error tolerance for the ode23tb solver that were used for the
different simulations, can be found in table 4.1. This can be changed in
startSimulation ver3.m.

Table 4.1: ode23tb solver: relative and absolute error tolerance

Algorithm Error
Torpedo Operation

Relay controller 10−1 1
Saturation controller 10−6 10−8

Super-twisting algorithm 10−2 10−2

Super-twisting algorithm with adaptive gains 10−2 10−1

PD-controller 10−8 10−4

57



Chapter 4. Underwater Swimming Manipulator

4.4.1 Torpedo like USM
The relay controller

The gain K for the relay control was set to 20.

Figure 4.5: Results torpedo like USM: relay controller

58



4.4 Results

The saturation controller

The gain K for the saturation control was set to 30.

Figure 4.6: Results torpedo like USM: saturation controller

59



Chapter 4. Underwater Swimming Manipulator

The super-twisting algorithm

The gain K for the super-twisting algorithm was set to 10.

Figure 4.7: Results torpedo like USM: super-twisting algorithm

60



4.4 Results

The super-twisting algorithm with adaptive gains

The gains for the super-twisting algorithm with adaptive gains were set to: ε = 1, λ = 1,
γ1 = 1 and ω1 = 5.

Figure 4.8: Results torpedo like USM: super-twisting algorithm with adaptive gains

61



Chapter 4. Underwater Swimming Manipulator

The PD-controller

The gains for the PD-controller were set to the same as in Sverdrup-Thygeson et al.
(2016a): kCMd = 0.6 and kCMp = 0.06.

Figure 4.9: Results torpedo like USM: PD-controller

62



4.4 Results

4.4.2 Operation like USM
The relay controller

The gain K for the relay control was set to 20.

Figure 4.10: Results operation like USM: relay controller

63



Chapter 4. Underwater Swimming Manipulator

The saturation controller

The gain K for the saturation control was set to 30.

Figure 4.11: Results operation like USM: saturation controller

64



4.4 Results

The super-twisting algorithm

The gain K for the super-twisting algorithm was set to 10.

Figure 4.12: Results operation like USM: super-twisting algorithm

65



Chapter 4. Underwater Swimming Manipulator

The super-twisting algorithm with adaptive gains

The gains for the super-twisting algorithm with adaptive gains were set to: ε = 1, λ = 1,
γ1 = 1 and ω1 = 5.

Figure 4.13: Results operation like USM: super-twisting algorithm with adaptive gains

66



4.4 Results

The PD-controller

The gains for the PD-controller were set to the same as in Sverdrup-Thygeson et al.
(2016a): kCMd = 0.6 and kCMp = 0.06.

Figure 4.14: Results operation like USM: PD-controller

67



Chapter 4. Underwater Swimming Manipulator

In order to better compare the different algorithms the absolute maximum value for the
error variable for each algorithm have been gather in table 4.2. Here the first 5 seconds
were not considered so that the absolute maximum error was found when the control input
had stabilized.

Table 4.2: USM: absolute maximum value for error variable

Algorithm Error
Torpedo Operation

x y x y
The relay controller 0.0082 0.0065 0.0195 0.0273
The saturation controller 0.0222 0.0149 0.0654 0.0407
The super-twisting algorithm 6.5885 · 10−4 9.1247 · 10−4 0.0053 0.0246
The super-twisting algorithm with adaptive gains 1.5632 · 10−4 6.5611 · 10−5 0.0019 0.0020
PD-controller 1.6230 1.2579 3.2339 1.2868

68



Chapter 5
Discussion

This chapter will present a discussion regarding the four different algorithms that have
been tested on the two different systems, and a comparison between the different SMC
algorithms. The SMC algorithms will also be compared to the PD controller that was
implemented in Sverdrup-Thygeson et al. (2016a).

5.1 The relay controller
The relay controller gave great results both for the mass-spring-damper system and for
the USM. It makes the state trajectories follow the desired path very nicely, and it has a
small error variable, this means it handles the disturbance and modelling errors very well.
But the controller has some issues. First of all the chattering in the control input is a
big problem. If this control input was given to a real system, the mechanics would most
likely be destroyed. Second, it needs a very high control gain to be able to handle the
disturbance. The optimal gain is also very difficult to find, this is because it needs to be
sufficiently large and it needs to satisfy the reaching law. This can be difficult when the
disturbance is unknown.

5.2 The saturation controller
The saturation controller also gave great results for both systems. The state trajectories
follow the desired path, and the error variable is small, but it is a little bit bigger than for
the relay controller. This means it handles disturbance and modelling errors very well, but
not as well as the relay controller. The control input is however much smoother for the
saturation controller than it is for the relay controller. This is because of the linear control
that takes place within the boundary layer of the saturation controller. This linear control
is also the reason why the controller has a larger error variable. The saturation controller
also need high gains, and it is also difficult to find the optimal gain, this is for the same
reasons as the relay controller.

69



Chapter 5. Discussion

5.3 The super-twisting algorithm
The super-twisting algorithm gave very good results, both for the mass-spring damper
system and for the USM. The state trajectories follows the desired path almost perfectly,
and it has a very small error. The error variable is even smaller than for the relay controller.
This means it handles disturbances and modelling errors very well. The control input for
the mass-spring-damper system and for the torpedo like USM is very smooth and there
is no sign of chattering. The control input for the operation like USM is however intense
and varying, even more so than for the saturation controller. This is most likely because
the error variable is noticeably smaller than for the saturation controller. This means that
the super-twisting controller can handle a great deal of disturbance, but it will affect the
smoothness of the control input. With this controller it is also a problem that the control
gain needs to be very high and that it is difficult finding the optimal gain. This is because
a bound on the disturbance needs to be known, and that can be hard to find when the
disturbance is unknown. This often gives a very crude estimation of what the gain needs
to be which leads to a much higher gain than the optimal one.

5.4 The super-twisting algorithm with adaptive gains
The super-twisting algorithm with adaptive gains has the same control abilities as the
super-twisting algorithm with constant gain. The only difference lies in the how the
control gain is found. For the super-twisting algorithm with adaptive gains a bound on the
disturbance does not need to be known, that is because the gains adapts, i.e. finds the
optimal gain. All the user has to do is select the gains depending on how fast the rate of
convergence need to be. In the end the optimal gain will always be found, but the
convergence time may vary depending on the control gains.

5.5 Comparison between the sliding mode control
algorithms

All four algorithms manage to follow the desired path without any large errors, but the
second-order algorithms were the ones with the smallest error. The biggest difference in
the algorithms is regarding the control input and control gains. The relay controller suffers
from severe chattering. The saturation controller gives smooth control input, but the error
variable is considerably larger. The super-twisting algorithm also gives a smooth control
input, but with a smaller error variable. The control gains for these three algorithms are
hard to find, and it is even more difficult to find an optimal control gain. The super-twisting
algorithm with adaptive gains gives a smooth control input as the super-twisting algorithm
with constant gains, but it also solves the problem regarding the control gain.

The simulation results from the operation like USM gives some strange control inputs
for all of the controllers. That is because of the amount of disturbance that is inflicted
on the system by letting the USM move in a sine-wave. This is more visible in both the
super-twisting algorithm. This is because the error variable is noticeably smaller for these
two controllers. The movement of the USM will never be that severe and the control

70



5.6 Comparison between the PD-controller and sliding mode control

inputs would therefore probably never be that bad. But it was a great way to show how
much these types of controllers actually can handle regarding disturbances even though
the control input did not look so great.

5.6 Comparison between the PD-controller and sliding
mode control

The PD-controller could not handle a torpedo like USM or an operational like USM.
There were large errors and offsets on both simulation modes. This means that the SMC
algorithms are much more suited for these type of systems. The PD-controller gains were
chosen by the previous users, and in Sverdrup-Thygeson et al. (2016a) there is only
simulations results for a straight line. Therefore the gains might not be optimal for the
type of simulations that were performed here. It is therefore possible that by changing the
gains or replacing the PD with a PID controller that the linear controller would have
given the SMC more competition regarding results.

71



Chapter 5. Discussion

72



Chapter 6
Conclusion and Further Work

6.1 Conclusion
In this report an in-depth study of sliding mode control was presented. It explains sliding
mode control in general and several first, second and higher-order sliding mode control
algorithms in detail. Four different SMC algorithms were tested on two different systems
to see how well they performed. They have also been compared to a PD-controller.

All the SMC algorithms gave great results regarding their ability to follow a desired
path when disturbances were present. However, the relay controller cannot be used in
practice because of chattering in the control input. The saturation controller and the
second-order algorithms can be used, as they all have smooth control inputs. Out of these,
the second-order algorithms are the best as they have the smallest error variable. As the
saturation controller and the super-twisting algorithm have problems with finding the
optimal gain, the super-twisting algorithm with adaptive gains is the best choice for
practical use. The PD-controller gave no competition to the SMC algorithms.

6.2 Further work
The higher-order sliding mode control algorithms mentioned in section 2.4 should also be
tested with the help of observers (differentiators). The algorithms tested here, especially
the super-twisting algorithm with adaptive gains, should also be tested on a 3D-model of
the USM to see if it gives as good results as it does in 2D. The algorithms should also be
tested in a situation where the USM is moving in a way that is more similar to the way
the USM actually will move under an operation, to get a clearer picture of how the control
input will look like under an operation.

73



Chapter 6. Conclusion and Further Work

74



Bibliography

Bartolini, G., Pisano, A., Punta, E., Usai, E., 2003. A survey of applications of second-
order sliding mode control to mechanical systems. International Journal of Control
76 (9-10), 875–892.

Basin, M., Panathula, C. B., Shtessel, Y., 2016. Adaptive uniform finite-/fixed-time
convergent second order sliding mode control. International Journal of Control, 1–17.

Chalanga, A., Kamal, S., Fridman, L. M., Bandyopadhyay, B., Moreno, J. A., 2016.
Implementation of super-twisting control: Super-twisting and higher order sliding-mode
observer-based approaches. IEEE Transactions on Industrial Electronics 63 (6), 3677–
3685.

Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W., 2009. A novel higher order sliding
mode control scheme. Systems and Control Letters 58 (2), 102–108.

Dinuzzo, F., Ferrara, A., 2009. Higher order sliding mode controllers with optimal
reaching. IEEE Transactions on Automatic Control 54 (9), 2126–2136.

Edwards, C., Shtessel, Y., 2016a. Adaptive dual-layer super-twisting control and
observation. International Journal of Control, 1–8.

Edwards, C., Shtessel, Y. B., 2016b. Adaptive continuous higher order sliding mode
control. Automatica 65, 183–190.

Filippov, A. F., Arscott, F. M., 1988. Differential equations with discontinuous righthand
sides. Kluwer Academic Publishers, Dordrecht.

Hung, J. Y., Gao, W., Hung, J. C., 1993. Variable structure control: A survey. IEEE
Transactions on Industrial Electronics 40 (1), 2–22.

Khalil, H. K., 2002. Nonlinear systems, 3rd Edition. Prentice Hall, Upper Saddle River,
N.J.

Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. International
Journal of Control 58 (6), 1247–1263.

75



Levant, A., 1998. Robust exact differentiation via sliding mode technique. Automatica
34 (3), 379–384.

Levant, A., 2001. Universal single-input-single-output (siso) sliding-mode controllers with
finite-time convergence. Automatic Control, IEEE Transactions on 46 (9), 1447–1451.

Levant, A., 2003. Higher-order sliding modes, differentiation and output-feedback control.
International Journal of Control 76 (9-10), 924–941.

Levant, A., 2005. Homogeneity approach to high-order sliding mode design. Automatica
41 (5), 823–830.

Liljeback, P., Pettersen, K. Y., Stavdahl, y., Gravdahl, J. T., 2012. Snake Robots :
Modelling, Mechatronics, and Control. Snake Robots : Modelling, Mechatronics, and
Control. Springer, Dordrecht.

Plestan, F., Moulay, E., Glumineau, A., Cheviron, T., 2010. Robust output feedback
sampling control based on second-order sliding mode. Automatica 46 (6), 1096–1100.

Rezapour, E., Pettersen, K. Y., Liljeback, P., Gravdahl, J. T., 2014. Differential geometric
modelling and robust path following control of snake robots using sliding mode
techniques.

Shtessel, Y., Taleb, M., Plestan, F., 2012. A novel adaptive-gain super-twisting sliding
mode controller: Methodology and application. Automatica 48 (5), 759–769.

Shtessel, Y. B., Moreno, J. A., Plestan, F., Fridman, L. M., Poznyak, A. S., 2010.
Super-twisting adaptive sliding mode control: A lyapunov design. In: 2010 49th IEEE
Conference on Decision and Control, CDC 2010. pp. 5109–5113.

Sverdrup-Thygeson, J., Kelasidi, E., Pettersen, K. Y., Gravdahl, J. T., 2016a. Modeling of
underwater swimming manipulators. IFAC PapersOnLine 49 (23), 81–88.

Sverdrup-Thygeson, J., Kelasidi, E., Pettersen, K. Y., Gravdahl, J. T., 2016b. Sliding
mode control of underwater swimming manipulators with thrusters. Submitted to: IEEE
International Conference on Robotics and Automation (Unpublished).

Utkin, V. I., 1977. Survey paper: Variable structure systems with sliding modes. IEEE
Transactions on Automatic Control 22 (2), 212–222.

Yan, X., Primot, M., Plestan, F., 2016. An unified formalism based on gain switching for
second order sliding mode control. In: 2016 14th International Workshop on Variable
Structure Systems (VSS). pp. 71–76.

Young, K. D., Utkin, V. I., zgner, ., 1999. A control engineer’s guide to sliding mode
control. IEEE Transactions on Control Systems Technology 7 (3), 328–342.

76



Appendix A
Attachment Description and
MATLAB code

Attached to this report is a folder named Code, where all the MATLAB code and Simulink
models can be found. Inside the code folder, there is two folders one named Mass-spring-
damper system, and one named Underwater swimming manipulator in each folder the code
for each system can be found.

A.1 Mass-spring-damper system

A.1.1 Attachment description

The mass-spring-damper system folder is divided up in four folders, one for each
algorithm. The code is organized as follows:

.m-files

• find absolute max error.m - Finds the absolute maximum error. Run one of the
following models before running this file.

The relay controller

• relay control MSDS.slx - Contains the implementation of the relay controller
and the mass-spring-damper system.

• run relay control MSDS.m - Initializes the parameters, runs
relay control MSDS.slx and plots the results.

77



The saturation controller

• saturation control MSDS.slx - Contains the implementation of the saturation
controller and the mass-spring-damper system.

• run saturation control MSDS.m - Initializes the parameters, runs
saturation control MSDS.slx and plots the results.

Super-twisting algorithm

• super twisting algorithm MSDS.slx - Contains the implementation of the
super-twisting algorithm and the mass-spring-damper system.

• run super twisting algorithm MSDS.m - Initializes the parameters, runs
super twisting algorithm MSDS.slx and plots the results.

Super-twisting algorithm with adaptive gains

• super twisting adaptive gains MSDS.slx - Contains the implementation of the
super-twisting algorithm with adaptive gains and the mass-spring-damper system.

• run super twisting adaptive gains MSDS.m - Initializes the parameters, runs
super twisting adaptive gains MSDS.slx and plots the results.

A.1.2 MATLAB code
The relay controller: run relay control MSDS.m

%% Run relay controller

% Parameter values

p = 1;
m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Input
K = 60;

sim('relay_control_MSDS');

%% Plot

figure(1)
subplot(5,1,1);
plot(y_des.time,y_des.signals.values,'r')
hold on
plot(y.time,y.signals.values,'b')
title('Y_{des} with Y'); xlabel('Time [s]');ylabel('Position of mass');
legend('y_{des}','y');

78



subplot(5,1,2);
plot(disturbance.time,disturbance.signals.values)
title('Disturbance'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,3);
plot(control_input.time,control_input.signals.values)
title('Control input u'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,4);
plot(sliding_var.time,sliding_var.signals.values)
title('Sliding variable \sigma'); xlabel('Time [s]');;

subplot(5,1,5);
plot(e.time,e.signals.values)
title('Error variable e'); xlabel('Time [s]');

The saturation controller: run saturation control MSDS.m

%% Run saturation control

% Parameter values

p = 1;
m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Input
K = 65;

sim('saturation_control_MSDS');

%% Plot

figure(1)
subplot(5,1,1);
plot(y_des.time,y_des.signals.values,'r')
hold on
plot(y.time,y.signals.values,'b')
title('Y_{des} with Y'); xlabel('Time [s]');ylabel('Position of mass');
legend('y_{des}','y');

subplot(5,1,2);
plot(disturbance.time,disturbance.signals.values)
title('Disturbance'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,3);
plot(control_input.time,control_input.signals.values)
title('Control input u'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,4);
plot(sliding_var.time,sliding_var.signals.values)
title('Sliding variable \sigma'); xlabel('Time [s]');;

79



subplot(5,1,5);
plot(e.time,e.signals.values)
title('Error variable e'); xlabel('Time [s]');

Super-twisting algorithm: run super twisting algorithm MSDS.m

%% Run super-twisting algorithm

% Parameter values

p = 1;
m = 2; % Kg
c = 5; % N/ms*2
k = 2; % N/m

% Input
K = 100;

sim('super_twisting_algorithm_MSDS');

%% Plot

figure(1)
subplot(5,1,1);
plot(y_des.time,y_des.signals.values,'r')
hold on
plot(y.time,y.signals.values,'b')
title('Y_{des} with Y'); xlabel('Time [s]');ylabel('Position of mass');
legend('y_{des}','y');

subplot(5,1,2);
plot(disturbance.time,disturbance.signals.values)
title('Disturbance'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,3);
plot(control_input.time,control_input.signals.values)
title('Control input u'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,4);
plot(sliding_var.time,sliding_var.signals.values)
title('Sliding variable \sigma'); xlabel('Time [s]');;

subplot(5,1,5);
plot(e.time,e.signals.values)
title('Error variable e'); xlabel('Time [s]');

Super-twisting algorithm with adaptive gains:
run super twisting adaptive gains MSDS.m

%% Run super-twisting algorithm with adaptive gains
% Parameter values

p = 1;
m = 2; % Kg

80



c = 5; % N/ms*2
k = 2; % N/m

% Control variables
epsilon = 1;
lamda = 1;
gamma_1 = 1;
omega_1 = 20;

sim('super_twisting_algorithm_with_adaptive_gains_MSDS');

%% Plot

figure(1)
subplot(5,1,1);
plot(y_des.time,y_des.signals.values,'r')
hold on
plot(y.time,y.signals.values,'b')
title('Y_{des} with Y'); xlabel('Time [s]');ylabel('Position of mass');
legend('y_{des}','y');

subplot(5,1,2);
plot(disturbance.time,disturbance.signals.values)
title('Disturbance'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,3);
plot(control_input.time,control_input.signals.values)
title('Control input u'); xlabel('Time [s]');ylabel('Force');

subplot(5,1,4);
plot(sliding_var.time,sliding_var.signals.values)
title('Sliding variable \sigma'); xlabel('Time [s]');;

subplot(5,1,5);
plot(e.time,e.signals.values)
title('Error variable e'); xlabel('Time [s]');

Absolute maximum error: find absolute max error.m

%% Find absoulte maximum error

max_error = max(abs(e.signals.values(5000:50001)))

81



A.2 Underwater swimming manipulator

A.2.1 Attachment description
The files that are described and attached here, are the files where changes were made. The
code for the USM is organized as follows:

.m-files

• startSimulation ver3.m - Starts the simulation of the USM. Here the relative and
absolute error for the ode23tb can be changed.

• calculate desired forces moments.m - Calculates and returns the desired forces
and moments, by calculating the sliding surface and the control input. To switch
between the different algorithms, change the variable con.

• calculate u lateral undulation.m - Calculates and returns the actuator forces.
Change the variable heading ref and uncomment alpha = 0 to switch between
torpedo mode and operation mode.

• sat.m - Saturation function.

• plot simulations.m - Plots the simulation results. Run it after
startSimulation ver3.m.

• find absolute max error.m - Finds the absolute maximum error. Run it after
startSimulation ver3.m.

A.2.2 MATLAB code
Start simulation: startSimulation ver3.m

%
% Starts the snake robot simulation.
%

global visualize_motion previous_draw_time t_previous waypoints ...
WP_switch_times t_sim theta_pathframe_sim p_pathframe_sim ...
vt_sim psi_path_sim z_sim z_dot_sim f_thr_sim tau_d_sim T_allocation_sim ...
phi_sim phi_ref_sim...
fTx_sim fTy_sim fx_sim fy_sim orientation_ref_sim...
orientation_sim px_sim py_sim phi_offset_sim ...
sigma_f_sim F_CM_sim error_pos_CM_sim p_CM_d_sim

% The stop time for the simulation.
stop_time = 45; % Straight motion
%stop_time = 200; % Turning motion

% Initializes controller parameters.
initControllerParameters;

82



% Initializes model parameters.
initModelParameters;

disp('Starting simulation...')

% Matlab function used to measure how long the simulation takes
tic

% The simulation time of the previous time step
t_previous = 0;

% Constructs the initial values for the state vector.
v0 = [theta0 ; p_CM0 ; theta0_dot ; p_CM0_dot ; u_CM0_2 ; alpha_CM0_dot];

% Starts the snake robot visualization
if visualize_motion

% The time of the previously drawn sample
previous_draw_time = 0;

% Draws the initial position of the snake robot
drawSnakeRobot(0, theta0, p_CM0, 0);

% Create a slider with callback function to change \omega
% f33 = figure(33);
% set(f33,'Position', [800 600 130 30]);
% sld = uicontrol('Style', 'slider',...
% 'Min',20,'Max',100,'Value',70,...
% 'Position', [0 0 120 20],...
% 'Callback', @changeOmega);

% Waits for the figure window to display
pause(0.1);

end
%return

if 1

options = odeset('Events', 'off', 'RelTol', 1e-2, 'AbsTol', 1e-2);
[t, v] = ode23tb('calculate_v_dot', [0 stop_time], v0, options);

disp('Simulation complete...')

% Displays how long the simulation took to complete
toc

disp(['Simulated time: ' num2str(t(end, 1)) 's'])

% Extracts the states from the state vector.
theta = v(:, 1:n);
p_CM = v(:, n+1:n+2);
theta_dot = v(:, n+3:2*n+2);
p_CM_dot = v(:, 2*n+3:2*n+4);
%phi = v(:, 2*n+5:3*n+4);
%phi_dot = v(:, 3*n+5:4*n+4);
%phi_o = v(:, 4*n+5);

83



%psi_ref = v(:, 4*n+8);

end
%return

Calculate sliding surface and control input: calculate desired forces moments.m

function [tau_d, u_CM_2_dot, alpha_CM_dot] = calculate_desired_forces_moments(t, theta,
theta_dot, p_CM, p_CM_dot,u_CM_2, alpha_CM)
% Simple PD controller that returns the desired generalized forces and moments

global n p_CM_desired p_CM_dot_desired heading_desired heading_dot_desired t_vector ...
sigma_f F_CM error_pos_CM p_CM_d

if t <= 0
tau_d = [0;0;0];
u_CM_2_dot = zeros(2,1);
alpha_CM_dot = zeros(2,1);

end

%Choose controller: con = 1 (relay), con = 2 (saturation), con = 3
%(super-twisting), con = 4 (super-twisting with adaptive gains),
% con = 5 (PD-controller)
con = 3;

% Calculates the desired thrust vector in 3 DOF (transport mode)
if t > 0

%Control paramters
F_CM = zeros(2,1);

Kp_theta = 6;

%Only for super-twisting
u_CM_1 = zeros(2,1);
u_CM_2_dot = zeros(2,1);

%Only for super-twisting with adaptive gains
alpha_CM_dot = zeros(2,1);

% Line-of-Sight calculation for heading reference
Delta=2.24;
heading_d = -atan2(p_CM(2,1),Delta);

p_CM_dot_d = interp1(t_vector,p_CM_dot_desired',t,'spline')';
p_CM_d = interp1(t_vector,p_CM_desired',t,'spline')';

heading = theta(n);

error_pos_CM = p_CM - p_CM_d;
error_vel_CM = p_CM_dot - p_CM_dot_d;
error_heading = heading_d - heading;

% Create sliding surfaces

84



sigma_f = error_vel_CM + error_pos_CM;

if con == 1 %Relay controller
K_f = 20;

for i = 1:2
F_CM(i) = -K_f*sign(sigma_f(i));

end

elseif con == 2 %Saturation controller
K_f = 30;
L = 0.3;
F_CM = -K_f*sat(sigma_f,L);

elseif con == 3 %Super-Twisting controller
K_f = 10;

for i = 1:2
u_CM_1(i) = -1.5*sqrt(K_f)*sqrt(abs(sigma_f(i)))*sign(sigma_f(i));
u_CM_2_dot(i) = -1.1*K_f*sign(sigma_f(i));
F_CM(i) = u_CM_1(i) + u_CM_2(i);

end

elseif con == 4 %Super-Twisting controller with adaptive gains
%Control paramters
beta_CM = zeros(2,1);

epsilon = 1;
lamda = 1;
gamma_1 = 1;
omega_1 = 5;

for i = 1:2
if abs(sigma_f(i)) <= 0.05

alpha_CM_dot(i) = 0;
else

alpha_CM_dot(i) = omega_1*sqrt(gamma_1/2);
end

beta_CM(i) = 2*epsilon*alpha_CM(i) + lamda + 4*epsilonˆ2;
u_CM_1(i) = -alpha_CM(i)*sqrt(abs(sigma_f(i)))*sign(sigma_f(i));
u_CM_2_dot(i) = -beta_CM(i)*sign(sigma_f(i));
F_CM(i) = u_CM_1(i) + u_CM_2(i);

end
else %PD-controller

Kp_pos = 0.6;
Kd_pos = 0.06;

F_CM = Kd_pos*(-1)*error_vel_CM + Kp_pos*(-1)*error_pos_CM;
end

T_CM = min(Kp_theta*error_heading,100);
tau_d = [F_CM; T_CM];

end

end

85



Calculate actuator forces: calculate u lateral undulation.m

function [u, phi_ref] = calculate_u_lateral_undulation(t, phi, phi_dot,theta,
p_CM, p_CM_dot)
%
% Calculates and returns the actuator forces. This is the joint controller
% of the snake robot.
%

global n Kp_joint Kd_joint alpha omega delta heading phi_offset heading_ref

k_psi = 1*0.8;

% Line-of-Sight heading reference
Delta=2.24;
heading_ref = sin(t); % To get line-of-sight/torpedo mode:
%-atan2(p_CM(2,1),Delta). To get opeation mode: sin(t).

% Here you choose whether you want the undulation pattern to follow a
% line-of-sight reference heading, and if you want undulation or not
heading = theta(n);
phi_offset = k_psi * (heading_ref - heading);
%alpha = 0; % No lateral undulation

% Calculates references for joint angles.
phi_ref = zeros(n-1, 1);
for i = 1:n-1

phi_ref(i, 1) = alpha*sin(omega*t + (i-1)*delta) - phi_offset;
end

% Calculates references for joint velocities.
phi_ref_d = zeros(n-1, 1);
for i = 1:n-1

phi_ref_d(i, 1) = alpha*omega*cos(omega*t + (i-1)*delta);
end
% Calculates references for joint accelerations.
phi_ref_dd = zeros(n-1, 1);
for i = 1:n-1

phi_ref_dd(i, 1) = -alpha*omegaˆ2*sin(omega*t + (i-1)*delta);
end

% Calculates the actuator forces.
u = zeros(n-1, 1);
for i = 1:n-1

error = phi_ref(i, 1) - phi(i, 1);
error_d = phi_ref_d(i, 1) - phi_dot(i, 1);
%u(i, 1) = Kp_joint*error - Kd_joint*phi_dot(i, 1);
u(i, 1) = phi_ref_dd(i, 1) + Kd_joint*error_d + Kp_joint*error;

end

86



Saturation function: sat.m

function y = sat(sigma,L)

var = zeros(2,1);

for i = 1:2
var(i) = (sigma(i)/(abs(sigma(i))+L));

end

y = var;

Plot simulations: plot simulations.m

%% Plot for SMC algorithms

figure(1)
subplot(5,1,1);
plot(t_sim,p_CM_d_sim(:,1),'r')
hold on
plot(t_sim,px_sim,'b')
title('x_{des} with x'); xlabel('Time [s]');ylabel('p_x [m]');
legend('x_{des}','x');

subplot(5,1,2);
plot(t_sim,p_CM_d_sim(:,2),'r')
hold on
plot(t_sim,py_sim,'b')
title('y_{des} with y'); xlabel('Time [s]');ylabel('p_y [m]');
legend('y_{des}','y');

subplot(5,1,3);
plot(t_sim,F_CM_sim)
title('Control input u'); xlabel('Time [s]');ylabel('Force [N]');
legend('For x','For y');

subplot(5,1,4);
plot(t_sim,sigma_f_sim)
title('Sliding variable \sigma'); xlabel('Time [s]');
legend('For x','For y');

subplot(5,1,5);
plot(t_sim,error_pos_CM_sim)
title('Error variable e'); xlabel('Time [s]');
legend('For x','For y');

%% Plot for PD-controller

figure(2)
subplot(4,1,1);
plot(t_sim,p_CM_d_sim(:,1),'r')
hold on
plot(t_sim,px_sim,'b')

87



title('x_{des} with x'); xlabel('Time [s]');ylabel('p_x [m]');
legend('x_{des}','x');

subplot(4,1,2);
plot(t_sim,p_CM_d_sim(:,2),'r')
hold on
plot(t_sim,py_sim,'b')
title('y_{des} with y'); xlabel('Time [s]');ylabel('p_y [m]');
legend('y_{des}','y');

subplot(4,1,3);
plot(t_sim,F_CM_sim)
title('Control input u'); xlabel('Time [s]');
legend('For x','For y');

subplot(4,1,4);
plot(t_sim,error_pos_CM_sim)
title('Error variable e'); xlabel('Time [s]');
legend('For x','For y');

Absolute maximum error: find absolute max error.m

%% Find absolute maximum error

max_error_x = max(abs(error_pos_CM_sim(2000:11784,1)))
max_error_y = max(abs(error_pos_CM_sim(2000:11784,2)))

88


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Literature Study: Sliding Mode Control
	General sliding mode control
	Basics
	Sliding mode control for linear systems
	Sliding mode control for non-linear systems
	Characteristics of sliding mode control
	Observer-based sliding mode control

	First-order sliding mode control
	Ideal relay control
	Ideal saturation control
	Practical relay control and practical saturation control

	Second-order sliding algorithms
	A-algorithm
	Twisting algorithm
	Drift algorithm
	Algorithm with a prescribed law
	Algorithm without derivative of 
	General second-order sliding mode
	Super-twisting algorithm
	Twisting-like controllers

	Higher-order sliding mode
	Higher-order sliding mode for a universal single-input-single-output uncertainty system
	Higher-order sliding mode control scheme for a multi-input-multi-output non-linear system
	Adaptive continuous higher-order sliding mode control
	Higher-order sliding mode control with optimal reaching


	Mass-Spring-Damper System
	System
	Control design
	Sliding surface design
	Control input design

	Implementation
	System model
	Control input

	Results
	The relay controller
	The saturation controller
	The super-twisting algorithm
	The super-twisting algorithm with adaptive gains


	Underwater Swimming Manipulator
	System
	Equation of motion USM
	Force allocation

	Control design
	Sliding surface design
	Control input design

	Implementation
	System
	Sliding surface and control input

	Results
	Torpedo like USM
	Operation like USM


	Discussion
	The relay controller
	The saturation controller
	The super-twisting algorithm
	The super-twisting algorithm with adaptive gains
	Comparison between the sliding mode control algorithms
	Comparison between the PD-controller and sliding mode control

	Conclusion and Further Work
	Conclusion
	Further work

	Bibliography
	Attachment Description and MATLAB code
	Mass-spring-damper system
	Attachment description
	MATLAB code

	Underwater swimming manipulator
	Attachment description
	MATLAB code



