
Dockit League: Creating a twin stick
MOBA using Unity

Author(s)

Andreas Wang
Martin Langslet Lilleslåtten
Sondre Fjeldheim Svarverud

Bachelor in Game Programming
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

16.05.2017

Supervisor(s) Simon McCallum

Creating a MOBA using Unity

Sammendrag av Bacheloroppgaven

Tittel: Dockit League: Et "twin stick" MOBA laget med Unity

Dato: 16.05.2017

Deltakere: Andreas Wang
Martin Langslet Lilleslåtten
Sondre Fjeldheim Svarverud

Veiledere: Simon McCallum

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Andreas Wang, andrwan@stud.ntnu.no, 48048162

Nøkkelord: Spill, Programmering, Unity, Spillmotor, MOBA, Nettverk,
Flerspiller

Antall sider: 378
Antall vedlegg: 4
Tilgjengelighet: Åpen

Sammendrag: Dockit League er et prosjekt fokusert rundt å skape et
"multiplayer online battle arena" (MOBA) spill ved hjelp
av spillmotoren Unity. Spillet handler om å spille mot an-
dre spillere i et konkurransepreget miljø der man bruker
"Docking Kits" som gir spillerne forskjellige verktøy og
egenskaper. Denne oppgaven vil gå gjennom utviklingen
av spillet og detaljere hvordan prosjektet endret seg gjen-
nom utviklingsprosessen.

i

Creating a MOBA using Unity

Summary of Graduate Project

Title: Dockit League: Creating a twin stick MOBA using
Unity

Date: 16.05.2017

Authors: Andreas Wang
Martin Langslet Lilleslåtten
Sondre Fjeldheim Svarverud

Supervisor: Simon McCallum

Employer: Norwegian University of Science and Technology

Contact Person: Andreas Wang, andrwan@stud.ntnu.no, 48048162

Keywords: Thesis, Games, Programming, Unity, Engine, MOBA, Net-
working, Multiplayer

Pages: 378
Attachments: 4
Availability: Open

Abstract: Dockit League is a project focused around creating a mul-
tiplayer online battle arena(MOBA) game using the Unity
game engine. The game revolves around playing against
other players in a competitive environment, using Dock-
ing Kits which provide players with different tools and
abilities. This thesis will go through the development of
the game and detail how the project evolved throughout
the process.

ii

Creating a MOBA using Unity

Preface

We would like to thank Simon McCallum for supervising us as well as providing feedback
and directions on thesis topics throughout development. We would also like to thank all
of our testers for testing the game and providing input.

iii

Creating a MOBA using Unity

Contents

Preface . iii

Contents . iv

List of Figures . viii

List of Tables . ix

List of source code snippets . x

1 Introduction . 1

1.1 Project Description . 1

1.1.1 Background . 1

1.1.2 Goals . 1

1.2 Academic Background . 2

1.3 Project Audience . 2

1.4 Thesis Structure . 2

2 Game Design . 3

2.1 Initial game design . 3

2.1.1 Design overview . 3

2.1.2 Game modes . 3

2.1.3 Docking Kit ideas . 4

2.2 Changes from the initial design . 5

2.2.1 General changes . 5

2.2.2 Docking kit changes . 5

3 Technical Design . 7

3.1 Architectures in Unity . 7

3.1.1 General overview . 7

3.1.2 Networking overview . 7

3.2 General architecture . 8

3.2.1 Unity’s example project . 8

3.2.2 GameManager . 8

3.2.3 SpawnableFactory . 8

3.2.4 In-game UI . 8

3.3 Player architecture . 9

3.3.1 Player . 9

3.3.2 Input . 9

3.3.3 Field of View . 9

3.3.4 Health and currency . 10

3.3.5 Player Status . 11

iv

Creating a MOBA using Unity

3.4 Modifier architecture . 12

3.5 Docking, Docking Kit, and Ability architecture 12

3.5.1 Docking . 12

3.5.2 Docking Kit . 13

3.5.3 Ability . 13

3.6 Docking Kits . 15

3.6.1 Basic Kit . 15

3.6.2 Bomber Kit . 15

3.6.3 Boomerang Kit . 18

3.6.4 Brawler Kit . 20

3.6.5 Marksman Kit . 21

3.6.6 Sniper Kit . 23

3.6.7 Tank Kit . 25

3.6.8 Trapper Kit . 27

3.6.9 Support Kit . 29

3.7 Shop Architecture . 30

3.7.1 Visual Layout . 30

3.7.2 Scriptable objects for shop items 31

3.7.3 Internal shop management . 31

4 Development Process . 34

4.1 Agile game development . 34

4.1.1 Our configuration of Scrum . 34

4.2 Development Tools . 34

4.2.1 Atlassian toolkit . 34

4.2.2 Unity and Git compatibility . 35

4.2.3 Code quality and conventions . 35

4.2.4 Game Engine . 35

4.2.5 Integrated Development Environment 35

4.2.6 Communication Tools . 36

4.2.7 Miscellaneous Tools . 36

5 Implementation . 37

5.1 Limited field of view . 37

5.2 Responsive user experience . 37

5.2.1 Consistent force for server and clients 38

5.3 Unity’s networking limitations . 38

5.3.1 Network spawned objects . 39

5.3.2 Network functionality for MonoBehaviours 39

5.3.3 Unity callbacks . 39

5.4 Programmatic interpolations . 40

5.4.1 Handling the velocity of the animation 41

v

Creating a MOBA using Unity

5.5 Interpolation using coroutines . 43

5.6 Initial game balancing . 44

5.6.1 Observations from the initial balance table 45

5.7 Controller based menu navigation in Unity 46

6 Deployment . 48

6.1 Automated Unity Builds . 48

6.1.1 Dockit League binaries . 48

7 Testing and User Feedback . 50

7.1 Internal testing . 50

7.2 User testing . 50

7.2.1 Feedback on the feel of controls . 50

7.2.2 Feedback on the in-game UI . 51

7.2.3 Feedback on the in-game shop . 51

7.2.4 Docking Kit feedback . 51

7.2.5 Feedback on understanding the game mechanics 52

7.2.6 Additional feedback from the playtesters 52

7.2.7 Reflection on the feedback of the playtesters 52

8 Discussion . 53

8.1 Development decisions . 53

8.1.1 Using scriptable objects . 53

8.1.2 Moving from Confluence to ShareLaTeX for writing the thesis . . . 54

8.1.3 Decreasing the amount virtual functions using interfaces 54

8.1.4 Providing ergonomic controls when using a twin stick scheme . . . 54

8.1.5 Updating game engine versions during development 55

8.1.6 Player field of view versus raycasts for visibility checking 55

8.1.7 Sticking with dual stick controls . 56

8.2 Experiences with the HLAPI of Unity . 57

8.3 Observations from sprint statistics . 57

8.3.1 Looking at the use of Scrum in retrospect 58

9 Conclusion . 60

9.1 Future Work . 60

Bibliography . 61

A Initial Project Plan . 63

A.1 Background . 63

A.2 Technology . 63

A.3 Project Goals . 63

A.4 Scope . 64

A.5 Project Structure . 65

A.6 Planning, supervision and documentation 65

A.7 Quality Assurance . 65

vi

Creating a MOBA using Unity

A.8 Implementation plan . 66

B Meeting Logs . 67

B.1 Temporal record of meetings . 67

C Playtesting feedback and survey statistics . 71

D Doxygen documentation . 77

vii

Creating a MOBA using Unity

List of Figures

1 Diagram showing the input restriction stack 10

2 Example adding and subtracting currency 11

3 Program flow when applying a modifier 11

4 Program flow on changing docking kit . 13

5 Program flow on ability button pressed . 14

6 Program flow on ability spawning object 14

7 Screenshot of Basic Kit . 16

8 Screenshot of Bomber Kit with mines placed 16

9 Approximate travel path of the boomerang 18

10 Screenshot of the multi-boomerang ability 19

11 Screenshot of the brawler kit’s stun grenade 21

12 Screenshot of Marksman Kit for both teams 21

13 Shackle outcomes . 23

14 Slingshot charge . 24

15 Zipline mid-setup . 25

16 The trapper kit with its three traps . 28

17 Two screenshots showing off capture trap of the trapper kit 28

18 Screenshot of the Support Kit . 29

19 Screenshot of the Cleanse Ability from the editor 30

20 Screenshot showing off the in-game shop 31

21 Image of the Unity inspector showing scriptable objects from the shop . . 32

22 Rendered image from the two cameras . 37

23 Boomerang animation curve using Unity’s built in type 42

24 Boomerang curve using a mathematical formula 42

25 Project statistics from Unity Cloud Build 48

26 Burndown chart from the 4th sprint . 58

27 Gantt chart from initial project plan . 66

viii

Creating a MOBA using Unity

List of Tables

1 Initial balance table . 45

ix

Creating a MOBA using Unity

List of source code snippets

1 Starting the angle coroutine . 10
2 Stun modifier on start . 12
3 Applying the tracking debuff . 22
4 Check on sawblade pickup . 26
5 Health Drain distributing health . 30
6 Spawning game objects and passing the reference back to the owner . . . 40
7 Coroutine for field of view radius interpolation 44
8 Modified coroutine for linear field of view radius interpolation 44

x

Creating a MOBA using Unity

1 Introduction

1.1 Project Description

1.1.1 Background

We are three students who have worked together on several projects before during our
bachelor program. We wanted to make a twin stick MOBA type game for PC, intended
to be played with a game controller. Our wish is to further expand our knowledge of
game programming with focus on networking and game balancing. Figuring out good
practices for local responsiveness coupled with consistent networked behaviour, and how
to implement these is something we would like to learn. This is good knowledge to have
in a world where multiplayer, and the ability to stay connected is very important, even in
games. Our game is based around having many different types of "Docking Kits" with four
different abilities each, letting us experience what it’s like to come up with and balance
large amount of components.

Having worked with Unity 5.x together on previous projects, this felt like the natu-
ral choice for our development environment. Unity is also a very popular engine used
worldwide [1], potentially leaving the knowledge we gain about the engine very valu-
able. Since we’ve chosen Unity, our networking will therefore be the Unity Networking
and their "high-level" scripting API (HLAPI) [2] and the advantages / challenges this
provides.

As a group we consider this as a project for learning, and we have no plans of making
a commercial release for our game.

1.1.2 Goals

One of our primary goals for the project is to acquire more experience with larger game
projects as this is our first attempt at such a large task. We wish to further our skills
and understanding of Unity with a particular focus on how to implement networked
functionality. In regards to the networking we want to learn good practices for local
responsiveness that still allows us to handle important verifications on the server side.

We wish attain more experience with asymmetric balancing on a larger scale by de-
signing and implementing a large variety of docking kits, each with their own tools and
abilities.

We want to learn more about professional tools like Jira and Confluence as well as
how we can use these in the development of the project to provide a robust workflow.
As part of learning to use these professional tools we also want to improve our skills at
estimating the time needed to implement features.

In the end we would like to have created a game that features robust networked func-
tionality and an extensible framework that is easy to improve and add new components
to.

1

Creating a MOBA using Unity

1.2 Academic Background

The three authors, Andreas, Martin, and Sondre, are currently finishing the Bachelor in
Game Programming at NTNU Campus Gjøvik with this thesis. Martin is also a graduate
of the Bachelor in Visual Simulation at Hedmark University College (now Inland Norway
University of Applied Sciences) prior to the current bachelor.

1.3 Project Audience

The thesis is written for fellow students and game programmers who are planning to
work with Unity and networking in particular. The contents should allow the reader to
learn more about the technical details of working with Unity and our ways of solving the
various challenges that might show up when working in the engine. We expect the reader
to have some knowledge with C# and Unity, but will detail core concepts wherever we
feel necessary.

1.4 Thesis Structure

The thesis is divided up into nine different chapters with appendices at the end. The
chapters of the thesis include:

1. Introduction: Introduction to the thesis and its contents.
2. Game Design: The initial game design and how it changed.
3. Technical Design: How the game is architectured and how the various components

work on a technical level.
4. Development Process: The tools and software development model that was used.
5. Implementation: Specifics on the challenges that had to be overcome during devel-

opment and their implementation.
6. Deployment: How the game is packaged and distributed.
7. Testing and User Feedback: Details the testing process and the feedback gotten

from user testing.
8. Discussion: Discusses the results of the project and the development decisions that

were made.
9. Conclusion: Reflects on the finished project.

2

Creating a MOBA using Unity

2 Game Design

The early design of a game is a solid foundation to start working with, although every-
thing is subject to change as development progresses. This Chapter will take a look at the
initial design of Dockit League and how the designs changed in the final versions of the
game.

2.1 Initial game design

The ideas contained within the initial game design is what we would have liked to im-
plement in a full game and were written down during the first few weeks of the project.
We were unsure of how much we would get implemented so we kept the scope relatively
loose by having a simple base design that could quantitatively be expanded with more
game modes, docking kits and other features if the time was available.

2.1.1 Design overview

We wanted to create a competitive online game using peer to peer connectivity as a base
for networking. The game would let players control small robots that fight each other
by "docking" into different types of docking kits that each provide different statistics and
abilities. The plan for each docking kit was to have around two to four abilities and give
them different prices in an in-game shop based on their strength.

Other planned features include:

• Maps based around fog of war to limit visibility and possibly contain extra objec-
tives from time to time.

• A variety of game modes ranging from deathmatch to more objective based modes.
• Player bots which could fill in for other players in team based play if the amount of

players were uneven.
• A replay AI that records the highlights of each match and plays them back at the

end of the game.

2.1.2 Game modes

The initial design of the game included three different game modes:

1. The standard game mode.
2. King of the hill.
3. 1vX.

The standard game mode would be inspired by Counter-Strike: Global Offensive [3]
and alternate two teams between defending and attacking objectives. The teams would
play 10 rounds with each round taking a maximum of 4 minutes before switching po-
sitions and playing 10 new rounds. Docking kits would be available for purchase at the
start of each round. Docking kits would end up being dropped on death while surviving
players keep their kit for the next round. Having this type of asymmetric gameplay al-
lows using time as a win condition for one of the teams, as the time running out benefits

3

Creating a MOBA using Unity

the defending team. A game where every round needs a winner could in theory go on
forever without that kind of restriction.

The king of the hill mode would only include one objective that all teams fought over.
Holding the objective would tick a team timer downwards and letting the timer tick to
zero meant victory. Docking kits would not be purchasable contrary to the standard game
mode, but rather spawn randomly on different map locations.

The 1vX game mode would revolve around having one player play against all the oth-
ers using an empowered docking kit. This game mode would use a timer that gradually
adds non-beneficial effects to any players not engaging in combat to prevent stalling on
both sides. Similarly to the king of the hill, docking kits would spawn randomly around
the map rather than be purchasable.

2.1.3 Docking Kit ideas

The initial design included some rough ideas for eight different docking kits:

• The Marksman Kit:

◦ A kit with low health and decent speed.
◦ Employs a mix of ranged abilities as well as an ability that allows the player to

quickly dash in any direction to either avoid damage or close in on enemies.

• The Tank Kit:

◦ A kit with high health and low speed.
◦ Focuses on melee attacks with abilities that allows the player to soak damage,

use crowd control and protect team mates.

• The Support Kit:

◦ Undecided health and speed. This would depend on the strength of the final
implemented abilities.

◦ A kit that deals little damage by itself and is based around supporting team-
mates with healing, crowd control, shields and other types of buffs.

• The Trapper Kit:

◦ A kit with low health and high speed.
◦ This kit is designed to be particularly effective against melee players through

the use of its multiple traps that provide a variety of negative status effects.
◦ Should only be able to have one of each trap active at any time.

• The Brawler Kit:

◦ A kit with decent health and decent speed.
◦ This kit is primarily melee based and has abilities that allows the player to

fight ranged attackers by reflecting projectiles and using crowd control.

• The Sniper Kit:

◦ A kit with low health and high speed.
◦ Has a larger line of sight compared to other kits and uses long ranged attacks

to take advantage of this.

• The Scout Kit:

4

Creating a MOBA using Unity

◦ A kit with medium or low health and very high speed.
◦ A melee kit that focuses on a hit and run playstyle where the player is able to

quickly get into skirmishes, do damage and then escape.

• The Bomber Kit:

◦ A kit with medium health and low speed.
◦ Uses a variety of explosives that deal large amounts of damage.

2.2 Changes from the initial design

2.2.1 General changes

This section will take a look at the general changes from the initial design.

One of the major differences was that we ended up implementing two simpler game
modes compared to the original ones we designed. We implemented a "free for all" as
well as a team based deathmatch game mode due to limited time towards the end of the
development period. In the case of the "free for all" deathmatch mode, the last remaining
player is the winner of the round while on the team deathmatch mode, one team wins
whenever all players of the opposing team have been defeated.

Player bots and replay AI functionalities were cut, but weren’t necessary features for
the scope of our project as we primarily wanted to focus on players playing against each
other. We also ended up deciding to use four abilities per docking kit as mentioned in
Section 8.1.4 because it provided us with the most ergonomic control scheme.

2.2.2 Docking kit changes

Several of the kits ended up receiving redesigns during the development of Dockit League.
The finalized design for each docking kit can be found in Section 3.6 while this Section
will take a look at how the current docking kits differ from their original designs.

The marksman and sniper kits ended up being somewhat similar in design as we
worked on them, so we tried to differentiate their abilities. The marksman kit ended
up more stealth oriented, while the sniper kit had far less mobility in general with a
playstyle that requires the player to slowly focus and aim before firing. Looking at the
current abilities of the marksman kit, the "Rogue" kit would be a less deceiving name
given its current tools.

The tank kit was originally planned to be melee oriented, but we wanted to make
it less similar to the brawler kit so we introduced the ranged saw blades to the kit.
The brawler and tank kits still share some similarities as both are capable of reflecting
projectiles.

The support, trapper, bomber and brawler kit generally stayed fairly close to their
original designs, although there were some changes done. The trapper kit was given a
flamethrower ability to provide some other means of doing damage rather than having
four traps. The original plan for the bomber kit was to have more trap like bombs/mines,
but given that the trapper kit already focused on this we tried to differentiate the two by
giving the bomber kit a remote controlled mine that had to be triggered manually.

The crowd control ability of the brawler kit also ended up being somewhat different
as we had originally planned for it to be a close range ability. We realized throughout
development that the kit would struggle fighting the others as the majority are ranged

5

Creating a MOBA using Unity

attackers so we gave the brawler kit a ranged stun grenade as a means of coping with
this.

The scout kit was completely redesigned into the boomerang kit. It still retains the
low health and high speed with a hit and run playstyle, but we changed the kit from
being melee oriented to using the ranged boomerangs instead. The reason for this is that
the low health of the kit made it very hard to stay alive as a melee attacker and the idea
of using boomerangs felt more novel compared to the rest of the kits.

6

Creating a MOBA using Unity

3 Technical Design

This chapter includes the technical details of Dockit League’s various components as well
as a combination of design and technical information on all of the docking kits.

3.1 Architectures in Unity

When developing in Unity, or any existing game engine, the engine will heavily influence
the basic architecture of the solution. Therefore, a basic understanding of the Unity en-
gine can give a better understanding of the architecture in our solution. This section will
include a basic description of the core concepts and terminology in Unity.

3.1.1 General overview

Unity is an component based engine, which means it moves away from the traditional
OOP design with complex hierarchies. The traditional use of monolithic class hierarchies
limits our design, and may force us to inherit from classes we don’t really require. It
makes it difficult to extend functionality, as it may affect objects further down the hi-
erarchy. However, using a component design allows isolating the various features in a
single compact service. In that way the components are decoupled, and functions inde-
pendently of each other. To maintain the components a container/hub is needed. When
designing an object, you can then add whichever component required to the container,
giving us a lot of flexibility. [4]

In Unity every object in the game will be a GameObject, which is Unity’s container
for components. Custom scripts can be placed on these GameObjects if they derive from
the built-in class named MonoBehaviour. This is a necessary step to connect the script to
the internal Unity pipeline, and will let Unity handle the component management. [5]
You can store a particular GameObject setup in something called a prefab, which makes
it easy to reference this object. Unity also has a container for GameObjects called scenes.
These are used to separate different parts of the game, different levels for instance.

3.1.2 Networking overview

Unity’s networking system is referred to as their High Level API (HLAPI). This gives
developers a way to access networking functionality without dealing with low level net-
working. The lower transport layer supports any kind of network topology, but the HLAPI
uses a server authoritative system, and it’s what our solution is built with.

The standard base class for scripts is MonoBehaviour, however, for networked scripts
the base class is NetworkBehaviour. This derives from MonoBehaviour, thus has all the
same functionality, but will in addition be included in the networking system. Network-
Behaviours may have member variables that takes advantage of the SyncVar attribute.
This is a way for the server to synchronize the state to each remote client. However, the
data types are restricted to basic data types (byte, int, float, string, etc), built-in Unity
math types (Vector3, Quaternion, etc), and structs containing the previous two.

The networking system has three different ways of calling remote actions across the

7

Creating a MOBA using Unity

network by adding custom attributes to a function. This means the function will be in-
voked through the HLAPI. Command is called by a client with authority and will run on
the server. ClientRpc is called by the server call and will run on every client. TargetRpc
is called by the server and will run on a specific client. The restrictions to the available
parameter data type is the same as SyncVars. [2]

3.2 General architecture

3.2.1 Unity’s example project

When it was time to wrap the parts of the game into a playable state with networked
menu, lobbies and scene management a few parts in our solution were heavily based
on a reference project provided by Unity themselves [6]. As these parts of the solution
weren’t our focus, and time was restricting, this was a way to actually get a playable
prototype ready on time. The things needed were extracted from that asset, and tweaked
to fit our use.

3.2.2 GameManager

The GameManager exists in every scene, and after we integrated Unity’s example project
it contains mostly code from that solution. The script also contains references to all of
the Docking Kit prefabs and the player UI which includes both the in-game and pause
menus.

3.2.3 SpawnableFactory

The SpawnableFactory handles all the spawning (instantiation) of GameObjects in the
solution. It contains a list of all spawned objects, which makes it easy for the game
to clean-up spawned objects when a round ends for instance. The majority of objects
spawned derive from the SpawnableObject class, which handles the ownership related
data. This includes the player owning the object, as well as the associated team ID. The
only other type of object spawned is the Docking Kit Pickup. The pickup doesn’t need
the ownership data, which is why it’s not a SpawnableObject, but it basically has the
same functionality in the SpawnableFactory. By collecting all the spawning in one place,
it makes the handling easier.

3.2.4 In-game UI

The PlayerUIHandler component handles the UI elements for the player. It has function-
ality for updating the health elements, ability elements, and status elements. The handler
receives calls whenever a Docking Kit changes, extracts the ability information from the
DockingKit component, and delegates them to the AbilityUI classes, which handles the
individual abilities. The StatusUI prefab is instantiated on the status bars for every status
effect added to the player. This component displays the information regarding the indi-
vidual effect, like duration and effect icon. This utilizes the Unity UI Grid Layout Group
component, to automatically format the UI elements instantiated, meaning the only thing
necessary for the status effect to appear correctly is to spawn the object as a child of that
layout group.

8

Creating a MOBA using Unity

3.3 Player architecture

NetworkPlayer

The NetworkPlayer component is heavily based on the solution in the Unity example
project. [6] And as such, won’t be covered much here. However, in short, this component
is not destroyed in between scenes, and handles the overall networking of a player both
in the lobby and in-game.

LobbyPlayer

This is the player representation in the lobby, and is also heavily based on the example
project.

3.3.1 Player

The Player component has parts that are based on the Unity example project, and part
our own solution. This component is the player representation in the actual game. Our
solution have three TargetRpcs for adding force to the player, why this is necessary is dis-
cussed further in Section 5.2.1. These three functions are all different ways to add force
to the player. They all take a parameter determining the strength of the force added, but
the direction calculation differs. The first calculates the direction from the player posi-
tion towards the given position. The second calculates from the given position towards
the player position. The third uses a separate force function to add explosion force, and
simply takes the explosion force and radius as parameters, along with the explosion po-
sition.

3.3.2 Input

The PlayerInput component handles the input for each player, since this only happens
locally it is a standard MonoBehaviour. In addition to handling the input, it also does
the actual movement for the player. This class needs to restrict certain types of inputs:
movement, rotation, abilities, docking, and interactions, but a simple on/off solution
would not work in our scenario. The restriction could come from different sources with
different lengths, therefore the source applying the initial restriction might not be the
one who should remove it, since other sources might arrive in the meantime and still
want to apply the restriction. The solution to this is a simple stack, in which the sources
simply add a count initially, and remove one when ending. When the count is 0 we know
no one is applying a restriction, and the player is free to use that input type. Figure 1
shows an example of how the movement stack changes over time when a stun and root
is applied and removed at different times, thus restricting the movement input.

This component also handles interactable objects by keeping a reference to any object
that implements the IInteractable interface through OnTriggerEnter. The interface func-
tion should be called on the server, to make sure only one player interacts with it at
a time. This is handled through the Player component with a command called by the
PlayerInput component, since the input component isn’t networked.

3.3.3 Field of View

The basic implementation of the FieldOfView component consists of creating the view
mesh by casting rays from the player position with a certain angle step between, and then
use the stencil buffer to only draw pixels covered by this mesh. The base implementation

9

Creating a MOBA using Unity

Figure 1: An example of how the input restriction stack works.

is not our work. [7] Our additions to this implementation are functions for smoothly
changing the view angle and view radius. This is handled by Coroutines in the FieldOfView
component as seen here. The coroutine could been used as separate update loops, that
runs and interpolates the value until it’s at the target value, and then remove itself. The
initialization of the angle coroutine can be seen in Listing 1.

public void SetViewAngle(float newAngle, float speed) {
if(angleCoroutine != null) {

StopCoroutine(angleCoroutine);
}
angleCoroutine = StartCoroutine(ViewAngleLerp(newAngle, speed));

}

Listing 1: Code snippet for starting the angle coroutine.

Keeping a reference to the started coroutine is necessary to prevent starting multiple
coroutines, that all try to change the angle. In the case where multiple coroutines try to
change the angle in opposite directions the loops could be stuck forever. By stopping any
currently running routine before starting the new one there’s always only one running,
which will only move the current angle to the target angle with the speed given.

3.3.4 Health and currency

Player Health

The PlayerHealth component handles the functionality related to the player health, and
is what other components use to apply damage to a player. It takes advantage of the
SyncVar functionality to synchronize the health across all clients, allowing the script to
display the correct health color indicator for each player. Whenever damage is taken
it will display a damage flash for every client, and update the UI for the local player.
In addition to taking the damage, the source player of the damage will be stored. This
allows the component keeping track of the score to extract which player got the killing
blow to a player.

10

Creating a MOBA using Unity

Currency

The PlayerCurrency component works very much like the PlayerHealth component, so we
grouped them together in this section. It uses a SyncVarHook to keep the currency value
synchronized between the server and the client. When the currency is changed by the
server, the SyncVarHook will check the difference between old and new currency and
tells the PlayerUIHandler to update the UI to the new value. When the PlayerUIHandler
updates the currency, it will also play an animation showing the difference being added
or subtracted, as seen in Figure 2.

Figure 2: Showing clearly when currency is added or removed

3.3.5 Player Status

The PlayerStatus component handles the modifier instances and status effects applied
to the player. Modifiers are applied on the server, which then synchronizes these out
to every client. The instances of a modifier are split up in two: ModifierInstanceServer
and ModifierInstanceClient. The server instance actually controls the functionality of the
modifier, and uses either a duration loop, or a tick loop with a given interval between
each tick (count). The client instance is the representation of this modifier on each client,
and holds a reference to the actual Modifier class. This gives the instance access to the
modifier data, like the visual element added by the modifier, and in case of the local
client, the modifier UI element.

Figure 3: The program flow on Player A when the server applied a modifier.

Figure 3 shows the flow when the server applies a modifier to a player. Having two
separate instances simplifies the synchronization process, and the server tells the clients
to apply a certain modifier by sending the modifier name. However, in cases where mul-
tiple modifiers with the same name can be applied we need a way to tell these modifier

11

Creating a MOBA using Unity

instances apart other than their name. Otherwise, whenever a modifier effect ends on the
server, and it wants to synchronize that to the clients, the client wouldn’t know which
modifier to remove. By giving a unique id to any modifier applied on the server, it can use
that id for both the server and client instance. The Modifier architecture will be described
further in Section 3.4.

3.4 Modifier architecture

All modifiers derive from an abstract Modifier class. These do not exist as instances, but
utilize the ScriptableObject class in Unity that is discussed further in Section 8.1.1. They
rely on the ModifierInstanceServer and ModifierInstanceClient instances to actually run
the code present in them. They act more like data containers, and have references to the
modifier icon, visual elements and stats. This is why all the functions in the Modifier class
takes the PlayerStatus instance as a parameter, as it can then use that to get references
to whichever component on a player it wants to modify, whether it is the player input, or
the player object.

The Modifier class has quite a few virtual functions, which can be overridden by mod-
ifiers depending on what they want to do. They are handled, and called by the modifier
instance classes, which means modifiers can be networked through these virtual call-
backs. These callbacks are called when the modifier is applied, and when it’s removed,
with separate functions for the server, local client, and every client. The ModifierInstance-
Server calls these on the server, in addition to the OnServerTick function used for tick
loops. And the ModifierInstanceClient calls these both for the local client, and every other
clients. The code snippet in Listing 2 is an example of this in the stun modifier, which
cancels any abilities being used, and restricts player input.

public override void OnLocalClientStart(PlayerStatus playerStatus) {
playerStatus.GetComponent<Docking>().CancelAbilities();
playerStatus.GetComponent<PlayerInput>().SetInputRestrictions(...);

}

Listing 2: Code snippet that runs for the local client when the stun modifier is applied.

3.5 Docking, Docking Kit, and Ability architecture

These three components are the underlying architecture for the main player gameplay,
and are tightly intertwined.

3.5.1 Docking

The Docking component is central to the networking in Dockit League and handles the
connection between the player and the DockingKit component. All networked objects in
Unity needs a NetworkIdentity component, and these are constrained to root objects. [8]
Since the DockingKit object is a child of the player object, it can’t be networked directly.
Our solution to this is therefore to handle all the networking needed for the Docking
Kits through the Docking. The alternative would be to have the Docking Kit as the root
in the scene hierarchy, and either move the entire object position to the owning player
each frame, or put the kit visuals as a child of the player. This would keep the DockingKit
as the root, allowing it to be a NetworkBehaviour. However, the same issue would have

12

Creating a MOBA using Unity

to be faced for each ability, as they’re a child of the docking kit. Having every ability
in the root of the scene would lead to a very cluttered scene hierarchy, and way more
networked objects than necessary.

Figure 4: The program flow on Player A when the local player changes docking kit.

Since the docking kit object itself isn’t networked, the clients need to spawn in the
object themselves. As shown in Figure 4, this is initiated by the local client, the player
with authority, in this case Player A. It’s synchronized by passing an enum of the docking
kit ID. Keeping this enum as a SyncVar will let the server update this value on every
client, a function hook then runs whenever it changes, and updates the representation of
Player A across every client (and the server) by spawning the object locally.

3.5.2 Docking Kit

The Docking Kit was initially the only connector between the abilities and the docking.
The abilities only knew the kit it belonged to, and not the docking. However, this lead to
a lot of code bloat in the Docking Kit that essentially just called a function in the Dock-
ing component for the abilities. Later this was changed so the abilities have a reference
to the Docking directly. This reference is set up through an initialization process han-
dled through the Docking Kit, which serves its purpose more as a container class for the
abilities, and has all it’s abilities as children.

3.5.3 Ability

Ability is an abstract base class that all abilities inherit from. It has a mix of virtual and
abstract functions that can be overridden by abilities if needed. This gives the different
abilities flexibility in the way they’re implemented.

Two of these functions are related to the local player input: ButtonDown & ButtonUp.
These are called by the PlayerInput component, through the Docking & Docking Kit when-
ever an ability button is pressed, along with the ability id, and if the button was pressed
or released. This gives no synchronization of the ability, as mentioned in the previous
section, that has to go through the Docking. This is shown in Figure 5, where functions
with background color blue, green, and yellow run on the local client, server, and remote

13

Creating a MOBA using Unity

Figure 5: The program flow on Player A when the local player presses an ability button.

clients respectively. In order for the different remote clients to run related ability code,
like play animations or sounds for instance, the local client calls Commands from the in-
put functions on the docking. The docking then runs the SetActive(bool) function on the
server, and then uses a ClientRpc to run it on every client, except the local client, as that
client already ran the function. This means that in the current solution the abilities only
have two active states, active or deactivated. This could for instance be expanded to an
int, if abilities needed more states.

Figure 6: The program flow when an ability on the local player spawns an object.

In addition to the virtuals from the base class, abilities can further expand their func-
tionality with interfaces. ISpawnableProvider is an interface used if the ability needs to
spawn an object. The ability can’t handle that itself, because it needs to be networked.
A command is called on the docking, but in order for the docking to know which ability
called for an object to be spawned, it takes an int as the ability ID. The docking can then
get a reference to the ability list through the docking kit, and get the ISpawnableProvider

14

Creating a MOBA using Unity

interface to call the function that gets the object to be spawned, as seen in Figure 6. This
is a necessary step, since the network calls only support basic data types, we can’t pass
the spawn object reference directly. It allows for the object reference to be held in the
ability directly, and the interface allows the docking to get a reference to the correct ob-
ject when running on the server. In some cases the ability might want to keep a reference
to the object spawned. Therefore an additional interface, ISpawnableReferenceProvider,
and a Command & TargetRpc function in the docking was added to allow the server to
pass a reference back to the local client. IModifierProvider uses the same principles for
applying ability modifiers.

These provider interfaces are good for generic functionality in the abilities, but it
doesn’t give the abilities much flexibility when implementing the gameplay. Therefore ad-
ditional interfaces were implemented to give the abilities more options: IServerCallback,
IClientCallback, and ITargetCallback. These callbacks are tied to the networking attributes
Command, ClientRpc, and TargetRpc respectively. This basically gives the abilities a way
to be networked without being NetworkBehaviours. These interfaces were implemented
with generics, to allow different abilities to use different parameters for these callbacks.
However, the Unity networking doesn’t support generic functions, nor overloading, with
these attributes. Therefore, separate functions with different names had to be created in
the docking. Unity’s networking limitations are discussed further in Section 5.3.

3.6 Docking Kits

This section covers a mix of the final design of the kits as well as well as some more tech-
nical details on their abilities. Additional documentation on docking kits can be found in
Appendix D.

3.6.1 Basic Kit

The Basic Kit is the starter kit, and a kit that’s always available for the player. It is the
only kit with just one ability, and exists to make sure the player has a kit, in case they
can’t afford or pick up any other kits.

Basic Attack

A forward melee attack with low cooldown and low damage. It extends the little spike
in front of the player model to prod enemies and deal damage. Figure 7 illustrates the
maximum range of the Basic Attack.

3.6.2 Bomber Kit

The Bomber Kit is a kit based around explosions. It has medium health, low speed and
high damage. The abilities of the bomber kit are focused on area of effect damage and
knockback to maneuver itself and displace enemies, while also focus on placement and
timing for placeable mines. For all the explosions in this kit the damage and knockback
is reduced the further away from the explosion the affected unit is.

Explosive Mine

The first ability is an explosive mine that the player can place, which will trigger when
an enemy steps on it. The ability itself uses a script, ExplosiveMineSpawner, to spawn
and keep a List<GameObject> for the mines it spawns. There is a limit of active mines

15

Creating a MOBA using Unity

Figure 7: Showing the Basic Kit with its basic attack active and extended.

Figure 8: what the Bomber Kit looks like in game, with a few of the icons still as placeholders.

16

Creating a MOBA using Unity

at the same time. When the limit is exceeded, the ability will remove the first mine
placed from the list and destroy it. Since each mine handles collision themselves with
OnTriggerEnter, there was a need to know which mine to remove from the list of active
mines. To quickly get a unique ID for the mine, we used GameObject.GetInstanceID() at
the time of creation and stored this to check the list for which mine to remove in the
future. When the mine is triggered by an enemy player, it will start a function Explode()
which will start an animation and apply forces as well as damage to the players in the
area. When the animation ends the mine will destroy itself with an AnimationEvent and
tell the ExplosiveMineSpawner that it’s destroyed and should be removed from the list of
active mines. Figure 8 shows two mines placed and waiting to trigger.

Grenade Launcher

The second ability is a grenade launcher. It fires slow, powerful shells that will explode
after a certain time or on contact with an enemy. These shells will not explode on contact
with the player who fired them, but will deal half the damage to the player when it
explodes. They will also bounce off obstacles like walls using a bouncy Physics Material
added to the shell’s SphereCollider to make it potentially harder to dodge and master.
When the grenade shell explodes, it will check for colliders using Physics.OverlapSphere
which will return all the colliders in the radius of the sphere created from this. From
these colliders the valid targets, self and enemies, will be affected by the explosion. The
explosive mine and the grenade shell are much the same in the way they both check
for targets with Physics.OverlapSphere and apply force with Rigidbody.AddExplosionForce.
This force is applied by the server to prevent varying results depending on the world
state when it gets applied, see Section 5.2.1 for more on consistent force application.

Remote Mine

The third ability in this kit is a remote mine that uses much of the same code as the
explosive mine, but the main difference here is that you can only have one(1) active at a
time and will not trigger on contact. When the player uses this ability again while having
a mine active already, it will trigger the remote mine and apply a stun in an area around
the mine to all enemies. This ability gives the kit great utility to start a team fight with the
proper placement. Like the Explosive Mine, this mine gets spawned by the ability using
the ISpawnableReferenceProvider. This way the ability which spawns the mine will keep a
reference to the mine it spawned, and can therefore trigger it when the player activates
it a second time. In Figure 8 you can see a purple remote mine placed by the player.

Blast

The final ability of the Bomber Kit. As the name suggests, it fires a rectangular blast in
front of the player that will knock the player backwards, and enemies away. Due to the
kit’s low movement speed, this ability is a great tool to get out of a bad situation and
keeping distance to the enemy. The reason for using a BoxCollider instead of something
like a cone, is due to the limitation of primitive colliders in Unity3D, briefly explained in
Section 8.1.5. For applying this ability the box collider is disabled until the ability is used.
Then it is activated for a frame so the OnTriggerEnter function can apply forces before it
is disabled again.

17

Creating a MOBA using Unity

3.6.3 Boomerang Kit

The Boomerang Kit is a high speed, high damage kit with low health. The kit’s abilities
are primarily focused on augmenting the boomerangs that the player can throw. The
boomerang itself has a small field of view circle around itself which allows the player to
still see the boomerang if it has been thrown across a wall or other areas where vision is
limited.

Figure 9: A screenshot from the game showing the approximate travel path of the boomerang when
the ability button is held.

Boomerang Throw

The primary ability of the Boomerang Kit is the boomerang throw. It uses cubic bezier
curves to construct and display the approximate path that the boomerang will travel
using a LineRenderer component. Figure 9 shows how the approximate path looks like
for the local player using the kit. The bezier curves are also used for interpolating the
position of the boomerang as it is thrown by the player. The interpolation itself is handled
using a timer variable that gets updated with Time.deltaTime per update loop. The timer
is then used as input into an evaluation function used for controlling the speed of the
animation and returns a smoothed version of its input. This output is then used as the
input time for the bezier curve’s interpolation. A more in-depth look at the interpolation
of the boomerang throw can be found in Section 5.4.

There are also two additional boomerangs that can be activated with the final ability
in the kit. These have their own bezier curve control points and LineRenderer components.
In order to perform the same operations on all boomerangs we have a array of structures
containing the bezier control points and stored curve handles of each boomerang. This
allows us to modify the positions of all the bezier control points directly in the editor
which makes it easy to control the shape of the curves.

Boomerang Root

The second ability in the kit applies a root modifier to any enemy players within a certain
range of the boomerang at the time of activation. It displays a range indicator for the local

18

Creating a MOBA using Unity

player whenever the ability is off cooldown, making it easier to time the activation of the
ability. Activating the ability will play a short ability animation around the boomerang
on all clients and enables the SphereCollider component that checks for enemy players.
The collider stays active for 0.5 seconds to make it a bit easier for the player using the
ability to hit others as the boomerang moves at a fairly high speed.

Boomerang Vision

The next ability in the kit is a fairly simple ability that revolves around using a self
applied modifier to control the state of its effects. Using the ability takes the FieldOfView
component of the boomerangs and quickly interpolates the radius of these to a higher
value, giving the player a large circle of vision for a short duration. The additional vision
is only something the local player can see while other players will see a circle indicator
around the boomerang that showcases the new vision range. Once the duration of the
modifier runs out the vision range quickly interpolates back to its default value.

Figure 10: A screenshot illustrating a player using the final ability of the boomerang kit to throw
multiple boomerangs in conjunction with the vision ability.

Multirangs

The final ability of the Boomerang Kit is another self applied modifier that lasts for a
few seconds and makes the next boomerang throw contain three boomerangs instead
of one. This is the key ability of the kit that allows for a truly massive damage output
given that the player is able to hit with all of the boomerangs. The self applied modifier
is removed prematurely once a boomerang throw is made, but can also wear of naturally
if the player avoids throwing any boomerangs during its duration.

The additional boomerangs granted from this ability are also affected by the root
and vision abilities, albeit with a lesser range as seen in Figure 10. The script for the
boomerang throw handles the interpolation of the two additional boomerangs while the
script for this ability primarily manages the state of the buff. This includes self applying

19

Creating a MOBA using Unity

the modifier buff, managing the state of any extra visual elements and playing anima-
tions.

3.6.4 Brawler Kit

The Brawler Kit is a slow moving melee oriented kit, but has high health and multiple
tools for dealing with enemies who fight at range.

Axe Slash

The first ability is a short cooldown slash with the Brawler Kit’s axe. We are using On-
TriggerStay instead of OnTriggerEnter as the collision callback for this ability. This is due
to the fact that the animation for the slash is very quick and only lasts a few frames at its
start position. Using OnTriggerEnter in this case would make the callback frequency too
low at the start of the animation, essentially making it impossible to hit players nearby
the start position of the axe. This happened because the first few frames would only trig-
ger collision callbacks for the player’s own overlapping collider instead of others. This
issue is alleviated by using OnTriggerStay instead with a stored list of hit players. The list
is reset after each swing and makes sure that any damage is only applied to each player
once.

Lifesteal

The second ability in the kit is a self applied modifier that lasts for a certain duration,
making the next axe slash deal increased damage and heal a certain percentage of the
damage done. It works in a similar fashion to the final ability of the boomerang kit. The
self applied modifier can wear off naturally or be removed after colliding with another
player. Having the modifier active also changes the visuals of the axe to show that the
ability has been used.

Projectile Reflect

The third ability is a self applied modifier that reflects the velocity of any projectiles that
hits the player while active. This is handled using C# interfaces. Any projectile that is
reflectable needs to implement the IReflectable interface. This in turn allows the ability
to check whether the interface exists on any colliding projectiles and ask them to reflect
their velocity. The ability itself does not perform any reflection directly as this is what the
projectiles implementing the interface have to contain.

Stun Grenade

The final ability makes the player throw a stun grenade that explodes after a short while,
providing temporary vision for all players(see Figure 11) and applying a stun modifier
to anyone looking towards the explosion center. The grenade itself is a SpawnableObject
and controls the application of modifiers, the temporary vision and any visual elements
related to the grenade. The player on the other hand has a simple script that handles
the spawning of the grenade. The grenade enables a large sphere collider on explosion
which checks for any players within its range. A raycast is then used in conjunction with
a dot product to check for players looking towards the center of the explosion. Players
with obstacles between themselves and the explosion center will not get stunned as the
raycast check will end up failing.

20

Creating a MOBA using Unity

Figure 11: A screenshot from the game showcasing the additional vision range granted from an
exploded stun grenade

3.6.5 Marksman Kit

Figure 12: Demonstrates how the stealth and track abilities works, attaching red particles to the
player showing the location through fog of war.

The Marksman Kit’s main focus is to gather information and being elusive to the
enemy. With a toolkit that allows it to quickly dash out of harms way, turn invisible and
give information about the other team, it is able to give your team the upper hand in a
fight. It has medium health, damage, utility and speed, but in the right hands has the
potential to be a powerful kit if not dealt with. After playtesting it is worth mentioning
that this kit will be renamed later to fit its purpose better.

Dash

The first ability is the dash ability. A short cooldown ability that applies a small amount
of force in the direction you’re moving. Since the PlayerInput script already has this
direction vector stored for player movement, we’re simply retrieving the direction from

21

Creating a MOBA using Unity

there.

Stealth

Next up is the stealth ability. This ability lets the player hide its visuals from other players
by changing the alpha value to zero. To give it a short fade time, a coroutine using a for-
loop decreases the alpha value over time while accounting for fade time. Stealth can only
be broken by using the ability again, fire the projectile ability of the Marksman Kit or
when the duration runs out. There was a decision made to not break out of stealth upon
taking damage, which is a game mechanic we see often related to stealth or invisibility
in games. Therefore the balance around the up-time and frequency of which you can
use the ability is important when there is no real way to force the player out of stealth.
While in stealth the player also benefits from the stealth modifier. This is a modifier that
amplifies the Marksman Kit’s next projectile shot from stealth, boosting damage while
applying a slow and silence to an enemy if it hits. This is applied to the projectile fired
when the projectile is initialized, giving it a reference to the stealth buff that applied it
with the data of the buff.

Track

This ability is a tracking debuff the Marksman Kit can apply to enemies. It will then reveal
the position of the marked player while amplifying the damage taken from all sources,
see Figure 12. To apply this debuff the player fires in a straight line in front of him with a
Physics.RaycastAll and applies it to the first player it hits that isn’t covered by an obstacle.
We could potentially have done this differently by using Layers in Unity to filter out
which game objects should be ignored from raycasts and not. Although Physics.RaycastAll
doesn’t guarantee a sorted order, all RaycastHit have a variable distance from the point
of impact to the origin of the raycast which we can sort with a lambda. Listing 3 shows
how this is sorted and applied to the first enemy hit that isn’t covered.

void IServerCallback.ServerCallback(int functionId) {
var hits = Physics.RaycastAll(transform.position, transform.forward, castRange)

.OrderBy(h => h.distance);

foreach(RaycastHit hit in hits) {
if (hit.collider != null && hit.collider.CompareTag("Obstacle")) {

return;
}
if (hit.collider != null &&

this.docking.CheckDamagable(hit.collider.GetComponent<Player>())) {

PlayerStatus playerStatus = hit.collider.GetComponent<PlayerStatus>();
if (playerStatus != null) {

playerStatus.ApplyModifier(trackInfo);
return;

}
}

}
}

Listing 3: Code snippet for applying Track to first enemy not behind an obstacle.

Projectile

Finally we have the last ability we simply called Projectile. It is a basic "fire in a straight
line"-type of projectile, and it is the only source for this kit to deal damage directly with. It

22

Creating a MOBA using Unity

has an Ability script ProjectileSpawner which instantiates projectile prefabs and Initialize
them with the stealth buff reference and a Boolean indicating if it’s active. Each projectile
has its own lifetime, destroying itself after a while if it doesn’t hit any players or obstacles.
For physics we’ve chosen to not have a constant velocity, but rather apply Impulse Force
when the projectile is fired for this. This worked fine when we tested it in the editor,
but after playtesting it proved that the projectile would lag, unlike the projectile from
the Sniper Kit. Therefore this is a change to be made to use the Transform instead of the
Rigidbody to move the projectile.

3.6.6 Sniper Kit

The Sniper Kit is the long range focused kit. Keeping your distance gives you time to
charge, which is important with varying damage output and precision depending on
charge time.

Shackle

The first ability is Shackle, which launches a bola that travels a short distance before
disappearing. It is designed to give the player in this kit a way to get away from enemies
getting close, since staying at range is beneficial. If the bola collides with an enemy
player it has three different outcomes depending on the scenario. If there is nothing
behind the player hit, it will apply a slow modifier. If there is an obstacle behind them,
the stun modifier is applied instead. And the third option is if there is another enemy
player behind the first one hit, they’re both stunned. This is done by firing a raycast from
the center of the player hit, in the direction the bola was travelling. If this doesn’t hit
anything, we can apply the slow. If it hits something, we first check if it’s an obstacle, if
so we apply the stun. If it’s not a wall, we can check if it’s another player, and stun both
of them if that’s the case. The three outcomes are shown in Figure 13.

Figure 13: Three screenshots from the game showing the slow, stun against wall, and stun against
another player from left to right respectively.

Focus

The second ability is Focus, and is more of a utility ability used in addition to the Sling-
shot ability. It will root the player in place, and increase the line of sight distance, but
decrease the view angle using the lerp functionality in the FieldOfView script for a smooth
transition. It will also move the camera forward slightly with a similar functionality in the
PlayerCamera script. The use of this is displayed by moving the sling mounting forward,
and retracting the sling.

23

Creating a MOBA using Unity

Slingshot

The third ability is Slingshot, and the damage ability for this kit. On button press it starts
charging the slingshot precision, starting at the view angle and moving towards 0 using
an animation curve. The ability uses a different curve for the initial charge towards 0,
and a hold curve that reduces the charge angle back to the view angle over a few seconds
after reaching max precision, preventing the player to keep max precision for a long time.
When the button is released it will fire a projectile at a random angle between the charge
angles, meaning the smaller the charge angle is, the more precise it’ll be. The projectile
damage, speed, and lifetime depends on both the fire angle and the charge angle, which
means that two projectiles fired at the same angle might have different stats depending
on the charge time. This is simply to make sure a charged attack will always do more
damage than a lucky shot with no charge. The ability mid-charge is shown in Figure 14
where the white lines represents the charge angles.

Figure 14: A screenshot from the game showing the Slingshot ability mid-charge.

Zipline Gun

The final ability is the Zipline Gun, and like Shackle, it’s a way to get away from enemies
by setting up an escape route for when a situation gets rough, or just quickly move to
another vantage point. This ability has two different states, the first is the initial state,
when nothing has been fired. When used in this state a zipline object is spawned on
the server, and the server side of the ability keeps a reference to that object. The second
state is when we’ve already set up the first zipline point, we then fire the second point
to complete the zipline. There are a few restrictions when setting up the zipline, and
it needs to constantly check if any of these are broken. Initially, when we fire a point
it needs to hit an obstacle, this is checked by firing a raycast in the direction, with the
given range, the zipline is fired. If this is anything other than an obstacle or out of range,
the zipline setup is invalid, and the zipline object is destroyed. After firing the first point,
a Coroutine is started that keeps checking if there is anything interfering the zipline by
firing raycasts between the player and the first point. When firing the second point, this

24

Creating a MOBA using Unity

check fires between the first and the second point instead, preventing setting up ziplines
that cuts across a corner for instance. Figure 15 shows the kit between the first and the
second state, and areas where a setup is invalid.

Figure 15: Showing the state between the first and second point fired, with invalid areas covered.
(Red lines are not present in-game)

3.6.7 Tank Kit

The Tank Kit’s purpose is being the front line for the team, having a lot of health allows it
to soak up the damage dished out by enemies by redirecting projectiles. It is a very slow
kit, but compensates by having abilities for pulling both itself and others around.

Reflect Shield

The first ability is Reflect Shield. This is a shield that can be activated, and will stay
active for a certain duration. Any object colliding with this shield that implements the
IRedirectable interface will be redirected, and the Tank Kit player will take ownership of
the object redirected. The new direction of the object is the same direction as the Tank Kit
player is facing. This is done using the OnTriggerEnter callback, and getting the interface
from the object passed in. An object is restricted to only be redirected once per ability
use, this is handled by adding any redirected objects to a list, and simply checking if the
list already contains the object that’s to be redirected. This list is then cleared when the
ability is deactivated.

Force Field

The second ability is Force Field. While the Reflect Shield is all about moving things
away, the Force Field is about pulling things in. This also affects objects with the IRedi-
rectable interface, and the implementation of that part of this ability is similar to the
Reflect Shield. However, this ability redirects object towards yourself, and doesn’t take
ownership of the object, meaning the Tank Kit player will take damage from the objects

25

Creating a MOBA using Unity

pulled in. Here the synergy with the Reflect Shield comes to fruition, as the shield can
reflect objects pulled in by the field. In addition to pulling objects in, this ability also pulls
in other players, compensating for the lack of movement speed, as well as synergizing
with the Power Saw. This is also handled in the OnTriggerEnter callback, and calls one of
the TargetRpc function in the player for adding force. The implementation of those are
discussed in Section 5.2.1.

Power Saw

The third ability is the Power Saw. This has two stages, the initial state is a wind-up for the
release of the sawblades. This will do damage to enemy players coming in contact with
the sawblades, using the OnTriggerEnter callback. To prevent players being hit multiple
times consecutively, they’re added to a list the first time hit. If the callback triggers on a
player, it only does damage if the player isn’t already in the list. This list is then cleared
when the swing is completed. When the wind-up state is complete the sawblades are
released. At this point they’re spawned in as actual objects by the local client calling a
command on the Docking script, which spawns the object on the server. The cooldown
on this ability can be reduced by picking up sawblades that has come to a halt. This is
handled by the Sawblade script, which is a component on the sawblade object spawned.
If an object with a Docking component enters its trigger, it will retrieve all the abilities,
and check if any of the abilities is of the type PowerSaw. If so reduce the cooldown of
that ability through the docking, and delete the sawblade object, as shown in Listing 4.

for(int i = 0; i < dockingKit.abilities.Count; i++) {
if(dockingKit.abilities[i] is PowerSaw) {

docking.TargetReduceCooldown(..., i);
NetworkServer.Destroy(gameObject);
break;

}
}

Listing 4: Code snippet for checking if the player trying to pick up the sawblade has the
PowerSaw ability.

By using a for loop here, we can use the iterator count as a parameter to the reduce
cooldown function in the docking, that way the docking knows which ability to reduce
the cooldown for without the need to specify it anywhere, and having to manually update
it if the ability order is reordered.

Hook Shot

The final ability is the Hook Shot, which fires out a hook when used. Whenever the hook
hits an obstacle, or a player, it will pull the Tank Kit player towards the point the hook
connected with its target. If the hook hits an enemy player it will also apply a root to
that player. The hook animation is handled locally by every client, and is in this case
animated by the script. The ability utilizes both the IServerCallback and IClientCallback
interface. The server callback is for launching the hook, and passes along two Vector3:
The launch position, and launch direction. The server then uses the client callbacks to
pass these to every client, allowing them to replicate the hook animation as precisely as
possible. The reason for this is that the hook is launched in the player forward direction,
and the player rotation on the server and rotation on the local client isn’t necessarily the
exact same, especially when a player rotates as they’re triggering the ability.

26

Creating a MOBA using Unity

The server can’t simply launch the hook forward, because the forward direction the
player had when they triggered it, isn’t the forward direction when the server receives
the trigger message. The hit registration is handled by the server, which will use callbacks
to let the clients know what to do. The default behaviour is to extend the hook to max
range, and then retract it. This is what the clients will do as long as the server doesn’t
tell them otherwise. If the hook hits an obstacle or a player the server will tell the clients
to freeze the hook in a certain position for a moment, before retracting. The hook can
also hook certain objects, like the sawblades. The sawblades implements the IHookable
interface, which is used in the OnTriggerEnter callback in the Hook Shot. This allows the
Hook Shot to be used for picking up sawblades without actually moving to them.

3.6.8 Trapper Kit

The Trapper Kit is a utility docking kit that focuses on using its three traps to provide
various types of crowd control as well as being adequately capable of fighting enemies in
close to mid range using the kit’s flamethrower.

Flamethrower

The first ability in the kit is the flamethrower, a self applied modifier that activates a large
sphere collider that checks for objects that it can burn. One of the limitations of working
with Unity3D rather than Unity2D is that we don’t have access to polygon colliders. Using
polygon colliders would have made it possible to create a cone collider for this ability.
We are instead using a large sphere collider for the flamethrower although its shape is
not necessarily as fitting. The collision callback checks for any enemy players and applies
a burn modifier to these. It also checks for game objects with the IElement interface and
applies a fire element to any such objects if found. This means that abilities from other
kits that support elemental modifiers can be buffed by the flamethrower.

Trap Overview

The three other abilities use traps deriving from a base Trap class. A shared TrapSpawner
script is used to spawn each of the three traps by providing it with different prefabs per
ability. The TrapSpawner script handles spawning its given trap prefab as well as updating
the visuals of the docking kit to reflect that traps have been placed. Each trap has its own
visual element on the docking kit that is modified to allow other players to know which
traps the user currently has placed. Figure 16 showcases these. The trap spawner script
contains a reference to the spawned trap while the spawned trap is provided with a
reference back to its owner. This allows the trap to only stay visible for its owner as well
as communicating back to its owner whenever it has been triggered.

Acquiring the reference to the traps is handled by implementing the ISpawnableRef-
erenceProvider interface. Only one trap of each type can be placed at a time so trying to
replace a trap that already is placed destroys the old trap and places a new one at the
player’s current position.

The Trap base class handles generic functionality like changing the visual state of the
trap to invisible for other players as well as playing animations whenever the trap is
triggered. A virtual function is used to allow any children of the base class to provide
custom behaviour as the trap is triggered. The base class also contains a list of players
that triggered it to make sure that no modifiers are applied twice in the case that a player

27

Creating a MOBA using Unity

Figure 16: The trapper kit has three traps. Placing one trap fades the color of its associated visual
element on the docking kit

quickly moves in and out of the trap collider.

The Slow Burn Trap and the Blind Trap

The first two traps have fairly simple behaviour. Both have modifiers that they apply to
the list of players who triggered the trap. The first applies a burn and slow modifier while
the second applies a blind modifier.

Figure 17: These two screenshots show the two main stages of the capture trap’s life cycle.

The Capture Trap

The third trap has more custom behaviour compared to the previous two. It pulls in
any nearby enemy players after triggering and places a temporary wall around these
players to "capture" them for a short duration as seen in Figure 17. There are a lot of
different visual elements like particle systems, animations, colliders and sprites that are
enabled/disabled throughout the trap’s lifecycle.

Applying the force for pulling players into the trap is done using a TargetRpc function
located in the main player script while a C# coroutine is used to enable the walls after

28

Creating a MOBA using Unity

a short duration. More information on adding consistent force to both the server and
clients can be found in Section 5.2.1.

3.6.9 Support Kit

The Support Kit is a kit made to keep your team alive. It is centered around just staying
alive with your team, healing them over time while slowly draining your enemies of their
lives. The kit have medium health and speed to make it fairly hard to kill, while being
able to negate damage and remove debuffs further increasing its sustainability.

Figure 18: Shows the Support Kit with healing aura toggled on.

Healing Aura

The first ability in the Support Kit. This aura applies healing in a circle around the player
that can be toggled on and off, see the green circle in Figure 18. It uses a List to keep
track of players in the aura, and this list updates whenever players enters and exits the
aura. Using the IServerCallback interface, the healing aura applies a buff to the players
every healing-interval to that will heal them. This script also has a reference to the second
ability of the kit, the Fortification Buff, which also gets applied here at the same time,
strengthening the power of the healing aura.

Fortification Buff

This is a power-up to the Healing Aura. The buff received from this makes players af-
fected by the Healing Aura take reduced damage. Unlike the Healing Aura, this is a
lingering buff that lasts for a few seconds after leaving the area as well. Gives the kit a

29

Creating a MOBA using Unity

better tool against burst-damage when used correctly.

Cleanse

This ability will emit a ring of pure energy, cleansing friendly players hit of any debuff
they might have and giving a slight move speed buff for a short amount of time. As
mentioned before, Unity3D has a limited selection of primitive colliders, but for this
ability we made a ring collider using Blender, an open source 3D creation suite. When
used, an animation plays that enables the collider and takes the Scale of the Transform to
make it look like the ring expands. Figure 19 demonstrates what this looks like in game.

Figure 19: Screenshot of the Cleanse Ability in the editor, showing the covered area.

Health Drain

The only damaging ability of the Support Kit, draining the life of enemies around you and
distributing the health drained to teammates around you. The more enemies drained, the
more healing to distribute. The More allies, the less healing each ally get. For the time
being we are using this simple way of doing it, in the future it should also make sure
to check how much health each player loses and heals and take this into account when
distributing the healing. Some variables have their names replaced to fit the page:

foreach (GameObject player in friendlyPlayersInAura) {
float healthToHeal = (baseDrain * hostilePlayersInAura.Count) / friendlyPlayersInAura.Count;
player.GetComponent<PlayerHealth>().Heal(healthToHeal);

}

Listing 5: Code snippet for distributing the health drained to players around.

3.7 Shop Architecture

3.7.1 Visual Layout

The visual layout of the shop can be seen in Figure 20. The layout itself is split into two
halves. The left half contains purchasable shop items while the right half contains indi-
vidual information on the currently selected shop item. The currently equipped docking
kit is signified by a "E" while any unpurchasable docking kits due to lack of currency

30

Creating a MOBA using Unity

Figure 20: A screenshot showing off the in-game shop

are greyed out. The information display on the right side contains several text boxes
that scripts can use to display arbitrary information about the shop item like names, de-
scriptions and additional stats. Each docking kit contains information on the kit and its
abilities which is split into five different "tabs". The information tabs for each item can
be cycled through by pressing the left and right shoulder buttons on the controller as
displayed on the top of the panel.

3.7.2 Scriptable objects for shop items

Scriptable objects provide an easy to use interface for developers, especially if used as
described in Section 8.1.1. It allows us to simply go the the correct resource folder, right
click and choose "New shop item". We can then directly fill in any data related to the
new shop item in the inspector as seen in Figure 21. The scriptable object for shop items
contains several pieces of data:

• The name of the docking kit.
• The sprite that is displayed in the left panel of the shop.
• The prefab for the related docking kit.
• The price of the docking kit
• An enum which we use as a ID to identify the docking kit.
• A list of structures containing description data. These structures include the sprites

used for the tabs on the right panel of the shop, the name of the ability/kit and a
description.

The scriptable object itself does not contain any code and is used as a data container.
The data within the scriptable objects are then loaded by the menu handler and attached
to instantiated shop item instances.

3.7.3 Internal shop management

The shop architecture in Dockit League is split up into several components:

• A script, IngameMenuHandler manages the shop and any interaction with it.
• Scriptable Objects are used to contain data related to the individual shop items.
• Each item instance in the shop contains the ShopItemInstance script which stores a

31

Creating a MOBA using Unity

Figure 21: An image of the Unity inspector that illustrates how one of the scriptable objects from
the shop looks like

32

Creating a MOBA using Unity

scriptable object and handles the data display for it.

The IngameMenuHandler script starts by loading all scriptable objects within the project
that contain item data. These scriptable objects are then placed in a list and sorted by
price before the script starts instantiating ShopItemInstance’s with a respective scriptable
object. The script also handles input for scrolling through the information tabs of the
currently selected shop item. This is handled by incrementing and decrementing a range
limited integer which is used as a index to access the correct descriptions from the script-
able object.

We use a prefab with uninitialized visual elements and a ShopItemInstance script to
spawn in individual shop items. After being spawned, the instance is then initialized
by passing a scriptable object over to it and updating all of its visual elements with
the acquired data. The ShopItemInstance script also contains a callback for whenever it
is pressed which displays a purchase verification prompt with a "yes" and "no" answer.
Answering "yes" to the prompt tells IngameMenuHandler to complete the purchase and
equips the new docking kit to the player.

33

Creating a MOBA using Unity

4 Development Process

4.1 Agile game development

When working on any project, choosing the right software development model can help
a lot. For games in particular, agile software development is a near perfect match [9].
The incremental nature of both allows developers to easily change the product based
on feedback during development as well as providing workflows where clear and con-
cise tasks can be set per increment. For this project we decided to use Scrum as our
software development model due to its agile capabilities. We also wanted to grow more
acquainted with professional tools like Jira and Confluence for project management as
these integrate well with Scrum.

4.1.1 Our configuration of Scrum

There are many different ways of using a software development model like Scrum. In
our case we decided to stick with fortnightly sprints to provide incremental progress at a
steady pace. We combined the retrospective, review and planning meetings into a single
"Sprint Meeting" on the Thursdays that the sprint ended as it would be easier to find
the time for all group members to meet up and discuss the project’s progress. Meeting
notes for the sprint meetings can be found in Appendix B. Given that we didn’t have any
product owner, the review session of the sprint meeting consistent of showing each other
the things we had been working on throughout the sprint. We also used daily standup
meetings from Mondays to Wednesdays as these days had no lectures and were primarily
used to work on the project.

4.2 Development Tools

4.2.1 Atlassian toolkit

We used several of the Atlassian tools when developing Dockit League as they integrate
nicely with each other:

Bitbucket: Used to contain the source code

Confluence: Used to store documentation from meetings.

Jira: Used to manage the project. This includes managing sprints, playing planning
poker, managing issues and updating the product backlog.

We integrated Bitbucket with Jira to allow for smart commits. This allowed us to
link any commits to issues using the DOCKL-# tag where # is substituted with the issue
number and track progress on individual issues. Any commits unrelated to issues were
simply pushed to our development branch in the project.

Feature branching for individual issues/product backlog items was also employed.
Each feature branched out from the development branch and then merged back in
through the use of pull requests as it allowed all group members to review the new code
when it was finished. These branches were then closed as the pull request was merged.

34

Creating a MOBA using Unity

4.2.2 Unity and Git compatibility

In the case of source code, Unity projects generally have a tendency to not perfectly
mesh with version control systems like Git. This is due to the fact that commits generally
contain a large amount of binary files for prefabs, assets and other non-source code
files, but there are some tricks that can be pulled to improve the situation [10]. It is
possible to turn these binary files into YAML text format by tweaking a setting in the Unity
Editor which allows the developer to actually properly solve merge conflicts. This in turn
introduces another problem where commit messages are bloated with huge changes to
these files, making it somewhat harder to have an overview over the actual source code
changes. We would like to think that this trade-off still is better than not being able to
handle merge conflicts on prefabs and assets.

4.2.3 Code quality and conventions

We primarily used Microsoft’s naming conventions [11] and code guidelines [12] while
developing Dockit League. An exception to these naming conventions was that we used
camelCase rather than PascalCase for member variables. In contrast with Microsoft’s C#
code guidelines we used the One True Brace code convention [13] for formatting. Doxy-
gen documentation was required for functions and optional, but encouraged, for classes
depending on their complexity. The documentation was then later generated using the
doxygen tools and added to the thesis as a PDF document. This means that any hyper-
linking was lost in the documentation and while doxygen generates LaTeX files, these
are unfeasible to directly add to the thesis as they use different style sheets with their
own commands and dependencies. This would alter the style of the whole thesis which
is unwanted behaviour. The full doxygen documentation can be found in Appendix D.

4.2.4 Game Engine

Using a game engine can help developers work more efficiently on a project due to
not having to implement the lower level functionality like physics, rendering and core
architectures. Given the three months long development period of the project, using a
game engine was necessary to consistently implement the core functionality of the game
that was needed. Unity is one of the most widespread game engines used in the industry
to this date [1] and while other engines like Unreal also could be seen as an alternative,
all of our group members already had worked with Unity before and wished to gain more
knowledge on engine functionalities like networking. This means that less time would be
spent on learning the basics of the tools and allow for faster progression on the project.

We generally stayed up to date with the latest versions of Unity whenever released and
fixed any deprecated functionality as it appeared. The reason for this is that the Unity
network functionality is constantly in a state of development and the updates include
important bug fixes and optimizations related to networked components.

4.2.5 Integrated Development Environment

Unity offers two IDE’s on installation:

MonoDevelop: A cross platform IDE for C# that has been packaged with previous ver-
sions of Unity as standard.

Visual Studio 2015: Newer versions of Unity have also begun packaging Visual Studio

35

Creating a MOBA using Unity

as an alternative to MonoDevelop.

In the case of our project we chose to use Visual Studio over MonoDevelop. This is
due to the fact that Visual Studio provides a wide array of quality of life functionality
like automatic formatting and body generation of doxygen comments and better editor
customization, including dark themes that ease development when there is limited light.
Visual Studio also has Unity plugins that allow for step by step debugging and full use of
the Visual Studio debugger which is a powerful tool for testing purposes.

4.2.6 Communication Tools

Our group members used Discord as primary means of communication. This includes
using the provided chat functionality for discussing the project and asking each other
for help as well as using the voice chat for daily scrum meetings. One of the advan-
tages of Discord is that it supports printing of code blocks so whenever one of the group
members wanted to provide code for questions, this was directly supported with syntax
highlighting and formatting.

4.2.7 Miscellaneous Tools

Other miscellaneous tools were also used throughout development. This section will de-
tail these and how they were used. Asset creation was generally handled through a va-
riety of tools like Photoshop, GIMP, Clip Studio Paint and Blender. GIMP in particular
worked well as an intermediary tool for centering sprites, which is useful for making
sure that the pivot for sprite rotations is properly centered. We used Microsoft Visio as
a tool for creating the Gantt chart in the initial project plan, which can be found in Ap-
pendix A. Flow charts and similar types of diagrams were created using draw.io and then
imported as either images or .svg files directly into the thesis. We also used Toggl as a
means of time tracking our individual time usage on the project.

36

Creating a MOBA using Unity

5 Implementation

This chapter is focused around the challenges the group met during development and
how these were solved.

5.1 Limited field of view

As mentioned in Section 3.3.3 the game contains a component that creates a view mesh,
and uses a shader on this mesh that utilizes the stencil buffer for a per pixel masking.
Any other object in our game that should be masked out in the fog of war also needs
a different shader that implements the stencil buffer for masking. Having the fog of
war was a design decision to limit the player’s field of view, and give them imperfect
information, which emulates how it would be in any first person game. [14] Since the
stencil buffer is a binary masking, the area outside of the view mesh would be completely
dark. Even if this also enforces the fps view, it’s too restrictive, almost claustrophobic, as
it makes traversal around the map difficult. The solution was to use a second camera
that only renders the environment with a shader that adds a fog color to every pixel.
Unity’s replacement shader functionality was utilized to easily replace the shader an
object originally had, with the fog shader. This means that the FogCamera can render
the environment with depth -1. The second camera, the player camera, renders only the
elements within the view mesh, using camera depth 1 and a clear flag to only clear the
depth. Allowing it to render on top of the already rendered image from the fog camera.
The rendered image from the different cameras are shown in Figure 22.

Figure 22: Showing the fog camera render on the left, and the player camera render on the right.

5.2 Responsive user experience

When working on a networked game, providing a responsive user experience for clients
is important in the wake of less than optimal network connections [15]. This section will
provide a brief overview on how networking in Dockit League is handled to take local
responsiveness into account.

Dockit League performs any important calculations like collision checks, damage cal-
culations and cooldowns on the server before synchronizing all of the clients. This is

37

Creating a MOBA using Unity

primarily handled through the use of Command and ServerCallback attributes to make
sure certain blocks of code only run on the server before synchronzing through the use of
ClientRpc functions. ServerCallback attributes are particularly useful for when the devel-
oper wants collision callbacks like OnTriggerEnter or OnTriggerStay to only execute on the
server. The attribute is only available for NetworkBehaviour’s although some workarounds
can be made to allow for simiar functionality within standard MonoBehaviour’s as men-
tioned in Section 5.3.

Visual effects on the other hand are handled locally on the clients through the use
of synchronized callbacks while client prediction in terms of movement is handled using
the interpolation functionality of Unity’s Rigidbody component.

5.2.1 Consistent force for server and clients

A rather common component to work with in Unity is the Rigidbody. These are used
for any physics based movement and are generally something the developer would like
to keep synchronized across the network. Rigidbodies are synchronized by the Network-
Transform component and while one might believe that applying force to the rigidbodies
in this case would keep them consistently synchronized across the network, this is actu-
ally not the case. In the case of trying to apply force from the player’s position towards a
point, the server player will experience a stronger amount of force than the clients will.
In the case of a peer to peer based game like Dockit League, this is unwanted behaviour
as the server and clients should experience the same or very similar forces.

We tried a couple of different workarounds like synchronising the code for adding
force through the use of ClientRpc’s or increasing the synchronization rate of the rigid-
bodies, but none of these ended up being a usable solution. The issue in general is a
result of calculating force vectors on the server based on player positions. This does not
necessarily work as by the time the code executes on the clients, their new and updated
positions have changed enough to make the force direction different. We ended up trying
to use TargetRpc’s as a workaround and send the strength of the force, the force mode
and the position we wanted to add force towards as parameters. Using this approach
allowed the player to locally calculate the force vector and provided far more consistent
results than any previous approaches. This also means that the player with authority gets
to add the force, as they override the force added on the server.

5.3 Unity’s networking limitations

When developing a networked game in Unity, there were a few cases where we wished
that the network interface of Unity allowed for certain types of functionality that would
make implementation of various features easier. There are a couple of inherent limita-
tions with Unity’s current networking capabilities. These include:

• Command’s, ClientRPC’s and TargetRPC’s:

1. Are unable to return any data. All functions using these attributes need to
return void.

2. Are unable to take component references as parameters. This means that for
example sending the Transform component of a player is impossible.

3. Cannot be overloaded. A separate function with a different name is necessary
if different parameters need to be passed.

38

Creating a MOBA using Unity

4. Does not support generic parameters.

• Calling any Commands requires authority. This is something only the player object
has, meaning that any child objects of the player are unable to call Commands by
themselves.

• Standard Unity callbacks will run on all clients by default. This means that any
collision callbacks also run on all clients. Unity provides tools for managing this
with classes deriving from NetworkBehaviour, but not MonoBehaviour.

This section will take a look at how some of these limitations can be worked around.

5.3.1 Network spawned objects

The inability to return data from Commands meant that we were unable to acquire ref-
erences to any game object that the players spawned. A workaround for this problem
can be implemented through the use of TargetRPC functions which make it possible to
selectively run code on a single client.

In our case, whenever we needed an ability to acquire references back to their spawned
game object, we used a combination of interfaces and TargetRPC functions in Docking to
send a reference to the player who spawned the object. This is handled by letting an
ability implement the ISpawnableReferenceProvider interface and acquire the reference in
the implemented function SetSpawnedObjectReference(GameObject spawnedObject).

Spawning objects is handled through the use of a custom spawning function in Dock-
ing. This function then looks for the interface and sends a reference of the newly spawned
object, as seen in Listing 6.

5.3.2 Network functionality for MonoBehaviours

Deriving from the NetworkBehaviour class requires that the game object a script is at-
tached to has the NetworkIdentity component. The NetworkIdentity component auto-
matically handles disabling and enabling of objects during the life cycle of a hosted
game. There are cases where the developer might want to manually control this by using
MonoBehaviour instead of NetworkBehaviour, as discussed in Section 3.5.1.

In our case, we let the Ability base class stay as a MonoBehaviour. In order to provide
network functionality for the abilities, we added a reference to Docking in the base class
as a proxy for networking. This means that any abilities can go through Docking to call
Command functions. The Ability base class also includes a variety of virtual callbacks
that in turn are called by Docking. This allows abilities to execute synchronized code by
overriding the virtual callbacks.

5.3.3 Unity callbacks

Unity offers several different callbacks that helps the developer manage the life cycle of
a script or for collision handling. When working with networked code there are times
where the developer wants code to only run on the server or the clients, local or remote.
This is easy to do for NetworkBehaviour derived classes as they, for example, can use the
ServerCallback attribute to tell Unity that the attached function only should run on the
server. This is of course not possible for MonoBehaviour classes although the workaround
for this is fairly simple.

In the case of wanting to make sure that a collision callback for an ability only gets

39

Creating a MOBA using Unity

[Command]
public void CmdSpawnObjectReference(int abilityId,

int prefabId,
Vector3 position,
Vector3 rotation) {

ISpawnableReferenceProvider ability = dockingKit.abilities[abilityId]
as ISpawnableReferenceProvider;

if(ability != null) {
SpawnableObject spawnObject = SpawnableFactory

.Instance

.SpawnObject(ability.GetSpawnablePrefab(prefabId),
position,
rotation,
netId.Value,
player.GetPlayerTeamId());

TargetSetSpawnObjectReference(GetConnectionToClient(),
spawnObject.gameObject,
abilityId);

}
}

[TargetRpc]
public void TargetSetSpawnObjectReference(NetworkConnection connection,

GameObject spawnedObject,
int abilityId) {

ISpawnableReferenceProvider ability = dockingKit.abilities[abilityId]
as ISpawnableReferenceProvider;

if(ability != null) {
ability.SetSpawnedObjectReference(spawnedObject);

}
}

Listing 6: Code snippet for spawning game objects and providing a reference back to the
owner

executed on the server, we check for docking.isServer at the start of the callback. The
isServer boolean is part of NetworkBehaviour’s and is true if the current code is running
on the server. The only issue with this approach is that the callback itself will still get
called on all clients, creating some unnecessary overhead even if the body of the function
only is executed on the server. We do not see this as a particularly large issue given that
collision callbacks won’t happen frequently enough for this to be a performance problem.

5.4 Programmatic interpolations

Unity as a game engine already has fairly robust and powerful animation tools that allows
the developer to create and manage animations directly in the editor. These animation
tools have a lot of versatility, but there are times where the developer might want a bit
of extra control and use a programmatic interpolation instead.

In our case we needed to produce a curve for a boomerang to travel through while
developing the boomerang kit. We decided to perform this interpolation through the use
of a Cubic Bezier curve as these curves are flexible, very simple to control and can provide
a nice squeezed arc for the boomerang to interpolate through. Another option would be
to use a Hermite curve, but we ended up sticking with Bezier curves as it would make
the code more readable for all group members due to everyone’s preexisting familiarity

40

Creating a MOBA using Unity

with these. The formula for interpolating through cubic Bezier curves is as follows:

B(t) = (1− t)3P0+ 3(1− t)2t ∗ P1+ 3(1− t)t2 ∗ P2+ t3P3

The function takes five parameters:

P0: The start position of the curve

P1: The handle of the start position

P2: The handle of the end position

P3: The end position of the curve

t: The input time of the interpolation. Has to be in range [0, 1]

We use the Bezier curve in two ways:

1. To create vertices for a LineRenderer component that displays the approximate
travel path of the boomerang while holding down the ability button

2. To interpolate the boomerang itself as the ability button is released

When we say approximate path we mean the path that the boomerang would travel if
the player stood perfectly still. The point of displaying an approximate path is to give the
player an idea of how far the boomerang will travel before returning. It is generated using
local coordinates rather than world coordinates. On the other hand, actually throwing
the boomerang stores the world position of both handles while using current position
of the player as start and end point. This means that the Bezier curve will dynamically
change based on how the player is moving, but still travel to the peak of the approximate
path.

While the Bezier curve is nice for providing a curve to interpolate through, the ani-
mation itself looked fairly uninteresting as the change in t was linear due to the fact that
we simply used a timer variable for it. The boomerang kit’s abilities are built around the
position of the boomerang so we needed to provide ample time for the player to use the
kit’s abilities as the boomerang approached the peak of its curve.

5.4.1 Handling the velocity of the animation

While developing, we drew several graphs that could represent a non linear change in
our input parameter t, but were unsure of how we could get representations of these
into our code. This section includes two different ways of providing graphs that can be
evaluated by the game to control the velocity of the animation.

The first solution we found by looking at Unity’s documentation was to use Unity’s
built in AnimationCurve [16] type. AnimationCurves can be public members of any MonoBe-
haviour class, allowing the developer to use the inspector to generate curves in the range
of [0, 1] for both axes by default. These curves also have an evaluation function that
allows the developer to provide a input time parameter and get an output back.

In our case, we wanted the boomerang to accelerate from the start, decelerate towards
the halfway point of the animation and then accelerate again towards the end. This was
fairly simple to implement using the AnimationCurve type since it works in the range of
[0, 1] by default. All we needed to do was to provide the evaluation function a time
variable and use its output as t into the Bezier curve interpolation.

41

Creating a MOBA using Unity

Figure 23: This curve shows the change in t as time goes from 0 to 1 on the x axis using Unity’s
AnimationCurve type.

Figure 24: This curve shows the change in t as time goes from 0 to 1 on the x axis using the
mathematical curve f(x) = x + sin(6.28x)/9

42

Creating a MOBA using Unity

As seen in Figure 23, the AnimationCurve approach provides an interface with control
points and control point handles which is fairly easy to use, but there is also another way
of solving the problem.

A more generic approach would be to use a mathematical function like f(x) = x +

sin(x)/c to create a similar looking curve, but this approach has some problems that
need to be dealt with. First of all, the curve needs to be scaled so that the wanted part
of it is within the range of [0, 1] for both axes in order for the output to work with the
interpolation function. This could be achieved by playing around with a graph plotting
tool like GeoGebra or similar. In our case, the function f(x) = x + sin(6.28x)/9 as seen
in Figure 24 would provide similar behaviour to Figure 23, but still lack the strong ac-
celeration towards the end of the interpolation. This approach gives less control to the
developers who work in the engine and spending time trying to scale the curves can be
quite time consuming.

We also made sure to check the performance difference between the two approaches
by measuring the execution time of both. We measured the time spent on each function
per update and calculated the mean of the time values after 10 boomerang throws. This
gave us the following results:

• The average execution time of the AnimationCurve’s evaluation function took ~0.36µs
• The average execution time of the math function took ~0.20µs.

The time difference was calculated using Unity’s Time.realTimeSinceStartup variable.
The Time.realTimeSinceStartup float is measured in seconds so we multiplied the average
time difference by 106 and used a output precision of two decimals for these results.
The mathematical approach provides a small increase in performance as seen from the
results, but in our case the difference is too small to warrant using it. The AnimationCurve
approach is far easier to work with directly in the editor instead of using external graph
tools to modify the curve to our needs. On the contrary, the mathematical approach is
more generic and might see use in non Unity applications.

5.5 Interpolation using coroutines

Interpolations in Unity are generally handled in each script’s Update() function through
the use of timer variables and adding Time.deltaTime to these per update. In some cases
this adds unnecessary logic to the update loop of a component and the developer might
wish to further decouple the interpolation from the loop itself to improve code readabil-
ity. This can be handled using C# coroutines as these functions are capable of stopping
execution during a frame and then resuming the next frame to provide similar function-
ality to that of the standard Unity update loop callback.

An example of how this is implemented can be seen in Listing 7 which contains a
snippet from the FieldOfView component and includes a coroutine for interpolating the
view radius of the component.

This function will stop at the end of each while loop execution and resume on the
next frame using yield return null;. This allows the interpolation to move forwards each
frame although the example function in particular will not provide fully linear interpola-
tion. This is due to fluctuations in deltaTime between frames and the observed behaviour
of an interpolation using this function will appear as a smooth interpolation that slows

43

Creating a MOBA using Unity

public float viewRadius;

private IEnumerator ViewRadiusLerp(float targetRadius, float speed) {
while (Mathf.Abs(targetRadius - viewRadius) > 0.1f) {

viewRadius = Mathf.Lerp(viewRadius, targetRadius, speed * Time.deltaTime);
yield return null;

}

viewRadius = targetRadius;
}

Listing 7: A coroutine used for interpolation of the field of view radius

down towards its end. A different way of implementing the interpolation, this time in an
actually linear fashion would be to use a local timer variable that moves in the range of
[0, 1] by adding Time.deltaTime each frame. A modified version of the radius interpola-
tion using this thought process can be seen in Listing 8.

public float viewRadius;

private IEnumerator ViewRadiusLerp(float targetRadius, float speed) {
float lerpTimer = 0;
while (lerpTimer <= 1f) {

lerpTimer += Time.deltaTime * speed;
viewRadius = Mathf.Lerp(viewRadius, targetRadius, lerpTimer);
yield return null;

}

viewRadius = targetRadius;
}

Listing 8: A modified coroutine used for linear interpolation of the field of view radius

A benefit of decoupling interpolations from the update loop is that there is no need
for an additional conditional variable that checks whether an interpolation is active per
frame. When reading the code, the interpolation approach also makes it more clear when
the interpolation starts using the StartCoroutine() function. An apparent thought when
working with coroutines and interpolation is the possibility of providing a generic so-
lution for all basic interpolations by using of a static utility class. This will not work as
Unity requires that all coroutines need to exist in classes deriving from MonoBehaviour
which is incapable of being static. This can be worked around by having a singleton
MonoBehaviour class and call functions through its static instance.

5.6 Initial game balancing

The full game functionality required for proper user testing ended up being implemented
rather late into the project’s development. Due to this we had limited time for user testing
and needed to provide the testers with a build that already had some initial balancing
done. Dockit League is an asymmetrical game due to the variety of available docking kits
so we used a mathematical model [17] for the initial balance iteration. Doing so allowed
us to have a overview over the different kits including their strengths and weaknesses.

Balance Table 1 contains columns for kit name, kit health, kit movement speed, dam-
age and utility. The damage column has values assigned based on the potential damage
output of the kit while the utility column has values assigned based on the overall the

44

Creating a MOBA using Unity

Table 1: Initial balance table
Docking Kit Health Movement Speed Damage Utility Totals

Boomerang Kit Low (1) High (3) High (3) Medium (2) 9
Brawler Kit High (3) Low (1) Medium (2) Medium (2) 8
Bomber Kit Medium (2) Low (1) High (3) Medium (2) 8
Marksman Kit Medium (2) Medium (2) Medium (2) Medium (2) 8
Sniper Kit Medium (2) Medium (2) High (3) Medium (2) 9
Tank Kit High (3) Low (1) Low (1) High (3) 8
Trapper Kit Low (1) Medium (1) Medium (2) High (3) 8
Support Kit Medium (2) Medium (2) Low (1) High (3) 8

utility the kit provides through its abilities. This includes abilities that apply modifiers and
other effects without necessarily focusing on damage. Further tweaking on cooldowns,
damage values and modifier durations is the focus of the user testing rather than the
initial balancing as this Section is supposed to give a rough estimate of each kit’s capabil-
ities. Additional information on the various docking kits and their abilities can be found
in Section 3.6

5.6.1 Observations from the initial balance table

As seen in Table 1, the sniper and boomerang kits end up with a slightly higher total than
the other kits. This is a deliberate decision as both kits have a high damage potential if
played well, while having a low to medium damage potential otherwise. We believe that
both kits are fairly challenging to play in order to achieve their full damage potential,
so the difficulty offsets the fact that the two kits are a bit stronger than the rest. The
boomerang kit requires the player to hit with multiple boomerangs while they move
forwards and then again once they move back for the maximum amount of damage. The
sniper kit requires time and preparation before shooting and rewards a large amount
of damage if the projectile actually connects. These aspects of the two kits allows us to
provide a high risk, high reward ratio for playing well.

An interesting thing to note with our current design is that none of the implemented
kits have a low utility value. All the kits feature at least two abilities that provide utility
through either the use of modifiers or other effects. The utility abilities for the kits are
generally designed to help patch up the weaknesses of each kit. The brawler kit, for
example, struggles fighting ranged enemies due to its low speed and melee weapon, but
contains abilities for reflecting projectiles and stunning opponents to get closer. If any
future development were to take place on the project, creating kits with less utility and
a larger focus on the other statistics could improve the variety of of the kits.

One important aspect of game balance is the fact that distinct weaknesses is a great
way to provide counterplay and avoiding dominant strategies [18]. While the kits gen-
erally have abilities that help them somewhat with their weaknesses, these abilities have
long enough cooldowns to not always be available. Balancing cooldowns isn’t the only
way to expose the weaknesses of kits though. The boomerang kit is the only kit with
low health and has a large damage potential with high movement speed. One of the
weaknesses of the boomerang kit is the low health, and being caught unaware by enemy
players will lead to a swift death. The limited field of view also helps creating situa-
tions where the player might have been inattentive and not seen an enemy sneaking in

45

Creating a MOBA using Unity

from behind. The high speed of the kit might be seen as beneficial, but can result in the
player carelessly rushing into enemies who are right around the corner of walls and other
obstacles.

Another thing to note about the balance table, is that it does not take shop price into
account. This is due to the fact that we were unsure of how strong each kit was before
performing playtesting, so we kept the same price for all docking kits. Starting to think
of price as part of the initial balance table would allow for certain kits to be stronger than
others by justifying their strength with a higher price. Given a larger pool of docking kits
fulfilling similar roles than currently implemented in the game, the price could end up
being used to a larger extent to create more variety for kits with similar use cases.

5.7 Controller based menu navigation in Unity

Dockit League originally had a different main menu and lobby handling script that was
more integrated for controllers, but we ended up having to cut it from the last iteration
of the game as there was limited time to integrate it with the new lobby and main menu
that supported different game modes. We would like to spend some time detailing the old
implementation in this section as it might provide additional insight into how controller
based menu navigation can be handled in Unity.

There are two primary things that should be handled differently to accommodate for
controller navigation compared to just navigating with the mouse:

1. The controller needs an entry point for navigation compared to the mouse. These
usually consist of clickable buttons and can be navigated through using the dpad
or left analog stick of the controller.

2. While having a back button on menu screens is common for mouse and touch
navigation, controller users might find it more intuitive to be able and navigate
backwards using a physical button. One needs only look back at the era of the
Super Nintendo Entertainment System and its games to see that developers already
were using a physical button for backwards menu navigation.

Backwards menu navigation can be handled in multiple ways. The current implemen-
tation in Dockit League allows for arbitrary menu navigation and works well with mice,
while the old implementation used a stack instead, inspired by how Android handles
backwards navigation using its fragment back stack [19].

The stack based approach allows for simple controls when using the OnClick interface
to handle individual button presses. The developer simply has to drag the next menu
object as a parameter to the menu handling script and the script then takes care of
putting the old menu panel into the stack. Once the new menu panel had been displayed
the script would quickly look for buttons and set the first found button as the selected
one, providing an automated entry point for controller navigation.

This old implementation also supported adding properties to the top of the stack,
allowing custom behaviour on backwards navigation. We handled this by storing enums
with the menu stack objects and perform custom behaviour depending on the enum
of the popped menu. This was particularly useful for telling Unity to stop hosting or
matchmaking whenever the player left certain types of menus. The stack based approach
also made it easy to use physical buttons for backwards navigation as all the script needed

46

Creating a MOBA using Unity

to do was to wait for the correct button to be pressed and then trigger a backwards
navigation by popping the stack.

47

Creating a MOBA using Unity

6 Deployment

6.1 Automated Unity Builds

While Unity and Git don’t necessarily work too well together out of the box as mentioned
in Section 4.2.2 one might start to wonder whether automatic build processing is possi-
ble. Having a central hub with automatically built binaries can be quite useful for testing
the game and providing the correct binaries for testers. Unity offers a free service called
Unity Cloud Build which provides this functionality.

Figure 25: Unity Cloud Build’s project statistics illustrate the status of the build process.

Unity Cloud Build allows the developer to set up automatic builds for different tar-
get platforms and integrates with BitBucket using SSH keys to get access to the project
repository. Specific branches to be built can be specified directly within the service and
provides shareable links which can be given to others for both deployment and testing
purposes. The service also offers build statistics as seen in Figure 25 and allows for auto-
matic execution of specific unit tests.

We have integrated our BitBucket repository with Unity Cloud Build to make sure that
we always have an up to date build available for Windows, MacOS and Linux.

6.1.1 Dockit League binaries

This section contains the binaries for the game which are built at the time of thesis
hand in through the use of Unity Cloud Build’s shared links. In order to download the
latest build of Dockit League we recommend visiting the BitBucket repository [20] and
download the binaries from the links on the front page. There is no necessary installation
needed when downloading the game as the downloaded folder includes all the files for
the game.

These are the links to the different builds:

• Windows x86: [21]
• Windows x64: [22]

48

Creating a MOBA using Unity

• macOS: [23]
• Linux: [24]

49

Creating a MOBA using Unity

7 Testing and User Feedback

7.1 Internal testing

One of the important parts of working with a networked game like Dockit League is
making sure that all synchronized behaviour acts correctly through testing. We would
individually test our docking kits as we worked on them and their abilities. In order to
properly check that behaviours were properly synchronized, we generated builds of the
game that we used in conjunction with the editor to play as multiple players on the local
network. Doing so allowed us to test kits and abilities from the perspective of both the
server and client, as well as debugging each side individually by using the editor to host
or join games.

We also spent some of the review part during sprint meetings to perform integration
testing between the newly developed kits and components as everyone were present at
the same location with easy access to the source code. Doing so made it easier for each
group member to test their newly implemented features with the others and make sure
that everything worked well together.

7.2 User testing

We performed user testing towards the end of development to acquire some general
feedback on particular areas that needed improvement. We had two different playtesting
sessions consisting of three playtesters and one of our developers. The testers tried the
team and regular deathmatch modes, and were given a survey made with Google Forms
on completion where they could provide feedback from their playtest experience. This
Section will take a look at the questions we asked in the survey, the answers the testers
provided and reflect upon the feedback we were given. The full questions and answers,
including answer charts and statistics can be found in Appendix C.

We asked the testers the following questions in the survey:

1. How did the controls feel?
2. How would you rate the in-game UI?
3. How would you rate the in-game shop?
4. Which Docking Kit(s) did you try?
5. How easy/hard was it to understand the game mechanics
6. Do you have any additional feedback?

Each of the questions also had an additional field where the testers could provide
additional thoughts and input.

7.2.1 Feedback on the feel of controls

The testers gave an average score of 3/5 in relation to the feel of the controls. Testers
particularly familiar with twin stick control schemes felt that the controls were fluid,
while testers less familiar with the scheme felt that some additional help text or a section

50

Creating a MOBA using Unity

that displays all of the controls would have been very beneficial.

7.2.2 Feedback on the in-game UI

The in-game UI received an average score of 2.67/5 and was one of the major sticking
points that testers wanted improvement on. The testers felt that the UI in general was
pretty poor due to the large amount of placeholder text and icons for a variety of docking
kits, making it hard to understand what each ability button does. On the contrary, the
docking kits without any placeholder text or icons were praised for having icons that
communicated how the abilities worked without having to use them.

One of the testers brought up the fact that there is a inconsistency in relation to
which button the primary damage ability of each kit is mapped to. The tester suggested
that these all should be mapped to the same button regardless of kit.

Another tester noted that it was somewhat confusing that the left/right shoulder but-
tons and the left/right triggers were paired with each other on the UI. The tester sug-
gested that pairing the left button with the left trigger, and similarly for the right button
and trigger, would make the UI more intuitive, given that the pairing is more logical in
relation to the physical placement of the buttons.

The input from the testers in general from this question suggested a lack of visual
feedback in the UI which is something that certainly could be improved upon. This was
one of the questions that we expected most of the testers to give a low score since we
were aware of the lack of visual polish.

7.2.3 Feedback on the in-game shop

The in-game shop received an average score of 3.67/5 from the testers. The general
feedback of the testers was that the shop was easy to navigate although given some of
the answers it seems like a few testers were unaware of the fact that the shop provided
descriptions for each docking kit and its abilities. This could possibly be more clearly
stated by using the same button icons from the in-game UI to communicate which buttons
were used to navigate the description tabs. A fair few number of docking kits also had
placeholder text and icons for their shop descriptions, making it hard to understand what
each kit was capable of.

Some testers also wished for there to be somewhat of an introduction to how the shop
worked so they could clearly understand how to use it. One of the testers were particu-
larly confused with the highlighting of the verification prompt options as the highlighting
had a darker color than the original and the tester was used to having a brighter color
used for highlighting the "yes" option.

7.2.4 Docking Kit feedback

Among the docking kits that the testers tried, the brawler kit ended up being the most
tried one while the support kit was the least tried one.

The testers seemed to like the different abilities of each kit and felt that they were
intuitive and interesting to use. Still, as mentioned by most testers earlier they would
really have liked to have less placeholder icons to properly understand what each ability
did and which button it was mapped to.

In the case of the kits that the testers liked best, the boomerang and brawler kits

51

Creating a MOBA using Unity

were the most favoured ones while the tank and marksman kits came in second place.
A thing to note with these results is the fact that both the boomerang and brawler kits
were without any placeholder icons.

7.2.5 Feedback on understanding the game mechanics

The testers provided an average score of 3/5 in relation to how easy it was to understand
the game mechanics. The primary point of improvement that the testers wanted was
better visual feedback on things like player death, player damage taken and some basic
information on the start of the game that explains the game mode.

7.2.6 Additional feedback from the playtesters

The testers who provided additional feedback wrote that they found the overall game
experience to be fun, albeit somewhat confusing due to their earlier mentions of place-
holder icons on the UI as well as lack of visual feedback.

7.2.7 Reflection on the feedback of the playtesters

In general, the user testing sessions provided us with a good amount of valuable feed-
back. The primary concern of testers being the lack of visual polish is something we are
aware of and want to improve. In our case we had deprioritized the visual polish of the
game as it was less important than making sure that the core components of the game
worked properly for the thesis. We will not be doing any additional visual polishing by
the time this thesis is handed in, but we have planned to spend some time polishing the
visuals in preparation for the coming thesis presentations. Our current plan for improving
the game is as follows:

• Improve visual feedback.

◦ More pronounced feedback for players taking damage.
◦ More pronounced feedback for when traps and mines are triggered.
◦ Players fade out on death rather than simply disappearing.

• Providing more visual information.

◦ Displaying the rules of the game mode in short at round start rather than only
on the "Create Game" part of the main menu.

◦ Provide UI icons that display the controller mappings for the shop and pause
menu.

◦ Include controller mapping information in the pause menu.

• Fixing inconsistency and improving the intuitiveness.

◦ Switch the ability pairings on the UI to pair the buttons with their respective
triggers.

◦ Highlighting the "yes" option of the purchase verification in the shop with a
brighter color, rather than a darker one.

◦ Consistent button mapping of abilities with similar functionality across all
docking kits.

• Remove all placeholder text and information, replacing them with finalized ver-
sions.

52

Creating a MOBA using Unity

8 Discussion

8.1 Development decisions

8.1.1 Using scriptable objects

When we first started working on the modifier architecture for Dockit League, we had to
find an easy to use and extendable way of creating new modifiers. Having recently seen
a talk from Unity Europe 2016 [25] about how scriptable objects can be used for these
types of use cases, we decided to base the architecture around them. Using scriptable
objects instead of MonoBehaviour has a wide range of advantages:

• A scriptable object is not reset when exiting play mode compared to a MonoBe-
haviour object. This means that any values tweaked in the inspector while playing
stay saved.

• Scriptable objects can be referenced instead of copied when instantiated, helping
decrease unwanted redundancy for complex objects.

• A scriptable object can be referenced from any scene while keeping cross-scene
references of MonoBehaviour objects can be tricky.

• Scriptable objects provide better version control granularity as one file gives one
object without anything additional like transform components.

Scriptable objects also have some disadvantages:

• Scriptable objects have very few callbacks compared to a MonoBehaviour object.
OnEnable(), OnDisable() and OnDestroy() are the only ones. This can be worked
around by having a proxy MonoBehaviour that calls functions within the scriptable
object.

• Scriptable objects contain shared data. This means that any object references dur-
ing runtime only should be acquired and used in method scope.

In the case of our project. Using scriptable objects for modifiers and shop items gives
us the ability to create and quickly edit data directly in the editor as well as being able
to attach some additional code if necessary. In the case of modifiers, using scriptable
objects makes it very easy to define custom behaviour through the use of the multiple
callbacks that exist within the base Modifier class. These can be overridden to perform
code for the server only, on all clients and locally which gives us the amount of control
we want when working on a networked multiplayer game. In the case of shop items,
using scriptable objects provides a reusable interface that allows us to quickly add items
without having to worry about editing other dependent components as the shop itself
handles instantiation and placement of these.

A more technical look at how scriptable objects are used for modifiers and shop items
can be found in Section 3.4 and Section 3.7.2.

53

Creating a MOBA using Unity

8.1.2 Moving from Confluence to ShareLaTeX for writing the thesis

As seen in Appendix A we had originally planned to use Confluence as the thesis con-
tainer as that would mean having a centralized hub for documentation and the thesis.
We eventually started moving away from Confluence and ended up only using it to docu-
ment any Scrum related meetings and started using ShareLaTeX instead. The reason for
this is that it allows the thesis to look more professional due to the template style sheet
as well as providing a lot of utility tools that make writing the thesis easier. Some of
these include easy access to PDF compilation, BibTeX for formatting and automating ref-
erences as well as being able to work on the thesis in a parallel manner similar to Google
Docs. Another benefit of using ShareLaTeX is that less time is spent worrying about text
formatting as this is mostly handled by the stylesheet from the thesis template.

8.1.3 Decreasing the amount virtual functions using interfaces

The Ability base class in an important intermediary component for making the docking
kits work with networked code. The script itself is not a NetworkBehaviour so it instead
employs virtual functions that get called by networked components to provide synchro-
nized behaviour. One of the issues we experienced throughout development was the fact
that this class would get exceedingly bloated with virtual functions as more features were
required. The worst offender were the functions that allowed abilities to have server call-
backs, providing similar functionality to the ClientRpc attributes of NetworkBehaviour’s.
The issue here was that whenever we wanted to pass parameters we had to first create a
new command in the Docking script due to not being able to overload commands or pro-
vide generic parameters. We then had to create a corresponding virtual function taking
the parameters in the Ability class.

We ended up using interfaces to somewhat alleviate the code bloat. The difference
with using interfaces is that we no longer need to create the additional virtual functions
in Ability for each new type of parameter. Instead, individual abilities can implement
the IServerCallback interface which supports generic parameters. Using this approach
decreases the code bloat a little bit, but we still need to create new commands in Docking
due to the inherent limitations of commands. In any case it helps reduce a little bit of
code bloat so we found it a worthwhile solution.

8.1.4 Providing ergonomic controls when using a twin stick scheme

During the early design phase one of the things we had to decide on was how many
abilities each docking kit would have. We wanted each kit to have enough depth so that
players would have to spend some time properly learning each kit and improving their
play through experience, but we also had to take into account the control scheme that we
were targeting. The abilities of each kit should be easy to access when using a controller
while moving about and aiming at the same time. This leaves us with a rather limited
selections of buttons to use.

We have the shoulder buttons, triggers and stick buttons available. We decided that
each kit would have four abilities each as the triggers and shoulder buttons are the most
ergonomic to use with the dual stick scheme. Using the stick buttons for additional abil-
ities would also have been possible, but we could imagine some imprecise aiming if for
example an ability was bound to the right stick button. Less frequently used functionality
like opening the shop and docking/undocking could then mapped to the primary ABXY,

54

Creating a MOBA using Unity

Start and Select buttons.

8.1.5 Updating game engine versions during development

Whenever developing games in a constantly updated engine like Unity or Unreal it is in-
evitable that new versions are released. These new versions come in different shapes and
forms. Minor releases mostly contain bug fixes and small changes while major releases
introduce new functionality and might end up deprecating old features. In cases where
changes or new functionality might be beneficial for the project, one has to see whether
spending the time and resources on the upgrade is worth it.

While testing the game during sprint reviews, one of the issues we ended up experi-
encing at times were random disconnects with seemingly limited error messaging given
for debugging. Researching into the issue a bit on the Unity forums suggested it could be
related to the 4KB/s bandwidth limit of Unity. At the same time the issue could simply be
related to a inconsistent wireless network at the location we were testing, but we started
to think a bit about bandwidth optimization anyways.

One of the most apparent optimization’s we could perform was to move from Unity3D
back to Unity2D with the release of Unity 5.6. We originally started working with Unity3D
due to the fact that it provided NavMeshes [26] which would be beneficial in the case that
we had the time to work on player bots. Unity 5.6 introduced NavMeshes for the (x, y)
plane making it possible for us to port the game back to 2D. Doing so would substantially
decrease network bandwidth usage since there were no dependencies on 3D components.

One of the pieces of data we synchronise often are Vector3’s consisting of three floating
point values. Synchronized Rigidbody components in particular consist of many physics
related vectors [27]. Moving to Unity2D would cut the bandwidth usage for any Rigid-
body and vector synchronization by 1

3
which is a fairly significant improvement in net-

work performance. Another side effect of moving over to 2D would be cheaper ray cast-
ing. The FieldOfView component uses a lot of ray casts to create its view mesh so the
performance of this script in particular would improve. 2D Raycasts also give some ad-
ditional quality of life functionality like providing sorted arrays in order of distance from
the origin point when raycasting for multiple colliders.

Another useful piece of functionality that only works with Unity2D is the PolygonCol-
lider2D component which allows Unity to dynamically create colliders out of sprites.
Unity offers similar functionality for 3D using the MeshCollider component, but creating
sprites is generally far quicker and easier than using 3D models for simple shapes like
cones and hollow circles.

We ultimately decided against transferring over to Unity2D due to the fact that the
release of Unity 5.6 happened very late into the development cycle. We thought that
moving over to Unity2D would take too much time and given that we had no conclusive
evidence of hitting the bandwidth limit we would rather spend the resources on writing
and improving the thesis instead.

8.1.6 Player field of view versus raycasts for visibility checking

One idea that we thought of while developing was to use the field of view component
for visibility checking rather than regular ray casting. This would allow abilities like the
flash grenade in the brawler kit to only stun players who had the grenade in their field

55

Creating a MOBA using Unity

of view at the time of explosion rather than using a raycast + dot product. We ultimately
decided against implementing this due to a few reasons.

The first reason is that the field of view is fairly computationally expensive. The com-
ponent uses many raycasts to dynamically generate a mesh that we use as a visibility
mask for the players. It would not be possible to directly synchronise the generated
meshes so we would have to synchronise the various variables for the component itself
and reconstruct the field of view on the server. Doing so would allow us to have a player
local field of view for the sake of responsiveness while using the server’s version for any
visibility checking. This could work if the server was ran as a dedicated server, but our
project is primarily focused on trying to create a MOBA using peer to peer connectivity
so a implementation like this would not be very effective as it would place a lot of extra
load on the host player.

A server authoritative visibility check like this would be far better for security reasons
compared to local checking. We currently have a middle ground where the server uses
raycasts and dot products to check player face directions. This is independent of the field
of view component so we have less control in regards to limiting the view angles as the
server would need to acquire the view angle of the clients to check consistently with their
current field of view.

Another issue is that keeping the field of view synchronized would take a fair share of
additional bandwidth if we want the server to keep itself updated frequently. Given the
fact that players move and are able to rotate quickly and arbitrarily, a very high update
rate or interpolation would have to be employed for the server to stay consistent with
the local player. Since players can rotate arbitrarily and quickly, using interpolation for
the field of view would be somewhat of a challenge as determining whether the player
rotated clockwise or counter clockwise to the current rotation would be hard without
synchronising additional data. This would require a fairly massive rework of the current
implementation.

8.1.7 Sticking with dual stick controls

Dockit League is primarily developed with a twin stick controller setup in mind. This is
mostly due to the fact that other control options were outside of the scope for the project.
One might think that providing similar controls through the use of a mouse would be
simple, but it brings somewhat of a balancing issue. Making the player face towards the
direction of the mouse pointer is generally what we would think of as the simplest and
most intuitive implementation of the mouse control scheme. The main problem with
this implementation is that aiming becomes easier for players using a mouse. To give an
example, two players standing still at different positions want to fire at each other with
a projectile. One uses a mouse while the other uses a controller. The player using the
mouse can simply hover the mouse cursor over the other player for accurate aim while
the player using the controller needs to aim by approximately pointing the right stick in
the correct direction.

To provide similar behaviour between the controller and mouse options we would
need to make the mouse controls work more similarly to that of a controller stick. The
mouse cursor could be hidden and reset to the center of the screen each frame while
recording any changes in mouse movement as a direction vector. This vector could then

56

Creating a MOBA using Unity

be used to make the player point in the same direction that the mouse is moving. This
would balance the two control schemes to some degree, but we believe that mouse con-
trols like the ones we described might end up feeling too unintuitive for players. Due to
this we ended up deciding to stick with the controller dual stick scheme for our project
scope.

8.2 Experiences with the HLAPI of Unity

The HLAPI of Unity has been very useful for us when developing Dockit League. It pro-
vides a good high level API that has somewhat of a learning curve, but is generally easy
to use once we had worked more with it. It is not without its flaws however. Certain
functionality like host migration is still broken to this date as noted by other developers
on the Unity forums [28] and Reddit [29]. Host migration in particular is a very essential
feature for a peer to peer based game as it prevents everyone from disconnecting when
the host disconnects. There is also somewhat lacking debugging tools available for the
networking. A lot of error messages related to disconnects are vague and it is also not
possible to directly measure bandwidth usage in the profiler. This would be useful for
developers wanting to know how much of the bandwidth limit they used so they could
optimize parts of the networking accordingly.

The base documentation for Unity’s network components is fairly decent in our opin-
ion, but there are parts where the quality of documentation drops to an unacceptable
level. The LobbyManager and its lobby related systems are horribly documented with
only two example projects available in the Asset Store. There is a distinct lack of overar-
ching documentation for how the lobby components work in these projects. To quote the
documentation from one of the sample projects on the Asset Store [30]:

"The main prefab is in "Prefabs/LobbyManager". This is a canvas with the LobbyMan-
ager script on it. It have multiple child that setup the UI & different "screens" of the
lobby (i.e. Server List, Player Lsit etc...)

Everything above the "Unity UI Lobby" section in the Manager Inspector is from Uni-
tyEngine.Networking.NetworkLobbyManager, so see the doc for it to see an explaina-
tion for all of them.

Prematch countdown is the time between all players being ready & the game starting.

The Lobbymanager script have reference to all the different screens for easy access.
if you totally replace one of those screens, set its reference there"

The documentation in the project is filled with badly written grammar and refers to
documentation that barely exists on Unity’s web pages.

8.3 Observations from sprint statistics

We will take a brief look at Figure 26 which illustrates the burndown chart of the 4th
sprint during development as it shows data that was fairly consistent throughout the
other sprints.

The first observation is that most issues generally were finished throughout the second
week of the sprint rather than issues regularly finished as the guideline suggests. This is
mostly due to the fact that the issues were rather large and not split up into subtasks very
often. Doing so would better reflect project progress on Jira, but at the same time this

57

Creating a MOBA using Unity

Figure 26: The burndown chart for the 4th sprint shows how sprints generally progressed on
average throughout the project.

would incur a fair amount of additional overhead per sprint by having to set up subtasks
per issue.

The next apparent observation is overscope. Most of the sprints after sprint 1 ended
up having some overscope. The overscope was mostly related to being able to finish a
docking kit while also working on other functionality of the game at the same time. This
could certainly have been improved by looking at the statistics of previous sprints and
manage expectations accordingly. The estimations for some of the game functionalities
ended up being estimated for lower story point values than they required due to unex-
pected issues and bugs which resulted in a lack of resources needed to finish some of the
docking kits for the sprint.

8.3.1 Looking at the use of Scrum in retrospect

In relation to actually working on docking kits, fortnightly sprints ended up fitting well.
Designing and implementing the base functionality of most kits required one week of
time while the other week was spent on bug fixing and polish.

Working with Jira allowed us to setup sprints and issues in a tidy manner, but had a
lot of additional functionality we never used although we can imagine a lot of it being
useful for managing larger teams.

Despite there having been some overscope during development, using Scrum allowed
us to continue developing new increments without necessarily cutting or rushing core
functionality of the game due to direct deadlines. The benefit of also having a rather
relaxed scope for the game was that it meshed well with Scrum and agile development
in general.

The daily standup meetings in particular were quite useful to us. They helped each
group member to stay updated with the different components of the project and worked
well as a daily discussion around core functionality requirements as the development
progressed. There was a fair amount of uncertainty around the requirements for the core
components at the start of the development process. As more kits were implemented we

58

Creating a MOBA using Unity

started being able to use these daily meetings to discuss the various requirements our
components needed to work with the designs of the different docking kits.

59

Creating a MOBA using Unity

9 Conclusion

We are happy with choosing Unity as our engine as we learned a lot of new things in
the process of developing the game. We got a better understanding of the HLAPI and its
strengths as well as weaknesses. The Unity low level API was also available, but we didn’t
delve too much into its functionalities. There are currently alternatives to the HLAPI in
development [31] which could fix some of the issues we experienced and having already
used the HLAPI allows us to better judge and compare these API’s in the future.

We ended up with a good and flexible architecture in terms of adding new Docking
Kits, Abilities and Modifiers as seen from the amount of kits we ended up making. This
is also in part thanks to Scriptable Objects which we learned to use during development.
The knowledge of how to use Scriptable Objects is something that will be very useful for
any future development in Unity.

The game might not have gotten as robust networking wise as we might have wanted
due to there not being time for much polish, but despite this, we didn’t run into any major
network related bugs during playtesting so the code and architecture is fairly stable in
that regard. We managed to meet our learning goals by implementing a large project
with large networked components although there wasn’t much time for balancing other
than the initial balance iteration. Designing and implementing docking kits with varying
and interesting abilities ended up being quite the challenge, but we are very happy with
the amount of kits we managed to implement in the end.

We gained experience with how to use tools like Jira by integrating it with BitBucket
and managing issues in the backlog through the use of smart commits. We also found Jira
to be a very helpful tool for Scrum activities like planning poker and managing sprints.
Confluence was less used than originally intended, but we still attained some further
knowledge by using it as a tool for meeting notes and design decision documentation.

9.1 Future Work

As we mentioned in Section 7.2.7 we will be spending some time before the presentation
to polish the game and visuals. We might also end up taking some of the other feedback
from the playtesters and tweak various parts of the game while doing the visual polish for
a better game experience. Other than that, we have no future plans for the development
of the game after the presentation.

60

Creating a MOBA using Unity

Bibliography

[1] 2017. Unity engine’s usage statistics. https://unity3d.com/public-relations.
(Visited May 2017).

[2] 2017. Unity manual - networking overview. https://docs.unity3d.com/Manual/
UNetOverview.html. (Visited May 2017).

[3] Valve Corporation. 2012. Counter-strike: Global offensive. [PC Digital Download].

[4] Gregory, J. 2014. Game Engine Architecture, 2nd Edition. A K Peters/CRC Press,
Chapter 15.2.

[5] 2017. Unity manual - creating and using scripts. https://docs.unity3d.com/
Manual/CreatingAndUsingScripts.html. (Visited May 2017).

[6] 2017. Unity asset store - tanks!!! reference project. https://www.assetstore.
unity3d.com/en/#!/content/80165. (Visited May 2017).

[7] 2017. Github - field-of-view. https://github.com/SebLague/Field-of-View.
(Visited May 2017).

[8] 2017. Unity manual - networking: Object spawning. https://docs.unity3d.com/
Manual/UNetSpawning.html. (Visited May 2017).

[9] Keith, C. 2010. Agile game development with Scrum. Pearson Education.

[10] Pettersen, T. 2012. The complete guide to unity & git. http:
//www.gamasutra.com/blogs/TimPettersen/20161206/286981/The_complete_
guide_to_Unity__Git.php#Unity_Git_Hosting. (Visited May 2017).

[11] Microsoft naming guidelines. https://msdn.microsoft.com/en-us/library/
ms229002(v=vs.110).aspx. (Visited May 2017).

[12] Microsoft c# code guidelines. https://msdn.microsoft.com/en-us/library/
ff926074.aspx. (Visited May 2017).

[13] Raymond, E. S. Indent styles. http://www.catb.org/jargon/html/I/
indent-style.html. (Visited May 2017).

[14] Burgun, K. 2012. Game Design Theory: A New Philosophy for Understanding Games.
A K Peters/CRC Press, Chapter 2.

[15] Bernier, Y. W. 2001. Latency compensating methods in client/server in-game pro-
tocol design and optimization. In Game Developers Conference, volume 98033.

[16] 2017. Unity documentation - animationcurves. https://docs.unity3d.com/
ScriptReference/AnimationCurve.html. (Visited April 2017).

61

https://unity3d.com/public-relations
https://docs.unity3d.com/Manual/UNetOverview.html
https://docs.unity3d.com/Manual/UNetOverview.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://www.assetstore.unity3d.com/en/#!/content/80165
https://www.assetstore.unity3d.com/en/#!/content/80165
https://github.com/SebLague/Field-of-View
https://docs.unity3d.com/Manual/UNetSpawning.html
https://docs.unity3d.com/Manual/UNetSpawning.html
http://www.gamasutra.com/blogs/TimPettersen/20161206/286981/The_complete_guide_to_Unity__Git.php#Unity_Git_Hosting
http://www.gamasutra.com/blogs/TimPettersen/20161206/286981/The_complete_guide_to_Unity__Git.php#Unity_Git_Hosting
http://www.gamasutra.com/blogs/TimPettersen/20161206/286981/The_complete_guide_to_Unity__Git.php#Unity_Git_Hosting
https://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms229002(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff926074.aspx
https://msdn.microsoft.com/en-us/library/ff926074.aspx
http://www.catb.org/jargon/html/I/indent-style.html
http://www.catb.org/jargon/html/I/indent-style.html
https://docs.unity3d.com/ScriptReference/AnimationCurve.html
https://docs.unity3d.com/ScriptReference/AnimationCurve.html

Creating a MOBA using Unity

[17] Schell, J. 2014. The Art of Game Design: A book of lenses. CRC Press, Page 174-176.

[18] Burgun, K. 2011. Understanding game balance in video games.
http://www.gamasutra.com/view/feature/134768/understanding_balance_
in_video_.php. (Visited April 2017).

[19] Android developer tutorial - menu navigation. https://developer.android.com/
training/implementing-navigation/temporal.html. (Visited May 2017).

[20] Dockit league - bitbucket repository. https://bitbucket.org/Knitram/
dockitleague.

[21] Dockit league - windows x86 build. https://developer.cloud.unity3d.com/
share/W1f8FymOHG/.

[22] Dockit league - windows x64 build. https://developer.cloud.unity3d.com/
share/byS7cJX_Bz/.

[23] Dockit league - macos build. https://developer.cloud.unity3d.com/share/
-yLt5kQurM/.

[24] Dockit league - linux build. https://developer.cloud.unity3d.com/share/
ZkwbsymuBG/.

[25] 2016. Unite europe 2016 - overthrowing the monobehaviour tyranny in a glorious
scriptableobject revolution. https://www.youtube.com/watch?v=VBA1QCoEAX4.

[26] 2017. Unity documentation - navmeshes. https://docs.unity3d.com/
ScriptReference/AI.NavMesh.html. (Visited May 2017).

[27] Unity documentation - rigidbodies. https://docs.unity3d.com/
ScriptReference/Rigidbody.html. (Visited May 2017).

[28] Unity forums - feedback thread for the hlapi. https://forum.unity3d.com/
threads/official-multiplayer-improvements.390823/page-3.

[29] Reddit - game developer shares issues with unity’s hlapi. https:
//www.reddit.com/r/gamedev/comments/5l26if/6_months_later_this_
is_why_were_migrating_from/.

[30] Unity asset store - example lobby project. https://www.assetstore.unity3d.
com/en/#!/content/41836.

[31] Main page for photon thunder - a current in development networking alternative
to hlapi. https://www.photonengine.com/en/Thunder.

62

http://www.gamasutra.com/view/feature/134768/understanding_balance_in_video_.php
http://www.gamasutra.com/view/feature/134768/understanding_balance_in_video_.php
https://developer.android.com/training/implementing-navigation/temporal.html
https://developer.android.com/training/implementing-navigation/temporal.html
https://bitbucket.org/Knitram/dockitleague
https://bitbucket.org/Knitram/dockitleague
https://developer.cloud.unity3d.com/share/W1f8FymOHG/
https://developer.cloud.unity3d.com/share/W1f8FymOHG/
https://developer.cloud.unity3d.com/share/byS7cJX_Bz/
https://developer.cloud.unity3d.com/share/byS7cJX_Bz/
https://developer.cloud.unity3d.com/share/-yLt5kQurM/
https://developer.cloud.unity3d.com/share/-yLt5kQurM/
https://developer.cloud.unity3d.com/share/ZkwbsymuBG/
https://developer.cloud.unity3d.com/share/ZkwbsymuBG/
https://www.youtube.com/watch?v=VBA1QCoEAX4
https://docs.unity3d.com/ScriptReference/AI.NavMesh.html
https://docs.unity3d.com/ScriptReference/AI.NavMesh.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html
https://forum.unity3d.com/threads/official-multiplayer-improvements.390823/page-3
https://forum.unity3d.com/threads/official-multiplayer-improvements.390823/page-3
https://www.reddit.com/r/gamedev/comments/5l26if/6_months_later_this_is_why_were_migrating_from/
https://www.reddit.com/r/gamedev/comments/5l26if/6_months_later_this_is_why_were_migrating_from/
https://www.reddit.com/r/gamedev/comments/5l26if/6_months_later_this_is_why_were_migrating_from/
https://www.assetstore.unity3d.com/en/#!/content/41836
https://www.assetstore.unity3d.com/en/#!/content/41836
https://www.photonengine.com/en/Thunder

Creating a MOBA using Unity

A Initial Project Plan

A.1 Background

We’re three game programming students, and naturally we are going to make a game
to end our degree as that is what this bachelor is about. We want to use this project
to learn valuable skills preparing us for the future. The design of the game allows us
to focus on the networking aspects of game development. Figuring out good practices
for local responsiveness coupled with consistent networked behaviour and how to im-
plement these is something we would like to learn. This is good knowledge to have in
a world where multiplayer, and the ability to stay connected is very important, even in
games. The amount of abilities will challenge us when it comes to game design and bal-
ance between a large amount of components, and will push our knowledge in the design
aspect of game development.

A.2 Technology

We’ll use Unity as a game engine. Unity is an engine used by a lot by Norwegian develop-
ers, and an engine heavily used worldwide [1]. We already have some experience with
Unity, so we want to expand our knowledge. Using a game engine is beneficial because it
allows us to focus on making a game, rather than constructing the components we need
to create a game.

We will be using Toggl as our primary tool for time tracking. It’s easy to use and allows
us to track time spent by the team and what we spent time on. Another benefit of using
Toggl is that it can be integrated to Jira allowing us to display time data directly in Jira.

We will use a combination of Jira, Confluence and Bitbucket for project management
and issue tracking, documenting and source code respectively. These are to be part of
the professional programming course, and we already have some experience using these
tools. They’re all part of Atlassian software development tools, which makes them fairly
easy to integrate with each other.

Our primary IDE will be Visual Studio 2015 as it provides us with integrated testing
tools with Unity like breakpoints and step by step debugging.

Group communication will be done through Discord as all the group members are
familiar with it and uses it regularly.

A.3 Project Goals

The goals of this project is to have a balanced and entertaining game at the end of
semester. In addition to being robust in the sense of proper handling of disconnects,
packet delays and packet loss. During this project we want to learn and improve our
Unity knowledge. We want to learn more about networking in Unity, how we effectively
handle client/server verification and how we provide a consistent and responsive user
experience locally. We also want to improve our knowledge regarding Artificial Intelli-
gence by implementing player-like bots (possibly self-learning) and a “replay highlight

63

Creating a MOBA using Unity

selection”-AI if there is enough time.

One of the other things we want more experience with is asymmetric balancing on a
larger scale. We will have to balance individual abilities as well as entire kits. This has
to be balanced towards multiple players using different kits in combination with each
other. We will have to make sure that overall docking kit balance is somewhat good to
avoid scenarios where everyone just uses the same docking kit because it is superior in
each and every case. In the Standard Game Mode docking kits will have different prices,
and therefore their strength needs to correspond the price.

Although the visuals are not our priority we’ll use Unity shaders for different visual
effects, for instance abilities. The fog of war will be solved using masking shaders. We
want to learn how to make use of professional tools such as Jira and Confluence for
project management. We want to improve our ability to estimate the time it takes to
implement features and work with smart/semantic commits for issue management.

A.4 Scope

Areas of Expertise

This project will include many disciplines from game development and game program-
ming. The main parts of this will be gameplay design and balancing abilities for docking
kits, and then network these. We’ll also need to handle user input, and the responsiveness
challenge when it comes to users triggering networked abilities. We’ll have a user inter-
face to display each ability and player health. Graphics and animations will be simplistic
and somewhat abstract since this isn’t a priority, and we’re no artists.

Scope Limitations

We will be focusing on finishing the standard game mode first and add a few docking
kits. The scope is variable due to the nature of the game. It focuses on having a variety
of abilities, and we can simply add/drop making more as the project goes on. The same
goes for game modes.

Task Description

Dockit League is a top-down multiplayer battle arena game in which players control
vehicles that gets different abilities by equipping docking kits. Taking inspiration from
key features in other popular games, we hope to make a fun and unique experience.

The Standard Game Mode features two teams that play against each other in multiple
short rounds, before swapping sides. The sides are asymmetric, meaning if the round
timer runs out, the attacking team loses. There will be control points around the map,
the attacking team needs to conquer one of these in order to win the round.

Each player can equip one docking kit. These kits consist of four abilities each. In
the Standard Game Mode these kits may be bought during the buy time at round start,
and the price will vary depending on kit strength. This means that a player will have
to save their currency over multiple rounds in order to get any kit. Most of the abilities
have some sort of interaction between each other, both within a docking kit, and with
other kits. This allows teams to choose between different strategies, either for executing
a strategy themselves, or to counter the enemy’s strategy.

The players will have a field of view and a sight radius, the size of these may vary

64

Creating a MOBA using Unity

depending on their equipped docking kits. Areas outside of this field will be fog of war.

A.5 Project Structure

Roles, Responsibilities

We have divided the group into roles and responsibilities. Martin has been appointed as
project lead while Andreas and Sondre are developers. Other responsibilities:

Andreas: Documenting meetings/decisions

Martin: Scrum Master

Group rules and routines

We have outlined some group rules as an attachment to the project agreement. Other
than those, some general routines will be to document all design decisions and write
short summaries from all meetings in Confluence. All group members are required to
show up to meetings. If this is not possible, a notification from the missing group member
is needed beforehand.

A.6 Planning, supervision and documentation

Choice of system engineering model

We have decided to use Scrum for this project. Developing games is generally an agile
and iterative process, and being flexible is a must. Therefore an agile model like Scrum is
ideal for the project. Another reason for Scrum is that we wish to learn using professional
tools like Jira and Confluence. Scrum works nicely with both of these. Finally, using
Scrum allows us to generate a lot of extra documentation during the project due to the
amount of meetings, which is going to be quite useful when writing the thesis itself.

We are planning to have fortnightly sprints with daily standup meetings. Thursdays
will be used for “sprint meetings” consisting of the review, retrospective and planning
meeting. Each meeting will have a short summary written which will be added to the
Confluence pages.

Plan for status meetings and decision points

We do not have any external clients for this project, but we will have regular status
meetings with Simon McCallum who is the project supervisor.

A.7 Quality Assurance

Documentation and code standard

We will be using a good amount of Atlassian’s available tools for the project. Confluence
will be used for documentation and as the thesis container while Jira will be used for
management of Scrum and issues. We are going to enforce a common coding convention
that all group members are required to use. The project’s coding convention is going to be
the “One True Brace” style. We will also be using doxygen style comments for functions.

Configuration management

We will be using a Bitbucket repository with git as our primary means of version control
and source code storage. The repository will be separated into several branches:

65

Creating a MOBA using Unity

• We will have a master branch that always has a stable build of the project. This
branch will generally get updated after sprints are done.

• There will be a development branch where we add features that are in development
during sprints.

• Each member also has his own branch where work is done and merged into the
development branch once the work is done.

Testing and issue tracking

Playtesting is something that we will do on a daily basis as we implement the various
features we are working on. Issue tracking is going to be handled through Jira using
smart commits when pushing code to the Bitbucket repository.

A.8 Implementation plan

Gantt chart

Figure 27: Gantt chart from initial project plan

Milestones and Decisions

We currently only have two major milestones in mind for the project. The first milestone
is a working prototype of the game with a finished docking system. The second milestone
is to have a working prototype with the standard game mode implemented. Due to the
variable scope of the project it’s hard to estimate further milestones after this at this time.

All important design decisions and sprint meeting summaries will be documented in
Confluence. The thesis itself will also be written directly in Confluence and later extracted
to a PDF file.

Time and resouce plan

Time and resource planning will be done with the help of planning poker using story
points, which will be done during the fortnightly sprint meetings, in accordance to our
Scrum model.

66

Creating a MOBA using Unity

B Meeting Logs

B.1 Temporal record of meetings

11.01.2016 - Bachelor Information Meeting

Discussion of the process and setup of the thesis. Deadlines for submission of documen-
tation. Introduction to the process and the sessions to help with writing the thesis.

24.01.2017

Met with supervisor to discuss the project. Actions:

1. Decide on a writing tool
2. Install development environment
3. Finish project plan

30.01.2017

First Sprint Planning Meeting for the project. Topics included:

Verify product backlog: The focus of the first sprint would be on project start up and
docking kit architecture

Primary issues of sprint:

1. Main Menu lobby containing join/leave functionality
2. Docking kit architecture
3. Marksman kit

09.02.2017

Second Sprint meeting consisting of review, retrospective and planning:

• What did we do well?

◦ Scoped well for the first sprint.
◦ Initial docking kit architecture is very robust
◦ Meeting up for daily scrum stand up
◦ Good use of Toggl
◦ Lobby seems to be fairly robust so far

• What should we have done better?

◦ The start was a bit messy especially for Sondre and Martin as they struggled
to parallellise the process of creating the first docking kit and architecture.

◦ Everyone could get a bit better at using smart commits more often and prop-
erly

• Plan for next sprint:

◦ Primary focus on docking kits

67

Creating a MOBA using Unity

◦ Bomber, Tank and Brawler kits
◦ Health management
◦ Status effects

23.02.2017

Third Sprint meeting consisting of review, retrospective and planning.

The scope for modifiers/status effects was a bit off so we had to spend a fair share of
extra time to get it working properly. The Tank and Bomber kit were also unfinished by
the end of the sprint so their completion has been put in the backlog for the next sprint.

• What did we do well?

◦ Made a good and generic base architecture for our modifiers

• What should we have done better?

◦ Remembering to set Jira issues to "in progress" once work has started.
◦ Sondre would have liked to start his work a bit earlier.
◦ Andreas got a bit stuck trying to restructure brawler abilities. Should have

taken some extra time to properly get into the new modifiers architecture.
◦ Modifiers took longer to implement than expected

• Plan for next sprint:

◦ Finish the docking kits (Tank and Bomber) that were left over from the previ-
ous sprint

◦ Trapper Kit.

09.03.2017

Fourth Sprint meeting consisting of review, retrospective and planning.

We got some decent progress during the previous sprint, but there are still some
unfinished components for certain kits. We are kind of building the docking and ability
architecture as we go. This is mainly because it is really hard for us to predict what we
are going to need in the future. Working in a agile manner like this adds some additional
overhead to the issues when working in several of the sprints. This sprint in particular
required us to do a fair share of architectural work in order to provide abilities with the
tools they needed to function as intended.

• Plan for the next sprint:

◦ Finish and polish all current kits as well as adding a few new ones to prepare
for the implementation of the standard game mode.

◦ Sniper and Boomerang kits
◦ Revamp of the Marksman kit
◦ Getting familiar with ShareLaTeX

10.03.2017

Met with supervisor to discuss progress. Actions:

1. Start thinking about thesis topics.

68

Creating a MOBA using Unity

23.03.2017

Fifth Sprint meeting consisting of review, retrospective and planning.

The new kits developed during this sprint had pretty fun and interesting mechanics so
we are fairly happy with their implementation. At this stage in development, the general
workflow of creating docking kits has also been fairly solidified so efficiency slowly keeps
increasing as we make more kits. We also performed a lot of code cleanup by trading
virtual ability functions for interfaces which helps reduce boilerplate and improve code
readability.

In hindsight, we probably should have started to use interfaces earlier to make the
code more clear and remove redundancy. There was still a bit of underscope this sprint
as well for some kits, but not by much this time.

The plan for the next sprint is to focus more on gameplay now that we have a decent
amount of docking kits. We want to implement the standard game mode, in-game shop
and start making sure that the various docking kits properly synchronise their behaviour
based on teams rather than just local/non-local players. Since there are three of us on the
group we decided to add another docking kit to the scope of this sprint so that everyone
has something to work with as well.

24.03.2017

Met with supervisor to discuss progress. Actions:

1. Transition more and more into thesis writing. Finish the most important function-
ality of the game that is required to be properly playable and write about the in-
teresting challenges that we have encountered throughout the development of the
game.

07.04.2017

Sixth Sprint meeting consisting of review, retrospective and planning.

The shop functionality ended up being finished a bit earlier than expected. This al-
lowed us to spend some extra time on writing the thesis, which can be thought of as
a good thing. We should probably have split up the standard game mode rather than
thinking of it as a singular large task that would take multiple sprints to finish as it
would reflect the progress better on Jira.

The upcoming sprint takes place during Easter holidays so we don’t expect too much
progress taking place. What we would like to do is to move from Unity3D back to Unity2D
as it cuts down a lot of data to synchronise across the network. We will end up saving one
float for each Vector3 that we synchronise, which is a considerable amount. We believe
that we are already close to hitting Unity’s 4KB bandwidth limit so this is something
we think might be worth spending some time to do. It might take some time to fix, but
ultimately we think it might be worth it. We would also like to take some time to write
more in the thesis.

20.04.2017

Seventh Sprint meeting consisting of review, retrospective and planning.

As expected, we did not get that much work done during the easter holidays. We
did manage to get some writing done on the thesis, including a good draft for different

69

Creating a MOBA using Unity

topics to write about though. While moving to Unity2D might be good for the network
performance of the game, the time spent porting the code might end up being better
used on the thesis instead.

The plan for the upcoming sprint is to primarily focus on writing the thesis and fin-
ishing up the last few components needed for the game to be complete. User testing will
start taking place the moment the standard game mode is finished.

04.05.2017

Eighth and final Sprint meeting consisting of only review given that this was the final
sprint.

Game functionality is pretty much finished at this point and we’re fully focusing on
writing the thesis. We still need to integrate the shop with the game mode rounds, but
that should be fairly trivial. We also got a lot of progress on the thesis the last two weeks
so that is also good. There are no further sprints, but we will be focusing the rest of our
time on finishing up the thesis and performing user testing.

70

Creating a MOBA using Unity

C Playtesting feedback and survey statistics

This appendix includes the Google Form questions and answers for the playtesters and
includes statistics for the different answers. One of the longer answers ended up not
being printed fully due to limitations with Google Form and printing to PDF.

71

Creating a MOBA using Unity

72

Creating a MOBA using Unity

73

Creating a MOBA using Unity

74

Creating a MOBA using Unity

75

Creating a MOBA using Unity

76

Creating a MOBA using Unity

D Doxygen documentation

This appendix includes a full doxygen documentation output from the project source
code starting from the next page.

77

Dockit League

Generated by Doxygen 1.8.13

Creating a MOBA using Unity

78

Creating a MOBA using Unity

79

Contents

1 Hierarchical Index 1

1.1 Class Hierarchy . 1

2 Class Index 7

2.1 Class List . 7

3 Class Documentation 11

3.1 Ability Class Reference . 11

3.1.1 Detailed Description . 12

3.1.2 Member Function Documentation . 13

3.1.2.1 ButtonDown() . 13

3.1.2.2 ButtonUp() . 13

3.1.2.3 CancelAbility() . 13

3.1.2.4 CooldownReady() . 13

3.1.2.5 Initialize() . 13

3.1.2.6 InitializeLocalPlayer() . 14

3.1.2.7 ReduceCooldown() . 14

3.1.2.8 SetActive() . 14

3.1.2.9 SetElement() . 15

3.1.2.10 SetModifier() . 15

3.1.2.11 Update() . 15

3.1.3 Property Documentation . 16

3.1.3.1 AbilityLock . 16

3.2 AbilityCooldown Class Reference . 16

Creating a MOBA using Unity

80

ii CONTENTS

3.2.1 Detailed Description . 16

3.2.2 Constructor & Destructor Documentation . 16

3.2.2.1 AbilityCooldown() . 16

3.2.3 Member Function Documentation . 17

3.2.3.1 Activate() . 17

3.2.3.2 ActivateHiddenCooldown() . 17

3.2.3.3 IsReady() . 17

3.2.3.4 ReduceCooldown() . 17

3.2.3.5 Update() . 18

3.3 AbilityUI Class Reference . 18

3.3.1 Detailed Description . 18

3.3.2 Member Function Documentation . 18

3.3.2.1 Activate() . 19

3.3.2.2 ClearAbility() . 19

3.3.2.3 Initialize() . 19

3.3.2.4 SetAbility() . 19

3.3.2.5 UpdateCooldown() . 20

3.4 AnnouncerModal Class Reference . 20

3.4.1 Detailed Description . 20

3.4.2 Member Function Documentation . 20

3.4.2.1 Awake() . 21

3.5 BasicAbility Class Reference . 21

3.5.1 Member Function Documentation . 21

3.5.1.1 ButtonDown() . 21

3.5.1.2 SetActive() . 21

3.6 BasicSlash Class Reference . 22

3.6.1 Member Function Documentation . 23

3.6.1.1 ButtonDown() . 23

3.6.1.2 Initialize() . 23

3.6.1.3 SetActive() . 23

Generated by Doxygen

Creating a MOBA using Unity

81

CONTENTS iii

3.6.1.4 SetElement() . 24

3.6.1.5 SetModifier() . 24

3.6.1.6 Update() . 24

3.7 Blast Class Reference . 24

3.7.1 Member Function Documentation . 25

3.7.1.1 ButtonDown() . 25

3.7.1.2 Initialize() . 25

3.7.1.3 OnTriggerEnter() . 26

3.7.1.4 SetActive() . 26

3.8 BlindTrap Class Reference . 26

3.8.1 Member Function Documentation . 27

3.8.1.1 HandleTrigger() . 27

3.9 Bola Class Reference . 27

3.10 BoomerangDataContainer Class Reference . 28

3.11 BoomerangRoot Class Reference . 28

3.11.1 Member Function Documentation . 29

3.11.1.1 ButtonDown() . 29

3.11.1.2 SetActive() . 29

3.11.1.3 Update() . 30

3.12 BoomerangThrow Class Reference . 30

3.12.1 Member Function Documentation . 31

3.12.1.1 ButtonDown() . 31

3.12.1.2 ButtonUp() . 31

3.12.1.3 Initialize() . 31

3.12.1.4 SetActive() . 32

3.12.1.5 SetElement() . 32

3.12.1.6 SetModifier() . 32

3.12.1.7 Update() . 33

3.13 BoomerangVision Class Reference . 33

3.13.1 Member Function Documentation . 34

Generated by Doxygen

Creating a MOBA using Unity

82

iv CONTENTS

3.13.1.1 ButtonDown() . 34

3.13.1.2 Initialize() . 34

3.13.1.3 SetActive() . 34

3.13.1.4 SetModifier() . 35

3.14 BuffTestAbility Class Reference . 35

3.14.1 Member Function Documentation . 36

3.14.1.1 ButtonDown() . 36

3.14.1.2 Initialize() . 36

3.14.1.3 SetActive() . 36

3.14.1.4 SetModifier() . 37

3.15 CameraTestAbility Class Reference . 37

3.15.1 Member Function Documentation . 38

3.15.1.1 ButtonDown() . 38

3.15.1.2 CancelAbility() . 38

3.15.1.3 InitializeLocalPlayer() . 38

3.15.1.4 SetActive() . 38

3.16 CaptureTrap Class Reference . 39

3.16.1 Member Function Documentation . 39

3.16.1.1 HandleTrigger() . 39

3.17 CleanseBuff Class Reference . 40

3.17.1 Member Function Documentation . 41

3.17.1.1 ButtonDown() . 41

3.17.1.2 Initialize() . 41

3.17.1.3 SetActive() . 41

3.17.1.4 Update() . 42

3.18 CreateGame Class Reference . 42

3.18.1 Detailed Description . 42

3.18.2 Member Function Documentation . 42

3.18.2.1 OnBackClicked() . 43

3.18.2.2 OnCreateClicked() . 43

Generated by Doxygen

Creating a MOBA using Unity

83

CONTENTS v

3.19 Dash Class Reference . 43

3.19.1 Member Function Documentation . 43

3.19.1.1 ButtonDown() . 44

3.19.1.2 Initialize() . 44

3.19.1.3 SetActive() . 44

3.20 Deathmatch Class Reference . 44

3.20.1 Detailed Description . 45

3.20.2 Member Function Documentation . 45

3.20.2.1 GetGameOverText() . 46

3.20.2.2 GetRoundEndText() . 46

3.20.2.3 HandleRoundEnd() . 46

3.20.2.4 IsEndOfRound() . 46

3.20.2.5 PlayerDies() . 46

3.20.2.6 PlayerDisconnected() . 47

3.20.2.7 StartRound() . 47

3.20.3 Property Documentation . 47

3.20.3.1 ScoreWinTarget . 47

3.21 DLNetworkLobbyPlayer Class Reference . 48

3.21.1 Member Function Documentation . 49

3.21.1.1 CmdColorChange() . 49

3.21.1.2 CmdNameChanged() . 49

3.21.1.3 CmdUpdateReadyState() . 49

3.21.1.4 GetVisuals() . 49

3.21.1.5 OnClientEnterLobby() . 50

3.21.1.6 OnClientReady() . 50

3.21.1.7 OnColorChange() . 50

3.21.1.8 OnColorClicked() . 50

3.21.1.9 OnDestroy() . 50

3.21.1.10 OnNameChange() . 51

3.21.1.11 OnNameChanged() . 51

Generated by Doxygen

Creating a MOBA using Unity

84

vi CONTENTS

3.21.1.12 OnReadyClicked() . 51

3.21.1.13 OnReadyStateChange() . 51

3.21.1.14 OnStartAuthority() . 52

3.21.1.15 ToggleReadyButton() . 52

3.22 DLNetworkManager Class Reference . 52

3.22.1 Member Function Documentation . 53

3.22.1.1 OnClientError() . 53

3.22.1.2 OnLobbyServerCreateLobbyPlayer() . 53

3.22.1.3 OnLobbyServerSceneLoadedForPlayer() . 53

3.22.1.4 OnPlayerNumberModified() . 54

3.23 Docking Class Reference . 54

3.23.1 Detailed Description . 56

3.23.2 Member Function Documentation . 56

3.23.2.1 CancelAbilities() . 56

3.23.2.2 CheckDamagable() . 56

3.23.2.3 CmdDestroyObject() . 57

3.23.2.4 CmdOnPlayerDocking() . 57

3.23.2.5 CmdServerCallback() . 57

3.23.2.6 CmdSetActive() . 58

3.23.2.7 CmdSetDockingKitId() . 58

3.23.2.8 CmdSetModifier() . 58

3.23.2.9 CmdSetSwitchState() . 59

3.23.2.10 CmdSpawnDockingKitPickup() . 59

3.23.2.11 CmdSpawnObject() . 59

3.23.2.12 CmdSpawnObjectReference() . 60

3.23.2.13 GetDockingKit() . 60

3.23.2.14 Initialize() . 60

3.23.2.15 OnAbilityButtonChange() . 60

3.23.2.16 OnDockingButtonDown() . 61

3.23.2.17 OnUndockingButtonDown() . 61

Generated by Doxygen

Creating a MOBA using Unity

85

CONTENTS vii

3.23.2.18 RemoveDockingKit() . 61

3.23.2.19 RpcClientCallback() . 61

3.23.2.20 RpcSetActive() . 62

3.23.2.21 RpcSetSwitchState() . 62

3.23.2.22 SetDockingKit() . 62

3.23.2.23 SetDockingKitStats() . 63

3.23.2.24 SetModifier() . 63

3.23.2.25 SetPlayerInputRestriction() . 63

3.23.2.26 TargetClientCallback() . 64

3.23.2.27 TargetReduceCooldown() . 64

3.23.2.28 TargetSetSpawnObjectReference() . 64

3.24 DockingKit Class Reference . 65

3.24.1 Detailed Description . 65

3.24.2 Member Function Documentation . 66

3.24.2.1 CancelAbilities() . 66

3.24.2.2 Initialize() . 66

3.24.2.3 OnAbilityButtonChange() . 66

3.24.2.4 OnLocalPlayerDocking() . 66

3.24.2.5 OnLocalPlayerInitialization() . 67

3.24.2.6 OnUndocking() . 67

3.24.2.7 SetAbilityLock() . 67

3.25 DockingKitDescriptions Struct Reference . 68

3.26 DockingKitPickup Class Reference . 68

3.26.1 Member Function Documentation . 68

3.26.1.1 OnPlayerDocking() . 68

3.26.1.2 OnStartClient() . 69

3.27 DotTrap Class Reference . 69

3.27.1 Member Function Documentation . 69

3.27.1.1 HandleTrigger() . 70

3.28 ElementalModifiers Class Reference . 71

Generated by Doxygen

Creating a MOBA using Unity

86

viii CONTENTS

3.28.1 Member Function Documentation . 71

3.28.1.1 TransferElementalModifier() . 71

3.29 ExplosiveMine Class Reference . 72

3.29.1 Member Function Documentation . 73

3.29.1.1 RpcRemoveMine() . 73

3.30 ExplosiveMineSpawner Class Reference . 73

3.30.1 Member Function Documentation . 74

3.30.1.1 ButtonDown() . 74

3.30.1.2 OnDestroy() . 74

3.30.1.3 RemoveMine() . 74

3.30.1.4 SetActive() . 74

3.31 FadingGroup Class Reference . 75

3.31.1 Member Function Documentation . 75

3.31.1.1 FadeOutToValue() . 75

3.31.1.2 StartFade() . 76

3.31.1.3 StartFadeOrFireEvent() . 76

3.31.1.4 StopFade() . 76

3.32 FieldOfView Class Reference . 77

3.33 Flamethrower Class Reference . 77

3.33.1 Member Function Documentation . 78

3.33.1.1 ButtonDown() . 78

3.33.1.2 Initialize() . 78

3.33.1.3 SetActive() . 79

3.33.1.4 SetBuffState() . 79

3.33.1.5 SetModifier() . 79

3.34 FlashGrenade Class Reference . 80

3.35 FlashGrenadeSpawner Class Reference . 80

3.35.1 Member Function Documentation . 81

3.35.1.1 ButtonDown() . 81

3.35.1.2 SetActive() . 81

Generated by Doxygen

Creating a MOBA using Unity

87

CONTENTS ix

3.36 Focus Class Reference . 82

3.36.1 Member Function Documentation . 82

3.36.1.1 ButtonDown() . 83

3.36.1.2 CancelAbility() . 83

3.36.1.3 InitializeLocalPlayer() . 83

3.36.1.4 SetActive() . 83

3.37 FogCamera Class Reference . 84

3.38 ForceField Class Reference . 84

3.38.1 Member Function Documentation . 85

3.38.1.1 ButtonDown() . 85

3.38.1.2 Initialize() . 85

3.38.1.3 SetActive() . 85

3.39 FortificationBuff Class Reference . 86

3.39.1 Member Function Documentation . 86

3.39.1.1 ButtonDown() . 87

3.39.1.2 Initialize() . 87

3.39.1.3 SetActive() . 87

3.39.1.4 Update() . 87

3.40 GameManager Class Reference . 88

3.40.1 Member Function Documentation . 89

3.40.1.1 AddPlayer() . 89

3.40.1.2 ClientReady() . 89

3.40.1.3 DisablePlayerControl() . 90

3.40.1.4 EnablePlayerControl() . 90

3.40.1.5 ExitGame() . 90

3.40.1.6 GetDockingKit() . 90

3.40.1.7 HandleEveryoneBailed() . 91

3.40.1.8 HandleKill() . 91

3.40.1.9 Preplay() . 91

3.40.1.10 RemovePlayer() . 91

Generated by Doxygen

Creating a MOBA using Unity

88

x CONTENTS

3.40.1.11 RespawnPlayer() . 91

3.40.1.12 RpcRespawnPlayer() . 92

3.40.1.13 ServerResetAllPlayers() . 92

3.40.1.14 StartUp() . 92

3.41 GameModeProcessor Class Reference . 92

3.41.1 Detailed Description . 94

3.41.2 Member Function Documentation . 94

3.41.2.1 Bail() . 94

3.41.2.2 CompleteGame() . 94

3.41.2.3 GetGameOverText() . 94

3.41.2.4 GetRoundEndText() . 94

3.41.2.5 GetRoundMessage() . 95

3.41.2.6 HandleKillerScore() . 95

3.41.2.7 HandleRoundEnd() . 95

3.41.2.8 HandleSuicide() . 95

3.41.2.9 IsEndOfRound() . 96

3.41.2.10 MatchEnd() . 96

3.41.2.11 PlayerDies() . 96

3.41.2.12 PlayerDisconnected() . 96

3.41.2.13 SetGameManager() . 97

3.41.2.14 StartGame() . 97

3.41.2.15 StartRound() . 97

3.42 GameSettings Class Reference . 97

3.42.1 Member Function Documentation . 98

3.42.1.1 SetMapIndex() . 98

3.42.1.2 SetModeIndex() . 98

3.43 GrenadeLauncher Class Reference . 99

3.43.1 Member Function Documentation . 99

3.43.1.1 ButtonDown() . 99

3.43.1.2 Fire() . 99

Generated by Doxygen

Creating a MOBA using Unity

89

CONTENTS xi

3.43.1.3 SetActive() . 99

3.44 GrenadeShell Class Reference . 100

3.45 HealingAura Class Reference . 100

3.45.1 Member Function Documentation . 101

3.45.1.1 ApplyHealingInArea() . 101

3.45.1.2 ButtonDown() . 101

3.45.1.3 Initialize() . 102

3.45.1.4 SetActive() . 102

3.46 HealthDrainBuff Class Reference . 102

3.46.1 Member Function Documentation . 103

3.46.1.1 ButtonDown() . 104

3.46.1.2 Drain() . 104

3.46.1.3 Initialize() . 104

3.46.1.4 OnTriggerEnter() . 104

3.46.1.5 OnTriggerExit() . 105

3.46.1.6 SetActive() . 105

3.46.1.7 SetModifier() . 105

3.46.1.8 Update() . 106

3.47 HookShot Class Reference . 106

3.47.1 Member Function Documentation . 106

3.47.1.1 ButtonDown() . 107

3.47.1.2 SetActive() . 107

3.48 IClientCallback< T1, T2 > Interface Template Reference . 107

3.48.1 Detailed Description . 108

3.48.2 Member Function Documentation . 108

3.48.2.1 ClientCallback() . 108

3.49 IClientCallback< T1, T2 > Interface Template Reference . 108

3.49.1 Detailed Description . 108

3.49.2 Member Function Documentation . 109

3.49.2.1 ClientCallback() . 109

Generated by Doxygen

Creating a MOBA using Unity

90

xii CONTENTS

3.50 IClientCallback< T1, T2 > Interface Template Reference . 109

3.50.1 Detailed Description . 109

3.50.2 Member Function Documentation . 109

3.50.2.1 ClientCallback() . 110

3.51 IElement Interface Reference . 111

3.52 IHookable Interface Reference . 111

3.52.1 Detailed Description . 112

3.52.2 Member Function Documentation . 112

3.52.2.1 Hooked() . 112

3.53 IInteractable Interface Reference . 112

3.53.1 Detailed Description . 113

3.53.2 Member Function Documentation . 113

3.53.2.1 Interact() . 113

3.54 IModifierProvider Interface Reference . 113

3.54.1 Detailed Description . 114

3.54.2 Member Function Documentation . 114

3.54.2.1 GetModifierInfo() . 114

3.55 InfoPanel Class Reference . 115

3.56 IngameMenuHandler Class Reference . 115

3.56.1 Detailed Description . 116

3.56.2 Member Function Documentation . 116

3.56.2.1 CheckPriceAndEquipAvailability() . 116

3.56.2.2 CompleteShopPurchase() . 117

3.56.2.3 DisplayVerificationPrompt() . 117

3.56.2.4 OnShopDisplay() . 117

3.56.2.5 OnShopSelectionChange() . 117

3.56.2.6 SetFirstSelectedShopObject() . 117

3.56.2.7 SetLastSelectedShopObject() . 117

3.56.2.8 StopHost() . 118

3.57 IRedirectable Interface Reference . 118

Generated by Doxygen

Creating a MOBA using Unity

91

CONTENTS xiii

3.57.1 Detailed Description . 118

3.57.2 Member Function Documentation . 118

3.57.2.1 RedirectDirection() . 118

3.58 IReflectable Interface Reference . 119

3.59 IServerCallback< T1, T2 > Interface Template Reference . 119

3.59.1 Detailed Description . 120

3.59.2 Member Function Documentation . 120

3.59.2.1 ServerCallback() . 120

3.60 IServerCallback< T1, T2 > Interface Template Reference . 120

3.60.1 Detailed Description . 120

3.60.2 Member Function Documentation . 121

3.60.2.1 ServerCallback() . 121

3.61 IServerCallback< T1, T2 > Interface Template Reference . 121

3.61.1 Detailed Description . 121

3.61.2 Member Function Documentation . 121

3.61.2.1 ServerCallback() . 121

3.62 ISpawnableProvider Interface Reference . 122

3.62.1 Detailed Description . 122

3.62.2 Member Function Documentation . 122

3.62.2.1 GetSpawnablePrefab() . 122

3.63 ISpawnableReferenceProvider Interface Reference . 123

3.63.1 Detailed Description . 123

3.63.2 Member Function Documentation . 123

3.63.2.1 SetSpawnedObjectReference() . 123

3.64 ITargetClientCallback< T > Interface Template Reference . 124

3.64.1 Detailed Description . 124

3.65 ITargetClientCallback< T > Interface Template Reference . 124

3.65.1 Detailed Description . 124

3.66 ITargetClientCallback< T > Interface Template Reference . 124

3.66.1 Detailed Description . 124

Generated by Doxygen

Creating a MOBA using Unity

92

xiv CONTENTS

3.67 LifeStealBuff Class Reference . 125

3.67.1 Member Function Documentation . 125

3.67.1.1 ButtonDown() . 125

3.67.1.2 Initialize() . 126

3.67.1.3 IsBuffActive() . 126

3.67.1.4 SetActive() . 126

3.67.1.5 SetModifier() . 126

3.68 LoadingModal Class Reference . 127

3.68.1 Detailed Description . 127

3.68.2 Member Function Documentation . 127

3.68.2.1 FadeIn() . 128

3.68.2.2 FadeOut() . 128

3.68.3 Property Documentation . 128

3.68.3.1 Fader . 128

3.69 LobbyHandler Class Reference . 128

3.69.1 Member Function Documentation . 129

3.69.1.1 AddPlayer() . 129

3.69.1.2 DisplayLobby() . 129

3.69.1.3 GetConnectedPlayers() . 130

3.69.1.4 GetPlayerCount() . 130

3.69.1.5 RemovePlayer() . 130

3.69.1.6 ResetLocalLobby() . 130

3.69.1.7 SetPlayerTeam() . 130

3.70 LobbyPlayer Class Reference . 131

3.71 LobbyPlayerList Class Reference . 132

3.71.1 Detailed Description . 132

3.71.2 Member Function Documentation . 132

3.71.2.1 OnDestroy() . 132

3.71.2.2 Start() . 133

3.72 LobbyServerEntry Class Reference . 133

Generated by Doxygen

Creating a MOBA using Unity

93

CONTENTS xv

3.72.1 Detailed Description . 133

3.73 LobbyServerList Class Reference . 134

3.74 MainMenuHandler Class Reference . 134

3.74.1 Member Function Documentation . 135

3.74.1.1 AddPropertyToStackTop() . 135

3.74.1.2 CreateOnlineMatch() . 135

3.74.1.3 NavigateBack() . 136

3.74.1.4 NavigateTo() . 136

3.74.1.5 StartMatchMaker() . 136

3.75 MainMenuUI Class Reference . 136

3.75.1 Detailed Description . 137

3.75.2 Member Function Documentation . 137

3.75.2.1 DoIfNetworkReady() . 137

3.75.2.2 ShowInfoPopup() . 137

3.76 MapInfo Class Reference . 138

3.77 MapList Class Reference . 138

3.78 MatchListHandler Class Reference . 139

3.78.1 Member Function Documentation . 139

3.78.1.1 OnMatchButtonClick() . 139

3.79 MenuHandler Class Reference . 140

3.79.1 Member Function Documentation . 140

3.79.1.1 OnClickSetFirstSelected() . 140

3.79.1.2 SetCurrentMenuVerificationPrompt() . 140

3.79.1.3 SetFirstSelectedGameObject() . 141

3.80 MenuStackComponent Class Reference . 141

3.81 ModeInfo Class Reference . 142

3.82 ModeList Class Reference . 142

3.83 Modifier Class Reference . 143

3.83.1 Detailed Description . 144

3.83.2 Member Function Documentation . 144

Generated by Doxygen

Creating a MOBA using Unity

94

xvi CONTENTS

3.83.2.1 GetModifierAsset() . 144

3.83.2.2 OnClientEnd() . 144

3.83.2.3 OnClientStart() . 145

3.83.2.4 OnLocalClientEnd() . 145

3.83.2.5 OnLocalClientStart() . 145

3.83.2.6 OnServerEnd() . 146

3.83.2.7 OnServerStart() . 146

3.83.2.8 OnServerTick() . 146

3.84 ModifierBlind Class Reference . 147

3.84.1 Member Function Documentation . 147

3.84.1.1 OnClientEnd() . 147

3.84.1.2 OnClientStart() . 148

3.85 ModifierCleanse Class Reference . 148

3.85.1 Member Function Documentation . 149

3.85.1.1 OnServerEnd() . 149

3.85.1.2 OnServerStart() . 149

3.86 ModifierDoT Class Reference . 150

3.86.1 Member Function Documentation . 150

3.86.1.1 OnServerTick() . 150

3.87 ModifierFlashStun Class Reference . 151

3.87.1 Member Function Documentation . 151

3.87.1.1 OnLocalClientStart() . 151

3.88 ModifierFortification Class Reference . 152

3.88.1 Member Function Documentation . 152

3.88.1.1 OnLocalClientEnd() . 152

3.88.1.2 OnLocalClientStart() . 153

3.89 ModifierHealOverTime Class Reference . 153

3.89.1 Member Function Documentation . 153

3.89.1.1 OnClientEnd() . 154

3.89.1.2 OnClientStart() . 154

Generated by Doxygen

Creating a MOBA using Unity

95

CONTENTS xvii

3.89.1.3 OnServerTick() . 154

3.90 ModifierHealthDrainBuff Class Reference . 155

3.90.1 Member Function Documentation . 155

3.90.1.1 OnLocalClientEnd() . 155

3.90.1.2 OnLocalClientStart() . 155

3.91 ModifierHealthDrainDebuff Class Reference . 156

3.91.1 Member Function Documentation . 156

3.91.1.1 OnLocalClientEnd() . 156

3.91.1.2 OnLocalClientStart() . 157

3.92 ModifierInfo Struct Reference . 157

3.92.1 Detailed Description . 157

3.93 ModifierInfoBase Class Reference . 157

3.94 ModifierInfoDuration Class Reference . 158

3.95 ModifierInfoTick Class Reference . 158

3.96 ModifierInstanceClient Class Reference . 159

3.96.1 Detailed Description . 159

3.96.2 Constructor & Destructor Documentation . 159

3.96.2.1 ModifierInstanceClient() . 159

3.96.3 Member Function Documentation . 160

3.96.3.1 GetAbilityId() . 160

3.96.3.2 GetModifier() . 160

3.96.3.3 GetModifierId() . 160

3.96.3.4 OnEnd() . 160

3.96.3.5 SetNewDuration() . 160

3.97 ModifierInstanceServer Class Reference . 161

3.97.1 Detailed Description . 161

3.97.2 Constructor & Destructor Documentation . 161

3.97.2.1 ModifierInstanceServer() . 161

3.97.3 Member Function Documentation . 162

3.97.3.1 DurationLoop() . 162

Generated by Doxygen

Creating a MOBA using Unity

96

xviii CONTENTS

3.97.3.2 GetAbilityId() . 162

3.97.3.3 GetModifier() . 162

3.97.3.4 GetModifierId() . 163

3.97.3.5 MaxDuration() . 163

3.97.3.6 OnCancel() . 164

3.97.3.7 OnEnd() . 164

3.97.3.8 TickLoop() . 164

3.98 ModifierRoot Class Reference . 164

3.98.1 Member Function Documentation . 165

3.98.1.1 OnLocalClientEnd() . 165

3.98.1.2 OnLocalClientStart() . 165

3.99 ModifierSilence Class Reference . 166

3.99.1 Member Function Documentation . 166

3.99.1.1 OnLocalClientEnd() . 166

3.99.1.2 OnLocalClientStart() . 166

3.100ModifierSlow Class Reference . 167

3.100.1 Member Function Documentation . 167

3.100.1.1 OnLocalClientEnd() . 167

3.100.1.2 OnLocalClientStart() . 168

3.101ModifierStandardAbility Class Reference . 168

3.101.1 Member Function Documentation . 169

3.101.1.1 OnClientEnd() . 169

3.101.1.2 OnClientStart() . 169

3.102ModifierStun Class Reference . 169

3.102.1 Member Function Documentation . 170

3.102.1.1 OnLocalClientEnd() . 170

3.102.1.2 OnLocalClientStart() . 170

3.103ModifierTrack Class Reference . 171

3.103.1 Member Function Documentation . 171

3.103.1.1 OnLocalClientEnd() . 171

Generated by Doxygen

Creating a MOBA using Unity

97

CONTENTS xix

3.103.1.2 OnLocalClientStart() . 172

3.104MultiBoomerangBuff Class Reference . 172

3.104.1 Member Function Documentation . 173

3.104.1.1 ButtonDown() . 173

3.104.1.2 ResetBuff() . 173

3.104.1.3 SetActive() . 173

3.104.1.4 SetModifier() . 174

3.105NetworkManager Class Reference . 174

3.105.1 Member Function Documentation . 177

3.105.1.1 AllPlayersReady() . 177

3.105.1.2 Awake() . 177

3.105.1.3 ClearAllReadyStates() . 177

3.105.1.4 DeregisterNetworkPlayer() . 178

3.105.1.5 Disconnect() . 178

3.105.1.6 DisconnectAndReturnToMenu() . 178

3.105.1.7 GetPlayerById() . 178

3.105.1.8 GetPlayerForConnection() . 178

3.105.1.9 JoinMatchmakingGame() . 178

3.105.1.10ListMatch() . 179

3.105.1.11OnDestroy() . 179

3.105.1.12OnPlayerSetReady() . 179

3.105.1.13OnStartHost() . 179

3.105.1.14OnStartServer() . 179

3.105.1.15OnStopClient() . 179

3.105.1.16OnStopServer() . 180

3.105.1.17ProgressToGameScene() . 180

3.105.1.18RegisterNetworkPlayer() . 180

3.105.1.19ReturnToMenu() . 180

3.105.1.20StartMatchingmakingClient() . 180

3.105.1.21StartMatchmakingGame() . 180

Generated by Doxygen

Creating a MOBA using Unity

98

xx CONTENTS

3.105.1.22UnlistMatch() . 181

3.105.1.23Update() . 181

3.105.2 Property Documentation . 181

3.105.2.1 connectedPlayers . 181

3.105.2.2 hasSufficientPlayers . 181

3.105.2.3 Instance . 181

3.105.2.4 IsServer . 181

3.105.2.5 playerCount . 182

3.105.2.6 state . 182

3.105.3 Event Documentation . 182

3.105.3.1 clientConnected . 182

3.105.3.2 clientDisconnected . 182

3.105.3.3 clientError . 182

3.105.3.4 clientStopped . 182

3.105.3.5 gameModeUpdated . 183

3.105.3.6 hostStarted . 183

3.105.3.7 matchCreated . 183

3.105.3.8 matchDropped . 183

3.105.3.9 matchJoined . 183

3.105.3.10playerJoined . 183

3.105.3.11playerLeft . 184

3.105.3.12sceneChanged . 184

3.105.3.13serverClientDisconnected . 184

3.105.3.14serverError . 184

3.105.3.15serverPlayersReadied . 184

3.105.3.16serverStopped . 184

3.106NetworkPlayer Class Reference . 185

3.106.1 Member Function Documentation . 186

3.106.1.1 OnDestroy() . 186

3.106.1.2 OnEnterGameScene() . 186

Generated by Doxygen

Creating a MOBA using Unity

99

CONTENTS xxi

3.106.1.3 OnEnterLobbyScene() . 186

3.106.1.4 OnNetworkDestroy() . 187

3.106.1.5 OnStartClient() . 187

3.106.1.6 OnStartLocalPlayer() . 187

3.106.1.7 Start() . 187

3.106.2 Property Documentation . 187

3.106.2.1 IsReady . 187

3.106.2.2 LobbyObject . 187

3.106.2.3 LocalPlayerInstance . 188

3.106.2.4 PlayerId . 188

3.106.2.5 PlayerInstance . 188

3.106.2.6 PlayerName . 188

3.106.2.7 PlayerTeamId . 188

3.107ObjectMover Class Reference . 188

3.108ObjectSpinner Class Reference . 189

3.109Player Class Reference . 189

3.109.1 Detailed Description . 191

3.109.2 Member Function Documentation . 191

3.109.2.1 CmdInteract() . 191

3.109.2.2 DecrementScore() . 191

3.109.2.3 IncrementScore() . 191

3.109.2.4 Prespawn() . 192

3.109.2.5 RespawnReactivate() . 192

3.109.2.6 TargetAddExplosionForce() . 192

3.109.2.7 TargetAddForce() . 192

3.109.2.8 TargetAddForce2() . 193

3.110PlayerCamera Class Reference . 193

3.110.1 Detailed Description . 194

3.110.2 Member Function Documentation . 194

3.110.2.1 ReturnToPlayer() [1/2] . 194

Generated by Doxygen

Creating a MOBA using Unity

100

xxii CONTENTS

3.110.2.2 ReturnToPlayer() [2/2] . 194

3.110.2.3 SetOrthoSizeTarget() [1/2] . 194

3.110.2.4 SetOrthoSizeTarget() [2/2] . 196

3.110.2.5 SetPlayerTransform() . 196

3.110.2.6 SetTarget() [1/2] . 196

3.110.2.7 SetTarget() [2/2] . 197

3.111PlayerCurrency Class Reference . 197

3.111.1 Member Function Documentation . 198

3.111.1.1 CmdAddCurrency() . 198

3.112PlayerHealth Class Reference . 198

3.112.1 Detailed Description . 199

3.112.2 Member Function Documentation . 199

3.112.2.1 CmdSetDamageMultiplier() . 199

3.112.2.2 CmdSetMaxHealth() . 199

3.112.2.3 Heal() . 200

3.112.2.4 Initialize() . 200

3.112.2.5 SetDefaults() . 200

3.112.2.6 TakeDamage() [1/2] . 200

3.112.2.7 TakeDamage() [2/2] . 201

3.113PlayerInput Class Reference . 201

3.113.1 Detailed Description . 202

3.113.2 Member Function Documentation . 202

3.113.2.1 GetDirectionVector() . 202

3.113.2.2 GetRotationVector() . 202

3.113.2.3 SetInputRestrictions() . 202

3.114PlayerInputTestAbility Class Reference . 203

3.114.1 Member Function Documentation . 203

3.114.1.1 ButtonDown() . 204

3.114.1.2 CancelAbility() . 204

3.114.1.3 InitializeLocalPlayer() . 204

Generated by Doxygen

Creating a MOBA using Unity

101

CONTENTS xxiii

3.114.1.4 SetActive() . 204

3.115PlayerStatus Class Reference . 205

3.115.1 Detailed Description . 205

3.115.2 Member Function Documentation . 205

3.115.2.1 ApplyModifier() . 205

3.115.2.2 RemoveAllAbilityModifiers() . 206

3.115.2.3 RemoveAllDebuffModifiers() . 206

3.115.2.4 RemoveAllModifiers() . 206

3.115.2.5 RemoveModifier() [1/2] . 206

3.115.2.6 RemoveModifier() [2/2] . 207

3.115.2.7 TargetSetUIDuration() . 207

3.116PlayerUIHandler Class Reference . 207

3.116.1 Detailed Description . 208

3.116.2 Member Function Documentation . 208

3.116.2.1 AddStatusModifier() . 208

3.116.2.2 PlayCurrencyChangeAnimation() . 209

3.116.2.3 RemoveStatusModifier() . 209

3.116.2.4 SetCurrentHealth() . 209

3.116.2.5 SetDockingKitUI() . 210

3.117PowerSaw Class Reference . 210

3.117.1 Member Function Documentation . 211

3.117.1.1 ButtonDown() . 211

3.117.1.2 CooldownReady() . 211

3.117.1.3 Initialize() . 211

3.117.1.4 SetActive() . 212

3.118Projectile Class Reference . 212

3.119ProjectileReflect Class Reference . 213

3.119.1 Member Function Documentation . 213

3.119.1.1 ButtonDown() . 213

3.119.1.2 Initialize() . 214

Generated by Doxygen

Creating a MOBA using Unity

102

xxiv CONTENTS

3.119.1.3 SetActive() . 214

3.119.1.4 SetModifier() . 214

3.119.1.5 Update() . 215

3.120ProjectileSpawner Class Reference . 215

3.120.1 Member Function Documentation . 215

3.120.1.1 ButtonDown() . 216

3.120.1.2 SetActive() . 216

3.121RemoteMine Class Reference . 216

3.121.1 Member Function Documentation . 217

3.121.1.1 Explode() . 217

3.122RemoteMineSpawner Class Reference . 217

3.122.1 Member Function Documentation . 218

3.122.1.1 ButtonDown() . 218

3.122.1.2 SetActive() . 218

3.123Sawblade Class Reference . 218

3.123.1 Member Function Documentation . 219

3.123.1.1 Hooked() . 219

3.124ScreenFlash Class Reference . 219

3.125SelectBase Class Reference . 220

3.126SelectMap Class Reference . 221

3.127SelectMode Class Reference . 221

3.128Shackle Class Reference . 222

3.128.1 Member Function Documentation . 222

3.128.1.1 ButtonDown() . 222

3.128.1.2 CooldownReady() . 223

3.128.1.3 SetActive() . 223

3.129ShopItemData Class Reference . 223

3.130ShopItemInstance Class Reference . 224

3.131Singleton< T > Class Template Reference . 224

3.131.1 Detailed Description . 225

Generated by Doxygen

Creating a MOBA using Unity

103

CONTENTS xxv

3.131.2 Member Function Documentation . 225

3.131.2.1 Awake() . 225

3.131.2.2 OnDestroy() . 225

3.131.3 Property Documentation . 225

3.131.3.1 Instance . 226

3.131.3.2 InstanceExists . 226

3.132Slingshot Class Reference . 226

3.132.1 Member Function Documentation . 227

3.132.1.1 ButtonDown() . 227

3.132.1.2 ButtonUp() . 227

3.132.1.3 CancelAbility() . 227

3.132.1.4 InitializeLocalPlayer() . 228

3.132.1.5 SetActive() . 228

3.133SniperProjectile Class Reference . 228

3.133.1 Member Function Documentation . 229

3.133.1.1 Initialize() . 229

3.133.1.2 RpcInitialize() . 229

3.134SpawnableFactory Class Reference . 229

3.134.1 Member Function Documentation . 230

3.134.1.1 Awake() . 230

3.135SpawnableObject Class Reference . 231

3.135.1 Member Function Documentation . 232

3.135.1.1 CheckDamagable() . 232

3.136SpawnManager Class Reference . 232

3.136.1 Member Function Documentation . 233

3.136.1.1 Awake() . 233

3.136.1.2 CleanupSpawnPoints() . 233

3.136.1.3 GetRandomEmptySpawnPointIndex() . 233

3.137SpawnPoint Class Reference . 233

3.137.1 Member Function Documentation . 234

Generated by Doxygen

Creating a MOBA using Unity

104

xxvi CONTENTS

3.137.1.1 Cleanup() . 234

3.137.1.2 Decrement() . 234

3.137.1.3 SetDirty() . 234

3.138SpawnTestAbility Class Reference . 235

3.138.1 Member Function Documentation . 235

3.138.1.1 ButtonDown() . 235

3.138.1.2 SetActive() . 235

3.139SpawnTestObject Class Reference . 236

3.139.1 Member Function Documentation . 236

3.139.1.1 RedirectDirection() . 236

3.140StandardSpawnableSpawner Class Reference . 237

3.140.1 Member Function Documentation . 237

3.140.1.1 ButtonDown() . 238

3.140.1.2 GetSpawnablePrefab() . 238

3.140.1.3 SetActive() . 238

3.141StatusUI Class Reference . 239

3.141.1 Detailed Description . 239

3.141.2 Member Function Documentation . 239

3.141.2.1 Initialize() . 239

3.141.2.2 Remove() . 240

3.141.2.3 SetNewDuration() . 240

3.142Stealth Class Reference . 240

3.142.1 Member Function Documentation . 241

3.142.1.1 ButtonDown() . 241

3.142.1.2 FindPlayerSpriteRenderers() . 241

3.142.1.3 Initialize() . 242

3.142.1.4 SetActive() . 242

3.142.1.5 SetModifier() . 242

3.143TankReflectShield Class Reference . 244

3.143.1 Member Function Documentation . 244

Generated by Doxygen

Creating a MOBA using Unity

105

CONTENTS xxvii

3.143.1.1 ButtonDown() . 245

3.143.1.2 Initialize() . 245

3.143.1.3 SetActive() . 245

3.144Team Class Reference . 245

3.145TeamDeathmatch Class Reference . 246

3.145.1 Detailed Description . 247

3.145.2 Member Function Documentation . 247

3.145.2.1 GetGameOverText() . 247

3.145.2.2 GetRoundEndText() . 247

3.145.2.3 HandleRoundEnd() . 248

3.145.2.4 IsEndOfRound() . 248

3.145.2.5 PlayerDies() . 248

3.145.2.6 PlayerDisconnected() . 248

3.145.2.7 StartGame() . 249

3.145.2.8 StartRound() . 249

3.145.3 Property Documentation . 249

3.145.3.1 ScoreWinTarget . 249

3.146ToggleEvent Class Reference . 250

3.147Track Class Reference . 250

3.147.1 Member Function Documentation . 250

3.147.1.1 ButtonDown() . 251

3.147.1.2 Initialize() . 251

3.147.1.3 SetActive() . 251

3.148Trap Class Reference . 251

3.148.1 Member Function Documentation . 252

3.148.1.1 HandleTrigger() . 252

3.148.1.2 Initialize() . 253

3.148.1.3 OnDestroy() . 253

3.148.1.4 RpcSetExtraVisualsState() . 253

3.148.1.5 SetVisualState() . 253

Generated by Doxygen

Creating a MOBA using Unity

106

xxviii CONTENTS

3.149TrapSpawner Class Reference . 254

3.149.1 Member Function Documentation . 254

3.149.1.1 ButtonDown() . 255

3.149.1.2 DisplayTrapState() . 255

3.149.1.3 SetActive() . 255

3.150Zipline Class Reference . 255

3.150.1 Member Function Documentation . 256

3.150.1.1 FirePoint() . 256

3.151ZiplineGun Class Reference . 257

3.151.1 Member Function Documentation . 257

3.151.1.1 ButtonDown() . 258

3.151.1.2 ButtonUp() . 258

3.151.1.3 InitializeLocalPlayer() . 258

3.151.1.4 SetActive() . 258

Index 259

Generated by Doxygen

Creating a MOBA using Unity

107

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AbilityCooldown . 16
AbilityUI . 18
BoomerangDataContainer . 28
DockingKitDescriptions . 68
ElementalModifiers . 71
GameSettings . 97
IClientCallback . 109
IClientCallback< T > . 109
IClientCallback< T1, T2 > . 109

BoomerangThrow . 30
HookShot . 106
MultiBoomerangBuff . 172

IClientCallback< float > . 109

Slingshot . 226

IClientCallback< Vector3 > . 109

HookShot . 106

IClientCallback< Vector3, Vector3 > . 109

HookShot . 106

IElement . 111

BasicSlash . 22
BoomerangThrow . 30

IHookable . 111

Sawblade . 218

IInteractable . 112

Zipline . 255

IModifierProvider . 113

BasicSlash . 22
BoomerangThrow . 30
BoomerangVision . 33
BuffTestAbility . 35
CleanseBuff . 40
Flamethrower . 77
Focus . 82

Creating a MOBA using Unity

108

2 Hierarchical Index

FortificationBuff . 86
HealingAura . 100
HealthDrainBuff . 102
LifeStealBuff . 125
MultiBoomerangBuff . 172
ProjectileReflect . 213
Slingshot . 226
Stealth . 240

IRedirectable . 118

Bola . 27
Projectile . 212
SniperProjectile . 228
SpawnTestObject . 236

IReflectable . 119

BoomerangThrow . 30
FlashGrenade . 80

IServerCallback . 121
IServerCallback< T > . 121
IServerCallback< T1, T2 > . 121

PowerSaw . 210
ProjectileSpawner . 215
TankReflectShield . 244
Track . 250

IServerCallback< float > . 121

Slingshot . 226

IServerCallback< GameObject > . 121

HealingAura . 100
HealthDrainBuff . 102
RemoteMineSpawner . 217

IServerCallback< GameObject, float > . 121

Slingshot . 226

IServerCallback< Vector3, Vector3 > . 121

HookShot . 106
ZiplineGun . 257

ISpawnableProvider . 122

FlashGrenadeSpawner . 80
GrenadeLauncher . 99
ISpawnableReferenceProvider . 123

ExplosiveMineSpawner . 73
RemoteMineSpawner . 217
Slingshot . 226
SpawnTestAbility . 235
TrapSpawner . 254

PowerSaw . 210
ProjectileSpawner . 215
Shackle . 222
StandardSpawnableSpawner . 237

ITargetClientCallback . 124
ITargetClientCallback< T1, T2 > . 124

ZiplineGun . 257

ITargetClientCallback< T > . 124
MapInfo . 138
MenuStackComponent . 141
ModeInfo . 142
ModifierInfo . 157

Generated by Doxygen

Creating a MOBA using Unity

109

1.1 Class Hierarchy 3

ModifierInfoBase . 157

ModifierInfoDuration . 158
ModifierInfoTick . 158

ModifierInstanceClient . 159
ModifierInstanceServer . 161
MonoBehaviour

Ability . 11
BasicAbility . 21
BasicSlash . 22
Blast . 24
BoomerangRoot . 28
BoomerangThrow . 30
BoomerangVision . 33
BuffTestAbility . 35
CameraTestAbility . 37
CleanseBuff . 40
Dash . 43
ExplosiveMineSpawner . 73
Flamethrower . 77
FlashGrenadeSpawner . 80
Focus . 82
ForceField . 84
FortificationBuff . 86
GrenadeLauncher . 99
HealingAura . 100
HealthDrainBuff . 102
HookShot . 106
LifeStealBuff . 125
MultiBoomerangBuff . 172
PlayerInputTestAbility . 203
PowerSaw . 210
ProjectileReflect . 213
ProjectileSpawner . 215
RemoteMineSpawner . 217
Shackle . 222
Slingshot . 226
SpawnTestAbility . 235
StandardSpawnableSpawner . 237
Stealth . 240
TankReflectShield . 244
Track . 250
TrapSpawner . 254
ZiplineGun . 257

CreateGame . 42
DockingKit . 65
FadingGroup . 75
FieldOfView . 77
FogCamera . 84
GameModeProcessor . 92

Deathmatch . 44
TeamDeathmatch . 246

InfoPanel . 115
LoadingModal . 127
LobbyPlayer . 131
LobbyPlayerList . 132
LobbyServerEntry . 133
LobbyServerList . 134
MatchListHandler . 139

Generated by Doxygen

Creating a MOBA using Unity

110

4 Hierarchical Index

MenuHandler . 140
IngameMenuHandler . 115
MainMenuHandler . 134

ObjectMover . 188
ObjectSpinner . 189
PlayerCamera . 193
PlayerInput . 201
PlayerUIHandler . 207
ScreenFlash . 219
SelectBase . 220

SelectMap . 221
SelectMode . 221

ShopItemInstance . 224
Singleton< T > . 224
SpawnPoint . 233
StatusUI . 239

NetworkBehaviour
Docking . 54
DockingKitPickup . 68
GameManager . 88
LobbyHandler . 128
NetworkPlayer . 185
Player . 189
PlayerCurrency . 197
PlayerHealth . 198
PlayerStatus . 205
SpawnableObject . 231

Bola . 27
ExplosiveMine . 72
FlashGrenade . 80
GrenadeShell . 100
Projectile . 212
RemoteMine . 216
Sawblade . 218
SniperProjectile . 228
SpawnTestObject . 236
Trap . 251

BlindTrap . 26
CaptureTrap . 39
DotTrap . 69

Zipline . 255
NetworkLobbyManager

DLNetworkManager . 52
NetworkLobbyPlayer

DLNetworkLobbyPlayer . 48
NetworkManager

NetworkManager . 174
ScriptableObject

MapList . 138
ModeList . 142
Modifier . 143

ModifierBlind . 147
ModifierCleanse . 148
ModifierDoT . 150
ModifierFortification . 152
ModifierHealOverTime . 153
ModifierHealthDrainBuff . 155
ModifierHealthDrainDebuff . 156

Generated by Doxygen

Creating a MOBA using Unity

111

1.1 Class Hierarchy 5

ModifierRoot . 164
ModifierSilence . 166
ModifierSlow . 167
ModifierStandardAbility . 168
ModifierStun . 169

ModifierFlashStun . 151
ModifierTrack . 171

ShopItemData . 223
Singleton< AnnouncerModal > . 224

AnnouncerModal . 20

Singleton< MainMenuUI > . 224

MainMenuUI . 136

Singleton< SpawnableFactory > . 224

SpawnableFactory . 229

Singleton< SpawnManager > . 224

SpawnManager . 232

Team . 245
UnityEvent

ToggleEvent . 250

Generated by Doxygen

Creating a MOBA using Unity

112

6 Hierarchical Index

Generated by Doxygen

Creating a MOBA using Unity

113

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Ability
Base class for all abilities. 11

AbilityCooldown
Handles the cooldown for abilities. Runs on the local player. 16

AbilityUI
Handles the update of the abilitys UI. 18

AnnouncerModal
This class controls a generic modal object used for generic status popups in the UI. 20

BasicAbility . 21
BasicSlash . 22
Blast . 24
BlindTrap . 26
Bola . 27
BoomerangDataContainer . 28
BoomerangRoot . 28
BoomerangThrow . 30
BoomerangVision . 33
BuffTestAbility . 35
CameraTestAbility . 37
CaptureTrap . 39
CleanseBuff . 40
CreateGame

Governs the Create Game functionality in the main menu. 42
Dash . 43
Deathmatch

Game mode rules processor for the deathmatch game mode 44
DLNetworkLobbyPlayer . 48
DLNetworkManager . 52
Docking

Handles the DockingKit interactions for each Player. 54
DockingKit

Handles the interaction between the Docking and the abilities. 65
DockingKitDescriptions . 68
DockingKitPickup . 68
DotTrap . 69

Creating a MOBA using Unity

114

8 Class Index

ElementalModifiers . 71
ExplosiveMine . 72
ExplosiveMineSpawner . 73
FadingGroup . 75
FieldOfView . 77
Flamethrower . 77
FlashGrenade . 80
FlashGrenadeSpawner . 80
Focus . 82
FogCamera . 84
ForceField . 84
FortificationBuff . 86
GameManager . 88
GameModeProcessor

Game mode rules processor - a base class for all game modes. 92
GameSettings . 97
GrenadeLauncher . 99
GrenadeShell . 100
HealingAura . 100
HealthDrainBuff . 102
HookShot . 106
IClientCallback

Can recieve client callbacks from the Docking. 109
IClientCallback< T >

Can recieve client callbacks from the Docking with one parameter. 109
IClientCallback< T1, T2 >

Can recieve client callbacks from the Docking with two parameters. 109
IElement . 111
IHookable

Used by spawnables that can be hooked. 111
IInteractable

Used by objects that can receive interaction calls from PlayerInput. 112
IModifierProvider

Can return reference to modifier info. 113
InfoPanel . 115
IngameMenuHandler

Handles ingame menus like the Shop and "Pause" menu . 115
IRedirectable

Used by spawnables that can be redirected. 118
IReflectable . 119
IServerCallback

Can recieve server callbacks from the Docking. 121
IServerCallback< T >

Can recieve server callbacks from the Docking with one parameter. 121
IServerCallback< T1, T2 >

Can recieve server callbacks from the Docking with two parameters. 121
ISpawnableProvider

Can return reference to a spawnable prefab. 122
ISpawnableReferenceProvider

Can return reference to a spawnable prefab and catch the reference to the spawned object. . . 123
ITargetClientCallback

Can recieve target client callbacks from the Docking. 124
ITargetClientCallback< T1, T2 >

Can recieve target client callbacks from the Docking with two parameters. 124
ITargetClientCallback< T >

Can recieve target client callbacks from the Docking with one parameter. 124
LifeStealBuff . 125

Generated by Doxygen

Creating a MOBA using Unity

115

2.1 Class List 9

LoadingModal
Loading modal - used to handle loading fades . 127

LobbyHandler . 128
LobbyPlayer . 131
LobbyPlayerList

Handles the player list in the Lobby. 132
LobbyServerEntry

Represents a server in the server list . 133
LobbyServerList . 134
MainMenuHandler . 134
MainMenuUI

Handles main menu UI and transitions . 136
MapInfo . 138
MapList . 138
MatchListHandler . 139
MenuHandler . 140
MenuStackComponent . 141
ModeInfo . 142
ModeList . 142
Modifier

Base class for every modifier. 143
ModifierBlind . 147
ModifierCleanse . 148
ModifierDoT . 150
ModifierFlashStun . 151
ModifierFortification . 152
ModifierHealOverTime . 153
ModifierHealthDrainBuff . 155
ModifierHealthDrainDebuff . 156
ModifierInfo

Struct used in abilities to store modifier information. 157
ModifierInfoBase . 157
ModifierInfoDuration . 158
ModifierInfoTick . 158
ModifierInstanceClient

The instance used when a modifier is active. Only exists on the clients. 159
ModifierInstanceServer

The instance used when a modifier is active. Only exists on the server. 161
ModifierRoot . 164
ModifierSilence . 166
ModifierSlow . 167
ModifierStandardAbility . 168
ModifierStun . 169
ModifierTrack . 171
MultiBoomerangBuff . 172
NetworkManager . 174
NetworkPlayer . 185
ObjectMover . 188
ObjectSpinner . 189
Player

Handles the initialization for the local and remote events for each Player. 189
PlayerCamera

Handles all Camera interactions. 193
PlayerCurrency . 197
PlayerHealth

Handles functionality related to the player health. 198
PlayerInput

Handles all player inputs. 201

Generated by Doxygen

Creating a MOBA using Unity

116

10 Class Index

PlayerInputTestAbility . 203
PlayerStatus

Handles the modifiers and status effects for the player. 205
PlayerUIHandler

Handler for the player UI (Abilities, status modifiers, health). 207
PowerSaw . 210
Projectile . 212
ProjectileReflect . 213
ProjectileSpawner . 215
RemoteMine . 216
RemoteMineSpawner . 217
Sawblade . 218
ScreenFlash . 219
SelectBase . 220
SelectMap . 221
SelectMode . 221
Shackle . 222
ShopItemData . 223
ShopItemInstance . 224
Singleton< T >

Singleton class of a MonoBehaviour, using Awake and OnDestroy calls. 224
Slingshot . 226
SniperProjectile . 228
SpawnableFactory . 229
SpawnableObject . 231
SpawnManager . 232
SpawnPoint . 233
SpawnTestAbility . 235
SpawnTestObject . 236
StandardSpawnableSpawner . 237
StatusUI

Class for UI status modifiers. 239
Stealth . 240
TankReflectShield . 244
Team . 245
TeamDeathmatch

Game mode rules processor for the team deathmatch game mode 246
ToggleEvent . 250
Track . 250
Trap . 251
TrapSpawner . 254
Zipline . 255
ZiplineGun . 257

Generated by Doxygen

Creating a MOBA using Unity

117

Chapter 3

Class Documentation

3.1 Ability Class Reference

Base class for all abilities.

Inheritance diagram for Ability:

Ability

MonoBehaviour

BasicAbility

BasicSlash

Blast

BoomerangRoot

BoomerangThrow

BoomerangVision

BuffTestAbility

CameraTestAbility

CleanseBuff

Dash

ExplosiveMineSpawner

Flamethrower

FlashGrenadeSpawner

Focus

ForceField

FortificationBuff

GrenadeLauncher

HealingAura

HealthDrainBuff

HookShot

LifeStealBuff

MultiBoomerangBuff

PlayerInputTestAbility

PowerSaw

ProjectileReflect

ProjectileSpawner

RemoteMineSpawner

Shackle

Slingshot

SpawnTestAbility

StandardSpawnableSpawner

Stealth

TankReflectShield

Track

TrapSpawner

ZiplineGun

Creating a MOBA using Unity

118

12 Class Documentation

Public Member Functions

• virtual void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• virtual void InitializeLocalPlayer (AbilityUI abilityUI)

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the refer-
ences are already set up.

• virtual void CooldownReady ()

Called by the cooldown whenever it's ready.

• abstract void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• virtual void ButtonUp ()

Called when the associated ability button is released.

• virtual void CancelAbility ()

Call for cancelling abilities. Override in abilities that may be interrupted.

• abstract void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• virtual void SetModifier (bool state)

Called by the Modifier. Appropriate place for doing local changes.

• void ReduceCooldown (float reductionAmount)

Reduces the current cooldown for the ability.

• virtual void SetElement (ElementalContainer.ComboableElements element)

Public Attributes

• float cooldownDuration
• Sprite icon

Protected Member Functions

• virtual void Update ()

Runs on every client, but only the local player has cooldown initialized.

Protected Attributes

• Docking docking
• Animator animator
• int abilityId
• AbilityCooldown cooldown

Properties

• bool AbilityLock [get, set]

Get and Set ability lock. Lock prevents the player from using abilities.

3.1.1 Detailed Description

Base class for all abilities.

Generated by Doxygen

Creating a MOBA using Unity

119

3.1 Ability Class Reference 13

3.1.2 Member Function Documentation

3.1.2.1 ButtonDown()

abstract void Ability.ButtonDown () [pure virtual]

Called when the associated ability button is pressed. Must be overriden.

Implemented in BoomerangThrow, Slingshot, BasicSlash, BoomerangRoot, PlayerInputTestAbility, Projectile←↩

Reflect, Focus, BoomerangVision, HookShot, CameraTestAbility, LifeStealBuff, Stealth, PowerSaw, Multi←↩

BoomerangBuff, HealthDrainBuff, HealingAura, ZiplineGun, TankReflectShield, BuffTestAbility, Flamethrower,
ForceField, CleanseBuff, Blast, Dash, Track, FortificationBuff, TrapSpawner, ExplosiveMineSpawner, Standard←↩

SpawnableSpawner, FlashGrenadeSpawner, SpawnTestAbility, RemoteMineSpawner, GrenadeLauncher,
ProjectileSpawner, BasicAbility, and Shackle.

3.1.2.2 ButtonUp()

virtual void Ability.ButtonUp () [virtual]

Called when the associated ability button is released.

Reimplemented in BoomerangThrow, Slingshot, and ZiplineGun.

3.1.2.3 CancelAbility()

virtual void Ability.CancelAbility () [virtual]

Call for cancelling abilities. Override in abilities that may be interrupted.

Reimplemented in Slingshot, PlayerInputTestAbility, CameraTestAbility, and Focus.

3.1.2.4 CooldownReady()

virtual void Ability.CooldownReady () [virtual]

Called by the cooldown whenever it's ready.

Reimplemented in PowerSaw, and Shackle.

3.1.2.5 Initialize()

virtual void Ability.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Generated by Doxygen

Creating a MOBA using Unity

120

14 Class Documentation

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented in BoomerangThrow, ProjectileReflect, Stealth, HealthDrainBuff, BoomerangVision, LifeSteal←↩

Buff, PowerSaw, BasicSlash, HealingAura, Flamethrower, TankReflectShield, BuffTestAbility, Track, CleanseBuff,
FortificationBuff, Blast, ForceField, and Dash.

3.1.2.6 InitializeLocalPlayer()

virtual void Ability.InitializeLocalPlayer (

AbilityUI abilityUI) [virtual]

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the
references are already set up.

Reimplemented in Slingshot, Focus, CameraTestAbility, PlayerInputTestAbility, and ZiplineGun.

3.1.2.7 ReduceCooldown()

void Ability.ReduceCooldown (

float reductionAmount)

Reduces the current cooldown for the ability.

Parameters

reductionAmount The amount deducted for the current cooldown.

3.1.2.8 SetActive()

abstract void Ability.SetActive (

bool state) [pure virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Generated by Doxygen

Creating a MOBA using Unity

121

3.1 Ability Class Reference 15

Implemented in BoomerangThrow, Slingshot, PlayerInputTestAbility, BasicSlash, CameraTestAbility, Boomerang←↩

Root, PowerSaw, Focus, ProjectileReflect, Stealth, TankReflectShield, ZiplineGun, HookShot, BoomerangVision,
Track, HealthDrainBuff, LifeStealBuff, MultiBoomerangBuff, HealingAura, RemoteMineSpawner, BuffTestAbility,
Shackle, Flamethrower, TrapSpawner, CleanseBuff, ForceField, Blast, ExplosiveMineSpawner, SpawnTestAbility,
StandardSpawnableSpawner, FortificationBuff, FlashGrenadeSpawner, Dash, ProjectileSpawner, Grenade←↩

Launcher, and BasicAbility.

3.1.2.9 SetElement()

virtual void Ability.SetElement (

ElementalContainer.ComboableElements element) [virtual]

Used for local spawning of elemental effect prefabs

Parameters

element The element we want to set

Reimplemented in BoomerangThrow, and BasicSlash.

3.1.2.10 SetModifier()

virtual void Ability.SetModifier (

bool state) [virtual]

Called by the Modifier. Appropriate place for doing local changes.

Parameters

state If the modifier should be activated or deactivated.

Reimplemented in BoomerangThrow, BasicSlash, HealthDrainBuff, ProjectileReflect, BoomerangVision, Stealth,
LifeStealBuff, MultiBoomerangBuff, BuffTestAbility, and Flamethrower.

3.1.2.11 Update()

virtual void Ability.Update () [protected], [virtual]

Runs on every client, but only the local player has cooldown initialized.

Reimplemented in HealthDrainBuff, BoomerangThrow, CleanseBuff, FortificationBuff, ProjectileReflect,
BoomerangRoot, and BasicSlash.

Generated by Doxygen

Creating a MOBA using Unity

122

16 Class Documentation

3.1.3 Property Documentation

3.1.3.1 AbilityLock

bool Ability.AbilityLock [get], [set]

Get and Set ability lock. Lock prevents the player from using abilities.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/Ability.cs

3.2 AbilityCooldown Class Reference

Handles the cooldown for abilities. Runs on the local player.

Public Member Functions

• AbilityCooldown (Ability ab, float duration, AbilityUI abUI)

Constructor.
• void ReduceCooldown (float reductionAmount)

Reduces the current cooldown for the ability.
• void Update ()

Update loop. Handles timer and ability ui update.
• void Activate ()

Called on ability activation. Activates cooldown.
• void ActivateHiddenCooldown (float hiddenCooldown)

Can be called from abilities whenever they need a hidden cooldown, a simple short cooldown in addition to the
standard cooldown for instance.

• bool IsReady ()

Used for checking if the ability is on cooldown.

3.2.1 Detailed Description

Handles the cooldown for abilities. Runs on the local player.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 AbilityCooldown()

AbilityCooldown.AbilityCooldown (

Ability ab,

float duration,

AbilityUI abUI)

Constructor.

Generated by Doxygen

Creating a MOBA using Unity

123

3.2 AbilityCooldown Class Reference 17

Parameters

duration Length of cooldown.

3.2.3 Member Function Documentation

3.2.3.1 Activate()

void AbilityCooldown.Activate ()

Called on ability activation. Activates cooldown.

3.2.3.2 ActivateHiddenCooldown()

void AbilityCooldown.ActivateHiddenCooldown (

float hiddenCooldown)

Can be called from abilities whenever they need a hidden cooldown, a simple short cooldown in addition to the
standard cooldown for instance.

3.2.3.3 IsReady()

bool AbilityCooldown.IsReady ()

Used for checking if the ability is on cooldown.

Returns

Whether the ability is on cooldown or not.

3.2.3.4 ReduceCooldown()

void AbilityCooldown.ReduceCooldown (

float reductionAmount)

Reduces the current cooldown for the ability.

Generated by Doxygen

Creating a MOBA using Unity

124

18 Class Documentation

Parameters

reductionAmount The amount deducted for the current cooldown.

3.2.3.5 Update()

void AbilityCooldown.Update ()

Update loop. Handles timer and ability ui update.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/AbilityCooldown.cs

3.3 AbilityUI Class Reference

Handles the update of the abilitys UI.

Public Member Functions

• void Initialize (PlayerUIHandler uiHandler)

Initialize the ability UI.

• void Activate ()

Called on ability activation. Activates cooldown.

• void UpdateCooldown (float newTimeLeft)

Updates the current cooldown time with the new time.

• void SetAbility (Ability newAbility)

Changes sprites and cooldown to the new ability.

• void ClearAbility (Sprite emptySlot)

Stops the update loop and resets the UI to its original empty state.

Public Attributes

• Image abilityIcon
• Image darkMask

3.3.1 Detailed Description

Handles the update of the abilitys UI.

3.3.2 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

125

3.3 AbilityUI Class Reference 19

3.3.2.1 Activate()

void AbilityUI.Activate ()

Called on ability activation. Activates cooldown.

3.3.2.2 ClearAbility()

void AbilityUI.ClearAbility (

Sprite emptySlot)

Stops the update loop and resets the UI to its original empty state.

Parameters

emptySlot Sprite used in an empty slot.

3.3.2.3 Initialize()

void AbilityUI.Initialize (

PlayerUIHandler uiHandler)

Initialize the ability UI.

Parameters

uiHandler Reference to associated PlayerUIHandler.

3.3.2.4 SetAbility()

void AbilityUI.SetAbility (

Ability newAbility)

Changes sprites and cooldown to the new ability.

Parameters

newAbility Reference to the new ability.

Generated by Doxygen

Creating a MOBA using Unity

126

20 Class Documentation

3.3.2.5 UpdateCooldown()

void AbilityUI.UpdateCooldown (

float newTimeLeft)

Updates the current cooldown time with the new time.

Parameters

newTimeLeft The new current cooldown time.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/AbilityUI.cs

3.4 AnnouncerModal Class Reference

This class controls a generic modal object used for generic status popups in the UI.

Inheritance diagram for AnnouncerModal:

AnnouncerModal

Singleton< AnnouncerModal >

Public Member Functions

• void Show (string text)
• void Hide ()

Protected Member Functions

• override void Awake ()

Awake method to associate singleton with instance

Additional Inherited Members

3.4.1 Detailed Description

This class controls a generic modal object used for generic status popups in the UI.

3.4.2 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

127

3.5 BasicAbility Class Reference 21

3.4.2.1 Awake()

override void AnnouncerModal.Awake () [protected], [virtual]

Awake method to associate singleton with instance

Reimplemented from Singleton< AnnouncerModal >.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/AnnouncerModal.cs

3.5 BasicAbility Class Reference

Inheritance diagram for BasicAbility:

BasicAbility

Ability

MonoBehaviour

Public Member Functions
• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.
• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes
• float damage = 10f
• string animatorTrigger

Additional Inherited Members

3.5.1 Member Function Documentation

3.5.1.1 ButtonDown()

override void BasicAbility.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.5.1.2 SetActive()

override void BasicAbility.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

128

22 Class Documentation

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BasicAbility.cs

3.6 BasicSlash Class Reference

Inheritance diagram for BasicSlash:

BasicSlash

Ability IElement IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Callback for what this ability should do once its associated button has been pressed

• override void SetActive (bool state=false)

Callback for what this ability is supposed to do depending on given state. State is always false here

• override void SetModifier (bool state=false)

Called by the Modifier. Appropriate place for doing local changes.

• override void SetElement (ElementalContainer.ComboableElements element)

Callback for what this ability is supposed to do locally when applying a element

Public Attributes

• float damageDealt = 20f
• string animatorTrigger
• LifeStealBuff lifeStealBuff
• ElementalModifiers elementalModifiers = new ElementalModifiers()
• bool swingActive

Protected Member Functions

• override void Update ()

Runs on every client, but only the local player has cooldown initialized.

Generated by Doxygen

Creating a MOBA using Unity

129

3.6 BasicSlash Class Reference 23

Additional Inherited Members

3.6.1 Member Function Documentation

3.6.1.1 ButtonDown()

override void BasicSlash.ButtonDown () [virtual]

Callback for what this ability should do once its associated button has been pressed

Implements Ability.

3.6.1.2 Initialize()

override void BasicSlash.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.6.1.3 SetActive()

override void BasicSlash.SetActive (

bool state = false) [virtual]

Callback for what this ability is supposed to do depending on given state. State is always false here

Parameters

state Whether the ability is to be active or now

Implements Ability.

Generated by Doxygen

Creating a MOBA using Unity

130

24 Class Documentation

3.6.1.4 SetElement()

override void BasicSlash.SetElement (

ElementalContainer.ComboableElements element) [virtual]

Callback for what this ability is supposed to do locally when applying a element

Parameters

element

Reimplemented from Ability.

3.6.1.5 SetModifier()

override void BasicSlash.SetModifier (

bool state = false) [virtual]

Called by the Modifier. Appropriate place for doing local changes.

Parameters

state If the modifier should be activated or deactivated.

Reimplemented from Ability.

3.6.1.6 Update()

override void BasicSlash.Update () [protected], [virtual]

Runs on every client, but only the local player has cooldown initialized.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BrawlerKit/BasicSlash.cs

3.7 Blast Class Reference

Inheritance diagram for Blast:

Blast

Ability

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

131

3.7 Blast Class Reference 25

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• void OnTriggerEnter (Collider other)

Handles blast area, ignore friendly players (still applies to self)

Public Attributes

• float blastForce
• string animatorTrigger

Additional Inherited Members

3.7.1 Member Function Documentation

3.7.1.1 ButtonDown()

override void Blast.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.7.1.2 Initialize()

override void Blast.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Generated by Doxygen

Creating a MOBA using Unity

132

26 Class Documentation

Reimplemented from Ability.

3.7.1.3 OnTriggerEnter()

void Blast.OnTriggerEnter (

Collider other)

Handles blast area, ignore friendly players (still applies to self)

Parameters

other

3.7.1.4 SetActive()

override void Blast.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/Blast.cs

3.8 BlindTrap Class Reference

Inheritance diagram for BlindTrap:

BlindTrap

Trap

SpawnableObject

NetworkBehaviour

Generated by Doxygen

Creating a MOBA using Unity

133

3.9 Bola Class Reference 27

Public Member Functions

• override void HandleTrigger (PlayerStatus playerStatus)

Callback that allows this trap to do whatever it wants whenever it is triggered This one simply applies the member
structs containing modifier info

Public Attributes

• ModifierInfo blindInfo

Additional Inherited Members

3.8.1 Member Function Documentation

3.8.1.1 HandleTrigger()

override void BlindTrap.HandleTrigger (

PlayerStatus playerStatus) [virtual]

Callback that allows this trap to do whatever it wants whenever it is triggered This one simply applies the member
structs containing modifier info

Parameters

playerStatus The PlayerStatus component of the player that is in the trap

Reimplemented from Trap.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TrapperKit/BlindTrap.cs

3.9 Bola Class Reference

Inheritance diagram for Bola:

Bola

SpawnableObject IRedirectable

NetworkBehaviour

Generated by Doxygen

Creating a MOBA using Unity

134

28 Class Documentation

Public Attributes

• float moveSpeed = 8f
• float moveSpeedOnHit = 20f
• float lifetime = 10f
• float hitRadius = 2f
• float rotationSpeed = 500f
• ModifierInfo slowModifier
• ModifierInfo stunModifier
• Transform visuals
• Transform leftBall
• Transform rightBall
• LineRenderer lineRenderer

Additional Inherited Members

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/Bola.cs

3.10 BoomerangDataContainer Class Reference

Public Attributes

• const int NUM_CONTROL_POINTS = 4
• Transform [] bezierControlPoints = new Transform[NUM_CONTROL_POINTS]
• Vector3 [] storedPositions = new Vector3[NUM_CONTROL_POINTS]

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BoomerangKit/BoomerangThrow.cs

3.11 BoomerangRoot Class Reference

Inheritance diagram for BoomerangRoot:

BoomerangRoot

Ability

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

135

3.11 BoomerangRoot Class Reference 29

Public Member Functions

• override void ButtonDown ()

Callback for what this ability does locally when its associated button is pressed

• override void SetActive (bool state=false)

Callback for what this ability is supposed to do locally on all clients when the ability state is changed

Public Attributes

• ModifierInfo rootInfo
• SpriteRenderer [] rootIndicators
• Animator animationController
• float activeDuration = 0.5f
• string animationTrigger = "Root"
• Color activeColor
• bool rootActive = false

Protected Member Functions

• override void Update ()

Runs on every client, but only the local player has cooldown initialized.

Additional Inherited Members

3.11.1 Member Function Documentation

3.11.1.1 ButtonDown()

override void BoomerangRoot.ButtonDown () [virtual]

Callback for what this ability does locally when its associated button is pressed

Implements Ability.

3.11.1.2 SetActive()

override void BoomerangRoot.SetActive (

bool state = false) [virtual]

Callback for what this ability is supposed to do locally on all clients when the ability state is changed

Generated by Doxygen

Creating a MOBA using Unity

136

30 Class Documentation

Parameters

state The new ability state

Implements Ability.

3.11.1.3 Update()

override void BoomerangRoot.Update () [protected], [virtual]

Runs on every client, but only the local player has cooldown initialized.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BoomerangKit/BoomerangRoot.cs

3.12 BoomerangThrow Class Reference

Inheritance diagram for BoomerangThrow:

BoomerangThrow

Ability IElement IModifierProvider IReflectable IClientCallback< T1, T2 >

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Callback for what this ability does locally when its associated button is pressed

• override void ButtonUp ()

Callback for what this ability does locally when its associated button is released

• override void SetActive (bool state=false)

Callback for what this ability is supposed to do locally on all clients when the ability state is changed

• override void SetModifier (bool state=false)

Callback for what this ability is supposed to do when a modifier state changes

• override void SetElement (ElementalContainer.ComboableElements element)

Callback for what this ability is supposed to do locally when applying a element

Generated by Doxygen

Creating a MOBA using Unity

137

3.12 BoomerangThrow Class Reference 31

Public Attributes

• List< LineRenderer > approximatePathRenderers = new List<LineRenderer>()
• BoomerangDataContainer [] boomerangData = new BoomerangDataContainer[NUM_BOOMERANGS]
• List< TrailRenderer > trailRenderers = new List<TrailRenderer>()
• GameObject [] boomerangObjs = new GameObject[NUM_BOOMERANGS]
• BoomerangRoot boomerangRootScript
• MultiBoomerangBuff boomerangBuffScript
• AnimationCurve velocityCurve
• float damageDealt = 10f
• float boomerangSpeed = 5f
• float spinMultiplierWhileActive = 4f
• const int NUM_BOOMERANGS = 3
• ElementalModifiers elementalModifiers = new ElementalModifiers()

Protected Member Functions

• override void Update ()

Runs on every client, but only the local player has cooldown initialized.

Additional Inherited Members

3.12.1 Member Function Documentation

3.12.1.1 ButtonDown()

override void BoomerangThrow.ButtonDown () [virtual]

Callback for what this ability does locally when its associated button is pressed

Implements Ability.

3.12.1.2 ButtonUp()

override void BoomerangThrow.ButtonUp () [virtual]

Callback for what this ability does locally when its associated button is released

Reimplemented from Ability.

3.12.1.3 Initialize()

override void BoomerangThrow.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Generated by Doxygen

Creating a MOBA using Unity

138

32 Class Documentation

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.12.1.4 SetActive()

override void BoomerangThrow.SetActive (

bool state = false) [virtual]

Callback for what this ability is supposed to do locally on all clients when the ability state is changed

Parameters

state The new ability state

Implements Ability.

3.12.1.5 SetElement()

override void BoomerangThrow.SetElement (

ElementalContainer.ComboableElements element) [virtual]

Callback for what this ability is supposed to do locally when applying a element

Parameters

element

Reimplemented from Ability.

3.12.1.6 SetModifier()

override void BoomerangThrow.SetModifier (

bool state = false) [virtual]

Callback for what this ability is supposed to do when a modifier state changes

Generated by Doxygen

Creating a MOBA using Unity

139

3.13 BoomerangVision Class Reference 33

Parameters

state The new modifier state

Reimplemented from Ability.

3.12.1.7 Update()

override void BoomerangThrow.Update () [protected], [virtual]

Runs on every client, but only the local player has cooldown initialized.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BoomerangKit/BoomerangThrow.cs

3.13 BoomerangVision Class Reference

Inheritance diagram for BoomerangVision:

BoomerangVision

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Callback for what this ability does locally when its associated button is pressed

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• override void SetModifier (bool state)

Callback for what this ability is supposed to do when a modifier state changes

Generated by Doxygen

Creating a MOBA using Unity

140

34 Class Documentation

Public Attributes

• BoomerangThrow boomerangThrowScript
• MultiBoomerangBuff boomerangBuffScript
• GameObject visionIndicator
• float visionRadiusWhileActive = 10f
• float visionRadiusExtraBoomerangs = 5f
• float visionLerpSpeed = 5f
• ModifierInfo visionModifier

Additional Inherited Members

3.13.1 Member Function Documentation

3.13.1.1 ButtonDown()

override void BoomerangVision.ButtonDown () [virtual]

Callback for what this ability does locally when its associated button is pressed

Implements Ability.

3.13.1.2 Initialize()

override void BoomerangVision.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.13.1.3 SetActive()

override void BoomerangVision.SetActive (

bool state = false) [virtual]

Generated by Doxygen

Creating a MOBA using Unity

141

3.14 BuffTestAbility Class Reference 35

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.13.1.4 SetModifier()

override void BoomerangVision.SetModifier (

bool state) [virtual]

Callback for what this ability is supposed to do when a modifier state changes

Parameters

state The new modifier state

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BoomerangKit/BoomerangVision.cs

3.14 BuffTestAbility Class Reference

Inheritance diagram for BuffTestAbility:

BuffTestAbility

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• override void SetModifier (bool state=false)

Called by the Modifier. Appropriate place for doing local changes.

Generated by Doxygen

Creating a MOBA using Unity

142

36 Class Documentation

Public Attributes

• SpriteRenderer [] visuals
• Color activeColor
• ModifierInfo buff

Additional Inherited Members

3.14.1 Member Function Documentation

3.14.1.1 ButtonDown()

override void BuffTestAbility.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.14.1.2 Initialize()

override void BuffTestAbility.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.14.1.3 SetActive()

override void BuffTestAbility.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

143

3.15 CameraTestAbility Class Reference 37

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.14.1.4 SetModifier()

override void BuffTestAbility.SetModifier (

bool state = false) [virtual]

Called by the Modifier. Appropriate place for doing local changes.

Parameters

state If the modifier should be activated or deactivated.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TestAbilities/BuffTestAbility.cs

3.15 CameraTestAbility Class Reference

Inheritance diagram for CameraTestAbility:

CameraTestAbility

Ability

MonoBehaviour

Public Member Functions

• override void InitializeLocalPlayer (AbilityUI abilityUI)

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the refer-
ences are already set up.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void CancelAbility ()

Call for cancelling abilities. Override in abilities that may be interrupted.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

144

38 Class Documentation

Public Attributes

• Transform target
• float targetOrthoSize
• float targetViewAngle
• float targetViewRadius
• float lerpSpeed

Additional Inherited Members

3.15.1 Member Function Documentation

3.15.1.1 ButtonDown()

override void CameraTestAbility.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.15.1.2 CancelAbility()

override void CameraTestAbility.CancelAbility () [virtual]

Call for cancelling abilities. Override in abilities that may be interrupted.

Reimplemented from Ability.

3.15.1.3 InitializeLocalPlayer()

override void CameraTestAbility.InitializeLocalPlayer (

AbilityUI abilityUI) [virtual]

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the
references are already set up.

Reimplemented from Ability.

3.15.1.4 SetActive()

override void CameraTestAbility.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

145

3.16 CaptureTrap Class Reference 39

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TestAbilities/CameraTestAbility.cs

3.16 CaptureTrap Class Reference

Inheritance diagram for CaptureTrap:

CaptureTrap

Trap

SpawnableObject

NetworkBehaviour

Public Member Functions

• override void HandleTrigger (PlayerStatus playerStatus)

Callback for when the trap is triggered. Sets relevant gameobjects as active to display visuals and starts a coroutine
for spawning the walls.

Public Attributes

• GameObject walls
• float timeBeforeWallsSpawn = 1f
• float pullForce = 10f
• float fadeSpeed = 10f
• float fadeTimeOffsetMultiplier = 1.5f

Additional Inherited Members

3.16.1 Member Function Documentation

3.16.1.1 HandleTrigger()

override void CaptureTrap.HandleTrigger (

PlayerStatus playerStatus) [virtual]

Callback for when the trap is triggered. Sets relevant gameobjects as active to display visuals and starts a coroutine
for spawning the walls.

Generated by Doxygen

Creating a MOBA using Unity

146

40 Class Documentation

Parameters

playerStatus The PlayerStatus component of the player that is in the trap

Reimplemented from Trap.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TrapperKit/CaptureTrap.cs

3.17 CleanseBuff Class Reference

Inheritance diagram for CleanseBuff:

CleanseBuff

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• void OnTriggerEnter (Collider other)
• int GetAbilityId ()
• int GetBuffModifierId ()

Public Attributes

• ModifierInfo buff
• string animatorTrigger
• List< GameObject > cleansedPlayers = new List<GameObject>()

Protected Member Functions

• override void Update ()

Just to trigger the active state when animation ends, had some issues with Animation Events.

Generated by Doxygen

Creating a MOBA using Unity

147

3.17 CleanseBuff Class Reference 41

Additional Inherited Members

3.17.1 Member Function Documentation

3.17.1.1 ButtonDown()

override void CleanseBuff.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.17.1.2 Initialize()

override void CleanseBuff.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.17.1.3 SetActive()

override void CleanseBuff.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

Generated by Doxygen

Creating a MOBA using Unity

148

42 Class Documentation

3.17.1.4 Update()

override void CleanseBuff.Update () [protected], [virtual]

Just to trigger the active state when animation ends, had some issues with Animation Events.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SupportKit/CleanseBuff.cs

3.18 CreateGame Class Reference

Governs the Create Game functionality in the main menu.

Inheritance diagram for CreateGame:

CreateGame

MonoBehaviour

Public Member Functions

• void OnBackClicked ()

Back button method. Returns to main menu.

• void OnCreateClicked ()

Create button method. Validates entered server name and launches game server.

Protected Member Functions

• virtual void Start ()

Protected Attributes

• InputField matchNameInput

3.18.1 Detailed Description

Governs the Create Game functionality in the main menu.

3.18.2 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

149

3.19 Dash Class Reference 43

3.18.2.1 OnBackClicked()

void CreateGame.OnBackClicked ()

Back button method. Returns to main menu.

3.18.2.2 OnCreateClicked()

void CreateGame.OnCreateClicked ()

Create button method. Validates entered server name and launches game server.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/CreateGame.cs

3.19 Dash Class Reference

Inheritance diagram for Dash:

Dash

Ability

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Additional Inherited Members

3.19.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

150

44 Class Documentation

3.19.1.1 ButtonDown()

override void Dash.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.19.1.2 Initialize()

override void Dash.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.19.1.3 SetActive()

override void Dash.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/MarksmanKit/Dash.cs

3.20 Deathmatch Class Reference

Game mode rules processor for the deathmatch game mode

Generated by Doxygen

Creating a MOBA using Unity

151

3.20 Deathmatch Class Reference 45

Inheritance diagram for Deathmatch:

Deathmatch

GameModeProcessor

MonoBehaviour

Public Member Functions

• override void StartRound ()

Function called on round start

• override void PlayerDies (Player player)

Handles the death of a player - the player is removed from the local list

• override void PlayerDisconnected (Player player)

Called when a player disconnects - removed from the local list

• override bool IsEndOfRound ()

Determines whether it is end of round - if there is one or no players

• override void HandleRoundEnd ()

Handles the round end.

• override string GetRoundEndText ()

Gets the round end text - winner or draw if appropriate

• override string GetGameOverText ()

Gets the game over text - winner or draw if appropriate

Properties

• override int ScoreWinTarget [get]

Gets the score target.

Additional Inherited Members

3.20.1 Detailed Description

Game mode rules processor for the deathmatch game mode

3.20.2 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

152

46 Class Documentation

3.20.2.1 GetGameOverText()

override string Deathmatch.GetGameOverText () [virtual]

Gets the game over text - winner or draw if appropriate

Returns

The game over text.

Reimplemented from GameModeProcessor.

3.20.2.2 GetRoundEndText()

override string Deathmatch.GetRoundEndText () [virtual]

Gets the round end text - winner or draw if appropriate

Returns

The round end text.

Reimplemented from GameModeProcessor.

3.20.2.3 HandleRoundEnd()

override void Deathmatch.HandleRoundEnd () [virtual]

Handles the round end.

Reimplemented from GameModeProcessor.

3.20.2.4 IsEndOfRound()

override bool Deathmatch.IsEndOfRound () [virtual]

Determines whether it is end of round - if there is one or no players

Returns

true

false

Reimplemented from GameModeProcessor.

3.20.2.5 PlayerDies()

override void Deathmatch.PlayerDies (

Player player) [virtual]

Handles the death of a player - the player is removed from the local list

Generated by Doxygen

Creating a MOBA using Unity

153

3.20 Deathmatch Class Reference 47

Parameters

player Player.

Reimplemented from GameModeProcessor.

3.20.2.6 PlayerDisconnected()

override void Deathmatch.PlayerDisconnected (

Player player) [virtual]

Called when a player disconnects - removed from the local list

Parameters

player The player that disconnects

Reimplemented from GameModeProcessor.

3.20.2.7 StartRound()

override void Deathmatch.StartRound () [virtual]

Function called on round start

Reimplemented from GameModeProcessor.

3.20.3 Property Documentation

3.20.3.1 ScoreWinTarget

override int Deathmatch.ScoreWinTarget [get]

Gets the score target.

The score target.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameModes/Deathmatch.cs

Generated by Doxygen

Creating a MOBA using Unity

154

48 Class Documentation

3.21 DLNetworkLobbyPlayer Class Reference

Inheritance diagram for DLNetworkLobbyPlayer:

DLNetworkLobbyPlayer

NetworkLobbyPlayer

Public Member Functions

• override void OnClientEnterLobby ()

Callback that initialises all necessary data for when a player enters the lobby. This includes player name, player color,
adding the player to a team and telling the network manager that a new player has joined

• override void OnStartAuthority ()

Callback that simply sets up the client side parts of a lobby for the connecting player
• override void OnClientReady (bool readyState)

Makes the local UI uninteractable once the player has chosen to be ready
• void OnNameChange (string newName)

SyncVarHook for handling name changes
• void OnColorChange (Color newColor)

SyncVarHook for handling color changes
• void OnReadyStateChange (bool state)

SyncVarHook for handling ready states
• void OnColorClicked ()

A function that simply calls the CmdColorChange() command
• void OnReadyClicked ()

A simple function that tells the network that this player is ready to begin
• void OnNameChanged (string str)

A simple function that calls the CmdNameChanged(str) command
• void ToggleReadyButton (bool enabled)

Sets the state of the ready button on the UI to the parameter one
• GameObject GetVisuals ()

Returns the UI elements of a player
• void CmdColorChange ()

Updates the server when a player has chosen a new team/color
• void CmdNameChanged (string name)

Updates the server when a player has chosen a new name
• void CmdUpdateReadyState (bool state)

Updates the server when a player is ready
• void OnDestroy ()

Callback for when a lobby player leaves the lobby and gets destroyed It tells the lobbyHandler to remove this player
and tells the networkManager that a player has left.

Public Attributes

• Button colorButton
• InputField nameInput
• Button readyButton
• GameObject visuals
• string playerName = ""
• Color playerColor = Color.white
• bool isReady = false

Generated by Doxygen

Creating a MOBA using Unity

155

3.21 DLNetworkLobbyPlayer Class Reference 49

3.21.1 Member Function Documentation

3.21.1.1 CmdColorChange()

void DLNetworkLobbyPlayer.CmdColorChange ()

Updates the server when a player has chosen a new team/color

3.21.1.2 CmdNameChanged()

void DLNetworkLobbyPlayer.CmdNameChanged (

string name)

Updates the server when a player has chosen a new name

Parameters

name The new player name

3.21.1.3 CmdUpdateReadyState()

void DLNetworkLobbyPlayer.CmdUpdateReadyState (

bool state)

Updates the server when a player is ready

Parameters

state The ready state

3.21.1.4 GetVisuals()

GameObject DLNetworkLobbyPlayer.GetVisuals ()

Returns the UI elements of a player

Returns

The player visuals

Generated by Doxygen

Creating a MOBA using Unity

156

50 Class Documentation

3.21.1.5 OnClientEnterLobby()

override void DLNetworkLobbyPlayer.OnClientEnterLobby ()

Callback that initialises all necessary data for when a player enters the lobby. This includes player name, player
color, adding the player to a team and telling the network manager that a new player has joined

3.21.1.6 OnClientReady()

override void DLNetworkLobbyPlayer.OnClientReady (

bool readyState)

Makes the local UI uninteractable once the player has chosen to be ready

Parameters

readyState Whether the client is ready or not

3.21.1.7 OnColorChange()

void DLNetworkLobbyPlayer.OnColorChange (

Color newColor)

SyncVarHook for handling color changes

Parameters

newColor The new team color

3.21.1.8 OnColorClicked()

void DLNetworkLobbyPlayer.OnColorClicked ()

A function that simply calls the CmdColorChange() command

3.21.1.9 OnDestroy()

void DLNetworkLobbyPlayer.OnDestroy ()

Callback for when a lobby player leaves the lobby and gets destroyed It tells the lobbyHandler to remove this player
and tells the networkManager that a player has left.

Generated by Doxygen

Creating a MOBA using Unity

157

3.21 DLNetworkLobbyPlayer Class Reference 51

3.21.1.10 OnNameChange()

void DLNetworkLobbyPlayer.OnNameChange (

string newName)

SyncVarHook for handling name changes

Parameters

newName The new player name

3.21.1.11 OnNameChanged()

void DLNetworkLobbyPlayer.OnNameChanged (

string str)

A simple function that calls the CmdNameChanged(str) command

Parameters

str The new player name

3.21.1.12 OnReadyClicked()

void DLNetworkLobbyPlayer.OnReadyClicked ()

A simple function that tells the network that this player is ready to begin

3.21.1.13 OnReadyStateChange()

void DLNetworkLobbyPlayer.OnReadyStateChange (

bool state)

SyncVarHook for handling ready states

Parameters

state If the is player ready or not

Generated by Doxygen

Creating a MOBA using Unity

158

52 Class Documentation

3.21.1.14 OnStartAuthority()

override void DLNetworkLobbyPlayer.OnStartAuthority ()

Callback that simply sets up the client side parts of a lobby for the connecting player

3.21.1.15 ToggleReadyButton()

void DLNetworkLobbyPlayer.ToggleReadyButton (

bool enabled)

Sets the state of the ready button on the UI to the parameter one

Parameters

enabled The state of the button

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Networking/DLNetworkLobbyPlayer.cs

3.22 DLNetworkManager Class Reference

Inheritance diagram for DLNetworkManager:

DLNetworkManager

NetworkLobbyManager

Public Member Functions

• void OnPlayerNumberModified (int count)

Updates the playerCount variable by adding the parameter

• override bool OnLobbyServerSceneLoadedForPlayer (GameObject lobbyPlayer, GameObject gamePlayer)

A callback for when all players are ready and the game is about to start. It takes each lobby player and applies the
saved data of those to the actual game players

• override void OnLobbyServerDisconnect (NetworkConnection conn)
• override GameObject OnLobbyServerCreateLobbyPlayer (NetworkConnection conn, short playerController←↩

Id)

Callback what the server has to do once it creates a lobby player The server instantiates the player and toggles
relevant UI for all players

• override void OnClientError (NetworkConnection conn, int errorCode)

Callback for handling client errors. It currently only sends the player out of the lobby.

Generated by Doxygen

Creating a MOBA using Unity

159

3.22 DLNetworkManager Class Reference 53

Public Attributes

• int playerCount = 0

3.22.1 Member Function Documentation

3.22.1.1 OnClientError()

override void DLNetworkManager.OnClientError (

NetworkConnection conn,

int errorCode)

Callback for handling client errors. It currently only sends the player out of the lobby.

Parameters

conn The network connection
errorCode The error code

3.22.1.2 OnLobbyServerCreateLobbyPlayer()

override GameObject DLNetworkManager.OnLobbyServerCreateLobbyPlayer (

NetworkConnection conn,

short playerControllerId)

Callback what the server has to do once it creates a lobby player The server instantiates the player and toggles
relevant UI for all players

Parameters

conn The network connection. Currently not used

player←↩

ControllerId
The local player contoller Id. Currently not used

Returns

The instantiated lobby player object

3.22.1.3 OnLobbyServerSceneLoadedForPlayer()

override bool DLNetworkManager.OnLobbyServerSceneLoadedForPlayer (

GameObject lobbyPlayer,

GameObject gamePlayer)

Generated by Doxygen

Creating a MOBA using Unity

160

54 Class Documentation

A callback for when all players are ready and the game is about to start. It takes each lobby player and applies the
saved data of those to the actual game players

Parameters

lobbyPlayer The lobby player

gamePlayer The game player that we are transferring data to

Returns

3.22.1.4 OnPlayerNumberModified()

void DLNetworkManager.OnPlayerNumberModified (

int count)

Updates the playerCount variable by adding the parameter

Parameters

count The amount of new players

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Networking/DLNetworkManager.cs

3.23 Docking Class Reference

Handles the DockingKit interactions for each Player.

Inheritance diagram for Docking:

Docking

NetworkBehaviour

Public Member Functions

• void Initialize (Player pl)

Called when this object is activated on a client. Sets up the initial state and references.

• void SetDefaults ()
• NetworkConnection GetConnectionToClient ()

Generated by Doxygen

Creating a MOBA using Unity

161

3.23 Docking Class Reference 55

• bool CheckDamagable (Player otherPlayer)

Check if the other player is damagable by this player. Unassigned team id means teams aren't used.

• void CmdSetDockingKitId (DockingKitId newKit)

Command which sets the SyncVar "dockingKitId". This is synchronized to all clients.

• void CmdSetSwitchState (bool state)

Command for setting the state of the switchingKit member. switchingKit determines whether we want to spawn a
pickup on undocking or not

• void RpcSetSwitchState (bool state)

ClientRpc for synchronizing the switchingKit state

• void SetDockingKit (DockingKitId newKitId)

Spawns in the DockingKit locally for the given new DockingKitId. Updates UI when called for local player.

• DockingKit GetDockingKit ()

Get the active DockingKit for this Docking.

• void RemoveDockingKit (bool spawnPickup=false)

Remove the current docking kit.

• void SetDockingKitStats (DockingKit kit)

Updates the stats given by the current DockingKit.

• void SetPlayerInputRestriction (bool state, params InputType[] inputTypes)

Passes the parameters along to the PlayerInput if called by the local player.

• void OnDockingButtonDown ()

Called when the dock button is pressed.

• void CmdOnPlayerDocking (GameObject pickup)

Command called when the local player wants to dock to a DockingKitPickup.

• void OnUndockingButtonDown ()

Called when the undock button is pressed.

• void OnAbilityButtonChange (int abilityId, bool down)

Called when the ability button is initially pressed or released.

• void CancelAbilities ()

Cancels all the abilities in the current docking kit.

• void CmdSetActive (int abilityId, bool state)

Command for activating an ability. Synchronizes activation to all clients.

• void RpcSetActive (int abilityId, bool state)

ClientRpc for activating an ability. Runs locally on every client. Returns immediately for the local player, as the
activation already happened locally.

• void CmdSpawnObject (int abilityId, int prefabId, Vector3 position, Vector3 rotation)

Command for spawning prefab objects. Used by the abilities.

• void CmdSpawnObjectReference (int abilityId, int prefabId, Vector3 position, Vector3 rotation)

Command for spawning prefab objects. Used by the abilities. Returns a reference to the spawned GameObject to the
client/ability that called the Command.

• void TargetSetSpawnObjectReference (NetworkConnection connection, GameObject spawnedObject, int
abilityId)

TargetRpc for getting the reference to a spawned object.

• void CmdDestroyObject (GameObject destroyGameObject)

Command used to destroy objects by objects that don't have authority to Command themselves.

• void CmdSpawnDockingKitPickup (DockingKitId kitId)

Command for spawning docking kit pickup on undocking.

• void CmdSetModifier (int abilityId, int modifierId, bool apply)

Command called by abilities by the local player to apply or remove a modifier.

• void SetModifier (int abilityId, bool state)

Called by Modifiers OnClient functions to change the state of the modifier on each client.

• void CmdServerCallback (int abilityId, int functionId)

Generated by Doxygen

Creating a MOBA using Unity

162

56 Class Documentation

Command used by abilities to run code on the server, as they're not NetworkBehaviour (or has authority) to call
commands.

• void CmdServerCallbackTwoVector3 (int abilityId, int functionId, Vector3 firstVec3, Vector3 secondVec3)
• void CmdServerCallbackGameObject (int abilityId, int functionId, GameObject go)
• void CmdServerCallbackFloat (int abilityId, int functionId, float param)
• void CmdServerCallbackBool (int abilitiyId, int functionId, bool param)
• void CmdServerCallbackGameObjectFloat (int abilityId, int functionId, GameObject param1, float param2)
• void RpcClientCallback (int abilityId, int functionId)

ClientRpc used by abilities to run code on every client, as they're not NetworkBehaviour (or has authority) to call client
rpcs.

• void RpcClientCallbackVector3 (int abilityId, int functionId, Vector3 firstVec3)
• void RpcClientCallbackTwoVector3 (int abilityId, int functionId, Vector3 firstVec3, Vector3 secondVec3)
• void RpcClientCallbackGameObject (int abilityId, int functionId, GameObject go)
• void RpcClientCallbackFloat (int abilityId, int functionId, float param)
• void RpcClientCallbackBool (int abilityId, int functionId, bool param)
• void TargetClientCallback (NetworkConnection connection, int abilityId, int functionId)

TargetRpc used by abilities to run code on a target client, as they're not NetworkBehaviour (or has authority) to call
target rpcs.

• void TargetReduceCooldown (NetworkConnection connection, int abilityId, float reductionAmount)

TargetRpc for reducing the cooldown an ability by a certain amount.
• void CmdSetElement (ElementalContainer.ComboableElements element, int abilityId)
• void RpcSetElement (ElementalContainer.ComboableElements element, int abilityId)

Public Attributes

• GameObject dockingKitPickupPrefab
• DockingKit basicDockingKit
• float dockingTime = 2f
• DockingKitId dockingKitId = DockingKitId.Empty

3.23.1 Detailed Description

Handles the DockingKit interactions for each Player.

3.23.2 Member Function Documentation

3.23.2.1 CancelAbilities()

void Docking.CancelAbilities ()

Cancels all the abilities in the current docking kit.

3.23.2.2 CheckDamagable()

bool Docking.CheckDamagable (

Player otherPlayer)

Check if the other player is damagable by this player. Unassigned team id means teams aren't used.

Generated by Doxygen

Creating a MOBA using Unity

163

3.23 Docking Class Reference 57

Parameters

otherPlayer The other player.

Returns

True if damagable, false otherwise.

3.23.2.3 CmdDestroyObject()

void Docking.CmdDestroyObject (

GameObject destroyGameObject)

Command used to destroy objects by objects that don't have authority to Command themselves.

Parameters

destroyGameObject The reference to the object to be destroyed.

3.23.2.4 CmdOnPlayerDocking()

void Docking.CmdOnPlayerDocking (

GameObject pickup)

Command called when the local player wants to dock to a DockingKitPickup.

Parameters

pickup Reference to the networked pickup object.

3.23.2.5 CmdServerCallback()

void Docking.CmdServerCallback (

int abilityId,

int functionId)

Command used by abilities to run code on the server, as they're not NetworkBehaviour (or has authority) to call
commands.

Parameters

abilityId The id of the ability calling the command.

function←↩

Id
The id of the function to be run on the server.

Generated by Doxygen

Creating a MOBA using Unity

164

58 Class Documentation

3.23.2.6 CmdSetActive()

void Docking.CmdSetActive (

int abilityId,

bool state)

Command for activating an ability. Synchronizes activation to all clients.

Parameters

ability←↩

Id
Index of the ability to activate.

state If the ability should be activated or deactivated.

3.23.2.7 CmdSetDockingKitId()

void Docking.CmdSetDockingKitId (

DockingKitId newKit)

Command which sets the SyncVar "dockingKitId". This is synchronized to all clients.

Parameters

newKit The new DockingKitId.

3.23.2.8 CmdSetModifier()

void Docking.CmdSetModifier (

int abilityId,

int modifierId,

bool apply)

Command called by abilities by the local player to apply or remove a modifier.

Parameters

abilityId The id of the ability that applied the modifier.

modifierIndex The index of the modifier.
apply If the modifier should be applied or removed.

Generated by Doxygen

Creating a MOBA using Unity

165

3.23 Docking Class Reference 59

3.23.2.9 CmdSetSwitchState()

void Docking.CmdSetSwitchState (

bool state)

Command for setting the state of the switchingKit member. switchingKit determines whether we want to spawn a
pickup on undocking or not

Parameters

state The new state of the bool

3.23.2.10 CmdSpawnDockingKitPickup()

void Docking.CmdSpawnDockingKitPickup (

DockingKitId kitId)

Command for spawning docking kit pickup on undocking.

Parameters

kit←↩

Id
Which docking kit to spawn.

3.23.2.11 CmdSpawnObject()

void Docking.CmdSpawnObject (

int abilityId,

int prefabId,

Vector3 position,

Vector3 rotation)

Command for spawning prefab objects. Used by the abilities.

Parameters

abilityId Index of the ability calling the Command.

prefab←↩

Id
Index of the prefab to spawn from the ability.

position Position of the new object.

rotation Orientation of the new object (in eulerAngles).

Generated by Doxygen

Creating a MOBA using Unity

166

60 Class Documentation

3.23.2.12 CmdSpawnObjectReference()

void Docking.CmdSpawnObjectReference (

int abilityId,

int prefabId,

Vector3 position,

Vector3 rotation)

Command for spawning prefab objects. Used by the abilities. Returns a reference to the spawned GameObject to
the client/ability that called the Command.

Parameters

abilityId Index of the ability calling the Command.

prefab←↩

Id
Index of the prefab to spawn from the ability.

position Position of the new object.

rotation Orientation of the new object (in eulerAngles).

3.23.2.13 GetDockingKit()

DockingKit Docking.GetDockingKit ()

Get the active DockingKit for this Docking.

Returns

The current DockingKit.

3.23.2.14 Initialize()

void Docking.Initialize (

Player pl)

Called when this object is activated on a client. Sets up the initial state and references.

3.23.2.15 OnAbilityButtonChange()

void Docking.OnAbilityButtonChange (

int abilityId,

bool down)

Called when the ability button is initially pressed or released.

Generated by Doxygen

Creating a MOBA using Unity

167

3.23 Docking Class Reference 61

Parameters

ability←↩

Id
Index of the ability where the button state changed.

down If this was the initial press.

3.23.2.16 OnDockingButtonDown()

void Docking.OnDockingButtonDown ()

Called when the dock button is pressed.

3.23.2.17 OnUndockingButtonDown()

void Docking.OnUndockingButtonDown ()

Called when the undock button is pressed.

3.23.2.18 RemoveDockingKit()

void Docking.RemoveDockingKit (

bool spawnPickup = false)

Remove the current docking kit.

Parameters

spawnPickup Whether to spawn a pickup

3.23.2.19 RpcClientCallback()

void Docking.RpcClientCallback (

int abilityId,

int functionId)

ClientRpc used by abilities to run code on every client, as they're not NetworkBehaviour (or has authority) to call
client rpcs.

Generated by Doxygen

Creating a MOBA using Unity

168

62 Class Documentation

Parameters

abilityId The id of the ability calling the rpc.

function←↩

Id
The id of the function to be run on every client.

3.23.2.20 RpcSetActive()

void Docking.RpcSetActive (

int abilityId,

bool state)

ClientRpc for activating an ability. Runs locally on every client. Returns immediately for the local player, as the
activation already happened locally.

Parameters

ability←↩

Id
Index of the ability to activate.

state If the ability should be activated or deactivated.

3.23.2.21 RpcSetSwitchState()

void Docking.RpcSetSwitchState (

bool state)

ClientRpc for synchronizing the switchingKit state

Parameters

state The new state of the bool

3.23.2.22 SetDockingKit()

void Docking.SetDockingKit (

DockingKitId newKitId)

Spawns in the DockingKit locally for the given new DockingKitId. Updates UI when called for local player.

Parameters

new←↩

KitId
The new DockingKitId.

Generated by Doxygen

Creating a MOBA using Unity

169

3.23 Docking Class Reference 63

3.23.2.23 SetDockingKitStats()

void Docking.SetDockingKitStats (

DockingKit kit)

Updates the stats given by the current DockingKit.

Parameters

kit Which DockingKit to retrieve the stats from.

3.23.2.24 SetModifier()

void Docking.SetModifier (

int abilityId,

bool state)

Called by Modifiers OnClient functions to change the state of the modifier on each client.

Parameters

ability←↩

Id
The id of the ability that applied the modifier.

state The active state of the modifier.

3.23.2.25 SetPlayerInputRestriction()

void Docking.SetPlayerInputRestriction (

bool state,

params InputType [] inputTypes)

Passes the parameters along to the PlayerInput if called by the local player.

Parameters

state The new state of the input restriction.

inputTypes The types to set restriction for.

Generated by Doxygen

Creating a MOBA using Unity

170

64 Class Documentation

3.23.2.26 TargetClientCallback()

void Docking.TargetClientCallback (

NetworkConnection connection,

int abilityId,

int functionId)

TargetRpc used by abilities to run code on a target client, as they're not NetworkBehaviour (or has authority) to call
target rpcs.

Parameters

connection Needed so TargetRpc finds the correct client.

abilityId The id of the ability calling the target rpc.

functionId The id of the function to be run on the targeted client.

3.23.2.27 TargetReduceCooldown()

void Docking.TargetReduceCooldown (

NetworkConnection connection,

int abilityId,

float reductionAmount)

TargetRpc for reducing the cooldown an ability by a certain amount.

Parameters

connection The NetworkConnection associated with the player given the reduction.

abilityId The id of the ability to get cooldown reduction.

reductionAmount The amount deducted for the current cooldown.

3.23.2.28 TargetSetSpawnObjectReference()

void Docking.TargetSetSpawnObjectReference (

NetworkConnection connection,

GameObject spawnedObject,

int abilityId)

TargetRpc for getting the reference to a spawned object.

Parameters

connection Needed so TargetRpc finds the correct client.

spawnedObject Reference to the GameObject spawned.

abilityId The id of the ability that called the spawn command.

Generated by Doxygen

Creating a MOBA using Unity

171

3.24 DockingKit Class Reference 65

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/Docking.cs

3.24 DockingKit Class Reference

Handles the interaction between the Docking and the abilities.

Inheritance diagram for DockingKit:

DockingKit

MonoBehaviour

Public Member Functions

• void Initialize (Docking dock)

Initialization that happens locally on every client.

• void OnLocalPlayerInitialization (PlayerUIHandler playerUIHandler)

Initialization that only happens for the local player (Player controlling this docking kit).

• void OnLocalPlayerDocking (float dockingTime, PlayerUIHandler playerUIHandler)

Initialization called for the local player (Player controlling this docking kit) on docking.

• void OnUndocking (float dockingDuration, DockingKitId spawnPickupId, bool spawnPickup=true)

Called for every client when undocking.

• void OnRemoveKit (DockingKitId spawnPickupId=DockingKitId.Empty)
• void OnAbilityButtonChange (int abilityId, bool down)

Called when the ability button is initially pressed or released.

• void CancelAbilities ()

Cancels all the abilities in this docking kit.

• void SetAbilityLock (bool state, params int[] abilityNumbers)

Used by Abilities to lock abilities in this docking kit.

Public Attributes

• float moveSpeed = 60f
• float rotationSpeed = 6f
• float maxHealth = 100f
• List< Ability > abilities

3.24.1 Detailed Description

Handles the interaction between the Docking and the abilities.

Generated by Doxygen

Creating a MOBA using Unity

172

66 Class Documentation

3.24.2 Member Function Documentation

3.24.2.1 CancelAbilities()

void DockingKit.CancelAbilities ()

Cancels all the abilities in this docking kit.

3.24.2.2 Initialize()

void DockingKit.Initialize (

Docking dock)

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

3.24.2.3 OnAbilityButtonChange()

void DockingKit.OnAbilityButtonChange (

int abilityId,

bool down)

Called when the ability button is initially pressed or released.

ButtonDown may be called without ButtonUp running afterwards, handle this in Ability.CancelAbility (if the ability is
locked in between). ButtonUp may be called without ButtonDown running first (if the ability is unlocked in between).

Parameters

ability←↩

Id
Index of the ability where the button state changed.

down If this was the initial press.

3.24.2.4 OnLocalPlayerDocking()

void DockingKit.OnLocalPlayerDocking (

float dockingTime,

PlayerUIHandler playerUIHandler)

Generated by Doxygen

Creating a MOBA using Unity

173

3.24 DockingKit Class Reference 67

Initialization called for the local player (Player controlling this docking kit) on docking.

Parameters

dockingTime The time used to dock. (Immobile duration)

3.24.2.5 OnLocalPlayerInitialization()

void DockingKit.OnLocalPlayerInitialization (

PlayerUIHandler playerUIHandler)

Initialization that only happens for the local player (Player controlling this docking kit).

3.24.2.6 OnUndocking()

void DockingKit.OnUndocking (

float dockingDuration,

DockingKitId spawnPickupId,

bool spawnPickup = true)

Called for every client when undocking.

Parameters

dockingDuration The time used to undock. (Immobile duration)

spawnPickupId The DockingKitId of the pickup to be spawned on undocking.

spawnPickup Whether to spawn the pickup.

3.24.2.7 SetAbilityLock()

void DockingKit.SetAbilityLock (

bool state,

params int [] abilityNumbers)

Used by Abilities to lock abilities in this docking kit.

Parameters

state To lock or unlock.
abilityNumbers Toggles lock for these abilities.

The documentation for this class was generated from the following file:

Generated by Doxygen

Creating a MOBA using Unity

174

68 Class Documentation

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/DockingKit.cs

3.25 DockingKitDescriptions Struct Reference

Public Attributes

• Sprite icon
• string name
• string description

The documentation for this struct was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/ShopItemData.cs

3.26 DockingKitPickup Class Reference

Inheritance diagram for DockingKitPickup:

DockingKitPickup

NetworkBehaviour

Public Member Functions

• override void OnStartClient ()

Calls the SyncVar hook manually to get the correct initial state. Used by clients connecting after pickup already
spawned.

• void OnPlayerDocking (GameObject player)

Server call from the Docking called when a player tries to dock.

Public Attributes

• DockingKitId dockingKitId = DockingKitId.Empty

3.26.1 Member Function Documentation

3.26.1.1 OnPlayerDocking()

void DockingKitPickup.OnPlayerDocking (

GameObject player)

Server call from the Docking called when a player tries to dock.

Generated by Doxygen

Creating a MOBA using Unity

175

3.27 DotTrap Class Reference 69

Parameters

player Reference to the player docking.

3.26.1.2 OnStartClient()

override void DockingKitPickup.OnStartClient ()

Calls the SyncVar hook manually to get the correct initial state. Used by clients connecting after pickup already
spawned.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/DockingKitPickup.cs

3.27 DotTrap Class Reference

Inheritance diagram for DotTrap:

DotTrap

Trap

SpawnableObject

NetworkBehaviour

Public Member Functions

• override void HandleTrigger (PlayerStatus playerStatus)

Callback that allows this trap to do whatever it wants whenever it is triggered. This one simply applies the member
structs containing modifier info

Public Attributes

• ModifierInfo dotInfo
• ModifierInfo slowInfo

Additional Inherited Members

3.27.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

176

70 Class Documentation

3.27.1.1 HandleTrigger()

override void DotTrap.HandleTrigger (

PlayerStatus playerStatus) [virtual]

Callback that allows this trap to do whatever it wants whenever it is triggered. This one simply applies the member
structs containing modifier info

Generated by Doxygen

Creating a MOBA using Unity

177

3.28 ElementalModifiers Class Reference 71

Parameters

playerStatus The PlayerStatus component of the player that is in the trap

Reimplemented from Trap.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TrapperKit/DotTrap.cs

3.28 ElementalModifiers Class Reference

Public Member Functions

• void Initialize ()
• void SetModifier (bool state)
• ModifierInfo GetModifierInfo (int modifierId)
• void TransferElementalModifier (Collider other, Docking docking, int abilityId)

Handles the transferring of the elemental buff by applying it as a debuff to the player that was hit

• void ApplyElement (ElementalContainer.ComboableElements element, Docking docking, int abilityId)
• void SetElement (ElementalContainer.ComboableElements element)

Public Attributes

• Transform elementEffectTransform
• ModifierInfo fireBuff
• ModifierInfo iceBuff
• ModifierInfo electricBuff
• ModifierInfo fireDebuff
• ModifierInfo iceDebuff
• ModifierInfo electricDebuff

3.28.1 Member Function Documentation

3.28.1.1 TransferElementalModifier()

void ElementalModifiers.TransferElementalModifier (

Collider other,

Docking docking,

int abilityId)

Handles the transferring of the elemental buff by applying it as a debuff to the player that was hit

Generated by Doxygen

Creating a MOBA using Unity

178

72 Class Documentation

Parameters

other The collider we want to apply the debuff to

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ElementalModifiers.cs

3.29 ExplosiveMine Class Reference

Inheritance diagram for ExplosiveMine:

ExplosiveMine

SpawnableObject

NetworkBehaviour

Public Member Functions

• void Initialize (GameObject owner)
• void Start ()
• void OnTriggerEnter (Collider other)
• void RpcRemoveMine ()

Destroy the mine and remove it from the list of mines.

• void RpcPlayAnimation ()
• void RpcMineVisualState (bool state)
• void RpcExplodeVisualState (bool state)

Public Attributes

• float baseDamage
• float maxDamageTapering
• float explosionForce
• float explosionRadius
• float activationTime
• string animationTrigger
• GameObject explodeSprite
• GameObject mineSprite
• Animator animator
• int myId
• GameObject spawnerReference

Generated by Doxygen

Creating a MOBA using Unity

179

3.30 ExplosiveMineSpawner Class Reference 73

Additional Inherited Members

3.29.1 Member Function Documentation

3.29.1.1 RpcRemoveMine()

void ExplosiveMine.RpcRemoveMine ()

Destroy the mine and remove it from the list of mines.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/ExplosiveMine.cs

3.30 ExplosiveMineSpawner Class Reference

Inheritance diagram for ExplosiveMineSpawner:

ExplosiveMineSpawner

Ability ISpawnableReferenceProvider

MonoBehaviour ISpawnableProvider

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• void RemoveMine (int mineId)

Removes the mine that got triggered

• void OnDestroy ()

Clean up mines when docking kit is not equipped anymore.

Public Attributes

• string animatorTrigger
• GameObject [] minePrefab
• int maxMineAmount

Generated by Doxygen

Creating a MOBA using Unity

180

74 Class Documentation

Additional Inherited Members

3.30.1 Member Function Documentation

3.30.1.1 ButtonDown()

override void ExplosiveMineSpawner.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.30.1.2 OnDestroy()

void ExplosiveMineSpawner.OnDestroy ()

Clean up mines when docking kit is not equipped anymore.

3.30.1.3 RemoveMine()

void ExplosiveMineSpawner.RemoveMine (

int mineId)

Removes the mine that got triggered

Parameters

mine←↩

Id
The ID of the mine.

3.30.1.4 SetActive()

override void ExplosiveMineSpawner.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Generated by Doxygen

Creating a MOBA using Unity

181

3.31 FadingGroup Class Reference 75

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/ExplosiveMineSpawner.cs

3.31 FadingGroup Class Reference

Inheritance diagram for FadingGroup:

FadingGroup

MonoBehaviour

Public Member Functions

• Fade GetCurrentFade ()
• void StartFade (Fade fade, float fTime, Action finishFade=null, bool reactivate=true)

Starts the fading of a panel.

• void FadeOutToValue (float fTime, float fOutValue, Action finishFade=null)

Fades the panel to a given value.

• void StartFadeOrFireEvent (Fade fade, float fadeTime, Action finishFade=null)

Starts a fade, and fires the provided event if the gameObject is disabled.

• void StopFade (bool setVisible)

Stops the fade, snapping the alpha and activating or deactivating the gameObject.

3.31.1 Member Function Documentation

3.31.1.1 FadeOutToValue()

void FadingGroup.FadeOutToValue (

float fTime,

float fOutValue,

Action finishFade = null)

Fades the panel to a given value.

Parameters

fadeTime Fade time.
fadeOutValue Value to fade to.
finishFade Delegate to fire once fade is complete.

Generated by Doxygen

Creating a MOBA using Unity

182

76 Class Documentation

3.31.1.2 StartFade()

void FadingGroup.StartFade (

Fade fade,

float fTime,

Action finishFade = null,

bool reactivate = true)

Starts the fading of a panel.

Parameters

fade The fade type to use.

fadeTime Fade time.
finishFade Delegate to fire once fade is complete.

reactivate Whether to reactivate this gameobject for the purposes of the fade.

3.31.1.3 StartFadeOrFireEvent()

void FadingGroup.StartFadeOrFireEvent (

Fade fade,

float fadeTime,

Action finishFade = null)

Starts a fade, and fires the provided event if the gameObject is disabled.

Parameters

fade Fade type to use.

fadeTime Fade time.
finishFade Delegate to fire if object is disabled.

3.31.1.4 StopFade()

void FadingGroup.StopFade (

bool setVisible)

Stops the fade, snapping the alpha and activating or deactivating the gameObject.

Parameters

setVisible Whether the panel should be visible or invisible on stop.

Generated by Doxygen

Creating a MOBA using Unity

183

3.32 FieldOfView Class Reference 77

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/FadingGroup.cs

3.32 FieldOfView Class Reference

Inheritance diagram for FieldOfView:

FieldOfView

MonoBehaviour

Public Member Functions

• Vector3 DirFromAngle (float angleInDegrees, bool angleIsGlobal)
• void SetViewRadius (float newRadius, float speed)
• void ResetViewRadius (float speed)
• void SetViewAngle (float newAngle, float speed)
• void ResetViewAngle (float speed)

Public Attributes

• float viewRadius
• float viewAngle
• LayerMask obstacleMask
• float meshResolution = 1
• int edgeResolveIterations = 1
• float edgeDstThreshold = 0.5f
• float maskCutawayDst = 0.4f
• MeshFilter viewMeshFilter

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/FieldOfView.cs

3.33 Flamethrower Class Reference

Inheritance diagram for Flamethrower:

Flamethrower

Ability IModifierProvider

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

184

78 Class Documentation

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• override void SetModifier (bool state)

Called by the Modifier. Appropriate place for doing local changes.

• void SetBuffState (bool state)

Sets the visual state of the flamethrower to the given parameter state

Public Attributes

• SpriteRenderer head
• ModifierInfo buff
• ModifierInfo dot
• GameObject flamethrowerContainer
• Color headColorWhileActive

Additional Inherited Members

3.33.1 Member Function Documentation

3.33.1.1 ButtonDown()

override void Flamethrower.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.33.1.2 Initialize()

override void Flamethrower.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Generated by Doxygen

Creating a MOBA using Unity

185

3.33 Flamethrower Class Reference 79

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.33.1.3 SetActive()

override void Flamethrower.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.33.1.4 SetBuffState()

void Flamethrower.SetBuffState (

bool state)

Sets the visual state of the flamethrower to the given parameter state

Parameters

state The state of the flamethrower

3.33.1.5 SetModifier()

override void Flamethrower.SetModifier (

bool state) [virtual]

Called by the Modifier. Appropriate place for doing local changes.

Parameters

state If the modifier should be activated or deactivated.

Generated by Doxygen

Creating a MOBA using Unity

186

80 Class Documentation

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TrapperKit/Flamethrower.cs

3.34 FlashGrenade Class Reference

Inheritance diagram for FlashGrenade:

FlashGrenade

SpawnableObject IReflectable

NetworkBehaviour

Public Attributes

• float timeBeforeExplosion = 2f
• float initialSpeed = 5f
• SphereCollider explosionCollider
• GameObject visuals
• int lifeTimeAfterExplosion = 1
• float visionRadius = 20
• float lerpSpeed = 10f
• ParticleSystem explosionParticles
• ModifierInfo stunInfo

Additional Inherited Members

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BrawlerKit/FlashGrenade.cs

3.35 FlashGrenadeSpawner Class Reference

Inheritance diagram for FlashGrenadeSpawner:

FlashGrenadeSpawner

Ability ISpawnableProvider

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

187

3.35 FlashGrenadeSpawner Class Reference 81

Public Member Functions

• override void ButtonDown ()

Callback for what this ability should do once its associated button has been pressed

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• GameObject flashGrenadePrefab
• float offset = 5

Additional Inherited Members

3.35.1 Member Function Documentation

3.35.1.1 ButtonDown()

override void FlashGrenadeSpawner.ButtonDown () [virtual]

Callback for what this ability should do once its associated button has been pressed

Implements Ability.

3.35.1.2 SetActive()

override void FlashGrenadeSpawner.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BrawlerKit/FlashGrenadeSpawner.cs

Generated by Doxygen

Creating a MOBA using Unity

188

82 Class Documentation

3.36 Focus Class Reference

Inheritance diagram for Focus:

Focus

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void InitializeLocalPlayer (AbilityUI abilityUI)

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the refer-
ences are already set up.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void CancelAbility ()

Call for cancelling abilities. Override in abilities that may be interrupted.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• string animatorBool
• float maxDuration = 15f

• Transform target
• float targetOrthoSize
• Slingshot slingshot
• Transform leftSlingHandle
• Transform rightSlingHandle
• ModifierInfo focusModifier
• float targetViewAngle
• float targetViewRadius
• float lerpSpeed

Additional Inherited Members

3.36.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

189

3.36 Focus Class Reference 83

3.36.1.1 ButtonDown()

override void Focus.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.36.1.2 CancelAbility()

override void Focus.CancelAbility () [virtual]

Call for cancelling abilities. Override in abilities that may be interrupted.

Reimplemented from Ability.

3.36.1.3 InitializeLocalPlayer()

override void Focus.InitializeLocalPlayer (

AbilityUI abilityUI) [virtual]

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the
references are already set up.

Reimplemented from Ability.

3.36.1.4 SetActive()

override void Focus.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/Focus.cs

Generated by Doxygen

Creating a MOBA using Unity

190

84 Class Documentation

3.37 FogCamera Class Reference

Inheritance diagram for FogCamera:

FogCamera

MonoBehaviour

Public Attributes

• Shader replacementShader
• Color fogColor

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/FogCamera.cs

3.38 ForceField Class Reference

Inheritance diagram for ForceField:

ForceField

Ability

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• float playerForce = 10f
• string animatorTrigger

Generated by Doxygen

Creating a MOBA using Unity

191

3.38 ForceField Class Reference 85

Additional Inherited Members

3.38.1 Member Function Documentation

3.38.1.1 ButtonDown()

override void ForceField.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.38.1.2 Initialize()

override void ForceField.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.38.1.3 SetActive()

override void ForceField.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

Generated by Doxygen

Creating a MOBA using Unity

192

86 Class Documentation

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TankKit/ForceField.cs

3.39 FortificationBuff Class Reference

Inheritance diagram for FortificationBuff:

FortificationBuff

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• bool IsActive ()
• int GetBuffModifierId ()
• int GetAbilityId ()

Public Attributes

• ModifierInfo buff
• float activeDuration

Protected Member Functions

• override void Update ()

Runs on every client, but only the local player has cooldown initialized.

Additional Inherited Members

3.39.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

193

3.39 FortificationBuff Class Reference 87

3.39.1.1 ButtonDown()

override void FortificationBuff.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.39.1.2 Initialize()

override void FortificationBuff.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.39.1.3 SetActive()

override void FortificationBuff.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.39.1.4 Update()

override void FortificationBuff.Update () [protected], [virtual]

Runs on every client, but only the local player has cooldown initialized.

Generated by Doxygen

Creating a MOBA using Unity

194

88 Class Documentation

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SupportKit/FortificationBuff.cs

3.40 GameManager Class Reference

Inheritance diagram for GameManager:

GameManager

NetworkBehaviour

Public Member Functions

• GameObject GetDockingKit (DockingKitId id)

Used for retrieving a DockingKit prefab from a DockingKitId.

• void RemovePlayer (Player player)

Removes the player.

• void HandleEveryoneBailed ()

Handles everyone bailed.

• void ExitGame (MenuPage returnPage)

Exits the game.

• void HandleKill (Player killed)

Handles the kill

• void ServerResetAllPlayers ()

Resets all the players on the server

• void RespawnPlayer (int playerNumber, TeamId playerTeamId)

Respawns the player

• void RpcRespawnPlayer (int playerNumber, int spawnPointIndex)

Rpc for respawning the player

• void ClientReady ()

Clients the ready

• void EnablePlayerControl ()

Enables the player control

• void DisablePlayerControl ()

Disables the player control

Static Public Member Functions

• static void AddPlayer (Player player)

Add a player from the lobby hook

Generated by Doxygen

Creating a MOBA using Unity

195

3.40 GameManager Class Reference 89

Public Attributes

• List< GameObject > dockingKitPrefabs
• PlayerUIHandler playerUIHandler
• IngameMenuHandler ingameMenuHandler

Static Public Attributes

• static GameManager Instance
• static List< Player > Players = new List<Player>()

Protected Member Functions

• void StartUp ()

State up state function

• void Preplay ()

Preplay state function

Protected Attributes

• GameState gameState = GameState.Inactive

Properties

• GameState CurrentGameState [get]
• GameModeProcessor ModeProcessor [get]
• bool HasEveryoneBailed [get]

3.40.1 Member Function Documentation

3.40.1.1 AddPlayer()

static void GameManager.AddPlayer (

Player player) [static]

Add a player from the lobby hook

3.40.1.2 ClientReady()

void GameManager.ClientReady ()

Clients the ready

Generated by Doxygen

Creating a MOBA using Unity

196

90 Class Documentation

3.40.1.3 DisablePlayerControl()

void GameManager.DisablePlayerControl ()

Disables the player control

3.40.1.4 EnablePlayerControl()

void GameManager.EnablePlayerControl ()

Enables the player control

3.40.1.5 ExitGame()

void GameManager.ExitGame (

MenuPage returnPage)

Exits the game.

Parameters

returnPage Return page.

3.40.1.6 GetDockingKit()

GameObject GameManager.GetDockingKit (

DockingKitId id)

Used for retrieving a DockingKit prefab from a DockingKitId.

Parameters

id Index of DockingKit to return.

Returns

The DockingKit prefab for the given DockingKitId.

Generated by Doxygen

Creating a MOBA using Unity

197

3.40 GameManager Class Reference 91

3.40.1.7 HandleEveryoneBailed()

void GameManager.HandleEveryoneBailed ()

Handles everyone bailed.

3.40.1.8 HandleKill()

void GameManager.HandleKill (

Player killed)

Handles the kill

Parameters

killed Killed

3.40.1.9 Preplay()

void GameManager.Preplay () [protected]

Preplay state function

3.40.1.10 RemovePlayer()

void GameManager.RemovePlayer (

Player player)

Removes the player.

Parameters

player Player.

3.40.1.11 RespawnPlayer()

void GameManager.RespawnPlayer (

int playerNumber,

TeamId playerTeamId)

Respawns the player

Generated by Doxygen

Creating a MOBA using Unity

198

92 Class Documentation

Parameters

playerNumber Player number

3.40.1.12 RpcRespawnPlayer()

void GameManager.RpcRespawnPlayer (

int playerNumber,

int spawnPointIndex)

Rpc for respawning the player

Parameters

playerNumber Player number

spawnPointIndex Spawn point index

3.40.1.13 ServerResetAllPlayers()

void GameManager.ServerResetAllPlayers ()

Resets all the players on the server

3.40.1.14 StartUp()

void GameManager.StartUp () [protected]

State up state function

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameManager.cs

3.41 GameModeProcessor Class Reference

Game mode rules processor - a base class for all game modes.

Inheritance diagram for GameModeProcessor:

GameModeProcessor

MonoBehaviour

Deathmatch TeamDeathmatch

Generated by Doxygen

Creating a MOBA using Unity

199

3.41 GameModeProcessor Class Reference 93

Public Member Functions

• virtual string GetRoundMessage ()

Gets the round message.

• void SetGameManager (GameManager gManager)

Sets the game manager.

• virtual bool IsEndOfRound ()

Determines whether it is end of round.

• virtual void StartGame ()

Called on game start

• virtual void StartRound ()

Called on round start

• virtual void MatchEnd ()

Called on Match end

• virtual void PlayerDies (Player player)

Handles the death of a player

• virtual void HandleKillerScore (Player killer, Player killed)

Handles the killer score - this differs per game mode

• virtual void HandleSuicide (Player killer)

Handles the player's suicide - this differs per game mode

• virtual void PlayerDisconnected (Player player)

Called when a player disconnects

• virtual void HandleRoundEnd ()

Handles the round end.

• virtual string GetRoundEndText ()

Gets the round end text.

• virtual string GetGameOverText ()

Gets the game over text.

• virtual void Bail ()

Handles bailing (i.e. leaving the game)

• virtual void CompleteGame ()

Handles the game being complete (including the transitions)

• virtual void RegenerateHudScoreList ()

Static Public Attributes

• static float endGameTransitionTime = 10f

Protected Attributes

• MenuPage returnPage
• GameManager gameManager
• Player winner
• bool isMatchOver = false

Properties

• MenuPage ReturnPage [get]
• bool IsMatchOver [get]
• virtual int ScoreWinTarget [get]
• virtual bool HasWinner [get]

Generated by Doxygen

Creating a MOBA using Unity

200

94 Class Documentation

3.41.1 Detailed Description

Game mode rules processor - a base class for all game modes.

3.41.2 Member Function Documentation

3.41.2.1 Bail()

virtual void GameModeProcessor.Bail () [virtual]

Handles bailing (i.e. leaving the game)

3.41.2.2 CompleteGame()

virtual void GameModeProcessor.CompleteGame () [virtual]

Handles the game being complete (including the transitions)

3.41.2.3 GetGameOverText()

virtual string GameModeProcessor.GetGameOverText () [virtual]

Gets the game over text.

Returns

The game over text.

Reimplemented in TeamDeathmatch, and Deathmatch.

3.41.2.4 GetRoundEndText()

virtual string GameModeProcessor.GetRoundEndText () [virtual]

Gets the round end text.

Returns

The round end text.

Reimplemented in TeamDeathmatch, and Deathmatch.

Generated by Doxygen

Creating a MOBA using Unity

201

3.41 GameModeProcessor Class Reference 95

3.41.2.5 GetRoundMessage()

virtual string GameModeProcessor.GetRoundMessage () [virtual]

Gets the round message.

Returns

The round message.

3.41.2.6 HandleKillerScore()

virtual void GameModeProcessor.HandleKillerScore (

Player killer,

Player killed) [virtual]

Handles the killer score - this differs per game mode

Parameters

killer Player that did the killing

killed Player that was killed

3.41.2.7 HandleRoundEnd()

virtual void GameModeProcessor.HandleRoundEnd () [virtual]

Handles the round end.

Reimplemented in TeamDeathmatch, and Deathmatch.

3.41.2.8 HandleSuicide()

virtual void GameModeProcessor.HandleSuicide (

Player killer) [virtual]

Handles the player's suicide - this differs per game mode

Parameters

killer The player that kill themself

Generated by Doxygen

Creating a MOBA using Unity

202

96 Class Documentation

3.41.2.9 IsEndOfRound()

virtual bool GameModeProcessor.IsEndOfRound () [virtual]

Determines whether it is end of round.

Returns

true if is end of round; otherwise, false.

Reimplemented in TeamDeathmatch, and Deathmatch.

3.41.2.10 MatchEnd()

virtual void GameModeProcessor.MatchEnd () [virtual]

Called on Match end

3.41.2.11 PlayerDies()

virtual void GameModeProcessor.PlayerDies (

Player player) [virtual]

Handles the death of a player

Parameters

player Player.

Reimplemented in TeamDeathmatch, and Deathmatch.

3.41.2.12 PlayerDisconnected()

virtual void GameModeProcessor.PlayerDisconnected (

Player player) [virtual]

Called when a player disconnects

Generated by Doxygen

Creating a MOBA using Unity

203

3.42 GameSettings Class Reference 97

Parameters

player The player that disconnects

Reimplemented in TeamDeathmatch, and Deathmatch.

3.41.2.13 SetGameManager()

void GameModeProcessor.SetGameManager (

GameManager gManager)

Sets the game manager.

Parameters

gameManager Game manager.

3.41.2.14 StartGame()

virtual void GameModeProcessor.StartGame () [virtual]

Called on game start

Reimplemented in TeamDeathmatch.

3.41.2.15 StartRound()

virtual void GameModeProcessor.StartRound () [virtual]

Called on round start

Reimplemented in TeamDeathmatch, and Deathmatch.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameModes/GameModeProcessor.cs

3.42 GameSettings Class Reference

Public Member Functions

• string GetLobbySceneName ()
• void SetMapIndex (int index)

Sets the index of the map.
• void SetModeIndex (int index)

Sets the index of the mode.

Generated by Doxygen

Creating a MOBA using Unity

204

98 Class Documentation

Properties

• MapInfo Map [get]
• int MapIndex [get]
• ModeInfo Mode [get]
• int ModeIndex [get]
• int ScoreTarget [get]

Events

• Action< MapInfo > mapChanged
• Action< ModeInfo > modeChanged

3.42.1 Member Function Documentation

3.42.1.1 SetMapIndex()

void GameSettings.SetMapIndex (

int index)

Sets the index of the map.

Parameters

index Index.

3.42.1.2 SetModeIndex()

void GameSettings.SetModeIndex (

int index)

Sets the index of the mode.

Parameters

index Index.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameSettings.cs

Generated by Doxygen

Creating a MOBA using Unity

205

3.43 GrenadeLauncher Class Reference 99

3.43 GrenadeLauncher Class Reference

Inheritance diagram for GrenadeLauncher:

GrenadeLauncher

Ability ISpawnableProvider

MonoBehaviour

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.
• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.
• void Fire ()

Public Attributes

• string animatorTrigger
• float spawnOffset
• GameObject shellPrefab

Additional Inherited Members

3.43.1 Member Function Documentation

3.43.1.1 ButtonDown()

override void GrenadeLauncher.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.43.1.2 Fire()

void GrenadeLauncher.Fire ()

3.43.1.3 SetActive()

override void GrenadeLauncher.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

206

100 Class Documentation

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/GrenadeLauncher.cs

3.44 GrenadeShell Class Reference

Inheritance diagram for GrenadeShell:

GrenadeShell

SpawnableObject

NetworkBehaviour

Public Attributes

• float launchForce
• float lifetime
• float explosionRadius
• float explosionForce
• float baseDamage

Additional Inherited Members

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/GrenadeShell.cs

3.45 HealingAura Class Reference

Inheritance diagram for HealingAura:

HealingAura

Ability IModifierProvider IServerCallback< GameObject >

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

207

3.45 HealingAura Class Reference 101

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• int GetAbilityId ()
• int GetBuffId ()
• IEnumerator ApplyHealingInArea (float interval)

Applies healing buff in the area

Public Attributes

• ModifierInfo healBuff
• FortificationBuff fortificationBuff
• float reapplyInterval
• SpriteRenderer visuals

Additional Inherited Members

3.45.1 Member Function Documentation

3.45.1.1 ApplyHealingInArea()

IEnumerator HealingAura.ApplyHealingInArea (

float interval)

Applies healing buff in the area

Parameters

interval How often it should be applied

Returns

3.45.1.2 ButtonDown()

override void HealingAura.ButtonDown () [virtual]

Generated by Doxygen

Creating a MOBA using Unity

208

102 Class Documentation

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.45.1.3 Initialize()

override void HealingAura.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.45.1.4 SetActive()

override void HealingAura.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SupportKit/HealingAura.cs

3.46 HealthDrainBuff Class Reference

Inheritance diagram for HealthDrainBuff:

Generated by Doxygen

Creating a MOBA using Unity

209

3.46 HealthDrainBuff Class Reference 103

HealthDrainBuff

Ability IModifierProvider IServerCallback< GameObject >

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state)

Activates/deactivates collider. Cleans up lists when skill is over.

• override void SetModifier (bool state)
• void OnTriggerEnter (Collider other)

Adds players that enters the aura in list of players in aura

• void OnTriggerExit (Collider other)

Removes players who leave the aura from the list of players in aura

• void ClearOnDurationEnd ()
• IEnumerator Drain ()

Applies the drain damage / heal to the players at a set interval.

• int GetBuffModifierId ()
• int GetAbilityId ()
• bool IsActive ()

Public Attributes

• float duration
• float drainInterval
• float baseDrain
• ModifierInfo buff
• ModifierInfo debuff
• List< GameObject > friendlyPlayersInAura = new List<GameObject>()
• List< GameObject > hostilePlayersInAura = new List<GameObject>()

Protected Member Functions

• override void Update ()

Override to end the skill after duration is over.

Additional Inherited Members

3.46.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

210

104 Class Documentation

3.46.1.1 ButtonDown()

override void HealthDrainBuff.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.46.1.2 Drain()

IEnumerator HealthDrainBuff.Drain ()

Applies the drain damage / heal to the players at a set interval.

Returns

3.46.1.3 Initialize()

override void HealthDrainBuff.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.46.1.4 OnTriggerEnter()

void HealthDrainBuff.OnTriggerEnter (

Collider other)

Adds players that enters the aura in list of players in aura

Generated by Doxygen

Creating a MOBA using Unity

211

3.46 HealthDrainBuff Class Reference 105

Parameters

other the other collider

3.46.1.5 OnTriggerExit()

void HealthDrainBuff.OnTriggerExit (

Collider other)

Removes players who leave the aura from the list of players in aura

Parameters

other the other collider

3.46.1.6 SetActive()

override void HealthDrainBuff.SetActive (

bool state) [virtual]

Activates/deactivates collider. Cleans up lists when skill is over.

Parameters

state current state of the skill

Implements Ability.

3.46.1.7 SetModifier()

override void HealthDrainBuff.SetModifier (

bool state) [virtual]

Parameters

state

Reimplemented from Ability.

Generated by Doxygen

Creating a MOBA using Unity

212

106 Class Documentation

3.46.1.8 Update()

override void HealthDrainBuff.Update () [protected], [virtual]

Override to end the skill after duration is over.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SupportKit/HealthDrainBuff.cs

3.47 HookShot Class Reference

Inheritance diagram for HookShot:

HookShot

Ability IServerCallback< Vector3, Vector3 > IClientCallback< T1, T2 > IClientCallback< Vector3 > IClientCallback< Vector3, Vector3 >

MonoBehaviour

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• string animatorBool
• Transform hookSpawnPoint
• Collider hook
• LineRenderer lineRenderer
• float hookSpeed = 40f
• float hookReturnSpeed = 30f
• float hookRange = 80f
• float hookPullForce = 5.8f
• float hookOnHitHoldTime = 0.5f
• ModifierInfo hookModifier

Additional Inherited Members

3.47.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

213

3.48 IClientCallback< T1, T2 > Interface Template Reference 107

3.47.1.1 ButtonDown()

override void HookShot.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.47.1.2 SetActive()

override void HookShot.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TankKit/HookShot.cs

3.48 IClientCallback< T1, T2 > Interface Template Reference

Can recieve client callbacks from the Docking with two parameters.

Inheritance diagram for IClientCallback< T1, T2 >:

IClientCallback< T1, T2 >

BoomerangThrow HookShot MultiBoomerangBuff

Public Member Functions

• void ClientCallback (int functionId)

Called from the Docking to give abilities a way to run code on every client.

• void ClientCallback (int functionId, T param)
• void ClientCallback (int functionId, T1 first, T2 second)

Generated by Doxygen

Creating a MOBA using Unity

214

108 Class Documentation

3.48.1 Detailed Description

Can recieve client callbacks from the Docking with two parameters.

3.48.2 Member Function Documentation

3.48.2.1 ClientCallback()

void IClientCallback< T1, T2 >.ClientCallback (

int functionId)

Called from the Docking to give abilities a way to run code on every client.

Parameters

function←↩

Id
The id of the function to be run on every client.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IClientCallback.cs

3.49 IClientCallback< T1, T2 > Interface Template Reference

Can recieve client callbacks from the Docking with two parameters.

Inheritance diagram for IClientCallback< T1, T2 >:

IClientCallback< T1, T2 >

BoomerangThrow HookShot MultiBoomerangBuff

Public Member Functions

• void ClientCallback (int functionId)

Called from the Docking to give abilities a way to run code on every client.

• void ClientCallback (int functionId, T param)
• void ClientCallback (int functionId, T1 first, T2 second)

3.49.1 Detailed Description

Can recieve client callbacks from the Docking with two parameters.

Generated by Doxygen

Creating a MOBA using Unity

215

3.50 IClientCallback< T1, T2 > Interface Template Reference 109

3.49.2 Member Function Documentation

3.49.2.1 ClientCallback()

void IClientCallback< T1, T2 >.ClientCallback (

int functionId)

Called from the Docking to give abilities a way to run code on every client.

Parameters

function←↩

Id
The id of the function to be run on every client.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IClientCallback.cs

3.50 IClientCallback< T1, T2 > Interface Template Reference

Can recieve client callbacks from the Docking with two parameters.

Inheritance diagram for IClientCallback< T1, T2 >:

IClientCallback< T1, T2 >

BoomerangThrow HookShot MultiBoomerangBuff

Public Member Functions

• void ClientCallback (int functionId)

Called from the Docking to give abilities a way to run code on every client.

• void ClientCallback (int functionId, T param)
• void ClientCallback (int functionId, T1 first, T2 second)

3.50.1 Detailed Description

Can recieve client callbacks from the Docking with two parameters.

3.50.2 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

216

110 Class Documentation

3.50.2.1 ClientCallback()

void IClientCallback< T1, T2 >.ClientCallback (

int functionId)

Called from the Docking to give abilities a way to run code on every client.

Generated by Doxygen

Creating a MOBA using Unity

217

3.51 IElement Interface Reference 111

Parameters

function←↩

Id
The id of the function to be run on every client.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IClientCallback.cs

3.51 IElement Interface Reference

Inheritance diagram for IElement:

IElement

BasicSlash BoomerangThrow

Public Member Functions

• void ApplyElement (ElementalContainer.ComboableElements element)

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/IElement.cs

3.52 IHookable Interface Reference

Used by spawnables that can be hooked.

Inheritance diagram for IHookable:

IHookable

Sawblade

Public Member Functions

• void Hooked (GameObject playerObject, Transform hook)

Hooks the spawnable.

Generated by Doxygen

Creating a MOBA using Unity

218

112 Class Documentation

3.52.1 Detailed Description

Used by spawnables that can be hooked.

3.52.2 Member Function Documentation

3.52.2.1 Hooked()

void IHookable.Hooked (

GameObject playerObject,

Transform hook)

Hooks the spawnable.

Parameters

playerObject The player that owns the hook.

hook The hook transform.

Implemented in Sawblade.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/IHookable.cs

3.53 IInteractable Interface Reference

Used by objects that can receive interaction calls from PlayerInput.

Inheritance diagram for IInteractable:

IInteractable

Zipline

Public Member Functions

• void Interact (Player player)

Called when the object is interacted with.

Generated by Doxygen

Creating a MOBA using Unity

219

3.54 IModifierProvider Interface Reference 113

3.53.1 Detailed Description

Used by objects that can receive interaction calls from PlayerInput.

3.53.2 Member Function Documentation

3.53.2.1 Interact()

void IInteractable.Interact (

Player player)

Called when the object is interacted with.

Parameters

player Reference to the Player interacting.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/IInteractable.cs

3.54 IModifierProvider Interface Reference

Can return reference to modifier info.

Inheritance diagram for IModifierProvider:

Generated by Doxygen

Creating a MOBA using Unity

220

114 Class Documentation

IModifierProvider

BasicSlash

BoomerangThrow

BoomerangVision

BuffTestAbility

CleanseBuff

Flamethrower

Focus

FortificationBuff

HealingAura

HealthDrainBuff

LifeStealBuff

MultiBoomerangBuff

ProjectileReflect

Slingshot

Stealth

Public Member Functions

• ModifierInfo GetModifierInfo (int modifierId)

Used by the Docking to get the correct modifier from the abilities. Parameter only used if the ability has a list of
modifiers.

3.54.1 Detailed Description

Can return reference to modifier info.

3.54.2 Member Function Documentation

3.54.2.1 GetModifierInfo()

ModifierInfo IModifierProvider.GetModifierInfo (

int modifierId)

Used by the Docking to get the correct modifier from the abilities. Parameter only used if the ability has a list of
modifiers.

Generated by Doxygen

Creating a MOBA using Unity

221

3.55 InfoPanel Class Reference 115

Parameters

modifier←↩

Id
The Id of the modifier info.

Returns

Reference to the ModifierInfo.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IModifierProvider.cs

3.55 InfoPanel Class Reference

Inheritance diagram for InfoPanel:

InfoPanel

MonoBehaviour

Public Member Functions

• void Display (string info, UnityEngine.Events.UnityAction buttonClbk, bool displayButton=true)

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/InfoPanel.cs

3.56 IngameMenuHandler Class Reference

Handles ingame menus like the Shop and "Pause" menu

Inheritance diagram for IngameMenuHandler:

IngameMenuHandler

MenuHandler

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

222

116 Class Documentation

Public Member Functions

• void ToggleShop ()
• void OnGameStateChange (bool canShopBeActivated)
• void OnShopDisplay ()

Gets called whenever the player activates the Shop UI. Caches references to the local player if not already cached.

• void OnShopSelectionChange ()

Handles the updating of the shop UI as different docking kits are selected

• void DisplayVerificationPrompt ()

Displays the verification prompt for shop purchases

• void CompleteShopPurchase ()

Completes a shop purchase and tells docking to switch kit

• void SetFirstSelectedShopObject ()

Makes sure to set the selection of the first element in the shop as the menu is opened

• void SetLastSelectedShopObject ()

Can be used when going back from menus like the verification prompt to set the last highlighted shop item as selected
again

• void StopHost ()

Simple function that calls the NetworkManager to disconnect from the game. Can be called from UI buttons using
their OnClick interface in the editor

• void CheckPriceAndEquipAvailability ()

Checks all shop item prices and adds a dark overlay to items that the player is unable to purchase. Also displays a
"e" on the currently equipped docking kit

• void OnLeaveGameClicked ()

Public Attributes

• GameObject pauseMenu
• GameObject shopMenu
• GameObject shopDescriptionsContainer
• GameObject shopItemPrefab
• GameObject purchaseVerificationPrompt

Additional Inherited Members

3.56.1 Detailed Description

Handles ingame menus like the Shop and "Pause" menu

3.56.2 Member Function Documentation

3.56.2.1 CheckPriceAndEquipAvailability()

void IngameMenuHandler.CheckPriceAndEquipAvailability ()

Checks all shop item prices and adds a dark overlay to items that the player is unable to purchase. Also displays a
"e" on the currently equipped docking kit

Generated by Doxygen

Creating a MOBA using Unity

223

3.56 IngameMenuHandler Class Reference 117

3.56.2.2 CompleteShopPurchase()

void IngameMenuHandler.CompleteShopPurchase ()

Completes a shop purchase and tells docking to switch kit

3.56.2.3 DisplayVerificationPrompt()

void IngameMenuHandler.DisplayVerificationPrompt ()

Displays the verification prompt for shop purchases

3.56.2.4 OnShopDisplay()

void IngameMenuHandler.OnShopDisplay ()

Gets called whenever the player activates the Shop UI. Caches references to the local player if not already cached.

3.56.2.5 OnShopSelectionChange()

void IngameMenuHandler.OnShopSelectionChange ()

Handles the updating of the shop UI as different docking kits are selected

3.56.2.6 SetFirstSelectedShopObject()

void IngameMenuHandler.SetFirstSelectedShopObject ()

Makes sure to set the selection of the first element in the shop as the menu is opened

3.56.2.7 SetLastSelectedShopObject()

void IngameMenuHandler.SetLastSelectedShopObject ()

Can be used when going back from menus like the verification prompt to set the last highlighted shop item as
selected again

Generated by Doxygen

Creating a MOBA using Unity

224

118 Class Documentation

3.56.2.8 StopHost()

void IngameMenuHandler.StopHost ()

Simple function that calls the NetworkManager to disconnect from the game. Can be called from UI buttons using
their OnClick interface in the editor

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/IngameMenuHandler.cs

3.57 IRedirectable Interface Reference

Used by spawnables that can be redirected.

Inheritance diagram for IRedirectable:

IRedirectable

Bola Projectile SniperProjectile SpawnTestObject

Public Member Functions

• void RedirectDirection (Vector3 newDirection, int newPlayerId=-1, TeamId newTeamId=TeamId.Unassigned)

Redirects direction of the spawnable.

3.57.1 Detailed Description

Used by spawnables that can be redirected.

3.57.2 Member Function Documentation

3.57.2.1 RedirectDirection()

void IRedirectable.RedirectDirection (

Vector3 newDirection,

int newPlayerId = -1,

TeamId newTeamId = TeamId.Unassigned)

Redirects direction of the spawnable.

Generated by Doxygen

Creating a MOBA using Unity

225

3.58 IReflectable Interface Reference 119

Parameters

newDirection The new direction.
newPlayerId The player id of the new owner, -1 if current owner is kept.

newTeamId The team id of the new owner, TeamId.Unassigned if current owner is kept.

Implemented in SpawnTestObject.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/IRedirectable.cs

3.58 IReflectable Interface Reference

Inheritance diagram for IReflectable:

IReflectable

BoomerangThrow FlashGrenade

Public Member Functions

• void ReflectVelocity ()

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/IReflectable.cs

3.59 IServerCallback< T1, T2 > Interface Template Reference

Can recieve server callbacks from the Docking with two parameters.

Inheritance diagram for IServerCallback< T1, T2 >:

IServerCallback< T1, T2 >

PowerSaw ProjectileSpawner TankReflectShield Track

Public Member Functions

• void ServerCallback (int functionId)

Called from the Docking to give abilities a way to run server code.

• void ServerCallback (int functionId, T param)
• void ServerCallback (int functionId, T1 first, T2 second)

Generated by Doxygen

Creating a MOBA using Unity

226

120 Class Documentation

3.59.1 Detailed Description

Can recieve server callbacks from the Docking with two parameters.

3.59.2 Member Function Documentation

3.59.2.1 ServerCallback()

void IServerCallback< T1, T2 >.ServerCallback (

int functionId)

Called from the Docking to give abilities a way to run server code.

Parameters

function←↩

Id
The id of the function to be run on the server.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IServerCallback.cs

3.60 IServerCallback< T1, T2 > Interface Template Reference

Can recieve server callbacks from the Docking with two parameters.

Inheritance diagram for IServerCallback< T1, T2 >:

IServerCallback< T1, T2 >

PowerSaw ProjectileSpawner TankReflectShield Track

Public Member Functions

• void ServerCallback (int functionId)

Called from the Docking to give abilities a way to run server code.

• void ServerCallback (int functionId, T param)
• void ServerCallback (int functionId, T1 first, T2 second)

3.60.1 Detailed Description

Can recieve server callbacks from the Docking with two parameters.

Generated by Doxygen

Creating a MOBA using Unity

227

3.61 IServerCallback< T1, T2 > Interface Template Reference 121

3.60.2 Member Function Documentation

3.60.2.1 ServerCallback()

void IServerCallback< T1, T2 >.ServerCallback (

int functionId)

Called from the Docking to give abilities a way to run server code.

Parameters

function←↩

Id
The id of the function to be run on the server.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IServerCallback.cs

3.61 IServerCallback< T1, T2 > Interface Template Reference

Can recieve server callbacks from the Docking with two parameters.

Inheritance diagram for IServerCallback< T1, T2 >:

IServerCallback< T1, T2 >

PowerSaw ProjectileSpawner TankReflectShield Track

Public Member Functions
• void ServerCallback (int functionId)

Called from the Docking to give abilities a way to run server code.
• void ServerCallback (int functionId, T param)
• void ServerCallback (int functionId, T1 first, T2 second)

3.61.1 Detailed Description

Can recieve server callbacks from the Docking with two parameters.

3.61.2 Member Function Documentation

3.61.2.1 ServerCallback()

void IServerCallback< T1, T2 >.ServerCallback (

int functionId)

Called from the Docking to give abilities a way to run server code.

Generated by Doxygen

Creating a MOBA using Unity

228

122 Class Documentation

Parameters

function←↩

Id
The id of the function to be run on the server.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/IServerCallback.cs

3.62 ISpawnableProvider Interface Reference

Can return reference to a spawnable prefab.

Inheritance diagram for ISpawnableProvider:

ISpawnableProvider

FlashGrenadeSpawner GrenadeLauncher ISpawnableReferenceProvider PowerSaw ProjectileSpawner Shackle StandardSpawnableSpawner

ExplosiveMineSpawner RemoteMineSpawner Slingshot SpawnTestAbility TrapSpawner

Public Member Functions

• GameObject GetSpawnablePrefab (int spawnableId)

Used by the Docking to get the correct prefab to spawn from the abilities. Parameter only used if the ability has a list
of prefabs.

3.62.1 Detailed Description

Can return reference to a spawnable prefab.

3.62.2 Member Function Documentation

3.62.2.1 GetSpawnablePrefab()

GameObject ISpawnableProvider.GetSpawnablePrefab (

int spawnableId)

Used by the Docking to get the correct prefab to spawn from the abilities. Parameter only used if the ability has a
list of prefabs.

Parameters

spawnable←↩

Id
The Id of the spawnable object.

Generated by Doxygen

Creating a MOBA using Unity

229

3.63 ISpawnableReferenceProvider Interface Reference 123

Returns

Reference to the prefab GameObject.

Implemented in StandardSpawnableSpawner.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/ISpawnableProvider.cs

3.63 ISpawnableReferenceProvider Interface Reference

Can return reference to a spawnable prefab and catch the reference to the spawned object.

Inheritance diagram for ISpawnableReferenceProvider:

ISpawnableReferenceProvider

ISpawnableProvider

ExplosiveMineSpawner RemoteMineSpawner Slingshot SpawnTestAbility TrapSpawner

Public Member Functions

• void SetSpawnedObjectReference (GameObject spawnedObject)

Called from the Docking to set up local references from spawned network objects.

3.63.1 Detailed Description

Can return reference to a spawnable prefab and catch the reference to the spawned object.

3.63.2 Member Function Documentation

3.63.2.1 SetSpawnedObjectReference()

void ISpawnableReferenceProvider.SetSpawnedObjectReference (

GameObject spawnedObject)

Called from the Docking to set up local references from spawned network objects.

Parameters

spawnedObject Reference to spawned object.

Generated by Doxygen

Creating a MOBA using Unity

230

124 Class Documentation

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/ISpawnableProvider.cs

3.64 ITargetClientCallback< T > Interface Template Reference

Can recieve target client callbacks from the Docking with one parameter.

3.64.1 Detailed Description

Can recieve target client callbacks from the Docking with one parameter.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/ITargetClientCallback.cs

3.65 ITargetClientCallback< T > Interface Template Reference

Can recieve target client callbacks from the Docking with one parameter.

3.65.1 Detailed Description

Can recieve target client callbacks from the Docking with one parameter.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/ITargetClientCallback.cs

3.66 ITargetClientCallback< T > Interface Template Reference

Can recieve target client callbacks from the Docking with one parameter.

3.66.1 Detailed Description

Can recieve target client callbacks from the Docking with one parameter.

The documentation for this interface was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Interfaces/Ability/ITargetClientCallback.cs

Generated by Doxygen

Creating a MOBA using Unity

231

3.67 LifeStealBuff Class Reference 125

3.67 LifeStealBuff Class Reference

Inheritance diagram for LifeStealBuff:

LifeStealBuff

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Callback for what this ability should do once its associated button has been pressed

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• override void SetModifier (bool state=false)

Callback for what this ability should do when a new modifier state is set

• bool IsBuffActive ()

A simple getter function for whether the life steal buff is currently active

• int GetAbilityId ()
• int GetBuffModifierId ()

Public Attributes

• float damageMultiplier = 1.5f
• float healPercentage = 0.5f
• SpriteRenderer [] axeVisuals
• ParticleSystem activeParticles
• Color axeColorWhileActive
• ModifierInfo buff

Additional Inherited Members

3.67.1 Member Function Documentation

3.67.1.1 ButtonDown()

override void LifeStealBuff.ButtonDown () [virtual]

Callback for what this ability should do once its associated button has been pressed

Implements Ability.

Generated by Doxygen

Creating a MOBA using Unity

232

126 Class Documentation

3.67.1.2 Initialize()

override void LifeStealBuff.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.67.1.3 IsBuffActive()

bool LifeStealBuff.IsBuffActive ()

A simple getter function for whether the life steal buff is currently active

Returns

Whether the buff is currently active

3.67.1.4 SetActive()

override void LifeStealBuff.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.67.1.5 SetModifier()

override void LifeStealBuff.SetModifier (

bool state = false) [virtual]

Generated by Doxygen

Creating a MOBA using Unity

233

3.68 LoadingModal Class Reference 127

Callback for what this ability should do when a new modifier state is set

Parameters

state The modifier state

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BrawlerKit/LifeStealBuff.cs

3.68 LoadingModal Class Reference

Loading modal - used to handle loading fades

Inheritance diagram for LoadingModal:

LoadingModal

MonoBehaviour

Public Member Functions

• void FadeIn ()

Wraps fade in on FadingGroup

• void FadeOut ()

Wraps fade out on FadingGroup

• void CloseModal ()
• void Show ()

Properties

• static LoadingModal Instance [get]
• bool readyToTransition [get]
• FadingGroup Fader [get]

Getter for Fader - used in game manager

3.68.1 Detailed Description

Loading modal - used to handle loading fades

3.68.2 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

234

128 Class Documentation

3.68.2.1 FadeIn()

void LoadingModal.FadeIn ()

Wraps fade in on FadingGroup

3.68.2.2 FadeOut()

void LoadingModal.FadeOut ()

Wraps fade out on FadingGroup

3.68.3 Property Documentation

3.68.3.1 Fader

FadingGroup LoadingModal.Fader [get]

Getter for Fader - used in game manager

The fader.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/LoadingModal.cs

3.69 LobbyHandler Class Reference

Inheritance diagram for LobbyHandler:

LobbyHandler

NetworkBehaviour

Generated by Doxygen

Creating a MOBA using Unity

235

3.69 LobbyHandler Class Reference 129

Public Member Functions

• int GetPlayerCount ()

Gets the amount of connected players to the lobby

• void AddPlayer (DLNetworkLobbyPlayer player)

Adds a player to the connectedPlayers list and then calls DecideEntryTeam(player)

• void SetPlayerTeam (DLNetworkLobbyPlayer player)

Adds the player to the correct team list and puts sets the parent of the player's visuals to the correct team panel

• void DisplayLobby ()

Displays the lobby on the client and hides the "please wait while connecting" text

• void ResetLocalLobby ()

Does the opposite of DisplayLobby()

• void RemovePlayer (DLNetworkLobbyPlayer player)

Removes a disconnecting player from the correct team and destroys the visuals of that player.

• List< DLNetworkLobbyPlayer > GetConnectedPlayers ()

Returns a list of connected players

Public Attributes

• RectTransform redTeamPanel
• RectTransform blueTeamPanel
• GameObject waitingScreenObj

3.69.1 Member Function Documentation

3.69.1.1 AddPlayer()

void LobbyHandler.AddPlayer (

DLNetworkLobbyPlayer player)

Adds a player to the connectedPlayers list and then calls DecideEntryTeam(player)

Parameters

player The player that we are adding

3.69.1.2 DisplayLobby()

void LobbyHandler.DisplayLobby ()

Displays the lobby on the client and hides the "please wait while connecting" text

Generated by Doxygen

Creating a MOBA using Unity

236

130 Class Documentation

3.69.1.3 GetConnectedPlayers()

List<DLNetworkLobbyPlayer> LobbyHandler.GetConnectedPlayers ()

Returns a list of connected players

Returns

A list of connected players

3.69.1.4 GetPlayerCount()

int LobbyHandler.GetPlayerCount ()

Gets the amount of connected players to the lobby

Returns

The number of connected players

3.69.1.5 RemovePlayer()

void LobbyHandler.RemovePlayer (

DLNetworkLobbyPlayer player)

Removes a disconnecting player from the correct team and destroys the visuals of that player.

Parameters

player The player that just disconnected

3.69.1.6 ResetLocalLobby()

void LobbyHandler.ResetLocalLobby ()

Does the opposite of DisplayLobby()

3.69.1.7 SetPlayerTeam()

void LobbyHandler.SetPlayerTeam (

DLNetworkLobbyPlayer player)

Adds the player to the correct team list and puts sets the parent of the player's visuals to the correct team panel

Generated by Doxygen

Creating a MOBA using Unity

237

3.70 LobbyPlayer Class Reference 131

Parameters

player The player that we are adding

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/LobbyHandler.cs

3.70 LobbyPlayer Class Reference

Inheritance diagram for LobbyPlayer:

LobbyPlayer

MonoBehaviour

Public Member Functions

• void Init (NetworkPlayer netPlayer)
• void RefreshJoinButton ()
• void OnTeamClicked ()
• void OnReadyClicked ()
• void OnNameChanged (string str)

Protected Member Functions

• virtual void PlayerJoined (NetworkPlayer player)
• virtual void PlayerLeft (NetworkPlayer player)
• virtual void OnDestroy ()

Protected Attributes

• InputField nameInput
• Button readyButton
• Transform waitingLabel
• Transform readyLabel
• Button teamButton
• Text teamButtonText

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/LobbyPlayer.cs

Generated by Doxygen

Creating a MOBA using Unity

238

132 Class Documentation

3.71 LobbyPlayerList Class Reference

Handles the player list in the Lobby.

Inheritance diagram for LobbyPlayerList:

LobbyPlayerList

MonoBehaviour

Public Member Functions

• void AddPlayer (LobbyPlayer player, TeamId teamId)
• void OnBackClick ()

Protected Member Functions

• virtual void Start ()

Subscribe to events on start

• virtual void OnDestroy ()

Unsubscribe to events on destroy

• virtual void PlayerJoined (NetworkPlayer player)
• virtual void PlayerLeft (NetworkPlayer player)
• virtual void PlayersReadied ()

3.71.1 Detailed Description

Handles the player list in the Lobby.

3.71.2 Member Function Documentation

3.71.2.1 OnDestroy()

virtual void LobbyPlayerList.OnDestroy () [protected], [virtual]

Unsubscribe to events on destroy

Generated by Doxygen

Creating a MOBA using Unity

239

3.72 LobbyServerEntry Class Reference 133

3.71.2.2 Start()

virtual void LobbyPlayerList.Start () [protected], [virtual]

Subscribe to events on start

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/LobbyPlayerList.cs

3.72 LobbyServerEntry Class Reference

Represents a server in the server list

Inheritance diagram for LobbyServerEntry:

LobbyServerEntry

MonoBehaviour

Public Member Functions

• void Populate (MatchInfoSnapshot match, Color c)

Protected Member Functions

• virtual void OnEnable ()

Protected Attributes

• Text serverInfoText
• Text modeText
• Text slotInfo
• Button joinButton
• NetworkManager networkManager

3.72.1 Detailed Description

Represents a server in the server list

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/LobbyServerEntry.cs

Generated by Doxygen

Creating a MOBA using Unity

240

134 Class Documentation

3.73 LobbyServerList Class Reference

Inheritance diagram for LobbyServerList:

LobbyServerList

MonoBehaviour

Public Member Functions

• void OnBackClick ()
• void OnGuiMatchList (bool flag, string extraInfo, List< MatchInfoSnapshot > response)
• void ChangePage (int dir)
• void RequestPage (int page)
• void RefreshList ()

Protected Member Functions

• virtual void OnEnable ()
• void ClearUi ()
• virtual void OnDisable ()
• virtual void OnError (UnityEngine.Networking.NetworkConnection conn, int errorCode)
• virtual void OnDisconnect (UnityEngine.Networking.NetworkConnection conn)
• virtual void OnDrop ()
• virtual void Update ()

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/LobbyServerList.cs

3.74 MainMenuHandler Class Reference

Inheritance diagram for MainMenuHandler:

MainMenuHandler

MenuHandler

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

241

3.74 MainMenuHandler Class Reference 135

Public Member Functions

• void NavigateTo (GameObject nextMenu)

Navigates to a given menu gameObject and places the current one in the stack

• void NavigateBack ()

Pops all menus from back stack until it hits a stopPop menu and navigates to that.

• void AddPropertyToStackTop (int enumId)

Adds a property to the previous menu that is in the stack. This is mostly used as a workaround to the fact that the
Unity Inspector's OnClick interface only supports none/single parameter functions

• void CreateOnlineMatch ()

Uses the Unity match maker to create a new online match

• void StartMatchMaker ()

Starts the Unity match maker

Public Attributes

• Text hostRoomNameText
• LobbyHandler lobbyHandler

Additional Inherited Members

3.74.1 Member Function Documentation

3.74.1.1 AddPropertyToStackTop()

void MainMenuHandler.AddPropertyToStackTop (

int enumId)

Adds a property to the previous menu that is in the stack. This is mostly used as a workaround to the fact that the
Unity Inspector's OnClick interface only supports none/single parameter functions

Parameters

enum←↩

Id
The id of the property we are adding

3.74.1.2 CreateOnlineMatch()

void MainMenuHandler.CreateOnlineMatch ()

Uses the Unity match maker to create a new online match

Generated by Doxygen

Creating a MOBA using Unity

242

136 Class Documentation

3.74.1.3 NavigateBack()

void MainMenuHandler.NavigateBack ()

Pops all menus from back stack until it hits a stopPop menu and navigates to that.

3.74.1.4 NavigateTo()

void MainMenuHandler.NavigateTo (

GameObject nextMenu)

Navigates to a given menu gameObject and places the current one in the stack

Parameters

nextMenu The menu we are navigating to

3.74.1.5 StartMatchMaker()

void MainMenuHandler.StartMatchMaker ()

Starts the Unity match maker

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/MainMenuHandler.cs

3.75 MainMenuUI Class Reference

Handles main menu UI and transitions

Inheritance diagram for MainMenuUI:

MainMenuUI

Singleton< MainMenuUI >

Generated by Doxygen

Creating a MOBA using Unity

243

3.75 MainMenuUI Class Reference 137

Public Member Functions

• void ShowPanel (CanvasGroup newPanel)
• void ShowDefaultPanel ()
• void ShowLobbyPanel ()
• void ShowLobbyPanelForConnection ()
• void ShowServerListPanel ()
• void ShowInfoPopup (string label, UnityEngine.Events.UnityAction callback)

Shows the info popup with a callback
• void ShowInfoPopup (string label)
• void ShowConnectingModal (bool reconnectMatchmakingClient)
• void HideInfoPopup ()
• void DoIfNetworkReady (Action task)

Wait for network to disconnect before performing an action
• void OnCreateGameClicked ()
• void OnFindGameClicked ()
• void OnQuitGameClicked ()

Static Public Attributes

• static MenuPage ReturnPage

Protected Member Functions

• virtual void Update ()
• virtual void Start ()

Properties

• LobbyPlayerList PlayerList [get]

3.75.1 Detailed Description

Handles main menu UI and transitions

3.75.2 Member Function Documentation

3.75.2.1 DoIfNetworkReady()

void MainMenuUI.DoIfNetworkReady (

Action task)

Wait for network to disconnect before performing an action

3.75.2.2 ShowInfoPopup()

void MainMenuUI.ShowInfoPopup (

string label,

UnityEngine.Events.UnityAction callback)

Shows the info popup with a callback

Generated by Doxygen

Creating a MOBA using Unity

244

138 Class Documentation

Parameters

label Label.
callback Callback.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/MainMenuUI.cs

3.76 MapInfo Class Reference

Public Member Functions

• string GetName ()
• string GetDescription ()
• string GetSceneName ()
• Sprite GetMapImage ()

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Map/MapInfo.cs

3.77 MapList Class Reference

Inheritance diagram for MapList:

MapList

ScriptableObject

Properties

• MapInfo this[int index] [get]

• int Count [get]

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Map/MapList.cs

Generated by Doxygen

Creating a MOBA using Unity

245

3.78 MatchListHandler Class Reference 139

3.78 MatchListHandler Class Reference

Inheritance diagram for MatchListHandler:

MatchListHandler

MonoBehaviour

Public Member Functions

• void OnMatchButtonClick (int buttonNumber, UnityEngine.Networking.Match.MatchInfoSnapshot match)

A button listener callback that makes the client join the match that has been selected. Also navigates to the lobby
menu screen.

Public Attributes

• GameObject dynamicMatchButtonPrefab
• int matchButtonOffset = 90
• MainMenuHandler mainMenuHandler
• GameObject lobbyObj
• GameObject lobbyVerfifPromptObj
• GameObject noMatchesFoundObj

3.78.1 Member Function Documentation

3.78.1.1 OnMatchButtonClick()

void MatchListHandler.OnMatchButtonClick (

int buttonNumber,

UnityEngine.Networking.Match.MatchInfoSnapshot match)

A button listener callback that makes the client join the match that has been selected. Also navigates to the lobby
menu screen.

Parameters

buttonNumber The index of the button
match The match maker match

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/MatchListHandler.cs

Generated by Doxygen

Creating a MOBA using Unity

246

140 Class Documentation

3.79 MenuHandler Class Reference

Inheritance diagram for MenuHandler:

MenuHandler

MonoBehaviour

IngameMenuHandler MainMenuHandler

Public Member Functions

• void SetCurrentMenuVerificationPrompt (GameObject verifPrompt)

Takes a verification prompt as parameter and connects it to the current menu.
• void OnClickSetFirstSelected ()

Allows OnClick interfaces to use SetFirstSelectedGameObject(). Useful when a menu has submenus or verification
prompts and you need to return control to the user after using these

• IEnumerator SetFirstSelectedGameObject (GameObject specific)

Sets a button as selected the next frame after it has been called. If null is passed it sets the first selected button it
finds. If a specific gameObject is passed it will look for buttons on that one instead

Public Attributes

• MenuStackComponent currentActiveMenu
• GameObject menuRoot

Protected Member Functions

• void Start ()

3.79.1 Member Function Documentation

3.79.1.1 OnClickSetFirstSelected()

void MenuHandler.OnClickSetFirstSelected ()

Allows OnClick interfaces to use SetFirstSelectedGameObject(). Useful when a menu has submenus or verification
prompts and you need to return control to the user after using these

3.79.1.2 SetCurrentMenuVerificationPrompt()

void MenuHandler.SetCurrentMenuVerificationPrompt (

GameObject verifPrompt)

Takes a verification prompt as parameter and connects it to the current menu.

Generated by Doxygen

Creating a MOBA using Unity

247

3.80 MenuStackComponent Class Reference 141

Parameters

verifPrompt The gameObject of the verification prompt

3.79.1.3 SetFirstSelectedGameObject()

IEnumerator MenuHandler.SetFirstSelectedGameObject (

GameObject specific)

Sets a button as selected the next frame after it has been called. If null is passed it sets the first selected button it
finds. If a specific gameObject is passed it will look for buttons on that one instead

Parameters

specific A gameObject containing buttons

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/MenuHandler.cs

3.80 MenuStackComponent Class Reference

Public Member Functions

• MenuStackComponent (GameObject obj, menuStackProperty prop, bool hasVerPrompt, GameObject ver←↩

PromptObj)

Public Attributes

• GameObject menuObject

• menuStackProperty property

• bool currentMenuHasVerificationPrompt

• GameObject verificationPromptObj

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/MenuHandler.cs

Generated by Doxygen

Creating a MOBA using Unity

248

142 Class Documentation

3.81 ModeInfo Class Reference

Public Member Functions

• ModeInfo (string name, string description)

• ModeInfo (string name, string description, GameModeProcessor processor)

• string GetModeName ()

• string GetAbbreviation ()

• string GetDescription ()

• GameModeProcessor GetModeProcessor ()

• bool IsTeamMode ()

• int GetMinimumPlayers ()

Properties

• int Index [get, set]

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameModes/ModeInfo.cs

3.82 ModeList Class Reference

Inheritance diagram for ModeList:

ModeList

ScriptableObject

Properties

• ModeInfo this[int index] [get]

• int Count [get]

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameModes/ModeList.cs

Generated by Doxygen

Creating a MOBA using Unity

249

3.83 Modifier Class Reference 143

3.83 Modifier Class Reference

Base class for every modifier.

Inheritance diagram for Modifier:

Modifier

ScriptableObject

ModifierBlind

ModifierCleanse

ModifierDoT

ModifierFortification

ModifierHealOverTime

ModifierHealthDrainBuff

ModifierHealthDrainDebuff

ModifierRoot

ModifierSilence

ModifierSlow

ModifierStandardAbility

ModifierStun

ModifierTrack

Public Member Functions

• virtual void OnServerStart (PlayerStatus playerStatus, int abilityId)

Called on the server when the modifiers starts.

• virtual void OnClientStart (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers starts.

• virtual void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• virtual void OnServerEnd (PlayerStatus playerStatus, int abilityId)

Called on the server when the modifiers ends.

• virtual void OnClientEnd (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers ends.

• virtual void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

• virtual void OnServerTick (PlayerStatus playerStatus)

Called on the server whenever the modifier applies a tick.

Generated by Doxygen

Creating a MOBA using Unity

250

144 Class Documentation

Static Public Member Functions

• static Modifier GetModifierAsset (string modifierName)

Looks up the Modifier with modifierName from the Resource/PlayerModifiers folder.

Public Attributes

• string modifierName
• Sprite icon
• GameObject playerEffectObject
• GameObject localPlayerEffectObject
• bool unique
• StatusType statusType

3.83.1 Detailed Description

Base class for every modifier.

3.83.2 Member Function Documentation

3.83.2.1 GetModifierAsset()

static Modifier Modifier.GetModifierAsset (

string modifierName) [static]

Looks up the Modifier with modifierName from the Resource/PlayerModifiers folder.

Parameters

modifierName The modifier file name.

Returns

The modifier at path if found, otherwise null.

3.83.2.2 OnClientEnd()

virtual void Modifier.OnClientEnd (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers ends.

Generated by Doxygen

Creating a MOBA using Unity

251

3.83 Modifier Class Reference 145

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented in ModifierHealOverTime, ModifierBlind, and ModifierStandardAbility.

3.83.2.3 OnClientStart()

virtual void Modifier.OnClientStart (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented in ModifierHealOverTime, ModifierBlind, and ModifierStandardAbility.

3.83.2.4 OnLocalClientEnd()

virtual void Modifier.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented in ModifierFortification, ModifierSlow, ModifierHealthDrainDebuff, ModifierTrack, ModifierHealth←↩

DrainBuff, ModifierSilence, ModifierStun, and ModifierRoot.

3.83.2.5 OnLocalClientStart()

virtual void Modifier.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Generated by Doxygen

Creating a MOBA using Unity

252

146 Class Documentation

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented in ModifierFlashStun, ModifierFortification, ModifierSlow, ModifierHealthDrainDebuff, Modifier←↩

HealthDrainBuff, ModifierTrack, ModifierRoot, ModifierSilence, and ModifierStun.

3.83.2.6 OnServerEnd()

virtual void Modifier.OnServerEnd (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on the server when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented in ModifierCleanse.

3.83.2.7 OnServerStart()

virtual void Modifier.OnServerStart (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on the server when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented in ModifierCleanse.

3.83.2.8 OnServerTick()

virtual void Modifier.OnServerTick (

PlayerStatus playerStatus) [virtual]

Called on the server whenever the modifier applies a tick.

Generated by Doxygen

Creating a MOBA using Unity

253

3.84 ModifierBlind Class Reference 147

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented in ModifierHealOverTime, and ModifierDoT.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/Modifier.cs

3.84 ModifierBlind Class Reference

Inheritance diagram for ModifierBlind:

ModifierBlind

Modifier

ScriptableObject

Public Member Functions

• override void OnClientStart (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers starts.

• override void OnClientEnd (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers ends.

Public Attributes

• float blindLerpSpeed = 10

Additional Inherited Members

3.84.1 Member Function Documentation

3.84.1.1 OnClientEnd()

override void ModifierBlind.OnClientEnd (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers ends.

Generated by Doxygen

Creating a MOBA using Unity

254

148 Class Documentation

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

3.84.1.2 OnClientStart()

override void ModifierBlind.OnClientStart (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierBlind.cs

3.85 ModifierCleanse Class Reference

Inheritance diagram for ModifierCleanse:

ModifierCleanse

Modifier

ScriptableObject

Public Member Functions

• override void OnServerStart (PlayerStatus playerStatus, int abilityId)

Called on the server when the modifiers starts.

• override void OnServerEnd (PlayerStatus playerStatus, int abilityId)

Called on the server when the modifiers ends.

Generated by Doxygen

Creating a MOBA using Unity

255

3.85 ModifierCleanse Class Reference 149

Public Attributes

• float movespeedMulitplier

Additional Inherited Members

3.85.1 Member Function Documentation

3.85.1.1 OnServerEnd()

override void ModifierCleanse.OnServerEnd (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on the server when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

3.85.1.2 OnServerStart()

override void ModifierCleanse.OnServerStart (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on the server when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierCleanse.cs

Generated by Doxygen

Creating a MOBA using Unity

256

150 Class Documentation

3.86 ModifierDoT Class Reference

Inheritance diagram for ModifierDoT:

ModifierDoT

Modifier

ScriptableObject

Public Member Functions

• override void OnServerTick (PlayerStatus playerStatus)

Called on the server whenever the modifier applies a tick.

Public Attributes

• float damagePerTick = 5f

Additional Inherited Members

3.86.1 Member Function Documentation

3.86.1.1 OnServerTick()

override void ModifierDoT.OnServerTick (

PlayerStatus playerStatus) [virtual]

Called on the server whenever the modifier applies a tick.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierDoT.cs

Generated by Doxygen

Creating a MOBA using Unity

257

3.87 ModifierFlashStun Class Reference 151

3.87 ModifierFlashStun Class Reference

Inheritance diagram for ModifierFlashStun:

ModifierFlashStun

ModifierStun

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Public Attributes

• GameObject flashPrefab

Additional Inherited Members

3.87.1 Member Function Documentation

3.87.1.1 OnLocalClientStart()

override void ModifierFlashStun.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierFlashStun.cs

Generated by Doxygen

Creating a MOBA using Unity

258

152 Class Documentation

3.88 ModifierFortification Class Reference

Inheritance diagram for ModifierFortification:

ModifierFortification

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Public Attributes

• float damageMultiplier

Additional Inherited Members

3.88.1 Member Function Documentation

3.88.1.1 OnLocalClientEnd()

override void ModifierFortification.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

Generated by Doxygen

Creating a MOBA using Unity

259

3.89 ModifierHealOverTime Class Reference 153

3.88.1.2 OnLocalClientStart()

override void ModifierFortification.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierFortification.cs

3.89 ModifierHealOverTime Class Reference

Inheritance diagram for ModifierHealOverTime:

ModifierHealOverTime

Modifier

ScriptableObject

Public Member Functions

• override void OnClientStart (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers starts.

• override void OnServerTick (PlayerStatus playerStatus)

Called on the server whenever the modifier applies a tick.

• override void OnClientEnd (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers ends.

Public Attributes

• float healthPerTick

Additional Inherited Members

3.89.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

260

154 Class Documentation

3.89.1.1 OnClientEnd()

override void ModifierHealOverTime.OnClientEnd (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

3.89.1.2 OnClientStart()

override void ModifierHealOverTime.OnClientStart (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

3.89.1.3 OnServerTick()

override void ModifierHealOverTime.OnServerTick (

PlayerStatus playerStatus) [virtual]

Called on the server whenever the modifier applies a tick.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierHealOverTime.cs

Generated by Doxygen

Creating a MOBA using Unity

261

3.90 ModifierHealthDrainBuff Class Reference 155

3.90 ModifierHealthDrainBuff Class Reference

Inheritance diagram for ModifierHealthDrainBuff:

ModifierHealthDrainBuff

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Additional Inherited Members

3.90.1 Member Function Documentation

3.90.1.1 OnLocalClientEnd()

override void ModifierHealthDrainBuff.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

3.90.1.2 OnLocalClientStart()

override void ModifierHealthDrainBuff.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Generated by Doxygen

Creating a MOBA using Unity

262

156 Class Documentation

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierHealthDrainBuff.cs

3.91 ModifierHealthDrainDebuff Class Reference

Inheritance diagram for ModifierHealthDrainDebuff:

ModifierHealthDrainDebuff

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Additional Inherited Members

3.91.1 Member Function Documentation

3.91.1.1 OnLocalClientEnd()

override void ModifierHealthDrainDebuff.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Generated by Doxygen

Creating a MOBA using Unity

263

3.92 ModifierInfo Struct Reference 157

Reimplemented from Modifier.

3.91.1.2 OnLocalClientStart()

override void ModifierHealthDrainDebuff.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierHealthDrainDebuff.cs

3.92 ModifierInfo Struct Reference

Struct used in abilities to store modifier information.

Public Attributes

• Modifier modifier
• float duration
• int tickCount
• float tickInterval

3.92.1 Detailed Description

Struct used in abilities to store modifier information.

The documentation for this struct was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/Modifier.cs

3.93 ModifierInfoBase Class Reference

Inheritance diagram for ModifierInfoBase:

ModifierInfoBase

ModifierInfoDuration ModifierInfoTick

Generated by Doxygen

Creating a MOBA using Unity

264

158 Class Documentation

Public Attributes

• Modifier modifier

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/Modifier.cs

3.94 ModifierInfoDuration Class Reference

Inheritance diagram for ModifierInfoDuration:

ModifierInfoDuration

ModifierInfoBase

Public Attributes

• float duration

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/Modifier.cs

3.95 ModifierInfoTick Class Reference

Inheritance diagram for ModifierInfoTick:

ModifierInfoTick

ModifierInfoBase

Public Attributes

• int tickCount
• float tickInterval

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/Modifier.cs

Generated by Doxygen

Creating a MOBA using Unity

265

3.96 ModifierInstanceClient Class Reference 159

3.96 ModifierInstanceClient Class Reference

The instance used when a modifier is active. Only exists on the clients.

Public Member Functions

• ModifierInstanceClient (Modifier mod, PlayerStatus plStatus, PlayerUIHandler playerUIHandler, int modId, int
abId, float duration)

Constructor that instantiates effect objects and calls the correct modifier functions.

• void OnEnd ()

Called when the modifier effect has ended.

• void SetNewDuration (float newDuration)

Updates the UI elements with the new duration.

• Modifier GetModifier ()

Returns the modifier used by this instance.

• int GetAbilityId ()

Returns the ability ID in this instance, equal to or above 0 means this modifier was applied by an ability, -1 otherwise.

• int GetModifierId ()

Returns the unique modifier ID for this instance.

3.96.1 Detailed Description

The instance used when a modifier is active. Only exists on the clients.

3.96.2 Constructor & Destructor Documentation

3.96.2.1 ModifierInstanceClient()

ModifierInstanceClient.ModifierInstanceClient (

Modifier mod,

PlayerStatus plStatus,

PlayerUIHandler playerUIHandler,

int modId,

int abId,

float duration)

Constructor that instantiates effect objects and calls the correct modifier functions.

Parameters

mod The modifier for this instance.
plStatus The playerStatus the modifier is applied to.

playerUIHandler Reference to the UIHandler, used by the local client to add modifier UI.

modId Unique identifier for this modifier instance.

abId The Id of the ability that applied the modifier if any, -1 otherwise.

duration The initial modifier duration.
effectParent Either null or the transform we want to put as parent for this modifier

Generated by Doxygen

Creating a MOBA using Unity

266

160 Class Documentation

3.96.3 Member Function Documentation

3.96.3.1 GetAbilityId()

int ModifierInstanceClient.GetAbilityId ()

Returns the ability ID in this instance, equal to or above 0 means this modifier was applied by an ability, -1 otherwise.

Returns

The ability ID.

3.96.3.2 GetModifier()

Modifier ModifierInstanceClient.GetModifier ()

Returns the modifier used by this instance.

Returns

The active modifier.

3.96.3.3 GetModifierId()

int ModifierInstanceClient.GetModifierId ()

Returns the unique modifier ID for this instance.

Returns

The modifier ID.

3.96.3.4 OnEnd()

void ModifierInstanceClient.OnEnd ()

Called when the modifier effect has ended.

3.96.3.5 SetNewDuration()

void ModifierInstanceClient.SetNewDuration (

float newDuration)

Updates the UI elements with the new duration.

Generated by Doxygen

Creating a MOBA using Unity

267

3.97 ModifierInstanceServer Class Reference 161

Parameters

newDuration The new duration.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierInstanceClient.cs

3.97 ModifierInstanceServer Class Reference

The instance used when a modifier is active. Only exists on the server.

Public Member Functions

• ModifierInstanceServer (ModifierInfo info, PlayerStatus plStatus, int modId, int abId)

Constructor which starts the correct update loop as a Coroutine on the playerStatus MonoBehaviour.
• IEnumerator DurationLoop ()

Update loop when the duration is used.
• IEnumerator TickLoop ()

Update loop when the ticks are used.
• void OnEnd ()

Called when the modifier effect has ended.
• void OnCancel ()

Called when the ability modifier effect is cancelled (e.g. undocking).
• void MaxDuration (float newDuration)

Used for unique modifiers that doesn't stack. Uses the largest of the given durations.
• Modifier GetModifier ()

Returns the modifier used by this instance.
• int GetAbilityId ()

Returns the ability ID in this instance, equal to or above 0 means this modifier was applied by an ability, -1 otherwise.
• int GetModifierId ()

Returns the unique modifier ID for this instance.

3.97.1 Detailed Description

The instance used when a modifier is active. Only exists on the server.

3.97.2 Constructor & Destructor Documentation

3.97.2.1 ModifierInstanceServer()

ModifierInstanceServer.ModifierInstanceServer (

ModifierInfo info,

PlayerStatus plStatus,

int modId,

int abId)

Constructor which starts the correct update loop as a Coroutine on the playerStatus MonoBehaviour.

Generated by Doxygen

Creating a MOBA using Unity

268

162 Class Documentation

Parameters

info Information about this modifier.
plStatus The playerStatus the modifier is applied to.

modId Unique identifier for this modifier instance.

abId The Id of the ability that applied the modifier if any, -1 otherwise.

3.97.3 Member Function Documentation

3.97.3.1 DurationLoop()

IEnumerator ModifierInstanceServer.DurationLoop ()

Update loop when the duration is used.

3.97.3.2 GetAbilityId()

int ModifierInstanceServer.GetAbilityId ()

Returns the ability ID in this instance, equal to or above 0 means this modifier was applied by an ability, -1 otherwise.

Returns

The ability ID.

3.97.3.3 GetModifier()

Modifier ModifierInstanceServer.GetModifier ()

Returns the modifier used by this instance.

Returns

The active modifier.

Generated by Doxygen

Creating a MOBA using Unity

269

3.97 ModifierInstanceServer Class Reference 163

3.97.3.4 GetModifierId()

int ModifierInstanceServer.GetModifierId ()

Returns the unique modifier ID for this instance.

Returns

The modifier ID.

3.97.3.5 MaxDuration()

void ModifierInstanceServer.MaxDuration (

float newDuration)

Used for unique modifiers that doesn't stack. Uses the largest of the given durations.

Generated by Doxygen

Creating a MOBA using Unity

270

164 Class Documentation

Parameters

newDuration The duration to compare the current duration with.

3.97.3.6 OnCancel()

void ModifierInstanceServer.OnCancel ()

Called when the ability modifier effect is cancelled (e.g. undocking).

3.97.3.7 OnEnd()

void ModifierInstanceServer.OnEnd ()

Called when the modifier effect has ended.

3.97.3.8 TickLoop()

IEnumerator ModifierInstanceServer.TickLoop ()

Update loop when the ticks are used.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierInstanceServer.cs

3.98 ModifierRoot Class Reference

Inheritance diagram for ModifierRoot:

ModifierRoot

Modifier

ScriptableObject

Generated by Doxygen

Creating a MOBA using Unity

271

3.98 ModifierRoot Class Reference 165

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Additional Inherited Members

3.98.1 Member Function Documentation

3.98.1.1 OnLocalClientEnd()

override void ModifierRoot.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

3.98.1.2 OnLocalClientStart()

override void ModifierRoot.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierRoot.cs

Generated by Doxygen

Creating a MOBA using Unity

272

166 Class Documentation

3.99 ModifierSilence Class Reference

Inheritance diagram for ModifierSilence:

ModifierSilence

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Additional Inherited Members

3.99.1 Member Function Documentation

3.99.1.1 OnLocalClientEnd()

override void ModifierSilence.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

3.99.1.2 OnLocalClientStart()

override void ModifierSilence.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Generated by Doxygen

Creating a MOBA using Unity

273

3.100 ModifierSlow Class Reference 167

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierSilence.cs

3.100 ModifierSlow Class Reference

Inheritance diagram for ModifierSlow:

ModifierSlow

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Public Attributes

• float slowPercentage = 0.5f

Additional Inherited Members

3.100.1 Member Function Documentation

3.100.1.1 OnLocalClientEnd()

override void ModifierSlow.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Generated by Doxygen

Creating a MOBA using Unity

274

168 Class Documentation

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

3.100.1.2 OnLocalClientStart()

override void ModifierSlow.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierSlow.cs

3.101 ModifierStandardAbility Class Reference

Inheritance diagram for ModifierStandardAbility:

ModifierStandardAbility

Modifier

ScriptableObject

Public Member Functions

• override void OnClientStart (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers starts.

• override void OnClientEnd (PlayerStatus playerStatus, int abilityId)

Called on every client when the modifiers ends.

Generated by Doxygen

Creating a MOBA using Unity

275

3.102 ModifierStun Class Reference 169

Additional Inherited Members

3.101.1 Member Function Documentation

3.101.1.1 OnClientEnd()

override void ModifierStandardAbility.OnClientEnd (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

3.101.1.2 OnClientStart()

override void ModifierStandardAbility.OnClientStart (

PlayerStatus playerStatus,

int abilityId) [virtual]

Called on every client when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierStandardAbility.cs

3.102 ModifierStun Class Reference

Inheritance diagram for ModifierStun:

Generated by Doxygen

Creating a MOBA using Unity

276

170 Class Documentation

ModifierStun

Modifier

ScriptableObject

ModifierFlashStun

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Additional Inherited Members

3.102.1 Member Function Documentation

3.102.1.1 OnLocalClientEnd()

override void ModifierStun.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

3.102.1.2 OnLocalClientStart()

override void ModifierStun.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Generated by Doxygen

Creating a MOBA using Unity

277

3.103 ModifierTrack Class Reference 171

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierStun.cs

3.103 ModifierTrack Class Reference

Inheritance diagram for ModifierTrack:

ModifierTrack

Modifier

ScriptableObject

Public Member Functions

• override void OnLocalClientStart (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers starts.

• override void OnLocalClientEnd (PlayerStatus playerStatus)

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Public Attributes

• float damageMultiplier

Additional Inherited Members

3.103.1 Member Function Documentation

3.103.1.1 OnLocalClientEnd()

override void ModifierTrack.OnLocalClientEnd (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers ends.

Generated by Doxygen

Creating a MOBA using Unity

278

172 Class Documentation

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

3.103.1.2 OnLocalClientStart()

override void ModifierTrack.OnLocalClientStart (

PlayerStatus playerStatus) [virtual]

Called on the local client (the client the modifier is applied to) when the modifiers starts.

Parameters

playerStatus Reference to the associated PlayerStatus.

Reimplemented from Modifier.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Modifiers/ModifierTrack.cs

3.104 MultiBoomerangBuff Class Reference

Inheritance diagram for MultiBoomerangBuff:

MultiBoomerangBuff

Ability IClientCallback< T1, T2 > IModifierProvider

MonoBehaviour

Public Types

• enum ClientCallback { BuffApplied }

Generated by Doxygen

Creating a MOBA using Unity

279

3.104 MultiBoomerangBuff Class Reference 173

Public Member Functions

• override void ButtonDown ()

Callback for what this ability does locally when its associated button is pressed
• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.
• override void SetModifier (bool state=false)

Callback for what this ability is supposed to do when a modifier state changes
• IEnumerator ResetBuff ()

Coroutine used for resetting any visuals to default state. It waits for the end of the deactivation animation before doing
anything.

• int GetAbilityId ()
• int GetBuffModifierId ()

Public Attributes

• BoomerangThrow boomerangScript
• ModifierInfo buff
• GameObject [] otherBoomerangVisuals
• Animator boomerangAnimator
• AnimationClip boomerangAnimationClip
• string animationTrigger
• bool buffActive = false
• bool buffApplied = false

Additional Inherited Members

3.104.1 Member Function Documentation

3.104.1.1 ButtonDown()

override void MultiBoomerangBuff.ButtonDown () [virtual]

Callback for what this ability does locally when its associated button is pressed

Implements Ability.

3.104.1.2 ResetBuff()

IEnumerator MultiBoomerangBuff.ResetBuff ()

Coroutine used for resetting any visuals to default state. It waits for the end of the deactivation animation before
doing anything.

3.104.1.3 SetActive()

override void MultiBoomerangBuff.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

280

174 Class Documentation

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.104.1.4 SetModifier()

override void MultiBoomerangBuff.SetModifier (

bool state = false) [virtual]

Callback for what this ability is supposed to do when a modifier state changes

Parameters

state The new modifier state

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BoomerangKit/MultiBoomerangBuff.cs

3.105 NetworkManager Class Reference

Inheritance diagram for NetworkManager:

NetworkManager

NetworkManager

Public Member Functions

• GameSettings GetGameSettings ()
• void Disconnect ()

Causes the network manager to disconnect

• void DisconnectAndReturnToMenu ()

Disconnect and return the game to the main menu scene

• void StartMatchmakingGame (string gameName, Action< bool, MatchInfo > onCreate)

Create a matchmaking game

• void StartMatchingmakingClient ()

Initialize the matchmaking client to receive match lists

• void JoinMatchmakingGame (NetworkID networkId, Action< bool, MatchInfo > onJoin)

Generated by Doxygen

Creating a MOBA using Unity

281

3.105 NetworkManager Class Reference 175

Join a matchmaking game

• void ProgressToGameScene ()

Makes the server change to the correct game scene for our map, and tells all clients to do the same

• void ReturnToMenu (MenuPage returnPage)

Makes the server change to the menu scene, and bring all clients with it

• NetworkPlayer GetPlayerById (int id)

Gets a network player by its index

• bool AllPlayersReady ()

Gets whether all players are ready

• void ClearAllReadyStates ()

Reset the ready states for all players

• TeamId GetInitialTeamId ()

• void RegisterNetworkPlayer (NetworkPlayer newPlayer)

Register network players so we have all of them

• void DeregisterNetworkPlayer (NetworkPlayer removedPlayer)

Deregister network players

• override void OnClientError (NetworkConnection conn, int errorCode)

• override void OnClientConnect (NetworkConnection conn)

• override void OnClientDisconnect (NetworkConnection conn)

• override void OnServerError (NetworkConnection conn, int errorCode)

• override void OnServerSceneChanged (string sceneName)

• override void OnClientSceneChanged (NetworkConnection conn)

• override void OnServerAddPlayer (NetworkConnection conn, short playerControllerId)

• override void OnServerRemovePlayer (NetworkConnection conn, PlayerController player)

• override void OnServerReady (NetworkConnection conn)

• override void OnServerConnect (NetworkConnection conn)

• override void OnServerDisconnect (NetworkConnection conn)

• override void OnMatchCreate (bool success, string extendedInfo, MatchInfo matchInfo)

• override void OnMatchJoined (bool success, string extendedInfo, MatchInfo matchInfo)

• override void OnDropConnection (bool success, string extendedInfo)

• override void OnStartServer ()

Server resets networkSceneName

• override void OnStopServer ()

Server destroys NetworkPlayer objects

• override void OnStopClient ()

Clients also destroy their copies of NetworkPlayer

• override void OnStartHost ()

Fire host started messages

• virtual void OnPlayerSetReady (NetworkPlayer player)

Called on the server when a player is set to ready

Static Public Member Functions

• static NetworkPlayer GetPlayerForConnection (NetworkConnection conn)

Gets the NetworkPlayer object for a given connection

Generated by Doxygen

Creating a MOBA using Unity

282

176 Class Documentation

Protected Member Functions

• virtual void Awake ()

Initialize our singleton

• virtual void Update ()

Progress to game scene when in transitioning state

• virtual void OnDestroy ()

Clear the singleton

• void StopMatchmakingGame ()
• void UnlistMatch ()

Sets the current matchmaking game as unlisted

• void ListMatch ()

Causes the current matchmaking game to become listed again

• virtual void UpdatePlayerIDs ()
• void FireGameModeUpdated ()

Properties

• NetworkState state [get]

Gets whether we're in a lobby or a game

• static bool IsServer [get]

Gets whether or not we're a server

• List< NetworkPlayer > connectedPlayers [get]

Collection of all connected players

• int playerCount [get]

Gets current number of connected player

• bool hasSufficientPlayers [get]

Gets whether we've currently got enough players to start a game

• static NetworkManager Instance [get]

Gets the NetworkManager instance if it exists

• static bool InstanceExists [get]

Events

• Action< NetworkPlayer > playerJoined

Called on all clients when a player joins

• Action< NetworkPlayer > playerLeft

Called on all clients when a player leaves

• Action hostStarted

Called on a host when their server starts

• Action serverStopped

Called when the server is shut down

• Action clientStopped

Called when the client is shut down

• Action< NetworkConnection > clientConnected

Called on a client when they connect to a game

• Action< NetworkConnection > clientDisconnected

Called on a client when they disconnect from a game

• Action< NetworkConnection, int > clientError

Called on a client when there is a networking error

Generated by Doxygen

Creating a MOBA using Unity

283

3.105 NetworkManager Class Reference 177

• Action< NetworkConnection, int > serverError

Called on the server when there is a networking error

• Action< bool, string > sceneChanged

Called on clients and server when the scene changes

• Action serverPlayersReadied

Called on the server when all players are ready

• Action serverClientDisconnected

Called on the server when a client disconnects

• Action< bool, MatchInfo > matchCreated

Called when we've created a match

• Action gameModeUpdated

Called when game mode changes

• Action< bool, MatchInfo > matchJoined

Called when we've joined a matchMade game

• Action matchDropped

Called when we've been dropped from a matchMade game

3.105.1 Member Function Documentation

3.105.1.1 AllPlayersReady()

bool NetworkManager.AllPlayersReady ()

Gets whether all players are ready

3.105.1.2 Awake()

virtual void NetworkManager.Awake () [protected], [virtual]

Initialize our singleton

3.105.1.3 ClearAllReadyStates()

void NetworkManager.ClearAllReadyStates ()

Reset the ready states for all players

Generated by Doxygen

Creating a MOBA using Unity

284

178 Class Documentation

3.105.1.4 DeregisterNetworkPlayer()

void NetworkManager.DeregisterNetworkPlayer (

NetworkPlayer removedPlayer)

Deregister network players

3.105.1.5 Disconnect()

void NetworkManager.Disconnect ()

Causes the network manager to disconnect

3.105.1.6 DisconnectAndReturnToMenu()

void NetworkManager.DisconnectAndReturnToMenu ()

Disconnect and return the game to the main menu scene

3.105.1.7 GetPlayerById()

NetworkPlayer NetworkManager.GetPlayerById (

int id)

Gets a network player by its index

3.105.1.8 GetPlayerForConnection()

static NetworkPlayer NetworkManager.GetPlayerForConnection (

NetworkConnection conn) [static]

Gets the NetworkPlayer object for a given connection

3.105.1.9 JoinMatchmakingGame()

void NetworkManager.JoinMatchmakingGame (

NetworkID networkId,

Action< bool, MatchInfo > onJoin)

Join a matchmaking game

Generated by Doxygen

Creating a MOBA using Unity

285

3.105 NetworkManager Class Reference 179

3.105.1.10 ListMatch()

void NetworkManager.ListMatch () [protected]

Causes the current matchmaking game to become listed again

3.105.1.11 OnDestroy()

virtual void NetworkManager.OnDestroy () [protected], [virtual]

Clear the singleton

3.105.1.12 OnPlayerSetReady()

virtual void NetworkManager.OnPlayerSetReady (

NetworkPlayer player) [virtual]

Called on the server when a player is set to ready

3.105.1.13 OnStartHost()

override void NetworkManager.OnStartHost ()

Fire host started messages

3.105.1.14 OnStartServer()

override void NetworkManager.OnStartServer ()

Server resets networkSceneName

3.105.1.15 OnStopClient()

override void NetworkManager.OnStopClient ()

Clients also destroy their copies of NetworkPlayer

Generated by Doxygen

Creating a MOBA using Unity

286

180 Class Documentation

3.105.1.16 OnStopServer()

override void NetworkManager.OnStopServer ()

Server destroys NetworkPlayer objects

3.105.1.17 ProgressToGameScene()

void NetworkManager.ProgressToGameScene ()

Makes the server change to the correct game scene for our map, and tells all clients to do the same

3.105.1.18 RegisterNetworkPlayer()

void NetworkManager.RegisterNetworkPlayer (

NetworkPlayer newPlayer)

Register network players so we have all of them

3.105.1.19 ReturnToMenu()

void NetworkManager.ReturnToMenu (

MenuPage returnPage)

Makes the server change to the menu scene, and bring all clients with it

3.105.1.20 StartMatchingmakingClient()

void NetworkManager.StartMatchingmakingClient ()

Initialize the matchmaking client to receive match lists

3.105.1.21 StartMatchmakingGame()

void NetworkManager.StartMatchmakingGame (

string gameName,

Action< bool, MatchInfo > onCreate)

Create a matchmaking game

Generated by Doxygen

Creating a MOBA using Unity

287

3.105 NetworkManager Class Reference 181

3.105.1.22 UnlistMatch()

void NetworkManager.UnlistMatch () [protected]

Sets the current matchmaking game as unlisted

3.105.1.23 Update()

virtual void NetworkManager.Update () [protected], [virtual]

Progress to game scene when in transitioning state

3.105.2 Property Documentation

3.105.2.1 connectedPlayers

List<NetworkPlayer> NetworkManager.connectedPlayers [get]

Collection of all connected players

3.105.2.2 hasSufficientPlayers

bool NetworkManager.hasSufficientPlayers [get]

Gets whether we've currently got enough players to start a game

3.105.2.3 Instance

NetworkManager NetworkManager.Instance [static], [get]

Gets the NetworkManager instance if it exists

3.105.2.4 IsServer

bool NetworkManager.IsServer [static], [get]

Gets whether or not we're a server

Generated by Doxygen

Creating a MOBA using Unity

288

182 Class Documentation

3.105.2.5 playerCount

int NetworkManager.playerCount [get]

Gets current number of connected player

3.105.2.6 state

NetworkState NetworkManager.state [get]

Gets whether we're in a lobby or a game

3.105.3 Event Documentation

3.105.3.1 clientConnected

Action<NetworkConnection> NetworkManager.clientConnected

Called on a client when they connect to a game

3.105.3.2 clientDisconnected

Action<NetworkConnection> NetworkManager.clientDisconnected

Called on a client when they disconnect from a game

3.105.3.3 clientError

Action<NetworkConnection, int> NetworkManager.clientError

Called on a client when there is a networking error

3.105.3.4 clientStopped

Action NetworkManager.clientStopped

Called when the client is shut down

Generated by Doxygen

Creating a MOBA using Unity

289

3.105 NetworkManager Class Reference 183

3.105.3.5 gameModeUpdated

Action NetworkManager.gameModeUpdated

Called when game mode changes

3.105.3.6 hostStarted

Action NetworkManager.hostStarted

Called on a host when their server starts

3.105.3.7 matchCreated

Action<bool, MatchInfo> NetworkManager.matchCreated

Called when we've created a match

3.105.3.8 matchDropped

Action NetworkManager.matchDropped

Called when we've been dropped from a matchMade game

3.105.3.9 matchJoined

Action<bool, MatchInfo> NetworkManager.matchJoined

Called when we've joined a matchMade game

3.105.3.10 playerJoined

Action<NetworkPlayer> NetworkManager.playerJoined

Called on all clients when a player joins

Generated by Doxygen

Creating a MOBA using Unity

290

184 Class Documentation

3.105.3.11 playerLeft

Action<NetworkPlayer> NetworkManager.playerLeft

Called on all clients when a player leaves

3.105.3.12 sceneChanged

Action<bool, string> NetworkManager.sceneChanged

Called on clients and server when the scene changes

3.105.3.13 serverClientDisconnected

Action NetworkManager.serverClientDisconnected

Called on the server when a client disconnects

3.105.3.14 serverError

Action<NetworkConnection, int> NetworkManager.serverError

Called on the server when there is a networking error

3.105.3.15 serverPlayersReadied

Action NetworkManager.serverPlayersReadied

Called on the server when all players are ready

3.105.3.16 serverStopped

Action NetworkManager.serverStopped

Called when the server is shut down

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Networking/NetworkManager.cs

Generated by Doxygen

Creating a MOBA using Unity

291

3.106 NetworkPlayer Class Reference 185

3.106 NetworkPlayer Class Reference

Inheritance diagram for NetworkPlayer:

NetworkPlayer

NetworkBehaviour

Public Member Functions

• override void OnStartLocalPlayer ()

Set initial values

• override void OnStartClient ()

Register us with the NetworkManager

• override void OnNetworkDestroy ()

Deregister us with the manager

• void OnEnterGameScene ()

Fired when we enter the game scene

• void OnEnterLobbyScene ()

Fired when we return to the lobby scene, or are first created in the lobby

• void ClearReady ()

• void SetPlayerName (string newName)

• void SetPlayerId (int newPlayerId)

• void RpcSetGameSettings (int mapIndex, int modeIndex)

• void RpcPrepareForLoad ()

• void CmdTeamChange ()

• void CmdNameChanged (string name)

• void CmdSetReady ()

Protected Member Functions

• virtual void Start ()

Get network manager

• virtual void OnDestroy ()

Clean up lobby object for us

Protected Attributes

• GameObject playerPrefab

• GameObject lobbyPrefab

Generated by Doxygen

Creating a MOBA using Unity

292

186 Class Documentation

Properties

• int PlayerId [get]

Gets this player's id

• string PlayerName [get]

Gets this player's name

• TeamId PlayerTeamId [get]

Gets this player's team id

• bool IsReady [get]

Gets whether this player has marked themselves as ready in the lobby

• Player PlayerInstance [get, set]

Gets the player script associated with this player

• LobbyPlayer LobbyObject [get]

Gets the lobby object associated with this player

• static NetworkPlayer LocalPlayerInstance [get]

Gets the local NetworkPlayer object

Events

• Action< NetworkPlayer > syncVarsChanged
• Action< NetworkPlayer > becameReady
• Action gameDetailsReady

3.106.1 Member Function Documentation

3.106.1.1 OnDestroy()

virtual void NetworkPlayer.OnDestroy () [protected], [virtual]

Clean up lobby object for us

3.106.1.2 OnEnterGameScene()

void NetworkPlayer.OnEnterGameScene ()

Fired when we enter the game scene

3.106.1.3 OnEnterLobbyScene()

void NetworkPlayer.OnEnterLobbyScene ()

Fired when we return to the lobby scene, or are first created in the lobby

Generated by Doxygen

Creating a MOBA using Unity

293

3.106 NetworkPlayer Class Reference 187

3.106.1.4 OnNetworkDestroy()

override void NetworkPlayer.OnNetworkDestroy ()

Deregister us with the manager

3.106.1.5 OnStartClient()

override void NetworkPlayer.OnStartClient ()

Register us with the NetworkManager

3.106.1.6 OnStartLocalPlayer()

override void NetworkPlayer.OnStartLocalPlayer ()

Set initial values

3.106.1.7 Start()

virtual void NetworkPlayer.Start () [protected], [virtual]

Get network manager

3.106.2 Property Documentation

3.106.2.1 IsReady

bool NetworkPlayer.IsReady [get]

Gets whether this player has marked themselves as ready in the lobby

3.106.2.2 LobbyObject

LobbyPlayer NetworkPlayer.LobbyObject [get]

Gets the lobby object associated with this player

Generated by Doxygen

Creating a MOBA using Unity

294

188 Class Documentation

3.106.2.3 LocalPlayerInstance

NetworkPlayer NetworkPlayer.LocalPlayerInstance [static], [get]

Gets the local NetworkPlayer object

3.106.2.4 PlayerId

int NetworkPlayer.PlayerId [get]

Gets this player's id

3.106.2.5 PlayerInstance

Player NetworkPlayer.PlayerInstance [get], [set]

Gets the player script associated with this player

3.106.2.6 PlayerName

string NetworkPlayer.PlayerName [get]

Gets this player's name

3.106.2.7 PlayerTeamId

TeamId NetworkPlayer.PlayerTeamId [get]

Gets this player's team id

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Networking/NetworkPlayer.cs

3.107 ObjectMover Class Reference

Inheritance diagram for ObjectMover:

ObjectMover

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

295

3.108 ObjectSpinner Class Reference 189

Public Attributes

• float timeToUse
• bool backwardsWhenDone
• Vector3 startPoint
• Vector3 endPoint

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Utilities/ObjectMover.cs

3.108 ObjectSpinner Class Reference

Inheritance diagram for ObjectSpinner:

ObjectSpinner

MonoBehaviour

Public Attributes

• float rotationSpeed = 10f
• Vector3 axis = new Vector3(0, 1, 0)

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Utilities/ObjectSpinner.cs

3.109 Player Class Reference

Handles the initialization for the local and remote events for each Player.

Inheritance diagram for Player:

Player

NetworkBehaviour

Generated by Doxygen

Creating a MOBA using Unity

296

190 Class Documentation

Public Member Functions

• override void OnStartClient ()
• override void OnNetworkDestroy ()
• void DisableControl ()
• void EnableControl ()
• void SetPlayerActive (bool state)
• void Prespawn ()

Prespawning, used by round based modes to ensure the player is in the correct state prior to running spawn flow

• void RespawnReposition (Vector3 position, Quaternion rotation)
• void RespawnReactivate ()

Reactivates the player as part of the spawn process.

• void IncrementScore ()

Convenience function for increasing the player score

• void DecrementScore ()

Convenience function for decreasing the player score

• FieldOfView GetPlayerFOV ()
• GameObject GetPlayerMask ()
• TeamId GetPlayerTeamId ()
• void MarkPlayerAsRemoved ()
• void SetPlayerId (int id)
• void TargetAddForce (NetworkConnection connection, float strength, ForceMode mode, Vector3 towards←↩

Position)

TargetRpc for adding force to the player rigidbody. Needed because the local player has authority, and needs to be
the one adding force.

• void TargetAddForce2 (NetworkConnection connection, float strength, ForceMode mode, Vector3 forceOrigin)

TargetRpc for adding force to the player rigidbody where the force origin relative to the player matters

• void TargetAddExplosionForce (NetworkConnection connection, float explosionForce, Vector3 explosion←↩

Origin, float explosionRadius)

TargetRpc for adding explosion force to the player rigidbody.

• void CmdInteract (GameObject interactableObject)

Command called from PlayerInput when interacting with networked interactable objects.

Public Attributes

• ToggleEvent onToggleShared
• ToggleEvent onToggleLocal
• ToggleEvent onToggleRemote
• Material redPlayer
• Material bluePlayer
• Material unassignedPlayer
• List< SpriteRenderer > playerVisuals

Properties

• NetworkPlayer NetworkPlayerInstance [get, protected set]
• PlayerCamera PlayerCameraInstance [get, protected set]
• Docking DockingInstance [get, protected set]
• PlayerInput PlayerInputInstance [get, protected set]
• PlayerHealth PlayerHealthInstance [get, protected set]
• PlayerStatus PlayerStatusInstance [get, protected set]
• PlayerCurrency PlayerCurrencyInstance [get, protected set]

Generated by Doxygen

Creating a MOBA using Unity

297

3.109 Player Class Reference 191

• string PlayerName [get]
• int PlayerNumber [get]
• bool RemovedPlayer [get]
• bool Ready [get]
• bool Initialized [get]
• int Score [get]

3.109.1 Detailed Description

Handles the initialization for the local and remote events for each Player.

3.109.2 Member Function Documentation

3.109.2.1 CmdInteract()

void Player.CmdInteract (

GameObject interactableObject)

Command called from PlayerInput when interacting with networked interactable objects.

Parameters

interactableObject The networked gameobject interacted with.

3.109.2.2 DecrementScore()

void Player.DecrementScore ()

Convenience function for decreasing the player score

3.109.2.3 IncrementScore()

void Player.IncrementScore ()

Convenience function for increasing the player score

Generated by Doxygen

Creating a MOBA using Unity

298

192 Class Documentation

3.109.2.4 Prespawn()

void Player.Prespawn ()

Prespawning, used by round based modes to ensure the player is in the correct state prior to running spawn flow

3.109.2.5 RespawnReactivate()

void Player.RespawnReactivate ()

Reactivates the player as part of the spawn process.

3.109.2.6 TargetAddExplosionForce()

void Player.TargetAddExplosionForce (

NetworkConnection connection,

float explosionForce,

Vector3 explosionOrigin,

float explosionRadius)

TargetRpc for adding explosion force to the player rigidbody.

Parameters

connection Needed so TargetRpc finds the correct client.

explosionForce Amount of force in the explosion

explosionOrigin Center of the explosion

explosionRadius Radius of the explosion

3.109.2.7 TargetAddForce()

void Player.TargetAddForce (

NetworkConnection connection,

float strength,

ForceMode mode,

Vector3 towardsPosition)

TargetRpc for adding force to the player rigidbody. Needed because the local player has authority, and needs to be
the one adding force.

Parameters

connection Needed so TargetRpc finds the correct client.

strength The force applied.

mode The force mode used.
Generated by Doxygen

Creating a MOBA using Unity

299

3.110 PlayerCamera Class Reference 193

3.109.2.8 TargetAddForce2()

void Player.TargetAddForce2 (

NetworkConnection connection,

float strength,

ForceMode mode,

Vector3 forceOrigin)

TargetRpc for adding force to the player rigidbody where the force origin relative to the player matters

Parameters

connection Needed so TargetRpc finds the correct client.

strength Amount of force applied.

mode The force mode used.
forceOrigin Origin of the force.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/Player.cs

3.110 PlayerCamera Class Reference

Handles all Camera interactions.

Inheritance diagram for PlayerCamera:

PlayerCamera

MonoBehaviour

Public Member Functions

• void SetPlayerTransform (Transform newPlayerTarget, bool returnToPlayer=false, bool smoothReturn=false)

Sets the associated player transform.
• void SetTarget (Transform newTarget, bool smoothing=false)

Set temporary target to follow, which will override the player transform. This will use the default move speed.
• void SetTarget (Transform t, bool smoothing, float speed)

Set temporary target to follow using custom move speed, which will override the player transform.
• void SetOrthoSizeTarget (float targetSize)

Set the orthographicSize for the cameras, will lerp between current and targetSize using the default speed.
• void SetOrthoSizeTarget (float targetSize, float speed)

Set the orthographicSize for the cameras, will lerp between current and targetSize using the given speed.
• void ReturnToPlayer (bool smooth)

Call for returning to the player transform using the default speed.
• void ReturnToPlayer (bool smooth, float speed)

Call for returning to the player transform using the given speed.

Generated by Doxygen

Creating a MOBA using Unity

300

194 Class Documentation

Public Attributes

• float height = 25f
• float defaultMoveSpeed = 20f
• float defaultScaleSpeed = 2.5f

3.110.1 Detailed Description

Handles all Camera interactions.

3.110.2 Member Function Documentation

3.110.2.1 ReturnToPlayer() [1/2]

void PlayerCamera.ReturnToPlayer (

bool smooth)

Call for returning to the player transform using the default speed.

Parameters

smooth Whether the return is smooth or instant.

3.110.2.2 ReturnToPlayer() [2/2]

void PlayerCamera.ReturnToPlayer (

bool smooth,

float speed)

Call for returning to the player transform using the given speed.

Parameters

smooth Whether the return is smooth or instant.
speed The move speed utilized.

3.110.2.3 SetOrthoSizeTarget() [1/2]

void PlayerCamera.SetOrthoSizeTarget (

float targetSize)

Generated by Doxygen

Creating a MOBA using Unity

301

3.110 PlayerCamera Class Reference 195

Set the orthographicSize for the cameras, will lerp between current and targetSize using the default speed.

Generated by Doxygen

Creating a MOBA using Unity

302

196 Class Documentation

Parameters

targetSize The new orthographicSize.

3.110.2.4 SetOrthoSizeTarget() [2/2]

void PlayerCamera.SetOrthoSizeTarget (

float targetSize,

float speed)

Set the orthographicSize for the cameras, will lerp between current and targetSize using the given speed.

Parameters

targetSize The new orthographicSize.

speed The lerp speed utilized.

3.110.2.5 SetPlayerTransform()

void PlayerCamera.SetPlayerTransform (

Transform newPlayerTarget,

bool returnToPlayer = false,

bool smoothReturn = false)

Sets the associated player transform.

Parameters

newPlayerTarget The new player transform.

returnToPlayer Whether to move the camera to this transform.

smoothReturn Whether the return is smooth or instant.

3.110.2.6 SetTarget() [1/2]

void PlayerCamera.SetTarget (

Transform newTarget,

bool smoothing = false)

Set temporary target to follow, which will override the player transform. This will use the default move speed.

Generated by Doxygen

Creating a MOBA using Unity

303

3.111 PlayerCurrency Class Reference 197

Parameters

newTarget The new transform to follow.

smoothing Whether to smoothly follow target.

3.110.2.7 SetTarget() [2/2]

void PlayerCamera.SetTarget (

Transform t,

bool smoothing,

float speed)

Set temporary target to follow using custom move speed, which will override the player transform.

Parameters

newTarget The new transform to follow.

smoothing Whether to smoothly follow target.

speed The move speed utilized.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/PlayerCamera.cs

3.111 PlayerCurrency Class Reference

Inheritance diagram for PlayerCurrency:

PlayerCurrency

NetworkBehaviour

Public Member Functions

• void Initialize (Player pl)
• void CmdAddCurrency (int amount)

Command for adding a new amount to the currency. This will automatically trigger the OnCurrencyChange hook

Public Attributes

• int currency = 0

Generated by Doxygen

Creating a MOBA using Unity

304

198 Class Documentation

3.111.1 Member Function Documentation

3.111.1.1 CmdAddCurrency()

void PlayerCurrency.CmdAddCurrency (

int amount)

Command for adding a new amount to the currency. This will automatically trigger the OnCurrencyChange hook

Parameters

amount The amount we add/decrease from the currency total

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/PlayerCurrency.cs

3.112 PlayerHealth Class Reference

Handles functionality related to the player health.

Inheritance diagram for PlayerHealth:

PlayerHealth

NetworkBehaviour

Public Member Functions

• void Initialize (Player pl)

Initializes this object.

• void SetDefaults ()

Set the default/initial state of this object.

• void CmdSetMaxHealth (float newMaxHealth)

Command called when a DockingKit changes the maxHealth.

• void CmdSetDamageMultiplier (float multiplier)

Command called when the player receives damageMultiplier change, multiplicative.

• void TakeDamage (float damage, uint playerNetId)

ServerCallback called when the player takes damage.

• void TakeDamage (float damage)

ServerCallback called when the player takes damage.

• void Heal (float healing)

ServerCallback called when the player receives health.

Generated by Doxygen

Creating a MOBA using Unity

305

3.112 PlayerHealth Class Reference 199

Public Attributes

• float maxHealth = 100f
• float damageMultiplier = 1f
• SpriteRenderer damageHealthObject
• float flashSpeed = 8f

Properties

• int LastDamagedByPlayerNetId [get]

3.112.1 Detailed Description

Handles functionality related to the player health.

3.112.2 Member Function Documentation

3.112.2.1 CmdSetDamageMultiplier()

void PlayerHealth.CmdSetDamageMultiplier (

float multiplier)

Command called when the player receives damageMultiplier change, multiplicative.

Parameters

multiplier change to multiplier

3.112.2.2 CmdSetMaxHealth()

void PlayerHealth.CmdSetMaxHealth (

float newMaxHealth)

Command called when a DockingKit changes the maxHealth.

Parameters

newMaxHealth

Generated by Doxygen

Creating a MOBA using Unity

306

200 Class Documentation

3.112.2.3 Heal()

void PlayerHealth.Heal (

float healing)

ServerCallback called when the player receives health.

Parameters

healing The amount of health received.

3.112.2.4 Initialize()

void PlayerHealth.Initialize (

Player pl)

Initializes this object.

Parameters

pl Reference to the associated player.

3.112.2.5 SetDefaults()

void PlayerHealth.SetDefaults ()

Set the default/initial state of this object.

3.112.2.6 TakeDamage() [1/2]

void PlayerHealth.TakeDamage (

float damage,

uint playerNetId)

ServerCallback called when the player takes damage.

Parameters

damage The amount of damage taken.

player←↩

NetId
The player doing the damage.

Generated by Doxygen

Creating a MOBA using Unity

307

3.113 PlayerInput Class Reference 201

3.112.2.7 TakeDamage() [2/2]

void PlayerHealth.TakeDamage (

float damage)

ServerCallback called when the player takes damage.

Parameters

damage The amount of damage taken.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/PlayerHealth.cs

3.113 PlayerInput Class Reference

Handles all player inputs.

Inheritance diagram for PlayerInput:

PlayerInput

MonoBehaviour

Public Member Functions

• void Initialize (Player pl)

• void SetDefaults ()

• void SetInputActive (bool state)

• Vector3 GetDirectionVector ()

directionVector is set every frame based on the movement axis from player input.

• Vector2 GetRotationVector ()

rotationVector is set every frame based on the rotation axis from player input.

• void SetInputRestrictions (bool state, InputType[] inputTypes)

Used by the local player to self restrict input type. Using int stacks for situations where one modifier removes the
restriction, but the restriction is still active by another.

Generated by Doxygen

Creating a MOBA using Unity

308

202 Class Documentation

Public Attributes

• string moveHorizontal = "Horizontal"
• string moveVertical = "Vertical"
• string rotateHorizontal = "HorizontalRotation"
• string rotateVertical = "VerticalRotation"
• string dock = "Dock"
• string undock = "Undock"
• string interact = "Interact"
• string [] abilityButtons
• float moveSpeed
• float rotationSpeed
• IngameMenuHandler menuHandler

3.113.1 Detailed Description

Handles all player inputs.

3.113.2 Member Function Documentation

3.113.2.1 GetDirectionVector()

Vector3 PlayerInput.GetDirectionVector ()

directionVector is set every frame based on the movement axis from player input.

Returns

The direction vector.

3.113.2.2 GetRotationVector()

Vector2 PlayerInput.GetRotationVector ()

rotationVector is set every frame based on the rotation axis from player input.

Returns

The rotation vector.

3.113.2.3 SetInputRestrictions()

void PlayerInput.SetInputRestrictions (

bool state,

InputType [] inputTypes)

Used by the local player to self restrict input type. Using int stacks for situations where one modifier removes the
restriction, but the restriction is still active by another.

Generated by Doxygen

Creating a MOBA using Unity

309

3.114 PlayerInputTestAbility Class Reference 203

Parameters

state The new state of the input restriction.

types The types to set restriction for.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/PlayerInput.cs

3.114 PlayerInputTestAbility Class Reference

Inheritance diagram for PlayerInputTestAbility:

PlayerInputTestAbility

Ability

MonoBehaviour

Public Member Functions

• override void InitializeLocalPlayer (AbilityUI abilityUI)

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the refer-
ences are already set up.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void CancelAbility ()

Call for cancelling abilities. Override in abilities that may be interrupted.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• Transform target
• float moveSpeed = 4f
• float maxDistance = 10f

Additional Inherited Members

3.114.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

310

204 Class Documentation

3.114.1.1 ButtonDown()

override void PlayerInputTestAbility.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.114.1.2 CancelAbility()

override void PlayerInputTestAbility.CancelAbility () [virtual]

Call for cancelling abilities. Override in abilities that may be interrupted.

Reimplemented from Ability.

3.114.1.3 InitializeLocalPlayer()

override void PlayerInputTestAbility.InitializeLocalPlayer (

AbilityUI abilityUI) [virtual]

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the
references are already set up.

Reimplemented from Ability.

3.114.1.4 SetActive()

override void PlayerInputTestAbility.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TestAbilities/PlayerInputTestAbility.cs

Generated by Doxygen

Creating a MOBA using Unity

311

3.115 PlayerStatus Class Reference 205

3.115 PlayerStatus Class Reference

Handles the modifiers and status effects for the player.

Inheritance diagram for PlayerStatus:

PlayerStatus

NetworkBehaviour

Public Member Functions

• void Initialize ()
• void ApplyModifier (ModifierInfo modifierInfo, int abilityId=-1)

ServerCallback for applying a modifier. Searches through list of current modifiers if the modifier is unique.
• void RemoveModifier (ModifierInstanceServer instance, bool sync=true)

Removes the modifier instance passed to it. Called by the ModifierInstance when the modifier has ended.
• void RemoveModifier (Modifier modifier)

Removes the first instance equal to the modifier passed in. Used by abilities through the Docking.
• void RemoveAllModifiers ()

Iterates through modifier list and stops everything.
• void RemoveAllAbilityModifiers ()

Iterates through modifier list and stops ability (self applied) modifiers. (Modifiers with a valid abilityId).
• void RemoveAllDebuffModifiers ()

Iterates through modifier list and removes debuffs.
• void TargetSetUIDuration (NetworkConnection connection, int modifierId, float newDuration)

TargetRpc for updating UI elements duration.

Public Attributes

• ModifierInfo stun
• ModifierInfo root
• ModifierInfo silence
• ModifierInfo dot

3.115.1 Detailed Description

Handles the modifiers and status effects for the player.

3.115.2 Member Function Documentation

3.115.2.1 ApplyModifier()

void PlayerStatus.ApplyModifier (

ModifierInfo modifierInfo,

int abilityId = -1)

ServerCallback for applying a modifier. Searches through list of current modifiers if the modifier is unique.

Generated by Doxygen

Creating a MOBA using Unity

312

206 Class Documentation

Parameters

modifierInfo The information needed to apply the modifier.

abilityId The Id of the ability that applied the modifier if any, -1 otherwise.

3.115.2.2 RemoveAllAbilityModifiers()

void PlayerStatus.RemoveAllAbilityModifiers ()

Iterates through modifier list and stops ability (self applied) modifiers. (Modifiers with a valid abilityId).

3.115.2.3 RemoveAllDebuffModifiers()

void PlayerStatus.RemoveAllDebuffModifiers ()

Iterates through modifier list and removes debuffs.

3.115.2.4 RemoveAllModifiers()

void PlayerStatus.RemoveAllModifiers ()

Iterates through modifier list and stops everything.

3.115.2.5 RemoveModifier() [1/2]

void PlayerStatus.RemoveModifier (

ModifierInstanceServer instance,

bool sync = true)

Removes the modifier instance passed to it. Called by the ModifierInstance when the modifier has ended.

Parameters

instance The ModifierInstance that should be removed.
sync Should this be synced to the clients.

Generated by Doxygen

Creating a MOBA using Unity

313

3.116 PlayerUIHandler Class Reference 207

3.115.2.6 RemoveModifier() [2/2]

void PlayerStatus.RemoveModifier (

Modifier modifier)

Removes the first instance equal to the modifier passed in. Used by abilities through the Docking.

Parameters

modifier The modifier to remove.

Works as long as abilities only self apply unique instances of modifiers, as this only removes based on modifier type
(not unique id).

3.115.2.7 TargetSetUIDuration()

void PlayerStatus.TargetSetUIDuration (

NetworkConnection connection,

int modifierId,

float newDuration)

TargetRpc for updating UI elements duration.

Parameters

connection Needed so TargetRpc finds the correct client.

modifierId Used to find correct modifier instance.
newDuration The new duration.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/PlayerStatus.cs

3.116 PlayerUIHandler Class Reference

Handler for the player UI (Abilities, status modifiers, health).

Inheritance diagram for PlayerUIHandler:

PlayerUIHandler

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

314

208 Class Documentation

Public Member Functions

• void SetDockingKitUI (DockingKit newDockingKit)

Initialize the AbilityUI with the new DockingKit abilities.

• StatusUI AddStatusModifier (Modifier modifier, float duration)

Adds a StatusUI element to the PlayerUI.

• void RemoveStatusModifier (StatusUI statusModifier)

Removed the status modifier from the list of elements.

• void SetCurrentHealth (float health, float maxHealth)

Updates the HealthUI based on health and maxHealth.

• void PlayCurrencyChangeAnimation (float currencyDifference)

Starts a coroutine that interpolates text containing the amount of currency earned/spent

Public Attributes

• AbilityUI [] abilities
• Sprite emptySlot
• Transform [] statusBars
• GameObject statusPrefab
• Text currencyText
• Text animatedCurrencyText
• Text healthPercentageText
• Text healthRatioText
• Image healthMask
• Color currencyAddColor
• Color currencyRemoveColor
• float animatedTextTargetOffset = 75f
• IngameMenuHandler ingameMenuHandler

3.116.1 Detailed Description

Handler for the player UI (Abilities, status modifiers, health).

3.116.2 Member Function Documentation

3.116.2.1 AddStatusModifier()

StatusUI PlayerUIHandler.AddStatusModifier (

Modifier modifier,

float duration)

Adds a StatusUI element to the PlayerUI.

Parameters

modifier The modifier to be added.
duration The initial duration of the status modifier.

Generated by Doxygen

Creating a MOBA using Unity

315

3.116 PlayerUIHandler Class Reference 209

Returns

The instantiated statusUI element.

3.116.2.2 PlayCurrencyChangeAnimation()

void PlayerUIHandler.PlayCurrencyChangeAnimation (

float currencyDifference)

Starts a coroutine that interpolates text containing the amount of currency earned/spent

Parameters

currencyDifference The currency difference from the old total

3.116.2.3 RemoveStatusModifier()

void PlayerUIHandler.RemoveStatusModifier (

StatusUI statusModifier)

Removed the status modifier from the list of elements.

Parameters

statusModifier The statusUI removed.

3.116.2.4 SetCurrentHealth()

void PlayerUIHandler.SetCurrentHealth (

float health,

float maxHealth)

Updates the HealthUI based on health and maxHealth.

Parameters

health The current health.
maxHealth The current max health.

Generated by Doxygen

Creating a MOBA using Unity

316

210 Class Documentation

3.116.2.5 SetDockingKitUI()

void PlayerUIHandler.SetDockingKitUI (

DockingKit newDockingKit)

Initialize the AbilityUI with the new DockingKit abilities.

Parameters

newDockingKit Reference to the new DockingKit.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/PlayerUIHandler.cs

3.117 PowerSaw Class Reference

Inheritance diagram for PowerSaw:

PowerSaw

Ability ISpawnableProvider IServerCallback< T1, T2 >

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void CooldownReady ()

Called from AbilityCooldown when the ability is ready. Setting active to false returns the sawblades to the docking kit
visuals.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• float triggerToSpawnTime
• float sawDamage
• string animatorBool
• Collider leftBlade
• Collider rightBlade
• GameObject bladePrefab

Generated by Doxygen

Creating a MOBA using Unity

317

3.117 PowerSaw Class Reference 211

Additional Inherited Members

3.117.1 Member Function Documentation

3.117.1.1 ButtonDown()

override void PowerSaw.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.117.1.2 CooldownReady()

override void PowerSaw.CooldownReady () [virtual]

Called from AbilityCooldown when the ability is ready. Setting active to false returns the sawblades to the docking
kit visuals.

Reimplemented from Ability.

3.117.1.3 Initialize()

override void PowerSaw.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

Generated by Doxygen

Creating a MOBA using Unity

318

212 Class Documentation

3.117.1.4 SetActive()

override void PowerSaw.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TankKit/PowerSaw.cs

3.118 Projectile Class Reference

Inheritance diagram for Projectile:

Projectile

SpawnableObject IRedirectable

NetworkBehaviour

Public Member Functions

• void Initialize (Stealth stealthRef, bool firedFromStealth=false)
• void OnTriggerEnter (Collider other)

Public Attributes

• float projectileSpeed
• float lifetime
• bool hasStealthBonus
• float projectileDamage
• Stealth stealthBuff

Additional Inherited Members

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/MarksmanKit/Projectile.cs

Generated by Doxygen

Creating a MOBA using Unity

319

3.119 ProjectileReflect Class Reference 213

3.119 ProjectileReflect Class Reference

Inheritance diagram for ProjectileReflect:

ProjectileReflect

Ability IModifierProvider

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Callback for what this ability should do once its associated button has been pressed

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• override void SetModifier (bool state=false)

Callback for what this ability is supposed to do depending on given state.

Public Attributes

• Transform shieldTransform
• float fadeSpeed = 5f
• float fadeOutTimeOffset = 0.5f
• ModifierInfo buff

Protected Member Functions

• override void Update ()

Runs on every client, but only the local player has cooldown initialized.

Additional Inherited Members

3.119.1 Member Function Documentation

3.119.1.1 ButtonDown()

override void ProjectileReflect.ButtonDown () [virtual]

Callback for what this ability should do once its associated button has been pressed

Implements Ability.

Generated by Doxygen

Creating a MOBA using Unity

320

214 Class Documentation

3.119.1.2 Initialize()

override void ProjectileReflect.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.119.1.3 SetActive()

override void ProjectileReflect.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.119.1.4 SetModifier()

override void ProjectileReflect.SetModifier (

bool state = false) [virtual]

Callback for what this ability is supposed to do depending on given state.

Parameters

state Whether the ability is to be active or now

Reimplemented from Ability.

Generated by Doxygen

Creating a MOBA using Unity

321

3.120 ProjectileSpawner Class Reference 215

3.119.1.5 Update()

override void ProjectileReflect.Update () [protected], [virtual]

Runs on every client, but only the local player has cooldown initialized.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BrawlerKit/ProjectileReflect.cs

3.120 ProjectileSpawner Class Reference

Inheritance diagram for ProjectileSpawner:

ProjectileSpawner

Ability IServerCallback< T1, T2 > ISpawnableProvider

MonoBehaviour

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• GameObject projectilePrefab
• float spawnOffset
• Stealth stealthBuff

Additional Inherited Members

3.120.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

322

216 Class Documentation

3.120.1.1 ButtonDown()

override void ProjectileSpawner.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.120.1.2 SetActive()

override void ProjectileSpawner.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/MarksmanKit/ProjectileSpawner.cs

3.121 RemoteMine Class Reference

Inheritance diagram for RemoteMine:

RemoteMine

SpawnableObject

NetworkBehaviour

Public Member Functions

• void Initialize (GameObject owner)
• void Explode ()

Called when the remote mine is triggered, checking for enemy players in a sphere.

• bool IsActive ()

Generated by Doxygen

Creating a MOBA using Unity

323

3.122 RemoteMineSpawner Class Reference 217

Public Attributes

• float baseDamage
• float explosionRadius
• float activationTime
• ModifierInfo stunInfo

Additional Inherited Members

3.121.1 Member Function Documentation

3.121.1.1 Explode()

void RemoteMine.Explode ()

Called when the remote mine is triggered, checking for enemy players in a sphere.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/RemoteMine.cs

3.122 RemoteMineSpawner Class Reference

Inheritance diagram for RemoteMineSpawner:

RemoteMineSpawner

Ability ISpawnableReferenceProvider IServerCallback< GameObject >

MonoBehaviour ISpawnableProvider

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• string animatorTrigger
• GameObject [] minePrefab
• GameObject remoteMineReference

Generated by Doxygen

Creating a MOBA using Unity

324

218 Class Documentation

Additional Inherited Members

3.122.1 Member Function Documentation

3.122.1.1 ButtonDown()

override void RemoteMineSpawner.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.122.1.2 SetActive()

override void RemoteMineSpawner.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BomberKit/RemoteMineSpawner.cs

3.123 Sawblade Class Reference

Inheritance diagram for Sawblade:

Sawblade

SpawnableObject IHookable

NetworkBehaviour

Generated by Doxygen

Creating a MOBA using Unity

325

3.124 ScreenFlash Class Reference 219

Public Member Functions

• void Hooked (GameObject playerObject, Transform hook)

IHookable called when the sawblade has been hooked.

Public Attributes

• float force = 30f
• float damage = 20f
• float lifetime = 10f
• float cooldownReduction = 3f

Additional Inherited Members

3.123.1 Member Function Documentation

3.123.1.1 Hooked()

void Sawblade.Hooked (

GameObject playerObject,

Transform hook)

IHookable called when the sawblade has been hooked.

Parameters

playerObject The hook's assosiated player object.

hook The hook transform.

Implements IHookable.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TankKit/Sawblade.cs

3.124 ScreenFlash Class Reference

Inheritance diagram for ScreenFlash:

ScreenFlash

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

326

220 Class Documentation

Public Attributes

• float fadeSpeed = 5f

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/BrawlerKit/ScreenFlash.cs

3.125 SelectBase Class Reference

Inheritance diagram for SelectBase:

SelectBase

MonoBehaviour

SelectMap SelectMode

Public Member Functions

• int GetCurrentIndex ()

• void OnNextClick ()

• void OnPreviousClick ()

Protected Member Functions

• void OnIndexChange ()

• virtual void AssignByIndex ()

• void HandleBounds ()

Protected Attributes

• int currentIndex = 0

• int listLength

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/SelectBase.cs

Generated by Doxygen

Creating a MOBA using Unity

327

3.126 SelectMap Class Reference 221

3.126 SelectMap Class Reference

Inheritance diagram for SelectMap:

SelectMap

SelectBase

MonoBehaviour

Public Member Functions

• MapInfo GetSelectedMap ()

Protected Member Functions

• override void AssignByIndex ()

Additional Inherited Members

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/SelectMap.cs

3.127 SelectMode Class Reference

Inheritance diagram for SelectMode:

SelectMode

SelectBase

MonoBehaviour

Public Member Functions

• ModeInfo GetSelectedMode ()

Protected Member Functions

• override void AssignByIndex ()

Generated by Doxygen

Creating a MOBA using Unity

328

222 Class Documentation

Additional Inherited Members

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/SelectMode.cs

3.128 Shackle Class Reference

Inheritance diagram for Shackle:

Shackle

Ability ISpawnableProvider

MonoBehaviour

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void CooldownReady ()

Called from AbilityCooldown when the ability is ready. Setting active to true returns the bola to the docking kit visuals.

• override void SetActive (bool state)

State is here the active of the bola visuals (Opposite of normal).

Public Attributes

• string animatorTrigger
• GameObject spawnablePrefab
• Transform spawnPoint

Additional Inherited Members

3.128.1 Member Function Documentation

3.128.1.1 ButtonDown()

override void Shackle.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

Generated by Doxygen

Creating a MOBA using Unity

329

3.129 ShopItemData Class Reference 223

3.128.1.2 CooldownReady()

override void Shackle.CooldownReady () [virtual]

Called from AbilityCooldown when the ability is ready. Setting active to true returns the bola to the docking kit
visuals.

Reimplemented from Ability.

3.128.1.3 SetActive()

override void Shackle.SetActive (

bool state) [virtual]

State is here the active of the bola visuals (Opposite of normal).

Parameters

state Visual state of the bola.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/Shackle.cs

3.129 ShopItemData Class Reference

Inheritance diagram for ShopItemData:

ShopItemData

ScriptableObject

Public Attributes

• string itemName
• Sprite icon
• GameObject dockingKitPrefab
• int price
• DockingKitId dockingKitId
• List< DockingKitDescriptions > dockingKitDescriptions = new List<DockingKitDescriptions>(5)

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/ShopItemData.cs

Generated by Doxygen

Creating a MOBA using Unity

330

224 Class Documentation

3.130 ShopItemInstance Class Reference

Inheritance diagram for ShopItemInstance:

ShopItemInstance

MonoBehaviour

Public Member Functions

• void Initialize (ShopItemData iData, IngameMenuHandler handler)
• void OnSelectionChange ()
• void OnClick ()

Public Attributes

• ShopItemData itemData
• Image uiIcon
• Text priceText
• Image unavailableOverlay
• Text isEquippedText

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/ShopItemInstance.cs

3.131 Singleton< T > Class Template Reference

Singleton class of a MonoBehaviour, using Awake and OnDestroy calls.

Inheritance diagram for Singleton< T >:

Singleton< T >

MonoBehaviour

Protected Member Functions

• virtual void Awake ()

Awake method to associate singleton with instance

• virtual void OnDestroy ()

OnDestroy method to clear singleton association

Generated by Doxygen

Creating a MOBA using Unity

331

3.131 Singleton< T > Class Template Reference 225

Properties

• static T Instance [get, protected set]

The static reference to the instance

• static bool InstanceExists [get]

Gets whether an instance of this singleton exists

3.131.1 Detailed Description

Singleton class of a MonoBehaviour, using Awake and OnDestroy calls.

Template Parameters

T Type of the singleton

Type Constraints

T : Singleton<T>

3.131.2 Member Function Documentation

3.131.2.1 Awake()

virtual void Singleton< T >.Awake () [protected], [virtual]

Awake method to associate singleton with instance

Reimplemented in AnnouncerModal, SpawnableFactory, and SpawnManager.

3.131.2.2 OnDestroy()

virtual void Singleton< T >.OnDestroy () [protected], [virtual]

OnDestroy method to clear singleton association

3.131.3 Property Documentation

Generated by Doxygen

Creating a MOBA using Unity

332

226 Class Documentation

3.131.3.1 Instance

T Singleton< T >.Instance [static], [get], [protected set]

The static reference to the instance

3.131.3.2 InstanceExists

bool Singleton< T >.InstanceExists [static], [get]

Gets whether an instance of this singleton exists

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Utilities/Singleton.cs

3.132 Slingshot Class Reference

Inheritance diagram for Slingshot:

Slingshot

Ability IServerCallback< float > IServerCallback< GameObject, float > IClientCallback< float > ISpawnableReferenceProvider IModifierProvider

MonoBehaviour ISpawnableProvider

Public Member Functions

• override void InitializeLocalPlayer (AbilityUI abilityUI)

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the refer-
ences are already set up.

• override void ButtonDown ()

Start the firing process if cooldown is ready.

• override void ButtonUp ()

Fires the projectile if the ability is active.

• override void CancelAbility ()

Cancel the firing process if active.

• override void SetActive (bool fire)

Synchronizing states, either fires or resets.

Generated by Doxygen

Creating a MOBA using Unity

333

3.132 Slingshot Class Reference 227

Public Attributes

• GameObject projectilePrefab
• Transform projectileSpawnPoint
• Transform leftFireIndicator
• Transform rightFireIndicator
• ModifierInfo snipingSlow
• Transform projectileVisuals
• float projectileMaxPrecisionY = -1.5f
• LineRenderer slingRenderer
• float startCurveModifier = 0.5f
• float holdCurveModifier = 0.125f
• float resetSpeed = 2f
• AnimationCurve startCurve
• AnimationCurve holdCurve
• AnimationCurve projectileFireAnimation

Additional Inherited Members

3.132.1 Member Function Documentation

3.132.1.1 ButtonDown()

override void Slingshot.ButtonDown () [virtual]

Start the firing process if cooldown is ready.

Implements Ability.

3.132.1.2 ButtonUp()

override void Slingshot.ButtonUp () [virtual]

Fires the projectile if the ability is active.

Reimplemented from Ability.

3.132.1.3 CancelAbility()

override void Slingshot.CancelAbility () [virtual]

Cancel the firing process if active.

Reimplemented from Ability.

Generated by Doxygen

Creating a MOBA using Unity

334

228 Class Documentation

3.132.1.4 InitializeLocalPlayer()

override void Slingshot.InitializeLocalPlayer (

AbilityUI abilityUI) [virtual]

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the
references are already set up.

Reimplemented from Ability.

3.132.1.5 SetActive()

override void Slingshot.SetActive (

bool fire) [virtual]

Synchronizing states, either fires or resets.

Parameters

fire If true fire, otherwise reset.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/Slingshot.cs

3.133 SniperProjectile Class Reference

Inheritance diagram for SniperProjectile:

SniperProjectile

SpawnableObject IRedirectable

NetworkBehaviour

Public Member Functions

• void Initialize (float forceModifier)

Server call for initializing the projectile based on the forceModifier.

• void RpcInitialize (float forceModifier)

ClientRpc for synchronizing the forceModifier.

Generated by Doxygen

Creating a MOBA using Unity

335

3.134 SpawnableFactory Class Reference 229

Public Attributes

• float moveSpeed = 60f
• float damage = 50f
• float lifetime = 8f

Additional Inherited Members

3.133.1 Member Function Documentation

3.133.1.1 Initialize()

void SniperProjectile.Initialize (

float forceModifier)

Server call for initializing the projectile based on the forceModifier.

Parameters

forceModifier Modifier in the 0-1 range which affects the stats.

3.133.1.2 RpcInitialize()

void SniperProjectile.RpcInitialize (

float forceModifier)

ClientRpc for synchronizing the forceModifier.

Parameters

forceModifier Modifier in the 0-1 range which affects the stats.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/SniperProjectile.cs

3.134 SpawnableFactory Class Reference

Inheritance diagram for SpawnableFactory:

Generated by Doxygen

Creating a MOBA using Unity

336

230 Class Documentation

SpawnableFactory

Singleton< SpawnableFactory >

Public Member Functions

• SpawnableObject SpawnObject (GameObject obj, Vector3 position, Vector3 rotation, uint player, TeamId
team)

• void SpawnDockingKitPickup (DockingKitId kitId, Vector3 position, Quaternion rotation)
• void SpawnableDestroyed (SpawnableObject spawnObject)
• void CleanupSpawnableList ()
• void CleanupPickupList ()

Public Attributes

• GameObject dockingKitPickupPrefab

Protected Member Functions

• override void Awake ()

Awake method to associate singleton with instance

Additional Inherited Members

3.134.1 Member Function Documentation

3.134.1.1 Awake()

override void SpawnableFactory.Awake () [protected], [virtual]

Awake method to associate singleton with instance

Reimplemented from Singleton< SpawnableFactory >.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/SpawnableFactory.cs

Generated by Doxygen

Creating a MOBA using Unity

337

3.135 SpawnableObject Class Reference 231

3.135 SpawnableObject Class Reference

Inheritance diagram for SpawnableObject:

SpawnableObject

NetworkBehaviour

Bola

ExplosiveMine

FlashGrenade

GrenadeShell

Projectile

RemoteMine

Sawblade

SniperProjectile

SpawnTestObject

Trap

Zipline

Public Member Functions

• uint GetOwnerPlayerId ()
• TeamId GetOwnerTeamId ()
• void SetOwner (uint player, TeamId team)
• bool CheckDamagable (NetworkBehaviour otherObject)

Check if the other player is damagable by this spawnable. Unassigned team id means teams aren't used.

Protected Member Functions

• virtual void OnDestroy ()

Protected Attributes

• uint playerId
• TeamId teamId

Generated by Doxygen

Creating a MOBA using Unity

338

232 Class Documentation

3.135.1 Member Function Documentation

3.135.1.1 CheckDamagable()

bool SpawnableObject.CheckDamagable (

NetworkBehaviour otherObject)

Check if the other player is damagable by this spawnable. Unassigned team id means teams aren't used.

Parameters

otherObject The other player object.

Returns

True if damagable, false otherwise.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SpawnableObject.cs

3.136 SpawnManager Class Reference

Inheritance diagram for SpawnManager:

SpawnManager

Singleton< SpawnManager >

Public Member Functions

• int GetRandomEmptySpawnPointIndex (TeamId teamId)

Gets index of a random empty spawn point

• SpawnPoint GetSpawnPointByIndex (int i)
• Transform GetSpawnPointTransformByIndex (int i)
• void CleanupSpawnPoints ()

Cleans up the spawn points.

Protected Member Functions

• override void Awake ()

Awake method to associate singleton with instance

Generated by Doxygen

Creating a MOBA using Unity

339

3.137 SpawnPoint Class Reference 233

Additional Inherited Members

3.136.1 Member Function Documentation

3.136.1.1 Awake()

override void SpawnManager.Awake () [protected], [virtual]

Awake method to associate singleton with instance

Reimplemented from Singleton< SpawnManager >.

3.136.1.2 CleanupSpawnPoints()

void SpawnManager.CleanupSpawnPoints ()

Cleans up the spawn points.

3.136.1.3 GetRandomEmptySpawnPointIndex()

int SpawnManager.GetRandomEmptySpawnPointIndex (

TeamId teamId)

Gets index of a random empty spawn point

Returns

The random empty spawn point index.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Map/SpawnManager.cs

3.137 SpawnPoint Class Reference

Inheritance diagram for SpawnPoint:

SpawnPoint

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

340

234 Class Documentation

Public Member Functions

• TeamId GetTeamId ()
• void Decrement ()

Safely decrement the number of players in the zone and set isDirty to false

• void SetDirty ()

Used to set the spawn point to dirty to prevent simultaneous spawns from occurring at the same point

• void Cleanup ()

Resets/cleans up the spawn point

Properties

• Transform SpawnPointTransform [get]

• bool isEmptyZone [get]

3.137.1 Member Function Documentation

3.137.1.1 Cleanup()

void SpawnPoint.Cleanup ()

Resets/cleans up the spawn point

3.137.1.2 Decrement()

void SpawnPoint.Decrement ()

Safely decrement the number of players in the zone and set isDirty to false

3.137.1.3 SetDirty()

void SpawnPoint.SetDirty ()

Used to set the spawn point to dirty to prevent simultaneous spawns from occurring at the same point

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Map/SpawnPoint.cs

Generated by Doxygen

Creating a MOBA using Unity

341

3.138 SpawnTestAbility Class Reference 235

3.138 SpawnTestAbility Class Reference

Inheritance diagram for SpawnTestAbility:

SpawnTestAbility

Ability ISpawnableReferenceProvider

MonoBehaviour ISpawnableProvider

Public Member Functions

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• GameObject spawnTestPrefab
• string animatorTrigger
• int maxObjects = 5
• List< GameObject > spawnedObjects

Additional Inherited Members

3.138.1 Member Function Documentation

3.138.1.1 ButtonDown()

override void SpawnTestAbility.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.138.1.2 SetActive()

override void SpawnTestAbility.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Generated by Doxygen

Creating a MOBA using Unity

342

236 Class Documentation

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TestAbilities/SpawnTestAbility.cs

3.139 SpawnTestObject Class Reference

Inheritance diagram for SpawnTestObject:

SpawnTestObject

SpawnableObject IRedirectable

NetworkBehaviour

Public Member Functions

• void RedirectDirection (Vector3 newDirection, int newPlayerId=-1, TeamId newTeamId=TeamId.Unassigned)

Redirects direction of the spawnable.

Public Attributes

• float moveSpeed
• float damage

Additional Inherited Members

3.139.1 Member Function Documentation

3.139.1.1 RedirectDirection()

void SpawnTestObject.RedirectDirection (

Vector3 newDirection,

int newPlayerId = -1,

TeamId newTeamId = TeamId.Unassigned)

Redirects direction of the spawnable.

Generated by Doxygen

Creating a MOBA using Unity

343

3.140 StandardSpawnableSpawner Class Reference 237

Parameters

newDirection The new direction.
newPlayerId The player id of the new owner, -1 if current owner is kept.

newTeamId The team id of the new owner, TeamId.Unassigned if current owner is kept.

Implements IRedirectable.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TestAbilities/SpawnTestObject.cs

3.140 StandardSpawnableSpawner Class Reference

Inheritance diagram for StandardSpawnableSpawner:

StandardSpawnableSpawner

Ability ISpawnableProvider

MonoBehaviour

Public Member Functions

• override void ButtonDown ()

Callback for what this ability should do once its associated button has been pressed

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• GameObject GetSpawnablePrefab (int spawnableId)

Used by the Docking to get the correct prefab to spawn from the abilities. Parameter only used if the ability has a list
of prefabs.

Public Attributes

• string animatorTrigger
• GameObject spawnablePrefab
• Transform spawnPoint

Additional Inherited Members

3.140.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

344

238 Class Documentation

3.140.1.1 ButtonDown()

override void StandardSpawnableSpawner.ButtonDown () [virtual]

Callback for what this ability should do once its associated button has been pressed

Implements Ability.

3.140.1.2 GetSpawnablePrefab()

GameObject StandardSpawnableSpawner.GetSpawnablePrefab (

int spawnableId)

Used by the Docking to get the correct prefab to spawn from the abilities. Parameter only used if the ability has a
list of prefabs.

Parameters

spawnable←↩

Id
The Id of the spawnable object.

Returns

Reference to the prefab GameObject.

Implements ISpawnableProvider.

3.140.1.3 SetActive()

override void StandardSpawnableSpawner.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/StandardSpawnableSpawner.cs

Generated by Doxygen

Creating a MOBA using Unity

345

3.141 StatusUI Class Reference 239

3.141 StatusUI Class Reference

Class for UI status modifiers.

Inheritance diagram for StatusUI:

StatusUI

MonoBehaviour

Public Member Functions

• void Initialize (PlayerUIHandler playerUI, Sprite statusIcon, StatusType statusType, float startDuration)

Initializes the UI element.

• void SetNewDuration (float newDuration)

Sets the duration text of the UI element to the parameter.

• void Remove ()

Remove and destroy this UI element.

Public Attributes

• Color buffColor
• Color debuffColor
• Image frame
• Image darkMask
• Text durationText
• Image icon

3.141.1 Detailed Description

Class for UI status modifiers.

3.141.2 Member Function Documentation

3.141.2.1 Initialize()

void StatusUI.Initialize (

PlayerUIHandler playerUI,

Sprite statusIcon,

StatusType statusType,

float startDuration)

Initializes the UI element.

Generated by Doxygen

Creating a MOBA using Unity

346

240 Class Documentation

Parameters

playerUI Reference to the PlayerUIHandler.

statusIcon The sprite that will be displayed in the UI element

statusType Status type, buff or debuff.

startDuration The start duration of the status effect.

3.141.2.2 Remove()

void StatusUI.Remove ()

Remove and destroy this UI element.

3.141.2.3 SetNewDuration()

void StatusUI.SetNewDuration (

float newDuration)

Sets the duration text of the UI element to the parameter.

Parameters

newDuration The new duration we want to update with.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/UI/StatusUI.cs

3.142 Stealth Class Reference

Inheritance diagram for Stealth:

Stealth

Ability IModifierProvider

MonoBehaviour

Generated by Doxygen

Creating a MOBA using Unity

347

3.142 Stealth Class Reference 241

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

• override void SetModifier (bool state=false)

Called by the Modifier. Appropriate place for doing local changes.

• void FindPlayerSpriteRenderers (List< string > names)

Function to find the sprite rendererers relevant to fading into stealth

• bool IsStealthed ()
• int GetAbilityId ()
• int GetBuffId ()

Public Attributes

• float stealthDamageBonus
• List< string > namesOfVisuals
• List< SpriteRenderer > visuals
• ModifierInfo buffInfo
• ModifierInfo [] modifierInfos
• float fadeTime

Additional Inherited Members

3.142.1 Member Function Documentation

3.142.1.1 ButtonDown()

override void Stealth.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.142.1.2 FindPlayerSpriteRenderers()

void Stealth.FindPlayerSpriteRenderers (

List< string > names)

Function to find the sprite rendererers relevant to fading into stealth

Generated by Doxygen

Creating a MOBA using Unity

348

242 Class Documentation

Parameters

name The name of the parent

Returns

3.142.1.3 Initialize()

override void Stealth.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.142.1.4 SetActive()

override void Stealth.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

3.142.1.5 SetModifier()

override void Stealth.SetModifier (

bool state = false) [virtual]

Generated by Doxygen

Creating a MOBA using Unity

349

3.142 Stealth Class Reference 243

Called by the Modifier. Appropriate place for doing local changes.

Generated by Doxygen

Creating a MOBA using Unity

350

244 Class Documentation

Parameters

state If the modifier should be activated or deactivated.

Reimplemented from Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/MarksmanKit/Stealth.cs

3.143 TankReflectShield Class Reference

Inheritance diagram for TankReflectShield:

TankReflectShield

Ability IServerCallback< T1, T2 >

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• float duration
• string animatorBool
• GameObject shieldCollider

Additional Inherited Members

3.143.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

351

3.144 Team Class Reference 245

3.143.1.1 ButtonDown()

override void TankReflectShield.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.143.1.2 Initialize()

override void TankReflectShield.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.143.1.3 SetActive()

override void TankReflectShield.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TankKit/TankReflectShield.cs

3.144 Team Class Reference

Generated by Doxygen

Creating a MOBA using Unity

352

246 Class Documentation

Public Member Functions

• Team (TeamId tId)
• void Reset (List< Player > playerList)
• void PlayerDies (Player player)
• void PlayerDisconnected (Player player)
• bool IsTeamAlive ()
• int GetScore ()
• void IncrementScore ()
• string GetTeamName ()

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameModes/Team.cs

3.145 TeamDeathmatch Class Reference

Game mode rules processor for the team deathmatch game mode

Inheritance diagram for TeamDeathmatch:

TeamDeathmatch

GameModeProcessor

MonoBehaviour

Public Member Functions

• override void StartGame ()

Function called on game start

• override void StartRound ()

Function called on round start

• override void PlayerDies (Player player)

Handles the death of a player - the player is removed from the local list

• override void PlayerDisconnected (Player player)

Called when a player disconnects - removed from the local list

• override bool IsEndOfRound ()

Determines whether it is end of round - if a team has 0 alive

• override void HandleRoundEnd ()

Handles the round end.

• override string GetRoundEndText ()

Gets the round end text - winner or draw if appropriate

• override string GetGameOverText ()

Gets the game over text - winner or draw if appropriate

Generated by Doxygen

Creating a MOBA using Unity

353

3.145 TeamDeathmatch Class Reference 247

Properties

• override int ScoreWinTarget [get]

Gets the score target.

Additional Inherited Members

3.145.1 Detailed Description

Game mode rules processor for the team deathmatch game mode

3.145.2 Member Function Documentation

3.145.2.1 GetGameOverText()

override string TeamDeathmatch.GetGameOverText () [virtual]

Gets the game over text - winner or draw if appropriate

Returns

The game over end text.

Reimplemented from GameModeProcessor.

3.145.2.2 GetRoundEndText()

override string TeamDeathmatch.GetRoundEndText () [virtual]

Gets the round end text - winner or draw if appropriate

Returns

The round end text.

Reimplemented from GameModeProcessor.

Generated by Doxygen

Creating a MOBA using Unity

354

248 Class Documentation

3.145.2.3 HandleRoundEnd()

override void TeamDeathmatch.HandleRoundEnd () [virtual]

Handles the round end.

Reimplemented from GameModeProcessor.

3.145.2.4 IsEndOfRound()

override bool TeamDeathmatch.IsEndOfRound () [virtual]

Determines whether it is end of round - if a team has 0 alive

Returns

true

false

Reimplemented from GameModeProcessor.

3.145.2.5 PlayerDies()

override void TeamDeathmatch.PlayerDies (

Player player) [virtual]

Handles the death of a player - the player is removed from the local list

Parameters

player Player.

Reimplemented from GameModeProcessor.

3.145.2.6 PlayerDisconnected()

override void TeamDeathmatch.PlayerDisconnected (

Player player) [virtual]

Called when a player disconnects - removed from the local list

Generated by Doxygen

Creating a MOBA using Unity

355

3.145 TeamDeathmatch Class Reference 249

Parameters

player The player that disconnects

Reimplemented from GameModeProcessor.

3.145.2.7 StartGame()

override void TeamDeathmatch.StartGame () [virtual]

Function called on game start

Reimplemented from GameModeProcessor.

3.145.2.8 StartRound()

override void TeamDeathmatch.StartRound () [virtual]

Function called on round start

Reimplemented from GameModeProcessor.

3.145.3 Property Documentation

3.145.3.1 ScoreWinTarget

override int TeamDeathmatch.ScoreWinTarget [get]

Gets the score target.

The score target.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/GameModes/TeamDeathmatch.cs

Generated by Doxygen

Creating a MOBA using Unity

356

250 Class Documentation

3.146 ToggleEvent Class Reference

Inheritance diagram for ToggleEvent:

ToggleEvent

UnityEvent< bool >

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Player/Player.cs

3.147 Track Class Reference

Inheritance diagram for Track:

Track

Ability IServerCallback< T1, T2 >

MonoBehaviour

Public Member Functions

• override void Initialize (Docking dock, Animator anim, int abId)

Initialization that happens locally on every client.

• override void ButtonDown ()

Called when the associated ability button is pressed. Must be overriden.

• override void SetActive (bool state=false)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• float castRange
• LayerMask layerMask
• ModifierInfo trackInfo

Additional Inherited Members

3.147.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

357

3.148 Trap Class Reference 251

3.147.1.1 ButtonDown()

override void Track.ButtonDown () [virtual]

Called when the associated ability button is pressed. Must be overriden.

Implements Ability.

3.147.1.2 Initialize()

override void Track.Initialize (

Docking dock,

Animator anim,

int abId) [virtual]

Initialization that happens locally on every client.

Parameters

dock Reference to the associated Docking.

anim Reference to the DockingKit animator.

abId The ability's id in DockingKit abilities list.

Reimplemented from Ability.

3.147.1.3 SetActive()

override void Track.SetActive (

bool state = false) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/MarksmanKit/Track.cs

3.148 Trap Class Reference

Inheritance diagram for Trap:

Generated by Doxygen

Creating a MOBA using Unity

358

252 Class Documentation

Trap

SpawnableObject

NetworkBehaviour

BlindTrap CaptureTrap DotTrap

Public Member Functions

• void Initialize (TrapSpawner owner)

An initialisation function for caching the script reference to this trap's owner
• void SetVisualState (bool state)

Sets the visual state of this trap
• virtual void HandleTrigger (PlayerStatus playerStatus)

A virtual function that allows children of this class to handle what they want to do when a trap is triggered.

Public Attributes

• GameObject visuals
• GameObject extraVisuals
• float timeAfterTriggerDestroy = 1
• string animatorTrigger
• Animator animator

Protected Member Functions

• void RpcSetExtraVisualsState (bool state)

ClientRpc used for synchronising the visual state of the trap
• override void OnDestroy ()

Unity callback for when this trap is destroyed. Tells the owner that this trap is being destroyed

Protected Attributes

• List< Player > appliedToList = new List<Player>()
• List< Rigidbody > appliedToListRbodies = new List<Rigidbody>()

3.148.1 Member Function Documentation

3.148.1.1 HandleTrigger()

virtual void Trap.HandleTrigger (

PlayerStatus playerStatus) [virtual]

A virtual function that allows children of this class to handle what they want to do when a trap is triggered.

Generated by Doxygen

Creating a MOBA using Unity

359

3.148 Trap Class Reference 253

Parameters

playerStatus The PlayerStatus component of the triggered player

Reimplemented in CaptureTrap, DotTrap, and BlindTrap.

3.148.1.2 Initialize()

void Trap.Initialize (

TrapSpawner owner)

An initialisation function for caching the script reference to this trap's owner

Parameters

owner

3.148.1.3 OnDestroy()

override void Trap.OnDestroy () [protected], [virtual]

Unity callback for when this trap is destroyed. Tells the owner that this trap is being destroyed

Reimplemented from SpawnableObject.

3.148.1.4 RpcSetExtraVisualsState()

void Trap.RpcSetExtraVisualsState (

bool state) [protected]

ClientRpc used for synchronising the visual state of the trap

Parameters

state The state of the visuals

3.148.1.5 SetVisualState()

void Trap.SetVisualState (

bool state)

Generated by Doxygen

Creating a MOBA using Unity

360

254 Class Documentation

Sets the visual state of this trap

Parameters

state The visual state of this trap

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TrapperKit/Trap.cs

3.149 TrapSpawner Class Reference

Inheritance diagram for TrapSpawner:

TrapSpawner

Ability ISpawnableReferenceProvider

MonoBehaviour ISpawnableProvider

Public Member Functions

• override void ButtonDown ()

Callback for what the local client is supposed to do when this ability's button is pressed

• override void SetActive (bool state=false)

Callback for synchronising visual state based on the given parameter

• void DisplayTrapState (bool state)

A public function that allows traps to update the visual state of the docking kit's placed trap indicator

Public Attributes

• GameObject trapPrefab
• float trapActiveAlpha = 0.2f
• List< SpriteRenderer > trapActiveSprites = new List<SpriteRenderer>()
• float lerpSpeed = 5f

Additional Inherited Members

3.149.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

361

3.150 Zipline Class Reference 255

3.149.1.1 ButtonDown()

override void TrapSpawner.ButtonDown () [virtual]

Callback for what the local client is supposed to do when this ability's button is pressed

Implements Ability.

3.149.1.2 DisplayTrapState()

void TrapSpawner.DisplayTrapState (

bool state)

A public function that allows traps to update the visual state of the docking kit's placed trap indicator

Parameters

state The display state

3.149.1.3 SetActive()

override void TrapSpawner.SetActive (

bool state = false) [virtual]

Callback for synchronising visual state based on the given parameter

Parameters

state The state of the ability.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/TrapperKit/TrapSpawner.cs

3.150 Zipline Class Reference

Inheritance diagram for Zipline:

Generated by Doxygen

Creating a MOBA using Unity

362

256 Class Documentation

Zipline

SpawnableObject IInteractable

NetworkBehaviour

Public Member Functions

• bool FirePoint (GameObject player, Vector3 position, Vector3 direction)

Server call from ZiplineGun whenever a point is fired.

Public Attributes

• Transform wallEndPoint
• Transform lineStartPoint
• Transform lineEndPoint
• SphereCollider sphereCollider
• LineRenderer lineRenderer
• Transform handles
• Transform radiusTransform
• LayerMask interruptionLayerMask
• float maxFireRange = 10f
• float maxLineDistance = 20f
• float hookPointFireSpeed = 40f
• float normalRotationSpeed = 10f
• float playerMoveSpeed = 20f
• int uses = 3

Additional Inherited Members

3.150.1 Member Function Documentation

3.150.1.1 FirePoint()

bool Zipline.FirePoint (

GameObject player,

Vector3 position,

Vector3 direction)

Server call from ZiplineGun whenever a point is fired.

Parameters

player The player firing.

position Fired from this position.

direction Fired in this direction. Generated by Doxygen

Creating a MOBA using Unity

363

3.151 ZiplineGun Class Reference 257

Returns

If the shot was successful.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/Zipline.cs

3.151 ZiplineGun Class Reference

Inheritance diagram for ZiplineGun:

ZiplineGun

Ability IServerCallback< Vector3, Vector3 > ITargetClientCallback< T1, T2 >

MonoBehaviour

Public Member Functions

• override void InitializeLocalPlayer (AbilityUI abilityUI)

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the refer-
ences are already set up.

• override void ButtonDown ()

Activate the radius indicator if cooldown is ready.

• override void ButtonUp ()

Fire the zipline if the radiusObject is active, this means ButtonDown was called when the cooldown was ready.

• override void SetActive (bool state)

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Public Attributes

• GameObject ziplinePrefab
• Transform spawnPoint
• GameObject radiusObject

Additional Inherited Members

3.151.1 Member Function Documentation

Generated by Doxygen

Creating a MOBA using Unity

364

258 Class Documentation

3.151.1.1 ButtonDown()

override void ZiplineGun.ButtonDown () [virtual]

Activate the radius indicator if cooldown is ready.

Implements Ability.

3.151.1.2 ButtonUp()

override void ZiplineGun.ButtonUp () [virtual]

Fire the zipline if the radiusObject is active, this means ButtonDown was called when the cooldown was ready.

Reimplemented from Ability.

3.151.1.3 InitializeLocalPlayer()

override void ZiplineGun.InitializeLocalPlayer (

AbilityUI abilityUI) [virtual]

Initialization that only happens for the local player (Player controlling this ability). Called after Initialize, so the
references are already set up.

Reimplemented from Ability.

3.151.1.4 SetActive()

override void ZiplineGun.SetActive (

bool state) [virtual]

Synchronized state call between clients. Appropriate place for starting local animations/sounds.

Parameters

state If the ability should be activated or deactivated.

Implements Ability.

The documentation for this class was generated from the following file:

• C:/Users/Andreas/Git Repos/dockitleague/Assets/Scripts/Abilities/SniperKit/ZiplineGun.cs

Generated by Doxygen

Creating a MOBA using Unity

365

Index

Ability, 11
AbilityLock, 16
ButtonDown, 13
ButtonUp, 13
CancelAbility, 13
CooldownReady, 13
Initialize, 13
InitializeLocalPlayer, 14
ReduceCooldown, 14
SetActive, 14
SetElement, 15
SetModifier, 15
Update, 15

AbilityCooldown, 16
AbilityCooldown, 16
Activate, 17
ActivateHiddenCooldown, 17
IsReady, 17
ReduceCooldown, 17
Update, 18

AbilityLock
Ability, 16

AbilityUI, 18
Activate, 18
ClearAbility, 19
Initialize, 19
SetAbility, 19
UpdateCooldown, 19

Activate
AbilityCooldown, 17
AbilityUI, 18

ActivateHiddenCooldown
AbilityCooldown, 17

AddPlayer
GameManager, 89
LobbyHandler, 129

AddPropertyToStackTop
MainMenuHandler, 135

AddStatusModifier
PlayerUIHandler, 208

AllPlayersReady
NetworkManager, 177

AnnouncerModal, 20
Awake, 20

ApplyHealingInArea
HealingAura, 101

ApplyModifier
PlayerStatus, 205

Awake

AnnouncerModal, 20
NetworkManager, 177
Singleton, 225
SpawnManager, 233
SpawnableFactory, 230

Bail
GameModeProcessor, 94

BasicAbility, 21
ButtonDown, 21
SetActive, 21

BasicSlash, 22
ButtonDown, 23
Initialize, 23
SetActive, 23
SetElement, 23
SetModifier, 24
Update, 24

Blast, 24
ButtonDown, 25
Initialize, 25
OnTriggerEnter, 26
SetActive, 26

BlindTrap, 26
HandleTrigger, 27

Bola, 27
BoomerangDataContainer, 28
BoomerangRoot, 28

ButtonDown, 29
SetActive, 29
Update, 30

BoomerangThrow, 30
ButtonDown, 31
ButtonUp, 31
Initialize, 31
SetActive, 32
SetElement, 32
SetModifier, 32
Update, 33

BoomerangVision, 33
ButtonDown, 34
Initialize, 34
SetActive, 34
SetModifier, 35

BuffTestAbility, 35
ButtonDown, 36
Initialize, 36
SetActive, 36
SetModifier, 37

ButtonDown

Creating a MOBA using Unity

366

260 INDEX

Ability, 13
BasicAbility, 21
BasicSlash, 23
Blast, 25
BoomerangRoot, 29
BoomerangThrow, 31
BoomerangVision, 34
BuffTestAbility, 36
CameraTestAbility, 38
CleanseBuff, 41
Dash, 43
ExplosiveMineSpawner, 74
Flamethrower, 78
FlashGrenadeSpawner, 81
Focus, 82
ForceField, 85
FortificationBuff, 86
GrenadeLauncher, 99
HealingAura, 101
HealthDrainBuff, 103
HookShot, 106
LifeStealBuff, 125
MultiBoomerangBuff, 173
PlayerInputTestAbility, 203
PowerSaw, 211
ProjectileReflect, 213
ProjectileSpawner, 215
RemoteMineSpawner, 218
Shackle, 222
Slingshot, 227
SpawnTestAbility, 235
StandardSpawnableSpawner, 237
Stealth, 241
TankReflectShield, 244
Track, 250
TrapSpawner, 254
ZiplineGun, 257

ButtonUp
Ability, 13
BoomerangThrow, 31
Slingshot, 227
ZiplineGun, 258

CameraTestAbility, 37
ButtonDown, 38
CancelAbility, 38
InitializeLocalPlayer, 38
SetActive, 38

CancelAbilities
Docking, 56
DockingKit, 66

CancelAbility
Ability, 13
CameraTestAbility, 38
Focus, 83
PlayerInputTestAbility, 204
Slingshot, 227

CaptureTrap, 39
HandleTrigger, 39

CheckDamagable
Docking, 56
SpawnableObject, 232

CheckPriceAndEquipAvailability
IngameMenuHandler, 116

CleanseBuff, 40
ButtonDown, 41
Initialize, 41
SetActive, 41
Update, 41

Cleanup
SpawnPoint, 234

CleanupSpawnPoints
SpawnManager, 233

ClearAbility
AbilityUI, 19

ClearAllReadyStates
NetworkManager, 177

ClientCallback
IClientCallback, 108, 109

clientConnected
NetworkManager, 182

clientDisconnected
NetworkManager, 182

clientError
NetworkManager, 182

ClientReady
GameManager, 89

clientStopped
NetworkManager, 182

CmdAddCurrency
PlayerCurrency, 198

CmdColorChange
DLNetworkLobbyPlayer, 49

CmdDestroyObject
Docking, 57

CmdInteract
Player, 191

CmdNameChanged
DLNetworkLobbyPlayer, 49

CmdOnPlayerDocking
Docking, 57

CmdServerCallback
Docking, 57

CmdSetActive
Docking, 58

CmdSetDamageMultiplier
PlayerHealth, 199

CmdSetDockingKitId
Docking, 58

CmdSetMaxHealth
PlayerHealth, 199

CmdSetModifier
Docking, 58

CmdSetSwitchState
Docking, 58

CmdSpawnDockingKitPickup
Docking, 59

Generated by Doxygen

Creating a MOBA using Unity

367

INDEX 261

CmdSpawnObject
Docking, 59

CmdSpawnObjectReference
Docking, 59

CmdUpdateReadyState
DLNetworkLobbyPlayer, 49

CompleteGame
GameModeProcessor, 94

CompleteShopPurchase
IngameMenuHandler, 116

connectedPlayers
NetworkManager, 181

CooldownReady
Ability, 13
PowerSaw, 211
Shackle, 222

CreateGame, 42
OnBackClicked, 42
OnCreateClicked, 43

CreateOnlineMatch
MainMenuHandler, 135

DLNetworkLobbyPlayer, 48
CmdColorChange, 49
CmdNameChanged, 49
CmdUpdateReadyState, 49
GetVisuals, 49
OnClientEnterLobby, 49
OnClientReady, 50
OnColorChange, 50
OnColorClicked, 50
OnDestroy, 50
OnNameChange, 50
OnNameChanged, 51
OnReadyClicked, 51
OnReadyStateChange, 51
OnStartAuthority, 51
ToggleReadyButton, 52

DLNetworkManager, 52
OnClientError, 53
OnLobbyServerCreateLobbyPlayer, 53
OnLobbyServerSceneLoadedForPlayer, 53
OnPlayerNumberModified, 54

Dash, 43
ButtonDown, 43
Initialize, 44
SetActive, 44

Deathmatch, 44
GetGameOverText, 45
GetRoundEndText, 46
HandleRoundEnd, 46
IsEndOfRound, 46
PlayerDies, 46
PlayerDisconnected, 47
ScoreWinTarget, 47
StartRound, 47

Decrement
SpawnPoint, 234

DecrementScore

Player, 191
DeregisterNetworkPlayer

NetworkManager, 177
DisablePlayerControl

GameManager, 89
Disconnect

NetworkManager, 178
DisconnectAndReturnToMenu

NetworkManager, 178
DisplayLobby

LobbyHandler, 129
DisplayTrapState

TrapSpawner, 255
DisplayVerificationPrompt

IngameMenuHandler, 117
DoIfNetworkReady

MainMenuUI, 137
Docking, 54

CancelAbilities, 56
CheckDamagable, 56
CmdDestroyObject, 57
CmdOnPlayerDocking, 57
CmdServerCallback, 57
CmdSetActive, 58
CmdSetDockingKitId, 58
CmdSetModifier, 58
CmdSetSwitchState, 58
CmdSpawnDockingKitPickup, 59
CmdSpawnObject, 59
CmdSpawnObjectReference, 59
GetDockingKit, 60
Initialize, 60
OnAbilityButtonChange, 60
OnDockingButtonDown, 61
OnUndockingButtonDown, 61
RemoveDockingKit, 61
RpcClientCallback, 61
RpcSetActive, 62
RpcSetSwitchState, 62
SetDockingKit, 62
SetDockingKitStats, 63
SetModifier, 63
SetPlayerInputRestriction, 63
TargetClientCallback, 63
TargetReduceCooldown, 64
TargetSetSpawnObjectReference, 64

DockingKit, 65
CancelAbilities, 66
Initialize, 66
OnAbilityButtonChange, 66
OnLocalPlayerDocking, 66
OnLocalPlayerInitialization, 67
OnUndocking, 67
SetAbilityLock, 67

DockingKitDescriptions, 68
DockingKitPickup, 68

OnPlayerDocking, 68
OnStartClient, 69

Generated by Doxygen

Creating a MOBA using Unity

368

262 INDEX

DotTrap, 69
HandleTrigger, 69

Drain
HealthDrainBuff, 104

DurationLoop
ModifierInstanceServer, 162

ElementalModifiers, 71
TransferElementalModifier, 71

EnablePlayerControl
GameManager, 90

ExitGame
GameManager, 90

Explode
RemoteMine, 217

ExplosiveMine, 72
RpcRemoveMine, 73

ExplosiveMineSpawner, 73
ButtonDown, 74
OnDestroy, 74
RemoveMine, 74
SetActive, 74

FadeIn
LoadingModal, 127

FadeOut
LoadingModal, 128

FadeOutToValue
FadingGroup, 75

Fader
LoadingModal, 128

FadingGroup, 75
FadeOutToValue, 75
StartFade, 76
StartFadeOrFireEvent, 76
StopFade, 76

FieldOfView, 77
FindPlayerSpriteRenderers

Stealth, 241
Fire

GrenadeLauncher, 99
FirePoint

Zipline, 256
Flamethrower, 77

ButtonDown, 78
Initialize, 78
SetActive, 79
SetBuffState, 79
SetModifier, 79

FlashGrenade, 80
FlashGrenadeSpawner, 80

ButtonDown, 81
SetActive, 81

Focus, 82
ButtonDown, 82
CancelAbility, 83
InitializeLocalPlayer, 83
SetActive, 83

FogCamera, 84

ForceField, 84
ButtonDown, 85
Initialize, 85
SetActive, 85

FortificationBuff, 86
ButtonDown, 86
Initialize, 87
SetActive, 87
Update, 87

GameManager, 88
AddPlayer, 89
ClientReady, 89
DisablePlayerControl, 89
EnablePlayerControl, 90
ExitGame, 90
GetDockingKit, 90
HandleEveryoneBailed, 90
HandleKill, 91
Preplay, 91
RemovePlayer, 91
RespawnPlayer, 91
RpcRespawnPlayer, 92
ServerResetAllPlayers, 92
StartUp, 92

GameModeProcessor, 92
Bail, 94
CompleteGame, 94
GetGameOverText, 94
GetRoundEndText, 94
GetRoundMessage, 94
HandleKillerScore, 95
HandleRoundEnd, 95
HandleSuicide, 95
IsEndOfRound, 96
MatchEnd, 96
PlayerDies, 96
PlayerDisconnected, 96
SetGameManager, 97
StartGame, 97
StartRound, 97

gameModeUpdated
NetworkManager, 182

GameSettings, 97
SetMapIndex, 98
SetModeIndex, 98

GetAbilityId
ModifierInstanceClient, 160
ModifierInstanceServer, 162

GetConnectedPlayers
LobbyHandler, 129

GetDirectionVector
PlayerInput, 202

GetDockingKit
Docking, 60
GameManager, 90

GetGameOverText
Deathmatch, 45
GameModeProcessor, 94

Generated by Doxygen

Creating a MOBA using Unity

369

INDEX 263

TeamDeathmatch, 247
GetModifier

ModifierInstanceClient, 160
ModifierInstanceServer, 162

GetModifierAsset
Modifier, 144

GetModifierId
ModifierInstanceClient, 160
ModifierInstanceServer, 162

GetModifierInfo
IModifierProvider, 114

GetPlayerById
NetworkManager, 178

GetPlayerCount
LobbyHandler, 130

GetPlayerForConnection
NetworkManager, 178

GetRandomEmptySpawnPointIndex
SpawnManager, 233

GetRotationVector
PlayerInput, 202

GetRoundEndText
Deathmatch, 46
GameModeProcessor, 94
TeamDeathmatch, 247

GetRoundMessage
GameModeProcessor, 94

GetSpawnablePrefab
ISpawnableProvider, 122
StandardSpawnableSpawner, 238

GetVisuals
DLNetworkLobbyPlayer, 49

GrenadeLauncher, 99
ButtonDown, 99
Fire, 99
SetActive, 99

GrenadeShell, 100

HandleEveryoneBailed
GameManager, 90

HandleKill
GameManager, 91

HandleKillerScore
GameModeProcessor, 95

HandleRoundEnd
Deathmatch, 46
GameModeProcessor, 95
TeamDeathmatch, 247

HandleSuicide
GameModeProcessor, 95

HandleTrigger
BlindTrap, 27
CaptureTrap, 39
DotTrap, 69
Trap, 252

hasSufficientPlayers
NetworkManager, 181

Heal
PlayerHealth, 199

HealingAura, 100
ApplyHealingInArea, 101
ButtonDown, 101
Initialize, 102
SetActive, 102

HealthDrainBuff, 102
ButtonDown, 103
Drain, 104
Initialize, 104
OnTriggerEnter, 104
OnTriggerExit, 105
SetActive, 105
SetModifier, 105
Update, 105

HookShot, 106
ButtonDown, 106
SetActive, 107

Hooked
IHookable, 112
Sawblade, 219

hostStarted
NetworkManager, 183

IClientCallback
ClientCallback, 108, 109

IClientCallback< T1, T2 >, 107–109
IElement, 111
IHookable, 111

Hooked, 112
IInteractable, 112

Interact, 113
IModifierProvider, 113

GetModifierInfo, 114
IRedirectable, 118

RedirectDirection, 118
IReflectable, 119
IServerCallback

ServerCallback, 120, 121
IServerCallback< T1, T2 >, 119–121
ISpawnableProvider, 122

GetSpawnablePrefab, 122
ISpawnableReferenceProvider, 123

SetSpawnedObjectReference, 123
ITargetClientCallback< T >, 124
IncrementScore

Player, 191
InfoPanel, 115
IngameMenuHandler, 115

CheckPriceAndEquipAvailability, 116
CompleteShopPurchase, 116
DisplayVerificationPrompt, 117
OnShopDisplay, 117
OnShopSelectionChange, 117
SetFirstSelectedShopObject, 117
SetLastSelectedShopObject, 117
StopHost, 117

Initialize
Ability, 13
AbilityUI, 19

Generated by Doxygen

Creating a MOBA using Unity

370

264 INDEX

BasicSlash, 23
Blast, 25
BoomerangThrow, 31
BoomerangVision, 34
BuffTestAbility, 36
CleanseBuff, 41
Dash, 44
Docking, 60
DockingKit, 66
Flamethrower, 78
ForceField, 85
FortificationBuff, 87
HealingAura, 102
HealthDrainBuff, 104
LifeStealBuff, 125
PlayerHealth, 200
PowerSaw, 211
ProjectileReflect, 213
SniperProjectile, 229
StatusUI, 239
Stealth, 242
TankReflectShield, 245
Track, 251
Trap, 253

InitializeLocalPlayer
Ability, 14
CameraTestAbility, 38
Focus, 83
PlayerInputTestAbility, 204
Slingshot, 227
ZiplineGun, 258

Instance
NetworkManager, 181
Singleton, 225

InstanceExists
Singleton, 226

Interact
IInteractable, 113

IsBuffActive
LifeStealBuff, 126

IsEndOfRound
Deathmatch, 46
GameModeProcessor, 96
TeamDeathmatch, 248

IsReady
AbilityCooldown, 17
NetworkPlayer, 187

IsServer
NetworkManager, 181

JoinMatchmakingGame
NetworkManager, 178

LifeStealBuff, 125
ButtonDown, 125
Initialize, 125
IsBuffActive, 126
SetActive, 126
SetModifier, 126

ListMatch
NetworkManager, 178

LoadingModal, 127
FadeIn, 127
FadeOut, 128
Fader, 128

LobbyHandler, 128
AddPlayer, 129
DisplayLobby, 129
GetConnectedPlayers, 129
GetPlayerCount, 130
RemovePlayer, 130
ResetLocalLobby, 130
SetPlayerTeam, 130

LobbyObject
NetworkPlayer, 187

LobbyPlayer, 131
LobbyPlayerList, 132

OnDestroy, 132
Start, 132

LobbyServerEntry, 133
LobbyServerList, 134
LocalPlayerInstance

NetworkPlayer, 187

MainMenuHandler, 134
AddPropertyToStackTop, 135
CreateOnlineMatch, 135
NavigateBack, 135
NavigateTo, 136
StartMatchMaker, 136

MainMenuUI, 136
DoIfNetworkReady, 137
ShowInfoPopup, 137

MapInfo, 138
MapList, 138
matchCreated

NetworkManager, 183
matchDropped

NetworkManager, 183
MatchEnd

GameModeProcessor, 96
matchJoined

NetworkManager, 183
MatchListHandler, 139

OnMatchButtonClick, 139
MaxDuration

ModifierInstanceServer, 163
MenuHandler, 140

OnClickSetFirstSelected, 140
SetCurrentMenuVerificationPrompt, 140
SetFirstSelectedGameObject, 141

MenuStackComponent, 141
ModeInfo, 142
ModeList, 142
Modifier, 143

GetModifierAsset, 144
OnClientEnd, 144
OnClientStart, 145

Generated by Doxygen

Creating a MOBA using Unity

371

INDEX 265

OnLocalClientEnd, 145
OnLocalClientStart, 145
OnServerEnd, 146
OnServerStart, 146
OnServerTick, 146

ModifierBlind, 147
OnClientEnd, 147
OnClientStart, 148

ModifierCleanse, 148
OnServerEnd, 149
OnServerStart, 149

ModifierDoT, 150
OnServerTick, 150

ModifierFlashStun, 151
OnLocalClientStart, 151

ModifierFortification, 152
OnLocalClientEnd, 152
OnLocalClientStart, 152

ModifierHealOverTime, 153
OnClientEnd, 153
OnClientStart, 154
OnServerTick, 154

ModifierHealthDrainBuff, 155
OnLocalClientEnd, 155
OnLocalClientStart, 155

ModifierHealthDrainDebuff, 156
OnLocalClientEnd, 156
OnLocalClientStart, 157

ModifierInfo, 157
ModifierInfoBase, 157
ModifierInfoDuration, 158
ModifierInfoTick, 158
ModifierInstanceClient, 159

GetAbilityId, 160
GetModifier, 160
GetModifierId, 160
ModifierInstanceClient, 159
OnEnd, 160
SetNewDuration, 160

ModifierInstanceServer, 161
DurationLoop, 162
GetAbilityId, 162
GetModifier, 162
GetModifierId, 162
MaxDuration, 163
ModifierInstanceServer, 161
OnCancel, 164
OnEnd, 164
TickLoop, 164

ModifierRoot, 164
OnLocalClientEnd, 165
OnLocalClientStart, 165

ModifierSilence, 166
OnLocalClientEnd, 166
OnLocalClientStart, 166

ModifierSlow, 167
OnLocalClientEnd, 167
OnLocalClientStart, 168

ModifierStandardAbility, 168
OnClientEnd, 169
OnClientStart, 169

ModifierStun, 169
OnLocalClientEnd, 170
OnLocalClientStart, 170

ModifierTrack, 171
OnLocalClientEnd, 171
OnLocalClientStart, 172

MultiBoomerangBuff, 172
ButtonDown, 173
ResetBuff, 173
SetActive, 173
SetModifier, 174

NavigateBack
MainMenuHandler, 135

NavigateTo
MainMenuHandler, 136

NetworkManager, 174
AllPlayersReady, 177
Awake, 177
ClearAllReadyStates, 177
clientConnected, 182
clientDisconnected, 182
clientError, 182
clientStopped, 182
connectedPlayers, 181
DeregisterNetworkPlayer, 177
Disconnect, 178
DisconnectAndReturnToMenu, 178
gameModeUpdated, 182
GetPlayerById, 178
GetPlayerForConnection, 178
hasSufficientPlayers, 181
hostStarted, 183
Instance, 181
IsServer, 181
JoinMatchmakingGame, 178
ListMatch, 178
matchCreated, 183
matchDropped, 183
matchJoined, 183
OnDestroy, 179
OnPlayerSetReady, 179
OnStartHost, 179
OnStartServer, 179
OnStopClient, 179
OnStopServer, 179
playerCount, 181
playerJoined, 183
playerLeft, 183
ProgressToGameScene, 180
RegisterNetworkPlayer, 180
ReturnToMenu, 180
sceneChanged, 184
serverClientDisconnected, 184
serverError, 184
serverPlayersReadied, 184

Generated by Doxygen

Creating a MOBA using Unity

372

266 INDEX

serverStopped, 184
StartMatchingmakingClient, 180
StartMatchmakingGame, 180
state, 182
UnlistMatch, 180
Update, 181

NetworkPlayer, 185
IsReady, 187
LobbyObject, 187
LocalPlayerInstance, 187
OnDestroy, 186
OnEnterGameScene, 186
OnEnterLobbyScene, 186
OnNetworkDestroy, 186
OnStartClient, 187
OnStartLocalPlayer, 187
PlayerId, 188
PlayerInstance, 188
PlayerName, 188
PlayerTeamId, 188
Start, 187

ObjectMover, 188
ObjectSpinner, 189
OnAbilityButtonChange

Docking, 60
DockingKit, 66

OnBackClicked
CreateGame, 42

OnCancel
ModifierInstanceServer, 164

OnClickSetFirstSelected
MenuHandler, 140

OnClientEnd
Modifier, 144
ModifierBlind, 147
ModifierHealOverTime, 153
ModifierStandardAbility, 169

OnClientEnterLobby
DLNetworkLobbyPlayer, 49

OnClientError
DLNetworkManager, 53

OnClientReady
DLNetworkLobbyPlayer, 50

OnClientStart
Modifier, 145
ModifierBlind, 148
ModifierHealOverTime, 154
ModifierStandardAbility, 169

OnColorChange
DLNetworkLobbyPlayer, 50

OnColorClicked
DLNetworkLobbyPlayer, 50

OnCreateClicked
CreateGame, 43

OnDestroy
DLNetworkLobbyPlayer, 50
ExplosiveMineSpawner, 74
LobbyPlayerList, 132

NetworkManager, 179
NetworkPlayer, 186
Singleton, 225
Trap, 253

OnDockingButtonDown
Docking, 61

OnEnd
ModifierInstanceClient, 160
ModifierInstanceServer, 164

OnEnterGameScene
NetworkPlayer, 186

OnEnterLobbyScene
NetworkPlayer, 186

OnLobbyServerCreateLobbyPlayer
DLNetworkManager, 53

OnLobbyServerSceneLoadedForPlayer
DLNetworkManager, 53

OnLocalClientEnd
Modifier, 145
ModifierFortification, 152
ModifierHealthDrainBuff, 155
ModifierHealthDrainDebuff, 156
ModifierRoot, 165
ModifierSilence, 166
ModifierSlow, 167
ModifierStun, 170
ModifierTrack, 171

OnLocalClientStart
Modifier, 145
ModifierFlashStun, 151
ModifierFortification, 152
ModifierHealthDrainBuff, 155
ModifierHealthDrainDebuff, 157
ModifierRoot, 165
ModifierSilence, 166
ModifierSlow, 168
ModifierStun, 170
ModifierTrack, 172

OnLocalPlayerDocking
DockingKit, 66

OnLocalPlayerInitialization
DockingKit, 67

OnMatchButtonClick
MatchListHandler, 139

OnNameChange
DLNetworkLobbyPlayer, 50

OnNameChanged
DLNetworkLobbyPlayer, 51

OnNetworkDestroy
NetworkPlayer, 186

OnPlayerDocking
DockingKitPickup, 68

OnPlayerNumberModified
DLNetworkManager, 54

OnPlayerSetReady
NetworkManager, 179

OnReadyClicked
DLNetworkLobbyPlayer, 51

Generated by Doxygen

Creating a MOBA using Unity

373

INDEX 267

OnReadyStateChange
DLNetworkLobbyPlayer, 51

OnServerEnd
Modifier, 146
ModifierCleanse, 149

OnServerStart
Modifier, 146
ModifierCleanse, 149

OnServerTick
Modifier, 146
ModifierDoT, 150
ModifierHealOverTime, 154

OnShopDisplay
IngameMenuHandler, 117

OnShopSelectionChange
IngameMenuHandler, 117

OnStartAuthority
DLNetworkLobbyPlayer, 51

OnStartClient
DockingKitPickup, 69
NetworkPlayer, 187

OnStartHost
NetworkManager, 179

OnStartLocalPlayer
NetworkPlayer, 187

OnStartServer
NetworkManager, 179

OnStopClient
NetworkManager, 179

OnStopServer
NetworkManager, 179

OnTriggerEnter
Blast, 26
HealthDrainBuff, 104

OnTriggerExit
HealthDrainBuff, 105

OnUndocking
DockingKit, 67

OnUndockingButtonDown
Docking, 61

PlayCurrencyChangeAnimation
PlayerUIHandler, 209

Player, 189
CmdInteract, 191
DecrementScore, 191
IncrementScore, 191
Prespawn, 191
RespawnReactivate, 192
TargetAddExplosionForce, 192
TargetAddForce, 192
TargetAddForce2, 193

PlayerCamera, 193
ReturnToPlayer, 194
SetOrthoSizeTarget, 194, 196
SetPlayerTransform, 196
SetTarget, 196, 197

playerCount
NetworkManager, 181

PlayerCurrency, 197
CmdAddCurrency, 198

PlayerDies
Deathmatch, 46
GameModeProcessor, 96
TeamDeathmatch, 248

PlayerDisconnected
Deathmatch, 47
GameModeProcessor, 96
TeamDeathmatch, 248

PlayerHealth, 198
CmdSetDamageMultiplier, 199
CmdSetMaxHealth, 199
Heal, 199
Initialize, 200
SetDefaults, 200
TakeDamage, 200, 201

PlayerId
NetworkPlayer, 188

PlayerInput, 201
GetDirectionVector, 202
GetRotationVector, 202
SetInputRestrictions, 202

PlayerInputTestAbility, 203
ButtonDown, 203
CancelAbility, 204
InitializeLocalPlayer, 204
SetActive, 204

PlayerInstance
NetworkPlayer, 188

playerJoined
NetworkManager, 183

playerLeft
NetworkManager, 183

PlayerName
NetworkPlayer, 188

PlayerStatus, 205
ApplyModifier, 205
RemoveAllAbilityModifiers, 206
RemoveAllDebuffModifiers, 206
RemoveAllModifiers, 206
RemoveModifier, 206
TargetSetUIDuration, 207

PlayerTeamId
NetworkPlayer, 188

PlayerUIHandler, 207
AddStatusModifier, 208
PlayCurrencyChangeAnimation, 209
RemoveStatusModifier, 209
SetCurrentHealth, 209
SetDockingKitUI, 209

PowerSaw, 210
ButtonDown, 211
CooldownReady, 211
Initialize, 211
SetActive, 211

Preplay
GameManager, 91

Generated by Doxygen

Creating a MOBA using Unity

374

268 INDEX

Prespawn
Player, 191

ProgressToGameScene
NetworkManager, 180

Projectile, 212
ProjectileReflect, 213

ButtonDown, 213
Initialize, 213
SetActive, 214
SetModifier, 214
Update, 214

ProjectileSpawner, 215
ButtonDown, 215
SetActive, 216

RedirectDirection
IRedirectable, 118
SpawnTestObject, 236

ReduceCooldown
Ability, 14
AbilityCooldown, 17

RegisterNetworkPlayer
NetworkManager, 180

RemoteMine, 216
Explode, 217

RemoteMineSpawner, 217
ButtonDown, 218
SetActive, 218

Remove
StatusUI, 240

RemoveAllAbilityModifiers
PlayerStatus, 206

RemoveAllDebuffModifiers
PlayerStatus, 206

RemoveAllModifiers
PlayerStatus, 206

RemoveDockingKit
Docking, 61

RemoveMine
ExplosiveMineSpawner, 74

RemoveModifier
PlayerStatus, 206

RemovePlayer
GameManager, 91
LobbyHandler, 130

RemoveStatusModifier
PlayerUIHandler, 209

ResetBuff
MultiBoomerangBuff, 173

ResetLocalLobby
LobbyHandler, 130

RespawnPlayer
GameManager, 91

RespawnReactivate
Player, 192

ReturnToMenu
NetworkManager, 180

ReturnToPlayer
PlayerCamera, 194

RpcClientCallback
Docking, 61

RpcInitialize
SniperProjectile, 229

RpcRemoveMine
ExplosiveMine, 73

RpcRespawnPlayer
GameManager, 92

RpcSetActive
Docking, 62

RpcSetExtraVisualsState
Trap, 253

RpcSetSwitchState
Docking, 62

Sawblade, 218
Hooked, 219

sceneChanged
NetworkManager, 184

ScoreWinTarget
Deathmatch, 47
TeamDeathmatch, 249

ScreenFlash, 219
SelectBase, 220
SelectMap, 221
SelectMode, 221
ServerCallback

IServerCallback, 120, 121
serverClientDisconnected

NetworkManager, 184
serverError

NetworkManager, 184
serverPlayersReadied

NetworkManager, 184
ServerResetAllPlayers

GameManager, 92
serverStopped

NetworkManager, 184
SetAbility

AbilityUI, 19
SetAbilityLock

DockingKit, 67
SetActive

Ability, 14
BasicAbility, 21
BasicSlash, 23
Blast, 26
BoomerangRoot, 29
BoomerangThrow, 32
BoomerangVision, 34
BuffTestAbility, 36
CameraTestAbility, 38
CleanseBuff, 41
Dash, 44
ExplosiveMineSpawner, 74
Flamethrower, 79
FlashGrenadeSpawner, 81
Focus, 83
ForceField, 85

Generated by Doxygen

Creating a MOBA using Unity

375

INDEX 269

FortificationBuff, 87
GrenadeLauncher, 99
HealingAura, 102
HealthDrainBuff, 105
HookShot, 107
LifeStealBuff, 126
MultiBoomerangBuff, 173
PlayerInputTestAbility, 204
PowerSaw, 211
ProjectileReflect, 214
ProjectileSpawner, 216
RemoteMineSpawner, 218
Shackle, 223
Slingshot, 228
SpawnTestAbility, 235
StandardSpawnableSpawner, 238
Stealth, 242
TankReflectShield, 245
Track, 251
TrapSpawner, 255
ZiplineGun, 258

SetBuffState
Flamethrower, 79

SetCurrentHealth
PlayerUIHandler, 209

SetCurrentMenuVerificationPrompt
MenuHandler, 140

SetDefaults
PlayerHealth, 200

SetDirty
SpawnPoint, 234

SetDockingKit
Docking, 62

SetDockingKitStats
Docking, 63

SetDockingKitUI
PlayerUIHandler, 209

SetElement
Ability, 15
BasicSlash, 23
BoomerangThrow, 32

SetFirstSelectedGameObject
MenuHandler, 141

SetFirstSelectedShopObject
IngameMenuHandler, 117

SetGameManager
GameModeProcessor, 97

SetInputRestrictions
PlayerInput, 202

SetLastSelectedShopObject
IngameMenuHandler, 117

SetMapIndex
GameSettings, 98

SetModeIndex
GameSettings, 98

SetModifier
Ability, 15
BasicSlash, 24

BoomerangThrow, 32
BoomerangVision, 35
BuffTestAbility, 37
Docking, 63
Flamethrower, 79
HealthDrainBuff, 105
LifeStealBuff, 126
MultiBoomerangBuff, 174
ProjectileReflect, 214
Stealth, 242

SetNewDuration
ModifierInstanceClient, 160
StatusUI, 240

SetOrthoSizeTarget
PlayerCamera, 194, 196

SetPlayerInputRestriction
Docking, 63

SetPlayerTeam
LobbyHandler, 130

SetPlayerTransform
PlayerCamera, 196

SetSpawnedObjectReference
ISpawnableReferenceProvider, 123

SetTarget
PlayerCamera, 196, 197

SetVisualState
Trap, 253

Shackle, 222
ButtonDown, 222
CooldownReady, 222
SetActive, 223

ShopItemData, 223
ShopItemInstance, 224
ShowInfoPopup

MainMenuUI, 137
Singleton

Awake, 225
Instance, 225
InstanceExists, 226
OnDestroy, 225

Singleton< T >, 224
Slingshot, 226

ButtonDown, 227
ButtonUp, 227
CancelAbility, 227
InitializeLocalPlayer, 227
SetActive, 228

SniperProjectile, 228
Initialize, 229
RpcInitialize, 229

SpawnManager, 232
Awake, 233
CleanupSpawnPoints, 233
GetRandomEmptySpawnPointIndex, 233

SpawnPoint, 233
Cleanup, 234
Decrement, 234
SetDirty, 234

Generated by Doxygen

Creating a MOBA using Unity

376

270 INDEX

SpawnTestAbility, 235
ButtonDown, 235
SetActive, 235

SpawnTestObject, 236
RedirectDirection, 236

SpawnableFactory, 229
Awake, 230

SpawnableObject, 231
CheckDamagable, 232

StandardSpawnableSpawner, 237
ButtonDown, 237
GetSpawnablePrefab, 238
SetActive, 238

Start
LobbyPlayerList, 132
NetworkPlayer, 187

StartFade
FadingGroup, 76

StartFadeOrFireEvent
FadingGroup, 76

StartGame
GameModeProcessor, 97
TeamDeathmatch, 249

StartMatchMaker
MainMenuHandler, 136

StartMatchingmakingClient
NetworkManager, 180

StartMatchmakingGame
NetworkManager, 180

StartRound
Deathmatch, 47
GameModeProcessor, 97
TeamDeathmatch, 249

StartUp
GameManager, 92

state
NetworkManager, 182

StatusUI, 239
Initialize, 239
Remove, 240
SetNewDuration, 240

Stealth, 240
ButtonDown, 241
FindPlayerSpriteRenderers, 241
Initialize, 242
SetActive, 242
SetModifier, 242

StopFade
FadingGroup, 76

StopHost
IngameMenuHandler, 117

TakeDamage
PlayerHealth, 200, 201

TankReflectShield, 244
ButtonDown, 244
Initialize, 245
SetActive, 245

TargetAddExplosionForce

Player, 192
TargetAddForce

Player, 192
TargetAddForce2

Player, 193
TargetClientCallback

Docking, 63
TargetReduceCooldown

Docking, 64
TargetSetSpawnObjectReference

Docking, 64
TargetSetUIDuration

PlayerStatus, 207
Team, 245
TeamDeathmatch, 246

GetGameOverText, 247
GetRoundEndText, 247
HandleRoundEnd, 247
IsEndOfRound, 248
PlayerDies, 248
PlayerDisconnected, 248
ScoreWinTarget, 249
StartGame, 249
StartRound, 249

TickLoop
ModifierInstanceServer, 164

ToggleEvent, 250
ToggleReadyButton

DLNetworkLobbyPlayer, 52
Track, 250

ButtonDown, 250
Initialize, 251
SetActive, 251

TransferElementalModifier
ElementalModifiers, 71

Trap, 251
HandleTrigger, 252
Initialize, 253
OnDestroy, 253
RpcSetExtraVisualsState, 253
SetVisualState, 253

TrapSpawner, 254
ButtonDown, 254
DisplayTrapState, 255
SetActive, 255

UnlistMatch
NetworkManager, 180

Update
Ability, 15
AbilityCooldown, 18
BasicSlash, 24
BoomerangRoot, 30
BoomerangThrow, 33
CleanseBuff, 41
FortificationBuff, 87
HealthDrainBuff, 105
NetworkManager, 181
ProjectileReflect, 214

Generated by Doxygen

Creating a MOBA using Unity

377

INDEX 271

UpdateCooldown
AbilityUI, 19

Zipline, 255
FirePoint, 256

ZiplineGun, 257
ButtonDown, 257
ButtonUp, 258
InitializeLocalPlayer, 258
SetActive, 258

Generated by Doxygen

Creating a MOBA using Unity

378

	Preface
	Contents
	List of Figures
	List of Tables
	List of source code snippets
	Introduction
	Project Description
	Background
	Goals

	Academic Background
	Project Audience
	Thesis Structure

	Game Design
	Initial game design
	Design overview
	Game modes
	Docking Kit ideas

	Changes from the initial design
	General changes
	Docking kit changes

	Technical Design
	Architectures in Unity
	General overview
	Networking overview

	General architecture
	Unity's example project
	GameManager
	SpawnableFactory
	In-game UI

	Player architecture
	Player
	Input
	Field of View
	Health and currency
	Player Status

	Modifier architecture
	Docking, Docking Kit, and Ability architecture
	Docking
	Docking Kit
	Ability

	Docking Kits
	Basic Kit
	Bomber Kit
	Boomerang Kit
	Brawler Kit
	Marksman Kit
	Sniper Kit
	Tank Kit
	Trapper Kit
	Support Kit

	Shop Architecture
	Visual Layout
	Scriptable objects for shop items
	Internal shop management

	Development Process
	Agile game development
	Our configuration of Scrum

	Development Tools
	Atlassian toolkit
	Unity and Git compatibility
	Code quality and conventions
	Game Engine
	Integrated Development Environment
	Communication Tools
	Miscellaneous Tools

	Implementation
	Limited field of view
	Responsive user experience
	Consistent force for server and clients

	Unity's networking limitations
	Network spawned objects
	Network functionality for MonoBehaviours
	Unity callbacks

	Programmatic interpolations
	Handling the velocity of the animation

	Interpolation using coroutines
	Initial game balancing
	Observations from the initial balance table

	Controller based menu navigation in Unity

	Deployment
	Automated Unity Builds
	Dockit League binaries

	Testing and User Feedback
	Internal testing
	User testing
	Feedback on the feel of controls
	Feedback on the in-game UI
	Feedback on the in-game shop
	Docking Kit feedback
	Feedback on understanding the game mechanics
	Additional feedback from the playtesters
	Reflection on the feedback of the playtesters

	Discussion
	Development decisions
	Using scriptable objects
	Moving from Confluence to ShareLaTeX for writing the thesis
	Decreasing the amount virtual functions using interfaces
	Providing ergonomic controls when using a twin stick scheme
	Updating game engine versions during development
	Player field of view versus raycasts for visibility checking
	Sticking with dual stick controls

	Experiences with the HLAPI of Unity
	Observations from sprint statistics
	Looking at the use of Scrum in retrospect

	Conclusion
	Future Work

	Bibliography
	Initial Project Plan
	Background
	Technology
	Project Goals
	Scope
	Project Structure
	Planning, supervision and documentation
	Quality Assurance
	Implementation plan

	Meeting Logs
	Temporal record of meetings

	Playtesting feedback and survey statistics
	Doxygen documentation

