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Abstract

Nearly all businesses are affected by the weather in one way or another. For many, the
weather is considered one of the major uncontrollable risk factors (Sharma & Vashishtha,
2007). Especially, winter tourism is one of the sectors most sensitive to weather conditions
(Damm & Greuell, 2016). A ski resort’s revenues are closely related to the cumulative
snow level. A year with low snow levels can lead to a significant reduction in the firms
revenues. We will look at the possibility to hedge this downside risk and thereby reduce
cash flow volatility, by using weather derivatives as a short term risk management tool.

The weather derivative market is an incomplete market and traditional pricing meth-
ods are not applicable. Most of the existing literature on pricing methodology are with
respect to temperature derivatives. Few have been conducted on snow level options.

The main objective of this study is to implement some of the few pricing methods
that exists on snow level derivatives. These are the indifference pricing method, the
method proposed by Alaton, Djehiche, and Stillberger (2002) (ADS) based on Black-
Scholes framework, a pricing method using historical densities and pricing by using gen-
eralized edgeworth series expansion. All of the above pricing methods are applied on
a snow level put option constructed for Vassfjellet Skiheiser AS. The indifference prices
for both seller and the buyer Vassfjellet are calculated, and the main assumption in the
model saying that the buyer’s indifference price must exceed the seller’s indifference price,
holds for all strike levels. For the most relevant strike levels, the prices generated by the
different methods are surprisingly similar. This indicates that these pricing methods may
be a good starting point for further application and modification.

By looking at historical data we observe a strong correlation between cumulative
snow level data and Vassfjellet’s financial data. Further, we check if the volatility in
Vassfjellet’s operating income the past years could have been reduced by investing in this
snow level put option. The findings show that by buying a snow level put option each
year from 2009-2015, the volatility in average operating income would decrease. Hence,
if wishing to smooth income and hedge downside risk, the purchase of a snow level put
option may be a good risk management tool. Our approach can be used on any individual
ski resort who is exposed to snow level risk.
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1 Introduction

According to Alexandridis and Zapranis (2013) almost 70 % of all the companies in the
US are in some way affected by the weather. Weather is a major uncontrollable risk
factor (Sharma & Vashishtha, 2007) and hence an important question is how to hedge
this risk (Cao & Wei, 2004). A weather derivative is a financial instrument that can
be used to hedge against risk related to the weather. As standard derivatives, they
are usually structured as swaps, futures and put and call options (Alaton et al., 2002).
Different industries face different weather risks and may therefore want to hedge against
different weather variables. It is possible to construct weather derivatives to cover about
any weather variable (Alexandridis & Zapranis, 2013) and the most common weather
variables are temperature, precipitation, snowfall and wind speed (Alaton et al., 2002).
Since these variables cannot be stored or traded, different weather indices are used as
underlying variables. The index can be based on for example cumulative rainfall or days
with temperature above a certain value during a predetermined period (Alexandridis &
Zapranis, 2013).

Issuance of weather derivatives originated first among US energy companies in 1997
as a result of the deregulation in US energy and power industry. This led to increased
competition among providers, as well as increased uncertainty about demand. It was
quickly understood that weather conditions were the most important factor for uncer-
tainty in revenues (Cao, Wei, & Li, 2003). Weather derivatives were developed and used
as an effective tool for hedging against volume risk (Alexandridis & Zapranis, 2013). The
weather derivative market grew rapidly the first years with Chicago Mercantile Exchange
(CME) offering weather options and futures. At the end of 2009, CME traded weather
products written on weather indices in 46 cities around the world (Alexandridis & Zapra-
nis, 2013). Even though 95% of the contracts were written on temperature, CME also
offered option and future contracts based on snowfall for different locations in the US
(CME Group, 2009). The development of weather derivatives did not happen as quickly
as many hoped and in mid 2015 the snowfall derivatives were taken off the exchange due
to little or no trading (Fortune, 2017). Hamisultane (2008) points out that the main
explanation for the weather derivative market not to expand is the difficulty in pricing
the weather derivatives. For many it is therefore looked at as a risky product and sell-
ers tend to fix a high premium because of the difficulty in evaluating a contract. With
regard to the information brought by the market, over the counter (OTC) activity does
not allow the standardization of the pricing models because it does not aid price trans-
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parency. However, in theory, weather uncertainty and the risk that follows with it should
provide an active market for financial derivatives that can insure businesses and others
against unexpected weather (Fortune, 2017). Despite that snowfall derivatives were taken
of official exchanges, they can still be traded OTC.

The aim of this master thesis is to apply some of the existing pricing methods on
a snow level put option constructed for a norwegian ski resort. If reasonable results are
obtained, we will further examine whether this put option can be used as an efficient risk
management tool. In the next section we will go through earlier literature and first look
at the advantages of using weather derivatives. Thereafter, studies on different sectors
exposed to weather risk will be discussed. Especially studies on the use of snow level
derivatives for ski resorts are presented as this is our main objective. Section 3 presents
the cumulative snow level data and financial data for Vassfjellet Skiheiser AS which is
needed in further application. To obtain the necessary inputs for pricing the put option,
the relationship between cumulative snow level data and financial data is examined by
a regression analysis. In section 4 the characteristics and obstacles with pricing weather
derivatives will be discussed. Because of these obstacles, few studies have been made
on pricing precipitation derivatives and especially snow level derivatives. We will briefly
go through some of the traditional pricing methods, before examining the four pricing
methods on snow level derivatives which we are going to use in our application. In
section 5 a snow level put option for Vassfjellet Skiheiser AS is constructed. Then, an
attempt to price this by using the indifference pricing method, ADS, Historical densities
and Edgeworth densities is done. Since all the methods gave reasonable prices, we further
examine whether Vassfjellet Skiheiser AS could have reduced its variance in operating
income for the historical years 2009-2015 by investing in this option.
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2 Earlier literature

2.1 Why weather derivatives?

For businesses exposed to weather risk, weather derivatives can be a useful tool for several
reasons (Brockett, Goldens, & Wen, 2009). Weather derivatives possess advantageous
differences compared to traditional insurances used for weather risk management (Sharma
& Vashishtha, 2007). Payout from weather derivatives depends on actual weather during a
specified period, regardless of the actual damages/loss in revenues. Thus, administration
costs are lower than with traditional insurances since there is no need to submit a claim,
nor having inspections to demonstrate actual loss (Bossley, 1999).

Moral hazard and adverse selection are problems associated with traditional insurance
products. Moral hazard is existent when the insured can affect the payout after the
insurance contract is signed. Adverse selection is a situation where the buyer of the
insurance has more information regarding the risk involved than the insurer, and therefore
is able to better determine a correct risk premium (Sharma & Vashishtha, 2007). These
problems are not existent with weather derivatives because the insured outcome is based
on an easily observable weather parameter (Turvey, 2001).

(Leggio, 2007, p. 247) also lists several reasons for companies to use weather deriva-
tives. This includes smoothing revenues, cover excess cost, reimburse lost opportunity
costs, stimulate sales and diversification. For small businesses with cash flow volatility
related to weather, the possibility to smooth revenues can help them obtain financing and
also to keep the firm out of financial distress. In the case of unfavourable weather con-
ditions, a weather derivative allows this by transferring the weather risk to a third party
(Leggio, 2007). Sharma and Vashishtha (2007) report different studies where weather
derivatives have been proven useful in reducing risk by stabilizing the profits. The studies
described include one on farmers in Mexico, US dairy production and agriculture districts
of Romania. In the latter, the researcher found that the variability in returns was sub-
stantially reduced for farmers cultivating under the cover of weather derivatives. Tang
and Jang (2011) argue that reducing cash flow volatility is important for various rea-
sons. First, the risk of bankruptcy decreases. Second, it reduces financial distress costs,
external-financing costs, underinvestment costs and thus increases firm value. Their own
study on publicly listed ski resorts in America demonstrates this by showing that financial
hedging, such as the use of weather derivatives, reduce short run snowfall risk for a ski
resort (Tang & Jang, 2011, p. 309). In the study of Perez-Gonzalez and Yun (2013),
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the use of weather derivatives leads to a 12% increase in firm value on average, statis-
tically significant at the 1% level. Jewson and Brix (2005) suggest that a reduction in
year-to-year profits will increase a company’s share price, and also reduce the interest
rate of the company’s loans. Unfavourable weather conditions may lead to additional
costs for a company. Airports experience higher operational costs on frost days. Winters
with above-average snowfall leads to municipal governments having higher snow removal
costs (Alexandridis & Zapranis, 2013). Furthermore, businesses exposed to weather risk
may experience lost opportunity costs as a result of the unfavourable weather. Extreme
wind conditions can cause large costs to an airline company because of cancellations of
flights. Similarly, construction companies might not complete a project on a scheduled
completion date because of adverse weather conditions (Alexandridis & Zapranis, 2013).
Weather can affect businesses cash flow directly by reducing volume of sales. For a ski
resort, bad winters with low levels of snow usually result in fewer visitors and lower sale
of ski passes. By for example entering a short position in a forward contract, where the
underlying index is snow level, the owner of the ski resort receives a predetermined sum
that will make up for lost sale when the snow level is low. In this way he is able to simulate
sale with the use of weather derivatives (Tang & Jang, 2011). There is a low correlation
between weather derivatives and other financial markets (Brockett, Wang, & Yang, 2006).
Hence, for investors that wish to diversify their portfolio, weather derivatives can be an
attractive new class of assets (Brockett, Wang, & Yang, 2005). Also, including weather
derivatives based on uncorrelated weather indices in a portfolio can potentially lower the
volatility of the portfolio (Alexandridis & Zapranis, 2013).

2.2 Weather exposure in different industries

From the beginning of the weather derivative market in late 90’s and until 2005, the
marked was clearly dominated by the energy industry. Since then, the market has grown
and the application of weather derivatives has been discussed with respect to many dif-
ferent industries (Alexandridis & Zapranis, 2013). Different industries will experience
different risks related to the weather. Thus, they will use different hedging strategies.
Some firms will hedge against any deviation from the average, while others will only
hedge against extreme weather conditions like hurricanes, droughts and floods (Leggio,
2007).

The Energy sector is highly influenced by the weather. The demand for heating and
cooling is strongly related to the changes in weather conditions (Perez-Gonzalez & Yun,
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2013). The risk in the electricity industry is characterized as a volume risk as both the
demand and the supply for electricity depend on weather related factors. On the supply
side, the amount of energy produced will depend on the precipitation for hydro based
power generation or the wind speed for windmill power generation. On the demand side,
the quantity of electricity demanded for heating or cooling depends on the temperature
outside (Sharma & Vashishtha, 2007). If there is an unusual warm winter or a very cold
summer, both the price on electricity and the amount of electricity consumed per hour
will be reduced. This leads to lower revenues for companies selling electricity.

Most of the research on weather derivatives are done with respect to the energy
industry. Eydeland and Wolyniec (2003) present different tools used for hedging in the
energy industry. They show that power load is highly affected by the weather, especially
by the temperature. They discuss weather derivatives as a possible hedging strategy and
conclude that some risk can be reduced by using weather derivatives. Perez-Gonzalez
and Yun (2013) use data from different energy companies and compare the value of each
firm with and without hedging with weather derivatives. The results show that the use
of weather derivatives lead to a positive and significant effect on the value of the firm.
They also show that using weather derivatives will increase the firm’s debt capacity, the
earnings will be smoother and they can invest more. Sharma and Vashishtha (2007)
compare weather derivatives to traditional electricity derivatives. They argue that for
Indian power sector, weather derivatives are a better tool for risk hedging and are the
most effective and sustainable risk-hedging instrument.

Agriculture is also highly linked to weather risk as crops require some certain con-
ditions to grow well. Temperature, precipitation and wind can all affect both the quality
and the quantity of a crop (Geyser, 2004). Farmers can get significant crop losses due to
extreme temperatures or rainfall. To hedge against some of the weather risk, the farmer
can buy a weather derivative based on the amount of precipitation. If the rainfall ex-
ceeds a predefined limit, the farmer will receive a certain amount of money. Thus, he is
protected against production risk, not price risk (Turvey, 2001). Turvey (2001) examines
weather derivatives in Ontario. He shows that weather derivatives can have a significant
effect on agricultural production risks and concludes that weather derivatives can be used
as a form of agricultural insurance. Xu, Odening, and Musshoff (2007) analyze the effec-
tiveness of precipitation derivatives on wheat production risk for the Brandenburg region
of Germany.

Many developing countries have an economy that depends strongly on the agricul-
ture. A bad harvest can affect these countries in a significant way. Historical data show
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that there has been an increase in extreme weather conditions and that these volatili-
ties in the weather more severely influence farmers in undeveloped areas (Kermiche &
Vuillermet, 2016). These features also normally affect most households and companies
in the same region and at the same time. In addition, for households and companies in
these countries, the financial resources are often limited and thus they can have trouble
dealing with weather shocks. Hence, the need for good hedging tools is particularly high
in these countries (Hess, Richter, & Stoppa, 2002). There exists several studies on the
use of weather derivatives in the agriculture sector in developing countries. Hess et al.
(2002) show that it is a huge potential for weather derivatives in this sector in developing
countries. Varangis, Skees, and Barnett (2003) discuss potential applications of weather
insurance in these countries. Kermiche and Vuillermet (2016) examine weather derivatives
as a possible independent long term plan to help African countries moderate their risk
associated by the weather. Hess et al. (2002) focus on a case study for rainfall derivatives
to protect the cereal producers in Morocco from the financial influence of a season with
drought. According to Geyser (2004), farmers in South Africa can use rainfall derivatives
during the peak season for maize growing and thereby reduce the yield risk substantially.

In addition to the industries above, some users of weather derivatives are depart-
ment stores who sell winter coats (Cao & Wei, 2004), wine production (Cyr, Eyler, &
Visser, 2013), theme parks (Geyser, 2004), entertainment, restaurants and bars (Cao et
al., 2003), insurance firms and banks (Tang & Jang, 2012), golf courses (Leggio, 2007),
sports events and sports teams (Ito, Ai, & Ozawa, 2016); (Geyser, 2004) and construction
workers (Geyser, 2004); (Jewson, 2004); (Leggio, 2007).

2.3 Studies on the use of snow derivatives for ski resorts

As mentioned in the report by Aaheim et al. (2009) prepared by CICERO, ECON and
Vestlandsforskning and commissioned by Climate Adaptation Committee, the tourism
industry in Norway is especially vulnerable and sensitive to a variety of climate variables
such as temperature, number of hours of sunshine, precipitation, storm and snow level.
Particularly mentioned is the increasing temperatures which results in less snow at winter
tourist destinations and also the need to find short and long run adaptation measures
(Aaheim et al., 2009, p. 52).

With respect to ski resorts, the potential of weather derivatives has been discussed
in Beyazit and Koc (2009), Tang and Jang (2011), Tang and Jang (2012) and Bank and
Wiesner (2011).
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Tang and Jang 2011 analyze how the two different hedging strategies, geographical
diversification and financial hedging, can be used as a risk management tool for ski resorts.
First, they focus on the effect of geographical diversification on the cash flows exposed
to snow fall risk. A ski resort can diversify geographical by investing in several resorts
at different places where the weather exposure is different. Hence, the risk is spread on
other ski resorts as well. Second, they focus on the effect of financial hedging. That is,
hedging with weather derivatives which in this case is a snow derivative. The goal is to
provide a method that is based on the interactions between the two different weather risk
management strategies. The study is based on snowfall forwards. The peak season in
their case starts in November and ends in March for both cash flow and snowfall. They
find that snowfall and cash flow is at its highest level at the same time. This indicates a
strong correlation between cash flows and snowfall.

They use two different scenarios when examining the geographical diversification ef-
fect. A single-property vs. a ski conglomerate, and before vs. after adding a new property
to a ski conglomerate. They first compare the weather exposure of a ski conglomerate
and single property using a t-test. They use Monte Carlo simulation to estimate all the
possible cash flows the companies could have achieved. Furthermore, they regress the cash
flows of three ski conglomerates on snowfall and a property acquisition dummy. From this
regression they can test the effect of the cash flow exposure to snowfall risk by adding one
more property to the company cash flow. When finding the optimal hedge ratio for ski
conglomerates they must take into account that they are exposed to multiple basis risks.
Basis risk is related to the difference in the amount of snowfall measured at the weather
station and the actual amount of snowfall the firm is exposed to. For a single-property
ski resort the results show that geographical diversification effectively can reduce the risk
exposure to the snowfall. However, the hedging effect would depend on the correlation
between the cash flow of the newly added ski resort and snowfall of the original ski resort.
As long as this correlation is negative, Tang and Jang (2011) argue that the weather risk
exposure can be reduced. To reduce the cash flow volatility due to weather risk, a firm
could also buy a weather derivative that hedge against this risk factor. A ski resorts cash
flow decrease when the amount of snowfall is low. Thus, they should enter a short position
in a snowfall forward to hedge against this risk.

The hedging strategy would depend on the goals of the firm and the availability of
capital. If the firm has a small amount of capital and the goal only is to reduce short term
snowfall risk, financial hedging would be preferable. For ski conglomerates there will be
no significant risk reduction through geographical diversification since they are already
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geographically diversified, and hence financial hedging may be the best risk management
tool.

Tang and Jang (2012) examine how weather derivatives can be used as a risk
hedging management tool in nature-based tourism businesses. In their calculations they
use a ski resort as an example and the weather variable is snowfall. They argue that the
value of risk reduction by using a weather derivative is created through several different
sources, including the possibility of achieving a higher debt level, greater tax shield, lower
probability of bankruptcy and that the premium required by investors to compensate for
the risk would be reduced. The weather risk they want to manage is not extreme low
probability weather events, such as hurricanes and floods. It is rather high probability
scenarios, for example if snowfall during a year is more or less than anticipated. Hence
they are only focusing on short term volatility in snowfall. Further, they compare financial
risk management with operational hedging and standard insurance. They conclude that
financial risk management requires less capital and is therefore superior for ski resorts
that have limited capital and are exposed to short term risks.

In the case study they use forward contracts based on local snowfalls. They point
out several reasons for using forwards. With forwards you do not need to calculate any
initial price, because there will be no cash exchange up front. The value of a forward is
zero when you set the strike as the historical mean. This is because it is then an equal
probability for the snowfall to be above or below the strike level, and hence either side
has an equal chance of receiving cash flows. Another reason pointed out is that they are
over-the-counter contracts and thus can be adapted for local snowfalls. Also, the payoffs
are linear. A ski resort’s cash flow is positively correlated with snowfall and a contract
where the holder receives payoff when the snowfall is low is relevant in the case of a ski
resort. Thus, they have to enter a short forward position based on the local snowfall
index to hedge against the risk related to the snowfall. They use the average snowfall
from 1991 to 2003 as the strike level. The case study is used for Winter Sports Inc, which
is a single-property ski resort. The operating cash flow are used to measure the exposure
to snowfall risk.

They first present the results based on historical data and show what the effect
would have been if they used forward contracts as a hedging strategy during the 1991-
2003 period. This is demonstrated by comparing the annual cash flows with and without
investing in the snowfall derivative. The ski resort will receive cash if the snowfall is
low, and must pay out cash if the snowfall is high, hence the cash flow volatility can be
reduced. They use Monte Carlo simulation to simulate the cash flows. According to the
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results with this simulation, snowfall forwards could reduce ski resorts cash flow volatility
up to 25.8%. The hedging is most effective in months when the expected snowfall is
high. Thus they suggest that it may be better to hedge cash flow only for the months
that the accumulated snowfall is highest, not the whole winter season. They expect
small individual ski resorts to benefit most from weather risk hedging because of their
concentrated exposure to snowfall risk.

In Bank and Wiesner’s study from 2011, 61 ski-lift operators in Austria were
interviewed concerning their vulnerability towards unfavourable weather conditions and
their knowledge, use and attitude towards weather derivatives as an adaptation measure.
When asked on what scale they perceive the consequences of climate change to their
business, approximately 63% said they consider climate change as an important issue,
whereas 22% said that it is of little or no importance to them. Also, during the warm
winter of 2006/2007, a large amount of the respondents said they suffered severe losses
which demonstrate the ski resorts vulnerability to snowfall.

Despite these results, only one of the respondents used weather derivatives as an
adaptation measure. Highlighted factors for application are reported to be transparency
and lack of other insurance products. Lack of awareness and expertise are main factors
reported on reluctance towards the use of weather derivatives. Also, many of the ski-
operators do not have the resources and/or framework to set up a risk management
programme. A high fraction of the respondents showed an interest in the potential use
of weather derivatives, and the study concludes that the main challenge is the lack of
knowledge regarding risk management and available tools.

Beyazit and Koc (2009) examine how put options on cumulative snow level can
reduce the weather risk in winter tourism establishments in Turkey. Tourism is the second
largest industry in Turkey and thus, hedging is important for the economy. Beyazit and
Koc (2009) analyze data from a ski resort in Palandoken, east in Turkey. They argue
that the relationship between the ski resorts business and the snow level in the region is
strong, but that the level of snow has an asymmetric impact on profits. In other words,
if the snow level is below a certain limit the revenues can be highly reduced, but if the
snow level is very high it will not necessarily imply a huge increase in income. They also
propose a pricing method for the put options. When calculating the price of the snow
level put options they apply three different methods which are the method of Alaton et al.
(2002), Historical densities and Edgeworth densities. They use daily snow level data from
1975-2006 and analyze the peak period which they assume to be November to March.
The data shows no certain distribution. It has a high volatility and positive kurtosis and
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skewness. The data is therefore non-normal and hence they use “Generalized Edgeworth
Expansion” technique to account for this.

As seen in the articles above, weather derivatives may be an effective tool for ski
resorts wishing to hedge risk related to the weather. Studies on snow derivatives are
limited to those presented above. Like Beyazit and Koc (2009) we will also examine snow
level put options. Since Tang and Jang (2012) argue that small individual ski resorts will
benefit the most from using such derivatives, we will in our case study a ski resort with
these characteristics. Our purpose is to find a price for a snow level put option and check
if a ski resort can smooth earning by investing in one.
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3 Data

The weather data is downloaded from the Norwegian Meteorological Institute, whereas
the financial data is collected from Brønnøysundsregisteret via “Proff.no”. Descriptive
statistics of the data will be described in this chapter, together with a regression analysis
and main characteristics of the relationship between weather and financial data.

3.1 Snow level data

One of the main challenges with snow derivatives is measuring the snow parameter. As
one may think, it is not as easy as putting a measuring stick in the snow. The measuring
is dependent on how frequently snowfall are reported. If the observer measures the snow
level at 11 am and then waits until 6 pm for the next measuring, the snow has time
to settle, drift and melt. An increase in snow level of five centimeters can be a result
of two centimeters of melting and seven centimeters of new snow. Hence, reporting five
centimeters of new snowfall will be incorrect (Weatherworks , 2016). Since snowfall is a
function of both precipitation and temperature (Beyazit & Koc, 2009), one way to handle
the problem is to obtain both precipitation and temperature data and convert this into
snowfall. Unfortunately, this method comes with several faults. When the temperature is
close to zero, it will be hard to differ between rainfall and snowfall, hence the measuring
of snowfall may be highly incorrect. Because of the challenges in measuring snowfall and
therefore obtaining exact and correct data, we will use cumulative snow level when pricing
snow derivatives.

3.1.1 Data description

The snow level data is collected from the data download service “eKlima”, a service made
public by the Norwegian Meteorological Institute. Daily snow level observations, total
from ground up and normally measured in the morning, are collected from the weather
station “Løksmyr” (station number 68270). Løksmyr is located in Melhus, with an altitude
of 173 meters above sea level. The weather station is located approximately 4 km from
Vassfjellet.

We have followed Alexandridis and Zapranis (2013) suggested method on how to
handle missing values in data sets where there are consecutive missing values. In our data
set, there are consecutive missing values during summer months. During the summer,
snow levels are zero and reporting has not been taking place. Besides that, missing values

11



are not a problem in the collected data set. One rare missing value can be a result of
broken weather equipment, loss of data or lack of reporting the relevant day. Missing
values are filled in by using the average snow level of 7 days before and 7 days after the
missing value as proposed in Alexandridis and Zapranis (2013):

St,avg =

∑7
j=1 St−j +

∑7
j=1 St+j

14

where St is the snow level at day t. They also propose taking the average at that par-
ticular day across years. This is not relevant for snow level (unlike temperature) because
cumulative snow level exhibits low correlation among the years.

3.1.2 Descriptive statistics

Tang and Jang (2012) and Beyazit and Koc (2009) argue for hedging revenues for the peak
season only. Historically, the amount of snow in November has been generally low. Also,
during Easter holiday the possibility to generate income is high and therefore this week
is regarded one of the most important weeks for a ski resort. Thus, we will focus on the
peak season December to April. We will, as Beyazit and Koc (2009) did in their study
of winter tourism in Turkey, use cumulative snow level when constructing the weather
derivative. The data set for daily snow level starts at December 1st 1996 and continue
until April 30th 2016. The cumulative snow level each year is the sum of all daily snow
levels for the chosen season December to April. This results in 20 years of cumulative
snow level data.

Table 1: Descriptive statistics Cumulative Snow Level 1997-2016

Variable Mean (Std. Dev.) Min. Max. N
Cum snow level cm 4 341.20 (2 324.55) 1141 8799 20

Table 1 summarize the descriptive statistics and figure 1 shows the actual plot of the
series of cumulative snow level each year. We observe large variation from year to year,
with a minimum value of 1141 cm and a maximum value of 8799 cm. The corresponding
standard deviation is 2324 cm. From figure 1 no clear pattern is detected, which makes
the winter hard to predict.
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Figure 1: Yearly Cumulative Snow Level

The histogram in figure 2 shows right skewness and we also observe some kurtosis.
The values are 0.71 and 2.29 respectively. The purple line is the normal distribution
reference and the yellow line is the distribution of the cumulative snow level. From visual
inspection cumulative snow level does not appear to be normal distributed. The Shapiro
Wilk normality test is rejected at a 5% level and we cannot say that we have a normal
distribution. OxMetrics PCGIVE test rejects the test at 7% significance, thus we can
with 93% confidence state the data does not fit the normal distribution.

No pattern is observed through the autocorrelation function in figure 3. Hence, cumu-
lative snow level in one year does not dependent on previous years within the considered
time horizon. This may not be the case for relatively long time series where a trend can
arise because of the long term climate changes. The climate models developed in ToPDAd
research project (ToPDAd , 2015) predict that snow level in the long run will decrease in
most European ski resort destinations due to climate change. We are focusing on short
term risk and thus 20 years of data is sufficient to use in this case.
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Figure 2: Density: Yearly Cumulative Snow Level

Figure 3: Autocorrelation Function: Yearly Cumulative Snow Level
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3.2 Financial data

Annual reports for the years 1997-2015 for Vassfjellet Skiheiser AS was collected from
“Brønnøysundsregistereret” (via proff.no). Our focus is to examine if and in what scale
the natural snow level impacts profits. Both ski pass revenues and operating income can
be possible indicators on this. Low snow level (and thus lower activity) also means lower
cost of goods sold, other operating costs/revenues and salary, and we will therefore use
operating income in our further discussion and analysis. From here on, Vassfjellet will be
used as abbreviation for Vassfjellet Skiheiser AS.

3.2.1 Data description

The annual reports from 1997-2007 are reported on a yearly basis (01.01.xx-31.12.xx),
whereas the report in 2008 includes only the months January to August. From there
on, the reporting is based on one “accounting year” September-August which includes
the whole ski season. In the further discussion we will use the financial data from years
2009-2015 only. It is difficult to compare two different reporting methods. Also, our
focus is the winter season and it is therefore more relevant to use the reports where these
months are included. By using the earlier reports, the operating income from winter
season (December - April) will be split across two different years. Our goal is to detect a
relationship between snow level and operating income during each season. Hence, using
the reports pre 2009 will not give accurate measurements. Our main concern regarding
this is whether the relationship between operating income and snow level for the previous
years are similar to our findings for the years 2009 to 2015. One way to get around this
problem would be to obtain a seasonal measure that correlates with operating income for
the years before 2009. This could be number of ski pass sold, ski pass revenues, amount of
cars parked etc. This data could not have been used directly in the analysis, but it would
be a good indicator whether or not the relationship found also existed in the previous
years. After several attempts to obtain such information with no luck, we must assume
similar relationship across the 20 years.

In the annual reports, gain on sale of non-current assets and depreciation on current
assets are reported under operating revenues and operating expenses respectively. Our
purpose is to examine the operating posts that because of the snow level affects operating
income. Hence, gain on sale of non-current assets and depreciation on current assets are
deducted from operating income in our reporting.
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3.2.2 Descriptive statistics

Descriptive statistics for operating income are reported in the table below. There is a
high variation, with a minimum value of 580 042 kr and maximum value of 7 326 398 kr
in operating income.

Table 2: Descriptive statistics Operating Income 2009-2015

Variable Mean (Std. Dev.) Min. Max. N
Operating Income kr 5 039 460 (2 531 641) 580 042 7 326 398 7

3.3 Regression analysis of financial and snow data

We will in this section examine the relationship between the weather and financial data.
Table 2 summarize the cumulative snow level data and the operating income each year
from 2009-2015.

Table 3: Cumulative Snow Level and Operating Income

Variable 2009 2010 2011 2012 2013 2014 2015
CSL 8754 4620 6421 5651 3425 1141 1965
OI 7 326 398 7 019 089 6 898 199 4 9794 409 5 764 932 580 042 2 708 153

The two graphs on right hand side in figure 4 show the deviation from mean for both
parameters. The graphs to the left show the data plot for the two parameters for the years
2009-2015. By comparing the graphs in figure 4, there is clearly a strong relationship
between operating income and cumulative snow level. We will further try to measure this
relationship. As (Beyazit & Koc, 2009), we also observe asymmetric relationship between
operating income and the cumulative snow level. At one point there is enough snow for
the ski-resort to operate optimal. An increase in snow level may not have much impact
on the average skiers decision on whether to visit the ski resort or not. So when this snow
level is exceeded, the profits may not increase proportionally. The lower bound of snow
level is therefore the crucial one. This characteristic can be observed in the right graphs
in figure 4. The blue line represents the mean cumulative snow level of 4341 cm. For the
years where cumulative snow level is above this value, the relationship between the two
parameters is not that clear. For cumulative snow level values below average the decrease
in operating income will be of larger magnitude.
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Figure 4: Operating Income and Yearly Cumulative Snow Level: 2009-2015

Figure 5: Scatter Plot: Operating Income and Yearly Cumulative Snow Level

Figure 5 shows the scatter plot of operating income and snow level. The scatter plot
may indicate diminishing returns, which is consistent with our above discussion. We will
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examine three different functions that can describe the relationship between Vassfjellet’s
operating income and cumulative snow level seen in figure 5.

Figure 6 shows a linear relationship between operating income and cumulative snow
level. The correlation coefficient between operating income and cumulative snow level
is 0.84. This relative high correlation value proves a close relationship between the two
variables and since the correlation reflects a linear relationship, a linear function is a
potential candidate to describe this.

Figure 6: Linear Function

By regression analysis we can write the linear functions as

OI = 1384100 + 800× CSL (1)

where OI corresponds to operating income and CSL to the cumulative snow level for
the same year. The regression yields a R2 of 0.7. In this function, per one cm change in
cumulative snow level, operating income changes with 800.2 kr.

A second order- and log function has also been derived. In figure 7 the relationship
is computed by a second order function as follows

OI = −0.157× CSL2 + 2312.87× CSL− 1315000
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The regression yields a R2 of 0.85. This function describes an asymmetric relationship
between the cumulative snow level and operating income. As discussed above, for snow
levels above a certain value, operating income will start to stagnate. The drawback with
this function is that it captures a decreasing return after a certain level. We observe from
the second order function that for cumulative snow level values above ca. 7300 cm the
operating income will start to decrease. Hence, for high values of snow level the second
order function will fail to explain the relationship. The probability to reach extreme snow
levels (>9000cm) is very low and within the six years it is only one year with a snow level
value that is above the maximum point of the second order function. Thus, this function
may be suitable within our snow level span. An alternative would be to use the second
order function up to a certain point before the maximum point and then use a linear
function with slope equal to zero. A log function can also computed in order to try to
capture the diminishing return.

In figure 8, a log function is computed as follows

OI = −22080000 + 3291300× ln(CSL)

The regression has a R2 of 0.86. As we can see from the figure, this function features di-
minishing returns to operating income. Thus this model will best explain the relationship
in our data. The log function has no maximum point, hence, like the linear function, the
operating income will never stop increasing. When choosing a function, it is important
to choose one that fits the pricing methods. With a log function, the pricing methods
will be more complicated because they must be modified in order to make the tick size a
function of the log function. If the functions in figures 7 and 8 are to be used in further
application, test of functional form should be conducted. However, in the pricing methods
applied later, a linear relationship is assumed. We will therefore proceed using the linear
relationship.
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Figure 7: Second Order Function

Figure 8: Log Function
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4 Methodology

Before moving on to the pricing methodology, we will discuss the characteristics of a
weather derivative and obstacles when pricing derivatives based on weather indices. A
weather contract is specified by the following parameters (Alaton et al. 2002):

• The contract type (future, swap, put/call option)

• The strike or future price

• The tick size

• The contract period

• The underlying weather index (CAT, HDD, rainfall, snowfall)

• Weather station from which the underlying variable data is obtained

• A premium paid from the buyer to the seller (negotiable)

The payoff of a weather derivative depends on a specified weather index and the magnitude
is determined by the strike level and the tick size. The tick size is the amount of money the
holder of the contract receives for each unit above or below the strike level, depending on
the contract type. The strike level determines whether the option will be exercised or not
(Alaton et al., 2002). For example, with a long position in a put option with strike 500,
the holder will receive payoff for each unit below the strike 500. The weather derivative
contract must define a period in which the underlying index is calculated. This period
can vary from a few days and up to many years. Because of the possibility to forecast
the weather for a few days ahead, weather derivatives are more usually used for periods
longer than a few weeks. The weather derivative contract is based on the observed values
of the weather at a specific weather station. Several stations can also be used to measure
the weather, but it is most common to use only a single station (Alexandridis & Zapranis,
2013).

From the characteristics listed above, the main difference between a standard financial
derivative and a weather derivative is the underlying index. The most common weather
indices are based on temperature. Usually they are written on the accumulation of heating
degree days (HDD) and cooling degree days (CDD) during a predetermined period (Alaton
et al., 2002). HDD measures the number of degrees below a certain reference temperature
each day during a specified period, while CDD measures the number of degrees above a
certain reference level (Alexandridis & Zapranis, 2013). To measure this deviation, they
use the difference between the average temperature for each day and the reference level.
The average daily temperature is given by the average of the maximum and minimum
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temperature that day (Alaton et al., 2002). The reference temperature is often given as
65 ◦F or 18 ◦C. The reason for using this as reference value is that for temperatures below
or above this value it is common to use either heating or air condition. Hence, HDD is
usually used for the winter months and CDD for the summer months (Alexandridis &
Zapranis, 2013). A HDD or CDD index future contract is an agreement of buying or
selling the value of the HDD or CDD index at a predetermined time in the future. It is
possible to construct a call or put option contract on these futures.

It is also possible to construct a call or a put option where the underlying weather
index is based on precipitation. This index can for example measure the number of days
with precipitation or the total amount of rainfall or snowfall during a period. The buyer
must pay a premium when buying the contract and will receive a payoff depending on the
index at the expiration day. A contract written on the cumulative amount of precipitation
during a period from t = 0 to T , has an index:

CPR =
T∑
t=0

PRt

where CPR and PRt is the cumulative precipitation and the precipitation for day t

respectively. If we let K denote the strike level, the payoff W would be:

W = max(K − CPR, 0)

Weather swaps are contracts where two parties exchange the weather risk during the
contract period. In a standard swap contract, it is common to have several dates where
the cash flows are swapped, but for weather swaps it is usually only one swap date (Alaton
et al., 2002). Such a weather derivative can be useful when for example one party wants a
cold winter with a lot of snow, while the other party wants a warm winter without snow.
It is then possible to construct a weather swap which transfers some of the revenues from
the “lucky” parties to the “unlucky”. In this way both parts will smooth revenues because
they get compensation for bad winters and pay an amount when it is a good winter with
high profit.

4.1 Obstacles in pricing weather derivatives

The most important difference between weather derivatives and traditional financial deriva-
tives is that their prices reflect weather conditions rather than the price of an underlying
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variable. Financial derivatives are typically based on the price of a share, bond, currency
or other securities and commodities. For these traditional derivatives, the underlying vari-
able can be traded. However, there is no such tradable underlying variable for weather
derivatives since the underlying index expresses a certain weather event. Hence, the
weather derivative market is an incomplete market (Brockett et al., 2005). Cao and Wei
(2004) argue that since the underlying variable is not tradable we cannot form part of a
riskless hedge. Thus, it is not appropriate to use the traditional arbitrage free risk-neutral
valuations models, such as Black-Scholes, to price weather derivatives. The seller of the
derivative will therefore add a risk premium when pricing the derivative (Tang & Jang,
2012).

Local weather indices have a low correlation with prices of other financial assets, such
as exchange and interest rate risk. Thus, it is difficult to substitute the underlying with a
linked exchanged security to solve the problem with an incomplete market (Hamisultane,
2008). Another problem with weather derivatives is that it is not possible to influence
the weather. It is out of human control and we do not know exactly what the weather
will be like in the future. Also, it is not possible to store the underlying variable for later
use (Tang & Jang, 2011). Weather risk can be managed by estimating the expectations
about the future weather states. However, the risk related to the weather is affected by the
fact that weather has a high degree of unpredictable fluctuations. Masala (2014) claims
that the different weather variables have significantly different properties. There is no
direct similarity distributional assumption with respect to weather events in general, so
they cannot have any market price. Furthermore, it is very little liquidity in the weather
market due to the valuation difficulty (Brockett et al., 2005).

One of the main concerns when using weather derivatives is the basis risk. According
to Brockett et al. (2005) the risk effectiveness of a weather derivative is highly dependent
on the magnitude of basis risk a firm faces when using this derivative. Alexandridis and
Zapranis (2013) divide basis risk into two different components. The first is geographi-
cal basis risk. If Vassfjellet buys a snow level put option where the underlying weather
index is measured at Løksmyr, the geographical basis risk will reflect the difference in
snow level between the weather station and Vassfjellet. The geographical risk increases
the further away the business is from the weather station (Tang & Jang, 2012). The
second, referred to only as basis risk, is the risk of having estimated the relationship
between the snow level and financial data wrong. Weather can vary from one location
to another. Because of the possibility of microclimate, a local zone where the climate is
different than in the surrounding area, the weather risk is a highly-localized risk (Tang
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& Jang, 2011). Geographical basis risk may reduce the effectiveness of the derivative
substantially. The demand for the weather derivative is highly dependent on the distance
between the weather station where the weather is measured and the place for the hedging
company. The geographical risk will always be positive. When the distance increases, the
demand will decrease. However, buying weather derivatives from different stations in the
area around the hedging company can increase the hedging effectiveness (Alexandridis &
Zapranis, 2013). The yield variations a company wish to hedge is not necessarily com-
pletely correlated with the weather variable (Xu et al., 2007). However, as this correlation
increases the basis risk will decrease (Alexandridis & Zapranis, 2013).

4.2 Obstacles in pricing precipitation vs temperature derivatives

When examining temperature it may be possible to find a trend, seasonality and noise
factors in the model. Hence, one may find a stochastic process or a particular distribution
for the temperature (Beyazit & Koc, 2009). However, the behavior of precipitation is
significantly different from the temperature, so other types of models will be needed when
modeling (Benth & Benth, 2012). Rainfall is not a continuous variable, but it is a binary
event. It may or may not be raining. Furthermore, the rainfall process is not as smooth
as the temperature process, but has a much more irregular distribution. It can go a
long time without any rainfall and it can occur in sudden peaks (Cabrera, Odening, &
Ritter, 2013). Also, it is not necessarily a high correlation between rainfall amounts in
different locations (Xu et al., 2007). Benth and Benth (2012) show that there is no clear
pattern in the time series plot of daily rainfall. Both the probability of a rainy day and
the amount of daily rainfall varies with the season. It is often more likely to have a rainy
day in the winter, but the rainfall has a higher intensity in the summer. The volatility
of the amount is also higher in the summer. Furthermore, the probability of a rainy day
is higher if it was raining the previous day (Masala, 2014). Precipitation cannot take
negative values. Because the measurement period often contains many days without any
precipitation, the distribution will contain several zero values. Hence, it will have a highly-
skewed distribution and a high kurtosis. This is demonstrated in the histograms of the
data in Benth and Benth (2012), where the precipitation has an extreme right-skewness
and also an extraordinary high kurtosis. Precipitation is also much more localized than
temperature, so the correlation between the weather in different locations is lower than in
the case of temperature (Benth & Benth, 2012). This makes geographical basis risk even
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more important when examining precipitation derivatives that has a relatively distance
from the measurement location (Alexandridis & Zapranis, 2013).

Because of all the irregularities mentioned above and the difficulty in measuring the
precipitation, it is more complicated to price a weather derivative based on precipitation
than temperature. Even though rainfall and snowfall are different weather variables, they
have several similar characteristics. Snow level is both a function of precipitation and
temperature. The temperature must be lower than about zero to make precipitation into
snow. Hence, it is a close and inverse correlation between temperature and snow level
(Beyazit & Koc, 2009). Snow level does not have a certain distribution. The snow level
one year is weakly correlated with the snow level of other years and Beyazit and Koc
(2009) show that the correlation between the snow level in their data set in subsequent
years is 0.35.

4.3 Pricing methods

The weather derivative market is an incomplete market and it is still under development.
A general accepted method for pricing weather derivatives, as Black Scholes is for financial
derivatives, does not yet exist (Alexandridis & Zapranis, 2013). Earlier studies, including
(Jewson & Zervos, 2003), (Richards, Manfredo, & Sanders, 2004) have been using the
framework of Black Scholes when pricing weather derivatives. Because of the restricting
assumptions that follows with it, new and more correct methods have been proposed in
later literature. Many studies on the the pricing and modeling of temperature derivatives
have been undertaken, but few attempts have been made to price snow level derivatives.

We will in the following focus on pricing methods available for precipitation deriva-
tives. First, a brief overview of earlier pricing methods for snow level contracts will be
presented. Thereafter, we will give an in depth description of relevant pricing methods
on snow level put options.

4.3.1 Traditional methods

Actuarial pricing methods use the conditional expectation of the snow level deriva-
tive’s future payoffs to calculate the price (Hamisultane, 2008). The law of large numbers
is essential in these models. It states that as the number of samples increase, a more
reliable estimate of the true expected value of the observed phenomenon can be obtained
(Kordi, 2012).

The expected price can be calculated in different ways. The easiest method to im-

25



plement is the historical burn analysis (HBO). Historical burn analysis is considered the
benchmark approach for pricing temperature derivatives. The main assumption is that
history will repeat itself with same likelihood and the model make use of historical distri-
bution of the weather index to calculate historical option payoff (Alexandridis & Zapranis,
2013). For example, to find the price of a put option based on a cumulative snow level
index, simply obtain historical snow level records for similar periods in the previous years,
y1, y2, . . . yn. Accumulate the values for December – April each year to obtain the series
of historical cumulative snow level for these months. Denote this H1, H2. . . Hn. For year
i calculate the put option payoff Wi = max(Hi −K, 0), where K is strike, to obtain the
series of historical payoffs. The expectation of the weather derivative’s price at time t
then corresponds to the average annual payoffs (Benth & Benth, 2012):

p(t) =
1

n

n∑
i=1

Wi (2)

The method is easy to implement since there is no need to derive the real distribution of
the snow level. Thus, it can be implemented on other weather variables as well.

Benth and Benth (2012) address the issue of using HBA on derivatives with aggre-
gated values as the underlying variable. With a long time series the number of data points
are reduced drastically when using cumulative values. Furthermore, they state that this
again may lead to a very uncertain option value because of the few non-zero payoff values
among the data points. Our time series with 20 years of daily snow level observations
from Løksmyr will be reduced to only 20 data points when calculating cumulative snow
level, where non of the values equal zero. Jewson (2002) points out another disadvantage
with the HBO model. Because of the short records of historical data, extreme weather
conditions are not well represented in the sample. This can be dealt with by the direct
modeling of the weather index. With index modeling, the distribution of the index is
modeled and hence, all possible scenarios including extreme values are taken into account
(Jewson, 2002). Indices such as HDD, CDD etc. tend to be bounded by zero which results
in loss of information when calculating the indices (Alexandridis & Zapranis, 2013).

A better approach, according to Alexandridis and Zapranis (2013), would be daily
modeling of the weather parameter. It is considered the most complex of the actuarial
methods and involves building a statistical model for the daily snow level itself (Jewson,
2002). The difficulty lies in finding an appropriate stochastic process that captures the ob-
served behaviour of the snow level. Although daily modeling is the most accurate method
for modeling the weather process, there is several obstacles attached to it (Alexandridis
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& Zapranis, 2013). In the case of temperature, seasonality in the first two moments and
the distribution are found. There is also signs of long memory in the autocorrelation.
In literature, two different approaches has been suggested for modeling the daily average
temperatures; discrete and continuous processes. In the former, the use of an ARMA
framework has been suggested from several authors, including Cao and Wei (2004). Oth-
ers, such as Alaton et al. (2002) and Hamisultane (2008), suggest a continuous process
using a stochastic differential equation. Although there exist several studies on the mod-
eling of the daily average temperature, little is found on snow level in the framework of
pricing weather derivatives. Alexandridis and Zapranis (2013) emphasize the obstacles
in the daily modeling of snowfall versus temperature. Snowfall is not a continuous vari-
able and changes much more irregular and unevenly than temperature. Since snowfall
and rainfall share much of the same characteristics, a stochastic process-based model pre-
sented in Alexandridis and Zapranis (2013) can be used on both of them. A method for
modeling snow level is not presented in the study. The risk of model miss-specification is
high, which may lead to sizeable mispricing of weather derivatives when the underlying
weather parameter, in this case snow level, is to be modeled (Alexandridis & Zapranis,
2013).

Monte Carlo simulation can be used as an alternative to the indifference method
we will discuss later. The method involves simulating several different precipitation sce-
narios over a prespecified period in order to determine the derivatives possible payoff. In
the case of precipitation, Alexandridis and Zapranis (2013) suggest using a two-state, first
order markov chain model on historical data. This method is repeated n times and the
rainfall index is found by averaging each scenario. From the rainfall index, the payoff and
hence, the price of the derivative can be obtained. A similar process can also be done
for snow level, but will include a more extensive markov-chain model. The markov-chain
model consists of two properties. The first is the different states the weather variable can
take. Compared to precipitation which can take on two states (no precipitation, precipi-
tation), a markov-chain model on snow level will have seemingly more states. Second, the
order of the chain defines how many previous values the state to state transition probabil-
ities are conditional on. In the case of precipitation a two state, first order markov-chain
can be used. For snow level this will include a more complicated markov-chain model.

The weather index is not traded in the market and thus, it is impossible to replicate.
Because of this market incompleteness, a risk-neutral probability measure cannot be ob-
tained from the snow level index and must be extracted from elsewhere. Brix, Jewson,
and Ziehmann (2002) suggest using already quoted weather contracts whose prices are
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highly correlated with the underlying of the weather option in valuation. Hamisultane
(2008) points out that the obstacle with this strategy is that already quoted contracts are
not yet sufficiently liquid. Thus, Monte-Carlo pricing method will give unreliable prices.

Equilibrium pricing approach is a utility-based pricing approach where the prob-
lem of market incompleteness is addressed. The pricing method introduced by Cao and
Wei (2004), as an extension of Lucas (1978) theory of asset pricing in a one-good, pure ex-
change economy, incorporates weather as a state variable in the economy. In their model,
uncertainties in a two-state economy are explained by the dividend process and a state
variable representing the weather condition. Cao and Wei (2004) specialize the model to
temperature derivatives by proposing a dynamic system for the daily temperature. The
price of the derivative can be found using the specified temperature process, agents pref-
erences and the dividend process. The set-up in Cao and Wei (2000) can ble implemented
on other weather variables, including snow level, as long as a dynamic process for the
daily weather variable can be suggested.

4.3.2 Indifference pricing method

The indifference pricing method is an utility based approach which has been presented
by Brockett et al. (2006) and Xu et al. (2007). Expected utility optimization is an useful
framework when deciding whether to take on a project or not. A project is accepted if the
expected utility increases. This method is different from other pricing methods because
it is based on the basic principle of equivalent utility and makes use of investors risk
preferences and a corresponding utility function (Alexandridis & Zapranis, 2013).

An utility function is needed in order to maximize an investor’s wealth. In the
following, a negative exponential utility function has been used in order to derive the
indifference pricing formula:

U(X) = − exp(−λX) (3)

where λ is the absolute risk aversion parameter and X is wealth. We follow the
framework of Brockett et al. (2006) and Xu et al. (2007) as represented in Alexandridis
and Zapranis (2013) where a two-date economy is assumed. The market consists of a
buyer and a seller who both wish to construct their portfolio in a way that optimize their
terminal wealth at the terminal day T . First, we consider the portfolio choice of the
buyer. The buyer has initial wealth Xb in which an amount ab must be invested in the
risky production activity, and the rest (Xb−ab) in a risk-free asset. The risky production
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activity depends on weather conditions and has the return rb. rf denotes the return of
the risk free asset. The value of this portfolio at time T is given by:

Xw
b
o = (Xb − ab)qf + abqb (4)

where qf = 1 + rf and qb = 1 + rb. Then, we include the possibility of investing an
amount in a weather derivative. Here, the buyer can buy k shares of the weather contract
for a price Fb. The value of this portfolio at time T is given by:

Xw
b = (Xb − ab − kFb)qf + abqb + kWT (5)

where WT is the payoff at time T related to the predetermined weather index. The
payoff depends on the tick size θ:

WT = θmax (K −Hi, 0)

The setup is similar for the seller, which spends as on investing in a market portfolio with
risky market return of rs. Without the possibility to sell k units of a weather contract,
the value of this portfolio is given by:

Xwo
s = (Xs − as)qf + asqs

The value of the portfolio when including the possibility to sell k shares of a weather
derivative is:

Xw
s = (Xs − as − kFs)qf + asqs − kWT

Using this framework we will in the following derive the buyer’s indifference price. The
optimal portfolio choice ab is found when the buyer is indifferent between including the
weather derivative in the portfolio or not. Hence, we have to equalize the expected utility
of the two strategies (4) and (5):

supabE[u(X
wo
b)] = supabE[u(X

w
b )] (6)

We are interested in a closed form solution of the indifference price. Thus, we need to
find the certainty equivalent (CE) of the utility function. The CE can be approximated
by using second order Taylor expansion of U(X) evaluated at the point EX. We know
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that:
E[U(X̃)] = U(X̂) (7)

where X̂ is certainty equivalent wealth and X̃ is the stochastic wealth. Second-order
Taylor expansion of U(X̃) evaluated at the point EX gives us:

E[E(X̃)] ≈ E[U(EX) + U ′(EX)(X̃ − EX) +
1

2
U ′′(EX)(X̃ − EX)2]

= U(EX) +
1

2
U ′′(EX)E[(X̃ − EX)2]

= U(EX) +
1

2
U ′′(EX)σ2

X̃
(8)

By approximation

U(X̂) ≈ U(EX) + U ′(EX)(X̂ − EX) (9)

Set (8) ≈ (9):

U(EX) +
1

2
U ′′(EX)σ2

X ≈ U(EX) + U ′(EX)(X̂ − EX)⇔

X̂ = EX +
1

2

U ′′(EX)

U ′(EX)
σ2
X̃

(10)

From the utility function in (3):

U ′(X) = λ exp(−λX) and U ′′(X) = −λ2 exp(−λX)

Inserting this into equation (10):

X̂ ≈ EX +
1

2

−λ2 exp(−λEX)

λ exp(−λEX)
σ2
X̃

= EX − 1

2
λσ2

X̃
= CE (11)
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where EX is the expected wealth and σ2
X̃

is the variance at time T . The CE is the
guaranteed return an agent require to be indifferent between this safe return and a risky
return (Copeland, Weston, & Shastri, 2014, p. 52).

Next, we replace the expected utility in (6) by its certainly equivalent:

supab [E(X
wo
b)−

λb
2
σ2(Xwo

b)] = supab [E(X
w
b )−

λb
2
σ2(Xw

b )] (12)

Setting (4) and (5) into (11), we obtain expression for the certainly equivalent of the
wealth, with and without derivative:

CEw
b
o = xbqf + ab(E(qb)− qf )−

λb
2
a2bσ

2
qb

(13)

CEw
b = (xb − kFb)qf + ab(E(qb)− qf ) + kE[W ]− λb

2
a2bσ

2
qb
− λb

2
k2σ2

W + λbabkcov(qb,W )

(14)

where E(qb) is the expected qb and E(W ) is the expected payoff at time T of the weather
derivative. σ2

qb
, σ2

W and cov(qb,W ) denotes the variances and covariance between qb and
W , respectively. Using first order conditions on (13) and (14) w.r.t. ab we obtain the
optimal a∗b :

CEw
b
o′(ab) = E(qb)− qf − λbabσ2

qb
= 0

awb
o∗ =

E(qb)− qf
λbσ2

qb

(15)

CEw
b
′(ab) = E(qb)− qf − λbabσ2

qb
+ λbkcov(qb,W ) = 0

awb
∗ =

E(qb)− qf + λbkcov(qb,W )

λbσ2
qb

(16)

awb
∗ is then the optimal amount of wealth the buyer invests in risky production activity.

This amount decreases with higher negative covariance between return on risky production
and payoff of the derivative. A higher negative covariance implies receiving payoff from
the derivative when it is most needed. Thus, it is more attractive for the buyer to invest
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in the weather derivative. Setting awo∗b into (13) and aw∗b into (14) yields:

CEw
b
o∗ = xbqf +

(E(qb)− qf )2

λbσ2
qb

−
λb(E(qb)− qf )2σ2

qb

2λ2bσ
4
qb

CEw
b
o∗ = xbqf +

(E(qb − qf )2

2λbσ2
qb

(17)

and

CEw
b
∗ = (xb − kFb)qf +

(E(qb)− qf + λbkcov(qb,W ))(E(qb)− qf )
λbσ2

qb

+ kE(W )

−
λb(E(qb)− qf + λbkcov(qb,W ))2σ2

qb

2λ2bσ
4
qb

+
λb(E(qb − qf + λbkcov(qb,W ))(kcov(qb,W )

λbσ2
qb

− λbk
2σ2

W

2

CEw
b
∗ = (xb − kFb)qf +

(E(qb)− qf + λbkcorr(qb,W )σqbσW )(E(qb)− qf )
λbσ2

qb

+ kE(W )− (E(qb)− qf + λbkcorr(qb,W )σqbσW )2

2λ2bσ
2
qb

+
(E(qb)− qf + λbkcorr(qb,W )σqbσW )(kcorr(qb,W )σW )

σqb
− λbk

2σ2
W

2
(18)

The two expressions for certainly equivalent, (17) and (18), is now set equal. Solving for
Fb yields the indifference price for the buyer 1:

Fb =
1

qf
(E(W ) +

1

2
λbkσ

2
W (corr2(qb,W )− 1)− σW

σqb
(E(qb)− qf )corr(qb,W )) (19)

=
1

qf
(E(W ) + πb)

with

πb =
1

2
λbkσ

2
W (corr2(qb,W )− 1)− σW

σqb
(E(qb)− qf )corr(qb,W ))

1The indifference price here is different from the indifference price found in Alexandridis and Zapranis
(2013). This is because of calculation error in Alexandridis and Zapranis (2013). See section A.1 in
appendix for full derivation of the indifference price equation.
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where corr(qb,W ) is the correlation between the return on risky production activity and
the payoff of the derivative.

The price Fb consists of the discounted value of the expected payoff E(W ) and a risk
premium πb. Assuming λb > 0 and corr(qb,W ) < 0, the first term in πb will always be
negative. Also assuming E(qb) − qf > 0, the second term will be positive. Hence, the
sign of the risk premium depends on the size of the parameters. With a high correlation
between return on risky investment and derivatives payoff, the first term becomes smaller
and the second term becomes larger. With a low risk aversion and a high expected return
on production, the risk premium will be positive. The price of the seller can be found in
a similar way:

Fs =
1

qf
(E(W )− 1

2
λskσ

2
W (corr2(qs,W )− 1)− σW

σqs
(E(qs)− qf )corr(qs,W )) (20)

=
1

qf
(E(W ) + πs)

with

πs = −
1

2
λskσ

2
W (corr2(qs,W )− 1)− σW

σqs
(E(qs)− qf )corr(qs,W ))

The sign of πs depends on the correlation between payout and market return. If the
correlation is negative, the payout is high when the market return is low. Hence, the
seller requires a positive premium. If the correlation is positive, the seller’s payout is high
when the market return is high. The seller will therefore require a lower price on the
weather derivative, so the premium is negative. When the seller is risk neutral, λs = 0,
and the correlation coefficient is zero, the price of the derivative is equal to the expected
value of the payout. Trading of the derivative between seller and buyer can only take
place if the price the buyer is willing to pay is higher than the price the seller demand.
This can only happen if

− (E(qb)− qf )corr(qb,W )

σqb
> −(E(qs)− qf )corr(qs,W )

σqs
(21)

There are several drawbacks related to the model. This is a very parameter rich
model and many of the parameters that need to be estimated is uncertain. This results in
different prices for different estimates. Also, utility functions are dependent on investors
risk preferences. Brockett et al. (2009) state that other objective functions such as the
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power utility function and the mean-variance utility function can be applied. The latter
one has been widely cited in literature and also proposed by Brockett et al. (2006). They
expect the results would probably differ under different assumptions and suggest that
investors adopt other objective functions if more appropriate. We cannot know the real
utility function of an investor and extra care must be taken when choosing an utility
function.

4.3.3 Pricing by ADS, Historical densities and Edgeworth densities

A pricing methodology for snow level options based on the methodologies of Alaton et
al. (2002), Rubinstein (2000) and Stuart and Ord (1987) was proposed by Beyazit and
Koc (2009). First, Beyazit and Koc (2009) follow the pricing method proposed in (Alaton
et al., 2002) which was derived from the framework of Black and Scholes (1973). The
paper focuses on temperature derivatives since temperature is the most used underlying
variable. However, the pricing method can be applied on any weather parameter and
here we will present it with snow level as the underlying variable. Alaton et al. (2002)
start by finding a stochastic process describing the weather parameter, St. From the daily
snow level values St, form Hi as the yearly cumulative snow level for year i. Extract the
expected mean and variance from this series. By either defining a process describing daily
snow level movements or by using historical data of n years we have that:

E(Hi) = µn and V ar(Hi) = σ2
n

Hi =
∑T

t=1 St, where St is daily snow level and Hi is N ∼ (µn, σ
2
n). As Beyazit and Koc

(2009) we will for simplification use historical mean and variance values in our application.
Recall from section 4.1 that the discounted payoff of the snow level put option is

p(t) = θ exp(−rf (T − t0))E[max (K −Hi), 0] (22)

where θmax(K − Hi) is the payoff the holder of the put option receives if the strike is
higher than actual snow level, with tick size θ. The term exp(−rf (T − t0)) represents
the discount factor. Here, rf is the risk free rate, T denotes the terminal value and t0 is
present time. Equation (22) represents the discounted payoff of the put option at time t0.
The magnitude of the payoff is dependent on the tick size θ and the strike level K. Each
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year’s cumulative snow level must be standardized by using the following formula

x =
Hi − µn
σn

The price of the claim (22) is then:

= θ exp(−rf (T − t0))
∫ K

0

(K − x)fHi(x)dx

= θ exp(−rf (T − t0))[(K − µn)(φ(αn)− φ(−
µn
σn

) +
σn√
2π

(exp(−α
2
n

2
)− exp(−1

2
(
µn
σn

)2)]

(23)

σn , µn, φ denote the standard deviation of cumulative snow level, mean of annual cumu-
lative snow level and cumulative distribution function for standard normal distribution,
respectively. The parameter of cumulative distribution function αn is K−µn

σn
. Equation

(23) displays the pricing formula of the put option in terms of normal distribution. As
mentioned earlier, cumulative snow level is not normal distributed. The mean of cumula-
tive snow level are used in the method of Alaton et al. (2002). Thus, each historical year
are therefore given the same weights despite different payoff.

Still assuming normal distribution, Beyazit and Koc (2009) use a version of HBA to
modify the pricing method by giving years with different payoffs different weights using
historical densities, a(x). First, the probability density function is found using the first
two moments from historical data

a(x) =
1

σ
√
2π

exp[−(x− µx)2/(2σ2
x)] (24)

From the calculated a(x) we observe that years with low snow level values and thus high
payoff are given corresponding large weights. The price of the snow level put option is
now given by

p(t) = θ exp(−rf (T − t0))
1∑n

i=1 ai(x)

n∑
i=1

ai(x)max(K −
T∑
t=1

Si,t, 0) (25)

Both of the above pricing formulas (23) and (25) assume a normal distribution in the
weather parameter. However, cumulative snow level is not normal distributed and thus,
the modified formula (25) is not suitable for direct application (Beyazit & Koc, 2009).

To account for the non-normality in the data, Beyazit and Koc (2009) propose the use
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of “Generalized Edgeworth Series Expansions”. This method is used by Rubinstein (1994),
Rubinstein (2000) and Jarrow and Rudd (1982) in the framework of option pricing. The
Black scholes formula assumes that the distribution of the underlying asset is lognormal
with skewness = 0 and kurtosis = 3. Following Jarrow and Rudd (1982) the present
value of a weather derivative can be approximated by incorporating values of skewness
and kurtosis different from the normal distribution by using edgeworth series expansion.
The method uses a more manageable alternative distribution, a(x), to approximate the
true underlying probability distribution, f(x). Following Stuart and Ord (1987) the ad-
justed edgeworth density can be written in terms of its nth order cumulants and Hermite
polynomials, denoted as kn and hn respectively (Lee, 1998, p. 74):

f(xi) = [1 +
1

3!
k3h3(xi) +

1

4!
k4h4(xi) +

10

6!
k24h6(xi) +

1

5!
k5hh(xi)

+
35

7!
k3kd4h7(xi) +

280

9!
k3k3h9(ki) +

56

8!
k3k5h8(xi) +

35

8!
k24h8(xi)

+
2100

10!
k23k4h10(xi) +

15400

12!
k43h12(xi)]a(xi) (26)

kn are parameters that can be expressed in terms of the different moments. Expansions
higher than the forth moment can lead to fluctuations at the tails of the distribution
leading to potential negative values. Hence, in most applications only the first four mo-
ments (mean, variance, skewness and kurtosis) are used (Johnson, Kotz, & Balakrishnan,
1994, p. 30). Because the first four moments affect option pricing, Jarrow and Rudd
(1982) point out that by including these, the most important influence from the underly-
ing (true) distribution are taken into account. By using skewness and kurtosis extracted
from the historical data, a(xi) can be modified and transformed to general edgeworth
density:

f(xi) = [1 +
1

6
ξ(x3i − 3xi) +

1

24
(κ− 3)(x4i − 6x2i + 3)

+
1

72
ξ2(x6i − 15x4i + 45x2i − 15)]a(xi) (27)

By construction, the first moment of the true distribution is identical to the first moment
of the alternative distribution. The difference between the true underlying distribution
f(xi) and the alternative distribution a(xi) (normal distribution) is then expressed by the
general edgeworth series consisting of the higher order moments of both distributions.

A normal distribution is characterized by values of skewness and kurtosis of 0 and 3,
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respectively. Then, f(xi) = a(xi). Our data contains values of skewness and kurtosis that
indicate non-normality. The second term in equation (27) adjusts a(xi) for any differences
in skewness between a(xi) and f(xi). The third term adjusts a(xi) for excess kurtosis.
The fourth term consists of skewness of second order (Jarrow & Rudd, 1982). The third,
fourth and sixth Hermite polynomials are also used in the equation. This is beyond the
scope of our thesis, and a description of Hermite polynomials will not be conducted here.
Using f(xi) as the true underlying distribution of the snow level at maturity, the expected
value of a snow level put option can be obtained. In (25), replace a(xi) with the adjusted
edgeworth densities f(xi) from (27). Thus, the snow level put price when incorporating
the first four moments can be obtained as follows:

p(t) = θ exp(−rf (T − t0))
1∑n

i=1 fi(x)

n∑
i=1

fi(x)max (K −
T∑
t=1

Si,t, 0) (28)

By applying general edgeworth series expansion we have corrected for non-normality
and obtained the expected value for the snow level option at maturity in terms of the
alternative distribution (normal distribution). Unfortunately, this expansion is only an
approximation. Only probabilities for the 20 observed values are taken into account.
Therefore,

∑n
i=1 f(xi) 6= 1 because of possible omitted values. To adjust for this, after

the expansion, the probabilities are rescaled by also dividing by
∑n

i=1 f(xi) (Rubinstein,
1998).
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5 Empirical application to case: The Use of Snow Level

Options for Vassfjellet Skiheiser AS

We will in the following apply the same pricing methods as have been applied in earlier
studies related to precipitation derivatives. The pricing of weather derivatives related
to the case of winter tourism has to our knowledge only been done by Beyazit and Koc
(2009). In addition we will compare the approach by Beyazit and Koc (2009) with a pricing
method based on the indifference method. Xu et al. (2007) applied the indifference pricing
method on rainfall derivatives in the agriculture sector in Germany. To our knowledge,
no one has done this to the ski resort sector.

Ski resorts in Norway are highly affected by weather risk (Aaheim et al., 2009).
Vassfjellet Skiheiser AS, located 8 km south of the city Trondheim is one of those. During
the relevant ski season of December to April, the sum of cumulative snow level in Løksmyr
(the weather station near Vassfjellet) varied between 1141 cm and 8799 cm over the last 20
years. The correlation between cumulative snow level and operating income is 0.84. "For
Vassfjellet, the amount of people visiting is highly dependent on the snow level", operating
manager Per Eyvind Tellungen said to the local news paper Adresseavisa (Adressa, 2016).
This is also the case for other ski resorts in the area. Arnulf Erdal, managing director at
Oppdal Skisenter said they have more guests when there is high levels of natural snow,
compared to artificial snow. Looking at the years 1996 to 2015, the standard deviation
in cumulative snow level is 2324 cm. Because of high correlation with operating income,
a snow level derivative may be used to smooth operating income.

We will in the following calculate both the seller’s and Vassfjellet’s willingness to
sell/buy such a derivative by using the indifference pricing method. Then we will compare
these prices with marked prices calculated using the methods proposed in (Beyazit &
Koc, 2009). Lastly we will use these prices and check whether Vassfjellet can reduce its
volatility in operating income by buying a snow level put option. Following Beyazit and
Koc (2009) we will use a linear approach when pricing the snow level put option. Hence,
the ski resort receives a fixed amount of money per centimeter of cumulative snow level
below the strike level. From the linear relationship between cumulative snow level and
operating income represented in equation (1), it is seen that Vassfjellet’s operating income
decreases by 800 kr per cm of cumulative snow level decreased. We will therefore in the
further application set the tick size equal to 800 kr. The pricing methods can be used by all
ski resort establishments, but the tick size must be changed to account for the individual
ski resort’s relationship between snow level and operating income. This relationship will
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vary for different ski resorts and the tick size is therefore a firm-specific value. Based
on this information, a weather derivative on the snow level data from weather station
Løksmyr can be designed. In this case, a payoff-profile similar to a put option is relevant.
When snow level is below strike, Vassfjellet will recieve compensation. For snow levels
above strike, the option will not be exercised. The price of the option must be paid in
both cases.

The strike level for Vassfjellet is set equal to 2500 cm. By this, Vassfjellet is hedging
against the years with snow level below 2500 cm. This would only cover the worst years.
From the historical data it is seen that they would have exercised the option in 2014
and 2015, the two years with the lowest operating income. A cumulative snow level of
2500 cm is far below the average level of 4341 cm. There is several reasons for why
we are choosing a relative low strike value. First, choosing a higher strike level will be
more expensive for the buyer. The seller of the put option requires a higher premium
since the payoff increases. Second, the purpose of the hedge is not to increase average
revenues, but to hedge against the worst scenarios. A year with cumulative snow level
below 2500 cm may give a significant low operating income, and in the worst case can lead
to bankruptcy. Furthermore, we observe from the data plot in figure 5 that snow level
values above approximately 3000 cm will not significantly affect the operating income.
Hence, hedging against these years may not be relevant. The strike level depends on how
risk averse the buyer is. With a strike set to 3500 cm, the buyer is more risk averse, and
the option would have been exercised in 11 out of 20 historical years. A strike level of
4500 cm is for extremely risk averse buyers who want to hedge against all bad winters.
Later we will compute the prices for strikes between 2500 cm and 4500 cm, but we will
use the strike level of 2500 cm in the further application. The payoff received from the
put option at the expiration date T depends on the strike level K, the tick size θ and the
cumulative snow level index Hi:

WT = max(K −Hi, 0)θ

5.1 Indifference pricing method

In the following empirical application, an indifference price for Vassfjellet is found. The
utility of Vassfjellet’s operating income, X, is maximized using a negative exponential
utility function

U(X) = − exp(−λX)

The expected payoff E(W ) and the payoffs standard deviation σw are found using
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historical data. They are 102 440 kr and 261 893 kr respectively. Furthermore, the risk
aversion parameter λmust be defined. The relative risk aversion (RRA) parameter reflects
how much risk the market participant is willing to take on (Copeland et al., 2014). In
general, it is difficult know the precise estimate of the relative risk aversion parameter
(Gandelman & Murillo, 2015). The Federal Reserve Bank of St. Louis estimates it to be
within the range -0.1 to 2.5 in Norway (Gandelman & Murillo, 2015). The buyers relative
risk aversion is set to average 1.25 and operating income X is set to historical average of
5 039 460 kr. The buyers absolute risk aversion can be found by:

ARA(X) =
RRA(X)

X
=

1.25

5039460
= 2.381× 10−7

Following Monoyios (2004, p. 251) the sellers absolute risk aversion is 1×10−6. Oslo Stock
Exchange All-Share Index (OSEAX) approximates as market portfolio. 20 years of closing
data was obtained and average total return of 14.9% was found as the risky market return
rs. σrs amounts to 0.28. Furthermore, correlation between market return and payoff is
calculated to -0.05. The correlation is dependent on the payoff of the derivative and
changes when the strike level changes. There is generally a low correlation between the
market return and the payoff of the weather derivative (Brockett et al., 2009). Risk free
rate is set to 1.5%. This is based on a five year norwegian government bond quoted
at 0.89 in year 2016 (Norges Bank , 2017). We are experiencing times with particualry
low interest rates, and therefore 0.6% is added to this rate. Some market participants
argue for increasing the risk free rate further. They claim such low interest rates are not
sustainable in the longer term (PWC , 2016). Our focus is short term risk, and therefore
rf is set to 1.5%.

Additionally, the buyer’s return on production activity rb and correlation between
this return and the payoff of the derivative is needed. Return on net operating assets
(RNOA) is chosen as measurement of Vassfjellet’s production return. The production
activity is the main activity driving Vassfjellet’s revenues and RNOA captures the return
on the company’s assets that are generating revenue.

RNOA =
OI× 100

Avg NOA
= 42, 72% (29)

where net operating assets (NOA) is found by deducting operating liabilities from oper-
ating assets. The correlation between rb and the payoff W is calculated to be -0.40. This
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parameter changes with the strike.

Table 4: Indifference Pricing Method: Common Put Option Characteristics for Buyer and Seller

Parameters
Tick size θ 800
Strike level K 2500
Time to maturity T 1
Expected payoff E(W ) 102 440
Standard deviation σW 261 893
Risk-free rate rf 1.5 %
Contract size k 1

Table 5: Indifference Pricing Method: Individual Put Option Characteristics

Parameters Buyer Seller
Expected return on risky activity, E(rb) and E(rs) 42% 14%
Standard deviation, σqb and σqs 38% 28%
Correlation, corr(qb,W ) and corr(qs,W ) -0.40 -0.05
Absolute risk aversion, λb and λs 2.38 · 10−7 10−6

The balance sheet lists assets, liabilities and stockholders equity. The income state-
ment reports how shareholders’ equity change as a result of business activities. We are
trying to hedge the snow level, which again affects the operating posts in the annual
reports. A reformulation of the income statement and the balance sheet is therefore
needed in order to more clearly see the results that come from operations. Following the
method of Penman (2012) the reformulations are shown in section A.3 in appendix. This
method allows us to reformulate the balance sheet into operating and financial assets,
and operating and financial liabilities. From this, net operating assets can be found. In
the reformulated income statement we summarize the operating activities and report the
operating income. The operating income is combined with income and expenses from
financing activities to give the comprehensive income. Thus, this reformulation will give
us the operational values we need.

Results
Based on the characteristics in table 4 and 5, equations (19) and (20) determine the
indifference price of the buyer and potential seller. With a strike of 2500, the buyer’s and
the seller’s indifference price is 140 775 kr and 140 719 kr, respectively. Table 6 shows
the indifference prices for a range of different strike levels. We can see that the price for
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the buyer always exceeds that of the seller. Hence, equation (21) holds and trading can
happen between the seller and the buyer. This can also be seen in figure 9. The area
between the two lines reflects a price range of possible prices. These prices are based on
a contract size of one.

Table 6: Indifference Pricing Method: Put Price

Strike Buyer Seller
2000 63 172 42 144
2250 125 551 78 954
2500 203 219 140 719
2750 283 712 208 762
3000 382 254 292 331
3250 506 654 407 016
3500 643 831 537 349
3750 819 394 687 859
4000 1 024 012 852 638
4250 1 232 075 1 027 373
4500 1 442 451 1 212 062

Figure 9: Indifference prices of seller and buyer

Figure 10 graphs the indifference prices for different contract size. By increasing
the number of contracts traded between the seller and buyer, the indifference prices will
change. Vassfjellet’s indifference price decreases with the number of contracts. By buying
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one contract with strike 2500 cm, they will protect themselves from the worst downside
risk. A second contract can be bought if they wish to smooth revenues even more. Then
they receive double payoff during bad winters, but also have to pay double price. The
second contract is not as crucial as the first one. The variance of the payoff is also very
high. Hence, the payoffs are uncertain and the buyer is therefore not willing to pay the
same amount per contract when the number of contracts increase. Their indifference price
is therefore less per contract. Same reasoning holds for k > 2. The seller of the weather
derivative requires a higher price for each contract as the number of contracts traded
increase. The magnitude of k on the sellers indifference price is

∂πs
∂k

= −1

2
λsσ

2
W (corr2(qs,W )− 1)

If λs = 0 and |corr(qs,W )| = 1 there will be no effect on the sellers indifference price
when increasing contract volume. In this case, the seller has a risk aversion of 10−6 and
a correlation coefficient of −0.05. Therefore, the indifference price of the buyer increase
with 33 700 kr per additional contract k. Figure 10 shows that for k < 2.55, the buyers
indifference price is higher than the sellers, and trading can happen. In this area, both
parties will benefit from engaging in trading of a contract with price between Fs(k) and
Fb(k) (Xu, Odening, & Musshoff, 2008). After this point the seller will require a price
higher than what the buyer is willing to give.

Figure 10: Indifference prices of seller and buyer and contract size
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The aim of the case is to check whether Vassfjellet can hedge the downside risk by
buying the constructed weather derivative. First, we determine whether Vassfjellet would
have exercised the option for all the historical years (2009-2015). The payoff each year
will then be (K − Hi, 0) × 800. For the years where the option is exercised, the payoff
are added to the operating income and the price of the option is deducted. For the years
where Hi > K, the operating income will be reduced by the cost of the put option. This
gives us the operating income each year when assuming Vassfjellet bought the derivative.

Table 7: Indifference Pricing Method: Operating Income with and without Snow Level Put Option

Year Snowlevel Payoff OI with derivative OI without derivative
2009 8754 0 7 185 623 7 326 398
2010 4620 0 6 878 314 7 019 089
2011 6421 0 6 757 424 6 898 199
2012 5651 0 4 838 634 4 979 409
2013 3425 0 5 624 157 5 764 932
2014 1141 1 087 200 1 526 467 580 042
2015 1965 428 800 2 995 378 2 708 153

As seen in table 7, the winter season in 2014 was extremely bad with 1141 cm of
cumulative snow level. If Vassfjellet purchased a put option with a strike level of 2500
cm, they would have exercised the option and realized a payoff of 1 087 200 kr. They
would have paid the price of the put option of 140 775 kr and obtained net operating
income of 1 526 467 kr. Without a weather contract in place, net operating income was
580 042 kr. During 2013, cumulative snow level was above strike of 2500 cm. The weather
option would not have been exercised. Operating income of 5 764 932 kr would have been
reduced by the price of the put option, 140 775 kr. This would give an net operating
income of 5 624 157 kr. Without a weather contract, operating income would have stayed
at 5 764 932 kr. See table 7 for more scenarios. For the years 2009-2015, Vassfjellet’s
operating income without a contract had a standard deviation of 2 531 641 kr. This
amount is reduced to 2 152 529 kr when including a weather contract, a reduction of 379
111 kr.

As mentioned earlier, there is several drawbacks with this method. Many of the
parameters are hard to estimate, and different people pricing the exact same option may
use different estimates and hence, get different price. The indifference pricing method is
also sensitive to changes in the input parameters. Because of this, combined with the
difficulty in obtaining correct estimates for the inputs values, we will in the following
present a sensitivity analysis on some of the different parameters. The parameters used
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in the sensitivity analysis are absolute risk aversion for both buyer and seller, return on
production, return on market portfolio and the correlation between the two returns and
the payoff of the derivative.

Table 8 and 9 show how the indifference prices change with absolute risk aversion
and correlation. An agent’s risk aversion is hard to measure. We used an estimate of 1.2
based on the average of the range proposed by Gandelman and Murillo (2015). Others
may use other sources which will result in a different price, seen in row 5 in both tables.
The seller’s indifference price range from 104 211 kr to 177 228 kr within the range -0.1 to
2.5. Looking at the correlation between the derivatives payoff and the risky production
activity, the buyer’s indifference price varies from 120 072 kr to 286 601 kr within the
correlation interval of -0.1 to -0.7. The correlation is an important parameter because a
small negative increase will make the weather contract more attractive. This parameter
must be estimated and depends on the length of the time series of both payoff and the
return on risky production. In our case, because of a change in reporting setup, a time
series of six years is used when calculating the correlation. If earlier years had been made
available for us, the correlation may have been different.

Table 8: Sensitivity Analysis Buyer: Corr(qb,W ), ARA

ARA
-1.98E-08 9.92E-08 1.98E-07 2.38E-07 2.98E-07 4.00E-07 4.96E-07

-0.1 128 701 124 719 121 400 120 072 118 081 114 658 111 444
-0.2 155 792 151 930 148 712 147 425 145 494 142 174 139 058
-0.3 182 870 179 209 176 158 174 938 173 108 169 961 167 007

Corr -0.402 210 526 207 154 204 344 203 220 201 534 198 635 195 914
-0.5 236 985 233 968 231 453 230 448 228 939 226 346 223 911
-0.6 264 022 261 448 259 302 258 444 257 157 254 944 252 866
-0.7 291 046 288 995 287 285 286 601 285 575 283 812 282 156

Table 9: Sensitivity Analysis Seller: Corr(qs,W ), ARA

ARA
-8.33E-08 4.17E-07 8.33E-07 1.00E-06 1.25E-06 1.67E-06 2.08E-06

0.2 74 250 90 468 103 983 109 389 117 498 131 013 144 528
0.15 80 194 96 708 110 469 115 973 124 230 137 991 151 753
0.1 86 152 102 877 116 814 122 389 130 751 144 689 158 626

Corr -0.0508 104 211 121 061 135 103 140 720 149 145 163 186 177 228
-0.1 110125 126850 140 787 146 362 154 724 168 662 182 599
-0.15 116 154 132 667 146 428 151 933 160 190 173 951 187 712
-0.2 122 196 138 414 151 929 157 335 165 444 178 959 192 474

45



Return on risky production was also found from the six years of usable historical data.
Therefore, a sensitivity analysis is also conducted on this parameter since it may change
when using more years. A change in the risky return of production and risky market
return will lead to a significantly change in the buyer’s and the seller’s indifference price,
respectively. In the case of the buyer, an 14% increase from initial value will lead to an
increase in her indifferent price by approximately 38 000 kr. The correlation coefficient
changes with the strike level. A higher strike will give a higher payoff which results in a
higher correlation. This is because the option is more often exercised and less zero values
will appear in the payoff. Similar tables for strike level of 3500 is shown in the section
A.2 in appendix.

An important reason to form a sensitivity analysis is to check whether for some
levels, the price the buyer is willing to give is below the price the seller requires. Table 10
with initial price of 203 220 reflects this. With a decrease in risky production return of
approximately 14% and in addition a decrease in correlation from −0.4022 to −0.3, the
buyers indifferent price is getting close to the sellers.

Table 10: Sensitivity Analysis Buyer: Corr(qb,W ), qb

qb
0.996 1.138 1.280 1.423 1.565 1.707 1.850

-0.1 91 691 101 152 110 612 120 072 129 533 138 993 148 453
-0.2 90 663 109 583 128 504 147 425 166 346 185 266 204 187
-0.3 89 795 118 176 146 557 174 938 203 319 231 700 260 082

Corr -0.4022 89 075 127 123 165 171 203 220 241 268 279 316 317 365
-0.5 88 542 135 844 183 146 230 448 277 750 325 051 372 353
-0.6 88 157 144 920 201 682 258 444 315 206 371 968 428 731
-0.7 87 933 154 156 220 379 286 601 352 824 419 046 485 269

Table 11: Sensitivity Analysis Seller: Corr(qs,W ), qs

qs
-0.114 1.029 1.086 1.144 1.200 1.258 1.315

0.2 342 694 130 767 120 171 109 389 98 978 88 382 77785
0.15 290 952 132 007 124 060 115 973 108 165 100 218 92271
0.1 239 041 133 078 127 780 122 389 117 184 111 885 106 587

Corr -0.0508 81 418 135 286 137 979 140 720 143 366 146 059 148 753
-0.1 29 710 135 673 140 971 146 362 151 567 156 866 162 164
-0.15 -23046 135 899 143 847 151 933 159 741 167 688 175 636
-0.2 -75 970 135 957 146 553 157 335 167 746 178 342 188 938
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Because of the drawbacks with this method, it would be wise to compare the results
with other pricing methods. We will in the next section price the same snow level put
option following the pricing method in (Beyazit & Koc, 2009).

5.2 Pricing by ADS, Historical densities and Edgeworth densities

The three pricing methods in Beyazit and Koc (2009) is based on different assumptions
and will be applied to the case of Vassfjellet.

Pricing method of Alaton, Djehiche and Stillberger (ADS)
The option pricing formula for snow level put option, assuming normal distribution is
given in equation (23). (T − t0) is in our model set to 1, assuming that when winter
season end, a contract for next period is entered. The mean of 20 years of cumulative
snow level is 4341 cm with corresponding standard deviation of 2324 cm. The parameter
of cumulative distribution function α is then -0.79. With a strike level of 2500 and tick
size of 800 kr, the price Vassfjellet has to pay for the snow level put option using Alaton
et al. (2002)’s pricing formula is calculated to 268 027 kr.

Table 12: ADS: Put Option Characteristics

Parameters
Time to maturity Tn − t 1
Tick size θ 800
Strike level K 2500
Mean µn 4341
Std. deviation σn 2324
αn -0.79
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Figure 11: Yearly Cumulative Snow level around Mean

This method assumes a normal distribution on the cumulative snow level. This
appears not to be the case. From figure 2 it is seen that cumulative snow level exhibits
both right skewness and kurtosis. The yearly cumulative snow level observations appear
more frequently below average than above during the 20 years of historical data. Also,
more extreme values are found above average of 4341 cm. This can be observed in figure
11. In practice, cumulative snow level will never appear below zero and the possibility
of values near zero during a winter season is small. But, extreme winters can occur
and therefore the high kurtosis. There are also several observations in our sample with
values just below average and hence the right skewness. As discussed in the chapter of
data analysis, yearly cumulative snow level fails the normality test and the assumption of
normal distribution does not hold in our case.

Historical densities
By still assuming normal distribution in the snow level, we use the historical densities
to price the snow level put option. Using the first two moments of the historical snow
level data and by standardizing the snow level, the historical densities a(x) were extracted
from the probability density function. The yearly values of a(x) can be seen in table 13.
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a(x) represents the different weights of the different put option payoffs. To check if the
standardization of yearly cumulative snow level is done correctly, the mean and variance
of column two in table 13 should be zero and one, respectively.

Table 13: Standarized Snow Level, Historical Densities, Edgeworth Densities

Year Standardized Historical Edgeworth
snow level densities, a(x) densities, f(x)

1997 1.563227291 0.000980336 0.001181653
1998 -0.67677615 0.000982102 0.001186226
1999 -0.55675292 0.000982007 0.001103198
2000 1.917704502 0.000980057 0.001273286
2001 -0.962853025 0.000982327 0.001364402
2002 0.433116087 0.000981226 0.00073572
2003 -0.907788604 0.000982284 0.001334323
2004 -0.624292874 0.00098206 0.001149994
2005 0.998386785 0.000980781 0.000915789
2006 -0.641500505 0.000982074 0.001161907
2007 -0.365318019 0.000981856 0.000975477
2008 -0.56793788 0.000982016 0.001110933
2009 1.898345916 0.000980072 0.001270662
2010 0.119937192 0.000981473 0.000756631
2011 0.894710804 0.000980863 0.000868059
2012 0.563463896 0.000981124 0.000755866
2013 -0.394140801 0.000981879 0.000993857
2014 -1.376696565 0.000982654 0.001458157
2015 -1.022649545 0.000982375 0.001393625
2016 -0.292185584 0.000981798 0.000930821

As pointed out in (Beyazit & Koc, 2009), this pricing method using historical densities
is a version of the historical burn analysis. In HBA the average payoff is used to determine
the option price. By applying a(x) to the pricing formula, different payoff will be given
different weights. As observed, the historical densities differ from each other. But, the
differences are very small and the put price will be very similar to one calculated with
the historical burn method seen in equation (2). The price Vassfjellet have to pay for
a snow level put option is calculated to be 101 011 kr using historical densities. In the
next section, the non-normality is taken into account by using General Edgeworth Series
Expansions.

General Edgeworth Series Expansion
Still assuming x is a standard normal variable, kurtosis and skewness are extracted from
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historical data. They are 2.29 and 0.71 respectively. Here, a(x) is replaced by the Edge-
worth densities f(x). Using this application, Vassfjellet has to pay 130 477 kr for the
snow level put option.

Table 14: ADS, Historical Densities, Edgeworth Densities: Put Price

Strike ADS Historical densities Edgeworth densities
2000 207 458 35 305 46 835
2250 234 923 61 573 80 589
2500 268 027 101 011 130 477
2750 307 306 140 449 180 365
3000 353 269 199 285 250 961
3250 406 385 285 322 349 488
3500 467 067 377 312 453 678
3750 535 659 489 206 575 554
4000 612 428 607 486 702 850
4250 697 553 725 766 830 146
4500 791 116 844 046 957 443

It is difficult to know which pricing method that is the best. Beyazit and Koc (2009)
emphasize that by using all three described methods, the price range derived reflects the
price scale for both buyer and seller. It is seen from figure 12 that for relatively small
strike levels, ADS price is higher than the two others. Both Edgeworth Densities and
Historical densities will catch up with the ADS price for strike levels of 4000 and 5000,
respectively. The Edgeworth densities price is higher than both of the two others for
strike levels above 4000. Hence, the ADS price is less sensitive to the strike level. General
edgeworth expansions are the only model adjusting for the non-normality in the data. We
will therefore use Edgeworh densities when checking if Vassfjellet can smooth revenues by
buying this snow level put option.

For the year 2014, assuming Vassfjellet purchased a snow level put option with strike
2500, the option would have been exercised since 1141 cm < 2500 cm. This results in
an operating income of 1 536 765 kr. Without the derivative, operating income nets to
580 042 kr. For the year 2013, the snow level option would not have been exercised. The
price of the derivative has already been paid and operating income nets to 5 634 455
kr. Without the purchase of the option, Vassfjellet’s operating income is 5 764 932 kr.
From 2013 - 2014, without a weather derivative operating income varied by 5 184 890 kr.
With a weather derivative in place, the variation is 4 097 690 kr. Thus, operating income
smooths out with the purchase of the weather contract.

Although this method adjust for the non-normality in the data, it still assumes a
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linear relationship between snow level and operating income. Improvements of the model
could be to incorporate a tick size that changes with the deviation from strike level. So
for lower values of Hi, the tick size increase. As discussed in subsection 4.3, the lower
bound of cumulative snow level is more crucial for a ski resort, and hence the tick size
should be higher for lower values of cumulative snow level.

Table 15: Edgeworth Densities: Operating Income with and without Snow level Put Option

Year Snowlevel Payoff OI with derivative OI without derivative
2009 8754 0 7 195 921 7 326 398
2010 4620 0 6 888 612 7 019 089
2011 6421 0 6 767 722 6 898 199
2012 5651 0 4 848 932 4 979 409
2013 3425 0 5 634 455 5 764 932
2014 1141 1 087 200 1 536 765 580 042
2015 1965 428 800 3 005 676 2 708 153

5.3 Comparing the pricing methods

We have now priced a snow level put option with some of the few pricing models available
on snow level that does not require building a dynamic model for the daily snow level.
The indifference pricing method reflects the individual buyer’s and seller’s willingness to
pay/sell, whereas the three pricing methods presented in (Beyazit & Koc, 2009) are a
measure of the market price of the derivative. The buyer’s indifference price derived here
reflects Vassfjellet’s willingness to buy the constructed snow level option. The price is
based on firm-specific characteristics and the tick size of 800 kr is unique for Vassfjellet.
Other ski resorts will get a different indifference price on the same option, depending on
their firm-specific parameters.

The prices obtained with ADS, Historical densities and General Edgeworth densities
are market prices that are the same for buyer and seller. For other buyers than Vassfjellet,
the only thing that would differ in the pricing is the tick size. The tick size depends on
each firm’s sensitivity to the snow level.
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Figure 12: Snow Level Put Option Prices

Despite large differences in the pricing methods, the edgeworth density price and the
indifference price for seller are surprisingly similar for the relevant strike level of 2500.
The price the seller requires for a snow level put option with strike 2500 is 140 720 kr.
The market price for same contract calculated with edgeworth densities is 130 477 kr. If
a seller of the contract is calculating the market price using historical densities, he will
underestimate Vassfjellet’s willingness to pay (distance between dotted grey line and green
line). The buyer’s price will be lower than the price the seller requires and may result
in the trade not happening. The General edgeworth pricing method is the only pricing
method adjusting for non-normality in the data, and this price lies in the middle of the
price range for all strike levels. The market for snow level derivatives has the last years
stagnated, according to Hamisultane (2008) this is partly because of the challenges in
correctly pricing snow derivatives. From the graph it is seen that the price of the contract
depends on which pricing method the individual agent use.
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5.4 Conclusion

Our aim in this study was to price a constructed snow level put option and check if Vass-
fjellet Skiheiser AS could smooth revenues by using this as a risk management strategy.
In order to price the put option, we first needed a tick size for Vassfjellet. This was found
by regressing cumulative snow level data on Vassfjellet’s operating income. Before pricing
the put option with the indifference method, all the relevant parameters were calculated
and discussed. Using these, seemingly fair prices for buyer and seller option were found.
To check if these prices were reasonable, the price of the put option was also calculated
using the methods proposed in Beyazit and Koc (2009). For a strike of 2500, the indif-
ference price of Vassfjellet (buyer) and seller was 293 219 kr and 140 719 kr, respectively.
The ADS, Historical Densities and Edgeworth Densities gave prices of 268 077 kr, 101
011 kr, 130 477 kr, respectively.

Further, the prices found using the Indifference method and Edgeworth densities were
applied to the case of Vassfjellet. The aim was to check if they can smooth operating
income by investing in the constructed snow level put option. As reported, with both the
indifference pricing method and the edgeworth density method, the variation in operating
income from 2013-2014 decreased with 1 087 200 kr with the purchase of the put option.
The standard deviation for operating income during the years 2009-2015 without a weather
contract was 2 531 641 kr. Reported in the table, the standard deviation for the same
years, but with a weather contract (strike 2500) in place was 2 152 529 kr. Hence, by
buying this specific contract, the variance in Vassfjellet’s operating income could have
been reduced. The purpose of this kind of hedging is to minimize the downside risk,
not maximize the cash flows. The result shows that the downside risk was minimized,
but Vassfjellet’s average operating income would also increase by buying a contract each
year from 2009-2015. The operating income without the put option was 5 039 560 kr
on average. For comparison, the average operating income with the purchase of the put
option was 5 115 142 kr.

Alaton et al. (2002) points out the importance of having a good model for the weather
parameter. For further studies or improvements, daily snow level models can be used
instead of extracting information from historical data. Also, as discussed in section 4.3,
examining the possibility to use a non-linear relationship for the tick size in the models
presented in Beyazit and Koc (2009) would also be an interesting approach.
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Appendix

A.1 Derivation of Buyers Indifference Price
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Which gives us the pricing formula:
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A.2 Tables for Sensitivity Analysis

Table 16: Sensitivity Analysis Buyer: Corr(qb,W ), ARA, Strike 3500

ARA
-1.98E-08 9.92E-08 1.98E-07 2.38E-07 2.97E-07 4E-07 4.96E-07

-0.2 491 756 475 294 461 576 456 089 447 858 433 707 420 423
-0.3 547 587 531 983 518 979 513 778 505 976 492 562 479 969
-0.4 603 360 588 957 576 954 572 152 564 951 552 568 540 944

Corr -0.52 670 891 658 402 647 994 643 831 637 587 626 851 616 772
-0.6 714 737 703 763 694 617 690 959 685 472 676 038 667 182
-0.7 770 339 761 594 754 307 751 391 747 019 739 501 732 444
-0.8 825 885 819 712 814 567 812 510 809 423 804 117 799 135

Table 17: Sensitivity Analysis Seller: Corr(qs,W ), ARA, Strike 3500

ARA
-8.33E-08 4.17E-07 8.33E-07 1.00E-06 1.25E-06 1.67E-06 2.08E-06

0.2 316 047 385 178 442 787 465 830 500 396 558 004 615 613
0.15 328 211 398 602 457 261 480 724 515 920 574 579 633 238
0.1 340 435 411 726 471 135 494 898 530 544 589 953 649 362

Corr -0.068 382 056 453 730 513 458 537 349 573 186 632 914 692 642
-0.1 389 930 461 221 520 630 544 393 580 039 639 448 698 857
-0,15 402 453 472 844 531 503 554 967 590 162 648 821 707 480
-0.2 415 037 484 168 541 777 564 820 599 385 656 994 714 603

Table 18: Sensitivity Analysis Buyer: Corr(qb,W ), qb, Strike 3500

qb
0.996 1.138 1.280 1.423 1.565 1.707 1.850

-0.1 340 490 360 022 379 554 399 086 418 618 438 150 457 682
-0.2 338897 377961 417 025 456 089 495 153 534 217 573 281
-0.3 337 990 396 586 455 182 513 778 572 374 630 970 689 565

Corr -0.5212 338 420 440 224 542 028 643 831 745 635 847 439 949 242
-0.5 338 234 435 893 533 553 631 213 728 873 826 532 924 192
-0.6 339 384 456 576 573 768 690 959 808 151 925 343 1 042 535
-0.7 341220 477944 614 668 751 392 888 115 1 024 839 1 161 563
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Table 19: Sensitivity Analysis Seller: Corr(qs,W ), qs, Strike 3500

qs
-0.114 1.029 1.086 1.144 1.200 1.258 1.315

0.2 947 514 509 968 488 090 465 830 444 336 422 459 400 581
0.15 841987 513 828 497 420 480 725 464 604 448 196 431 788
0.1 735 740 516 967 506 028 494 899 484 151 473 213 462 274

Corr -0.0684 372 510 522 245 529 732 537 349 544 705 552 192 559 679
-0.1 303 552 522 325 533 263 544 393 555 141 566 079 577 018
-0.15 193 704 521 864 538 272 554 967 571 088 587 496 603 904
-0.2 83 137 520 683 542 560 564 820 586 315 608 192 630 069
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A.3 Reformulation of Income Statement and Balance Sheet

Table 20: Tax distribution. Tax rate 25%

2015 2014 2013 2012 2011 2010 2009
Taxable Financial Items
Interest Income 329 289 317 11 249 51 195 137 979 35 326
Other Financial Income 308 21 267 0 17 749 9 799 47 227
Interest Expenses 279 545 334 891 175 618 138 643 26 166 43 728 28 287
Other Financial Expenses 10 131 6 279 13 531 12 421 11 552 25 472 14 946
Net Financial Items -289 039 -340 860 -188 565 -139 815 31 226 78 578 39 320

Distribution
Tax Official Income Statement 185 569 -490 938 951 363 874 893 1 474 343 1 574 627 1 525 208
Tax Benefit 80 931 95 441 52 798 39 148 -8 743 -22 002 -11 010
Total Tax 266 500 -395 497 1 004 161 914 041 1 465 600 1 552 625 1 514 198
Tax Other Operating Items 2 240 18 200 0 64 400 28 954 113 094 0
Tax Core Operating Items 264 260 -413 697 1 004 161 849 641 1 436 646 1 439 531 1 514 198
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Table 21: Reformulated Income Statement

2015 2014 2013 2012 2011 2010 2009
Core Operating Income
Ticket sale 576 0471 3 710 897 9 914 312 9 698 305 11 539 338 11 185 061 12 314 191
Core Sales Revenues 810 792 510 225 1 183 555 1 205 225 1 712 067 1 846 031 2 116 377
Other Operating Revenues 233 496 237 457 141 140 13 817 16 682 30 425 26 904
Cost of materials 414 535 292 172 703 702 625 275 738 682 836 274 915 425
Personnel Expenses 1 807 578 1 799 635 2 561 470 2 785 259 2 961 698 3 124 180 2 945 916
Depreciation 1 739 822 2 183 008 2 178 641 1 951 737 1 783 814 1 893 974 1 929 178
Other Operating Expanses 1 874 493 1 786 730 2 208 903 2 527 404 2 669 508 2 081 974 3 269 733
Core Operating Income before Tax 968 331 -1 602 966 3 586 291 3 027 672 5 114 385 5 125 115 5 397 220
Tax on Core Operating Income 264 260 -413 697 1 004 161 849 641 1 436 646 1 439 531 1 514 198
Core Operating Income 704 071 -1 189 269 2 582 130 2 178 031 3 677 739 3 685 584 3 883 022

Other Operating Items
Gain on Sale of Non-Current Assets 8 000 65 000 0 230 000 103 407 403 908 0
Total before Tax 8 000 65 000 0 230 000 103 407 403 908 0
Tax (0,28%) 2 240 182 00 0 64 400 28 954 113 094 0
Other Operating Items after Tax 5 760 46 800 0 165 600 74 453 290 814 0

Comprehensive Operating Income 709 831 -1 142 469 2 582 130 2 343 631 3 752 192 3 976 398 3 883 022

Financial Items
Interest Income 329 289 317 11 249 51 195 137 979 35 326
Other Financial Income 308 21 267 0 17 749 9 799 47 227
Interest Expenses 279 545 334 891 175 618 138 643 26 166 43 728 28 287
Other Financial Expenses 10 131 6 276 13 531 12 421 11 552 25 472 14 946
Net Financial Items before Tax -289 039 -340 857 -188 565 -139 815 31 226 78 578 39 320
Tax Benefit 80 931 95 440 52 798 39 148 -8 743 -22 002 -11 010
Net Financial Items after Tax -208 108 -245 417 -135 767 -100 667 22 483 56 576 28 310

Comprehensive Income 501 723 -1 387 886 2 446 363 2 242 964 3 774 675 4 032 974 3 911 332
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Table 22: Reformulated Balance Sheet

2015 2014 2013 2012 2011 2010 2009
Operating Assets
Fixed Assets 8 666 417 10 319 417 11 384 417 13 365 417 8 404 417 9 317 417 9 307 417
Inventories 53 734 129 929 80 479 103 739 82 136 55 488 17 200
Receivables 132 683 1 451 295 114 930 789 433 314 454 246 659 104 320
Deffered Tax Assets 703 498 595 119 457 644 339 469 430 615 370 513 460 783
Cash 32 820 12 157 22 875 23 644 1 165 980 2 914 366 1 583 408
Financial non-current Asset 0 0 0 0 370 000 0 0
Total Operating Assets 9 589 152 12 507 917 12 060 345 14 621 702 10 767 602 12 904 443 11 473 128

Operating Liabilities
Tax Payable 0 0 0 0 0 0 0
Value Added Taxes 9 663 37 340 17 785 46 841 52 175 73 787 34 766
Short-term corporate debt 1 088 697 0 3 819 779 2 799 098 5 487 429 6 809 145 5 752 426
Other Short- Term Debt 173 630 262 026 192 161 221 668 158 497 582 020 634 035
Pension Liabilities 0 0 0 0 0 0 0
Trade Creditors 99 124 146 214 395 770 548 087 325 286 524 237 352 702

Total Operating Liabilities 1 371 114 445 580 4 425 495 3 615 694 6 023 387 7 989 189 6 773 929

Net Operating Assets 8 218 038 12 062 337 7 634 850 11 006 008 4 744 215 4 915 254 4 699 199

Financial Assets
Short-term Financial Assets 0 0 0 0 0 0 0
Total Financial Assets 0 0 0 0 0 0 0

Financial Liabilities
Long-term Debt 4 275 338 7 826 611 2 966 900 6 034 180 0 0 0
Total Financial Liablities 4 275 338 7 826 611 2 966 900 6 034 180 0 0 0

Net Financial Liablities (NFL) 4 275 338 7 826 611 2 966 900 6 034 180 0 0 0

Equity 3 942 700 4 235 726 4 667 950 4 971 828 4 744 215 4 915 254 4 699 199

Equity + NFL 8 218 038 12 062 337 7 634 850 11 006 008 4 744 215 4 915 254 4 699 199
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