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Abstract

We prove existence and uniqueness of classical solutions for a fractional Mean Field
Game system with non-local coupling, where the fractional exponent is greater than 1/2.
To our knowledge this is not proven before in the literature, and is therefore a new
result. In addition, we show regularity in time and space for the fractional Hamilton-
Jacobi equation, and use this result to show regularity for the fractional Fokker-Planck
equation.





Sammendrag

Vi beviser eksistens og entydighet av klassiske løsninger for et fraksjonelt Mean Field
Game system med ikke-lokal kobling, der den fraksjonelle eksponenten er større enn 1/2.
Til vår kunnskap er dette ikke vist tidligere i litteraturen, og er dermed et nytt resultat.
Vi viser også regularitet i tid og rom for den fraksjonelle Hamilton-Jacobi-ligningen, og
bruker dette resultatet for å vise regularitet for den fraksjonelle Fokker-Planck-ligningen.
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Chapter 1

Introduction

1.1 Fractional Mean Field Games with non-local coupling

The object of this thesis is to prove existence and uniqueness of solutions for a fractional
Mean Field Game (MFG) system with non-local coupling.

Mean Field Games is a relatively new �eld of mathematics, and was introduced al-
most simultaneously by Lasry and Lions [12] , and Caines, Huang and Malhamé [7].
The idea of Mean Field Games is to model di�erential games with instinguishable (sym-
metric) players, where the amount of players tend to in�nity, and each player becomes
accordingly small. The average player wants to optimize some cost function in a noisy
environment, where the information available is the distribution of other players and the
position of itself.

Until very recently, most of the litterature on MFG have modelled the noisy environ-
ment as a standard di�usion process, but a recent paper by Cesaroni et al. [4] discusses
a stationary MFG system where the noisy environment is modelled by pure jump Lévy
processes. They look at the stationary case, that is, where one assumes that a Nash equi-
librium has occured: a state where no player would spontaneously change their position,
knowing the distribution of the other players.

We look at the case where the players still want to change their positions, based on
the information they receive on the density of other players: A time dependent case. This
is something that, to the best of our knowledge, is not yet presented in the literature.
The system of PDE's that describe this system is given by

−∂tu+ (−∆Td)
α
2 u+H (x, u,Du) = F (x,m (t)) in (0, T )× Td

∂tm+ (−∆Td)
α
2 m− div (mDpH (x, u,Du)) = 0 in (0, T )× Td

m (0) = m0, u (x, T ) = G (x,m (T ))

(1.1)

where α ∈ (1, 2), and (−∆Td)
α/2 u is the fractional Laplacian on the torus. The functions

F and G are both non-local coupling functions. The function H is called the Hamilto-
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nian, and is convex in the last variable.

The �rst equation in (1.1) is known as the fractional Hamilton-Jacobi equation,
and is solved backwards in time, while the second one is the fractional Fokker-Planck
equation, and is solved forwards in time. We seek classical solutions, that is, a pair
u,m ∈ C1,2

(
(0, T )× Td

)
that solves the system (1.1) simultaneously.

The content of this thesis is as follows:

1.2 Outline of thesis

Chapter 2: Preliminaries

Here we present some theory on the fractional Laplacian, both on Rd and on the torus
Td. We then present some theory on the probability space P

(
Td
)
endowed with the

Kantorovitch-Rubinstein metric d1. The last part of the Preliminaries consists of pre-
senting some �xed point theorems, Hölder spaces and compact embedding theorms.

Chapter 3: Fractional MFG systems with nonlocal coupling

In this chapter we prove the existence and uniqueness of classical solutions for the frac-
tional MFG system (1.1), under suitable assumptions on the HamiltonianH, the coupling
functions F,G and the initial conditions m0.

Chapter 4: Regularity for the fractional Hamilton-Jacobi equation

We present some regularity results for the fractional Hamilton-Jacobi equation, with a
Hamiltonian H of a quite general form. We prove regularity in time and space by using
Duhamel's formula, combining it with known regularity of the unique viscosity solution
for the fractional Hamilton-Jacobi equation.

Chapter 5: The fractional Fokker-Planck equation

By rewriting the fractional Fokker-Planck equation into divergence free form, we can
write it on the form of a fractional Hamilton-Jacobi equation. We then show under
which conditions this system admits a unique solution with su�cient regularity for the
MFG-existence proof.

Chapter 6: Estimates of ∂βxH

We show a way to represent the derivative ∂βxH (s, x, u (s, x)w (s, x)), and use this rep-
resentation to give some estimates that are used in Chapter 4.

Concluding remarks

The main results of this thesis is presented, along with suggestions for further work.



3 1.2. Outline of thesis

Appendix

We give the proof of some Lemma's stated in the report, that are a bit too long for being
written in the main report.
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Chapter 2

Preliminaries

2.1 The fractional Laplace operator

Assume that we have a function u : Rd → R. There are several and equivalent ways of
de�nining the fractional Laplace operator on this function, as shown in [11], but we will
limit ourselves to only one of them.

One can de�ne it is as a singular integral. Let α ∈ (0, 2). Then the fractional

Laplacian (−∆)α/2 u can be written as (for an arbitrary r > 0)

(−∆)α/2 u (x) = c (d, α)

(∫
Br

u (x+ z)− u (x)−∇u (x) · z
|z|d+α

dz

+

∫
Rd\Br

u (x+ z)− u (x)

|z|d+α
dz

)(2.1)

where c (d, α) is a constant. For the case α ∈ (1, 2), the expression (2.1) one can
simplifed to (Theorem 1. in [6])

(−∆)α/2 u (x) = c (d, α)

∫
Rd

u (x+ z)− u (x)−∇u (x) · z
|z|d+α

dz(2.2)

Note that these integrals are singular near z = 0, so that they are understood in the
sense of Cauchy principal value.

2.1.1 Fractional Laplacian on the torus

Having given a de�nition of the fractional Laplacian on the whole space Rd, we want to
look into how it is de�ned on the torus, Td. This is natural, since we will later look at a
Mean Field Game system de�ned on the torus.
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The d-dimensional torus can be de�ned as the quotient space

Td := Rd/Zd(2.3)

or equivalently, as the product space of d circles

Td := S1 × · · · × S1︸ ︷︷ ︸
d times

(2.4)

A thing worth knowing about the torus, is that

Lemma 2.1. The torus Td is compact.

This follows easily from S1 being compact due to Heine-Borel, and then from that
product spaces of compact spaces are also compact.

If a function f : Td → R, then the function f has a periodic extension to Rd, which
we will just call f . For this function we have that for all x ∈ Rd and z ∈ Zd

f (x+ z) = f (x)

Using the periodic extensions for functions de�ned on the torus, we can de�ne the
fractional Laplacian for functions on the torus. This is because the earlier de�nitions
(2.1) and (2.2) still works for functions u : Td → R, when we look at their periodic
extensions to Rd. So, the de�nition is the same, with the only di�erence that now x ∈ Td

(−∆Td)
α/2 u (x) = c (d, α)

(∫
Br

u (x+ z)− u (x)−∇u (x) · z
|z|d+α

dz

+

∫
Rd\Br

u (x+ z)− u (x)

|z|d+α
dz

)
, x ∈ Td

For the torus, we also present another way to work with the fractional Laplacian, and
that is through the use of Fourier series.

The Fourier series of the function u : Td → R is given by (see [13])

u (x) =
∑
n∈Zd

cn (u) ein·x , x ∈ Td

where n · x = n1x1 + · · ·+ ndxd, and the Fourier coe�cients are de�ned as

cn (u) =
1

(2π)d

∫
Td
u (x) e−in·xdx

Then the Fourier series for the fractional Laplace on the torus is given by (for α ∈
(0, 2))
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(−∆Td)
α/2 u (x) =

∑
n∈Zd

c (α, d) |n|αcn (u) ein·x , x ∈ Td(2.5)

We will now state some properties of the fractional Laplacian on the torus, and it
begins with the following interpolation Lemma

Theorem 2.1. (Hölder estimates, Theorem 2.6 in [14]). Assume that α ∈ (0, 2) and
σ ∈ (0, 1].

Let v ∈ C1,σ
(
Td
)
and α ≥ σ, with σ − α+ 1 > 0. Then (−∆Td)

α
2 v ∈ C0,σ−α+1

(
Td
)

and

‖ (−∆Td)
α
2 v‖C0,σ−α+1(Td) ≤ C‖v‖C1,σ(Td)(2.6)

A consequence of Theorem 2.1 is that, if we have a function v ∈ C2
(
Td
)
, we get the

interpolation

‖ (−∆Td)
α
2 v‖L∞(Td) ≤ C‖v‖C2(Td)(2.7)

which is an estimate that we use a lot.

The next thing we want to say about the fractional Laplacian on the torus, is some-
thing about the identity 〈(−∆)α/2 u, v〉L2(Td) = 〈u, (−∆)α/2 v〉L2(Td), for u, v ∈ C

2
(
Td
)
.

This is a result we need in the uniqueness proof for classical solutions of the MFG system.

Lemma 2.2. Assume that f, g ∈ C∞
(
Td
)
. Then the following identity holds:

∫
Td

(−∆Td)
α/2 f (x) g (x) =

∫
Td
f (x) (−∆Td)

α/2 g (x) dx

Proof. Since f, g ∈ C∞
(
Td
)
, one can show that the corresponding Fourier series, and

the Fourier series of (−∆Td)
α/2 f and (−∆Td)

α/2 g converges absolutely (see [13]).
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Therefore, one can interchange integration and summation to obtain the result∫
Td

(−∆Td)
α
2 f (x) g (x) dx =

∫
Td

 ∑
n,m∈Zd

c (α, d) |n|αcn (f) einxcm (g) eimx

 dx

=
∑

n,m∈Zd
c (α, d) |n|αcn (f) cm (g)

∫
Td
ei(n+m)·xdx

(*)
=

∑
n+m=0

cn (f) c (α, d) |m|αcm (g)

∫
Td
ei(n+m)·xdx

(*)
=

∑
n,m∈Zd

cn (f) c (α, d) |m|αcm (g)

∫
Td
ei(n+m)·xdx

=

∫
TN

f (x) (−∆Td)
α
2 g (x) dx.

The equality marked with (*) comes from the fact that∫
Td
ei(n+m)·xdx = 0, for n+m 6= 0

We can generalize the result from Lemma 2.2, to functions u, v ∈ C2
(
Td
)
by using a

density argument.

Lemma 2.3. Let f, g ∈ C2
(
Td
)
. Then the following identity holds, for α ∈ (1, 2).∫

Td
(−∆Td)

α/2 f (x) g (x) =

∫
Td
f (x) (−∆Td)

α/2 g (x) dx

Proof. The proof is given in the Appendix.

2.2 Measures and distance

In this section we want to say something about the space of Borel probability measures
on the torus, and give a de�nition of a metric d1 de�ned on this space. We will just list
the results we need.

De�nition 2.1. Let X be a separable metric space. We denote P (X) to be:

P (X) := the family of all Borel probability measures on X.

Theorem 2.2. (Prokhorov, from Ambrosio thm 5.1.3) If a set K ⊂ P (X) is tight, i.e.

(2.8) ∀ε > 0 ∃Kε compact in X such that µ (X \Kε) ≤ ε ∀µ ∈ K,

then K is relatively compact in P (X). Conversely, if there exists an equivalent complete
metric for X, i.e. X is a so called Polish space, then every relatively compact subset of
P (X) is tight.
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Comment: What is meant, is that K is relatively compact with respect to the narrow
topology on P (X).

De�nition 2.2. (The set of Borel probability measures on the torus) We de�ne P
(
Td
)

to be:

P
(
Td
)

:= the set of Borel probability measures on Td

On this set, we can de�ne the following (Kantorovitch-Rubinstein) distance:

d1 (µ, ν) = sup

(∫
Td
φ (x) (µ− ν) |φ : Td → R 1− Lipschitz continuous

)
.

which metricizes the weak topology on P
(
Td
)
.

Lemma 2.4.
(
P
(
Td
)
, d1

)
is a compact metric space.

Proof. We refer to Lemma 4.1.7 of [3], and recall that all r-moments of members of
P
(
Td
)
are �nite.

We also state the following property.

Lemma 2.5. The metric d1 can be de�ned equivalently as:

d1 (µ, ν) = sup

(∫
Td
φ (x) (µ− ν) |φ : Td → R 1− Lipschitz continuous, φ (0) = 0

)

Proof. Recall the de�nition of d1. Take any φ ∈ 1 − Lip. Assume that φ (0) = k ∈ R.
We can then de�ne φ̃ (x) = φ (x)− k. Then φ̃ ∈ 1− Lip, since

|φ̃ (x)− φ̃ (y) | = |φ (x)− φ (y) | ≤ 1 · |x− y|

For any µ, ν ∈ P
(
Td
)
, we get∫

Td
φ̃ (x) d (µ− ν) (x) =

∫
Td
φ (x) d (µ− ν) (x)− k

∫
Td
d (µ− ν) (x)

=

∫
Td
φ (x) d (µ− ν) (x)

This shows that the de�nitions are equivalent.

2.3 Analysis

In this section we will present some results from analysis. We start with the fundamental
theorem of Calculus.
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Theorem 2.3. (Fundamental theorem) Assume that f ∈ C1
(
RN
)
. Then the following

holds for x, y ∈ RN :

f (x)− f (y) =

∫ 1

0

d

dt
f (tx+ (1− t) y) dt

By using the chain rule, one can also write this as:

f (x)− f (y) =

N∑
i=1

(xi − yi)
∫ 1

0

∂

∂xi
f (tx+ (1− t) y) dt

We also need the following short result for some of the calculations later.

Lemma 2.6. Suppose that f : [0,∞)×RN → R is Lipschitz and uniformly bounded. In
other words, there exists constants L,M > 0 such that:

|f (s, x)− f (t, y) | ≤ L (|s− t|+ |x− y|)

‖f‖∞ ≤M

Then there exists a constant C > 0 such that f satis�es:

|f (s, x)− f (t, y) | ≤ C
(
|s− t|

1
2 + |x− y|

)

Proof. The proof consists of two cases, |s − t| ≤ 1 and |s − t| > 1. The case |s − t| ≤ 1

holds trivially as then |s− t| ≤ |s− t|
1
2 . For the case |s− t| > 1 one can compute

|f (s, x)− f (t, y) | ≤M +M ≤ 2M
(
|s− t|

1
2 + |x− y|

)
One can then choose C = max (L, 2M).

The next theorem we present is the Arzela-Ascoli theorem, which is a useful Theorem
from functional analysis.

Theorem 2.4. (Arzela-Ascoli) (p. 234 of [10] ) Let K be a compact space, and (E, d)
be a metric space. The space of continuous functions C (K,E) from K to E, endowed
with the uniform distance, is a metric space.

A subset A ⊂ C (K,E) is relatively compact in C (K,E) if and only if, for each point
x ∈ K:
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• (EQ) A is equicontinuous at x, that is for all ε > 0, there exists a neighbourhood
V of x such that:

(2.9) ∀f ∈ A ∀y ∈ V : d (f (x) , f (y)) < ε

• (RC) The set A (x) = {f (x) |f ∈ A} is relatively compact in (E, d).

The following is a Lemma that is useful for proving convergence of sequences.

Lemma 2.7. Let (X, d) a metric space and K ⊂⊂ X a compact subset of X.
Further, let (xn) ⊂ K be a sequence, such that all convergent subsequences have the same
limit point x∗ ∈ K. Then xn → x∗.

Proof. By contradiction. Assume that there exists a subsequence (xnk) that doesn't
converge towards x∗, i.e:

(2.10) ∃ε > 0 ∀N ∈ N ∃nε ≥ N : d (xnε , x
∗) > ε

Starting from N = 1, 2, 3, . . . these xnε de�nes a subsequence (xnε) ⊂ (xn). Since K
is compact, it follows that (xnε) has a convergent subsequence, with limit, say x̃ ∈ K.
However, since all convergent subsequences of (xn) have the same limit point, it follows
that x̃ = x∗. But this is a contradiction to the construction (2.10).

The following two �xed point theorems are really important for us, and play an
important role in this thesis.

Theorem 2.5. (Schauder's �xed point theorem)
Let X be a Banach space, K ⊂ X a convex, closed and compact subset. Further, let
T : K → K be a continuous map. Then T has a �xed point in K.

Theorem 2.6. (Banach's �xed point theorem)
Let (X, d) be a complete metric space, and T : X → X a map. If there exists q ∈ [0, 1)
such that for all x, y ∈ X:

d (T (x) , T (y)) ≤ qd (x, y)

Then T has a unique �xed point x ∈ X.

2.4 Hölder continuity and Hölder spaces

Since concepts like Hölder continuity and Hölder spaces will be used later on, they will
be presented here. We will de�ne the Hölder-norm, Hölder spaces, and look at compact
inclusion of Hölder spaces.
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2.4.1 De�nitions

De�nition 2.3. A function f : Ω ⊂ X → Y between two metric spaces (X, dX) and
(Y, dY ) is Hölder-continuous with exponent α ∈ (0, 1] if there exists a constant C > 0
such that:

∀x, y ∈ Ω : dY (f (x) , f (y)) ≤ C (dX (x, y))α

De�nition 2.4. (reference: Def. 1.7 p. 46 of[1]) (Hölder space) Let Ω ⊂ Rn, k ∈ N
and β ∈ (0, 1]. The Hölder space Ck,β (Ω) is the set of all functions f : Ω → R with
f ∈ Ck (Ω), such that the following norm is �nite:

‖f‖Ck,β(Ω) :=
∑
|α|≤k

‖Dαf‖C(Ω) +
∑
|α|=k

[Dαf ]C0,β(Ω) .

Here, we denote by

‖Dαf‖C(Ω) := sup {|Dαf (x) ||x ∈ Ω}

the supremumsnorm, and

[Dαf ]C0,β := sup

{
|Dαf (x)−Dαf (y) |

|x− y|

∣∣∣∣x, y ∈ Ω, x 6= y

}
a semi-norm.

Later on, we often use the convention of writing Ck+β (Ω), instead of Ck,β , for k ∈ N
and β ∈ (0, 1].

2.4.2 Compact embedding theorems

Theorem 2.7. Let Ω ⊂ Rn be a closed and bounded subset (compact by the Heine-Borel
theorem), and let 0 ≤ α < β ≤ 1. Then the embedding:

i : C0,β (Ω)→ C0,α (Ω)

u 7→ u

is continuous.
Further, if D ⊂ C0,β is a uniformly bounded subset, that is

∃M > 0 s.t ∀f ∈ D : ‖f‖C0,β(Ω) ≤M

then the set D is precompact in C0,α.
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Proof. Continuity:
From the assumptions diam (Ω) <∞. Then, for any u ∈ C0,β (Ω):

[u]C0,α(Ω) = sup
x,y∈Ω,x 6=y

|u (x)− u (y) |
|x− y|α

= sup
x,y∈Ω,x 6=y

|x− y|β

|x− y|α
|u (x)− u (y) |
|x− y|β

β>α
≤ (diam (Ω))β−α [u]C0,β(Ω)

it follows then that:

‖u‖0,α;Ω = ‖u‖0;Ω + [u]0,α;Ω ≤ ‖u‖0;Ω + C (Ω, α, β) [u]0,β;Ω ≤ c‖u‖0,β;Ω

with c = max
(

1, (diam (Ω))β−α
)
, and it follows that the inclusion is continuous.

Compactness:

We want to show that the set D is sequentially compact in C0,α (Ω). Take any sequence
(un) ⊂ D. The sequence is uniformly bounded by the constant M :

‖un‖∞ ≤ ‖un‖0,β;Ω ≤M

It is also equicontinuous, since ∀ε > 0 choose δ =
(
ε
M

)1/β
, so that

‖un (x)− un (y) ‖∞ ≤M |x− y|β < ε

whenever |x− y| < δ.
Apply the Arzelà-Ascoli theorem: ∃ (unk) ⊂ (un) a uniformly convergent subsequence.
Denote the limit by u. Then it holds that ‖unk − u‖∞ → 0. Further, we have:

| (unk − u) (x)− (unk − u) (y) |
|x− y|α

=

(
| (unk − u) (x)− (unk − u) (y) |

|x− y|β

)α/β
| (unk − u) (x)− (unk − u) (y) |1−β/α

≤ |unk − u|
β/α

C0,β (2‖unk − u‖∞)1−β/α ≤ (2M)β/α (2‖unk − u‖∞)1−β/α → 0

By taking the supremum of x, y ∈ Ω̄, x 6= y on the left side, we obtain:

[unk − u]C0,αΩ̄ → 0

In total we have

‖unk − u‖0,α;Ω → 0

This shows that D is precompact in C0,α.
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Theorem 2.8. (reference: see Thm 8.6, p. 338 of [1]) Let Ω ⊂ Rn be a bounded and
closed subset. Let k ∈ 0, 1, 2, 3, · · · and 0 ≤ α < β ≤ 1. If D ⊂ Ck,β (Ω) is a uniformly
bounded subset, then D is precompact in Ck,α (Ω).

Proof. The result follows from repeated use of the Arzelà-Ascoli theorem. We have the
following bound on D, for some M > 0:

sup
u∈D
‖u‖k,β;Ω ≤M

It follows directly for any multiindex α = (α1, · · · , αn) that ∀u ∈ D:

‖Dαu‖∞ ≤M

We also have that for |α| < k:

‖Dαu (x)−Dαu (y) ‖∞ ≤M |x− y|

and for |α| = k:

‖Dαu (x)−Dαu (y) ‖∞ ≤M |x− y|β

It follows that the family of functions {Dαu : u ∈ D, |α| ≤ k} is equicontinuos.
Let (un) ⊂ D be a sequence. We want to show that there exists a convergent subsequence
(unk) ⊂ (un) with limit u, such that ‖unk − u‖k,α;Ω → 0. The argument is an inductive
one. Let m = |α| ≤ k. Assume that ∃ (unk) ⊂ (un) a convergent subsequence, and a
limit point u, such that ∀|α| ≤ m:

‖unk − u‖m,0;Ω → 0

Denote Am =
{
αm1 , · · · , αmNm

}
as the set of multi-indexes of size |α| = m.

We start by looking at the multi-index αm1 =
(
αm11

, · · · , αm1n

)
.

Denote αm1,1 =
(
αm11

+ 1, · · · , αm1n

)
.

For |m| < k, we observe that the sequence Dαm1,1unk is uniformly bounded and

equicontinuous. Thus, by Arzelà-Ascoli, there exists a convergent subsequence
(
unkj

)
⊂

(unk), and a limit (still denoted u) such that:

‖Dαm1,1unk −D
αm1,1u‖∞ → 0

Also, if |m| = k − 1, we observe that

[Dαm1,1unk −D
αm1,1u]0,α;Ω → 0

as shown in theorem 2.7).
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Use this new subsequence
(
unkj

)
and repeat the argument for

αm1,2, · · · , αm1,n, · · · , αmNm ,1, · · · , αmNm ,n. Thus it holds for m+ 1 that ∃ (unk) ⊂ (un)
a convergent subsequence, and a limit point u, such that ∀|α| ≤ m+ 1:

‖unk − u‖m+1,0;Ω → 0

and if |m| = k − 1:

‖unk − u‖k,α;Ω → 0

For |m| = 0, we have that the sequence (un) is uniformly bounded and equicontinuos,
thus there exists a convergent subsequence (unk) ⊂ (un), with limit point u. So that

‖unk − u‖∞ → 0

This concludes the proof.

2.4.3 Parabolic Hölder spaces

We use the standard de�nition of parabolic Hölder spaces (see Krylov).

De�nition

For points z1 = (x1, t1) , z2 = (x2, t2) in Rd+1, de�ne the parabolic distance between
them as:

ρ (z1, z2) = |x1 − x2|+ |t1 − t2|1/2

Let 0 < α ≤ 1 and Q ⊂ Rd+1. Then we denote

[u]α,α/2;Q = sup
z1,z2∈Q,z1 6=z2

|u (z1)− u (z2) |
ρα (z1, z2)

, ‖u‖α,α/2;Q = ‖u‖0;Q + [u]α,α/2;Q

De�nition 2.5. Let Q ⊂ Rd+1 and α ∈ (0, 1]. The parabolic Hölder space Cα,α/2 is the
set of functions u : Q→ R such that

‖u‖α,α/2;Q <∞

De�nition 2.6. Let Q ⊂ Rd+1 and α ∈ (0, 1]. The parabolic Hölder space C2+α,1+α/2 is
the set of functions u : Q→ R such that

[u]2+α,1+α/2;Q := [ut]α,α/2;Q +

d∑
i,j=1

[
uxixj

]
α,α/2;Q

<∞

and

‖u‖2+α,1+α/2;Q := |u|0;Q +

d∑
i=1

|uxi |0;Q + |ut|0;Q +

d∑
i,j=1

|uxixj |0;Q + [u]2+α,1+α/2;Q <∞
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Compactness

We just state the results here without proofs, since the proof method would be the same
as in theorem 2.7 and theorem 2.8.

Theorem 2.9. Let Q ⊂ Rd+1 and 0 ≤ α < β ≤ 1. Let D ⊂ C2+β,1+β/2 (Q) be a
uniformly bounded subset. Then the set D is precompact in C2+α,1+α/2 (Q).

Proof. The same technique of proof as in Theorem 2.7 and Theorem 2.8.

We also have the following Lemma that can be proved in a similar way:

Lemma 2.8. Assume that U is a set of functions u : [0, T ]× Td → R such that

u,Du,D2u,D3u, ∂tu, ∂tDu, ∂tD
2u ∈ Cb

(
(0, T )× Td

)
and

∂tu ∈ C
1
2
,1

b

(
(0, T )× Td

)
Then the set U is compact in C1,2

(
(0, T )× Td

)
.

Proof. The same technique of proof as in Theorem 2.7 and Theorem 2.8.



Chapter 3

Fractional MFG systems with

nonlocal coupling

In this chapter, we want to study a fractional Mean Field Game system with non-local
couplings F and G. The system we study is of a quite general form, and to the best
of our knowledge, no cases in the literature have proven the existence and uniqueness
of solutions for this kind of Mean Field Game system. A newly submitted article by
Cesaroni et al. [4], shows existence and uniqueness for the stationary case, where one
assumes that the MFG system has reached an equilibrium state (Nash equilibrium) as
T → ∞. We look at the time-dependent case, where we don't assume the the players
have settled to a steady equilibrium.

3.1 The fractional Mean Field Game system

Our aim is to study the following system of equations, which we call the fractional Mean
Field Game system with non-local coupling. The system is on the following form:


−∂tu+ (−∆Td)

α
2 u+H (x, u,Du) = F (x,m (t)) in (0, T )× Td

∂tm+ (−∆Td)
α
2 m− div (mDpH (x, u,Du)) = 0 in (0, T )× Td

m (0) = m0, u (x, T ) = G (x,m (T ))

(3.1)

where α ∈ (1, 2), and the operator (−∆Td)
α
2 is the fractional Laplace operator on the

torus. The functions F and G are both non-local coupling.

We want to show that under certain assumptions on H, F , G and m0, there exists
at least one classical solution for the system (3.1). In other words, we look for a pair
(u,m) ∈ C1,2

(
(0, T )× Td

)
that satis�es (3.1). Let us state our assumptions.

17
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Assumptions

We make the following assumtions on the system:

1. (Bounds on F and G) F and G are continuous in Td ×P
(
Td
)
.

2. (Lipschitz continuity of F and G) there exists a C0 > 0 s.t.
|F (x1,m1)− F (x2,m2) | ≤ C0 [|x1 − x2|+ d1 (m1,m2)]
∀ (x1,m1) , (x2,m2) ∈ Td × P

(
Td
)
, and

|G (x1,m1)−G (x2,m2) | ≤ C0 [|x1 − x2|+ d1 (m1,m2)]
∀ (x1,m1) , (x2,m2) ∈ Td × P

(
Td
)
.

3. (Uniform regularity of F and G) There exist constants CF , CG > 0, such that
supm∈P(Td) ‖F (·,m) ‖C7

b (Td)
≤ CF and supm∈P(Td) ‖G (·,m) ‖W 7,∞(Td) ≤ CG.

4. The Hamiltonian H : Td × R× Rd → R satis�es for x ∈ Td, u ∈ [−R,R] , p ∈ BR:

|DαH (x, u, p) | ≤ CR

with |α| ≤ 7 and CR > 0 a positive constant dependent on R.

5. The Hamiltonian H satis�es for x, y ∈ Td, u ∈ [−R,R] , p ∈ Rd:

|H (x, u, p)−H (y, u, p) | ≤ CR (|p|+ 1) |x− y|

Note that this assumption is automatically satis�ed for Hamiltonians on the form
H (u,Du).

6. There exists γ ∈ R such that for all x ∈ Td, u, v ∈ R, u < v, p ∈ Rd,

H (x, v, p)−H (x, u, p) ≥ γ (v − u)

This assumption is automatically satis�ed for Hamiltonians on the form H (x,Du),
by choosing γ = 0.

7. The probability measure m0 is absolutely continuous with respect to the Lebesgue
measure (meaning A ⊂ Td measurable: m0 (A) = 0 =⇒ λ (A) = 0), has a
W 5,∞ (Td)-continuous density function (still denoted m0).

Theorem 3.1. (Existence of classical solution) Under the assumptions 1.-7., there exists
at least one classical solution (u,m) to (3.1).

By using the same type of approach like Cardaliaguet in the proof of Thm 3.1.1 in
[3], we will show prove the existence of classical solutions. This result depends upon
estimates we have made on the fractional Hamilton-Jacobi equation in later chapters.

First, we will start with a remark on weak solutions of the fractional Fokker-Planck
equation.
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3.2 On the fractional Fokker-Planck equation

The fractional Fokker-Planck equation can be written on the following form:{
∂tm+ ν (−∆Td)

α
2 m− div (mb) = 0 in (0, T )× Td

m (0) = m0
(3.2)

where ν > 0 is a constant, and b : [0, T ]×Rd → Rd is a vector �eld that is continuous in
time and Hölder continuous in space. In the following Lemma, we de�ne what we say is
a weak solution of the Fokker-Planck equation (3.2).

Lemma 3.1. (Weak solutions of (3.2))
A function m ∈ L1

(
[0, T ]× Td

)
is said to be a weak solution to (3.2) if m satis�es the

following for any test function φ ∈ C∞c
(
[0, T ]× Rd

)
∫
Td
φ (x, T ) dm (T ) (x)−

∫
Td
φ (0, x) dm0 (x)

=

∫ T

0

∫
Td

(
∂tφ (t, x)− ν (−∆Td)

α
2 φ (t, x) + 〈Dφ (t, x) , b (t, x)〉

)
dm (t) (x)

Two important properties of weak solutions of the Fokker-Planck equation, is that

Lemma 3.2. A classical solution m of (3.2) is also a weak solution.

and

Lemma 3.3. If m is a weak solution of (3.2), then it is unique.

We didn't have time to prove these statements, but it should be possible, according to
my supervisor. These Lemma's are essential to our analysis of the Fokker-Planck equa-
tion, as they allow us to say that a function m that solves Fokker-Planck classically, with
m0 being a probability density function, then m is also a probability density function.
The method of proving Lemma 3.2 would probably be to insert a classical solutionm into
the de�nition of weak solution. To prove Lemma 3.3 one can probably use Holmgren's
uniqueness theorem, or something similar.

Moving on, we will now introduce the stochastic di�erential equation (SDE) related
to the fractional Fokker-Planck equation.{

dXt = b (Xt, t) dt+ ν
1
αdLt, t ∈ [0, T ]

X0 = Z0
(3.3)

where (Lt) is a d-dimensional α-stable pure jumps Lévy process, with Lévy measure

ν (dz) = cα
dz

|z|d+α
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where

dLt =

∫
|z|<1

zÑ (dt, dz) +

∫
|z|≥1

zN (dt, dz)

Here, N describes a poisson process, and Ñ describes a compensated poisson process.

One can prove the following Lemma to be true:

Lemma 3.4. If L (Z0) = m0, then m (t) := L (Xt) is a weak solution of (3.2)

Proof. (Idea of proof)

The proof is a consequence of applying Itô's formula. If φ ∈ C∞c
(
[0, T ]× Rd

)
, then

(see Applebaum [2], Thm. 4.4.7):

φ (t,Xt) = φ (0, Z0)

+

∫ t

0
[∂tφ (s,Xs) + 〈Dφ (s,Xs) , b (Xs, s)〉] ds

+

∫ t

0

∫
|z|≥1

[φ (s−, Xs− + z)− φ (s−, Xs−)]N (ds, dx)

+

∫ t

0

∫
|z|<1

[φ (s−, Xs− + z)− φ (s−, Xs−)] Ñ (ds, dx)

+

∫ t

0

∫
|z|<1

[φ (s−, Xs− + z)− φ (s−, Xs−)− 〈∇φ (s−, Xs−) , z〉] ν (dx) ds

where . When we take the expected value on both sides, the following term vanishes

E

[∫ t

0

∫
|z|<1

[φ (s−, Xs− + z)− φ (s−, Xs−)] Ñ (ds, dx)

]
= 0.

Then, from the de�nition ofm (t), as the Law of Xt, we should get the following, recalling
the de�nition of the fractional Laplacian (2.1∫

Td
φ (t, x) dm (t) (x) =

∫
Td
φ (0, x) dm0 (x)

+

∫ t

0

∫
Td
∂tφ (s, x) + 〈Dφ (s, x) , b (s, x)〉 − ν (−∆Td)

α
2 φ (s, x) dm (s) (x)

This shows that m is a weak solution to (3.2).

From this stochastic de�nition of m (t), we can obtain the following estimate on the
map t 7→ m (t) ∈ P

(
Td
)
:
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Lemma 3.5. Let m be a weak solution of the fractional Fokker-Planck equation, with
α ∈ (1, 2). Then there exists a constant c0 > 0 such that m satis�es:

d1 (m (t) ,m (s)) ≤ c0 (1 + ‖b‖∞) |t− s|
1
2 ∀s, t ∈ [0, T ](3.4)

Proof. (Idea of proof)

We can use the SDE (3.3), to obtain estimates we want. One can write

Xt −Xs =

∫ t

s
b (τ,Xτ ) dτ + ν1/α

∫ t

s
dLt

Then, pick a φ ∈ 1− Lip, and compute

d1 (m (s) ,m (t)) = sup
φ∈1−Lip

{∫
Td
φ (x) (m (s)−m (t)) (dx)

}
= sup

φ∈1−Lip
{E [φ (Xt)− φ (Xs)]}

≤ E
[∣∣Xt −Xs

∣∣]
We get that:

E
[∣∣Xt −Xs

∣∣] ≤ E
[∫ t

s
|b (τ,Xτ ) |dτ + ν1/α|Lt − Ls|

]

Now, for the �rst term inside the expectation, it holds that:

E
[∫ t

s
b (τ,Xτ ) dτ

]
≤ ‖b‖∞|s− t|

For the second term, it should at least hold that (according to my supervisor)

E
[
ν1/α|Lt − Ls|

]
≤ cν1/α|s− t|

1
2

where c > 0 is some constant. So, �nally we obtain

d1 (m (t) ,m (s)) ≤ c0 (‖b‖∞ + 1) |s− t|
1
2

for some constant c0 > 0, which is what we wanted to show.

3.3 Proof of existence

Having made clear our assumptions, and shown the estimates on the Fokker-Planck
equation, we will now show that there exists a pair (u,m) that solves the Mean Field
Game system (3.1) classically. We �rst begin with the idea of the proof.
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3.3.1 Sketch of proof

The idea of the proof is the same as in the proof of Thm 3.1.1 in [3], where they proved
existence of solutions for the same system of equations, but with a standard Laplacian
instead of the fractional one.

We use Schauder's �xed point theorem (see Thm. 2.5) to show existence of solutions:
We look at the Banach space C0

(
[0, T ] ,P

(
Td
))
, and we de�ne C ⊂ C0

(
[0, T ] ,P

(
Td
))
,

which turns out to be a closed, convex and compact subset. Then we de�ne a map
ψ : C → C by using the fractional Mean Field Games equations, and we show that this
is a well-de�ned and continuous map.

We can then apply Schauder's �xed point theorem to conclude that the map ψ has
at least one �xed point, m ∈ C, and then conclude that this �xed point is a classical
solution of the system (3.1).

3.3.2 Proof

We begin the proof by de�ning the set C.

The set C

We consider the Banach space C0
(
[0, T ] ,P

(
Td
))

endowed with the supremum metric

d̃ (µ, ν) = supt∈[0,T ] d1 (µ (t) , ν (t)), and we de�ne the following subset

C :=

{
µ ∈ C0

(
[0, T ] ,P

(
Td
))

: sup
s 6=t

d1 (µ (s) , µ (t))

|s− t|
1
2

≤ C1

}
(3.5)

where the constant C1 > 0 is later to be determined. For this subset C we will show the
following properties.

Lemma 3.6. C is a closed, convex and compact subset of C0
(
[0, T ] ,P

(
Td
))
.

Proof. We prove each of the statements one by one.

Closed

We have to show that each limit point is contained in the set. Let (µn) ⊂ C and

µn
d̃−→ µ∗ ∈ C0

(
[0, T ] ,P

(
Td
))
. Then we �nd by the triangle inequality:

d1 (µ∗ (s) , µ∗ (t)) ≤ d1 (µ∗ (s) , µn (s)) + d1 (µn (s) , µn (t)) + d1 (µn (t) , µ∗ (t))

≤ C1|s− t|
1
2 + d1 (µ∗ (s) , µn (s)) + d1 (µ∗ (t) , µn (t))→ C1|s− t|

1
2

which shows that µ∗ ∈ C.
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Convex

Let µ, ν ∈ C and λ ∈ (0, 1). Then:

d1 (λµ (s) + (1− λ) ν (s) , λµ (t) + (1− λ) ν (t)) =

sup
φ∈1−Lip

{
∫
Td
φ (x) ((λµ (s) + (1− λ) ν (s))− (λµ (t) + (1− λ) ν (t))) (dx)} =

sup
φ∈1−Lip

{
λ

∫
Td
φ (x) (µ (s)− µ (t)) (dx) + (1− λ)

∫
Td
φ (x) (ν (s)− ν (t)) (dx)

}
≤ λd1 (µ (s) , µ (t)) + (1− λ) d1 (ν (s) , ν (t))

≤ λC1|s− t|
1
2 + (1− λ)C1|s− t|

1
2 = C1|s− t|

1
2 .

This shows that λµ+ (1− λ) ν ∈ C, so that convexity holds.

Compact

To show compactness we will use the Arzelá-Ascoli theorem (Thm. 2.4).

We need to show that C ∈ C0
(
[0, T ] ,P

(
Td
))

is equicontinuous and relatively com-
pact.

EQ: Given an ε > 0, we de�ne δ =
(

ε
C1

)2
. Then we get ∀s, t ∈ [0, T ] and ∀µ ∈ C:

|s− t| < δ =⇒ d1 (µ (s) , µ (t)) ≤ C1|s− t|
1
2 < C1

√(
ε
C1

)2
= ε, by use of the properties

of C.
RC: Let s ∈ [0, T ] and de�ne Ks := {µ (s) : µ ∈ C}. We have from de�nition, that

Ks ⊂ P
(
Td
)
, and thus it follows from set de�nitions that the closure Ks is closed in

P
(
Td
)
. From the compactness of P

(
Td
)
(??), it follows that Ks is compact, and thus

from de�nition of relative compactness, that Ks is relatively compact.

Thus, by Arzela-Ascoli, we conclude that C is relatively compact in C0
(
[0, T ] ,P

(
Td
))
.

Since C also is closed, it follows that it is compact.

The map ψ

Now, we de�ne the map ψ : C → C.

Let µ ∈ C and de�ne m = ψ (µ) as follows:
Let u be the solution to the fractional Hamilton-Jacobi equation given µ ∈ C{

−∂tu+ (−∆Td)
α
2 u+H (x, u,Du) = F (x, µ) in (0, T )× Td

u (x, T ) = G (x, µ (T ))
(3.6)

We de�ne the following set:

U := {u : u = u (µ) , µ ∈ C}(3.7)
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Further, we de�ne m = ψ (µ) as the solution to the fractional Fokker-Planck equation:{
∂tm+ (∆Td)

α
2 m− div (mDpH (x, u,Du (t, x))) = 0 in (0, T )× Td

m (0, ·) = m0 (·) inTd
(3.8)

We also de�ne the set:

M := {m : m = m (u) , u ∈ U}(3.9)

We need to show that the mapping ψ has two properties:

1. That the mapping µ→ ψ (µ) is well de�ned.That is, show that µ ∈ C =⇒ ψ (µ) ∈
C

2. That the mapping is continuous.

Well de�ned

Lemma 3.7. The map ψ is well-de�ned, that is, M ⊂ C. Furthermore the following
holds for the sets U andM:

u,Du, · · · , D7u, ∂tu, ∂tDu, ∂tD
2u ∈ Cb

(
(0, T )× Td

)
∂tu ∈ C

1
2
,1

b

(
(0, T )× Td

)
All these quantities are uniformly bounded by a constant U1 > 0, which depends on
supm∈P(Td) ‖G (·,m) ‖W 7,∞(Td), α, T, d and the local regularity of F and H.

ForM the following estimates holds:

m,Dm, · · · , D5m, ∂tm, ∂tDm, ∂tD
2m ∈ Cb

(
(0, T )× Td

)
∂tm ∈ C

1
2
,1

b

(
(0, T )× Td

)
where all these quantities are uniformly bounded by a constant M1 > 0, only dependent
on ‖m0‖W 5,∞(Td), α, T, d, U1 and the local regularity of H.

Comment

We should give a short comment about why we need as much as C1,7-regularity in u
and C1,5-regularity in m. The reason comes from our regularity results on the fractional
Hamilton-Jacobi equation. We use these results both for the fractional Hamilton-Jacobi

equation and the fractional Fokker-Planck equation. To obtain ∂tm ∈ C
1
2
,1

b

(
]0, T [× Td

)
,

we needm,Dm, · · · , D5m ∈ Cb
(
]0, T [× Td

)
, due to our computations. Since the Fokker-

Planck equation is dependent on u, we need u,Du, · · · , D7u ∈ Cb
(
]0, T [× Td

)
in order

to get enough regularity on m.

This is not ideal of course, but the best we can do for now.
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Proof. Hamilton-Jacobi

Take a µ ∈ C, and look at the fractional Hamilton-Jacobi-equation (3.6). By setting
H̃ (t, x, u, p) = H (x, u, p)− F (x, µ (t)) in (3.6) we get the expression:{

−∂tu+ (−∆Td)
α
2 u+ H̃ (t, x, u,Du) = 0 in (0, T )× Td

u (x, T ) = G (x, µ (T ))
(3.10)

From the assumptions made on H, F and G, we get that (A0)-(A4) holds. Also the
Hölder-assumption (4.2) onH holds, since for s, t ∈ [0, T ] , x, y ∈ Td, u, v ∈ [−R,R] , p, q ∈
BR

|H̃ (t, x, u, p)− H̃ (s, y, v, q) |
≤ |H (x, u, p)−H (y, v, q) |+ |F (x, µ (t))− F (y, µ (s)) |
≤ LR (|x− y|+ |u− v|+ |p− q|) + C0 (|x− y|+ d1 (µ (t) , µ (s)))

≤ LR
(
|s− t|1/2 + |x− y|+ |u− v|+ |p− q|

)
Then, by Theorem 4.2 from the chapter on the fractional HJ-equation, we get there exists
a unique u that solves 3.10, and that it has the following regularity:

u,Du, · · · , D7u, ∂tu, ∂tDu, ∂tD
2u ∈ Cb

(
(0, T )× Td

)
∂tu ∈ C

1
2
,1

b

(
(0, T )× Td

)
where all these quantities are uniformly bounded by a constant U1 > 0, which depends
on supm∈P(Td) ‖G (·,m) ‖W 7,∞(Td), α, T, d and the local regularity of F and H.

We will now look at the Fokker-Planck equation, using the function u we obtained
from the Hamilton-Jacobi equation.

Fokker-Planck

We look at the equation{
∂tm+ (−∆Td)

α
2 m− div (mDpH (x, u,Du (t, x))) = 0 in (0, T )× Td

m (0, ·) = m0 (·) inTd
(3.11)

We can directly apply Theorem 5.1 from the chapter on the fractional Fokker-Planck
equation, to obtain a unique solution m of (3.11) that satis�es:

m,Dm, · · · , D5m, ∂tm, ∂tDm, ∂tD
2m ∈ Cb

(
(0, T )× Td

)
∂tm ∈ C

1
2
,1

b

(
(0, T )× Td

)
where all these quantities are uniformly bounded by a constant M1 > 0, only dependent
on ‖m0‖W 5,∞(Td), α, T, d, U1 and the local regularity of H.
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Recalling our discussion on the Fokker-Planck equation, we have that m is a weak
solution of (3.11) (referring to Lemma 3.2 and Lemma 3.3). Thus, Lemma 3.5 gives us
the following estimates on m:

d1 (m (t) ,m (s)) ≤ c0 (1 + ‖DpH (·, Du) ‖∞) |t− s|
1
2 ∀s, t ∈ [0, T ]

Since ‖Du‖∞ ≤ U1, it follows that ‖DpH (·, Du) ‖∞ ≤ C2, where C2 > 0 is a constant
not dependent on µ. By setting C1 ≥ c0 (1 + C2) we get the sought after constant in the
de�nition of C. Further, we obtain that m = ψ (µ) ∈ C, which shows that the map ψ is
well-de�ned.

Continuity

We now want to check that the mapping is continuous, with respect to the metric d̃
de�ned on C0

(
[0, T ] ,P

(
Td
))
.

For this, let µn ∈ C be a given sequence, that converges to a point µ ∈ C. Further, let
(un,mn) and (u,m) be the corresponding solutions of the system of equations. We want
to show that mn ∈ C converges to m ∈ C, because this in turn implies continuity of ψ.

Hamilton-Jacobi

We �rst begin by looking at the pairs (µn, un) and (µ, u). We want to show that

un
C1,2

−−−→ u.

From the uniform bounds on functions u ∈ U , it follows that U ⊂⊂ C1,2
(
(0, T )× Td

)
,

by Lemma 2.8. A consequence of Lemma 2.7 is that, if every convergent subsequence of
a sequence (un) ⊂ U converges, then the whole sequence converges in C1,2 to the same
limit point.

So, we only need to prove the following statement:

Lemma 3.8. Every convergent subsequence (unk) of (un) (convergent in C1,2) converges
to the same limit point, u = u (µ).

Proof. Let (unk) be a convergent subsequence of (un), and (µnk) the corresponding µ-s.

Assume that unk
C2,1

−−−→ ũ ∈ U . From the assumptions µnk converges to µ. The pair
(µnk , unk) satis�es the fractional Hamilton-Jacobi equation:{

−∂tunk + (−∆Td)
α
2 unk +H (x, unk , Dunk) = F (x, µnk (t))

unk (x, T ) = G (x, µnk (T ))
(3.12)

Also the limit point (µ, ũ) satis�es the fractional Hamilton-Jacobi equation{
−∂tũ− (−∆Td)

α
2 ũ+H (x, ũDũ) = F (x, µ (t))

ũ (x, T ) = G (x, µ (T ))
(3.13)
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To conclude the proof, we need to show that all the terms in equation (3.12) converges
pointwise to the terms in equation (3.13).

From the assumption unk
C1,2

−−−→ ũ, we get directly that:

‖∂tunk − ∂tũ‖0 → 0

By using Lemma 2.1 from the Preliminaries, we get

‖ (−∆Td)
α
2 unk (t, ·)− (−∆Td)

α
2 ũ (t, ·) ‖L∞(Td)

(2.6)

≤ ‖unk (t, ·)− ũ (t, ·) ‖C2(Td)

≤ ‖unk − ũ‖C1,2((0,T )Td)

Further, we have for F that∣∣F (x, µnk (t))− F (x, µ (t))
∣∣ ≤ C0 [d1 (µnk (t) , µ (t))]

≤ C0

[
d̃ (µnk , µ)

]
→ 0

and we get, by the same method, the same result for G:∣∣G (x, µnk (T ))−G (x, µ (T ))
∣∣→ 0

The remaining term to look at is the H (x,Dunk). We know that all u ∈ U satis�es
‖Du‖∞ ≤ U1 as shown in lemma 3.7, so we can use thatH is locally Lipschitz continuous:

|H (x, unk , Dunk)−H (x, ũ,Dũ) | ≤ LH,U1 (|unk − ũ|+ |Dunk −Dũ|)→ 0

This shows that every term in (3.12) converges pointwise to the corresponding terms
in equations (3.13) . The equation (3.13) has a unique solution ũ ∈ U , referring to
theorem 4.2. Thus, all convergent subsequences of (un) have the same limit point. This
concludes the proof.

By Lemma 2.8, the set U is compact in C1,2. Since (un) ⊂ U , and every convergent
subsequence of (un) has the same limit point u ∈ U (Lemma 3.8), we conclude by Lemma

2.7 that un
C1,2

−−−→ u.

Fokker-Planck

Now, we want to show that mn
C1,2

−−−→ m, based on the result that un → u ∈ C1,2. The
set M ⊂⊂ C1,2

(
(0, T )× Td

)
, as a consequence of Lemma 2.8. Thus, we will do the

same as for the fractional Hamilton-Jacobi equation: We will show that every convergent
subsequence (mnk) ⊂ (mn) converges to the same limit point, and from here conclude

by Lemma 2.7 that mn
C1,2

−−−→ m. We can prove the following statement:
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Lemma 3.9. Every convergent subsequence (mnk) of (mn) in C1,2 converges to the same
limit point, m = m (u).

Proof. Let (mnk) be a convergent subsequence, and (unk) the corresponding sequence in

u-s. Assume that (mnk)
C1,2

−−−→ m̃ ∈M. We know that unk
C1,2

−−−→ u from lemma 3.8. Each
pair (unk ,mnk) satisfy the fractional Fokker-Planck equation

{
∂tmnk + (−∆Td)

α/2mnk − 〈Dmnk , DpH (x, unk , Dunk)〉 −mnk divDpH (x, unk , Dunk) = 0
mnk (0) = m0

(3.14)

Also, the limit point satisfy the fractional Fokker-Planck equation{
∂tm̃+ (−∆Td)

α/2 m̃− 〈Dm̃,DpH (x, u,Du)〉 − m̃ divDpH (x, u,Du) = 0
m̃ (0) = m0

(3.15)

It can be shown that every term in expression (3.14) converges pointwise to the
corresponding limit in (3.15), where we again use that ‖Du‖∞ ≤ U1 for all u ∈ U ,
and that DpH and divDpH are locally Lipschitz continuous. The solution for the limit
equation (3.15) is unique when u ∈ U is given. Thus, we can conclude that all convergent
subsequences of (mn) have the same limit point.

By theorem 2.9, the setM is compact in C2,1. Since (mn) ⊂M, and every convergent
subsequence of (mn) has the same limit pointm ∈M (lemma 3.9), we conclude by lemma

2.7 that mn
C2,1

−−−→ m.

Conclusion of continuity

We have shown that µn
d̃−→ µ =⇒ mn

C2,1

−−−→ m. We will show now that mn
d̃−→ m.

Since mn,m are classical solutios of the fractional Fokker-Planck equation, they must
also be a weak solution according to Lemma 3.2, and are unique weak solution by Lemma
3.3. Therefore, by Lemma 3.4, mn (t) andm (t) are probability measures on P

(
Td
)
. This

allows us to compute, recalling the equivalent de�nition of d1 in Lemma 2.5

d1 (mn (t) ,m (t)) = sup
φ∈1−Lip,φ(0)=0

{∫
Td
φ (x) d (mn (t)−m (t)) (x)

}
= sup

φ∈1−Lip,φ(0)=0

{∫
Td
φ (x) (mn (t, x)−m (t, x)) dx

}
≤
∫
Td

1 · ‖mn −m‖0dx→ 0.

This shows convergence in C0
(
[0, T ] , P

(
Td
))
, mn

d̃−→ m, and we can conclude that the
mapping ψ is continuous.
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Conclusion of existence proof

We have de�ned a Banach spaceC0
(
[0, T ] ,P

(
Td
))
, a compact, convex and closed subset

C, and a continuous map ψ : C → C. Hence, by Schauder's �xed point theorem, the map
ψ : C → C has a �xed point in m ∈ C, and this �xed point is a solution of the MFG
system (3.1).

Lemma 3.10. A �xed point of ψ is a solution to the system (3.1)

Proof. Let m = ψ (m). Then it holds that m ∈ C2,1. By inserting m into the Hamilton-
Jacobi equation, we obtain a unique solution u ∈ C2,1. This u in turn solves the Fokker-
Planck equation uniquely, with m ∈ C2,1. Thus, the pair (u,m) solves the fractional
MFG system.

3.4 Uniqueness

In this section, we assume that H is on the form H (x,Du).

Assume that the following conditions hold on F and G, which we will refer to as the
monotonicity condition:∫

Td
(F (x,m1)− F (x,m2)) d (m1 −m2) (x) ≥ 0 ∀m1,m2 ∈ P

(
Td
)

(3.16)

and ∫
Td

(G (x,m1)−G (x,m2)) d (m1 −m2) (x) ≥ 0 ∀m1,m2 ∈ P
(
Td
)

(3.17)

Also, assume that H is uniformly convex with respect to it's last variable p ∈ Rd:

∃C > 0,
1

C
Id ≤ D2

ppH (x, p) ≤ CId(3.18)

Theorem 3.2. With the extra assumptions (3.16), (3.17) and (3.18) there is at most
one classical solution of the mean �eld equation (3.1)

The proof is exactly the same as in proof of Thm. 3.1.5 in Cardaliaguet [3], with the
minor di�erence that we're dealing with the fractional Laplace operator, instead of the
ususal one.

Proof. Let (u1,m1) and (u2,m2) be two classical solutions. We then set ũ = u1−u2 and
m̃ = m1 −m2. Since both ũ and m̃ are continuously di�erentiable and bounded on Td,
which is compact, we can interchange the integration and di�erentiation operator:

d

dt

∫
Td
ũm̃ =

∫
Td

∂

∂t
(ũm̃) =

∫
Td

(∂tũ) m̃+ ũ (∂tm̃)

=

∫
Td

((
(−∆Td)

α/2 ũ+H (x,Du1)−H (x,Du2)− F (x,m1) + F (x,m2)
)
m̃

− ũ (−∆Td)
α/2 m̃− 〈Dũ,m1DpH (x,Du1)−m2DpH (x,Du2)〉

)
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where the last term is obtained from partial integration.
We notice that ∫

Td

(
(−∆Td)

α
2 ũ
)
m̃− ũ

(
(−∆Td)

α
2 m̃

)
dx = 0.(3.19)

which follows from Lemma 2.3 in the Preliminaries.

From the condition (3.16) on F , we also get the estimate:∫
Td

(−F (x,m1) + F (x,m2)) m̃ =

∫
Td

(−F (x,m1) + F (x,m2)) (m1 −m2) ≤ 0

We can rewrite the terms involving H in the following way:

∫
Td

((H (x,Du1)−H (x,Du2)) m̃− 〈Dũ,m1DpH (x,Du1)−m2DpH (x,Du2)〉)

= −
∫
Td
m1 ((H (x,Du2)−H (x,Du1))− 〈DpH (x,Du1) , Du2 −Du1〉)

−
∫
Td
m2 ((H (x,Du1)−H (x,Du2))− 〈DpH (x,Du2) , Du1 −Du2〉)

(3.20)

Now we want to use Taylors theorem and the uniform convexity assumption to get
estimates on (3.20). From Taylors theorem, and for any v, w ∈ Rd it holds that:

H (x, v) = H (x,w) + 〈DpH (x,w) , v − w〉

+
1

2
D2
ppH (x, ξ) |v − w|2

for some ξ ∈ Rd on the line between v and w. But from the uniform convexity assumption
(3.18) it holds that ∀ξ ∈ Rd:

H (x, v)−H (x,w)− 〈Dp (x,w) , v − w〉

=
1

2
D2
pp (x, ξ) |v − w|2

(3.18)

≥ 1

2C
|v − w|2

(3.21)

We can apply this to the equation (3.20): By applying this to (3.20), we get the estimate:∫
Td

((H (x,Du1)−H (x,Du2)) m̃− 〈Dũ,m1DpH (x,Du1)−m2DpH (x,Du2)〉)

= −
∫
Td
m1 ((H (x,Du2)−H (x,Du1))− 〈DpH (x,Du1) , Du2 −Du1〉)

−
∫
Td
m2 ((H (x,Du1)−H (x,Du2))− 〈DpH (x,Du2) , Du1 −Du2〉)

(3.21)

≤ −
∫
Td

m1

2C
|Du2 −Du1|2 −

∫
Td

m2

2C
|Du1 −Du2|2 = −

∫
Td

(m1 +m2)

2C
|Du1 −Du2|2
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So, by combining all the estimates, we obtain the following inequality:

d

dt

∫
Td
ũm̃ ≤ −

∫
Td

(m1 +m2)

2C
|Du1 −Du2|2.

We can integrate this inequality on the time interval [0, T ], to obtain:∫
Td
ũ (T ) m̃ (T )−

∫
Td
ũ (0) m̃ (0) ≤ −

∫ T

0

∫
Td

m1 +m2

2C
|Du1 −Du2|2

From the initial conditions, we have that m̃ (0) = m1 (0) −m2 (0) = m0 −m0 = 0.
We also have ũ (T ) = G (x,m1 (T ))−G (x,m2 (T )), so that:∫

Td
ũ (T ) m̃ (T ) =

∫
Td

(G (x,m1 (T ))−G (x,m2 (T ))) (m1 (T )−m2 (T )) ≥ 0

from the assumptions on G (3.17). What we obtain then is the inequality:

0 ≤ −
∫ T

0

∫
Td

m1 +m2

2C
|Du1 −Du2|2 ≤ 0

which means that the integrand must be zero, so that Du1 = Du2 on the set {m1 > 0}∪
{m2 > 0}. In the fractional Fokker-Planck equation, m1 then solves the same equation
as m2, since we have the same third term DpH (x,Du1) = DpH (x,Du1). Therefore
m1 = m2 and it follows from uniqueness of the fractional Hamilton-Jacobi equation, that
u1 and u2 must be the same.
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Chapter 4

Regularity for the fractal

hamilton-jacobi equation

In this chapter we want to prove regularity for solutions of the fractional Hamilton-
Jacobi equation, under suitable assumptions on the Hamiltonian H. Many of our proofs
get their inspiration from the article [8] by Imbert.

More precisely, the equation we study in this chapter is on the form:

{
∂tu+ (−∆)λ/2 u+H (t, x, u,Du) = 0 in (0, T )× RN
u (0, x) = u0 (x) in RN

(4.1)

where 1 < λ < 2, and the non-local operator (−∆)λ/2 is de�ned as:

(−∆)λ/2 φ (x) = cN,λ

∫
RN\{0}

φ (x+ z)− φ (x)−∇φ (x) · z
|z|N+λ

dz

where cN,λ is a universal constant. This non-local operator is also known as the fractional
Laplace operator, and it is a linear operator. Now, we will list our assumptions, and then
go on with main results and proofs of these results.

4.1 Assumptions

We have the following assumptions on the Hamiltonian H. For any T > 0,

• (A0) The function H : [0,+∞)× RN × RN → R is continuous.

• (A1) There exists γ ∈ R such that for all x ∈ RN , u, v ∈ R, u < v, p ∈ RN ,
t ∈ [0, T ),

H (t, x, v, p)−H (t, x, u, p) ≥ γ (v − u)

33
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• (A2) For any R > 0, there exists CR > 0 such that for all x, y ∈ RN , u ∈
[−R,R] , p ∈ RN , t ∈ [0, T ),

|H (t, x, u, p)−H (t, y, u, p) | ≤ CR (|p|+ 1) |x− y|

• (A3) For any R > 0, there exists CR > 0 such that for all t ∈ [0, T ) , x ∈ RN , u, v ∈
[−R,R] , p, q ∈ BR, the derivatives of H (up till the k-th derivative) are bounded
by the constant CR, that is,

|DαH (t, x, u, p) | ≤ CR

with α = (αx1 , . . . , αxN , αu, αp1 , . . . , αpN ) a multi-index with |α| ≤ k.

• (A4) There exists C0 > 0 such that

sup
t∈[0,T ),x∈RN

|H (t, x, 0, 0) | ≤ C0

Comment:

Chapter 6 deals with how to estimate the spatial derivatives of H (t, x, u (t, x) , w (t, x)),
given an arbitrary multi-index β = (β1, · · · , βN ) with |β| ≤ k. Also we deal with how

to estimate the di�erence |∂βxH (s, x, u (s, x) , w1 (s, x)) − ∂βxH (s, x, u (s, x) , w2 (s, x)) |.
These estimates are necessary in order to show Ckb -regularity in spaces for solutions of
the fractional Hamilton-Jacobi equation, and plays an important part.

4.2 Main result

We state the main Theorems of this chapter:

Theorem 4.1. Assume that u0 ∈ W k,∞ (RN) with k ≥ 3 and (A1)-(A4) holds. Then
(4.1) admits a unique classical solution u that satis�es

∂tu, u,Du, · · · , Dku ∈ Cb
(
]0, T [× RN

)
All these quantities are bounded by a constant c depending on ‖u0‖Wk,∞(RN ), λ, T , N
and k.

We also achieve a bit more time regularity by adding to the assumptions on H.

Theorem 4.2. Assume that u0 ∈W k,∞ (RN) with k ≥ 5 and (A1)-(A4) holds. Further-
more, assume that for t ∈ [0, T ] , x, y ∈ RN , u, v ∈ [−R,R] , p, q ∈ BR the Hamiltonian
H satis�es

|H (s, x, u, p)−H (t, y, v, q) | ≤ LH,R
(
|s− t|

1
2 + |x− y|+ |u− v|+ |p− q|

)
(4.2)
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where LH,R > 0 is a constant depending on R. Then (4.1) admits a unique classical
solution u that satis�es

∂tu, u,Du, · · · , Dku ∈ Cb
(
]0, T [× RN

)
and

∂tu,D
2u ∈ C

1
2
,1

b

(
]0, T [× RN

)
where C

1
2
,1

b

(
]0, T [× RN

)
is a parabolic Hölder space. All these quantities are uniformly

bounded by a constant c > 0 depending on ‖u0‖Wk,∞(RN ), λ, T , N , k and LH,R, where
R = ‖u‖0 + ‖Du‖0.

Idea of proof:

The idea is to use the Duhamel's integral representation to show that the unique viscosity
solution u of (4.1) has C1,k

b -regularity on small intervals (0, T εk) and (t0, t0 + Tk), where
t0 ∈ (0, T ) and T εk , Tk are strictly positive, independent of t0. By patching intervals

together, we can conclude that u belongs to C1,k
b

(
(0, T )× RN

)
.

We can extend the time-regularity a bit further, by making the assumption (4.2) on
the Hamiltonian H.

4.3 Unique viscosity solution

We begin by referring to the article [8], which states that (4.1) has a unique viscosity
solution u.

Theorem 4.3. (Theorem 3, Imbert [8]) Assume that (A0)-(A4) holds. For any u0 :
RN → R bounded and uniformly continuous, there exists a (unique) viscosity solution u
of (4.1) in [0,+∞)× RN such that u (0, x) = u0 (x).

The next Lemma is from the same article, and gives some regularity result for the
viscosity solution.

Lemma 4.1. (Lemma 2 in [8]) Assume that (A0)-(A4) holds, and that u0 ∈W 1,∞ (RN).
The viscosity solution u satis�es: For any t ∈ [0, T ), ‖u (t, ·) ‖W 1,∞(RN ) ≤ MT with MT

that only depends on ‖u0‖W 1,∞(RN ), C0 and T .

Proof. The proof can be read in [8]. The constants that are presented in the Theorem

are MT = eKT/2
(
K/8 + ‖∇u0‖2∞

)1/2
. K = 4CR, with R = ‖u‖∞ from (A2), where

‖u‖∞ ≤ ‖u0‖∞+C0T , which can be obtained directly from the comparison principle.

Let us now forget for a little while about the viscosity solution u of (4.1). We want
to look into Duhamel's formula, and to show that we can construct classical solutions v
that satis�es (4.1) on small time intervals, given initial data v0 that is smooth enough.
Later we will combine these results with the viscosity solution u to show regularity on
the whole time interval (0, T ).
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4.4 Regularity by Duhamel's formula

Before embarking on the regularity theory for the fractional Hamilton-Jacobi equation,
we need to say a few words on the heat kernel associated with the fractional Laplace
operator.

4.4.1 The heat kernel of the fractional Laplacian

The semi-group generated by the non-local operator (−∆)λ/2 is given by the convolution
with the kernel (de�ned for t > 0 and x ∈ RN )

K (t, x) = F
(
e−t|·|

λ
)

(x)

where F denotes the Fourier transform in RN . We list brie�y some properties of K (see
[8] and [5])

K ∈ C∞
(
(0,+∞)× RN

)
and K ≥ 0(4.3)

∀ (t, x) ∈ (0,+∞)× RN , K (t, x) = t−N/λK
(

1, t−1/λx
)

(4.4)

For all integers m ≥ 0 and all multi-indexes α with |α| = m, there exists a constant
Bm > 0 such that

∀ (t, x) ∈ (0,+∞)× RN , |∂αxK (t, x) | ≤ t(−N+m)/λ Bm(
1 + t−(N+1)/λ|x|N+1

)(4.5)

Also, we have

‖K (t) ‖L1(RN ) = 1 and ‖∇K (t) ‖L1(RN ) = K1t
−1/λ.(4.6)

where K1 > 0 is a constant. We also refer to the following useful result from [8].

Proposition 4.1. (Proposition 1, Imbert [8]) Consider u0 ∈ Cb
(
RN
)
. Then K (t, ·) ∗

u0 (·) is a C∞ (in (t, x)) solution of

∂tu+ (−∆)λ/2 u = 0 in (0,+∞)× RN

u (0, ·) = u0 (·) in RN

We also should state Duhamel's formula for the equation (4.1). It is given by

v (t, x) = K (t, ·) ∗ v0 (·)−
∫ t

0
K (t− s, ·) ∗H (s, x, v (s, ·) ,∇v (s, ·)) (x) ds

where K is the heat kernel, v0 are initial conditions, and H is the Hamiltonian. We use
Duhamel's formula to show that with initial conditions v0 there exists a unique v that
satis�es Duhamel's formula on a small time interval. We will also show that this v is in
fact a classical solution of the equation (4.1) on this small time interval.
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4.4.2 Starting point

We �rst begin, as in Imbert [8], to consider a small interval ]0, T1[, where T1 > 0 is to be
determined.

One can show that for given initial data v0 ∈ W 1,∞ (RN) there exists a unique v
that satis�es Duhamel's formula on ]0, T1[, and that v,∇v ∈ Cb

(
]0, T1[× RN

)
, where

Duhamel's formula is given by

v (t, x) = K (t, ·) ∗ v0 (·)−
∫ t

0
K (t− s, ·) ∗H (s, x, v (s, ·) ,∇v (s, ·)) (x) ds

v (0, ·) = v0 (·)
(4.7)

4.4.3 C1-regularity in x

The following Lemma is from Imbert [8].

Lemma 4.2. Let v0 ∈W 1,∞ (RN). Then there exists T1 > 0, such that v ∈ Cb
(
]0, T1[× RN

)
and ∇v ∈ Cb

(
]0, T1[× RN

)
and (4.7) holds.

Proof. (Idea of proof) The proof is the same as in [8], so we will not go much into detail.
The next proof we will do, we will use exactly the same method as Imbert did here, so
we don't think it is necessary to do a complete proof in this case.

First, we de�ne the map ψ1 as

ψ1 (v) (t, x) = K (t, ·) ∗ v0 (·) (x)−
∫ t

0
K (t− s, ·) ∗H (s, x, v (s, ·) ,∇v (s, ·)) (x) ds

and we consider the space

E1 =
{
v ∈ Cb

(
]0, T1[× RN

)
,∇v ∈ Cb

(
]0, T1[× RN

)}
which has the natural norm ‖v‖E1 = ‖v‖Cb(]0,T1[×RN ) + ‖∇v‖Cb(]0,T1[×RN ). From here, it
can be shown that

1. ψ1 is well-de�ned: ψ : E1 → E1, and

2. There exists a unique �xed point v, so that v = ψ (v).

To show well-de�nedness, we assume that the initial data is bounded by some R0 > 0,
that is:

‖v0‖W 1,∞(RN ) = ‖v0‖∞ + ‖Dv0‖∞ ≤ R0

Also, we assume that we look at v ∈ E1 such that ‖v‖E1 ≤ R1, where R1 ≥ R0 > 0 is to
be determined.



Chapter 4. Regularity for the fractal hamilton-jacobi equation 38

Following the computations of [8], he estimates the value of ‖ψ1 (v) ‖E1 , which turns
out to be

‖ψ1 (v) ‖E1 ≤ R0 + (C0 + CR1)

(
T1 +K1

λ

λ− 1
T

(λ−1)/λ
1

)
Then he chooses that R1 = 2R0, and further selects T1 > 0 such that the following
condition holds:

(C0 + CR1R1)

(
T1 +K1

λ

λ− 1
T

(λ−1)/λ
1

)
≤ R0(4.8)

It holds then that ψ1 : BR1 → BR1 , and he shows that the map is in fact a contraction
in the E1-norm. Thus, by Banach's �xed point theorem, one can conclude that the map
ψ1 has a unique �xed point v ∈ BR1 .

Remark

If we rewrite the expression (4.8) as

T1 +K1
λ

λ− 1
T

(λ−1)/λ
1 ≤ R0

(C0 + 2CR1R0)

using that R1 = 2R0, we notice that, if R0 is bounded from below, say R0 ≥ 1, and
above, say by another constant K > 0, we can �nd a T1 > 0 that satis�es (4.8), only
dependent on K, C0, CK , K1 and λ.

4.5 Ck
b -regularity in x

In this section we will show that we can gain extra space-regularity by the use of
Duhamel's Formula, and by use of a �xed point argument. The assumption we make, is
that we already have a function v that satis�es Duhamel's formula, with initial condi-
tion v0, on some small time interval and that this function has Ckb -regularity in space.
From here we go to show (depending on the regularity of v0), that the function v have
Ck+1
b -regularity in space on a even smaller time interval than the original one.

Imbert proves in his article [8] that one have C2
b -regularity in space for a Hamilto-

nian on the form H (t, x, u,Du), and then shows Ckb -regularity for a simpler Hamiltonian
H (Du).

We will go directly to show Ckb -regularity for the more general HamiltonianH (t, x, u,Du),
as this is neccessary in the order to prove well-posedness for the MFG system (3.1). Also,
this allows us to use the same estimates later for the Fokker-Planck equation.
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4.5.1 Starting assumptions and framework

We will start with our assumptions, and then afterwards state the results.

Assume that there exists constants R0 > 0 and T0 > 0 such that the function w̄ = ∇v̄
satis�es Duhamel's formula on ]0, T0[×RN , and that it belongs to the space Fk (0, T0) :={
w,Dw, · · ·Dk−1w ∈ Cb

(
]0, T0[× RN

)}
. In other words, w̄ satis�es

w̄ (t, x) = K (t, ·) ∗ w0 (·)−
∫ t

0
∇K (t− s, ·) ∗H (s, ·, v̄ (s, ·) , w̄ (s, ·)) (x) ds

‖w̄‖Fk ≤ R0.

(4.9)

We also assume that the initial condition v0 satis�es∑
|β|≤k

‖∂βv0‖∞ ≤ R0.

We will work with two di�erent spaces, namely

Fk+1 (0, Tk+1) =
{
w,Dw, · · · , Dkw ∈ Cb

(
]0, Tk+1[× RN

)}
and

Ek+1 (0, Tk+1) =
{
w,Dw, · · · , Dk−1w, t1/λDkw ∈ Cb

(
]0, Tk+1[× RN

)}
.

The norms of these spaces we de�ne as, for w = (w1, · · · , wN )

‖w‖Fk+1
:=

N∑
i=1

‖wi‖0 +
∑

1≤|β|≤k

‖∂βxwi‖0


and

‖w‖Ek+1
:=

N∑
i=1

‖wi‖0 +
∑

1≤|β|≤k−1

‖∂βxwi‖0 +
∑
|β|=k

‖t1/λ‖∂βxwi‖0


where we have de�ned ‖ · ‖0 = ‖ · ‖Cb(]0,Tk[×RN ). We refer to these spaces as Fk+1 and

Ek+1, unless otherwise is stated.

Note that for k ≥ 1 ‖w‖Fk ≤ ‖w‖Ek+1
. This follows directly from the de�nitions.

We also de�ne the following map ψ2 as:

ψ2 (w) (t, x) = K (t, ·) ∗ w0 (·) (x)−
∫ t

0
∇K (t− s, ·) ∗H (s, ·, v (s, ·) , w (s, ·)) (x) ds

(4.10)

Having stated our assumptions, and de�ned Ek+1, Fk+1 and ψ2, we give the results
of this section.
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Lemma 4.3. Assume that (4.9) holds for R0, T0 > 0, and that w0 ∈ W k−1,∞. Then
there exists Rk+1 > 0 and Tk+1 > 0, with Rk+1 ≥ R0 and Tk+1 ≤ T0, such that the map
ψ2 has a unique �xed point w in Ek+1 (0, Tk+1) with ‖ψ2 (w) ‖Ek+1

≤ Rk+1. Also, Tk+1

depends only on the quantities R0, N , λ and CR0 (and T0).

and

Lemma 4.4. Assume that (4.9) holds, and that w0 ∈W k,∞. Then there exists Rεk+1 > 0
and T εk+1 > 0, with Rεk+1 ≥ R0 and T εk+1 ≤ T0, such that the map ψ2 has a unique �xed
point wε in Fk+1

(
0, T εk+1

)
with ‖ψ2 (w) ‖Fk+1

≤ Rεk+1.

The main di�erence between the Lemmas 4.3 and 4.4 is the assumptions we make
on the initial conditions w0. We need Lemma 4.4 to prove regularity of the viscosity
solution close to t = 0, and Lemma 4.3 to prove regularity of the viscosity solution on
time intervals (t0, t0 + Tk+1), for t0 ∈ [0, T ).

Now, we go to the proofs of these Lemmas.

4.5.2 Proof of Lemma 4.3

We start by looking at the space Ek+1 (0, Tk+1).
We assume that ∇v ∈ Fk (0, T0), with ‖∇v‖Fk ≤ R0, and we consider the map:

ψ2,i (w) (t, x) = K (t, ·) ∗ w0,i (·) (x)−
∫ t

0
∂iK (t− s, ·) ∗H (s, ·, v (s, ·) , w (s, ·)) (x) ds

where we analyse the i-th component of the vector, since this is easier to think about. We
look at the space Ek+1 (0, Tk+1), where Tk+1 ≤ T0 is to be determined, and pick w such
that ‖w‖Ek+1

≤ Rk+1, where Rk+1 ≥ R0 is to be determined. The fact that Rk+1 ≥ R0

implies that ‖∇v‖Fk ≤ Rk+1.

We �rst begin with some calculations, which will come in handy.

Estimates on H

In the chapter �Estimates of ∂βH�, we have laid the foundation for the following calcu-
lations. In the following β is a multi-index on the form β = (β1, · · · , βN ).

Bounds

From the assumptions ‖∇v‖Fk , ‖w‖Ek+1
≤ Rk+1, and the assumptions (A0)-(A4), we

calculate:

|H (s, x, v (s, x) , w (s, x)) | ≤ C0 + 2CRk+1
Rk+1 =: c0 (Rk+1)(4.11)
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From Lemma 6.2 we have for 1 ≤ |β| ≤ k − 1 that

|∂βxH (s, x, v (s, x) , w (s, x)) | ≤ c (N, |β|, Rk+1)(4.12)

and by the same Lemma, for |β| = k:

|∂βxH (s, x, v (s, x) , w (s, x)) | ≤ c1 (k,N,Rk+1) + s−1/λc2 (k,N,Rk+1)(4.13)

Di�erence

Assume that we have wp, wq ∈ Ek+1, that ‖∇v‖Fk , ‖wp‖Ek+1
, ‖wq‖Ek+1

≤ Rk+1 , and
that the assumptions (A0)-(A4) holds. Also, assume that Rk+1 ≥ k2. We can then
calculate:

|H (s, x, v, wp)−H (s, x, v, wq) |
≤ CRk+1

‖wp − wq‖0 ≤ (N + 1)
(
C0 + 2CRk+1

Rk+1

)
‖wp − wq‖Ek+1

≤ (N + 1) c0‖wp − wq‖Ek+1

(4.14)

where c0 is the same constant as in (4.11).

Referring to the results of Lemma 6.14, we compute for 1 ≤ |β| ≤ k − 1 that

|∂βxH (s, x, u, wp)− ∂βxH (s, x, u, wq) | ≤
(

k2

Rk+1
+N

)
c (N, |β|, Rk+1) ‖wp − wq‖Ek+1

≤ (N + 1) c (N, |β|, Rk+1) ‖wp − wq‖Ek+1

(4.15)

where c is the same constant as in (4.12)

For |β| = k we obtain by use of Lemma 6.15:

|∂βxH (s, x, u, wp)− ∂βxH (s, x, u, wq) | ≤
(
k2

R
+N

)(
c1 + s−1/λc2

)
‖wp − wq‖Ek+1

≤ (N + 1)
(
c1 + s−1/λc2

)
‖wp − wq‖Ek+1

(4.16)

where c1 and c2 are the same constants as in (4.13)

Estimates on ψ2

We proceed by calculating the spatial derivatives of ψ2, using our estimates on H. We
have

|ψ2,i (w) (x, t) | ≤ |K (t, ·) ∗ w0,i (·) (x) |+
∫ t

0

∫
RN
|∂iK (t− s, x− y) ||H (s, y, v (s, y) , w (s, y)) |dyds

(4.6)

≤ ‖K (t, ·) ‖L1(RN )‖w0,i‖∞ + c0 (Rk+1)

∫ t

0
K1 (t− s)−1/λ ds

(4.6)

≤ ‖w0,i‖∞ + c0 (Rk+1)K1
λ

λ− 1
T

(λ−1)/λ
k+1
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Similarily for 1 ≤ |β| ≤ k − 1:

|∂βxψ2,i (w) (x, t) | ≤ |K (t− s, ·) ∗ ∂βxw0,i (·) (x) |

+

∫ t

0

∫
RN
|∂iK (t− s, x− y) ||∂βxH (s, y, v (s, y) , w (s, y)) |dyds

≤ ‖∂βxw0,i‖∞ + c (N, |β|, Rk+1)K1
λ

λ− 1
T

(λ−1)/λ
k+1

|β| = k: Here we can only di�erentiate the initial conditions k − 1 times. We will

denote this as ∂β−1
x w0.

|t1/λ∂βxψ2,i (w) (x, t) | ≤ |t1/λ∂βx (K (t, ·) ∗ w0,i (·)) |

+ t1/λ
∫ t

0

∫
RN
|∂iK (t− s, x− y) ||∂βxH (s, y, v (s, y) , w (s, y)) |dyds

≤ t1/λK1t
−1/λ‖∂β−1

x w0‖∞ + t1/λ
∫ t

0

(
c1 + c2s

−1/λ
)∫

RN
|∂iK (t− s, x− y) |dyds

= K1‖∂β−1
x w0,i‖∞ + c1K1t

1/λ

∫ t

0
(t− s)−1/λ ds+ c2K1t

1/λ

∫ t

0
s−1/λ (t− s)−1/λ ds

For the second integral term, we use the substitution τ = s/t, dτ = ds/t, which yields:

c2K1t
1/λ

∫ t

0
s−1/λ (t− s)−1/λ ds

= c2K1t
1/λ

∫ 1

0
(tτ)−1/λ (t− tτ)−1/λ (tdτ)

= c2K1t
1−1/λ

∫ 1

0
τ−1/λ (1− τ)−1/λ dτ

So, we get in total

|t1/λ∂βψ2 (w) (t, x) | ≤ K1‖∂β−1
x w0,i‖∞ + c1K1

λ

λ− 1
Tk+1 + c2γλT

(λ−1)/λ
k+1

where γλ =
∫ 1

0 s
−1/λ (1− s)−1/λ ds.

By summing these expression, we get in total:
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‖ψ2 (w) ‖Ek+1
≤ (1 +K1)R0

+

N∑
i=1

K1
λ

λ− 1
T

(λ−1)/λ
k+1

c0 (Rk+1) +
∑

1≤|β|≤k−1

c (N, |β|, Rk+1)


+
∑
|β|=k

c1K1
λ

λ− 1
Tk+1 + c2γλT

(λ−1)/λ
k+1


We now choose Rk+1 to be Rk+1 := max

(
2 (1 +K1)R0, 2k

2
)
, and choose Tk+1 > 0

such that:

N∑
i=1

K1
λ

λ− 1
T

(λ−1)/λ
k+1

c0 (Rk+1) +
∑

1≤|β|≤k−1

c (N, |β|, Rk+1)


+
∑
|β|=k

c1K1
λ

λ− 1
Tk+1 + c2γλT

(λ−1)/λ
k+1

 ≤ 1

2

1

N + 1

(4.17)

This choice of Tk+1 is possible, since the LHS of (4.17) goes towards zero for �xed
Rk+1 as Tk+1 → 0. Applying this condition, we obtain:

‖ψ2 (w) ‖Ek+1
≤ (1 +K1)R0 +

1

2

1

N + 1
≤ 1

2
Rk+1 +

1

2
Rk+1 = Rk+1.

This shows that the map ψ2 is well-de�ned, and that ψ2 : BRk+1
→ BRk+1

.

Contraction

We will compute the di�erence ‖ψ2 (wp)−ψ2 (wq) ‖Ek+1
for wp, wq ∈ BRk+1

, to show that
the map ψ2 is a contraction. We use the estimates (4.14), (4.15) and (4.16) to compute
the following:

For |β| = 0:

|ψ2,i (wp) (x, t)− ψ2,i (wq) (x, t) |

≤
∫ t

0

∫
RN
|∂iK (t− s, x− y) ||H (s, y, v, wp)−H (s, y, v, wq) |dyds

(4.14)

≤ (N + 1) c0‖wp − wq‖Ek+1

∫ t

0

∫
RN
|∂iK (t− s, x− y) |dyds

= (N + 1) c0 (Rk+1)K1
λ

λ− 1
T

(λ−1)/λ
k+1 ‖wp − wq‖Ek+1

For 1 ≤ |β| ≤ k − 1:
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|∂βxψ2,i (wp) (x, t)− ∂βxψ2,i (wq) (x, t) |

≤
∫ t

0

∫
RN
|∂iK (t− s, x− y) ||∂βxH (s, y, v, wp)− ∂βxH (s, y, v, wq) |dyds

(4.15)

≤ (N + 1) c (N, |β|, Rk+1) ‖wp − wq‖Ek+1

∫ t

0

∫
RN
|∂iK (t− s, x− y) |dyds

= (N + 1) c (N, |β|, Rk+1)K1
λ

λ− 1
T

(λ−1)/λ
k+1 ‖wp − wq‖Ek+1

For |β| = k we get

|t1/λ∂βxψ2,i (wp) (x, t)− t1/λ∂βxψ2,i (wq) (x, t) |

≤ t1/λ
∫ t

0

∫
RN
|∂iK (t− s, x− y) ||∂βxH (s, y, v, wp)− ∂βxH (s, y, v, wq) |dyds

(4.16)

≤ t1/λ
∫ t

0

∫
RN
|K (t− s, x− y) | (N + 1)

(
c1CR + s−1/λc2CR

)
‖wp − wq‖Ek+1

dyds

≤ (N + 1)

(
c1K1

λ

λ− 1
Tk+1 + c2γλT

(λ−1)/λ
k+1

)
‖wp − wq‖Ek+1

where the last inequality comes from the same technique as in the proof of boundedness
of |t1/λψ2 (w) (t, x) |.

Summing everything together, we obtain

‖ψ2 (wp)− ψ2 (wq) ‖Ek+1

≤ (N + 1)
N∑
i=1

K1
λ

λ− 1
T

(λ−1)/λ
k+1

c0 (Rk+1) +
∑

1≤|β|≤k−1

c (N, |β|, Rk+1)


+
∑
|β|=k

c1K1
λ

λ− 1
Tk+1 + c2γλT

(λ−1)/λ
k+1

 ‖wp − wq‖Ek+1

(4.17)

≤ (N + 1)
1

2

1

N + 1
‖wp − wq‖Ek+1

=
1

2
‖wp − wq‖Ek+1

This inequality shows that ψ2 is a contraction in the Ek+1-norm, with the chosen
values of Rk+1 and Tk+1. By Banach's �xed point theorem there exists a unique �xed
point w ∈ BRk+1

that solves ‖w − ψ2 (w) ‖Ek+1
= 0.
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In the end, we also need to show that w and w̄ coincides in Fk (0, Tk+1). The fol-
lowing interpolation statement holds by the de�nition of the spaces Fk (0, Tk+1) and
Ek+1 (0, Tk+1)

‖w‖Fk(0,Tk+1) ≤ ‖w‖Ek+1(0,Tk+1).(4.18)

Our starting assumption was that w̄ satis�ed ‖w̄ − ψ2 (w̄) ‖Fk = 0, and we obtain from
the inequality (4.18) that also w satis�es ‖w − ψ2 (w) ‖Fk = 0. One can show that ψ2 is
a contraction in Fk (0, Tk+1), by doing the same calculations as before, only skipping the
case |β| = k and using the Fk-norm instead of the Ek+1-norm. By choosing Rk+1 and
Tk+1 to be the same as before, one can show that

‖ψ2 (wp)− ψ2 (wq) ‖Fk(0,Tk+1) ≤
1

2
‖wp − wq‖Fk(0,Tk+1)

and hence that ψ2 is a contraction in Fk (0, Tk+1). Due to uniqueness from Banach's
�xed point theorem, we get that w and w̄ must coincide in Fk (0, Tk+1)

‖w − w̄‖Fk(0,Tk+1) = 0.

This concludes the proof. �

4.5.3 Proof of Lemma 4.4

This proof of is simpler than the proof of Lemma 4.3, and it follows the same idea.
Therefore, we will just state the main results, to save space.

Here, we consider the space:

Fk+1 :=
{
w,Dw, · · · , Dkw ∈ Cb

(]
0, T εk+1

[
× RN

)}
equipped with the norm

‖w‖Fk+1
:=

N∑
i=1

‖wi‖0 +
∑

1≤|β|≤k

‖∂βxwi‖0


As before, we look at the map:

ψ2,i (w) (t, x) = K (t, ·) ∗ w0,i (·) (x)−
∫ t

0
∂iK (t− s, ·) ∗H (s, x, v (s, x) , w (s, x)) (x) ds

where the initial condition w0 = ∇v0 now satis�es∑
|β|≤k+1

‖∂βxv0‖0 ≤ R0

and ∇v satis�es ‖∇v‖Fk(0,T0) ≤ R0.
As before, one can calculate ‖ψ2 (w) ‖Fk+1

and ‖ψ2 (w1) − ψ2 (w2) ‖Fk+1
. Then one can

�nd constants Rεk+1 and T εk+1 > 0 such that ψ2 : BRk+1
→ BRk+1

and ψ2 is a contraction
in the Fk+1-norm. Furthermore, one can also that this �xed point coincides with w̄ in
Fk
(
0, T εk+1

)
, which concludes the proof. �
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4.6 Time regularity

Now, we want to discuss time regularity. We will show that when a function v satis�es
Duhamel's formula on some small time interval, and has enough space regularity, it is
C1 in t. In addition, v is also then a classical solution to the fractional Hamilton-Jacobi
equation on this small time interval.

We begin by citing a Lemma from Imbert [8] (with a bit modi�ed notation), which
will help us to establish time regularity.

Lemma 4.5. (Lemma 5, [8]). Suppose that f ∈ Cb
(
]0, T0[× RN

)
is C2 in x such that

∇f,D2f ∈ Cb
(
]0, T0[× RN

)
. Then Φ (f) (t, x) =

∫ t
0 K (t− s, ·) ∗ f (s, ·) (x) ds is C1

w.r.t. t ∈ ]0, T0[ and ∂tΦ (f) (t, x) = f (t, x)− (−∆)λ/2 [Φ (f)] (t, x).

Proof. The proof can be read in [8].

We use this Lemma to prove time-regularity.

Lemma 4.6. Assume that v satis�es Duhamels formula on the time interval ]0, T0[ (for
initial data v0) and that v,Dv,D2v,D3v ∈ Cb

(
]0, T0[× RN

)
. Then v is C1

b in t, and is
a classical solution of (4.1) on ]0, T0[.

Proof. Assume that v,∇v,D2v,D3v ∈ Cb
(
]0, T0[× RN

)
satis�es Duhamel's formula on

]0, T0[× RN :

v (t, x) = K (t, ·) ∗ v0 (·) (x)−
∫ t

0
K (t− s, ·) ∗H (s, ·, v (s, ·) ,∇v (s, ·)) (x) ds

Taking the derivative with respect to t and applying Lemma 4.5 to the function f (t, x) =
H (t, x, v (t, x) ,∇v (t, x)) yields:

∂tv (t, x) = ∂t (K (t, ·) ∗ v0 (·) (x))− ∂tΦ (w) (t, x)

= − (−∆)λ/2 [K (t, ·) ∗ v0 (·)] (x)− ∂tΦ (w) (t, x)

Lemma 4.5
= − (−∆)λ/2 [K (t, ·) ∗ v0 (·)] (x)−H (t, x, v (t, x) ,∇v (t, x))

+ (−∆)λ/2
[∫ t

0
K (t− s, ·) ∗H (s, x, v (s, ·) ,∇v (s, ·)) (x) ds

]
(−∆)λ/2 lin.

= −H (t, x, v (t, x)∇v (t, x))

− (−∆)λ/2
[
K (t, ·) ∗ v0 (·)−

∫ t

0
K (t− s, ·) ∗H (s, x, v (s, ·) ,∇v (s, ·)) (x) ds

]
= −H (t, x, v (t, x) ,∇v (t, x))− (−∆)λ/2 [v (t, ·)] (x)

or

∂tv (t, x) + (−∆)λ/2 v (t, x) +H (t, x, v (t, x) ,∇v (t, x)) = 0
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This shows that v is a classical solution of the Hamilton-Jacobi equation in ]0, T0[×
RN , and that the time derivative is bounded.

Next, we turn to conditions for when Dkv is C1 in t.

4.6.1 The k-th spatial derivative is C1 in time

Lemma 4.7. Assume that v satis�es Duhamel's formula on ]0, T0[×RN (for initial data
v0) and that v,Dv, · · · , Dk+3v ∈ Cb

(
]0, T0[× RN

)
. Then Dkv is C1

b in time.

Proof. Again, we will apply Lemma 4.5 to show that the k-th time derivative is C1 with
respect to t. Assume that v,Dv, · · · , Dk+3v ∈ Cb

(
]0, T0[× RN

)
. We di�erentiate both

sides of Duhamel's formula to obtain:

Dkv (t, x) = K (t, ·) ∗Dkv0 (·) (x)−
∫ t

0
K (t− s, ·) ∗DkH (s, ·, v (s, ·) ,∇v (s, ·)) (x) ds

Since v,Dv, · · · , Dk+3v are bounded, we can apply Lemma 4.5. By taking the time
derivative on both sides we obtain

∂tD
kv (t, x) = − (−∆)λ/2

[
K (t, ·) ∗Dkv0 (·)

]
(x)−DkH (t, x, v (t, x) ,∇v (t, x))

+ (−∆)λ/2
[∫ t

0
K (t− s, ·) ∗DkH (s, ·, v (s, ·) ,∇v (s, ·)) (x) ds

]
= −DkH (t, x, v (t, x) ,∇v (t, x))− (−∆)λ/2

[
Dkv

]
(t, x)

This concludes the proof.

4.6.2 Hölder continuity

We will give a bit �ner time estimates for ∂tv.

Lemma 4.8. Assume that v satis�es Duhamel's formula on ]0, T0[ × RN (for initial
data v0) and that v,Dv, · · · , D5v ∈ Cb

(
]0, T0[× RN

)
. Assume also that for s, t ∈

[0, T ] , x, y ∈ RN , u1, u2 ∈ [−R,R] , p, q ∈ BR the Hamiltonian H satis�es

|H (t, x, u1, p)−H (s, y, u2, q) | ≤ LH,R
(
|t− s|

1
2 + |x− y|+ |u1 − u2|+ |p− q|

)
for some constant LH,R > 0. Then

∂tv ∈ C
1
2
,1

b

(
]0, T0[× RN

)
and

v,Dv,D2v ∈ C1,1
(
]0, T0[× RN

)
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Proof. By inserting k = 2 into Lemma 4.7, we get that D2v ∈ C1,1
b

(
]0, T0[× RN

)
.

Further, let t, s ∈ [0, T ] and x, y ∈ RN . By using the equation (4.1), we get:

|∂tv (t, x)− ∂tv (s, y) |
= |H (t, x, v (t, x) ,∇v (t, x))−H (s, y, v (s, y) ,∇v (s, y)) |

+ | (−∆)λ/2 v (t, x)− (−∆)λ/2 v (s, y) |

≤ LH
(
|s− t|1/2 + |x− y|+ |v (t, x)− v (s, y) |+ |∇v (t, x)−∇v (s, y) |

)
+R

(
|s− t|

1
2 + |x− y|

)
≤ C

(
|s− t|1/2 + |x− y|

)
where C > 0 and R > 0 are some constant. This concludes the proof.

To conclude, we will prove su�cient regularity for the unique viscosity solution of the
fractional Hamilton-Jacobi equation (4.1), by using these estimates that we found using
the Duhamel's formula.

4.7 Regularity on the unique viscosity solution

The aim of this section is to show regularity for the unique viscosity solution of the
fractional Hamilton-Jacobi equation (4.1). The idea is to use Lemma 4.3 and 4.4 to show
Ckb space regularity for k ≥ 3. Then we can start applying Lemma 4.6, 4.7 and 4.8 to
establish time-regularity.

4.7.1 Close to zero

Suppose that the initial conditions u0 from (4.1) belongs to W k,∞ (RN). We can start
applying Lemma 4.4 with initial condition u0 iteratively to obtain:

0 < T εk ≤ · · · ≤ T ε2 ≤ T1

where T1 > 0 was obtained from Lemma 4.2. Our result is that there exists a unique v
that satis�es Duhamel's formula with

v,Dv, · · · , Dkv ∈ Cb
(
]0, T εk [× RN

)
and when k ≥ 3, we have from Lemma 4.6 that

∂tv ∈ Cb
(
]0, T εk [× RN

)
This mean that v is a classical solution on ]0, T εk [. Therefore v = u on ]0, T εk [, since any
classical solution is a viscosity solution.
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4.7.2 Away from zero

Consider some arbitrary t0 ∈ [0, T ). We will use the viscosity solution u of (4.1) as initial
conditions, by setting v0 (·) = u (t0, ·). Recalling Lemma 4.1 we know that

‖u (t0, ·) ‖W 1,∞(RN ) ≤MT .(4.19)

We start by applying Lemma 4.2 to obtain T1 > 0, independent of t0 due to (4.19), such
that for the interval

]t0, t0 + T1[

we have unique v that satis�es Duhamel's formula with

v,∇v ∈ Cb
(
]t0, t0 + T1[× RN

)
Continuing this process, Lemma 4.3 gives us T2 ≤ T1 such that on the interval

]t0, t0 + T2[

there exists a unique v that satis�es Duhamel's formula with

v,∇v, t1/λD2v ∈ Cb
(
]t0, t0 + T2[× RN

)
By considering this v, we can use it as initial conditions, if we move a small distance
δ1 > 0 to the right. Namely

v,∇v,D2v ∈ Cb
(
]t0 + δ1, t0 + T2[× RN

)
Using v (t0 + δ1, ·) as initial conditions we get δ1 < T3 ≤ T2−δ1 such that on the interval

]t0 + δ1, t0 + T3[

there exists unique v that satis�es Duhamel's formula with

v,∇v,D2v, t1/λD3v ∈ Cb
(
]t0 + δ1, t0 + T3[× RN

)
We can iterate this process, until we reach k. That is, we get that there exists

δ1 + · · ·+ δk−1 < Tk ≤ Tk−1 − δk−1 such that on the interval

]t0 + δ1 + · · ·+ δk−1, t0 + Tk[

there exists a unique v that satis�es Duhamel's formula with

v,Dv, · · · , Dk−1v, t1/λDkv ∈ Cb
(
]t0 + δ1 + · · ·+ δk−1, t0 + Tk[× RN

)
In the end, we can pick a δk > 0 such that on the interval

]t0 + δ1 + · · ·+ δk, Tk[
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we have a unique v that satis�es Duhamel's formula with

v,Dv, · · · , Dkv ∈ Cb
(
]t0 + δ1 + · · ·+ δk, Tk[× RN

)
When k ≥ 3, we have by Lemma 4.6 that v is a classical solution on ]t0 + δ1 + · · ·+ δk, Tk[,
and for k ≥ 5 we have that

∂tv ∈ C
1
2
,1

b

(
]t0 + δ1 + · · ·+ δk, Tk[× RN

)
v,Dv,D2v ∈ C1,1

b

(
]t0 + δ1 + · · ·+ δk, Tk[× RN

)
Now, for the delta's, we enforce the following condition

δ1 + · · ·+ δk ≤ T εk

which we are free to do, since we can choose them as small as we like. By denoting

t
′
0 = t0 + δ1 + · · ·+ δk

we get that for k ≥ 3 (since v = u here)

∀t′0 ∈ [T εk/2, T ] , ∃Tk > 0 s.t. u,Du, · · · , Dku, ∂tu ∈ Cb
(]
t
′
0, Tk

[
× RN

)
4.7.3 Patching

Now we can patch everyting together. With initial data u0 ∈W k,∞ (RN), for k ≥ 3, we
get that the unique viscosity solution u is a classical solution on the intervals

]0, T εk [ , ]T εk/2, T
ε
k/2 + Tk[ , ]T

ε
k/2 + Tk/2, T

ε
k/2 + 3Tk/2[ , · · ·

until we reach T > 0, satisfying Theorem 4.1. For k ≥ 5 we get the regularity results
wanted in Theorem 4.2. Thus, we have proven Theorem 4.1 and Theorem 4.2. �



Chapter 5

The fractional Fokker-Planck

equation

In this chapter, we will study the fractional Fokker-Planck equation. When the fractional
Fokker-Planck equation is written on divergence free form, it pretty much looks like the
Hamilton-Jacobi equation. This is a fact we exploit to show existence and uniqueness of
a solution for this equation.

The fractional Fokker-Planck equation is on the form:

{
∂tm+ (−∆)

α
2 m− div (mDpH (x, u,Du)) = 0 in (0, T )× RN

m (0, x) = m0 (x) in RN
(5.1)

where α ∈ (1, 2). We write it on divergence free form as follows

∂tm+ (−∆)
α
2 m−

N∑
i=1

[
∂m

∂xi
fi (t, x) +m

∂

∂xi
fi (t, x)

]
= 0

where fi (t, x) = ∂H
∂pi

(x, u (t, x) , Du (t, x)). We notice then that this equation is essentially
of the form:

∂tm+ (−∆)
α
2 m+B (t, x,m,Dm) = 0

where B (t, x,m,Dm) = −
∑N

i=1

[
∂m
∂xi
fi (t, x) +m ∂

∂xi
fi (t, x)

]
.

One can now notice that this equation has the same form as the Hamilton-Jacobi
equation, and given the right properties of B, which we will now show, we get a unique
classical solution m of (5.1) with su�cient regularity in t and x.

We need to verify that the assumptions (A0)-(A4) from the chapter on the Fractional
Hamilton-Jacobi equation holds. Then, we wish to use Theorem 4.2. The Hamiltonian
B needs to satisfy:
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• (A0) The function B : [0,+∞)× RN × RN → R is continuous.

• (A1) There exists γ ∈ R such that for all x ∈ RN , m,n ∈ R, m < n, p ∈ RN ,
t ∈ [0, T ),

B (t, x, n, p)−B (t, x,m, p) ≥ γ (n−m)

• (A2) For any R > 0, there exists CR > 0 such that for all x, y ∈ RN ,m ∈
[−R,R] p ∈ RN , t ∈ [0, T ),

|B (t, x,m, p)−B (t, y,m, p) | ≤ CR (|p|+ 1) |x− y|

• (A3) For any R > 0, there exists CR > 0 such that for all x ∈ RN ,m ∈ [−R,R] , p ∈
BR, t ∈ [0, T ), the derivatives of B (up till the k-th derivative) are bounded by the
constant CR, that is,

|DαB (t, x,m, p) | ≤ CR
with α = (αx1 , . . . , αxN , αm, αp1 , . . . , αpN ) a multi-index with |α| ≤ k.

• (A4) There exists C0 > 0 such that

sup
t∈[0,T ),x∈RN

|B (t, x, 0, 0) | ≤ C0

Theorem 5.1. Assume the following (for k ≥ 5

1. There exists CR > 0 such that for t ∈ (0, T ) , x ∈ RN , u ∈ [−R,R] , p ∈ BR and for
all multi-indexes αH with |αH | ≤ k + 2

|DαHH (x, u, p) | ≤ CR

2. We have that u,Du, · · · , Dk+2u, ∂tu, ∂tDu, ∂tD
2u ∈ Cb

(
]0, T [× RN

)
, and all these

quantities are uniformly bounded by some constant, say R > 0.

3. m0 ∈W k,∞ (RN)
Then the following holds true:

1. There exists a unique classical solution m of (5.1).

2. The following quantities are uniformly bounded:

m,Dm, · · · , D5m, ∂tm, ∂tDm, ∂tD
2m ∈ Cb

(
]0, T [× RN

)
and

∂tm ∈ C
1
2
,1

b

(
]0, T [× RN

)
where C

1
2
,1

b is a parabolic Hölder-space.

Proof. We need to show that the assumptions (A0)-(A4) and the Hölder condition 4.2
holds. We begin by showing (A3), and then proceed to show the others in the normal
order.
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(A3)

Assume that t ∈ [0, T ) , x ∈ RN ,m ∈ [−R,R] , p ∈ BR. Then we compute the following
for a multi-index α = (αx1 , . . . , αxN , αm, αp1 , . . . , αpN ) with |α| ≤ k:

|DαB (t, x,m, p) | =
∣∣∣∣ N∑
i=1

Dα

[
pifi (t, x) +m

∂

∂xi
fi (t, x)

] ∣∣∣∣
≤

N∑
i=1

R ∑
0≤|β|≤k

(
‖∂βfi‖0

)
+R

∑
0≤|β|≤k

(
‖∂β ∂

∂xi
fi‖0

)
≤ 2R

N∑
i=1

∑
0≤|β|≤k+1

‖∂βfi‖0

recalling that ‖ · ‖0 = ‖ · ‖Cb(]0,T [×RN ). Remember that fi was given by:

fi (t, x) =
∂H

∂pi
(x, u (t, x) , Du (t, x))

So, if u,Du, · · · , Dk+2u are uniformly bounded, and assumption 1. from Theorem 5.1
holds, the following sum is uniformly bounded∑

0≤|β|≤k+1

‖∂βfi‖0 ≤ K(5.2)

where K > 0 is some constant. This shows that (A3) holds.

(A0)

This assumption holds, since fi,
∂
∂xi
fi are continuous, from the assumptions made on H

and u.

(A1)

Since ∂
∂xi
fi is uniformly bounded by some constant K > 0, as shown in (5.2), we can

compute:

B (t, x, n, p)−B (t, x,m, p)

= −
N∑
i=1

[
pifi (t, x) + n

∂

∂xi
fi (t, x)

]
+

N∑
i=1

[
pifi (t, x) +m

∂

∂xi
fi (t, x)

]

=
N∑
i=1

(m− n)
∂

∂xi
fi (t, x) ≥ N (m− n) (−K) = (n−m)NK

which shows that the assumption holds.
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(A2)

We calculate:

|B (t, x, u, p)−B (t, y, u, p) |

=

∣∣∣∣ N∑
i=1

[pifi (t, x) + u∂ifi (t, x)]−
N∑
i=1

[pifi (t, y) + u∂ifi (t, y)]

∣∣∣∣
=

∣∣∣∣ N∑
i=1

pi [fi (t, x)− fi (t, y)] + u
N∑
i=1

[∂ifi (t, x)− ∂ifi (t, y)]

∣∣∣∣
≤ |p|

N∑
i=1

|fi (t, x)− fi (t, y) |+R
N∑
i=1

|∂ifi (t, x)− ∂ifi (t, y) |

≤ CR (|p|+ 1) |x− y|

where the last inequality follows from fi and ∂ifi being continuously di�erentiable in x
and bounded (referring to (5.2)). This implies that both functions are Lipschitz in x,
with some Lipschitz constant, which yields the last inequality.

(A4)

Inserting u = p = 0, we end up with

|B (t, x, 0, 0) | = 0

so this assumption holds trivially.

Hölder-condition

The last thing to do, is to show that B satis�es the following condition:

For all s, t ∈ ]0, T [ , x, y ∈ RN , u, v ∈ [−R,R] , p, q ∈ BR there exists a constant
LR > 0 such that:

|B (s, x, u, p)−B (t, y, v, q) | ≤ LR
(
|s− t|

1
2 + |x− y|+ |u− v|+ |p− q|

)
(5.3)

We compute

|B (s, x,m, p)−B (t, y, n, q) |

=

∣∣∣∣ N∑
i=1

[pifi (s, x) +m∂ifi (s, x)]−
N∑
i=1

[qifi (t, y) + n∂ifi (t, y)]

∣∣∣∣
≤

N∑
i=1

(
|pifi (s, x)− qifi (t, y) |+ |m∂ifi (s, x)− n∂ifi (t, y) |

)
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Now, we can use the triangle inequality on the �rst term to obtain

|pifi (s, x)− qifi (t, y) |
≤ |pifi (s, x)− qifi (s, x) |+ |qifi (s, x)− qifi (t, y) |
≤ |pi − qi||fi (s, x) |+ |qi||fi (s, x)− fi (t, y) |

and in the same manner, we obtain for the second term

|m∂ifi (s, x)− n∂ifi (t, y) | ≤ |m− n||∂ifi (s, x) |+ |n||∂ifi (s, x)− ∂ifi (t, y) |.

Recall that fi and ∂ifi are uniformly bounded by some constant K > 0, de�ned in
(5.2). Also, recall our assumptions that u,Du,D2u ∈ C1,1

b

(
]0, T [× RN

)
. From this, one

can show that

fi, ∂ifi ∈ C1,1
b

(
]0, T [× RN

)
,

since the expression ∂ifi involves the functions u,Du,D
2u (but not D3u,D4u, · · · ).

Recalling Lemma 2.6 (regarding bounded C1 functions also being C1/2 functions),
we continue the calculations to obtain:

|B (s, x,m, p)−B (t, y, n, q) |

≤
N∑
i=1

(
|pi − qi||fi (s, x) |+ |qi||fi (s, x)− fi (t, y) |

+ |m− n||∂ifi (s, x) |+ |n||∂ifi (s, x)− ∂ifi (t, y) |
)

≤
N∑
i=1

K|pi − qi|+RK
(
|s− t|

1
2 + |x− y|

)
+K|m− n|+RK

(
|s− t|

1
2 + |x− y|

)
≤ LR

(
|s− t|

1
2 + |x− y|+ |m− n|+ |p− q|

)
where LR > 0 is some constant, which is what we wanted to show.

Conclusion

Having established that (A0)-(A4) holds, and that B satis�es (5.3), we conclude by
Theorem 4.2 that there exists a uniquem that solves (5.1), with the stated regularity.
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Chapter 6

Estimates of ∂
β
xH

The Hamiltonian H is on the following form:

H : [0,∞)× RN × R× RN → R
(s, x, u, p) 7→ H (s, x, u, p)

However, in the analysis of the fractional Hamilton-Jacobi equation, we usually look
at the composite function

(s, x) 7→ H (s, x, u (s, x) , w (s, x))

where u and w are functions mapping to R and RN , respectively. Now, taking spatial
derivatives of this function involves using the chain rule, but due to the complexity of
the function, this turns out to be a quite complicated process. As a start example, we
compute ∂xjh, to show how the complexity grows.

∂xjH (s, x, u (s, x) , w (s, x)) =
∂H

∂xj
(s, x, u (s, x) , w (s, x))

+
∂H

∂u
(s, x, u (s, x) , w (s, x))

∂u

∂xj
(s, x)

+
∂H

∂p1
(s, x, u (s, x) , w (s, x))

∂w1

∂xj
(s, x) + · · ·+ ∂H

∂pN
(s, x, u (s, x) , w (s, x))

∂wN
∂xj

(s, x)

(6.1)

As one can see, this expression is quite big. If we want to continue, calculating the second
derivative, ∂xi∂xjh, we would have to di�erentiate each of the terms in (6.1), and so on
for higher order derivatives.

Historically, there have been invented methods for problems of this kind. For example
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Faà di Bruno's Formula, which says that if f, g : R→ R are both regular enough, then

dm

dtm
g (f (x)) =

∑ m!

b1!b2! · · · bm!
g(k) (f (t))

(
f ′ (t)

1!

)b1 (f ′′ (t)
2!

)b2
· · ·

(
f (m) (t)

m!

)bm(6.2)

where the sum is over all di�erent solutions in nonnegative integers b1, · · · , bm of b1 +
2b2 + · · ·+mbm = m, and k is de�ned as k := b1 + · · ·+ bm (Johnson, [9]).

The problem is that the expression (6.2) is only valid for quite simple functions f
and g (mapping from R to R), while the expression we deal is more complicated. The
bad news is that such complexity makes it di�cult to �nd an exact expression for the
derivative. The good news is that we don't need to know the exact expression. Finding
out which properties the derivative has is, as we will show, su�cient for our case. We
have the following aims for this chapter:

Aim

For a multi-index β = (β1, · · · , βN ), we want to

1. �nd a useful representation of ∂βH (s, x, u (s, x) , w (s, x)),

2. �nd an upper bound for |∂βH|

3. �nd an estimate for |∂βH (s, x, u (s, x) , wp (s, x))− ∂βH (s, x, u (s, x) , wq (s, x)) |

Resolution

By investigating expressions like (6.1), it is clear that each term can be divided in two
parts: One part that contains some derivative with respect to H, and one part that is a
polynomial consisting of derivatives of u and wi. Like for example the term:

∂H

∂p2

∂w2

∂xj

If we take the second derivative, e.g. computing ∂xi∂xjh, the expression contains the
term: (

∂w1

∂xj

∂w2

∂xi
+
∂w1

∂xi

∂w2

∂xj

)
∂2H

∂p1∂p2
(s, x, u, w)

When we take the k-th order derivative, we are no longer sure what these polynomials
look like, but we know something about their structure. The �rst thing we can show is
that each polynomial has order less or equal to k. The second thing we can show is that
u and wi are di�erentiated maximally k times. The easy solution is to say that �there is
some polynomial in front of each DαH, and this polynomial has order less or equal to k.
This is what we try to formalize in the next lemma.
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Lemma 6.1. (Representation of ∂βH). Let β = (β1, · · · , βN ) be a multi-index with
|β| ≤ k. Then the derivative of H can be written on the form:

∂βH (s, x, u, w) =
∑
|α|≤k

P1
α,β (u,w)

∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

(6.3)

with

P1
α,β (u,w) =

∑
|γ|+|η1|+...|ηN |≤k

K (γ, η1,+ . . . , ηN ;α, β)

 ∏
|β0|≤k

(
∂β0u

)γ(β0)

 ∏
|β1|≤k

(
∂β1w1

)η1(β1)


(6.4)

· · ·

 ∏
|βN |≤k

(
∂βNwN

)ηN (βN )

(6.5)

where K is a function taking multi-indexes (or tuples), and returning a number in
{0, 1, 2, 3, . . . }.

The derivative can also be represented as:

∂βH (s, x, u, w) =
∑
|α|≤k

P2
α,β (u,w)

∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

+

N∑
i=1

∂βwi
∂H

∂pi
(6.6)

with

P2
α,β (u,w) =

∑
|γ|+|η1|+...|ηN |≤k

K (γ, η1,+ . . . , ηN ;α, β)

 ∏
|β0|≤k

(
∂β0u

)γ(β0)

 ∏
|β1|≤k−1

(
∂β1w1

)η1(β1)


(6.7)

· · ·

 ∏
|βN |≤k−1

(
∂βNwN

)ηN (βN )

(6.8)

We have that γ, η1, · · · ηN are functions taking multi-indexes and returning a natural
number, {0, 1, 2, 3, · · · }. We also de�ne |γ| =

∑
β0≤k γ (β0), and likewise for η1, · · · , ηN .

Proof. We want to prove that the derivative of H has this form, and that the polynomials
P1
α,β (u,w) and P2

α,β (u,w) has order less or equal to k. One can prove this by induction.
The case k = 1 is clear from the expression (6.1), so what remains is to show that if it
holds for k, then it holds for k + 1.
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If the expression holds for |β| = k, then ∂βH is on the form:

∂βH (s, x, u, w) =
∑
|α|≤k

P1
α,β (u,w)

∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

If we now di�erentiate this expression, e.g. in the direction xi, we get (since di�erentiation
is a linear operation):

∂xi∂
βH (s, x, u, w)

lin.
=
∑
|α|≤k

∂xi

(
P1
α,β (u,w)

∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

)

=
∑
|α|≤k

{(
∂xiP1

α,β (u,w)
) ∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

+P1
α,β (u,w)

(
∂xi

∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

)}

Di�erenting the expression P1
α,β (u,w), does not increase the order of the polynomial, so

that it still has order less or equal to k.

Di�erenting the expression DαH, leads maximally (by the chain rule) to an increase
of 1 power in the polynomial in front of it, so that the new polynomials have order less
or equal to k + 1. Also, ∂βH is still on the form we proposed, as can be easily seen.

The case for the second representation (6.6) follows from looking at the expression
(6.1) and realizing that the incidents of wi being di�erentiated k times only happens in
N di�erent cases (the last N last terms in (6.1). This concludes the proof.

Using this representation of ∂βH leads to several useful results, starting with the next
lemma.

Lemma 6.2. (Upper bound of |∂βH|) Suppose that u and w and their derivatives up till
k-th order are bounded by a constant R. Assume further that there exists a constant CR
such that for |α| ≤ k + 1, |∂αH (s, x, u, w) | ≤ CR. Then

∃c = c (N, k,R) s.t. |∂βH (s, x, u, w) | ≤ c(6.9)

furthermore, if ‖∂β0u‖∞ ≤ R for all |β0| ≤ k, ‖∂β1wj‖∞ ≤ R for all |β1| ≤ k− 1 and
‖t1/λ∂β2wj‖∞ ≤ R for all |β2| = k, then

∃c1 = c (N, k,R) , c2 = c2 (N,R) s.t. |∂βH (s, x, u, w) | ≤ c1 + s−1/λc2(6.10)
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Proof. Part I:
This follows from using the representation in lemma 6.1. Pick u and w as described, then

|∂βH (s, x, u, w) | ≤
∑
|α|≤k

P1,max
α,β CR = c (N, k,R)

where

P1,max
α,β =

∑
|γ|+|η1|+...|ηN |≤k

K (γ, η1, . . . , ηN ;α, β)R|γ|+|η1|+...|ηN |

which is what we wanted to show.

Part II:

By using the representation (6.6), we have

∂βH (s, x, u, w) =
∑
|α|≤k

P2
α,β (u,w)

∂|α|H

∂
αx1
x1 · · · ∂

αxN
xN ∂αuu ∂

αp1
p1 · · · ∂

αpN
pN

+

N∑
i=1

∂βwi
∂H

∂pi
(6.11)

Picking u and w as described gives us

|∂βH (s, x, u, w) | ≤
∑
|α|≤k

P2,max
α,β CR +

N∑
i=1

s−1/λRCR

= c1 (N, k,R) + s−1/λc2 (N,R)

where

P2,max
α,β =

∑
|γ|+|η1|+...|ηN |≤k

K (γ, η1, . . . , ηN ;α, β)R|γ|+|η1|+...|ηN |

which yields the necessary estimate.

6.1 Estimates on the di�erence

Here is a small lemma that will help us trough the calculations.

Lemma 6.3. Consider the polynomials P1
α,β and P2

α,β. We have that for w1, w2 ∈ Fk+1

(or p1, p2 ∈ Ek+1) such that ‖w1‖Fk+1
, ‖w2‖Fk+1

≤ R (‖w1‖Ek+1
, ‖w2‖Ek+1

≤ R) that

|P1
α,β (u,w1)− P1

α,β (u,w2) | ≤ k2

R
P1,max
α,β ‖w1 − w2‖Fk+1

(6.12)

and

|P2
α,β (u, p1)− P2

α,β (u, p2) | ≤ k2

R
P2,max
α,β ‖w1 − w2‖Ek+1

(6.13)
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Proof. We can think of P1
α,β and P2

α,β as polynomials of degree k or less. For a polynomial

f : Rd → R of degree k or less, the following holds by the fundamental theorem of calculus

|f (x)− f (y) | ≤ ‖Df‖L∞‖x− y‖1 ≤ k‖Df‖L∞‖x− y‖∞

where ‖ · ‖1 and ‖ · ‖∞ is the 1-norm and in�nity-norm of Rd, respectively. Also, since f
is a polynomial of degree k or less:

‖Df‖L∞(BR) ≤
k

R
‖f‖L∞(BR)

since f ∈ Pk =⇒ Df ∈ Pk−1. We conclude:

‖f (x)− f (y) ‖L∞(Rd) ≤
k2

R
‖f‖L∞(Rd)‖x− y‖∞

Using this result, we easily obtain the estimates (6.12) and (6.13).

6.1.1 Computations

Using our knowledge of ∂βH, we can compute |∂βH (s, x, u, w1)−∂βH (s, x, u, w2) |. We
will do two di�erent kinds of computations, depending on which space w1 and w2 belong
to. We will consider the spaces Fk+1 and Ek+1, which is de�ned as:

Fk+1 (Ts, Te) :=
{
w, · · · , Dkw ∈ Cb

(
]Ts, Te[× RN

)}
and

Ek+1 (Ts, Te) :=
{
w, · · · , Dk−1w, t1/λDkw ∈ Cb

(
]Ts, Te[× RN

)}
where Te > Ts ≥ 0. We start with the �rst case, when w1, w2 ∈ Fk+1.

Lemma 6.4. Let w1, w2 ∈ Fk+1 (Ts, Te) so that ‖w1‖Fk+1
, ‖w2‖Fk+1

≤ R, and let ‖∇u‖Fk ≤
R. Then it holds that:

|∂βH (s, x, u, w1)− ∂βH (s, x, u, w2) | ≤
(
k2

R
+N

)
c‖w1 − w2‖Fk+1

(6.14)

where c is the constant from (6.9)

Proof. By using Lemma 6.1, we get that

|∂βH (s, x, u, w1)− ∂βH (s, x, u, w2) |
(6.3)
=

∣∣∣∣ ∑
|α|≤k

P1
α,β (u,w1) ∂αH (s, x, u, w1)−

∑
|α|≤k

P1
α,β (u,w2) ∂αH (s, x, u, w2)

∣∣∣∣
≤
∑
|α|≤k

∣∣∣∣P1
α,β (u,w1) ∂αH (s, x, u, w1)− P1

α,β (u,w2) ∂αH (s, x, u, w2)

∣∣∣∣
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By use of the mean value theorem, the following holds:

∂αH (s, x, u, w1) = ∂αH (s, x, u, w2) + ∂α+1H (s, x, u, wc) (w1 − w2)

where wc lies on the line between w1 and w2. By using this, and (6.12), we get

≤
∑
|α|≤k

∣∣∣∣P1
α,β (u,w1) ∂αH (s, x, u, w2)− P1

α,β (u,w2) ∂αH (s, x, u, w2)

+ P1
α,β (u,w1) ∂α+1H (s, x, u, wc) (w1 − w2)

∣∣∣∣
≤
∑
|α|≤k

CR
∣∣P1

α,β (u,w1)− P1
α,β (u,w2)

∣∣+ P1,max
α,β CRN‖w1 − w2‖∞

(6.12)

≤
∑
|α|≤k

CR
k2

R
P1,max
α,β ‖w1 − w2‖Fk+1

+NP1,max
α,β CR‖w1 − w2‖Fk+1

=

(
k2

R
+N

)
‖w1 − w2‖Fk+1

∑
|α|≤k

CRP1,max
α,β

Lemma 6.2
=

(
k2

R
+N

)
c (N, k,R)CR‖w1 − w2‖Fk+1

This concludes the proof.

We continue by looking at the space Ek+1.

Lemma 6.5. Let w1, w2 ∈ Ek+1 (Ts, Te) so that ‖w1‖Ek+1
, ‖w2‖Ek+1

≤ R, and let
‖∇u‖Fk ≤ R. Then it holds for |β| = k that:

|∂βH (s, x, u, w1)− ∂βH (s, x, u, w2) | ≤
(
k2

R
+N

)(
c1 + s−1/λc2

)
‖w1 − w2‖Ek+1

(6.15)

where c1 and c2 are the constant from (6.10)

Proof. Let w1, w2 ∈ Ek such that ‖w1‖Ek , ‖w2‖Ek ≤ R. For |β| = k, we can use the
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representation (6.6) from Lemma 6.1 to obtain:

|∂βH (s, x, u, w1)− ∂βH (s, x, u, w2) |
(6.6)

≤
∑
|α|≤k

∣∣∣∣P2
α,β (u,w1) ∂αH (s, x, u, w1)− P2

α,β (u,w2) ∂αH (s, x, u, w2)

∣∣∣∣
+

N∑
i=1

∣∣∣∣∂β (w1)i
∂H

∂pi
(s, x, u, w1)− ∂β (w2)i

∂H

∂pi
(s, x, u, w2)

∣∣∣∣
≤
(
k2

R
+N

)
c1‖w1 − w2‖Ek+1

+ s−1/λ
N∑
i=1

∣∣s1/λ∂β (w1)i
∂H

∂pi
(s, x, u, w1)− s1/λ∂β (w2)i

∂H

∂pi
(s, x, u, w2)

∣∣
≤
(
k2

R
+N

)
c1‖w1 − w2‖Ek+1

+

(
k2

R
+N

)
s−1/λc2‖w1 − w2‖Ek+1

=

(
k2

R
+N

)(
c1 + s−1/λc2

)
‖w1 − w2‖Ek+1

where the two last inequalities follows from the exact same techniques as in the proof of
Lemma 6.4. The constants c1, c2 are the same as in (6.10).
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Concluding remarks

We have shown that a fractional Mean Field Games system with non-local coupling
(system (3.1) admits a unique classical solution under certain assumptions on the initial
conditions, the HamiltonianH, and on F andG. In the process, we needed to prove state-
ments for the fractional Laplacian on the torus, de�ne weak solutions for the fractional
Fokker-Planck equation, and to use regularity results for the fractional Hamilton-Jacobi
equation and the fractional Fokker-Planck equation.

A large part of the thesis deals with regularity theory for the fractional Hamilton-
Jacobi equation, with a Hamiltonian of a quite general form. We show that this equation
admits bounded classical solutions, under suitable assumptions. We also show higher-
order regularity in time and space for the fractional Hamilton-Jacobi equation. These
estimates are necessary for proving existence of solutions for the fractional MFG system.

The only problem with our results, is that we need to make pretty strong assumptions
on the di�erentiability of H,F ,G and m0 in the Mean Field Game system. This is due to
our regularity estimates for the fractional Hamilton-Jacobi equation. Hopefully, we can
�nd a way to lessen the assumptions.

There are some things that can be further improved upon, and we list them as follows:

• Check whether it is possible to lessen the assumptions on the Hamiltonian H and
the initial conditions u0, when dealing with the fractional Hamilton-Jacobi equa-
tion.

• Use another way of showing regularity for the fractional Fokker-Planck equation,
that demands less of H and the solution u from the fractional Hamilton-Jacobi
equation.

• Show existence and uniqueness for the same MFG-system, but with local coupling.
For doing this, we need some estimates for weak solutions on the fractional Fokker-
Planck equation on divergence form, which we don't have by now.

65
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Appendix

Proof of Lemma 2.3

In this appendix, we will prove Lemma 2.3 stated in the Preliminaries. It is stated like
follows.

Lemma .1. Let f, g ∈ C2
(
Td
)
. Then the following identity holds, for α ∈ (1, 2).∫

Td
(−∆Td)

α/2 f (x) g (x) =

∫
Td
f (x) (−∆Td)

α/2 g (x) dx

Proof. The proof follows by a density argument.

We associate f and g with their periodic extensions, that is, f, g ∈ C2
(
Rd
)
with

f (x+ z) = f (x) , g (x+ z) = g (x) ∀x ∈ Rd, z ∈ Zd

From the compactness of the torus, we get by interpolation, that

‖f‖L2(Td) ≤ C‖f‖L∞(Td)

Let φ ∈ C∞c
(
Rd
)
be a positive molli�er, let φε = ε−dφ (x/ε), and de�ne

fε := (f ∗ φε) (x)

gε := (g ∗ φε) (x)

An important property of the positive molli�er, is that, for any function u ∈ L2
(
Rd
)
,

we have

‖u− u ∗ φε‖L2(Rd)
ε→0−−→ 0

A proof for this can be found in Rudin.

A consequence of this is that, for any function u ∈ L2
(
Td
)
, we get that

‖u− u ∗ φε‖L2(Td)
ε→0−−→ 0(1)
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This statement is not obvious as the spaces L2
(
Rd
)
and L2

(
Td
)
does not share the same

set of functions at all (I think f = 0 would be the only common function). However,
since the function φ has compact support, say supp φ ⊂ BR for some R > 0, and x is
con�ned to Td, the convolution

(u ∗ φ) (x) =

∫
Rd
u (x− y)φ (y) dy

=

∫
BR(Td)

u (x− y)φ (y) dy

is not over the whole of Rd, so that we probably won't have any trouble with claiming
(1) to be true.

Now, the functions fε and gε are periodic, due to the periodicity of f and g. To show
this, pick x ∈ Rd, z ∈ Zd:

fε (x+ z) =

∫
Rd
f (x+ z − y)φε (y) dy

=

∫
Rd
f (x− y)φε (y) dy = fε (x)

The same holds for g. This shows that fε, gε ∈ C∞
(
Td
)
, since φ ∈ C∞c

(
Rd
)
. By Youngs

inequality we obtain the following bounds, and using the rules for di�erentiation of a
convolution, we get

‖fε‖L∞(Td) = ‖f ∗ φε‖L∞(Td) ≤ ‖f‖L∞(Td)‖φε‖L1Rd = ‖f‖L∞(Td)

‖ (−∆)σ/2 fε‖L∞(Tn)

(2.6)

≤ C‖fε‖C2(Td) ≤ C‖f‖C2(Rd)

Since the torus is compact, we get the following interpolation for any u ∈ L2
(
Td
)
:

‖u‖2
L2(Td) =

∫
Td
|u|2dx ≤ |Td|‖u‖2

L∞(Td) = C‖u‖2
L∞(Td)

=⇒ ‖u‖L2(Td) ≤ C‖u‖L∞(Td)

This implies that

‖fε‖L2(Td) ≤ C‖f‖L∞(Rd)

‖ (−∆)σ/2 fε‖L2(Tn) ≤ C‖f‖C2(Rd)

and the same result for gε.
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Since fε, gε ∈ C∞
(
Td
)
, we obtain from Lemma 2.2 that∫

Td
(−∆)α/2 fε (x) gε (x) =

∫
Td
fε (x) (−∆)α/2 gε (x) dx(2)

To conclude the proof, we need to show that∫
Td

(−∆)α/2 fε (x) gε (x) dx
ε→0−−→

∫
Td

(−∆)α/2 f (x) g (x) dx

and∫
Td
fε (x) (−∆)α/2 gε (x) dx

ε→0−−→
∫
Td
f (x) (−∆)α/2 g (x) dx

It su�ces to show the �rst one of them, since the proof will be the same.

Note that the interpolation results earlier gives

| (−∆)α/2 fε (x) gε (x) | ≤ ‖ (−∆)α/2 fε‖L∞(Td)‖gε‖L∞(Td)

≤ ‖f‖C2(Td)‖g‖L∞(Td).

This allows us to use the dominated convergence theorem, exchanging the integral sign
and the limit. We then obtain∣∣∣∣ ∫

Td
(−∆)α/2 fgdx− lim

ε→0

∫
Td

(−∆)α/2 fεgεdx

∣∣∣∣
=

∣∣∣∣ ∫
Td

(−∆)α/2 fgdx−
∫
Td

lim
ε→0

[
(−∆)α/2 fεgε

]
dx

∣∣∣∣
≤ lim

ε→0

∫
Td

[∣∣ (−∆)α/2 fg − (−∆)α/2 fεgε
∣∣] dx

≤
∫
Td

lim
ε→0

[∣∣ (−∆)σ/2 fg − (−∆)σ/2 fεg
∣∣

+
∣∣ (−∆)σ/2 fεg − (−∆)σ/2 fεgε

∣∣]dx
≤ lim

ε→0

∫
Td

[∣∣ (g)
(

(−∆)σ/2 f − (−∆)σ/2 fε

) ∣∣
+
∣∣ ((−∆)σ/2 fε

)
(g − gε)

∣∣]dx
Hölder
≤ lim

ε→0

(
‖g‖L2(Td)‖ (−∆)σ/2 f − (−∆)σ/2 (f ∗ φε) ‖L2(Td)

+‖ (−∆)σ/2 fε‖L2(Td)‖g − g ∗ φε‖L2(Td)

)
(∗)
= lim

ε→0

(
‖g‖L2(Td)‖ (−∆)σ/2 f −

(
(−∆)σ/2 f

)
∗ φε‖L2(Td)

+‖ (−∆)σ/2 fε‖L2(Td)‖g − g ∗ φε‖L2(Td)

)
(1)
= 0
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This holds from that v and (−∆)σ/2 uε are uniformly bounded, independent of ε, and
the convergence properties of φε stated in (1). Thus, we get∫

Td
(−∆)σ/2 f (x) g (x) dx = lim

ε→0

∫
Td

(−∆)σ/2 fε (x) gε (x) dx

= lim
ε→0

∫
Td
fε (x) (−∆)σ/2 gε (x) dx =

∫
Td
f (x) (−∆)σ/2 g (x) dx

which is what we wanted to prove.

The last thing we need to do is to prove (∗), that

(−∆)α/2 (u ∗ φ) (x) =
(

(−∆)α/2 u
)
∗ φε (x)

We compute:

(−∆)α/2 (u ∗ φε) (x) =

∫
Rd

u ∗ φε (x+ z)− u ∗ φε (x)−∇ (u ∗ φε (x)) · z
|z|d+α

dz

=

∫
R

1

|z|d+α

(∫
Rd
u (x− y + z)φε (y)− u (x− y)φε (y)−∇u (x− y)φε (y) · zdy

)
dz

=

∫
Rd

∫
Rd

1

|z|d+α
φε (y)

[
u (x− y + z)− u (x− y)−∇u (x− y) · z

]
dydz

If we are allowed to change the order of integration, we obtain

=

∫
Rd
φε (y)

∫
Rd

1

|z|d+α

[
u (x− y + z)− u (x− y)−∇u (x− y) · z

]
dzdy

=

∫
Rd
φε (y) (−∆)α/2 u (x− y) dy =

(
(−∆)α/2 u

)
∗ φε (x)

which is the statement we wanted to show.

To prove that we can change the order of integration, we use the Fubini-Tonelli
theorem. First, by Taylor expansion, we have that

u (x− y + z)− u (x− y)−∇ (u (x)) · z ≤ |z|2‖D2u‖L∞(Rd)

We also have the estimate:

u (x− y + z)− u (x− y)−∇ (u (x)) · z ≤ 2‖u‖L∞(Rd) + |z|‖Du‖L∞(Rd)

By splitting the integral over Rd into a integral over B1 and Rd \ B1, we use these
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estimates to obtain

=

∫
Rd

∫
Rd

∣∣∣∣ 1

|z|d+α
φ (y)

[
u (x− y + z)− u (x− y)−∇u (x− y) · z

]∣∣∣∣dydz
≤
∫
Rd

1

|z|d+α

∫
Rd

∣∣φ (y)
∣∣∣∣u (x− y + z)− u (x− y)−∇u (x− y) · z

∣∣dydz
≤ ‖D2u‖L∞(Rd)

∫
B1

|z|2

|z|d+α
‖φε‖L1(Rd)dz + 2‖u‖L∞(Rd)

∫
Rd\B1

1

|z|d+α
‖φε‖L1(Rd)dz

+ ‖Du‖L∞(Rd)

∫
Rd\B1

|z|
|z|d+α

‖φε‖L1(Rd)dz

≤ C
(∫ 1

0

1

|ρ|α−1
dρ+

∫ ∞
1

1

|ρ|α+1
dρ+

∫ ∞
1

1

|ρ|α
dρ

)
<∞

where we have used polar coordinates, |z| = |ρ|, dz = ρd−1dρ. Thus, by the Fubini-Tonelli
theorem, the order of integration can be changed.


