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Abstract

Carbon Capture and Storage (CCS) has been proposed as a promis-
ing and necessary tool in strategies for mitigating the effects of anthro-
pogenic climate change. Deep geological formations, like saline aquifers,
are pointed out as promising areas for large-scale storage of CO2. To
address questions relating to storage capacity and safety issues various
computational models have been developed. A particularly useful mod-
elling framework is the vertical-equilibrium (VE) model, which is based
on the assumption of negligible vertical flow . Such a model is preferred
when studying large-scale and long-term migration of CO2 in aquifers
due to their computational efficiency.

However, the VE assumption leads to inaccurate solutions close to
injecting wells, in so-called near-well areas. As the underlying VE as-
sumption does not hold in these regions, flow here has to be modelled
using a conventional 3D multi-phase approach, which poses a signifi-
cantly higher computational demand. In order to bridge the gap between
the VE and 3D modelling domains, a hybrid model has recently been
proposed. In the hybrid model, the interface between the two domains
is defined by a separation radius around injection wells. However, the
optimal choice of this radius remains an open question. In the present
work, the choice of radius is investigated using both a numerical and an
analytical approach.

Using MRST, a free open-source simulation tool kit for reservoir mod-
elling and simulation developed at SINTEF Digital, this thesis studies the
conditions under which VE can be assumed in the near-well area and
calculates the separation radius numerically. The separation radius can
also be determined using an analytical solution for the height of the CO2

plume in a special injection scenario. Simulations with hybrid models
are also conducted and compared to simulations from pure VE and 3D
models.

Simulations herein indicates that the VE assumption is not valid for
geological formations with low permeability (10 milliDarcy) and cubic
relative permeability curves, as this leads to long drainage time of brine
from the CO2 plume. Results for both the numerical and analytical sepa-
ration radius show that after a certain injection time VE can be assumed
in the whole aquifer, i.e. the separation radius is zero. The numerical
and analytical results show also some clear differences, despite efforts to
ensure as small theoretical differences as possible.
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The analytical solution tends to under-predict the region with neg-
ligible vertical flow compared with the numerical solution, whereas an
overprediction would be more desirable from a practical point of view.
Hence more research is needed before the analytical approach can be
used for predicting the separation radius. Simulations with the hybrid
model illustrates that they can significantly reduce computational re-
quirements compared to a full 3D model, while preserving the accuracy
of a full 3D solution close to the well in short-term simulations. More re-
search and long-term simulations have to be conducted before any con-
clusions can be drawn of benefits and disadvantages of a hybrid model
versus a pure VE model, which still is the preferred model for long-term
simulations.
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Sammendrag

Karbonfangst og -lagring har blitt foreslått som et lovende og nød-
vendig verktøy i strategier for å redusere effektene av menneskeskapte
klimaendringer. Dype, geologiske formasjoner, som akviferer, er utpekt
som lovende områder for storskala lagring av CO2. For å besvare spørsmål
relatert til lagringskapasitet og sikkerhet, har ulike beregningsmodeller
blitt utviklet. Et spesielt nyttig modelleringsramme er vertikal likevekts-
modellen (VL), som er basert på antagelsen om ubetydelig vertikal flyt.
En slik modell er foretrukket for storskala- og langtidsstudier av migrasjon
av CO 2 i akviferer grunnet dens beregningsmessige effektivitet.

VL-antakelsen fører imidlertid til unøyaktige løsninger nær injeksjons-
brønner, i såkalte nærbrønnområder. Den underliggende VL-antagelsen
er ikke gyldig i disse områdene, og flyten må her modelleres ved bruk av
en konvensjonell 3D-tilnærming, noe som medfører et betydelig høyere
krav til datakraft. For å kunne knytte domene til en VL- og 3D-modell
sammen, har en hybrid modell nylig blitt foreslått. I hybridmodellen er
grensesnittet mellom de to domenene definert av en separasjonsradius
rundt injeksjonsbrønner. Det optimale valget av denne radiusen er imi-
dlertid et ubesvart spørsmål. Denne oppgaven undersøker valget av ra-
dius med en numerisk og en analytisk tilnærming.

Ved bruk av MRST, et fritt tilgjengelig simuleringsverktøy for reser-
voarmodellering og - simulering utviklet hos SINTEF Digital, undersøker
denne oppgaven vilkårene for VL - antagelsen i nærbrønnområdet og
beregner separasjonsradiusen numerisk. Separasjonsradiusen kan også
bestemmes ved hjelp av en analytisk løsning for høyden av CO2-fasen i et
spesifikt injeksjonsscenario. Simuleringer med hybridmodeller er også
utført og sammenlignet med simuleringer fra rene VL- og 3D-modeller.

Simuleringer gjort indikerer at VL-antakelsen ikke er gyldig for geol-
ogiske formasjoner med lav permeabilitet (10 milliDarcy) og kubiske rel-
ativ permeabilitetskurver, da dette fører til lang dreneringstid av vann ut
av CO2-fasen. Resultatene for både den numeriske og analytiske sepa-
rasjonsradius viser at etter en viss injeksjonstid kan VL antas i hele akv-
iferen, noe som tilsvarer at separasjonsradien er null. De numeriske og
analytiske resultatene viser også noen klare forskjeller, til tross for forsøk
for å sikre så små teoretiske forskjeller mellom fremgangsmåtene.

Den analytiske løsningen tenderer til å underestimere regionen med
ubetydelig vertikal flyt i forhold til den numeriske løsningen, mens en
overestimering er mer ønskelig fra et praktisk synspunkt. Derfor er det
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behov for mer forskning før analytisk tilnærming kan brukes til å forutsi
separasjonsradien. Simuleringer med hybridmodellen illustrerer at den
kan redusere beregningstiden betydelig sammenlignet med en ren 3D-
modell, samtidig som nøyaktigheten av en ren 3D-løsning nær brønnen
er beholdt i korttids-simuleringer. Mer forskning og langtids simuleringer
må gjennomføres før det kan konklusjoner kan sluttes angående fordeler
og ulemper ved en hybridmodell versus en ren VL-modell, som er den
foretrukne modellen for langtids simuleringer.
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Chapter 1

Introduction

1.1 Background

CO2 concentration in the atmosphere is naturally dynamic, but over the
last century the concentration has increased significantly. Figure 1.1 shows
how the concentration has increased since the industrial revolution and
also sets today’s concentration in a historic perspective. The dashed lines
at 300 and 170 ppm (parts per million) indicates the maximum and min-
imum values of atmospheric CO2 concentration in ice cores for the past
650,000 years before the industrial age. The current value measured at
the Mauna Lao Observatory situated in Hawaii is at around 400 ppm1,
which sets today’s level of CO2 at a historic high level. In recent years
the emissions of CO2 have emerged as one of the greatest global chal-
lenges, as CO2 is widely acknowledged as the primary contributor to an-
thropogenic climate change [1]. The impacts of climate change are wide-
spread, and to mention some are impacts on the hydrological cycle, no-
tably the availability of freshwater resources, permafrost warming, sig-
nificant change in the physical and chemical properties of oceans and a
rise in global temperature [1]. At the Paris climate conference in Decem-
ber 2015, 195 countries adopted the first-ever universal, legally bounding
climate deal. The key element of The Paris Agreement is to strengthen
the global response to the threat of climate change by keeping a long-
term global temperature rise below 2°C above pre-industrial levels [2, 3].

1Daily CO2 levels at the Mauna Lao Observatory can be accessed at https://www.
co2.earth/daily-co2

2
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Figure 1.1: Atmospheric CO2 concentration over the past 1000 years. The
dashed lines shows the range CO2-concentrations measured over the
past 650,000 years before the industrial age. The figure is taken from [4]
with approval.

1.1.1 Carbon Capture and Storage

As a possible large-scale mitigation strategy for the atmospheric carbon
problem, Carbon Capture and Storage (CCS) has emerged as a serious
option for offsetting a fraction of the global atmospheric emissions. The
goal is that CCS can function as a temporary bridge between a fossil
fuel-based economy and a future economy based on renewable energy.
Most future scenarios that meet the 2-degree goal rely on widespread
use of CCS, while the absence of which would more than double the
cost of reaching the target [5]. The Intergovernmental Panel on Climate
Changes’ (IPCC) special report on CCS [6] provides many details about
the overall concept and technical approaches for possible implementa-
tion. The report concludes the the overall global storage capacity of CO2

appears to be more than adequate in order to have an actual impact on
global CO2 levels.

The concept of CCS is quite straightforward, and Figure 1.2 illustrates
the principles of CCS. First, CO2 that otherwise would have been emitted
into the atmosphere is captured, e.g. from production of electrical en-
ergy or industrial production. The captured carbon is then sequestered
somewhere else than in the atmosphere. The most likely location for
large-scale sequestration is in deep geological formations. Figure 1.3
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shows promising areas for CO2 storage across the globe. Here large ar-
eas of saline aquifers are identified as possible storage sites. The rock
of a geologic formation (such as an aquifer) is characterized by its per-
meability and its porosity. Permeability is a measure of the ability of the
aquifer to allow fluids to pass through it, i.e. the permeability within the
aquifer has to be large enough such that CO2 flows in the aquifer, but
the aquifer must also be confined by formations with low permeability
such that CO2 does not leak. The porosity is the pore space of the aquifer
available for fluids to flow in, i.e. the void space in the sandstone. The
higher the porosity is, the higher is the storage capacity of the aquifer. A
saline aquifer may meet three requirements for a promising storage cite;
(i) it is sufficiently permeable to accept large quantities of CO2, (ii) it is
confined on top and below by some formations of very low permeability
that will keep the injected buoyant CO2 in place and (iii) the porosity of
the aquifer is sufficiently large to store a considerable amount of CO2.

Figure 1.2: Illustration of CCS. The figure is taken from [6] with approval.

Even though the technology for large scale CCS deployment exists
and CCS seems like a very promising contribution for mitigating atmo-
spheric carbon concentration, there are challenges that have to be solved
before CCS can have a significant effect on global carbon concentration.
According to the Global CCS Institute there are currently only 21 large-
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Figure 1.3: Prospective areas for geological storage of CO2. The figure
taken from [6] with approval.

scale CCS projects in operation or under construction globally 2. Fur-
thermore, the experience with the long-term effects of deep geological
storage of CO2 is minimal. The Norwegian Shøhvit Project [7] was the
first pure CO2 storage project when it started up in 1996. However, this
project has been ongoing for just over 20 years, which is very short com-
pared to the potential storage time of thousands of years. In addition, if
CCS is to have a significant impact on the global concentration of CO2,
today’s injection rates, which rarely exceed 1 Mt (megatonne) per year,
have to be substantially increased, and global storage operations must
be scaled up by orders of magnitude.

Therefore, the upscaling from today’s projects raise questions that
have to be answered. These questions can in general be divided into
three parts

1. Storage capacity. How much CO2 can a formation store?

2. Injectivity. How efficiently can CO2 be injected into a formation?

3. Containment. How sure can one be that the CO2 will remain in a

2The GLobal CCS Institute online Projects Database can be accessed at www.
globalccsinstitute.com/projects/large-scale-ccs-projects.

www.globalccsinstitute.com/projects/large-scale-ccs-projects
www.globalccsinstitute.com/projects/large-scale-ccs-projects
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formation?

In order to answer these questions at the operational scales considered,
numerical simulations constitute an indispensable tool.

1.1.2 MATLAB Reservoir Simulation Toolbox

The MATLAB Reservoir Simulation Toolbox (MRST) [8, 9], developed by
The Computational Geosciences group within the Department of Scien-
tific Computing at SINTEF Digital, is an open-source software tool kit
whose functionality can be used for modelling flow both in petroleum
production and CO2 sequestration in reservoirs. One add-on module of
MRST is MRST-co2lab, which consists of a family of tools specially de-
veloped for the study of long-term storage of CO2 in large-scale aquifer
systems [10].

The main focus of MRST-co2lab is simplified models particularly suited
for studying long-time developments. One model is based on a depth-
integrated physical description of formations with the additional assump-
tion of vertical equilibrium (VE) between CO2 and brine. The depth-
integrated model reduces the number of spatial dimensions from 3 to
2, which allows for simulations that run orders of magnitude faster than
traditional 3D simulations. This makes it computationally tractable to
simulate large-scale, long-term scenarios, which is needed when study-
ing long-term CO2 migration. VE models are based on the fact that in
typical aquifer formations the vertical extent is measured in tens of me-
ters, while the extension of the CO2 plume is in the order of kilome-
tres during the injection phase and possibly much greater in a migration
phase, meaning that that the vertical flow will constitute very little to the
overall flow. Moreover, there is a significant difference between brine and
CO2 (whether in supercritical or liquid state) density in practically all rel-
evant scenarios. This difference means that brine and CO2 will tend to
segregate relatively quickly due to gravity forces. The separation process
can be considered complete when vertical equilibrium has been estab-
lished between capillary and gravity forces. The flow is usually confined
to thin layers underneath a sealing caprock or other low-permeability
layers. This yields a large disparity in lateral and vertical scales. In or-
der to avoid introducing large errors in the forecast of the up-dip mi-
gration in 3D simulations, the vertical fluid distribution must therefore
be represented accurately. In practice, this means using a higher ver-
tical grid resolution than what is computationally tractable in standard
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3D simulators, and as a result, 3D simulations tend to be severely under-
resolved unless they are conducted using large-scale systems for high-
performance computing.

In a VE model, the primary assumption is that the flow system is in
vertical equilibrium so that the vertical distribution of fluid phases can
be determined from analytical expressions. By integrating the flow equa-
tions in the vertical direction a 2D model is obtained. See Figure 1.4 for
an illustration of a 3D and VE grid. From this figure is should be clear
why VE model is sometimes referred to as an upscaled system, while a
3D model is referred to as a fine-scale system. Integration in the vertical
direction not only reduces the number of spatial dimensions, and hence
the required number of grid cells, but will also lessen the coupling be-
tween pressure and fluid transport and improves the characteristic time
constants of the problem. As a results, vertical-equilibrium simulations
will typically be orders of magnitude faster and consume significantly
less memory than conventional 3D simulators.

Figure 1.4: Illustration of the same grid in a 3D (left) and VE (right) sim-
ulation. The wire frame cells on the right plot are not part of the 2D grid
itself, but used to illustrate that the blue 2D cell is used to represent the
full stack of yellow cells in the 3D grid on the left. The figure is taken with
approval from [14].

When considering the long-term migration of a well-formed CO2 plume,
the error introduced by using a VE simulator may be significantly smaller
than a coarse 3D simulator. However, when considering the injection
phase VE models may not perform better than 3D models. As stated in
[11] there is significant vertical flow in the vicinity of injecting or extract-
ing wells. In such near-well areas the VE assumption does not hold.

Over the last decade, significant research effort has been put into de-
veloping VE models to a high degree of sophistication. Worth to mention
are the Vertical Equilibrium with Sub-scale Analytical (VESA) method
[12], which combines a large-scale numerical method with embedded
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analytical solutions to capture sub-scale flow through leaky wells, and a
multi-scale multilayer vertically integrated model [13], which relaxes the
VE assumption by including two-phase flow dynamics of brine and CO2

as a fine-scale one-dimensional problem.
Another approach used in this thesis is to create a combined VE and

3D model, a so-called hybrid model that captures the benefits of both
models. The goal of a hybrid model is to handle large-scale scenarios, i.e.
scenarios that are so large that a 3D model is not practically applicable
everywhere, but where the precision of a full 3D model near the injection
or extraction wells is still desired. An example is a scenario that models
wells extracting brine to ease the pressure in the aquifer. In such a sce-
nario the flow around the well has to be modelled with a high precision,
to ascertain that brine and not CO2 is extracted. A hybrid model could
therefore use a full, numerical 3D simulation in the vicinity of wells, and
couple this with a VE model in areas with non-significant vertical flow.
This is a relatively recent development, which will likely lead to further
research in the near future.

In order to create a valid hybrid model, regions with significant verti-
cal flow have to be identified. In such a hybrid model there is an interface
between the 3D domain and the VE domain. Around a vertical well it is
natural to think that this interface is placed at a radius R∗ around the
well, where there is significant vertical flow in the area within this radius.

1.2 Objectives

The objectives of this master thesis can be divided into three parts. Firstly,
this thesis aims to compare VE and 3D simulations using MRST during the
injection phase of CO2 and examine under which conditions the VE as-
sumption holds. The second objective is to determine analytically and
numerically where the boundary between the VE and 3D domain in a
hybrid model should lie, and compare results from the approaches. Fi-
nally, this report concentrates on simulations with a hybrid model, and
compares results from hybrid simulations with full VE and 3D simula-
tions.
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1.3 Structure of the Report

In this introductory chapter the reader has been familiarized with Car-
bon Capture and Storage, ways to model storage of CO2 in aquifers and
some of the challenges within this modelling. Following the current chap-
ter is a theoretical chapter that covers a physical description of CO2 and
brine flow in an aquifer, specifications of a 3D, VE and hybrid model and
a numerical and analytical approach for determining the VE and 3D do-
main in a hybrid model. After this follows a chapter with numerical re-
sults and discussions for the three objectives of the thesis, before the final
chapter concludes and remarks further work.



Chapter 2

Theory

This chapter is divided into three parts. First, a description of two-phase
flow in an aquifer is given. This description starts off describing physical
properties of fluids and the geological formation, and ends with present-
ing the governing equations that determine the two-phase flow. Follow-
ing the description of the two-phase flow system are three approaches for
solving the governing equations. These methods are the full, 3D finite-
volume method, the fast vertical equilibrium (VE) method and a com-
bination of the two methods, which is referred to as the hybrid method.
The last theoretical section covers methods for dividing the computa-
tional grid into a 3D and VE part, by finding a separation radius R∗ around
an injecting well.

2.1 Two-Phase Flow in porous Medium

This section describes the porous medium system, highlights the domi-
nant chemical and physical processes and develops the governing equa-
tions that determine the two-phase flow. The contents is based on [4,
14, 15], and a more thorough description can be found in any of these
references.

2.1.1 Qualitative Description

The flow of multiple phases in a porous medium is extremely complex.
Hence, this part will only cover the most basic concepts of the two-phase
flow of CO2 and brine in a porous medium relevant for this master project.
The term phase is here used to denote a substance (either CO2 or brine),

10
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independent of its state (solid, liquid, gas, supercritical). When CO2 is in-
jected into an aquifer, it has to be injected at a sufficiently high pressure,
such that the initial brine in the pore spaces is displaced. This pressure is
referred to as the entry pressure, and the process of injecting CO2 creates
fluid-fluid interfaces at the pore scale that allow the two fluids to coex-
ist in the pore spaces. These interfaces play an important role in deter-
mining the two-phase flow, as they can support non-zero stresses, which
allow the two fluids to coexist at different pressures, and because mass
transfer between CO2 and brine occurs at these interfaces.

As brine is more dense than CO2, the two fluids will relative quickly
separate such that CO2 flows at the top of the aquifer and brine at the bot-
tom, as illustrated in Figure 2.1. In this thesis it is assumed that there is
a sharp interface between the brine and CO2, while there in reality exists
a transition zone caused by the presence of capillary pressure. This zone
is referred to as the capillary fringe, and represents a smooth transition
from CO2 to the brine below. It has been shown that even a modest capil-
lary fringe has a first-order impact on the formation of plumes both near
an injection point and on migration [16], and therefore one should be
careful about using results derived under the assumption of sharp inter-
faces for quantitative assessment in the presence of significant capillary
pressure.

Figure 2.1: Illustration of how a CO2 plume flows in an aquifer. ζT and ζB

represent the shape of the caprock and bottom confining layer, while ζM

describes the shape of the brine-CO2 interface. H and h denote the local
height of the aquifer and the CO2 plume, while θ is the angle between the
z coordinate axis and the gravity vector g . The different colors of the CO2

plume represent the transition zone between CO2 and brine. The figure
is taken from [18] with approval.

As the CO2 and brine face are in contact with each other, some amounts



CHAPTER 2. THEORY 12

of CO2 is dissolved into the brine. This effect is most important dur-
ing the migration stage, as the large spatial extent and flattening of the
CO2 increases the amounts of brine and CO2 in contact with each other
[17]. As CO2-saturated brine is slightly denser than unsaturated brine,
the heavier saturated brine sinks downwards. Dissolved CO2 thus be-
comes safely stored at the bottom of the aquifer with no no risk of leaking
through cracks in the caprock. This is referred to as dissolution trapping.
As this thesis only considers the injection period, it is in the following
assumed that no mass transfer between CO2 and brine occurs.

Dissolution trapping is one of four major trapping mechanisms in
the context of geological storage of CO2. The remaining three are resid-
ual, structural and mineral trapping. Residual trapping refers to the CO2

trapped within the brine phase as brine reinvades pore space that CO2

evacuates. Structural trapping refers to CO2 that is permanently trapped
within local pockets, anticlines or other topographical features that the
injected CO2 passes. The final trapping mechanisms, mineral trapping,
refers to geochemical reactions where dissolved CO2 precipitates as car-
bonate materials, which is dependent on the chemical composition of
the pore water and rock as well as temperature and pressure.

Figure 2.2 shows a porous medium with two fluids on the pore scale.
The solid phase (rock) will tend to have a stronger surface attraction to
one of the fluids, and this fluid is referred to as a the wetting phase. For
the CO2-brine system this will be brine, and CO2 is therefore referred to
as the non-wetting phase. Brine and CO2 combined occupy a fraction of
the total space, and this fraction is referred to as the porosity φ. In or-
der to describe the system one also needs to define the fraction of pore
space occupied by each of the fluids. The fluid saturation sα is defined
as the fraction of pore space occupied by fluid phase α. Here α denotes
either the wetting phase (α= w) or the non-wetting phase (α= n). Since
brine and CO2 are the only two fluids present, the sum of the saturations
is equal 1, i.e. sw + sn = 1. Note that the interfaces that exist on the pore
scale given in Figure 2.2 play an important role in understanding the be-
haviour of the two-phase system, but in modelling one is interested in
describing the system on larger scale. The pore-scale phenomena is thus
represented by upscaled quantities at the macroscale, such as porosity,
permeability, and capillary pressure curves.

In addition to phase saturations, each phase is also associated with a
volumetric flux vector, uα. Here and throughout this thesis bold symbols
describe vector parameters. uα is a measure of the volumetric flow rate
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Figure 2.2: Fluid and solid distributions in a porous medium on the pore
scale. With approval, this figure is inspired by a similar figure that can be
found in [4].

per area of the porous medium. This is not a direct measure of flow veloc-
ity, but can be seen as the volume of fluid per total area (which includes
both fluid and solid) per time. The actual fluid velocity vα is a scaled ver-
sion of the flux vector uα, where the scale factor is the the fraction of total
space occupied by the fluid. This gives vα = uα/φsα. Further, each phase
has its own pressure, denoted by pα. As mentioned, the fluid-fluid inter-
face can support non-zero stresses, which signifies that different pres-
sures can exist on either side of the interface. In general, the phases will
thereby have different pressures, and the difference between the phase
pressures is defined as the capillary pressure pcap .

pcap ≡ pn −pw (2.1)

Two more fluid properties that are important when simulating fluid flow
are density ρα and dynamic viscosity µα. Density is important as it re-
lates volumes with fluid mass, and viscosity is important as it measures
a fluids resistance to shear deformation, and thus its resistance to flow
through a porous medium. Density is a thermodynamic property, mean-
ing that it is related to other thermodynamic properties as pressure and
temperate by an equation of state. Viscosity is a transport property, but
there exists empirical fluid-specific correlations that associate it with ther-
modynamic properties. Under the assumption of a isothermal model,
density and viscosity can be modelled as functions of pressure. A sim-
pler model also assumes constant compressibility c f . Compressibility for
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a fluid is given as

c f =
1

ρ

dρ

d p

Assuming that the compressibility is constant over some pressure range,
density can be written as a function of pressure if a reference density ρ0

is known at some reference pressure p0

ρ(p) = ρ0ec f (p−po )

The same relationship is often used to model changes in pore volumes
as a function of pressure, by defining the pore volume compressibility as

cφ = 1
φ

dφ
d p . The same relation is used since an increase in fluid pressure

expands the rock matrix and increases the volume available for the fluids.

2.1.2 Darcy’s Law for two-phase Flow, Relative Permeabil-
ity and Residual Saturation

In 1856 Henry Darcy performed experiments that provided one of the
fundamental equations for groundwater single-phase flow [15]. The fluid
velocity v was found to be linearly dependent with the pressure gradient
∇p in the following form

v =−K

µ
(∇p −ρg )

Here K is the permeability tensor and g is the gravity vector. As men-
tioned this relation is valid for single-phase flow. However, by introduc-
ing relative permeabilities Darcy’s equation can still be used indirectly
for two-phase flow. The permeability coefficient in Darcy’s equation is
an intrinsic property of porous materials and governs the ease in which
fluids can flow through the pore space. If one consider the flow of for
instance the non-wetting fluid in a porous medium containing both the
wetting and non-wetting fluid, then the amount of pore space available
to the non-wetting fluid is only a fraction of the pore space. Compared
to single-phase flow, the space available for flow is reduced, and it is ex-
pected that the permeability decreases as fewer flow channels are avail-
able for the non-wetting fluid. More precisely, the permeability will de-
crease as the saturation of the non-wetting fluid decreases, eventually
reaching zero when there are no longer any connected pathways of the
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non-wetting fluid through the pore space of the medium. The reduction
is also linked to effects arising from phase-phase and phase-rock inter-
actions at the molecular level, such as surface tensions and wettability.

The relative permeability kr,α of a phase can be defined as the ratio of
fluxes as a function of saturation

kr,α(sα) = fα(sα)

f sat
α

Here α again denotes the fluid, and f sat
α denotes the flux at fully sat-

urated conditions, that is, sα = 1. There exists a great number of kr -
s (relative permeability-saturation) relationships available in the litera-
ture, some are made from fitting experimental data and others are purely
mathematical relationships [19]. Figure 2.3 show an experimental rela-
tive permeability curve, and two important features can be seen in this
figure.

Figure 2.3: Drainage-Imbibition
relative permeability curves of
Berea Sandstone for the CO2-brine
and a oil-water system (taken from
[19] with approval).

Figure 2.4: Theoretical relative per-
meability curves. Dashed, solid and
dotted line represent respectively a
linear, quadratic and cubic kr -s re-
lationships.

Firstly, there is one curve for drainage and one curve for imbibition.
Drainage or imbibition refers to the action where CO2 displaces or is be-
ing displaced by brine, respectively. Therefore the relative permeabil-
ity curve for the phases exhibits hysteresis, i.e. there are different curves
depending on whether the wetting saturation is increasing or decreas-
ing. In this thesis hysteresis is not being considered, giving that the same
relative permeability curve describes flow for both drainage and imbi-
bition. Note also that since this thesis consider the injection phase, the
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occurrence of imbibition is limited. The second feature is that the rela-
tive permeability curve reaches zero before brine saturation is zero. As
CO2 is injected into an aquifer it replaces the brine that originally was
there, but some brine will be stuck in the pore space as disjoints droplets
and films due to capillary forces. This is referred to as residual brine, and
its fractional amount of the pore space is named residual brine satura-
tion sw,r . This means firstly that even though some brine is present in a
pore space it does not form a continuous pathway and is thus no longer
able to flow. Secondly it means that CO2 will never reach a higher satu-
ration level than 1− sw,r . A similar phenomenon occurs when brine in-
vades a pore space originally filled with only CO2, as some of the CO2 will
remain in the pore space. This amount of CO2 is referred to as residual
CO2, and its saturation value is denoted sn,r . Figure 2.4 shows theoretical
relative permeability for brine (blue) and CO2 (red) with residual satura-
tions sr,w = 0.1 and sr,n = 0.2. Note that the curve for CO2 is cut off at
sw = sr,w , which corresponds to sn = 1− sr,w , as the CO2 saturation never
will exceed this level. For simplicity this thesis only conducts simulations
where residual saturation is set to be zero for both phases. The extension
to models and simulations that includes residual saturation is relatively
straightforward.

Finally, the two-phase formulation of Darcy’s law is given as

vα =−Kλα(∇pα−ραg ), α= w,n (2.2)

Here K is the absolute permeability tensor and λα = kr,α/µα is the mo-
bility of phase α.

2.1.3 Capillary Pressure

As stated in (2.1), there is a difference in brine and CO2 pressure known
as the capillary pressure. When a porous medium contains pores with a
distribution of different sizes, it is possible to express capillary pressure
as a function of phase saturation, i.e. pcap = pcap (sw ). For a particular
fluid-rock system, this relationship can be experimentally measured. To
understand this relationship physically, one need to examine the two-
fluid system on the pore scale. On this scale, the distinct fluid-fluid in-
terfaces serve as boundaries between the fluid phases [15]. Interfaces
between the brine and CO2 phases exist because of small-scale attractive
forces between the fluid phases, and these forces result in an interface
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that is similar to a membrane, wherein the interface can support a cer-
tain amount of stress without rupturing. Such a stress is generated across
fluid-fluid interfaces whenever the fluids on either size of the interface
have different pressures.

A typical pc−s (capillary pressure-saturation) relationship is presented
in Figure 2.5. Four important features of these curves can be observed.
Firstly, in order to see any significant changes in brine saturation when
CO2 displaces brine (see main and primary drainage curves), a non-zero
capillary pressure must be applied. This is in fact what was earlier re-
ferred to as the entry pressure. The second observation is that brine sat-
uration does not go to zero when the capillary pressure pcap goes to in-
finity, but approaches an asymptotic value greater than zero. This is due
to residual brine saturation sr,w . Similarly, when brine displaces the CO2

(imbibition), CO2 saturation does not return to zero when pcap = 0, but
remains at the residual non-wetting fluid saturation sr,n . The third ob-
servation is that the paths followed during drainage and imbibition are
different, meaning that the pc -s relationship, just like the kr -s relation-
ship, exhibits hysteresis. Finally, the last observation is that scanning
curves describe the the pc -s relationship for curves between the two flu-
ids residual saturation.

The important point that has been made is that there exists some re-
lationship between capillary pressure and brine saturation, and this re-
lationship may be quite complex. For the purposes of this thesis, only
models with a sharp interface between CO2 and brine zones are consid-
ered. This is equivalent to assuming a capillary pressure equal zero.

2.1.4 Governing Equations

The governing equations for the flow in the porous medium system is
determined by the general conservation law, which is given as∫

Ω

∂m

∂t
dV +

∮
∂Ω

f ·nd A =
∫
Ω
ψdV

HereΩ and ∂Ω is the domain and boundary of the domain, respectively,
m is mass per total volume of porous medium, f is the mass flux vector, n
is the outward-pointing unit vector normal to the surface ∂Ω and ψ rep-
resents sources and sinks within the domain, given as mass per volume
per time. Applying the Divergence Theorem on the boundary integral
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Figure 2.5: Typical form of capillary pressure-saturation curve. The figure
is taken from [4] with approval.

yields the following equation∫
Ω

(∂m

∂t
+∇· f

)
dV =

∫
Ω
ψdV

Since the domain Ω was taken to be some arbitrary domain the inte-
grands have to equalize, which gives the following the partial differential
equation

∂m

∂t
+∇· f =ψ

In general, the flow is miscible, meaning that brine and CO2 may consists
of multiple components. For instance some CO2 may dissolve into the
brine phase, giving that some CO2 contributes to the total brine mass.
With miscible flow the flux term f will constitute of a dispersive and a
diffusive term. The dispersive term is given using the two-phase exten-
sion of Darcy’s law (2.2) and the diffusive term can be determined using
e.g. Fick’s law. The work of this thesis is limited to the case of immiscible
flow, giving that the CO2 and brine phase is completely separated at all
times and no dissolution or evaporation of one phase into the other oc-
curs. Thus the flux term is given as fα = ραvα. Then mass conservation
of each phase α is given as

∂(sαραφ)

∂t
+∇·

(
ρα−

K kr,α

µα
(∇pα−ραg )

)
=ψα, α= w,n (2.3)
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There are four variables in the equation above, sw , sn , pw and pn , mean-
ing that two more equations are needed to match the number of un-
knowns. These two equations, hereunder referred to as the supplemen-
tary equations are given by the requirement for the phase saturations to
sum up to one and the pc -s relationship

sw + sn = 1

pn(sn)−pw (sw ) = pcap (sw )
(2.4)

One saturation and one pressure unknown can be eliminated from (2.3)
using these relations, resulting in a equation system with one phase pres-
sure and one phase saturation as primary variables.

2.2 Solving the two-phase Flow System

This section focuses on how to solve the governing equations given in
(2.3) and (2.4). First, the most standard method is presented, namely
solving them using a 3D cubic grid. Secondly the fast VE method is in-
troduced, before the combination of the 3D and VE method, the hybrid
method, is presented.

2.2.1 3D Model

The equations determining the reservoir flow are continuous, but when
solved with a numerical simulator they are discretized. A popular method
used in many computational fluid solvers is the finite volume method.
The finite volume discretization is based on mass conservation of cells in
a discretized grid. See the left grid in Figure 1.4 for illustration of a grid.
Each grid cell i is associated with saturation values sw,i , sn,i and pressure
values pw,i , pn,i . The change in the amount of a conserved quantity (here
mass) within each grid cell equals the net flux of that quantity across cell
faces plus or minus source or sink terms. This finite volume method is
implemented in MRST, where the conservation equations are discretized
using the finite volume approach in space and an implicit first-order dis-
cretization in time.

Using superscript n to denote time step and subscripts i and Γ to re-
fer to grid cell and grid faces indices, respectively, the time-implicit finite
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volume discretization of equation (2.3) for grid cell i is written as

φn+1
i ρn+1

α,i sn+1
α,i −φn

i ρ
n
α,i sn

α,i

t n+1 − t n
+ ∑
Γ∈Fi

ρn+1
α,Γ ν

n+1
α,Γ −ψn+1

α,i = 0, α= w,n (2.5)

Here t refers to time, Fi to the set of grid faces bounding cell i , and να,Γ

the net volumetric flux of phaseα across face Γwhere outflow is positive.
Under the assumption of isothermal conditions, the density and porosity
are functions of pressure, i.e. ρn

α,i = ρα(pn
i ) and φn

i =φi (pn
i ).

The net volumetric fluxes have to be calculated in some way, and in
MRST they are obtained by discretizing the two-phase extension of Darcy’s
law (2.2). The simplest way of estimating fluxes across cell faces is to use
a scheme known as the two-point flux approximation (TPFA) [18]. Let Γ
represent the common interface between cells l and k, then the flux from
cell l to k across Γ can be approximated as

νn+1
α,Γ =−T f λ

n+1
α,Γ

[
pn+1
α,k −pn+1

α,l −ρn+1
α,Γ g (zk − zl )

]
(2.6)

Here λn+1
α,Γ =λα,Γ(sn+1

Γ , pn+1
Γ ) denotes the phase mobility at the interface,

zk and zl represent the depth value of the respective cell centroids, and
TΓ is the transmissiblity associated with face Γ. It is a value related to
permeability values and associated cell geometries and is given as the
harmonic average of the associated half-face transmissibilities

TΓ =
( 1

Tk,Γ
+ 1

Tl ,Γ

)−1

where the half-face transmissibility Tk,Γ associated with cell k and face Γ
is given as

Tk,Γ =
c T

k,ΓKk Nk,Γ

‖ck,Γ‖2

Here, ck,Γ represent the vector pointing form centroid of cell k to centroid
of face Γ, Kk the permeability tensor of cell k, and Nk,Γ the area-scaled
normal of face Γ, pointing out of cell k. Note that the TPFA scheme is
only consitent with Darcy’s law (2.2) for so-called K- orthogonal grids,
i.e. grids where Kk Nk,Γ‖ck,Γ [18].

All variables in (2.5) are now described, and the number of unknowns
can be reduced to two by including the supplementary equations for cell
i

sw,i + sn,i = 1

pn,i −pw,i = pcap (sw,i )
(2.7)
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Therefore equation 2.5 can be solved for either brine saturation and pres-
sure or CO2 saturation and pressure. Let now s and p refer to the vec-
tors of chosen unknowns associated with either the brine or CO2 phase,
and let xn+1 = [sn+1, pn+1] denote the vector of unknowns at time step
n + 1. Since the fluid and rock properties in the scheme generally are
non-linear, the implicit scheme given by discretizations (2.5) and (2.6)
have to be solved iteratively in order to go from a solution xn to xn+1.
It can easily be seen that equation (2.5) and (2.6) combined with possi-
bly boundary conditions and the supplementary equations (2.7) give an
equation system that can be expressed on abstract form as

G(xn+1, xn ,un+1) = 0 (2.8)

Here un+1 represents externally imposed controls, which typically re-
lated to the source termψn+1

α . This system can be solved iteratively using
e.g. the Newton-Raphson method, which produces a sequence of solu-
tions {xn+1

1 , ..., xn+1
k , ...} from an initial guess xn+1

0 from the scheme

xn+1
k+1 = xn+1

k − J−1
G

(
xn+1

k )G(xn+1
k , xn

k ,un+1)
where JG (xn+1

k ) denotes the Jacobian of G with respect to xn+1. For an
good initial guess xn+1

0 , this sequence will converge to the correct solu-
tion. If convergence is not obtained, the time step t n+1 − t n of the simu-
lation has to be shortened.

2.2.2 Vertical Equilibrium (VE) Model

As mentioned in Section 1.1.2, when studying the long-term CO2 migra-
tion process a number of assumptions can be made that greatly reduces
the number of unknowns, and thereby drastically reducing the computa-
tional requirements to solve the system. The combined assumptions of
rapid phase segregation and negligible vertical flow leads to vertical equi-
librium models, even though the more precise name would be transverse
equilibrium models. The transverse direction is the direction perpen-
dicular to local aquifer plane. The transversal and vertical direction are
not always equal, as an aquifer possibly slopes upwards or downwards.
However, in this thesis simulations and analysis are only made on non-
sloping aquifers, meaning that the vertical and transverse direction are
equal. The terms are therefore used interchangeably and have the same



CHAPTER 2. THEORY 22

meaning in this thesis, even thought they in general are different. Like-
wise are the lateral and horizontal direction also equal in this thesis, and
the these terms also used interchangeably.

As mentioned the key assumption of VE models is the presence of
equilibrium in the vertical direction. The equilibrium state is character-
ized by separate brine and CO2 zones and no vertical flow, i.e. a vertical
pressure field in fluid-static equilibrium. If capillary forces are negligible
compared to gravity, the brine and CO2 zones are separated by a sharp
interface. Otherwise, there will be a transition zone of finite thickness, as
discussed in 2.1.1.

With vertical equilibrium, the vertical pressure and fluid distribution
profiles can always be reconstructed from knowledge of a set of upscaled
variables that only depend on the lateral position. Upscaled variables
refer here to fine-scale variables that have been integrated in the vertical
direction. By assuming VE and a known saturation distribution, upscaled
variables and parameters can be obtained by integration of the original
conservation equation (2.3) in the vertical direction. By doing so, the ver-
tical direction is eliminated from the equation system, reducing the di-
mensionality of the model from three to two. Although the VE system is
two-dimensional, much of the behaviour of the three-dimensional sys-
tem system is still implicitly captured by the definition of upsscaled vari-
ables.

Let now ζB (x, y) and ζT (x, y) denote the aquifer bottom and caprock
level, respectively. Given the mass-conservation equation (2.3), assum-
ing immiscible flow and using the multiphase extension of Darcy’s law
(2.2), the VE formulation is obtained by integrating from aquifer top to
bottom along the transversal direction

∂

∂t

∫ ζB

ζT

sαφαd z −
∫ ζB

ζT

∇·
(kr,α

µα
K (∇pα−ραg )

)
d z

=
∫ ζB

ζT

qα
ρα

d z, α= w,n

(2.9)

The gravity vector g can be decomposed into a lateral g∥ and transver-
sal component g⊥, where the lateral component lies in the aquifer plane
and the transversal component follows the z-direction with magnitude
g cosθ, where θ is the angle between the transversal coordinate axis and
the gravity vector g . Let ∇∥ denote the lateral component of the del oper-
ator, i.e. by letting ∇∥ = [∂x ,∂y ], and assume zero flow across the caprock
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and bottom boundaries. Leibniz’ integral rule can be applied on the sec-
ond integral to obtain

∂

∂t

∫ ζB

ζT

sαφαd z −∇∥ ·
∫ ζB

ζT

(kr,α

µα
K (∇pα−ραg )

)
d z

=
∫ ζB

ζT

qα
ρα

d z, α= w,n

(2.10)

By assuming that the tensor K can be decomposed into separate, inde-
pendent lateral K∥ and transversal components K⊥, lateral Darcy flow
vα,∥ will only depend on the lateral pressure gradient. If the upscaled
pressure Pα is defined at the caprock level, the fine scale pressure pα
written as

pα(x, y, z) = Pα(x, y)+ραg
(
z −ζT (x, y)

)
cosθ

Inserted into (2.10) this yields

∂

∂t

∫ ζB

ζT

sαφαd z −∇∥ ·
[∫ ζB

ζT

kr,α

µα
K∥d z

](∇∥(Pα−ραgζT )−ραg∥
)

=
∫ ζB

ζT

qα
ρα

d z, α= w,n

(2.11)

Finally, by introducing a set of upscaled variables, equation (2.11) can be
rewritten as

∂

∂t
(ΦSα)−∇∥ ·

[
Λακ

(
∇∥(Pα−ραg cosθζT )−ραg∥

)]
=Ψα, α= w,n

(2.12)

The set of upscaled variables are defined as

Φ=
∫ ζB

ζT

φd z

κ=
∫ ζB

ζT

K∥d z

Sα =Φ−1
∫ ζB

ζT

φsαd z

Λα =
(∫ ζB

ζT

kr,α

µα
K∥d z

)−1
κ−1Ψα

=
∫ ζB

ζT

qα
ρα

d z
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Note here that the upscaled variables are denoted by capital letters, while
variables that are defined on the fine scale are denoted by lowercase let-
ters. Variables that have the same interpretation on both scales are de-
noted by the same letter, like φ and Φ, but they may change unit with
scale.

Under the assumption of zero residual saturations and a sharp inter-
face between the brine and CO2 phase, i.e. no capillary fringe, the up-
scaled saturations Sα and mobilities Λα are defined for each phase, and
can be explicitly expressed in as the following

Sn(h) =Φ−1
∫ ζT +h

ζT

φd z

Sw (h) = 1−Sn(h)

Λn(h) =
(
λn,e

∫ ζT +h

ζT

K∥d z
)
κ−1

Λw (h) =
( 1

µw

∫ ζB

ζT

K∥d zλw,e

∫ ζT

ζT +h
K∥d z

)
κ−1

Here h is the height of the CO2 plume. Similar integrals can be defined
for the case with non-negligible residual saturation, but the expressions
become more complicated and will involve an additional hysteresis pa-
rameter.

As with the fine-scale system the number of unknowns can be re-
duced with two by including that the upscaled saturations sum to one
and using the upscaled capillary pressure function

Sn +Sw = 1

Pn −Pw = Pcap (Sw )
(2.13)

Pn and Pw are used to denote phase pressures at some predefined ref-
erence level, often the caprock level. The upscaled capillary pressure is
defined as

Pcap (Sw (h)) = pcap,i + g h(ρw −ρn)

Here pcap,i = pn,i −pw,i is the fine-scale capillary pressure at depth z = h.
The use of upsacled saturations when expressing and solving VE equa-
tions is referred to the s-formulation. Another approach is the so-called
h-formulation, where h is used as an independent unknown instead of
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Sn or Sw . The advantage of the s-formulation is that the resulting equa-
tions are very similar to the original 3D equations, with the only differ-
ence being the use of upscaled variables and the dimensional reduction
of the simulation domain. The analogy between fine-scale equation (2.3)
and (2.12) should be clear, meaning that the VE equation system can
be solved using the the same method as presented i subsection 2.2.1.
Hence the VE system can also can be solved using 3D simulation code
with some modest modifications.

2.2.3 Hybrid Model

Description

A hybrid model is a combination of a fine-scale 3D and upscaled VE
model. Therefore there is an assumption of vertical equilibrium in some
part of the domain. Figure 2.6 illustrates how the computational grid can
be split up into two parts, which from now on is referred to as the 3D
(yellow cells) and VE (blue cells) domain. Hybrid models are currently
being developed at the Department of Scientific Computing at SINTEF
Digital and it is expected that they will publicly available in one of the
next versions of MRST-co2lab 1.

In the 3D domain the flow is determined by the equation system given
by (2.3) and (2.4), while in the VE domain the flow is determined by (2.12)
and (2.13). The discretization of the 3D model (2.5) can alternivaly be
written as

1

t n+1 − t n

[(
φραsα

)n+1
i − (

φραsα
)n

i

]
+ ∑

j∈V (i )
fi j (pn+1

α , sn+1
α )

=ψn+1
α,i α= w,n

(2.14)

where V (i ) is the set of neighbouring cells to cell i and fi j is the mass flux
from cell i to j , i.e. fi j is greater then zero when the net mass flux is from
cell i to j . Similarly, the discretization of (2.12) can be given as

1

t n+1 − t n

[(
ΦραSα

)n+1
i − (

ΦραSα
)n

i

]
+ ∑

j∈V (i )
fi j (P n+1

α ,Sn+1
α )

=Ψn+1
α,i α= w,n

(2.15)

1New and old releases of MRST can be found at http://www.sintef.no/
projectweb/mrst/downloadable-resources/download/

http://www.sintef.no/projectweb/mrst/downloadable-resources/download/
http://www.sintef.no/projectweb/mrst/downloadable-resources/download/


CHAPTER 2. THEORY 26

Figure 2.6: Illustration of a hybrid grid. The yellow and blue cells repre-
sent the 3D and VE domain, respectively. Note the lack of explicit vertical
discretization in the VE domain.

System (2.14) and (2.15) are on the same form, only with different inter-
pretation of the variables, giving that they can be solved simultaneously
using already existing solvers in MRST. However, special attention has to
be made to the interfaces between the domains of different discretiza-
tion. Or more explicitly, the flux fi j between cells i and j belonging to
different discretizations regions have to be modelled explicitly. In this
thesis this is limited to flux between VE and 3D regions.

Flux between a VE and 3D domain is solved by introducing virtual
cells. Figure 2.7 shows how an interface between a 3D and VE region is
modelled using virtual cells within the VE region. In this section super-
script tilde is used to represent parameters defined in the virtual cells. If
saturation and pressure within these virtual cells can be determined, the
fine-scale volumetric flux can be determined using the 3D formulation
given equation (2.6).

Under the assumption of VE and a sharp interface, the CO2-brine in-
terface in VE cell i will lie at depth zsi = HSn,i . This interface is most
likely to be within a virtual cell ik , see Figure 2.7.As this thesis only con-
sider the injection process, the cell above and below ik has brine satura-
tion equal sr,w and 1, respectively. As the saturation value is defined at
the centroid of the cell, the brine saturation is here defined as

s̃w,ik = sr,w + 1− sr,w

zB − zT
(z − zT )
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Figure 2.7: Illustration of how a VE disretized cell is virtually represented.
Yellow cells belong to the 3D discretization, dark blue to the VE dis-
cretization and the light blue are 3D virtual cells. A VE cell i is discretized
into a number ni of virtual cells i1, ..., ik , ...ini . The black bullets show
where the variables are defined.

Here zT and zB denote the value of the z-coordinate at the top and bot-
tom interface of virtual cell ik , as illustrated in Figure 2.7. The virtual CO2

saturation is given as s̃n = 1− s̃w .
The value of the upscaled pressures Pα are defined at the top of the

VE column. If zcr defines the caprock level, the fine-scale pressure at the
centroid of a cell zC is under the assumption of constant phase densities
given as

p̃w,ik = Pw,i +
∫ zC

zcr

(
ρw s̃w +ρn s̃n

)
g d z

Coupled System

The equations of a hybrid model can be written in compact form. Let V3D

and VV E denote the set of cells that are in the 3D and VE discretization,
respectively. Using the similarity of (2.14) and (2.15), the discretization
of the coupled system can now be written as

1

t n+1 − t n

[(
ραΘα

)n+1
i − (

ραΘα
)n

i

]
+ ∑

j∈V (i )
fi j (Υn+1

α ,Πn+1
α ) =Ξn+1

α,i , α= w,n
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where the hybrid variables is dependent on the discretization as

Πα,i =
{

pα,i , if i ∈V3D

Pα,i , if i ∈VV E
Υα,i =

{
sα,i , if i ∈V3D

Sα,i , if i ∈VV E

Θi =
{
φi , if i ∈V3D

Φi , if i ∈VV E
Ξα,i =

{
ψα,i , if i ∈V3D

Ψα,i , if i ∈VV E

The mass fluxes fi j are diviveded into three cases; (i ) coupling between
two fine-scale cells, (i i ) coupling between two coarse-scale cells and (i i i )
coupling between the two types of discretizations

fi j (Υi ,Πi ,Υ j ,Π j ) =


fi j (si , pi , s j , p j ), if i , j ∈V3D

fi j (Si ,Pi ,S j ,S j ), if i , j ∈VV E

fi j (si , pi ,S j ,P j ), if i ∈V3D , j ∈VV E

The supplementary equations are given as

Υw,i +Υn,i = 1

Πn,i −Πw,i =
{

pcap (sw,i ), if i ∈V3D

Pcap (Sw,i ), if i ∈VV E

Separation Radius

An important question in a hybrid model is how the VE and 3D domain is
determined. This choice can be influenced by a great number of factors,
like fluid and rock properties, slope of the aquifer, impermeable layers,
injection rate etc. The natural choice is to have a fine-scale 3D model
in areas with significant vertical flow and a VE model in all other areas.
Near-well areas are here identified as areas close to injecting wells where
the VE assumption does not hold. Therefore, a hybrid model could have
a 3D domain within a radius of the vertical wells and VE domain in all
other areas. As this radius separates the VE and 3D domain it is named
the separation radius R∗. The VE and 3D domain in a hybrid model might
change under a simulation, and therefore the separation radius is in gen-
eral time-dependent, R∗ = R∗(t ). Figure 2.8 illustrates some possible
choices of separation functions.

In a numerical simulation the solution is computed at different time
steps. Therefore the separation functions will actually be stair step func-
tions where intervals are given by the time steps in the simulation. At
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Figure 2.8: Examples of separation radius functions R∗(t ).

each time step the hybrid model has to be redefined if the separation ra-
dius changes. Depending on the simulation scenario, it may be overly
complex to constantly change the hybrid model set up. An alternative
approach would be to set the boundary so far away from the well that
it encompasses the maximum separation radius will be achieved. This
corresponds to the constant blue line in Figure 2.8.

2.3 Determination of near-well Area

In a hybrid model there is an interface between the 3D domain and the
VE domain. In this thesis it is assumed that the interface lies at a radius
R∗ from an injecting well. Hence, the determination of the near well area
focuses on finding a function R∗ = R∗(t ) that determines how far out
from a well one has to move before the vertical equilibrium assumptions
holds.

In [20] the authors examined the applicability of VE and sharp inter-
face assumptions in modelling of CO2 sequestration. As CO2 invades the
aquifer and creates the CO2 plume, the brine needs to drain vertically
before the two phases are completely segregated. The article concluded
that this drainage time, relative to the time scale of the simulation, deter-
mines the applicability of the vertical equilibrium assumption.

In addition to brine drainage, this thesis also assumes that the hori-
zontal flux of CO2 has an influence of the vertical equilibrium assump-
tion. If the vertical flux of CO2 is small compared to the horizontal flux of
CO2, the system is dominated by the horizontal flow and this strengthens
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the vertical equilibrium assumption.
Inspired by this, this thesis considers the ratio of vertical volume flux

of brine to horizontal volume flux of CO2 to determine if the VE assump-
tion holds. More precisely, the flux ratio number η is calculated to de-
termine if a column at some radius r can be assumed to be in vertical
equilibrium. The flux ratio number is defined as

η(r, t ) = f⊥(r, t )

f∥(r, t )
(2.16)

Here f⊥ is the mean vertical volume flux of brine and f∥ is the mean hor-
izontal volume flux of CO2 within the CO2 plume.

f⊥(r, t ) = 1

h(r, t )

∫ ζT +h(r,t )

ζT

f⊥,w (z,r, t )d z (2.17)

f∥(r, t ) = 1

h(r, t )

∫ ζT +h(r,t )

ζT

f∥,n(z,r, t )d z (2.18)

Here h(r, t ) is the height of the CO2 plume, f⊥,w is the volume flux of
brine in the vertical direction and f∥,n is the volume flux of CO2 in the
horizontal direction.

If the ratio η is above some threshold value η this should be inter-
preted as significant vertical flow of brine compared to horizontal flow of
CO2, such that a column cannot be assumed to be in vertical equilibrium.
The smaller the threshold value is, the more restrictive is the VE assump-
tion. The separation radius at time t is then taken to be the largest radius
at which η(r, t ) > η.

This thesis presents one numerical and one analytical approach for
determining R∗. The numerical approach uses vertical and horizontal
volume fluxes along internal cell faces computed from a 3D simulation,
while the analytic approach is based on an analytic result of the interface
position between CO2 and brine presented in [21].

2.3.1 Numerical Approach

The 3D discretized equations is solved using a finite volume method. Be-
tween all time steps in the simulation, the volume rate (unit m3s−1) in
and out of the internal cell faces is computed. For a column at a radius r
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from an injecting well with a set of cells V (r ) in the CO2 plume, the mean
vertical and horizontal volume flux can then be computed as

f⊥(r, t ) = 1

h(r, t )

∑
i∈V (r )

hi

f V
⊥,i (r, t )

A⊥,i

f∥(r, t ) = 1

A(r, t )

∑
i∈V (r )

f V
∥,i (r, t )

Here f V
⊥,i is the volume rate of CO2 out of the face of cell i with normal

in the vertical direction (bottom faces in Figure 2.9), A⊥,i is the areal of
the face with normal in vertical direction, f V

∥,i is the volume rate of brine
out of the face of cell i with normal in the radial direction (right faces in
Figure 2.9) and A∥(r, t ) is the total areal of the faces with normal in the
radial direction within the CO2 plume, i.e. A∥(r, t ) =∑

i∈V (r ) A∥,i .
From this the flux ratios η(r, t ) are computed numerically and the

separation radius is then taken to be

R∗(t ) = argmax
r

{
r | η(r, t ) > η}

2.3.2 Analytical Approach

Test Case Description

This analytical approach is built on the analytical solution giving the height
of the CO2 plume for a specific fluid-rock system presented in [21]. The
solution is given for a simple, vertical injection scenario, which will be
referred to as the test case throughout this thesis.

The test case consist of a single, vertical well situated at the center of
a cubic aquifer with height H . The aquifer is originally filled with brine,
and the well is injecting equal amounts of CO2 along the whole depth
of the aquifer. The porosity and permeability of the aquifer is homoge-
neous, and the aquifer has zero slope. The aquifer is sealed at the top and
bottom (no-flow boundary conditions), and open to flow through lateral
boundaries (fixed pressure boundary conditions). The fluid viscosities
and densities are assumed to be constant, i.e. the compressibilities are
zero. The rock compressibility cφ is also zero and for simplicity the resid-
ual saturations sr,α are also assumed to be zero. It also assumed the there
is a sharp interface between the brine and CO2 phase, i.e. the capillary
pressure pcap is zero.
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As the well is at the center of the aquifer and the porosity and perme-
ability is homogeneous, the flow is radially symmetric around the well.
Therefore the simulations can be conducted in the (r, z, t )-space instead
of the (x, y, z, t )-space, and the cubic grid can be reduced to a thin slice,
as shown in Figure 2.9. If the volumetric injection rate of the well is Q,
the injection rate of CO2 into the slice with angle ω is equal Qω = ω

2πQ.
The red cells in this figure shows where the well is centred.

Analytical Mean Horizontal Flux

When viscous forces dominate gravity forces the plume height h(r, t ) in
the test case is given as [21]

h(r, t ) =


H , for χ≤ 2/λ

H
λ−1

(√
2λ
χ −1

)
, for 2/λ<χ≤ 2λ

0, for χ> 2λ

(2.19)

Here χ and λ are dimensionless parameters defined as

χ= 2πHφ(1− sr,w )

Q

r 2

t
λ= λn

λw

λ is known as the mobility ratio, where the relative permeability values
of brine and CO2 is evaluated at different saturation values. The mobility
of brine is defined ahead of the interface, while CO2 is defined behind,
such that λ= kr,n (1−sr,w )/µn

kr,w (1)/µw
. Figure 2.10 illustrates how the solution looks

like at some time t .

Figure 2.9: Reduced 3D aquifer grid of test case. The red cells indicates
that the well is situated at the center of the aquifer and that the well is
injecting CO2 in the whole depth of the aquifer.
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Figure 2.10: Illustration of how the analytical plume height (2.19) looks
like at some time t . The CO2 fully fills the aquifer height H i region I up to
the radius RH . RF is the front radius of the plume, and region II is defined
as r ∈ (RH ,RF ]

From this analytical solution the mean horizontal volume flux of CO2

f∥(r, t ) can be computed. The analytical flux is different region I and II in
Figure 2.10. The regions are defined by the radii RH and RF , and they are

found by setting χ = 2/λ and χ = 2λ, respectively. If β = πHφ(1−sr,w )
Q , the

radii are given as

RH (t ) =
√

t

βλ
RF (t ) =

√
λt

β

Assume first that r is in region II. The volume of CO2 outside of radius r
is denoted VI I (r, t ) and is given as

VI I (r, t ) = 2πφ(1− sr,w )
∫ RF

r
h(r ′, t )r ′dr ′

= 2πφ(1− sr,w )
H

λ−1

∫ RF

r

(√2λ

χ
−1

)
r ′dr ′

= 2πHφ(1− sr,w )

λ−1

∫ RF

r
(RF − r ′)dr ′

= Hπφ(1− sr,w )

λ−1
(RF − r )2
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The total volume flux F (r, t ) out of the cylinder with radius r and height
h(r, t ) is then equal

FI I (r, t ) = d

d t
VI I (r, t ) = Hπφ(1− sr,w )

λ−1

(RF − r )RF

t

This band at r has areal AI I (r, t ) = 2πr h(r, t ) = 2πH
λ−1 (RF (t )− r ), and the

mean volume flux is then given as FI I (r, t )/AI I (r, t ).
If r is in section I, the mean volume flux is trivial to find. As the vol-

umetric injection rate is Q and the well is injecting equal amounts along
the whole depth H of the aquifer, the volume rate of CO2 that crosses the
cylinder band at r in section I is simply equal Q. Finally, by using that
sr,w = 0 for simplicity in this thesis, the analytical mean horizontal flux is
given as

f∥(r, t ) =
{

Q
2πHr , for r ∈ [0,RH ]
φRF (t )

2t , for r ∈ (RH ,RF ]
(2.20)

Note that the flux in region II is independent of the radius r .

Relation Horizontal and Vertical Flux

If the analytical mean vertical flux f⊥(r, t ) was known too, this could have
been used to calculate the flux ratio number η directly as in the numer-
ical approach using (2.16). However, this is not known and a different
approach has to be made. Since the question is whether a given col-
umn can be assumed to be in vertical equilibrium, this is in fact an one-
dimensional problem. For incompressible one dimensional two-phase
flow in a porous medium, the volume flux of CO2 is given as [22]

vw = λw

λn +λw
v + λnλw

λn +λw
kγ+k

λn +λw

λnλw

∂pcap

∂z
(2.21)

Here is v = vn + vw the total volume flux (where vα is given from the one
dimensional form of Darcy’s law (2.2)), γ = (ρn −ρw )g the difference in
specific weight and k the absolute permeability. As a column is assumed
to be in VE if η ≤ η, the vertical flow has to fulfil the following equation
for the VE assumption to hold

f⊥ ≤ η f∥
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This gives the maximum value the mean vertical flux f max
⊥ can take for

a column to be considered to be in vertical equilibrium. If the VE as-
sumption holds, the mean flux f⊥ is possibly less than f max

⊥ . However,
this analytical approach aims for rather overestimating than underesti-
mating the separation radius, and therefore assumes that when the VE
assumption holds the mean vertical flux is exactly equal

f max
⊥ = η f∥

Under the assumption of a sharp interface, which is consistent with neg-
ligible capillary pressure, the last term in (2.21) is neglected. Around
a well in the fluid-rock system described most flux will be horizontal
driven by a high pressure in the well. Therefore, as v is small in the verti-
cal direction, the first term can also be neglected. As the vertical volume
flux (2.21) now is a function of saturations, the brine saturation level that
corresponds to the maximum mean vertical flux f max

⊥ can be determined
from the following equation

kγ
λn(1− sw )λw (sw )

λn(1− sw )+λw (sw )
= η f∥(r, t ) (2.22)

As the kr -s relationships often are non-linear, this equation has to be
solve numerically. Let the solution be denoted as the characteristic sat-
uration level s∗w . The reason to denote the solution as the characteristic
level, is that characteristics will be used to determine if the column at
radius r can be assumed to be in VE.

Characteristic Analysis

An aquifer is initially fully filled with brine. As the vertical equilibrium as-
sumption builds upon that brine and CO2 are separated, it is here exam-
ined how long time it takes for brine to flow downwards from the caprock
through a CO2 plume with height h(r, t ). Let this time be denoted as the
segregation time t∗ = t∗(r, t ). If the segregation time t∗ is greater then the
time since the injection start t , one cannot assume vertical equilibrium.
In order to find t∗(r, t ) for a given height h(r, t ), it has to be known how
fast brine flows downwards.

For incompressible fluids and incompressible rock, mass conserva-
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tion of brine in the vertical direction can be written as [22]

φ
∂sw

∂t
+ v

∂

∂z

(
k

λw

λw +λn

)
+γ ∂

∂z

(
k
λnλw

λw +λn

)
+ ∂

∂z

(
k
λnλw

λw +λn

∂pcap

∂z

)
= 0

(2.23)

This equation actually follows directly from (2.21), which gives the flux
term in the mass conservation equation. Therefore, under the assump-
tion of a sharp interface and large horizontal flux compared to vertical
flux, the second and last term in (2.23) is neglected. The one dimensional
mass conservation equation with u = sw can now be written as

∂u

∂t
+ ∂g (u)

∂z
= 0 (2.24)

This is known as the scalar hyperbolic conservation law [23], and g (u) =
kγ
φ

λnλw
λw+λn

is known as the flux function and u = u(z, t ) as the density of
the conserved quantity. Assuming that the flux function can be differen-
tiated, equation (2.24) can be rewritten as

∂u

∂t
+ g ′(u)

∂u

∂z
= 0

g ′(u) is known as the characteristic speed and Figure 2.11 presents an ex-
ample plot of the characteristic speed for a cubic kr -s relationship, ab-
solute permeability 10mD and fluid and rock properties given i Tabular
3.1, which are the parameters that analytical results are conducted from
in Section 3.2.2. If the initial solution u0 = u(z,0) is known at a point z0

the solution will propagate along the line

z = z0 + g ′(u0(z0))t

Thus, if the initial saturation profile sw is known along a vertical column,
the characteristic speeds can be used to find out how the initial solution
propagates. The saturation profile is not known, but the limit value of s∗w
for the VE assumption to hold is known from equation (2.22).

The analytical vertical volume flux is plotted in Figure 2.12 for fluid
and rock properties given in Tabular 3.1, absolute permeability 10 mD
and cubic kr -s relationships. From this figure it is clear that equation
(2.22) in fact might have two solutions, one to the left and one to right
of the maximal point. The characteristic saturation level s∗w should be
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taken as the smallest value that solves (2.22), as this gives a positive char-
acteristic speed that goes downwards in the plume, which can be seen
from Figure 2.11. The other of solution of (2.22) corresponds to a nega-
tive characteristic speed going upwards, which is not where the interest
in this thesis lies. In addition if max( f⊥) < η f∥(r, t ), a solution to (2.22)
cannot be found, which is interpreted as a large horizontal flux such that
the column at radius r can be assumed to be in VE.

For a column at radius r it is assumed that the characteristic brine
saturation s∗w starts to propagate downwards from the caprock level at
the time where the plume first reaches the radius. In a reality CO2 and
and brine starts to segregate immediately after CO2 is injected into the
aquifer. However, it is not known how far the segregation process has
come when the plume first reaches r . E.g. there might be some brine
left in the whole plume height or there might some brine left just in the
bottom of the plume. As this analytical approach aims to overestimate
the segregation time, it is assumed that the segregation at the radius r
first starts at the time when the plume reaches r . Let us denote this time
as the front time tF = tF (r ). This time is found by setting χ = 2λ, which
gives

tF = β

λ
r 2

Finally, the segregation time for brine through the CO2 plume at radius r
and time t with height h(r, t ) is given as

t∗(r, t ) = tF (r )+ h(r, t )

v∗ (2.25)

v∗ = g ′(s∗w ) is the characteristic speed given at the characteristic satura-
tion level. In fact the speed v∗ could be equal the characteristic speed
g ′(s∗w ) or a shock speed given by the Rankine-Hugoniot condition [23].

It is assumed that at the caprock level the brine saturation is equal
s∗w . The brine saturation profile downwards in the plume is unknown,
but it is here assumed that the saturation is always less then 0.5. Oppo-
sitely, if sw > 0.5 this corresponds to that there is more brine than CO2

in the CO2 plume and that the slow drainage process of brine has not
started. In Figure 2.12 the analytical vertical flux function was plotted for
relevant scenario parameters. For this set of parameters the flux function
can be separated into to two convex parts, for s ∈ [0,0.52)∪ (0.79,1], and
one concave part, for s ∈ (0.52,0.79). As it is assumed that sw < 0.5 in the
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whole depth of the CO2 plume, the vertical flux is always in the convex
domain of the analytical vertical flux function. Therefore the brine sat-
uration profile propagates for what is known as a rarefaction wave [23]
and not as a shock wave. In summary, for other scenarios with different
flux function the speed v∗ could be equal a shock speed, but in thesis the
speed is always equal g ′(s∗w ).

If t∗ > t , the brine and CO2 at radius r have not had time to fully sep-
arate, meaning that the column at r cannot be assumed to be in VE. As
all plume heights at a distance r is associated with a segregation time
t∗(r, t ), this method is used to find a radius R∗(t ) that separates the do-
main into one part where the VE assumption holds and one part where
the fine-scale 3D simulation should be carried out. The value of R∗(t )
is given as the maximum radius r at which t∗(r, t ) from (2.25) is greater
then the time step t .

R∗(t ) = argmax
r

{
r | t∗(r, t ) > t

}

Figure 2.11: Characteristic speeds for cubic relative permeability curves.
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Figure 2.12: Example of analytical vertical flux for cubic relative perme-
ability curves. The red dashed lines give the turning points of the func-
tion, i.e. the function is concave between the red lines and convex for the
leftmost of rightmost part.



Chapter 3

Numerical Results and
Discussion

In this chapter numerical results are presented and discussed. This chap-
ter consists of three sections. The first section illustrates the benefits,
drawbacks and differences of 3D and VE simulations with basis in three
test cases. The second section covers determination of the near-well area
by the analytical and numerical approach. The last section presents re-
sults from hybrid simulations and compares these results with full 3D
and VE simulations. Each section is closed by a discussion part.

3.1 VE and 3D Simulations

In Section 1.1.2, it was described that the vertical equilibrium assump-
tion does not hold in the vicinity of a well. In [20] the authors considered
the applicability of the vertical equilibrium assumption in CO2 seques-
tration modelling, and concluded that the applicability of a vertically-
integrated modelling approach depends on the time scale of the vertical
brine drainage within the plume, relative to the time scale of the simu-
lation. Inspired by this, numerical simulations where conducted on the
test case to visualize how rock and fluid properties influence VE and 3D
simulations.

Simulations were conducted on three test cases, denoted test case
A, B and C, fulfilling the properties of the original test case described in
Section 2.3.2. A specification of equal simulation parameters are given
in Tabular 3.1, while different parameters for the test cases are given in
Tabular 3.2.

40
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Equal Properties

Porosity 0.10
Rock compressibility 0
Aquifer height 15 m
Aquifer Radius 5000 m
Brine density 1000 kg m−3

CO2 density 720 kg m−3

Brine compressibility 0
CO2 compressibility 0
Brine viscosity 8.0×10−4 Pa s
CO2 viscosity 6.0×10−5 Pa s
Residual saturation brine
Residual saturation CO2 0
Annual injection rate 0.1 Mt
pcap (sw ) 0

Table 3.1: Equal scenario parameters for test cases that examines differ-
ences between VE and 3D simulation.

Test Case Absolute permeability kr,w kr,n

A 100 mD Linear Linear
B 50 mD Quadratic Quadratic
C 10 mD Cubic Cubic

Table 3.2: Different scenario parameters for test case A, B and C.
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3.1.1 Numerical Results

Figure 3.1, 3.2 and 3.3 show CO2 saturation after 15 years of injection in
test case A, B and C, respectively. The VE simulation computes upscaled
variables for each grid column, but the plotted values are the upscaled
saturation Sn reconstructed into fine-scale saturation values for each cell
in the 3D discretization using the plume height h as shown in the Section
2.2.3. As seen in these figures, there is almost no differences in VE and
3D results for test case A and B, while for test case C there are significant
differences. In test case C, the vertical flow of CO2 is much greater in the
VE simulation than in the 3D simulation. Also, the lateral flow of CO2 in
the 3D simulation is greater than in the VE simulation, and this results in
the great difference in the shape of the CO2 plumes.

Figure 3.1, 3.2 and 3.3 only show CO2 saturation at one simulation
time step. By defining the mean saturation difference δsat as

δsat = 1

Vtot

∑
i∈V3D

δsat ,i Vi

the saturation difference of the VE and 3D simulation is quantified. Here
Vtot is the total pore volume of the aquifer, V3D is the set of cells in the
3D discretized grid, δsat ,i is the absolute value of the difference in CO2

saturation in 3D cell i between the 3D and reconstructed VE value and
Vi is the pore volume of 3D cell i . Figure 3.4 shows the mean saturation
difference for the three test cases throughout 25 years of injection. From
this plot it is even more clear that the VE and 3D simulations in test case
A and B are almost identical, while the simulations in test case C are quite
different.

Tabular 3.3 presents the total simulation time for the VE and 3D model
in the test cases, and the simulation time of the VE model is for all cases
under 6,5 % of time of the corresponding 3D simulation. Note that sim-
ulation times are only included to show difference between model types,
and not included for discussion on fastness and efficiency of the numer-
ical solver. It is also worth to mention that the numerical solver used in
MRST is not optimized for computational speed.
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Figure 3.1: The two top plots show CO2 saturation computed using a VE
and 3D model after 15 years of injection giving scenario parameters as in
test case A. The red line plots the analytical plume height given in equa-
tion (2.19). The bottom plot shows the saturation difference for each grid
cell from the two simulations.

Figure 3.2: The two top plots show CO2 saturation computed using a VE
and 3D model after 15 years of injection giving scenario parameters as in
test case B. The red line plots the analytical plume height given in equa-
tion (2.19). The bottom plot shows the saturation difference for each grid
cell from the two simulations.
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Figure 3.3: The two top plots show CO2 saturation computed using a VE
and 3D model after 15 years of injection giving scenario parameters as in
test case C. The red line plots the analytical plume height given in equa-
tion (2.19). The bottom plot shows the saturation difference for each grid
cell from the two simulations.

Figure 3.4: The mean cell difference in CO2 saturation for the three test
cases for 25 years of injection.
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3.1.2 Discussion

The equality of the simulations in test case A and B is due to the fact that
the vertical brine drainage is much faster here than in test case C. This
is also is in accordance with the conclusion from [20], where the authors
stated that the kr -s relationship has a large impact on the time scale of
the brine drainage and hence whether CO2 and brine segregate fully on
the time scale of interest. This is better understood by examining the
plot of theoretical relative permeability curves in Figure 2.4. As brine sat-
uration decreases asymptotically to zero, the cubic relative permeability
curve decreases more rapidly than the linear and quadratic curves, lead-
ing to a significant slower drainage of brine from the CO2 plume. Thus
brine will flow slower within the CO2 plume in test case C than in test case
A and B, resulting in that brine and CO2 will not separate quickly enough
for the VE assumption to hold. To sum up, these results clearly show that
in some scenarios the significantly faster VE model can be used, while for
test case C a 3D model is preferred.

The analytical solution of the plume height (2.19) is also plotted in
Figure 3.1, 3.2 and 3.3 as a red line. The analytical solution follows the
numerical interface to some extend. At the time step plotted in Figure
3.1, 3.2 and 3.3 the analytical and numerical solutions are inseparable
for r > 1000, while for r < 1000 there is an discrepancy. Particularly cal-
culates the analytical and numerical solution differently the radius RH ,
i.e. the radius at which the CO2 plume stops filling the aquifer at full
height H .

In [24] the analytical solution (2.19) was compared to simulations
from a numerical simulator ECLIPSE (Schlumberger Information Sys-
tems) for a wide range of subsurface conditions and characteristics of
sedimentary basins expected to apply to possible CO2 injection scenar-
ios. The scenario parameters considered in the article is comparable
with the parameters of the test cases considered here, with a cubic kr -

Model type 3D VE

Simulation time test case A [s] 450 29
Simulation time test case B [s] 619 25
Simulation time test case B [s] 790 28

Table 3.3: Simulation time of different model types for the test case A,B
and C.
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s relationship as in test case C. The article concluded that the two-fluid
flow dynamics associated with CO2 injection into deep saline aquifers
may be captured very well by the analytical solution (2.19). The conclu-
sions was found to be true for a wide-range of conditions, from warm,
very deep formations to shallower, cold formations. The offset in numer-
ical and analytical RH can however also been seen in this article. The
offset is thereby no further examined in this thesis, but left noted as a
possible subject for further research.

It is also worth mentioning that the analytical solution is in fact equal
in all test cases and assumes instantaneous phase segregation (i.e. zero
brine drainage time). Therefore it is not realistic to expect that the analyt-
ical and numerical solution are close to identical for all three test cases,
as the numerical solutions in the test cases vary greatly.

3.2 Determination of near-well Area

Here, results from determining near-well areas with significant vertical
flow is given. Numerical and analytical results are presented separately,
before they are compared and discussed. The analysis is restricted to
only considering test case C, as VE and 3D simulations were significantly
different for this test case.

3.2.1 Numerical Approach

In Figure 3.5 CO2 saturation, mean vertical CO2 flux f⊥ and mean hor-
izontal brine flux f∥ is plotted after 8 years of injection. Two important
observations are made from this figure.

Firstly, the mean vertical flux of brine is largest in the thin, front part
of the plume. Here the mean horizontal flux is also at it lowest, which
gives that the highest ratio numbers η is located at the front of the plume.
In practice this gives that the numerical separation follows the front of
the plume. The high values of brine flux results from the horizontal ex-
tension of the CO2 plume, which displaces grid cells initially filled with
brine. The plume is here relatively thin compared to other parts of the
plume, and it is therefore expected that the brine and CO2 segregation
will occur faster here than in thicker parts of the plume. In the following
the flux ratio is therefore not computed numerically for plume heights
below some cut off value hcut .
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Figure 3.5: CO2 saturation, mean vertical flux and mean horizontal flux
after 8 years of injection in test case C with sharp interface.

The second observation is that both f⊥ and f∥ oscillates. As the well
is injecting CO2 at a constant rate, it is not expected to see any oscillatory
behaviour in the system and this is thereby assumed to be a non-physical
behaviour. The oscillations occur for each stair step of the plume. Here,
stair step refers here to a segment of the plume where the bottom cell
of the plume is at the same depth. Due to the shape of the plume the
stair steps are widest at the front of the plume, and it is also here the
oscillations are clearest. The oscillations are expected to be an artefact
of the numerical solver and related to the sharp interface assumption
and the choice of grid resolution. In Figure 3.6 CO2 saturation, f⊥ and
f∥ is plotted at the same time step with the same parameters and grid
resolution as in Figure 3.5, except that the sharp interface assumption is
removed and the capillary pressure is given as

pcap (sw ) = 10

√
1− sr,w

sw − sr,w
kPa

The first thing to note in this figure is that the shape of the CO2 plume
in this case is quite different from the case with sharp interface. Further,
the oscillations in f⊥ and f∥ seen in the simulations with sharp interface
are vanished.

The oscillations are also an artefact of the grid resolution. In detail,
the oscillations are related to the ratio between the number of grid cells
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Figure 3.6: CO2 saturation, mean vertical flux and mean horizontal flux
after 8 years of injection in test case C with capillary pressure.

in the vertical (nz) and radial direction (nr ). It is natural to expect that a
higher number of grid cells would increase the precision of a simulation,
but a higher number of radial grid cells increases the number of columns
in each stair step of the plume. This again increases the oscillatory be-
haviour. However, an increased number of cells in the vertical direction
leads to a smoother shape of the brine-CO2 interface and a reduction of
columns in each stair step of the plume. Therefore, to avoid oscillations
there has to be a consistency between the grid resolution in the vertical
and radial direction; a fine discretiztion in the radial direction requires
a very fine discretization in the vertical direction, which may be compu-
tationally demanding. This also exemplifies what was mentioned in the
introductory chapter; namely that the grid discretization in the vertical
direction in a 3D simulation has to be very fine in order to capture all
effects of the system.

In Figure 3.7 f⊥ and f∥ are plotted for hcut = 0.75m, nr = 250 and nz =
250 , which is distinctly different from the original Figure 3.5, where there
was no cut-off height and the grid resolution was set by nr = 500 and nz =
50 . Here, some oscillations that will affect the flux ratio η are still seen in
the plot of the mean vertical flux. Therefore, the ratios presented in the
succeeding have been smoothed out using the moving average filtering
method, which smooths out each ratio η by replacing it with the average
of neighbouring ratios defined within a span. For all results presented in
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this thesis this span was set to 5.

Figure 3.7: Mean vertical and mean horizontal flux with cutoff height
hcut = 0.75m.

As a result of the discussion above, the remaining results in this sec-
tion are found by carefully choosing the grid resolution, introducing the
cut off value hcut and smoothing out the flux ratio. For hcut = 0.75m,
nr = 250 and nz = 250 CO2 saturation and flux ratio is given in Figure 3.8
after 15 years injection. Finally, a plot of the numerical separation radius
is given in Figure 3.9 and in Figure 3.10 a contour plot shows the time
development of η for the values of hcut , nr and nx as given above.
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Figure 3.8: CO2 saturation and flux ratio number η after 15 years of in-
jection. The black cells in the top plot show cells that have been cut out
the calculation of η, and the flux ratio is hence zero here as seen in the
bottom plot. The red stars in the bottom plot show numerical values of
the ratio, and the blue line is the smoothing of these values.

Figure 3.9: Numerically computed separation radii for a range of of
threshold values η.
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Figure 3.10: Contour plot of numerical flux ratio η.
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3.2.2 Analytical Approach

The analytically computed separation radius for a range of η is presented
in Figure 3.11.

Figure 3.11: Analytical separation radii for a range of of threshold values
η.

3.2.3 Comparison and Discussion

Both numerical and analytical separation radius functions are plotted in
Figure 3.12. There are both some similarities and clear differences be-
tween the analytical and numerical results. Firstly, the numerical and
analytical radius are almost identical and increases quickly at the very
injection start. However, the analytical radius quickly goes over to lie at
almost a constant radius, while the numerical radius continues to rise
before it starts to fall at a certain time. At this time the numerical radius
reaches it maximal value, and some time later the radius suddenly drops
to zero. The analytical radius also drops to zero, but at an earlier time
than the numerical radius.

The sudden drops are interpreted as that the brine and CO2 phases
are in vertical equilibrium in the whole aquifer, and that full VE simula-
tions can be conducted after this drop time. The drops may seem non-
physical, but can be understood and explained by looking at Figure 3.13.
Here the CO2 plume and the numerical flux ratio η is plotted after 6, 10
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Figure 3.12: Analytical and numerical separation radii for a range of of
threshold values η. The analytical and numerical radius is plotted in dot-
ted and solid lines, respectively. The functions with the same colour is
found using the same value of η.

and 40 years of injection. This figure illustrates that the maximum value
of η approximately lies where the plume height is equal half of the aquifer
height H . The maximum value decreases with increasing injection time
and at a certain time step the maximum value of η goes below η, giving
that VE is assumed in the whole system after this time step.
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Figure 3.13: CO2 saturation and flux ratio number η after 6, 10 and 40
years of injection (from left to right).

Furthermore, as there is a great disparity between the analytical and
numerical results, it is necessary to examine where the differences come
from as the numerical and analytical approach are similar. Particularly
the analytical approach aimed to overestimate the separation radius, while
results show that the opposite occurs. In particular it is here discussed
how similar the numerical and analytical approach are, and if any too
bold assumptions have been made in the analytical approach.

In Figure 3.14 and 3.15 the numerical and analytical mean horizontal
flux of CO2 is plotted after 10 and 50 years of injection, respectively. Note
that in these figures the cut-off height is set to zero, i.e. the flux is calcu-
lated for the whole plume. The analytical and numerical results are equal
for r < RH , which was named region I in Section 2.3.2. For r > RH , i.e. in
region II, the analytical flux is constant as given in equation (2.20). This
to a certain extent consistent with the numerical flux, but the numerical
flux lies significantly below the analytical value and also goes to zero at
the thin, front part of the plume. Thus, the analytical flux does not cap-
ture the physical behaviour of the flux in region II. It is worth to mention
that the analytical and numerical flux are more similar after 50 years of
injection, see Figure 3.15.

It is not clear exactly which assumptions that lead to the constant
analytical flux for in region II. The analytical approach assumes that the
CO2 saturation above the interface h(r, t ) is equal to 1, while in reality the
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CO2 plume also consists of some brine. This is especially true for test case
C, as brine drainage time in this case is significant. This is also the case
that simulations where conducted on in this section. It is not obvious if
this assumption leads to the disparity in the horizontal flux, but this is
left as a possible cause and pointed out as further research.

The practical impact of the assumed too high analytical horizontal
flux of CO2 is that the analytical approach assumes a too high maximum
vertical flux, f max

⊥ . Thus vertical equilibrium may be assumed easier in
the analytical approach giving lower values of the separation radius com-
pared to the numerical radius as seen in Figure 3.12.

The practical impact becomes very clear by examining Figure 3.16
and 3.17. In these figures the area where vertical equilibrium is assumed
is plotted as green in the (r, t )-plane. In the figures the radii RH and RF

are also plotted, such that between these two lines the CO2 plume goes
from filling the aquifer at full height H to height zero. This is what was
referred to as region II in Section 2.3.2. In this region the difference in
the results between the numerical and analytical approach are clearest.
The analytical approach assumes the VE assumption to hold almost ev-
erywhere between these two radii, while this is definitely not the case in
the numerical approach. In region II the analytical horizontal flux is con-
stant, while region I the analytical and numerical flux are almost identi-
cal. In region I the analytical approach is more strict to assume VE com-
pared the numerical approach, as was aimed for. Thus is seems clear that
the inconsistency is related to the horizontal fluxes, while it is not trivial
to explain the exact cause of the inconsistency.
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Figure 3.14: Plot of numerical and analytical mean horizontal flux of CO2

after 10 years of injection. The difference between the top and bottom
plot is the range and scaling of the y-axis.

Figure 3.15: Plot of numerical and analytical horizontal flux after 50 years
of injection. The difference between the top and bottom plot is the range
and scaling of the y-axis.
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Figure 3.16: Plot of areas where the vertical equilibrium is assumed to
hold (green) and not (red) for threshold value η= 0.0007 with numerical
approach. The blue and black lines indicates where the position of the
numerically determined radii RH (t ) and RF (t ).

Figure 3.17: Plot of areas where the vertical equilibrium is assumed to
hold (green) and not (red) for threshold value η = 0.0007 with analytical
approach. The blue and black lines indicates where the position of the
analytical radii RH (t ) and RF (t ).
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Further, the analytical approach aimed to rather overestimate than
underestimate the separation radius by assuming that the drainage of
brine at a radius r is initiated when the CO2 plume first reaches r and us-
ing the maximum value of f⊥ in order for the VE assumption to hold. The
first assumption was implemented by including the front time tF , and
should clearly contribute to some overestimation in the analytical sepa-
ration radius. However, it is discussable if the second assumption con-
tributes to an overestimation. If a column is considered to be in vertical
equilibrium according to some value of η, then per definition is f⊥

f∥ ≤ η.

Assume for now that the analytical approach used the value f mi d
⊥ = 1

2η f∥
instead of f max

⊥ to find the segregation time t∗. As f mi d
⊥ < f max

⊥ this is
equivlant to a smaller vertical flux of brine, and this is related to a higher
segregation time t∗. This agian, yields that using f mi d

⊥ instead of f max
⊥

the VE assumption still holds, but results in a larger separation radius.
Therefore it is first of all questionable if using the value f max

⊥ gives a valid
representation of the segregation time, and secondly if it contributes to
an overestimation of the separation radius.

Another element of uncertainty is if the characteristic speed v∗ cap-
tures the time behaviour of the brine drainage, as the original one dimen-
sional mass conservation equation (2.21) was simplified under two as-
sumptions. Firstly, the capillary pressure was assumed to be zero which
is in full consistency with the numerical simulations. Secondly, is was as-
sumed that the total vertical volume flux v = vw +vn was negligible. This
lead to an expression of the vertical flux of brine that only was dependent
on brine saturation, as well as the scalar hyperbolic conservation law for
mass conservation (2.24). As vertical drainage of brine is being modelled,
it might be a peculiar and bold assumption to assume that the total ver-
tical volume flux is negligible. To verify if this a valid assumption, nu-
merical simulations of brine drainage in single columns can be made to
see if they are consistent with analytical results. However, the analytical
approach assumes that the brine saturation is equal s∗w at the top of the
plume, which in fact leads to an overestimation of the separation radius,
and that the brine saturation is less than 0.5 within the CO2 plume, but
there are no assumptions or information of exactly how the brine profile
is downwards in the plume. In order to perform numerical simulations,
the saturation profile is needed as an initial condition. Therefore some
assumption of the profile has to be made, and this thesis will not go into
further details here but leave this as a possible task for further research.

To summarize, the analytical and numerical separation radius are



CHAPTER 3. NUMERICAL RESULTS AND DISCUSSION 59

comparable to a certain extend, but there are some major differences.
Especially the analytical approach aimed for overestimating the separa-
tion radius, while the results show that it in fact underestimates the ra-
dius. It is argued for that this probably is due to a poor consistency be-
tween the analytical and numerical mean horizontal flux of CO2, f∥, but
there are also uncertainties related to other elements in the analytical
approach. The hope was that the analytical approach could be used as
an estimation for the separation radius, but from the results and discus-
sion presented in this section it is clear that some further examinations
and improvements have to be done before the analytical results can be
applied.

3.3 Hybrid Model

The separation radius function R∗(t ) determines the performance of a
hybrid model. Here numerical results from simulations with three dif-
ferent separation radius functions are presented and compared to pure
VE and 3D simulations. The separation functions can be seen in Figure
3.18, and as seen here the three functions and thereby their related hy-
brid model is hereafter referred to as the constant, linear and stair step
separation function and model. Inspired by the results in Section 3.2
about determination of the near-well area, the linear and stair step func-
tion goes to a small value at a certain time step. The scenario parameters
are as described in Tabular 3.1 and 3.2 as test case C.

3.3.1 Numerical Results

Figure 3.20 shows CO2 saturation after 20 years of injection for the dif-
ferent model types and Figure 3.21 shows the difference of the VE model
and hybrid models compared to the 3D model. In Figure 3.19 the mean
cell saturation differences for the VE model and hybrid models compared
to the 3D model are plotted. Tabular 3.4 presents simulation times of the
different models.
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Figure 3.18: Different separation function R∗(t ).

Figure 3.19: Mean saturation difference for a VE simulation and hybrid
simulations with the constant, linear and stair step separation radius
functions compared to a 3D simulation.
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Figure 3.20: CO2 saturation after 9 years of injection for different model
types. The red line in plots for the hybrid models defines the interface
between the 3D and VE domain, i.e. in the simulations the area to the left
of the line is the 3D domain and the area to the right is the VE domain.
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Figure 3.21: Difference in CO2 saturation after 9 years of injection for
different model types. The red line in plots for the hybrid models defines
the interface between the 3D and VE domain, i.e. in the simulations the
area to the left of the line is the 3D domain and the area to the right is the
VE domain.
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3.3.2 Discussion

As presented in Figure 3.20 and 3.21 the hybrid models are more accu-
rate than the VE model. In fact it is clear that the accuracy of the hybrid
models are determined by the size of the 3D domain. As seen in Figure
3.21 the constant hybrid model nearly reproduces the assumed correct
3D solution within the constant radius, only interrupted by some inter-
face boundary effects between the VE and 3D domain. If the constant
radius was increased to a higher value, it is expected that the constant
hybrid model would be even more accurate, with the cost of increased
computational time as the total number of grid cells would increase.

From Figure 3.21 and 3.19 it can be seen that the solution of the linear
and stair step hybrid model are quite equal. This is expected, as the linear
and stair step separation functions also are quite equal. However, the
linear model is more than 4 times slower that the stair step model. In fact,
the linear model is also much slower than the full 3D model. This due to
how the hybrid model is implemented. The linear separation function
is also a stair step function, only that the intervals of this function are
so small that they are not visible in Figure 3.18. For the simulation data
presented in Tabular 3.4, the linear hybrid model has been redefined 50
times between each time the stair step model is redefined. Therefore,
the conversion time in the linear model is very large and stands for 71
% of the total simulation time. This illustrates that a hybrid model can
perform very well even though the separation function is not continuous.

The results also show that there is a trade-off between the two inter-
ests of a hybrid model; the correctness of the 3D model and the fastness
of a VE model. A hybrid model with a large 3D domain is more precise
and slower than a hybrid model with a large VE domain. The stair step
hybrid model is the fastest of the hybrid models, but is less accurate than
the constant hybrid model, which throughout the simulation time has
the largest 3D domain.

The overall goal with a hybrid model is to get a model that outper-
forms both a VE and a 3D model for certain injection scenarios. All hy-
brid models are both more accurate and slower than than the VE model.
The linear hybrid model is as mentioned slower than the pure 3D model,
and is thereby no improvement. The simulation time of the constant and
stair step model are about half of the simulation time of the 3D model
and twice of the simulation of the VE model. One could not expect a hy-
brid to be as fast as a VE model, but this shows that the accuracy of a
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hybrid model can be much greater than the accuracy of a VE model, at
some extra computational cost. It is also worth to remark that the simu-
lations here are limited 50 years of injection, while simulations for study-
ing long-term effects of CO2 storage can be up to thousands of years after
injection stop. Both numerical and analytical results from determining
the near-well area showed that after some time vertical equilibrium can
be assumed in the whole aquifer of the test case. After this time the hy-
brid model could be equal a full VE model, and for long-time simulations
this should minimize the relatively large time difference between hybrid
and VE models presented here.



Chapter 4

Conclusion and Further Work

4.1 Conclusion

In this thesis new insight concerning the vertical equilibrium assump-
tion have been presented by numerical simulations and analytical re-
sults. Research has earlier been made to illustrate the applicability of
VE models [20, 25], but this thesis takes this a step further by quantifying
where the vertical equilibrium holds by considering the ratio of mean
vertical volume flux of brine to mean horizontal volume flux of CO2. The
ratio is determined numerically and also used in an analytical approach
to quantify areas where vertical equilibrium can be assumed.

Numerical simulations with MRST showed both great consistency and
significant disparities between VE and 3D models in the vicinity of an
vertically injecting well. The consistency between the models was lim-
ited to cases with high vertical drainage of brine within the CO2 plume,
while a case with permeability 10mD and a cubic kr -s relationships showed
great discrepancy. From this it is clear that some caution about rock and
fluid properties should be made before the fast VE model is used in short-
term simulations.

A numerical and analytical approach was presented and implemented
to determine areas where vertical equilibrium can be assumed to hold
by calculating a separation radius around an injecting well. The analyti-
cal approach aimed to overestimate the numerical separation radius, but
results presented showed that the opposite occurs. It is argued for that
this probably is due to overestimation of the analytical mean horizontal
flux of CO2, but there are also other elements in the analytical approach
that should be examined before any conclusions are made. Furthermore,

66
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both approaches showed that VE could be assumed in the whole aquifer
after some time. This indicates that a hybrid models an be transformed
to full VE models after a certain time, which suggests that hybrid models
can be used for long-term simulations with only limited computational
penalty compared to a pure VE model.

Simulations with a hybrid model showed promising results compared
to simulations with pure VE and 3D models. The hybrid models were
able to obtain the accuracy of full 3D models in the vicinity of an injection
well, while still benefiting from the lower computational requirements
associated with VE-type modelling farther away from the well. The ac-
curacy near the well is significantly higher than that of a pure VE model,
but to a greater computational cost. Thereby, it is reasonable that hybrid
models can replace a more computational demanding 3D model in the
injection phase, while more simulations have to be made before hybrid
models can be compared to full VE models for long-term scenarios.

4.2 Further Work

As pointed out in the discussion parts in Chapter 3, further work of this
thesis is mostly related to the analytical approach for determining the
separation radius. Especially this is related to see if improvements can
be made to determine the mean horizontal volume flux f∥ and improve
consistency between numerical and analytical approach. An important
issue is to investigate if using the value f max

⊥ = η f∥ connects the numer-
ical and analytical approach in a appropriate way. It is also pointed out
that work can be done to see if the analytical approach represents the
brine drainage time correctly by using analysis of characteristics.

The analytical approach was developed with a view to be as similar
as possible to the numerical approach. However, there are other ways of
determining if the VE assumptions holds analytically. Particularly, what
was named the characteristics saturation level s∗w can be set to a prede-
fined value, instead of calculating it by assuming that f max

⊥ = η f∥. With
this approach, the analytical approach omits to use the horizontal flux
f∥. The value of s∗w , instead of η, then sets the strictness of the vertical
equilibrium assumption. A low value of s∗w corresponds to long brine
drainage time and a strict separation radius function. Simulations of hy-
brid models with separation radius function for a range of s∗w -values can
be conducted to empirically determine which values of s∗w are able to
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determine the near-well area.
Numerical simulations with a 3D model and a sharp interface as-

sumptions showed that both vertical and horizontal fluxes oscillates. This
was argued to be a non-physical behaviour and related to the sharp in-
terface assumption, as simulations with a capillary fringe did not prove
to have the same oscillatory behaviour. Is is possible that the oscillations
come from the numerical method used to solve the implicit equation sys-
tem (2.8). Thereby work can be done to first and foremost identify the
source of the oscillations, and then take actions from this.

Another interesting topic is to study the long-term behaviour of hy-
brid models, especially where the hybrid model after some time is con-
verted to a pure VE model. It is also worth to note that the hybrid model
used here was not optimized for computational efficiency, and can be
greatly improved by handling the way one hybrid model is converted into
another hybrid model with different VE and 3D domain.
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Appendix A

Nomenclature

A.1 Abbreviations

Symbol Description
nw Non-wetting
w Wetting
res Residual
cap Capillary
VE Vertical equilibrium
CCS Carbon capture and storage
IPCC The Intergovernmental Panel on Climate Changes
MRST MATLAB Reservoir Simulation Toolbox
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A.2 Arabic Letters

Symbol Description
A Areal
c Compressibility
f Fine-scale mass flux
F Mass flux
f⊥ Mean vertical volume flux
f∥ Mean horizontal volume flux
F Faces of a cell
g Gravitational vector
g Flux function
g ′ Characteristic speed
h Height of CO2 plume
H Height of aquifer
kr Relative permeability
K Permeability tensor
k Absolute permeability
n Number of grid cells in a direction
p Fine-scale pressure
P Coarse-scale pressure
pcap Capillary pressure
Q Injection rate
R∗ Separation radius
RH Radius
RF Radius
s Fine-scale saturation
S Coarse-scale saturation
s∗w Characteristic saturation level
t∗ Segregation time
t f Front time
u Fine-scale volumetric flux
u Density
v Fine-scale fluid velocity
v∗ Characteristic speed
V Set of cells
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A.3 Greek Letters

Symbol Description
α Phase index
β Dimensionless parameter
γ Specific weight
Γ Interface
δ Mean saturation difference
ζ Aquifer surface
η Mass flux ratio number
η̄ Vertically averaged mass flux ratio
θ Aquifer slope
Θ Slice angle
κ Coarse-scale permeability
λ Mobility ratio
λ Fine-scale mobility
Λ Coarse-scale mobility
ρ Mass density
φ Fine-scale porosity
Φ Coarse-scale porosity
Θ Coupled porosity
µ Viscosity
ν Volumetric flux
χ Dimensionless parameter
ψ Fine-scale mass source density
Ψ Coarse-scale mass source density
Ξ Coupled mass source density
Υ Coupled saturation
Π Coupled Pressure
ω Slice angle
Ω Domain
∂Ω Boundary of domain
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