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Abstract

We prove existence and uniqueness of classical solutions for a fractional Mean Field
Game system with non-local coupling, where the fractional exponent is greater than 1/2.
To our knowledge this is not proven before in the literature, and is therefore a new
result. In addition, we show regularity in time and space for the fractional Hamilton-
Jacobi equation, and use this result to show regularity for the fractional Fokker-Planck
equation.






Sammendrag

Vi beviser eksistens og entydighet av klassiske lgsninger for et fraksjonelt Mean Field
Game system med ikke-lokal kobling, der den fraksjonelle eksponenten er stgrre enn 1/2.
Til var kunnskap er dette ikke vist tidligere i litteraturen, og er dermed et nytt resultat.
Vi viser ogsa regularitet i tid og rom for den fraksjonelle Hamilton-Jacobi-ligningen, og
bruker dette resultatet for & vise regularitet for den fraksjonelle Fokker-Planck-ligningen.
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Chapter 1

Introduction

1.1 Fractional Mean Field Games with non-local coupling

The object of this thesis is to prove existence and uniqueness of solutions for a fractional
Mean Field Game (MFG) system with non-local coupling.

Mean Field Games is a relatively new field of mathematics, and was introduced al-
most simultaneously by Lasry and Lions [12] , and Caines, Huang and Malhamé [7].
The idea of Mean Field Games is to model differential games with instinguishable (sym-
metric) players, where the amount of players tend to infinity, and each player becomes
accordingly small. The average player wants to optimize some cost function in a noisy
environment, where the information available is the distribution of other players and the
position of itself.

Until very recently, most of the litterature on MFG have modelled the noisy environ-
ment as a standard diffusion process, but a recent paper by Cesaroni et al. [4] discusses
a stationary MFG system where the noisy environment is modelled by pure jump Lévy
processes. They look at the stationary case, that is, where one assumes that a Nash equi-
librium has occured: a state where no player would spontaneously change their position,
knowing the distribution of the other players.

We look at the case where the players still want to change their positions, based on
the information they receive on the density of other players: A time dependent case. This
is something that, to the best of our knowledge, is not yet presented in the literature.
The system of PDE’s that describe this system is given by

—du+ (—Apa)? u+ H (z,u, Du) = F (z,m(t)) in (0,T) x T¢
(1.1) B + (—Aga)? m — div (mDyH (x,u, Du)) =0 in (0,T) x T¢
m(0) = mo,u(z,T) =G (z,m(T))

where a € (1,2), and (—AW)O‘/2 u is the fractional Laplacian on the torus. The functions
F and G are both non-local coupling functions. The function H is called the Hamilto-
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Chapter 1. Introduction 2

nian, and is convex in the last variable.

The first equation in (1.1) is known as the fractional Hamilton-Jacobi equation,
and is solved backwards in time, while the second one is the fractional Fokker-Planck
equation, and is solved forwards in time. We seek classical solutions, that is, a pair
u,m € C12 ((0,T) x T?) that solves the system (1.1) simultaneously.

The content of this thesis is as follows:

1.2 Outline of thesis

Chapter 2: Preliminaries

Here we present some theory on the fractional Laplacian, both on R¢ and on the torus
T?¢. We then present some theory on the probability space P (Td) endowed with the
Kantorovitch-Rubinstein metric dy. The last part of the Preliminaries consists of pre-
senting some fixed point theorems, Holder spaces and compact embedding theorms.

Chapter 3: Fractional MFG systems with nonlocal coupling

In this chapter we prove the existence and uniqueness of classical solutions for the frac-
tional MFG system (1.1), under suitable assumptions on the Hamiltonian H, the coupling
functions F, G and the initial conditions my.

Chapter 4: Regularity for the fractional Hamilton-Jacobi equation

We present some regularity results for the fractional Hamilton-Jacobi equation, with a
Hamiltonian H of a quite general form. We prove regularity in time and space by using
Duhamel’s formula, combining it with known regularity of the unique viscosity solution
for the fractional Hamilton-Jacobi equation.

Chapter 5: The fractional Fokker-Planck equation

By rewriting the fractional Fokker-Planck equation into divergence free form, we can
write it on the form of a fractional Hamilton-Jacobi equation. We then show under
which conditions this system admits a unique solution with sufficient regularity for the
MFG-existence proof.

Chapter 6: Estimates of olH

We show a way to represent the derivative 95 H (s,z,u(s,z)w (s, x)), and use this rep-
resentation to give some estimates that are used in Chapter 4.

Concluding remarks

The main results of this thesis is presented, along with suggestions for further work.
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Appendix

We give the proof of some Lemma’s stated in the report, that are a bit too long for being
written in the main report.
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Chapter 2

Preliminaries

2.1 The fractional Laplace operator

Assume that we have a function u : R? — R. There are several and equivalent ways of
definining the fractional Laplace operator on this function, as shown in [11], but we will
limit ourselves to only one of them.

One can define it is as a singular integral. Let a € (0,2). Then the fractional
Laplacian (—A)a/2 u can be written as (for an arbitrary r > 0)

(“AY2 4 (1) = ¢ (d, ) (/ u(m+z)—u(x)—Vu(x).de

‘Z|d+a

+/ u(a:—i—z(z—u(x)dz
R\ B, |z|Hte

where ¢(d,«) is a constant. For the case a € (1,2), the expression (2.1) one can
simplifed to (Theorem 1. in [6])

T

(2.1)

u(x+z)—u(x)—Vu(x)-z
‘Z|d+a

(2.2) (=AY u (z) = ¢ (d, o) / dz

Rd

Note that these integrals are singular near z = 0, so that they are understood in the
sense of Cauchy principal value.

2.1.1 Fractional Laplacian on the torus

Having given a definition of the fractional Laplacian on the whole space R, we want to
look into how it is defined on the torus, T¢. This is natural, since we will later look at a
Mean Field Game system defined on the torus.
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The d-dimensional torus can be defined as the quotient space
(2.3) T¢ .= R¢/ 24
or equivalently, as the product space of d circles
(2.4) T :=S' x ... x §!
d times
A thing worth knowing about the torus, is that
Lemma 2.1. The torus T% is compact.

This follows easily from S' being compact due to Heine-Borel, and then from that
product spaces of compact spaces are also compact.

If a function f : T¢ — R, then the function f has a periodic extension to R?, which
we will just call f. For this function we have that for all z € R? and z € Z¢

fle+z)=f(x)

Using the periodic extensions for functions defined on the torus, we can define the
fractional Laplacian for functions on the torus. This is because the earlier definitions
(2.1) and (2.2) still works for functions u : T¢ — R, when we look at their periodic
extensions to R?. So, the definition is the same, with the only difference that now = € T¢

u(r+z) —u(xr) —Vu(x) -z

|2|dte dz

(-85 () =cd.a) ( [ T

+/ u(:r:—&-z;r—u(m)dz reT
R4\ B, | 2| Ao

For the torus, we also present another way to work with the fractional Laplacian, and
that is through the use of Fourier series.

The Fourier series of the function u : T¢ — R is given by (see [13])
u(z) = Z cn (u)e™® Lz eT?
nezZd
where n - x = nix1 + - -+ + ngxy, and the Fourier coeflicients are defined as
en (u) = ! / u(x)e " dg
n -
(27) Jpa

Then the Fourier series for the fractional Laplace on the torus is given by (for a €

(0,2))
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(2.5) (—Ar)*?u(z) = > c(ond) [nf%n (u) ™ | 2T

nezd

We will now state some properties of the fractional Laplacian on the torus, and it
begins with the following interpolation Lemma

Theorem 2.1. (Hélder estimates, Theorem 2.6 in [14]). Assume that o € (0,2) and
o€ (0,1].

Letve Cho (T and a > o, with o —a+1> 0. Then (—AW)% v € COo—atl(Td)
and

(2.6) I (~A70)% tllgoo-ass ey < Cllollgr(as

A consequence of Theorem 2.1 is that, if we have a function v € C? (Td), we get the
interpolation

(2.7) | (—Aga)2 ”HLoo(qrd) < CH”HQQ(W)
which is an estimate that we use a lot.

The next thing we want to say about the fractional Laplacian on the torus, is some-
thing about the identity ((—A)a/2 u, v)LQ(Td) = (u, (—A)O‘/2 v)LQ(Td), for u,v € C% (T9).
This is a result we need in the uniqueness proof for classical solutions of the MFG system.

Lemma 2.2. Assume that f,g € C*° (’]I‘d). Then the following identity holds:

L a2 r@a@ = [ 7@ (-an)"2g (@) da

Proof. Since f,g € C* (Td), one can show that the corresponding Fourier series, and

the Fourier series of (—Aqa)®? f and (—Aga)®/? g converges absolutely (see [13]).
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Therefore, one can interchange integration and summation to obtain the result

/Td (—Aqrd)% f(x)g(z)dr = / Z ¢(a,d)|n|%n (f) enee (9) emz | o

T4 n,mez4
= Y clad e Pl [ 0
n,mez4 T4

S (P eland) mlen (9) / Hrtmya g

Td

N en (f) e (e, d) [m|%em (g)/ M gy

Td

= | @) (=Ag)* g () dr.
The equality marked with (*) comes from the fact that
/ M) T e — 0, for n+m # 0
Td

O]

We can generalize the result from Lemma 2.2, to functions u,v € C? (']I'd) by using a
density argument.

Lemma 2.3. Let f,g € C? (Td). Then the following identity holds, for a € (1,2).

L0021 @ g @) = [ @) (~Br g (a)da
Td Td
Proof. The proof is given in the Appendix. O

2.2 Measures and distance

In this section we want to say something about the space of Borel probability measures
on the torus, and give a definition of a metric dy defined on this space. We will just list
the results we need.

Definition 2.1. Let X be a separable metric space. We denote P (X) to be:

P (X) := the family of all Borel probability measures on X.
Theorem 2.2. (Prokhorov, from Ambrosio thm 5.1.3) If a set K C P (X) is tight, i.e.
(2.8) Ve >0 3K, compact in X such that p(X \ K¢) <eVue€ K,

then K is relatively compact in P (X). Conversely, if there exists an equivalent complete

metric for X, i.e. X is a so called Polish space, then every relatively compact subset of
P (X) is tight.
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Comment: What is meant, is that K is relatively compact with respect to the narrow
topology on P (X).

Definition 2.2. (The set of Borel probability measures on the torus) We define P (Td)
to be:

P (Td> := the set of Borel probability measures on T%

On this set, we can define the following (Kantorovitch-Rubinstein) distance:

dy (p,v) = sup (/ o (x —v)lo: T? - R 1 — Lipschitz contmuous) .

which metricizes the weak topology on P (Td),
Lemma 2.4. (P (’]I‘d) ,dl) 15 a compacl metric space.

Proof. We refer to Lemma 4.1.7 of [3]|, and recall that all r-moments of members of
P (Td) are finite. O

We also state the following property.

Lemma 2.5. The metric dy can be defined equivalently as:

dy (p,v) = sup </ ¢ (x) (1 —v)|¢: TT = R 1 — Lipschitz continuous, ¢ (0) = O)

Proof. Recall the definition of d;. Take any ¢ € 1 — Lip. Assume that ¢ (0) = k € R.
We can then define ¢ (x) = ¢ (x) — k. Then ¢ € 1 — Lip, since

6 (@) = o) | =o(@) =) | < 1|z —yl

For any u,v € P (’]I‘d), we get
& (2)d (- v) (x) = Mde—va—k/‘au—m@>
Td Td Td

~ [ o@dw-n@
Td

This shows that the definitions are equivalent. ]

2.3 Analysis

In this section we will present some results from analysis. We start with the fundamental
theorem of Calculus.
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Theorem 2.3. (Fundamental theorem) Assume that f € C* (RN). Then the following
holds for z,y € RN :

1
Fa)=f)= [ Gitra-nya

By using the chain rule, one can also write this as:

1
Fa)=fa) =Y ) [ Gef e+ 0-nmd

We also need the following short result for some of the calculations later.

Lemma 2.6. Suppose that f : [0,00) x RV — R is Lipschitz and uniformly bounded. In
other words, there exists constants L, M > 0 such that:

[f(s,2) = f(ty) | < L(ls =t + |z —yl)

I flloe <M

Then there exists a constant C' > 0 such that f satisfies:

F(s2) = f (L) <C (Js =1l + ]z —y)

Proof. The proof consists of two cases, |s —t| < 1 and |s —¢| > 1. The case |s —t| <1
holds trivially as then |s —t| < |s — t\% For the case |s —t| > 1 one can compute

1 (5,2) = F ()| < M+ M < 2M (s = 1]2 + |2 —y])
One can then choose C' = max (L,2M). O

The next theorem we present is the Arzela-Ascoli theorem, which is a useful Theorem
from functional analysis.

Theorem 2.4. (Arzela-Ascoli) (p. 234 of [10] ) Let K be a compact space, and (E,d)
be a metric space. The space of continuous functions C (K, E) from K to E, endowed
with the uniform distance, is a metric space.

A subset A C C (K, E) is relatively compact in C (K, E) if and only if, for each point
r e K:
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e (EQ) A is equicontinuous at x, that is for all € > 0, there exists a neighbourhood
V' of x such that:

(2.9) Vie AVyeV: d(f(x),f(y) <e

o (RC) The set A(zx) ={f (z)|f € A} is relatively compact in (E,d).

The following is a Lemma that is useful for proving convergence of sequences.

Lemma 2.7. Let (X,d) a metric space and K CC X a compact subset of X.
Further, let (z,,) C K be a sequence, such that all convergent subsequences have the same
limit point x* € K. Then x, — x*.

Proof. By contradiction. Assume that there exists a subsequence (z,,) that doesn’t
converge towards x*, i.e:

(2.10) Je>0VN eN3In.>N: d(zy,,,z%) > €

Starting from N =1,2,3,... these z,_ defines a subsequence (z,, ) C (x,). Since K
is compact, it follows that (x,, ) has a convergent subsequence, with limit, say & € K.
However, since all convergent subsequences of (z,) have the same limit point, it follows
that £ = 2*. But this is a contradiction to the construction (2.10). O

The following two fixed point theorems are really important for us, and play an
important role in this thesis.

Theorem 2.5. (Schauder’s fized point theorem)
Let X be a Banach space, K C X a convez, closed and compact subset. Further, let
T: K — K be a continuous map. Then T has o fized point in K.

Theorem 2.6. (Banach’s fized point theorem)
Let (X,d) be a complete metric space, and T : X — X a map. If there exists q € [0,1)
such that for all xz,y € X:

d(T (z),T(y)) < qd(z,y)

Then T has a unique fized point x € X.

2.4 Holder continuity and Holder spaces

Since concepts like Holder continuity and Hoélder spaces will be used later on, they will
be presented here. We will define the Holder-norm, Hélder spaces, and look at compact
inclusion of Holder spaces.
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2.4.1 Definitions

Definition 2.3. A function f : Q@ C X — Y between two metric spaces (X,dx) and
(Y,dy) is Hoélder-continuous with exponent o € (0,1] if there exists a constant C > 0
such that:

Vo,y € Q: dy (f (), f(y) < Cldx (z,)"

Definition 2.4. (reference: Def. 1.7 p. 46 of[1]) (Hélder space) Let Q C R™, k € N
and B € (0,1]. The Hélder space C*P (Q) is the set of all functions f : Q — R with
f € Ck (), such that the following norm is finite:

Ifllers@ = Y IDfllo@ + Y [D*fleos -

| <k |o]=F
Here, we denote by
1D fllc() == sup {|D*f (z) ||z € Q}
the supremumsnorm, and

|Df (z) = D*f (y) |
lz —yl

D flgos = sup {

x,yeﬂ,x#y}

a semi-norm.

Later on, we often use the convention of writing C*+# (Q0), instead of C*#, for k € N
and S € (0, 1].

2.4.2 Compact embedding theorems

Theorem 2.7. Let Q C R™ be a closed and bounded subset (compact by the Heine-Borel
theorem), and let 0 < a < < 1. Then the embedding:

i: CY%(Q) = C% (Q)
Uur—u

15 continuous.
Further, if D C C%P is a uniformly bounded subset, that is

dM > 0 s.t Vf eD: HfHCOﬂ(Q) <M

then the set D is precompact in CO.
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Proof. Continuity:
From the assumptions diam () < co. Then, for any u € C%# (Q):

lu(z) —u(y) |
[Weoa@y = suwp o
ety 1T =Yl
_ |z —y|? Ju(z) —u(y)]
z,y€QxH#y |$ - y|a ‘.% - y’B

B>a B—a
< (diam (92)) [Wlco.s (0

it follows then that:
[ullo,as = llullo;e + [ulg 0.0 < llulloe + C (2 e, B) [ulg g.q < cllullosn

with ¢ = max (1, (diam (Q))Bw‘), and it follows that the inclusion is continuous.

Compactness:
We want to show that the set D is sequentially compact in C%¢ (Q). Take any sequence
(upn) C D. The sequence is uniformly bounded by the constant M:

[tn]loo < Hun”O,B;Q <M

It is also equicontinuous, since Ve > 0 choose § = (]\64)1/6, so that

lun (2) = un (y) o < Mz —y|” <e

whenever |z —y| < d.
Apply the Arzela-Ascoli theorem: 3 (up,) C (uy) a uniformly convergent subsequence.
Denote the limit by w. Then it holds that ||uy, — u||cc — 0. Further, we have:

| (uny, = u) () = (uny, — ) (y) |

|z — yl@
(g, — ) (2) = (un, —w) () [\ B L \—8/a
- ( e e I]

< Jum,, = w2 2, — ulloo) ™ < (@M (2|, — ullo) P = 0
By taking the supremum of z,y € Q,x # y on the left side, we obtain:

[Uny, — U] o.ag — 0
In total we have

Hunk - uHO,a;Q —0

This shows that D is precompact in C%?. ]
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Theorem 2.8. (reference: see Thm 8.6, p. 338 of [1]) Let & C R™ be a bounded and
closed subset. Let k € 0,1,2,3,--- and 0 < o < f < 1. If D C C*#(Q) is a uniformly
bounded subset, then D is precompact in C** ().

Proof. The result follows from repeated use of the Arzela-Ascoli theorem. We have the
following bound on D, for some M > 0:

sup [[ullg g0 < M
ueD

It follows directly for any multiindex o = (a1, -+ , ) that Yu € D:
[D%uloo < M

We also have that for |a| < k:

D% () = D%u(y) [loo < Mz —y|
and for |a| = k:

ID%u (2) = D*u(y) |loo < M|z — y|?

It follows that the family of functions {D%u : u € D, |a| < k} is equicontinuos.

Let (u,) C D be a sequence. We want to show that there exists a convergent subsequence
(tny) C (up) with limit w, such that ||u,, — u||gqa0 — 0. The argument is an inductive
one. Let m = |a| < k. Assume that 3 (uy,) C (u,) a convergent subsequence, and a

limit point u, such that V]a| < m:

|Un, — wllmo0 =0

Denote A = {@m,, -,y } as the set of multi-indexes of size |a| = m.
We start by looking at the multi-index a,,, = (ozml1 o ,amln).
Denote oy, 1 = (am11 +1,--- ,amln).

For |m| < k, we observe that the sequence D*m1:1u,, is uniformly bounded and
equicontinuous. Thus, by Arzela-Ascoli, there exists a convergent subsequence (unkj) C
(un, ), and a limit (still denoted u) such that:

| DYy, — Dty o — 0
Also, if |[m| =k — 1, we observe that
[Daml’lunk - Daleu]O,a;Q — 0

as shown in theorem 2.7).
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Use this new subsequence (unk> and repeat the argument for
J

Qmy 2, s Qmyms 5 Qmy, 1,7 s Qmy  ne Thus it holds for m + 1 that 3 (up,) C (un)
a convergent subsequence, and a limit point u, such that V|a| < m 4+ 1:

[tny, — ullmr1,0:0 — 0
and if jm| =k — 1:
|tn, — ulka:0 — 0

For |m| = 0, we have that the sequence (uy) is uniformly bounded and equicontinuos,
thus there exists a convergent subsequence (uy, ) C (uy,), with limit point u. So that

[uny, = ulloo =0

This concludes the proof. O

2.4.3 Parabolic Hélder spaces

We use the standard definition of parabolic Hélder spaces (see Krylov).

Definition

For points 21 = (1,t1),22 = (wa,t2) in R¥1 define the parabolic distance between
them as:

p(21,22) = |z1 — w2 + [t1 — to]/?
Let 0 < a <1 and Q C R Then we denote
lu(21) —u(22)|
[u]a,a/2;Q = sup ’ HuHa,a/Z;Q = ”U’ 0Q T [u]a,a/Q;Q

21,22€Q,21 722 pe (21, 22)

Definition 2.5. Let Q C R and o € (0,1]. The parabolic Hélder space C4/2 s the
set of functions v : QQ — R such that

”u’ a,a/2;Q < 00

Definition 2.6. Let Q C R4! and o € (0,1]. The parabolic Holder space C*He1+e/2 s
the set of functions u : QQ — R such that

d
(W01 0720 = [Utlaaze + D [trias] o a/mo < 00
ij—=1

and

d d
lull2ta,1ta/2:q = lulog + Z |ua; ;@ + |uelosg + Z Uz 0:Q + (U)ot 14a/20 < 00
=1 ij=1
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Compactness

We just state the results here without proofs, since the proof method would be the same
as in theorem 2.7 and theorem 2.8.

Theorem 2.9. Let Q C R and 0 < a < B < 1. Let D C C**AIHB/2(Q) be a
uniformly bounded subset. Then the set D is precompact in C*te1+o/2 (Q).

Proof. The same technique of proof as in Theorem 2.7 and Theorem 2.8. 0
We also have the following Lemma that can be proved in a similar way:

Lemma 2.8. Assume that U is a set of functions u : [0,T] x T¢ — R such that
w, Du, D*u, D3u, yu, 8; Du, 0, D*u € C) ((O,T) X ']I‘d)

and

N

o ey’ <(O,T) X ’]I‘d)

Then the set U is compact in C2 ((O,T) X Td).

Proof. The same technique of proof as in Theorem 2.7 and Theorem 2.8. O



Chapter 3

Fractional MFG systems with
nonlocal coupling

In this chapter, we want to study a fractional Mean Field Game system with non-local
couplings F' and G. The system we study is of a quite general form, and to the best
of our knowledge, no cases in the literature have proven the existence and uniqueness
of solutions for this kind of Mean Field Game system. A newly submitted article by
Cesaroni et al. [4], shows existence and uniqueness for the stationary case, where one
assumes that the MFG system has reached an equilibrium state (Nash equilibrium) as
T — oco. We look at the time-dependent case, where we don’t assume the the players
have settled to a steady equilibrium.

3.1 The fractional Mean Field Game system
Our aim is to study the following system of equations, which we call the fractional Mean

Field Game system with non-local coupling. The system is on the following form:

—du+ (—Apa)? u+ H (z,u, Du) = F (z,m(t)) in (0,T) x T¢
(3.1) Oym + (—Aqa)? m — div (mDyH (x,u, Du)) =0 in (0,T) x T¢
m (0) = mo,u(z,T) = G (z,m(T))

where a € (1,2), and the operator (—ATd)% is the fractional Laplace operator on the
torus. The functions F' and G are both non-local coupling.

We want to show that under certain assumptions on H, F', G and mg, there exists
at least one classical solution for the system (3.1). In other words, we look for a pair
(u,m) € CH2((0,T) x T¢) that satisfies (3.1). Let us state our assumptions.

17
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Assumptions

We make the following assumtions on the system:

1.

(Bounds on F and G) F and G are continuous in T x P (T¢).

(Lipschitz continuity of F' and G) there exists a Cy > 0 s.t.
[F (21, m1) — F (22, m2) | < Co [|z1 — @] + dy (m1, m2)]
v(35‘177711) ) (l‘Qu m2) € Td x P (Td)7 and

|G (x1,m1) — G (x2,m2) | < Co[|x1 — 2| + di (M1, m2)]
V(Zﬁl,ml) s (l’g,mg) S ']Td x P (Td).

(Uniform regularity of F' and G) There exist constants Cr,Ce > 0, such that
SUD, ¢ p(T4) |E (-, m) HCZ(W) < Cp and SUD,,c p(14) |G (-,m) ||W7700(11‘d) < Cq.

. The Hamiltonian H : T¢ x R x R? — R satisfies for x € T¢,u € [-R, R],p € Bp:

|DH (z,u,p)| < Cgr
with |a| <7 and Cg > 0 a positive constant dependent on R.
The Hamiltonian H satisfies for z,y € T4, u € [-R, R] ,p € R%:
(H (,0,p) — H (y,4,p) | < Cr (1p] + 1)z —

Note that this assumption is automatically satisfied for Hamiltonians on the form
H (u, Du).

There exists v € R such that for all z € T% u,v € R,u < v,p € R,
H(I’,U,p) - H(xau>p) > ’7(’0 - u)

This assumption is automatically satisfied for Hamiltonians on the form H (z, Du),
by choosing v = 0.

The probability measure my is absolutely continuous with respect to the Lebesgue
measure (meaning A C T¢ measurable: mg(A) = 0 = X(A) = 0), has a
W5 (T4)-continuous density function (still denoted my).

Theorem 3.1. (Ezistence of classical solution) Under the assumptions 1.-7., there exists
at least one classical solution (u,m) to (3.1).

By using the same type of approach like Cardaliaguet in the proof of Thm 3.1.1 in
[3], we will show prove the existence of classical solutions. This result depends upon
estimates we have made on the fractional Hamilton-Jacobi equation in later chapters.

First, we will start with a remark on weak solutions of the fractional Fokker-Planck
equation.
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3.2 On the fractional Fokker-Planck equation

The fractional Fokker-Planck equation can be written on the following form:

(3.2) { dym + v (—Aga)? m — div(mb) =0 in (0,T) x T¢

m (0) = mo

where v > 0 is a constant, and b : [0, 7] x RY — R? is a vector field that is continuous in
time and Hélder continuous in space. In the following Lemma, we define what we say is
a weak solution of the Fokker-Planck equation (3.2).

Lemma 3.1. (Weak solutions of (3.2))
A function m € L' ([0,T] x T?) is said to be a weak solution to (3.2) if m satisfies the
following for any test function ¢ € C° ([O,T] X Rd)

¢ (z, T)dm(T) (x) — | ¢(0,z)dmo(z)
Td Td

-/ s (819 0:2) = (=200)% 6(,2) + (D6 1.2) b 0.) ) 1) ()

Two important properties of weak solutions of the Fokker-Planck equation, is that
Lemma 3.2. A classical solution m of (3.2) is also a weak solution.

and
Lemma 3.3. If m is a weak solution of (3.2), then it is unique.

We didn’t have time to prove these statements, but it should be possible, according to
my supervisor. These Lemma’s are essential to our analysis of the Fokker-Planck equa-
tion, as they allow us to say that a function m that solves Fokker-Planck classically, with
mg being a probability density function, then m is also a probability density function.
The method of proving Lemma 3.2 would probably be to insert a classical solution m into
the definition of weak solution. To prove Lemma 3.3 one can probably use Holmgren’s
uniqueness theorem, or something similar.

Moving on, we will now introduce the stochastic differential equation (SDE) related
to the fractional Fokker-Planck equation.

(3.3) dX; = b(X,,t)dt + vadL,, te[0,T]
' Xo = 2o

where (L;) is a d-dimensional a-stable pure jumps Lévy process, with Lévy measure

dz

Ca|z‘d+o¢

v(dz) =
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where

dL; = / ZN (dt,dz) + / zN (dt, dz)
|z|<1

|z|>1
Here, N describes a poisson process, and N describes a compensated poisson process.

One can prove the following Lemma to be true:
Lemma 3.4. If £L(Zy) = mo, then m (t) := L (X}) is a weak solution of (3.2)

Proof. (Idea of proof)

The proof is a consequence of applying 1t6’s formula. If ¢ € C° ([O,T] X Rd), then
(see Applebaum [2], Thm. 4.4.7):

¢ (t, X1) = (0, Zo)

¢
+ [ @050 + (D0 5. X b (XKoo )) s
¢
- Xs— - —,Xs_ N (d ,d
w L B Xe )~ o X )N (s
¢
— X5 — ¢ (s—, X,_)] N (ds,d
w6 X 0~ o X )N (s
t
s [0 Xe ) = 05 Xe) — (To (s, X)) w (o) ds
0 Jlz|<1
where . When we take the expected value on both sides, the following term vanishes
t
E — X, — ¢ (s—, X, )] N (ds,dz)| = 0.
[/0 [ 66X 52 =0 o X ) N ()| =0

Then, from the definition of m (t), as the Law of X, we should get the following, recalling
the definition of the fractional Laplacian (2.1

¢ (t,x)dm (t) (x) = | ¢(0,2)dmo (z)
Td Td

+ / O (5,2) + (Db (5,2) b (5, 7)) — v (—Aqa)
0 Td

w|R

¢ (s,x) dm (s) (x)

This shows that m is a weak solution to (3.2).
O

From this stochastic definition of m (t), we can obtain the following estimate on the
map ¢ — m (t) € P (T?):
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Lemma 3.5. Let m be a weak solution of the fractional Fokker-Planck equation, with
a € (1,2). Then there exists a constant co > 0 such that m satisfies:

(3.4) di (m(t),m(s)) < co(L+[bloc) |t — 5|2 ¥s,t€[0,T]

Proof. (Idea of proof)

We can use the SDE (3.3), to obtain estimates we want. One can write

t t
Xt—XSZ/ b(T,XT)dT—i-Vl/a/ dL;

Then, pick a ¢ € 1 — Lip, and compute

i) )= sy { [ o) (o) - m (o) @)}

¢pE1—Lip

= sup {E o (Xe) — ¢ (X))}
o€l—Lip
<E[|X; — X]

We get that:

t
B[ - ) <E | [ 16X ar + o4 - L

Now, for the first term inside the expectation, it holds that:

e[ [ bir ) dr] < ol
s
For the second term, it should at least hold that (according to my supervisor)
E [1/1/0‘|Lt - qu < s — t|%
where ¢ > 0 is some constant. So, finally we obtain
dy (m.(t),m.(s)) < co (|[blloc + 1) |5 — t[2

for some constant ¢y > 0, which is what we wanted to show. O

3.3 Proof of existence

Having made clear our assumptions, and shown the estimates on the Fokker-Planck
equation, we will now show that there exists a pair (u,m) that solves the Mean Field
Game system (3.1) classically. We first begin with the idea of the proof.
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3.3.1 Sketch of proof

The idea of the proof is the same as in the proof of Thm 3.1.1 in [3], where they proved
existence of solutions for the same system of equations, but with a standard Laplacian
instead of the fractional one.

We use Schauder’s fixed point theorem (see Thm. 2.5) to show existence of solutions:
We look at the Banach space C° ([(), T],P (']I‘d)), and we define C C C° ([O, T],P (’]I‘d)),
which turns out to be a closed, convex and compact subset. Then we define a map
1 : C — C by using the fractional Mean Field Games equations, and we show that this
is a well-defined and continuous map.

We can then apply Schauder’s fixed point theorem to conclude that the map v has
at least one fixed point, m € C, and then conclude that this fixed point is a classical
solution of the system (3.1).

3.3.2 Proof
We begin the proof by defining the set C.

The set C

We consider the Banach space C° ([O,T] ,P (’]Td)) endowed with the supremum metric

d(p,v) = supyejo.rpdi (1 (t) , v (t)), and we define the following subset
(3.5) C:=<Spec’ ([O,T],P(Td>) :SUpMSC&
s#t |s — t|§

where the constant C7 > 0 is later to be determined. For this subset C we will show the
following properties.

Lemma 3.6. C is a closed, convex and compact subset of C° ([O,T] , P (’]I‘d)).

Proof. We prove each of the statements one by one.

Closed
We have to show that each limit point is contained in the set. Let (u,) C C and

Lhn, LN w* e C? ([0,77,P (Td)). Then we find by the triangle inequality:

d (1" (), 1" (1) < dy (1" (5) , i (9)) + d (s (5) o (£)) + i (pn (£) , 1* (1))
< Cils — ]2 +dy (1 (), () + da (1" (£) 1 (£) = Ca]s — 12

which shows that u* € C.
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Convex
Let p,v € C and X € (0,1). Then:

dy (A (s) + (L =N w(s), An(t) + (1= A) v (t) =
sup { | ¢ () (Au(s) + (1 =A)v(s) = Au(t) + (1 =Nv(?)) (dz)} =

¢cl—Lip JTd

sup {A ¢ () (1 (s) —p(t) (dz) + (1 =A) | ¢(x) (V(S)—V(t))(dx)}
¢el—Lip Td Td

< Ady (p(s), (1) + (L= A)dy (v (s),v (1))

<ACi|s — 2 + (1= \) Cy|s —t|z = Cy|s — t]2.

This shows that A+ (1 — A) v € C, so that convexity holds.

Compact
To show compactness we will use the Arzela-Ascoli theorem (Thm. 2.4).

We need to show that C € C° ([O, T],P (Td)) is equicontinuous and relatively com-
pact.

2
EQ: Given an ¢ > 0, we define § = (&) . Then we get Vs,t € [0,T] and Vu € C:

|s —t]| <0 = di(u(s),pu(t)) <Cils — t|% <Cq (C%>2 = ¢, by use of the properties
of C.

RC: Let s € [0,7] and define K := {p(s) : p € C}. We have from definition, that
K, cP (Td), and thus it follows from set definitions that the closure K is closed in
P (']I‘d). From the compactness of P (Td) (77), it follows that K is compact, and thus
from definition of relative compactness, that K is relatively compact.

Thus, by Arzela-Ascoli, we conclude that C is relatively compact in C° ([O, T],P (Td)).
Since C also is closed, it follows that it is compact.

O
The map v
Now, we define the map ¢ : C — C.

Let o € C and define m = 9 (u) as follows:
Let u be the solution to the fractional Hamilton-Jacobi equation given u € C

(3.6) { ~0pu+ (—Aga)? u+ H (z,u, Du) = F (2,p) in (0,T) x T

u(z,T) = G (a, 1 (1))
We define the following set:
(3.7) U={u:u=u(p),neC}
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Further, we define m = 1 (u) as the solution to the fractional Fokker-Planck equation:

(3.8) dym + (Aqa)? m — div (mDyH (z,u, Du (t,z))) =0 in (0,T) x T¢
' m (0,-) = moq (+) inT?

We also define the set:

(3.9) M:={m:m=m(u),uelU}

We need to show that the mapping ¥ has two properties:

1. That the mapping p — v () is well defined. That is, show that p € C = ¢ (u) €
C

2. That the mapping is continuous.

Well defined

Lemma 3.7. The map o is well-defined, that is, M C C. Furthermore the following
holds for the sets U and M:

w, Du, -+, D"u, 8w, O, Du, 8;D*u € C, ((O,T) X ']I‘d>
1
o e P! ((O,T) x ’]I‘d>

All these quantities are uniformly bounded by a constant U; > 0, which depends on
SUP, e p(14) G (-, m) |]W7m(w),a,T,d and the local reqularity of F and H.

For M the following estimates holds:
m,Dm, -+, D%m,dym,d,Dm,d,D*m € C) ((O, T) x ']I‘d)
1
oym € 7! ((o,T) x Td>

where all these quantities are uniformly bounded by a constant My > 0, only dependent
on ||m0||W5,oo(Td),oz,T, d,Uy and the local reqularity of H.

Comment

We should give a short comment about why we need as much as C"-regularity in u
and C9-regularity in m. The reason comes from our regularity results on the fractional
Hamilton-Jacobi equation. We use these results both for the fractional I;Iamilton—J acobi
equation and the fractional Fokker-Planck equation. To obtain 0ym € C’f’l (}O, T] x Td),
we need m, Dm, --- ,D%m € C), (]0, T[ x Td), due to our computations. Since the Fokker-
Planck equation is dependent on u, we need u, Du,--- ,D"u € Cy (]O, T x Td) in order
to get enough regularity on m.

This is not ideal of course, but the best we can do for now.
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Proof. Hamilton-Jacobi

Take a p € C, and look at the fractional Hamilton-Jacobi-equation (3.6). By setting

H (t,z,u,p) = H (z,u,p) — F (x, 1 (t)) in (3.6) we get the expression:

(3.10) { ~Oput (~Apa)? ut H (t,2,u,Du) =0 in (0,T) x T

u(e,T) =G (z,p(T))

From the assumptions made on H, F and G, we get that (A0)-(A4) holds. Also the
Holder-assumption (4.2) on H holds, since for s,t € [0, T], 2,y € T?, u,v € [-R, R],p,q €
Br
]ﬁ(t,x,u,p) - ﬁ(svya’Ua(J) ‘
S Lr(lz —yl+lu—vl+[p—q) + Co(lz —yl+di (u(t), 1 (s)))

§LR<|s—t|1/2+|x—y|+\u—v|+\p—q\>

Then, by Theorem 4.2 from the chapter on the fractional HJ-equation, we get there exists
a unique u that solves 3.10, and that it has the following regularity:

w, Du, -+, D"u, 8yu, O, Du, 8;D*u € C, ((O7T) X Td)
1
du ey ((O,T) X ’Ird)

where all these quantities are uniformly bounded by a constant U; > 0, which depends
On U, ¢ p(Ta) G (-, m) HWZOC(W), a,T,d and the local regularity of F' and H.

We will now look at the Fokker-Planck equation, using the function u we obtained
from the Hamilton-Jacobi equation.

Fokker-Planck

We look at the equation

om + (—Aga)?
(3.11) { m (0, ) :nfoo inT?

We can directly apply Theorem 5.1 from the chapter on the fractional Fokker-Planck
equation, to obtain a unique solution m of (3.11) that satisfies:

m,Dm, -+, D%m,dm,d:Dm,d:D*m € Cy ((O,T) X Td>
1
om € C,f’l ((O,T) X ’]I‘d>

where all these quantities are uniformly bounded by a constant M; > 0, only dependent
on \|m0HW5m(W), a,T,d,U; and the local regularity of H.
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Recalling our discussion on the Fokker-Planck equation, we have that m is a weak
solution of (3.11) (referring to Lemma 3.2 and Lemma 3.3). Thus, Lemma 3.5 gives us
the following estimates on m:

di(m(t),m(s)) <co(1+|DpH (-,Du) ||) |t — s|% Vs,t € [0,T]

Since || Dul|o < Uy, it follows that ||DpH (-, Du) |0 < Ca, where Cy > 0 is a constant
not dependent on p. By setting C1 > ¢g (1 + C3) we get the sought after constant in the
definition of C. Further, we obtain that m = v (u) € C, which shows that the map 9 is

well-defined. O

Continuity

We now want to check that the mapping is continuous, with respect to the metric d
defined on C° ([0, 7], P (T9)).

For this, let u, € C be a given sequence, that converges to a point pu € C. Further, let
(tUp, my) and (u,m) be the corresponding solutions of the system of equations. We want
to show that m,, € C converges to m € C, because this in turn implies continuity of .

Hamilton-Jacobi

We first begin by looking at the pairs (fn, u,) and (u, u). We want to show that
1,2

Uy, — U.

From the uniform bounds on functions u € U, it follows that U CC C1? ((0, T) x Td),
by Lemma 2.8. A consequence of Lemma 2.7 is that, if every convergent subsequence of
a sequence (u,) C U converges, then the whole sequence converges in C!? to the same
limit point.

So, we only need to prove the following statement:

Lemma 3.8. Every convergent subsequence (un,) of (u,) (convergent in C12) converges
to the same limit point, u = u (u).

Proof. Let (uy,) be a convergent subsequence of (uy,), and (i, ) the corresponding p-s.

2,1
Assume that up, 7 @ € U. From the assumptions p,, converges to p. The pair
(ftn,,, un, ) satisfies the fractional Hamilton-Jacobi equation:

(3.12) { Ot + (A7) tny + H (2t Dtny) = F (@, (1)

Uny, (:L‘,T) =G ($a Koy, (T))
Also the limit point (u, %) satisfies the fractional Hamilton-Jacobi equation

(3.13) { ~0yi — (~Aqa)® @+ H (2,3D0) = F (x, 1 (1))

u(z,T) =G (x,p1(T))
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To conclude the proof, we need to show that all the terms in equation (3.12) converges
pointwise to the terms in equation (3.13).

1,2
From the assumption u,,, o, u, we get directly that:

|O¢tin,, — Orti]jo — O

By using Lemma 2.1 from the Preliminaries, we get
o o (2.6) )
I (=Aga)2 tny (t,2) = (=Aga)2 @t ) [ oo (pay < Numy, (8) =@ () [l oz (pay

S Hunk - a‘|C’1v2((O,T)Td)

Further, we have for F' that

| (, piny, (1)) = F (z, o (1))] < Co lda (. (£) , 1(2))]

< Cy [d (unk,u)} —0
and we get, by the same method, the same result for G:
G (@ pin, (T)) — G (1,1 (T)) | -0

The remaining term to look at is the H (z, Duy, ). We know that all u € U satisfies
| Dullso < Uj as shown in lemma 3.7, so we can use that H is locally Lipschitz continuous:

|H (z,un, , Dup, ) — H (z,4,Du) | < Ly y, (|un, — @l + |Dup, — Da|) — 0

This shows that every term in (3.12) converges pointwise to the corresponding terms
in equations (3.13) . The equation (3.13) has a unique solution @ € U, referring to
theorem 4.2. Thus, all convergent subsequences of (u,) have the same limit point. This
concludes the proof. O

By Lemma, 2.8, the set U is compact in C%2. Since (u,,) C U, and every convergent
subsequence of (uy,) has the same limit point u € U (Lemma 3.8), we conclude by Lemma

01,2
2.7 that u,, — u.

Fokker-Planck

Now, we want to show that m,, 21—2—> m, based on the result that u,, — v € C%2. The
set M cc C1? ((O,T) X ’]I‘d), as a consequence of Lemma 2.8. Thus, we will do the
same as for the fractional Hamilton-Jacobi equation: We will show that every convergent
subsequence (my, ) C (my) converges to the same limit point, and from here conclude

1,2
by Lemma 2.7 that m, 7 m. We can prove the following statement:
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Lemma 3.9. Every convergent subsequence (my, ) of (my,) in CH? converges to the same
limit point, m = m (u).
Proof. Let (my,) be a convergent subsequence, and (uy, ) the corresponding sequence in

1,2 1,2
u-s. Assume that (my,,) £ i € M. We know that Un,, £, w from lemma 3.8. Each
pair (uy, , mp, ) satisfy the fractional Fokker-Planck equation

(3.14)

{ Orma,, + (*ATd)a/2 My, — (Dmy, , DpyH (2, Uy, , Duy, )) — mp, divDpH (x,up, , Du,, ) =0
M, (0) = mo

Also, the limit point satisfy the fractional Fokker-Planck equation

(315 { o+ (—Apa)*? i — (D, DyH (z,u, Du)) — i divDyH (x, u, Du) = 0
. m (O) =My

It can be shown that every term in expression (3.14) converges pointwise to the
corresponding limit in (3.15), where we again use that ||Dullc < Uj for all u € U,
and that D,H and divD,H are locally Lipschitz continuous. The solution for the limit
equation (3.15) is unique when u € U is given. Thus, we can conclude that all convergent

subsequences of (my,) have the same limit point. O

By theorem 2.9, the set M is compact in C%!. Since (m,,) C M, and every convergent
subsequence of (m,,) has the same limit point m € M (lemma 3.9), we conclude by lemma

02,1
2.7 that m,, — m.

Conclusion of continuity

N o .
We have shown that u, N n = my O m. We will show now that Mp 4 .

Since m,,, m are classical solutios of the fractional Fokker-Planck equation, they must
also be a weak solution according to Lemma 3.2, and are unique weak solution by Lemma
3.3. Therefore, by Lemma 3.4, m,, (t) and m (t) are probability measures on P (T%). This
allows us to compute, recalling the equivalent definition of d; in Lemma 2.5

anma @)= s L[ om0 -m@) @)}

¢€l—Lip,p(0)=0

= s 6@ ma0) - mta)) do

$€1—Lip,¢(0)=0

< / 1-||my, — m|lpdz — 0.
Td

This shows convergence in C? ([0,7], P (T%)), m, 4 m, and we can conclude that the
mapping ¥ is continuous.
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Conclusion of existence proof

We have defined a Banach space C° ([0, T],P (Td)), a compact, convex and closed subset
C, and a continuous map v : C — C. Hence, by Schauder’s fixed point theorem, the map
¥ : C — C has a fixed point in m € C, and this fixed point is a solution of the MFG
system (3.1).

Lemma 3.10. A fized point of 1 is a solution to the system (5.1)

Proof. Let m = 1 (m). Then it holds that m € C*!. By inserting m into the Hamilton-
Jacobi equation, we obtain a unique solution u € C%*'. This w in turn solves the Fokker-

Planck equation uniquely, with m € C?!. Thus, the pair (u,m) solves the fractional
MFG system. O

3.4 Uniqueness

In this section, we assume that H is on the form H (z, Du).

Assume that the following conditions hold on F' and G, which we will refer to as the
monotonicity condition:

(3.16) /Td (F (z,m1) — F (2, m2)) d (m1 — mg) (z) > 0 Ymi, mg € P (Td)
and
(3.17) /w (G (z,m1) — G (x,m2)) d (m1 —ms) (x) > 0 ¥my,ms € P (Td>

Also, assume that H is uniformly convex with respect to it’s last variable p € R%
1
(3.18) 3C > 0, 5Id < D2 H(z,p) <Cly

Theorem 3.2. With the extra assumptions (3.16), (3.17) and (3.18) there is at most
one classical solution of the mean field equation (3.1)

The proof is exactly the same as in proof of Thm. 3.1.5 in Cardaliaguet [3], with the
minor difference that we're dealing with the fractional Laplace operator, instead of the
ususal one.

Proof. Let (u1,m1) and (ug2, m2) be two classical solutions. We then set @ = u; —ug and
M = my — me. Since both @ and 7 are continuously differentiable and bounded on T¢,
which is compact, we can interchange the integration and differentiation operator:

d . 0 . e o -
pr Wum— Tdat(um)—/W(8tu)m—i—u(&gm)

= /1rd <((—A1rd)a/2ﬁ+H(3:,Du1) — H (z, Dug) — F (x,mq) —I—F(x,mg))m

— & (= Aga)®? i — (Dit, m1 Dy H (z, Duy) — moDyH (z, Du2)>>
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where the last term is obtained from partial integration.
We notice that

(3.19) / ((—AW)% a) - <(—AW)% m) dz = 0.
Td
which follows from Lemma 2.3 in the Preliminaries.

From the condition (3.16) on F, we also get the estimate:

/ (—F (x,mq) + F (x,m2))m = / (—F (z,m1) + F (z,m2)) (m1 —ma) <0
Td Td

We can rewrite the terms involving H in the following way:

(3.20)
/Jl‘d ((H (z, Duy) — H (z, Dug)) m — (Da, m1DyH (x, Du1) — moDpH (z, Dug)))
=— » ma ((H (x, Dug) — H (x, Duy)) — (DpH (x, Duy) , Dug — Duy))

~ ) mg ((H (z, Duy) — H (x, Dug)) — (DpH (x, Dug) , Du; — Dus))

Now we want to use Taylors theorem and the uniform convexity assumption to get
estimates on (3.20). From Taylors theorem, and for any v, w € R? it holds that:
H (z,v) = H (z,w) + (DpH (z,w),v —w)

1
+§D12)pH (:1775) ‘1} - w|2

for some ¢ € R? on the line between v and w. But from the uniform convexity assumption
(3.18) it holds that V¢ € R¢:
H (xz,v) — H (x,w) — (Dy, (z,w) ,v — w)
1 (3.18) 1
= D @Ol —ul > ol wf?

We can apply this to the equation (3.20): By applying this to (3.20), we get the estimate:

(3.21)

/Td ((H (z, Duy) — H (z, Dug)) m — (Du, m1DyH (x, Duy) — moDpH (z, Dug)))

=— » m1 ((H (x, Dug) — H (z, Duy)) — (DpH (2, Duy) , Dug — Duy))

~ me ((H (x, Du1) — H (x, Dug)) — (DpH (x, Dus) , Duy — Duy))

(3:21) my me (mq + mg)
< ™Mipuy— Dl - | Z21Dus — Dus? = — [ LTT2D by D ?
- /’Ed 20| 2 u| /’Ed 20| b )| /Td 2C | D uz)|
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So, by combining all the estimates, we obtain the following inequality:

d
il @mg_/ M!Dul—])uﬂz
dt Td Td 20

We can integrate this inequality on the time interval [0, 7], to obtain:

mi + meo

T
/Tda(T)m(T)—/Tda(())m(O)g—/0 TdTu)ul—DuQ\?

From the initial conditions, we have that m (0) = my (0) — m2 (0) = mo —mg = 0.
We also have @ (T) = G (z,m1 (T)) — G (x,ma (T)), so that:

/ @ (T) i (T) = / (G (&, my (T)) - G (&,ma (T))) (s (T) —ma (T)) > 0
’]I‘d ’I[‘d

from the assumptions on G (3.17). What we obtain then is the inequality:

T
0< — M|Du1—Du2|2§O
0 Td 20

which means that the integrand must be zero, so that Du; = Dug on the set {m; > 0} U
{mg > 0}. In the fractional Fokker-Planck equation, m; then solves the same equation
as mg, since we have the same third term D,H (z, Duy) = DyH (x, Duy). Therefore
m1 = me and it follows from uniqueness of the fractional Hamilton-Jacobi equation, that

u1 and uy must be the same.
O
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Chapter 4

Regularity for the fractal
hamilton-jacobi equation

In this chapter we want to prove regularity for solutions of the fractional Hamilton-
Jacobi equation, under suitable assumptions on the Hamiltonian H. Many of our proofs
get their inspiration from the article [8] by Imbert.

More precisely, the equation we study in this chapter is on the form:

(41) du+ (—AM?u+ H (t,z,u,Du) =0 in (0,T) x RN
' u (0, 2) = ug (v) in RV

A2

where 1 < A < 2, and the non-local operator (—A)™ < is defined as:

O@+2)—6(x) - Vo) =

’Z’N-I—)\

AV =ena [

where ¢y is a universal constant. This non-local operator is also known as the fractional
Laplace operator, and it is a linear operator. Now, we will list our assumptions, and then
go on with main results and proofs of these results.

4.1 Assumptions

We have the following assumptions on the Hamiltonian H. For any 1" > 0,
e (A0) The function H : [0, +00) x RY x RY — R is continuous.

e (A1) There exists v € R such that for all z € RN, w,v € R, u < v, p € RV,
tel0,T),

H(t,l‘,l},p) - H(tvxvuvp) > 7(” - ’LL)

33
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e (A2) For any R > 0, there exists Cg > 0 such that for all z,y € RV, u ¢
[-R,R],p e RN tc[0,T),

|H (t,z,u,p) — H (t,y,u,p)| < Cr(lp| + 1) |z —y]

e (A3) For any R > 0, there exists Cg > 0 such that for all t € [0,T),z € RN ju,v €
[-R, R],p,q € Bg, the derivatives of H (up till the k-th derivative) are bounded
by the constant Cg, that is,

‘DaH (t,x,u,p) ‘ < CR
with a = (g, ..., 04y, Qu, Qp,, . .., 0py ) @ multi-index with |a] < k.
e (A4) There exists Cy > 0 such that

sup ’H(t,IIJ,0,0) | < CO
te[0,T),zeRN

Comment:

Chapter 6 deals with how to estimate the spatial derivatives of H (¢,z,u (t,x),w (¢,x)),
given an arbitrary multi-index 5 = (51,---,8n) with |5] < k. Also we deal with how
to estimate the difference \8JB;H (s,z,u(s,x),wr(s,z)) — Ol H (s,z,u(s,z),ws(s,x))|
These estimates are necessary in order to show C{f—regularity in spaces for solutions of
the fractional Hamilton-Jacobi equation, and plays an important part.

4.2 Main result
We state the main Theorems of this chapter:

Theorem 4.1. Assume that ug € W5 (RY) with k > 3 and (A1)-(A4) holds. Then
(4.1) admits a unique classical solution u that satisfies

dwu,u, Du,--- ,D*u e C (]O,T[ X RN)

All these quantities are bounded by a constant ¢ depending on ||U0||Wk,oo(RN), AT, N
and k.

We also achieve a bit more time regularity by adding to the assumptions on H.

Theorem 4.2. Assume that ug € W™ (RY) with k > 5 and (A1)-(A4) holds. Further-
more, assume that for t € [0,T], x,y € RN, w,v € [-R,R], p,q € Br the Hamiltonian
H satisfies

1
(4.2) \H (s,z,u,p) — H (t,y,v,q)| < Lur (]3 —tlr+lz—yl+lu—v|+|p— q\)
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where Ly p > 0 is a constant depending on R. Then (4.1) admits a unique classical
solution u that satisfies

O, u, Du,- -, D*u e O, (}O,T[ X RN)
and

1
B, D*u € G2 (10, T[ x RY)

1
where C'bQ’1 (0, T[ x RY) s a parabolic Hélder space. All these quantities are uniformly
bounded by a constant ¢ > 0 depending on ||u|[yr.cmny, A T, N, k and Ly g, where
R = llullo + [[Dullo-

Idea of proof:

The idea is to use the Duhamel’s integral representation to show that the unique viscosity
solution u of (4.1) has C’;’k—regularity on small intervals (0,7%) and (to,to + T}), where
to € (0,7T) and T}, T}, are strictly positive, independent of ¢y9. By patching intervals

together, we can conclude that u belongs to C’I}’k ((0,T) x RM).

We can extend the time-regularity a bit further, by making the assumption (4.2) on
the Hamiltonian H.

4.3 Unique viscosity solution

We begin by referring to the article [8], which states that (4.1) has a unique viscosity
solution u.

Theorem 4.3. (Theorem 3, Imbert [8]) Assume that (A0)-(A4) holds. For any ug :
RN — R bounded and uniformly continuous, there exists a (unique) viscosity solution u
of (4.1) in [0,4+00) x RN such that u (0,z) = ug ().

The next Lemma is from the same article, and gives some regularity result for the
viscosity solution.

Lemma 4.1. (Lemma 2 in [8]) Assume that (A0)-(A4) holds, and that ug € W (RV).
The wviscosity solution u satisfies: For any t € [0,T), [[u(t,-) lw1.00@mny < My with My
that only depends on |[uol|yy1.00mny, Co and T

Proof. The proof can be read in [8]. The constants that are presented in the Theorem
are My = f7/2 (K /8 + HVungo)l/z. K = 4Cpg, with R = ||u|le from (A2), where
|t|loo < |Jupl|oo +CoT', which can be obtained directly from the comparison principle. [

Let us now forget for a little while about the viscosity solution u of (4.1). We want
to look into Duhamel’s formula, and to show that we can construct classical solutions v
that satisfies (4.1) on small time intervals, given initial data vy that is smooth enough.
Later we will combine these results with the viscosity solution u to show regularity on
the whole time interval (0,7).
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4.4 Regularity by Duhamel’s formula

Before embarking on the regularity theory for the fractional Hamilton-Jacobi equation,
we need to say a few words on the heat kernel associated with the fractional Laplace
operator.

4.4.1 The heat kernel of the fractional Laplacian

The semi-group generated by the non-local operator (—A))‘/ s given by the convolution
with the kernel (defined for ¢t > 0 and z € R")

K(t,2)=F (e—tl'“) (z)

where F denotes the Fourier transform in RY. We list briefly some properties of K (see
[8] and [5])

(4.3) K € C™ ((0,4+00) x RY) and K >0
(4.4) Y (t,x) € (0, +00) x RN, K (t,2) =t VK (l,t_l/’\x)
For all integers m > 0 and all multi-indexes a with |a| = m, there exists a constant

B,, > 0 such that

By,
(1 +t_(N+1)/’\|x]N+1)

(4.5) Y (t,z) € (0,400) x RN, |0°K (t,z)| < tC-N+m)/A

Also, we have
(4.6) |K @)@y =1 and [[VK (1) | @y = Kot~
where IC; > 0 is a constant. We also refer to the following useful result from [8].

Proposition 4.1. (Proposition 1, Imbert [8]) Consider ug € Cy (RY). Then K (t,-) *
uo (+) is a C*° (in (t,x)) solution of

Opu + (—A))‘/Qu =0 in (0,400) x RN

w(0,-) =up () inRY

We also should state Duhamel’s formula for the equation (4.1). It is given by

v(t,x) =K (t,)*xvo(-)— [ K(t—s,-)*xH(s,xz,v(s,-),Vv(s,-))(x)ds
0

where K is the heat kernel, vy are initial conditions, and H is the Hamiltonian. We use
Duhamel’s formula to show that with initial conditions vg there exists a unique v that
satisfies Duhamel’s formula on a small time interval. We will also show that this v is in
fact a classical solution of the equation (4.1) on this small time interval.
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4.4.2 Starting point

We first begin, as in Imbert [8], to consider a small interval |0, 77 [, where 77 > 0 is to be
determined.

One can show that for given initial data vy € WH ™ (RN) there exists a unique v
that satisfies Duhamel’s formula on ]0,71[, and that v, Vo € G, (]0,T1[ x RY), where
Duhamel’s formula is given by

v (t,x) —K(t,-)*vo(-)—/o K(t—s,)«H(s,z,v(s,-),Vv(s,-)) (x)ds

v(0,) = o (")

(4.7)

4.4.3 ('-regularity in x
The following Lemma is from Imbert [8].

Lemma 4.2. Let vg € Wh™ (]RN). Then there exists Th > 0, such thatv € Cy (]0, T)] x RN)
and Vv € G, (10, T1[ x RY) and (4.7) holds.

Proof. (Idea of proof) The proof is the same as in [8], so we will not go much into detail.
The next proof we will do, we will use exactly the same method as Imbert did here, so
we don’t think it is necessary to do a complete proof in this case.

First, we define the map 7 as

1 (v) (t,x) = K (t,-) xvo (+) (z) — /0 K(t—s,-)xH(s,z,v(s,-),Vv(s,-)) (z)ds
and we consider the space
Ei={ve G (J0,Ti[ x RY) Vv e C, (J0, Ty [ x RN)}

which has the natural norm [[v| g, = [[vll¢, o, [xr™) + VUl ey q0,7 [xrY)- From here, it
can be shown that

1. 1y is well-defined: ¢ : By — E7, and
2. There exists a unique fixed point v, so that v = ¥ (v).

To show well-definedness, we assume that the initial data is bounded by some Ry > 0,
that is:

[vollwr.ee wavy = l[volloo + [[Dvolloe < Ro

Also, we assume that we look at v € E; such that ||v||g, < R1, where Ry > Ry > 0 is to
be determined.
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Following the computations of [8], he estimates the value of |41 (v) ||g,, which turns
out to be

Ao
11 (0) ||, < Ro + (Co + Cr,) <T1 K T 1)/A>

Then he chooses that Ry = 2Ry, and further selects T7 > 0 such that the following
condition holds:

A _
(4.8) (Co + CRlRl) <T1 + K1 ﬁTl(/\ 1)//\> < Ry

It holds then that v¢; : Br, — Bp,, and he shows that the map is in fact a contraction
in the Fy-norm. Thus, by Banach’s fixed point theorem, one can conclude that the map
11 has a unique fixed point v € Bp,. O

Remark

If we rewrite the expression (4.8) as

TA-D/A Ry

T+ K S R
LT h = (Co + 2Cr, Ro)

using that Ry = 2Ry, we notice that, if Ry is bounded from below, say Ry > 1, and
above, say by another constant K > 0, we can find a 77 > 0 that satisfies (4.8), only
dependent on K, Cy, Ck, K1 and A.

4.5 CF-regularity in x

In this section we will show that we can gain extra space-regularity by the use of
Duhamel’s Formula, and by use of a fixed point argument. The assumption we make, is
that we already have a function v that satisfies Duhamel’s formula, with initial condi-
tion v, on some small time interval and that this function has C’f—regularity in space.
From here we go to show (depending on the regularity of vg), that the function v have
Cf“—regularity in space on a even smaller time interval than the original one.

Imbert proves in his article [8] that one have Cg—regularity in space for a Hamilto-
nian on the form H (¢, z,u, Du), and then shows Cf—regularity for a simpler Hamiltonian
H (Du).

We will go directly to show Cf—regularity for the more general Hamiltonian H (¢, x, u, Du),
as this is neccessary in the order to prove well-posedness for the MFG system (3.1). Also,
this allows us to use the same estimates later for the Fokker-Planck equation.
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4.5.1 Starting assumptions and framework

We will start with our assumptions, and then afterwards state the results.

Assume that there exists constants Ry > 0 and T > 0 such that the function w = Vo
satisfies Duhamel’s formula on ]0, To[ x RY, and that it belongs to the space F}, (0, Tp) :=
{w, Duw,---DF 1w e (]O,To[ X ]RN)}. In other words, w satisfies

w(t,:c):K(t,')*wo(')—/O VK (t—s,-)*xH(s,-,0(s,-),w(s,-)) (z)ds

|07, < Ro.

(4.9)

We also assume that the initial condition vg satisfies

> 10%w0lee < Ro.
181<k

We will work with two different spaces, namely

Fi1(0,Tiy1) = {UJ,DUJ’ -, DFw € Cy (J0, Tios1 [ % RN)}

and
Byt (0, Tosr) = {w,Dw, oo DR, Y2 DRy € Gy (10, i [ % RN)} .
The norms of these spaces we define as, for w = (wq,--- ,wy)
N
lwllpeyy =Y ( lwillo+ Y 187willo
i=1 1<|BI<k
and
N
A
gy =D {lwillo+ > N0Fwillo+ Y [t 0Fwillo
i=1 1<|8|<k—1 8=k
where we have defined || - [|o = || - ||Cb(}o,Tk[XRN). We refer to these spaces as Fj41 and

E} 11, unless otherwise is stated.

Note that for k > 1 ||w|| s, < ||w|g,,,. This follows directly from the definitions.
We also define the following map 9 as:

(4.10)
o (w) (t,z) = K (t,-) xwo (+) (x) — /0 VK (t—s,-)* H(s,-,v(s,:),w(s,-))(z)ds

Having stated our assumptions, and defined Ey.1, Fr11 and 9, we give the results
of this section.
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Lemma 4.3. Assume that (4.9) holds for Rg,To > 0, and that wg € WF=1°. Then
there exists Ri11 > 0 and Ti41 > 0, with Rx1q > Ry and Ty < To, such that the map
Vg has a unique fized point w in Eyiq (0, Thq1) with || (w) ||g,,, < Rit1. Also, Tiqq
depends only on the quantities Ry, N, XA and Cr, (and Tp).

and

Lemma 4.4. Assume that (4.9) holds, and that wog € W*°. Then there ezists R, | >0
and Tg | > 0, with R | > Ry and Ty | < Ty, such that the map 12 has a unique fized
point w in Fiiq (O,TIEH) with ||Y2 (w) |7y, < Riyy-

The main difference between the Lemmas 4.3 and 4.4 is the assumptions we make
on the initial conditions wg. We need Lemma 4.4 to prove regularity of the viscosity
solution close to ¢ = 0, and Lemma 4.3 to prove regularity of the viscosity solution on
time intervals (tg,to + Tg11), for tg € [0, 7).

Now, we go to the proofs of these Lemmas.

4.5.2 Proof of Lemma 4.3

We start by looking at the space Eyy1 (0, Tk41).
We assume that Vo € Fy, (0,Tp), with [|[Vu|| g, < Ro, and we consider the map:

t
i (w) (8, x) = K (£,-) * wo,i () (z) — / K (t—s, )« H(s,-v(s,"),w(s,))(x)ds
0
where we analyse the i-th component of the vector, since this is easier to think about. We
look at the space Exi1 (0, Tgy1), where Tiy1 < Tp is to be determined, and pick w such
that ||w|g,,, < Rgs1, where Ry 1 > Rp is to be determined. The fact that Rp1q > Ro
implies that HVUHFk < Ry

We first begin with some calculations, which will come in handy.

Estimates on H

In the chapter “Estimates of 0° H”, we have laid the foundation for the following calcu-
lations. In the following § is a multi-index on the form 8 = (81, -, Bn)-

Bounds

From the assumptions ||Vv| g, |w| g, ,, < Rry1, and the assumptions (A0)-(A4), we
calculate:

(4.11) |H (s,z,v(s,x) ,w(s,7))| < Co+2Cg,,, Rrt1 =: co (Ri41)
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From Lemma 6.2 we have for 1 < |f] < k — 1 that

(4.12) |02 H (5,2, (s,2) ,w (s, 2)) | < ¢ (N, |B], Ry1)

and by the same Lemma, for |3| = k:

(4.13) 8%H (s,2,v(s,2),w(s,2))| < e (k,N,Rpy1) + 5 ey (k, N, Ry
Difference

Assume that we have wy,, wy € Epy1, that |Vl g, |wpl| g 1wl By, < Riy1, and
that the assumptions (A0)-(A4) holds. Also, assume that Rpy; > k?. We can then
calculate:

|H (s,z,v,wp) — H (s,2,0,w,) |
(4.14) < CRyyy llwp — wello < (N +1) (Co + 2Cr,,, Riey1) lwp — wellz,
< (N + 1) collwp — wyll By

where ¢ is the same constant as in (4.11).

Referring to the results of Lemma 6.14, we compute for 1 < |B| < k — 1 that

(4.15)
k
lﬁfH (37x7u7wp) - afH (Saxvua U}q) ‘ S (Rk:+1 + N) C(N7 ‘6’7Rk+1) pr - quEk+1

< (N +1)e(N, B, Rit1) lwp — wyll By,

where c is the same constant as in (4.12)

2

For | 3| = k we obtain by use of Lemma 6.15:
(4.16)

k2 _
‘6£H (vav u, wp) - 8£H (37x7u7wfI) | < (R + N) (Cl +s 1/)\62) pr - quEk+1
< (N +1) (e + 570 flwy = wlg,.
where ¢; and ¢y are the same constants as in (4.13)

Estimates on 1o

We proceed by calculating the spatial derivatives of 19, using our estimates on H. We
have

0 (@) € 1K () =0, () @) |+ [ 10K (0= s = ) 1 (5,920 s, 0 5.) s

(4.6) t C1/a
< K@) HLI(RN)Hwo,iIIoo+Co(Rk+1)/ Ki(t—s) " ds
0

(4.6) A _
< flwolloe + o (Rin) K= 7077
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Similarily for 1 < |8] <k —1:

0B (w) (2,1) | < 1K (¢ — 5,) % Pwo; () (2)|
t
4 / / 0K (t— 5,0 — ) 102 H (5,9, 0 (s,) ,w (5,3)) |dyds
0 RN
A

< [|08woillso + ¢ (N, |B], Ris1) ’ClﬁTlg:l)/A

|B] = k: Here we can only differentiate the initial conditions k& — 1 times. We will

denote this as 85_1100.

205 s () (2, £) | < [202 (K (£,-)  wos () |
t
I / / 0K (t — 5,2 — y) [|0PH (5,9, 0 (s,1) , w (s, 9)) |dyds
0 RN
t
gH“Kﬁ*”Wwaww+¢VA/ @y+@g4ﬂ)/ |0:K (t — s, — y) |dyds
0 RN

= K1[|07 woyi

t t
0ot cl’Cltl/)\/ (t— 5)71//\ ds + 02/C1t1/>‘ / s/ (t— 5)71/>‘ ds
0 0

For the second integral term, we use the substitution 7 = s/t, dr = ds/t, which yields:

t
cleltl/)‘/ sTVA(t - 8)_1/’\ ds
0
1
=kt [ ) ¢ ) ()
0

1
= CQ’Cltl_l/A/ FUA (1-— 7')_1/)‘ dr
0

So, we get in total

)/A

120545 (w) (t,2) | < K107 wo, Tiy1 + Cz’YATéiIl

o T 1K1

A
A—1
where vy, = fol sTUN (1 — )7V gs.

By summing these expression, we get in total:
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[¥2 () ||y < (1+ K1) Ro

A—1)/A
+Z K1 —Téﬂ Pl Ris)+ Y e8], Risr)
1<[8]<k—1

1)/

+ZCﬂC1)\_

|8|=k

A—
1Tk+1 + cQ’y}‘Tlg-i-l

We now choose Rji1 to be Rpy1 := max (2 (1+ K1) Ry, 2k2), and choose T;41 > 0
such that:

N
>\ 1)/A
Yol ST o (Res) + Y. e (N, 18], Ris)
1=1 _
(4.17) 1<|8|<k—1
(A-1)/A I 1
+ Z Cl’Cl Tk+1 +62’7)\Tk+1 < iNi—l-l

|81=k
This choice of Ty is possible, since the LHS of (4.17) goes towards zero for fixed
Ryy1 as Tpa1 — 0. Applying this condition, we obtain:

1 1 1
2 (W) By < (1+ K1) Ro+ 5 Rk+1 + Rk+1 Ry 1.

IN+1 - 2
This shows that the map 15 is well-defined, and that 1o : Bg,,, — Bg,_,-

Contraction

We will compute the difference [[12 (wp) — 2 (wy) || 5, for wy, wy € Bg, ., to show that
the map 12 is a contraction. We use the estimates (4.14), (4.15) and (4.16) to compute
the following:

For |3] = 0:
(92,1 (wp) (2,1) = 12 (wg) (z,1) |

t
< / / |0;K (t — s,z —y) ||H (s,y,v,wp) — H (s,y,v,wg) |dyds
0 JRN

(4.14) t

<7 (N 4 1) collwp — wllg, / / 0K (t— .2 — y) |dyds
A A—1)/A

= (N + 1) co (Rin) Ka 5= 100wy = wyll

For1<|B|<k-1:
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(0542, (wp) (w, 1) = OF12,i (wg) (1) |
t
[ 10 (6= = ) 02H (5.9.0,10,) = 02 (5,020, s

(4.15) t
<V DBl R oy = gl | [ 10 (= 5.0 = )y
A (=1)/A
= (N + 1) e(V, 18], Rian) K152 T Moy = will by

For |B] = k we get
2000 i (wp) (,t) — £/ 201pa s (wy) (1) |

t
S tl/A/ /]RN ‘azK (t - 5T — y) HagH (Svyavva) - 8§H (S’y’ ’U,’U)q) |dyd8

(4.16) 1/ t s
<t / /N‘K(t—S,x—y)‘(N—i-l) <C1C'R+s C2CR) |wp — wqll ., dyds
R

A A-1)/A
<+ 1) (k2 T + ) lup - il

A

where the last inequality comes from the same technique as in the proof of boundedness

of |t1/’\w2 (w) (t,x) |-

Summing everything together, we obtain

192 (wp) = P2 (wg) || 4,

N
A A
(VHD3 |k DT @B+ YD eV 18] Ren)
i=1 1<|B|<k—1
+ ) akis Tk+1+cmT,9 D oy = wqll gy
1B1=k
(4.17) 11
< (N+1)§N7+1pr_quEk+1

= §||wp - quEk+1

This inequality shows that 1 is a contraction in the Fj,i-norm, with the chosen
values of Ry1q and Ty11. By Banach’s fixed point theorem there exists a unique fixed

point w € B, that solves ||w — s (w) ||, = 0.
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In the end, we also need to show that w and w coincides in Fy, (0,T)y1). The fol-
lowing interpolation statement holds by the definition of the spaces Fj (0,Tk+1) and

Eyy1 (0, Ty 1)
(4.18) lwll 5015, < 10llE,, 0,7050)

Our starting assumption was that w satisfied ||@w — 12 (w) ||, = 0, and we obtain from
the inequality (4.18) that also w satisfies ||w — 12 (w) || ;, = 0. One can show that 1y is
a contraction in Fy (0, Tk 1), by doing the same calculations as before, only skipping the
case || = k and using the Fi-norm instead of the Ej;-norm. By choosing Ry1 and
Ty41 to be the same as before, one can show that

1
[1h2 (wp) — P2 (wq) |7y 0.1 11) < §||wp — Wl (0, T 11)
and hence that 19 is a contraction in Fj (0,Tg+1). Due to uniqueness from Banach’s
fixed point theorem, we get that w and w must coincide in Fy (0, Tk4+1)
|w — 0| F0.10,1) = 0

This concludes the proof. O

4.5.3 Proof of Lemma 4.4

This proof of is simpler than the proof of Lemma 4.3, and it follows the same idea.
Therefore, we will just state the main results, to save space.

Here, we consider the space:

Fipr = {w,Dw,--~ ,D*w e Cy (0, Tf 1 | XRN)}

equipped with the norm

N

lwllpe =Y | lwillo+ Y 18Fwilo

i=1 1<|8|<k

As before, we look at the map:

¢

Yo, (w) (8, 2) = K (£,-) * wo,i () (x) — / K (t—s,-)* H(s,z,v(s,z),w (s 2))(z)ds
0

where the initial condition wyg = Vvg now satisfies

Z 185v0llo < Ro
|B|<k+1

and Vo satisfies || Vv, 0,1) < Ro-

As before, one can calculate |12 (w) |5, and ||t (w1) — ¥2 (w2) ||, Then one can
find constants Ry ; and Ty ; > 0 such that ¢ : Bg,,, — Bg,,, and v is a contraction
in the Fji1-norm. Furthermore, one can also that this fixed point coincides with w in
Fy, (O, T,§+1), which concludes the proof. ]
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4.6 Time regularity

Now, we want to discuss time regularity. We will show that when a function v satisfies
Duhamel’s formula on some small time interval, and has enough space regularity, it is
C' in t. In addition, v is also then a classical solution to the fractional Hamilton-Jacobi
equation on this small time interval.

We begin by citing a Lemma from Imbert [8] (with a bit modified notation), which
will help us to establish time regularity.

Lemma 4.5. (Lemma 5, [8]). Suppose that f € Cy, (]0, To[ x RY) is C? in x such that
VIDf € Cp(J0,To[ x RY). Then @ (f) (t,x) = [f K (t—s,) * f(s,) (x)ds is C*
w.r.t. t €10, To[ and 0P (f) (t,x) = f (t,x) — (fA)A/2 [®(f)] (t,x).

Proof. The proof can be read in [8]. O

We use this Lemma to prove time-regularity.

Lemma 4.6. Assume that v salisfies Duhamels formula on the time interval |0, Ty[ (for
initial data vo) and that v, Dv, D*v, D3v € Cy (]O,To[ X ]RN). Then v 1s C’,} int, and is
a classical solution of (4.1) on ]0,Tp].

Proof. Assume that v, Vv, D?v, D3v € (), (](),To[ X RN) satisfies Duhamel’s formula on
10, To[ x RY:

v(t,x):K(t,-)*vo(-)(x)—/o K (t—s, )« H(s,-,v(s,-),Vv(s,-))(x)ds

Taking the derivative with respect to t and applying Lemma 4.5 to the function f (¢,2) =
H (t,z,v(t,x), Vo (t,z)) yields:

O (t,x) = 0y (K (t,-) xvg (+) (z)) — 0P (w) (¢, x)
= — (=A)V2[K (t,) % vy ()] (z) — 8@ (w) (t,z)
temma 45 (AWK (t,) % vo ()] (2) — H (t,2,v (t, ) , Vo (¢, 7))
A2 t —s,- )« H (s,z,v(s,- v(s,-)) (x)ds
A2 [R5 o050 V5, ()

—A)M2 |in.
CAZT (420 (t2) Vo (8, 7))

- (—A))‘/z {K (t,-)*xvo () — /0 K({t—s,-)xH(s,z,v(s,-),Vv(s,))(z) ds}
= —H (t,z,v(t,2), Vv (t,2)) — (=A)?[v (¢, )] (z)

O (t,x) + (=AY 2 v (t,2) + H (t,z,v (t,x), Vo (t,2)) =0
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This shows that v is a classical solution of the Hamilton-Jacobi equation in ]0, Ty x
R, and that the time derivative is bounded. O

Next, we turn to conditions for when D*v is C in t.

4.6.1 The k-th spatial derivative is C! in time

Lemma 4.7. Assume that v satisfies Duhamel’s formula on |0, To[ x RN (for initial data
vo) and that v, Dv,---  D*3y € Cy (]O,TO[ X RN). Then DFv is C} in time.

Proof. Again, we will apply Lemma 4.5 to show that the k-th time derivative is C'! with
respect to t. Assume that v, Dv,---, D3y € ¢y (]O,To[ X RN). We differentiate both
sides of Duhamel’s formula to obtain:

Dy (t,z) = K (t,-) * D¥ vy () (x) — /0 K (t—s,-)* DFH (s, v(s,-),Vou(s,-)) (z)ds

Since v, Dv, - - - , D¥*3y are bounded, we can apply Lemma 4.5. By taking the time
derivative on both sides we obtain

8D (t,x) = — (—A)M? [K (t,-) * D*ug (-)} (x) — DYH (t,2,v (t, ), Vo (t, 1))
+ (=A)M? UOtK(t —5,)* DFH (s, v (s,-), Vo (s,-)) (z) ds}
— —DFH (t,z,v(t,z), Vo (t,z)) — (~A)M? [D’fv} (t, z)
This concludes the proof. O
4.6.2 Holder continuity

We will give a bit finer time estimates for dsv.

Lemma 4.8. Assume that v satisfies Duhamel’s formula on 10, To[ x RY (for initial
data vo) and that v,Dv,--- , D% € C (]O,TO[ X RN). Assume also that for s,t €
[0, 7], z,y € RN, uy,us € [-R, R], p,q € Br the Hamiltonian H satisfics

1
|H (t,z,u1,p) — H (s,y,u2,q9)| < Lur <\t— 8|2 4+ o —y| + |ur —ua| + |p — q!)

for some constant Ly g > 0. Then

N

o e C2 (10, Ty[ x RY)
and

v, Dv, D*v € C1! (10, To[ x RN)
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Proof. By inserting k = 2 into Lemma 4.7, we get that D?v € Cg’l (]O,TO[ X RN).
Further, let t,s € [0,7] and z,y € RY. By using the equation (4.1), we get:

|0 (t, ) — Opv (s,y) |
=|H (t,z,v (t,z),Vv(t,z)) — H (s,y,v (s,y), Vv (s,y)) |
(=820 (t2) = (=2)Y? v (s,y)
<Ly <\s—t\1/2+\a:—y\ —H’u(t,x)—v(s,y)]+]Vv(t,x)—Vv(s,y)\>

+R(!s—t\% —|—|:L’—y|) §C’(|s—t|1/2—|—|x—y|)
where C' > 0 and R > 0 are some constant. This concludes the proof. ]

To conclude, we will prove sufficient regularity for the unique viscosity solution of the
fractional Hamilton-Jacobi equation (4.1), by using these estimates that we found using
the Duhamel’s formula.

4.7 Regularity on the unique viscosity solution

The aim of this section is to show regularity for the unique viscosity solution of the
fractional Hamilton-Jacobi equation (4.1). The idea is to use Lemma 4.3 and 4.4 to show
Cf space regularity for £ > 3. Then we can start applying Lemma 4.6, 4.7 and 4.8 to
establish time-regularity.

4.7.1 Close to zero

Suppose that the initial conditions ug from (4.1) belongs to W (RY). We can start
applying Lemma 4.4 with initial condition ug iteratively to obtain:

0<TE< - <Ts<Th

where T7 > 0 was obtained from Lemma 4.2. Our result is that there exists a unique v
that satisfies Duhamel’s formula with

v,Dv,---,D*v € Cy (10, TF[ x RY)
and when k& > 3, we have from Lemma 4.6 that
O € Cy (10, T [ x RY)

This mean that v is a classical solution on ]0,7%[. Therefore v = w on ]0,Tf[, since any
classical solution is a viscosity solution.
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4.7.2 Away from zero

Consider some arbitrary ¢ty € [0,7). We will use the viscosity solution u of (4.1) as initial
conditions, by setting vg (-) = u (¢o,-). Recalling Lemma 4.1 we know that

(4.19) llu(to, ) llwsce vy < M-

We start by applying Lemma 4.2 to obtain 77 > 0, independent of ty due to (4.19), such
that for the interval

Jto, to + 11
we have unique v that satisfies Duhamel’s formula with
v, Vv € Cy (]to,to + Ty % RN)
Continuing this process, Lemma 4.3 gives us T3 < 717 such that on the interval
Jto, to + To[
there exists a unique v that satisfies Duhamel’s formula with
v, Vo, "2 D% € ¢, (]to, to + To[ x RN)

By considering this v, we can use it as initial conditions, if we move a small distance
01 > 0 to the right. Namely

v, Vo, D*v € Gy, (Jto + 61, to + To[ x RY)
Using v (to + 01, ) as initial conditions we get 61 < T3 < T — d; such that on the interval
lto + 61,t0 + T3]
there exists unique v that satisfies Duhamel’s formula with
v, Vo, D*v,tY/2D3%y € C, (]to + 01,t0 + I3[ x RN)

We can iterate this process, until we reach k. That is, we get that there exists
01+ +0p_1 < T <Tj_1— 0p_1 such that on the interval

Jto+ 1+ -+ dk—1,t0 + Tk|
there exists a unique v that satisfies Duhamel’s formula with
v, Dv,--- , D* Yy tV2DFy € Cy (Jto + 61 + - + Sk—1, to + Ti[ x RY)
In the end, we can pick a d; > 0 such that on the interval

Jto + 01+ -+ + 0, Tk



Chapter 4. Regularity for the fractal hamilton-jacobi equation 50

we have a unique v that satisfies Duhamel’s formula with
v, Dv, - - ,Dkv € Cy (]to + 01+ -+ O, T ] X ]RN)

When k > 3, we have by Lemma 4.6 that v is a classical solution on |tg + 01 + - - - + O, Tk [,
and for k£ > 5 we have that

1
o € Cb27l (]to + 01+ -+ O, T ] X RN)
’U,D?),D2’U € C;’l (]to + 01+ F O, Ti] X RN)

Now, for the delta’s, we enforce the following condition
0+ +0p <Tg
which we are free to do, since we can choose them as small as we like. By denoting
to=to+ 014+ 0
we get that for k > 3 (since v = u here)

Vtg € [Tx/2,T], 3T, >0 s.t. u,Du,--- ,DFu, 8yu € Cy Gté,Tk[xRN)

4.7.3 Patching

Now we can patch everyting together. With initial data ug € W (]RN), for k > 3, we
get that the unique viscosity solution u is a classical solution on the intervals

until we reach T' > 0, satisfying Theorem 4.1. For k > 5 we get the regularity results
wanted in Theorem 4.2. Thus, we have proven Theorem 4.1 and Theorem 4.2. O



Chapter 5

The fractional Fokker-Planck
equation

In this chapter, we will study the fractional Fokker-Planck equation. When the fractional
Fokker-Planck equation is written on divergence free form, it pretty much looks like the
Hamilton-Jacobi equation. This is a fact we exploit to show existence and uniqueness of
a solution for this equation.

The fractional Fokker-Planck equation is on the form:

dym + (—A)2 m — div (mDyH (z,u, Du)) =0 in (0,T) x RY
(5-1) { m (0,x) = mg (x) in RV

where a € (1,2). We write it on divergence free form as follows

fi (¢, x)] =0

2

o B d
dym+ (=A)Tm = [£fi (t,) +mo—

=1

where f; (t,z) = g—g (x,u(t,x),Du(t,x)). Wenotice then that this equation is essentially

of the form:

w[R

om + (=A)2 m+ B (t,z,m,Dm) =0

where B (t,x,m, Dm) = — Zfil g—gjfl (t,z) + ma%lfl (t, x)}

One can now notice that this equation has the same form as the Hamilton-Jacobi
equation, and given the right properties of B, which we will now show, we get a unique
classical solution m of (5.1) with sufficient regularity in ¢ and x.

We need to verify that the assumptions (A0)-(A4) from the chapter on the Fractional
Hamilton-Jacobi equation holds. Then, we wish to use Theorem 4.2. The Hamiltonian
B needs to satisfy:

51
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e (A0) The function B : [0, +00) x RY x RV — R is continuous.

(
e (A1) There exists v € R such that for all 2 € RY, m,n € R, m < n, p € RV,
tel0,T),

B(t7$7n7p) - B(t,x,m,p) > 'y(n—m)

(A2) For any R > 0, there exists Cp > 0 such that for all z,y € RN, m ¢
[_Ru R]p € ]RNat € [OvT)a

|B(t,:z:,m,p) - B(tvya map)| < CR(|p| + 1) ‘$ - y‘

e (A3) For any R > 0, there exists Cp > 0 such that forallz € RN, m € [-R, R] ,p €
Bpg,t € [0,T), the derivatives of B (up till the k-th derivative) are bounded by the
constant Cg, that is,

’DaB (t,x,m,p) | S CR

with & = (g, ..., 0z, O, Qpy s - ., 0y ) @ multi-index with o] < k.

(A4) There exists Cy > 0 such that

sup |B (t7$3070)| SCO
te[0,T),zeRN

Theorem 5.1. Assume the following (for k > 5

1. There exists Cr > 0 such that for t € (0,T),z € RN u € [-R,R],p € Br and for
all multi-indexes ag with |ag| < k+ 2

|D0¢HH($’u’p) ’ < CR

2. We have that u, Du, - - - , D¥*2u, 0yu, 0, Du, 8, D*u € Cy, (}O,T[ X RN), and all these
quantities are uniformly bounded by some constant, say R > 0.

3. mg € Whe (RN)
Then the following holds true:
1. There exists a unique classical solution m of (5.1).
2. The following quantities are uniformly bounded:
m,Dm, -, D’m, 0ym, 0, Dm, 0, D*m € Cy (]0,T[ x RY)
and

1
dm € C2" (10, T[ x RY)
1
where C’bz”1 s a parabolic Holder-space.

Proof. We need to show that the assumptions (A0)-(A4) and the Holder condition 4.2
holds. We begin by showing (A3), and then proceed to show the others in the normal
order.
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(A3)
Assume that t € [0,T),2 € RN m € [-R, R],p € Br. Then we compute the following
for a multi-index oo = (g, .-+, Quy, O, Qpyy - - -, Oy ) With o < E:
al )
Bt mp) = | 30" i)+ g 00)||

<SR 5 (10%) +r X (105 so)

i=1 | o0<|Bl<k 0<|l<k

N
<2k S [97filo

=1 0<|B|<k+1

recalling that || - lo = || - [l¢, qo,r[xr~)- Remember that f; was given by:

fi(t,z) = ZH (x,u(t,x), Du(t,x))

Di
So, if u, Du, - -- , D¥*2y are uniformly bounded, and assumption 1. from Theorem 5.1
holds, the following sum is uniformly bounded
(5.2) > il < K
0<|B|<k+1

where K > 0 is some constant. This shows that (A3) holds.

(A0)

This assumption holds, since f;, % fi are continuous, from the assumptions made on H
and u.

(A1)

Since 6%7; fi is uniformly bounded by some constant K > 0, as shown in (5.2), we can
compute:

B (t,z,n,p) — B (t,x,m,p)

N N
--> |:pifi (t,z) + n%fi (t,if)] +) |:pifi (t,z) + m%fi (t, )
i=1 v i=1 v
N
:Z(m—n);fi(t,x) >N(m—n)(-K)=(n—m)NK
i=1 ¢

which shows that the assumption holds.
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(A2)

We calculate:

|B (tal‘auvp) - B(tvyau p) |

N N
= Z[pzf,(tx)—kuc‘)fz tl’ szfzty +uafz(ty)]’
i=1 =1

Mz

i (6 ) = fi(ty)l +

Ofs (6.2) — Ouf; (1 )] \

Il
—

[

<|p|Z|fz (t,x) = fi (& y) |+ R 10ifi (t,2) — 0ifi (t,y) |

=1
SCR(\le)Iw—yI

where the last inequality follows from f; and 0; f; being continuously differentiable in x
and bounded (referring to (5.2)). This implies that both functions are Lipschitz in z,
with some Lipschitz constant, which yields the last inequality.

(A4)
Inserting u = p = 0, we end up with
|B (t,x,0,0)| =0

so this assumption holds trivially.

Holder-condition

The last thing to do, is to show that B satisfies the following condition:

For all s,t € ]0,T[,z,y € RV, u,v € [-R,R],p,q € Bpr there exists a constant
Lgr > 0 such that:

1
(5:3)  [B(s,0,u,0) = B(ty,v,0)| < Lr (s~ 3 + o~ yl+|u—vl + p - ql)
We compute

|B (vavmvp) - B(tvyvn Q)|
N

N
[pifi (s,2) +md; fi (s,x)] qufzty —i—n@fz(ty)]‘

1 =1

<|pifi (s,2) — qifi (t,y) | + |mO; fi (s, ) —n0; f; (t,y) |>

<.
Il

NE

1

-.
Il
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Now, we can use the triangle inequality on the first term to obtain

Ipifi (s,x) —aifi (t,y)]
<I|pifi(s,2) —qifi (s,2) | +aifi (s,2) — qifi (t,y) |
<|pi — aillfi (s,2) | +1aill fi (s,2) — fi (t,y) |

and in the same manner, we obtain for the second term
im0 fi (s,2) —ndifi (t,y)| < |m —nl[0ifi (s,2) | + [n][0: fi (s,2) — Difi (£, y) |-

Recall that f; and 9;f; are uniformly bounded by some constant K > 0, defined in
(5.2). Also, recall our assumptions that u, Du, D?u € C;’l (]0, T] x RN). From this, one
can show that

fi»0ifi € Gyt (10, T[ x RY),
since the expression 0; f; involves the functions u, Du, D?u (but not D3u, D%u, - --).

Recalling Lemma 2.6 (regarding bounded C' functions also being C'/? functions),
we continue the calculations to obtain:

IB(S z,m,p) — B(t,y,n,q)|

Z (pz qill fi (s, ) | + gl fi (s, ) = fi (8, 9) |

+Mn—M@ﬂ@JﬁHﬁn@ﬁ@ﬂﬁ—&ﬁ@wﬂ)

=

<> Klpi — ail + RK (Is = t/5 + o — y]) + Klm —n| + RK (|s = t]* + |0 — )
i=1

1
[s 4% + 2 =yl + Im —nl + [p — ]

where L > 0 is some constant, which is what we wanted to show.

Conclusion

Having established that (A0)-(A4) holds, and that B satisfies (5.3), we conclude by
Theorem 4.2 that there exists a unique m that solves (5.1), with the stated regularity. O
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Estimates of 85 H

The Hamiltonian H is on the following form:

H:[0,00) xRN xRxRY - R
(s,z,u,p) — H (s,z,u,p)

However, in the analysis of the fractional Hamilton-Jacobi equation, we usually look
at the composite function

(s,z)— H (s,z,u(s,x),w(s,x))

where v and w are functions mapping to R and R, respectively. Now, taking spatial
derivatives of this function involves using the chain rule, but due to the complexity of
the function, this turns out to be a quite complicated process. As a start example, we
compute J;;h, to show how the complexity grows.

(6.1)
Oz, H (s,2,u(s,2),w(s,2)) = 27— (s, z,u (s, z) ,w (s, T))
Lj
oOH ou
+ % (Sa:l:)u (S,l‘) y W (S,l‘)) aixj (va)
OH 8'[1)1 OH 811)]\7
—I—a—m(s,x,u(s,x),w(s,x))%j(s,;r)+'--+%(s,x,u(s,x),w(s,x))Wj(s,x)

As one can see, this expression is quite big. If we want to continue, calculating the second
derivative, 0,0 ;h, we would have to differentiate each of the terms in (6.1), and so on
for higher order derivatives.

Historically, there have been invented methods for problems of this kind. For example
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Faa di Bruno’s Formula, which says that if f,¢g: R — R are both regular enough, then
dm

qm (f(z) =
bm
OV (FOY () (10
bilbo! - b!? 1l 21 ml
where the sum is over all different solutions in nonnegative integers by, - , by, of by +

2by + -+ - + mby, = m, and k is defined as k := by + - - - + by, (Johnson, [9]).

The problem is that the expression (6.2) is only valid for quite simple functions f
and ¢ (mapping from R to R), while the expression we deal is more complicated. The
bad news is that such complexity makes it difficult to find an exact expression for the
derivative. The good news is that we don’t need to know the exact expression. Finding
out which properties the derivative has is, as we will show, sufficient for our case. We
have the following aims for this chapter:

Aim

For a multi-index 5 = (81, -, Bn), we want to
1. find a useful representation of 3°H (s, z,u (s,2),w (s, x)),
2. find an upper bound for |0° H|

3. find an estimate for |0°H (s,x,u (s,2),w, (s,2)) — O°H (s, 2,u (s, 2) ,w, (5,7)) |

Resolution

By investigating expressions like (6.1), it is clear that each term can be divided in two
parts: One part that contains some derivative with respect to H, and one part that is a
polynomial consisting of derivatives of u and w;. Like for example the term:
OH 8w2
8]92 8xj
If we take the second derivative, e.g. computing 0,0, h, the expression contains the
term:

(5,2, u,w)

8w1 621]2 8w1 8w2 62H
dxj Ox;  Ox; Oxj ) Op10p2

When we take the k-th order derivative, we are no longer sure what these polynomials
look like, but we know something about their structure. The first thing we can show is
that each polynomial has order less or equal to k. The second thing we can show is that
u and w; are differentiated maximally k times. The easy solution is to say that “there is
some polynomial in front of each D®H, and this polynomial has order less or equal to k.
This is what we try to formalize in the next lemma.
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Lemma 6.1. (Representation of 0°H). Let 3 = (B1,---,B8n) be a multi-index with
|B] < k. Then the derivative of H can be written on the form:

olol 7
(6.3) OPH (s,2,u,w) = ZPQB U, W) —57 oy ap
| <k Ouy* -+ O O Op™ -+ Opy™
with
(6.4)
1 5.\ Y (Bo) 5 n(B1)
Poa7,8(u>w): Z K(Vanla_'_'--vn]\/;aaﬁ) H (a U) H (8 wl)
I+ l+..|nn 1<k |Bo|<k 1B1I<k

(6.5) o H (aBNwN>77N(ﬁN)
BN <k

where K is a function taking multi-indexes (or tuples), and returning a number in
{0,1,2,3,...}.

The derivative can also be represented as:

ol i oH
(6.6) 9°H (s,z,u,w) Z 73&5 u,w) o e ———— . +Zaﬁwz
la|<E Ozt - 'aIN 8u“3p1 e 8pN Ip;
with
(6.7)
(Po) (B1)
77275 (u,w) = Z K (v,m,+...,nn;a, B) H (85%)7 0 H (651w1>m A
[y [ | <K |Bol<k |B11<k—1
B
(6.8) . H (aﬁNwN) nn (BN)
[BN|<k—1
We have that v,n1,---nn are functions taking multi-indezes and returning a natural

number, {0,1,2,3,---}. We also define |y| = E/Bogkfy(ﬁo), and likewise for ny,--- ,nn.

Proof. We want to prove that the derivative of H has this form, and that the polynomials
7737 (u,w) and P> B8 (u, w) has order less or equal to k. One can prove this by induction.
The case k = 1 is clear from the expression (6.1), so what remains is to show that if it
holds for k, then it holds for k + 1.
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If the expression holds for |3| = k, then 0°H is on the form:

lof
OPH (s, z,u,w) = Zpaﬁuwa%l 3 o H

Yz N oty D1 p N
jal <k et e Ooy™ Ou Opi  Op

If we now differentiate this expression, e.g. in the direction x;, we get (since differentiation
is a linear operation):

latf
azlaﬂH (87x7u7w Z 8I7, Oéﬁ u w) (o %) aTa Ha o
o ooy O

|O(‘§k,‘ PN
olel H
= Z { (8%.79016”3 (u, w)) & T Ao A0 Ay
=k axl e aacN os apl Ce 6PN
laf
+P0147ﬁ (u, 'lU) (a-% Qg azNa afl Cipp Qp ) }
azl e O N Oy ap1 C apN

Differenting the expression Pcly 3 (u,w), does not increase the order of the polynomial, so
that it still has order less or equal to k.

Differenting the expression D®H, leads maximally (by the chain rule) to an increase
of 1 power in the polynomial in front of it, so that the new polynomials have order less
or equal to k + 1. Also, 0% H is still on the form we proposed, as can be easily seen.

The case for the second representation (6.6) follows from looking at the expression
(6.1) and realizing that the incidents of w; being differentiated &k times only happens in
N different cases (the last IV last terms in (6.1). This concludes the proof.

O

Using this representation of 9° H leads to several useful results, starting with the next
lemma.

Lemma 6.2. (Upper bound of |0°H|) Suppose that uw and w and their derivatives up till
k-th order are bounded by a constant R. Assume further that there exists a constant Cr
such that for |a] < k+1, |0*H (s,z,u,w)| < Cg. Then

(6.9) Je=c¢(N,k,R) s.t. |0°H (s,z,u,w)| < ¢
furthermore, if |0°0ul|oo < R for all |Bo| < k, ||0°1wj|lcc < R for all |B1] < k—1 and
[t1/2052w;|| o < R for all |Ba| = k, then

(6.10) Je1 = ¢(N,k,R) ,¢3 = co (N, R) s.t. |0°H (s,2,u,w)| < 1 + 5 Y ¢
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Proof. Part I:
This follows from using the representation in lemma 6.1. Pick v and w as described, then

0°H (s,2,u,w)| < Z leaXC'R:c(N,k:,R)
|| <k

where

1,
PSS K (e i, ) RO
Y|+ n1 ]+ |nn <k

which is what we wanted to show.
Part 1I:
By using the representation (6.6), we have

ol f ol oH
6.11 85H (s,z,u,w) Pp? u, w) + 0P w;
(040 = 2 Pea ) e a2

Picking v and w as described gives us

N
|0°H (5,2, u,w) | < Z PZmaXC +ZS_1/ARCR
i=1

|| <k
=c1 (N, k,R) + s/ 2cy (N, R)

where
2
Pa:glax - Z K(fy’ 7717"‘777]\/;0[75) R\’Y\+|TI1\+~--|77N\
yl+lm -+ v <k
which yields the necessary estimate. O

6.1 Estimates on the difference

Here is a small lemma that will help us trough the calculations.

Lemma 6.3. Consider the polynomials 77 B and P2 . We have that for wi,wy € Fyq
(or p1,p2 € Eit1) such that [Jwi| g, szHFkH <R (IlwlllEHp lwal| B,y < R) that

k2 max
(6.12) [Pas (s wn) = Pog (uws) | < S P lwn — wallpi,y
and

k2 max
(6.13) |7D02¢,6 (u,p1) — P o, (u,p2)| < R'Piﬂd Jwi — wQHEk+1
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Proof. We can think of 7361% 3 and 7337 5 as polynomials of degree k or less. For a polynomial
f : R? = R of degree k or less, the following holds by the fundamental theorem of calculus

[f (@) = F () | <[Dfllze<llz = ylly < K[Dfllz~llz = ylloo

where || - ||1 and || - || is the 1-norm and infinity-norm of RY, respectively. Also, since f
is a polynomial of degree k or less:
k
IDfll oo (Br) < EHfHLOO(BR)

since f € P, = Df € P,_1. We conclude:

2

17 ) = 7 ) Dy ) < o 1 el — 9l

Using this result, we easily obtain the estimates (6.12) and (6.13). O

6.1.1 Computations

Using our knowledge of 9° H, we can compute |0°H (s, z,u,w1) —0°H (s, z,u,ws) |. We
will do two different kinds of computations, depending on which space w; and wy belong
to. We will consider the spaces Fy1 and Ejy1, which is defined as:

Fiopr (Ts, T,) = {w, .o, D*w € Cy (T, T x ]RN)}
and
Eppr (Ty, To) 1= {w, o, DFLy tY/A DRy € ) (1T, T ]RN)}

where T, > T, > 0. We start with the first case, when wi, wy € Fj41.

Lemma 6.4. Let wy,ws € Fiy1 (Ts, Te) so that ||wi||F,, [[w2llF., < R, andlet |Vul|p, <
R. Then it holds that:

kQ
(6.14) ]aﬁH (s,z,u,wy) — P H (s,z,u,wy) | < (R + N> cllwr — wal|F
where c is the constant from (6.9)

Proof. By using Lemma 6.1, we get that
|86H (87 €T, u, wl) - a/BH (87 T, u, w2) |

€3 > P (wwr) 0%H (s,2,u,wi) = ) Po s (u,w2) 0°H (s,,u,w2)

|| <k || <k

5>

o<k

731

5 (w,w1) O%H (s, 2, u,w1) — 7301[75 (u,w2) O%H (s, x,u, ws)
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By use of the mean value theorem, the following holds:
O“H (s, z,u,wy) = 0%H (s, x, u, wy) + 0T H (s, z,u, w.) (w1 — wo)

where w, lies on the line between w; and wy. By using this, and (6.12), we get

<2 0P

o<k

g (U, w1) 0“H (s, @,u,wa) — Pl g (u, wa) 0“H (s, x,u,ws)

+ P(i,ﬁ (U, wl) 8a+1H (S, T, U, wc) (wl — wz)

< Z CR‘Péﬁ (u,wy) — Paﬁ U, Wo ’ —I—Pl maXCRNle — wa|oo

|| <k
612 lmax lmax
< > CR w1 —wallpy + NP, Crllwr — wallpyyy
|| <k
(k‘ +N> ||w w ” Z C ,Pl ,max
R 1 — W2 F

lal<k

Lemma 6.2 <R _|_N> c(N,k, R) Cgllwi — w2|F,,

This concludes the proof. O

We continue by looking at the space Fy41.

Lemma 6.5. Let wy,wy € Epy1(Ts,Te) so that ||wi| g, |lwelg,., < R, and let
|Vul|p, < R. Then it holds for |B| = k that:

(6.15)
2

k
|8/3H (Sax7u>w1) - 8BH (S,$,U, ZU2)| < (

I + N> (Cl + S_I/ACQ) ||w1 - w2||Ek+1

where ¢1 and co are the constant from (6.10)

Proof. Let wi,wy € Ej such that |wi||g,, |w2||g, < R. For || = k, we can use the
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representation (6.6) from Lemma 6.1 to obtain:

0P H (s, z,u,w;) — 8°H (s, z,u, ws) |
(6.6)

Z Po%,ﬁ (U,wl) 0“H (S,l‘, u, wl) - Po%,ﬁ (U,’U)Q) 0"H (S,.’E, u7w2)
| <k
al OH OH

+ Y107 (wn), oo (s, 2, u,w1) — 07 (wa), o, (8,2, u, w)

=1

k‘2
< (T + ) el - wals,

N
+s7 Y1207 (w), on (5,2, u,w1) — 517207 (wp), on

i=1 Opi Opi (32,0, wa) |
2 K
< (R + N> cillwr — wal gy, + (R - N> s callwr — ws| gy,
k?
= (R + N) <C1 + 8_1/>\C2> ||w1 - w2HEk+1

where the two last inequalities follows from the exact same techniques as in the proof of
Lemma 6.4. The constants ¢, co are the same as in (6.10). O
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Concluding remarks

We have shown that a fractional Mean Field Games system with non-local coupling
(system (3.1) admits a unique classical solution under certain assumptions on the initial
conditions, the Hamiltonian H, and on F and G. In the process, we needed to prove state-
ments for the fractional Laplacian on the torus, define weak solutions for the fractional
Fokker-Planck equation, and to use regularity results for the fractional Hamilton-Jacobi
equation and the fractional Fokker-Planck equation.

A large part of the thesis deals with regularity theory for the fractional Hamilton-
Jacobi equation, with a Hamiltonian of a quite general form. We show that this equation
admits bounded classical solutions, under suitable assumptions. We also show higher-
order regularity in time and space for the fractional Hamilton-Jacobi equation. These
estimates are necessary for proving existence of solutions for the fractional MFG system.

The only problem with our results, is that we need to make pretty strong assumptions
on the differentiability of H,F,G and myg in the Mean Field Game system. This is due to
our regularity estimates for the fractional Hamilton-Jacobi equation. Hopefully, we can
find a way to lessen the assumptions.

There are some things that can be further improved upon, and we list them as follows:

e Check whether it is possible to lessen the assumptions on the Hamiltonian H and
the initial conditions ug, when dealing with the fractional Hamilton-Jacobi equa-
tion.

e Use another way of showing regularity for the fractional Fokker-Planck equation,
that demands less of H and the solution w from the fractional Hamilton-Jacobi
equation.

e Show existence and uniqueness for the same MFG-system, but with local coupling.
For doing this, we need some estimates for weak solutions on the fractional Fokker-
Planck equation on divergence form, which we don’t have by now.
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Appendix

Proof of Lemma 2.3

In this appendix, we will prove Lemma 2.3 stated in the Preliminaries. It is stated like
follows.

Lemma .1. Let f,g € C? (']I‘d). Then the following identity holds, for a € (1,2).

[ 8w @g @) = [ f0) (B g (x)da
Td Td
Proof. The proof follows by a density argument.

We associate f and ¢ with their periodic extensions, that is, f,g € C? (Rd) with

flx+2)=f(x), g(x+2)=g(x) VYoreR? 2zl
From the compactness of the torus, we get by interpolation, that
HfHL2(Td) < CHfHLOO('ﬂ‘d)

Let ¢ € C° (Rd) be a positive mollifier, let ¢. = e %¢ (x/¢), and define

fe = (f * ¢c) (v)
ge := (g * b¢) ()

An important property of the positive mollifier, is that, for any function u € L? (]Rd),
we have

0
Ju —ux ¢e||L2(]Rd) =50
A proof for this can be found in Rudin.
A consequence of this is that, for any function u € L? (Td), we get that

(1) lu = wx Gl o ay =0
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This statement is not obvious as the spaces L? (Rd) and L? (’]I‘d) does not share the same
set of functions at all (I think f = 0 would be the only common function). However,
since the function ¢ has compact support, say supp ¢ C Bpr for some R > 0, and z is
confined to T¢, the convolution

(ws0) (@) = [ ule=1)6 ) dy

o) LG IOLY

is not over the whole of R, so that we probably won’t have any trouble with claiming
(1) to be true.

Now, the functions f. and g. are periodic, due to the periodicity of f and g. To show
this, pick = € R, z € Z%:

felz+2) = Rdf($+z_y)¢6(y)dy

:/]IQdf(x—y)qﬁe(y)dy:fe(w)

The same holds for g. This shows that f., g € C* (']I‘d), since ¢ € C° (Rd). By Youngs
inequality we obtain the following bounds, and using the rules for differentiation of a
convolution, we get

HfGHLOO('ﬂ‘d) - Hf * ¢eHLoc('er) < Hf”Loo('er)H(z)e”Lle - HfHLoo('er)

(2.6)
| (=2)7 fellzooqry < Cllfellearay < Cllfll o ey
Since the torus is compact, we get the following interpolation for any u € L? (Td):
2 _ 2 d 2 _ 2
ey = [ TP < Tl ey = el
= HUHL2(Td) < CHu”Loo(Td)
This implies that

||f6HL2(Td) < CHf”Loo(Rd)

| (=2)7"2 fellzaceny < Cllflla(gay

and the same result for g..
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Since fe,ge € C* (’H‘d), we obtain from Lemma 2.2 that

@ L8 @ ac@) = [ @) (=8)" g, () do

To conclude the proof, we need to show that

LA @ g @yde = [ (A1 f @) (@) da

Td
and

«a 6 0 «a
| @) ()P g (@) da = | f (@) (<) g (@) da
It suffices to show the first one of them, since the proof will be the same.

Note that the interpolation results earlier gives
—A Oé/2 < _A OL/Q
[ (=A)Y" fe(x) ge (2) | < | (—A) fEHLOO(Td)HQEHLOO(Td)
< HfHC2(Td)HgHLoc('J1‘d)-

This allows us to use the dominated convergence theorem, exchanging the integral sign
and the limit. We then obtain

' [0 rgde iy [ (-2 fgaa
Td

e—0 Td

/]I‘d (—A)a/2 fogdx —/ lim [(—A)O‘/2 fege} dz

Td e—0

<tim [ [[(-8)72 fg— (~2)*" fg.|| da

e—=0 Jpd

< /T lim [\ (—A)7% fg = (=) fog]

d €—0

+ ‘ (—A)J/Q feg - ( )0/2 f€ge‘]

<tim [ () (=8)" f = (-2) 1) |

e—0 Td

f
+ 1 ((=2)7 1) (9 - ge) ||
Holder

< tim (gl 2z | (=207 1 = (=) (] % 60) 2z
(=87 fell 2oy llg = 9% el 2z )
D timn (Nl 2y | (=) = (=) £) 5 el

1

1 (=2)2 fell araylg = 9 % &l 2(ra)) = 0

—_
N2
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This holds from that v and (—A)U/ 2 ue are uniformly bounded, independent of €, and
the convergence properties of ¢ stated in (1). Thus, we get

LA f@gta) o =tim [ (2)7" f @) g (o) da

€0 Jd
=lim [ fe(@) ()P ge(@)dr= | f (@) (D) g () do

€e—=0 Jpd

which is what we wanted to prove.

The last thing we need to do is to prove (x), that

(~A)"2 (s ) (2) = ((~A)"*u) « ¢ ()
We compute:

L e

:/M;a(Adu<x_y+z>¢e<y>_u@_y)@(y)_wx_y)(pe(y).zdy)dz
=[] et [ua =y ) = wlo =) = Ve - ) -y

If we are allowed to change the order of integration, we obtain

1
:/Rd@(y)/RdW[u(m—y—i—z) —u(x—y)—Vu(x—y).z]dzdy
= [0 8@ -y dy = ((-8)2u) + 6. (a)
Rd
which is the statement we wanted to show.

To prove that we can change the order of integration, we use the Fubini-Tonelli
theorem. First, by Taylor expansion, we have that

u(r—y+z)—u(—y)—V(u(z)) 2 < |Z|2||D2u||L°°(Rd)
We also have the estimate:
w@—y+2)—ule—y) V(@) = < 2ul o gy + 12]1Dll o e

By splitting the integral over R? into a integral over B; and R?\ Bi, we use these
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estimates to obtain

“ ko

s/RdM;a/Rd|¢<y>uu<x_y+z>_u<x_y>_w<m_y).z‘dydz

dydz

|Z|clz+a¢’(y) [“(x—y+2)—U(w—y)—W(w—y)'Z}

2
1
< [ID2 | /
>~ HD UHLOO(]Rd) /;1 ‘z‘d-‘rO&||¢€||L1(Rd)d’z+2H“||L°"(Rd) Rd\Bl ‘z‘d-‘rozngbe”[/l(Rd)dz

z
Dy [, el ey
1

<C</11dp+/001dp+/001dp) < 00
- o lplot 1 lplott 1 el

where we have used polar coordinates, |z| = |p|, dz = p®'dp. Thus, by the Fubini-Tonelli
theorem, the order of integration can be changed. O



