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Abstract 

 

The purpose of this study was to investigate the effects of anisotropy on elastic 
parameters of rocks, and to compare various types of anisotropic rock models with the use 
of ultrasonic data obtained with a true-triaxial loading apparatus.  

In the first part of the thesis, general concept of anisotropy is presented. Anisotropy 
sources and quantification methods are characterised, and its influence on seismic waves 
velocity is described. Grain pack, inclusion and microscopic classes of models are 
introduced. The thesis examines two of the presented models, an inclusion proposed by Fjær 
(2006) and a macroscopic model published by Prioul et al. (2004) - their general features, 
characteristics of modelling procedure, results and their limitations. Due to technical 
difficulties, the ultrasonic measurements on transversely isotropic Berea and Colton 

sandstones subjected to hydrostatic and biaxial loading used to test the models are taken 
from Coyner (1984) and Cruts et al. (1995), respectively.  

The results of the tests show that both models are well suited to reproducing elastic 
stiffness parameters estimated from ultrasonic measurements. However, their 
characteristics entail significantly different methodologies and suggest that the models may 
be used interchangeably, depending on modelling conditions, interpreter expectations and 
amount of available experimental data.  

The second part of the thesis focuses on the true-triaxial loading apparatus owned by 
SINTEF Petroleum Research and Norwegian University of Science and Technology.  
It describes performance tests and modifications introduced to the apparatus, and discusses 
possible causes of equipment malfunctions. Despite all the changes, performance of  
the apparatus has not been sufficiently improved. The author recommends further 
modification to the apparatus before any other uses are considered.  
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1. Introduction  

 

Anisotropic behaviour of the rock has inspired multiple publications in the last few decades. 

One of the most important reasons to investigate this phenomena is the influence of 

anisotropy on seismic data, which makes it interesting not only from the academia’s point 

of view, but also important for hydrocarbons exploration and production planning and 

safety. Anisotropy studies have been proven to be useful for velocity and in-situ stress field 

estimation, reservoir and overburden characterization and monitoring, fractures 

propagation and flow modelling (Wild, 2011).  

The main objective of this thesis was to prepare a theoretical framework for anisotropy 

investigation, carry out laboratory experiments on anisotropic rock samples with the use of 

true-triaxial loading apparatus and combining both, the theory and the experimental data, 

to compare different types of mathematical models used to simulate the anisotropic 

behaviour of rocks under arbitrary stresses. Due to technical difficulties, the experimental 

part of the project was not successfully completed, and the measurements results had to be 

obtained from other publications. Therefore, the thesis was divided into two separate parts 

– chapters 2-5 consist of theoretical introduction and summary of numerical modelling, 

meanwhile chapter 6 describes the technical part of the project carried out in SINTEF 

Petroleum Research Formation Physics Laboratory. Some of the theoretical concepts 

investigated in this thesis were already described in the Specialization Project report 

submitted in December 2016. 

Chapters 2 and 3 aim to recapitulate the current state of knowledge about anisotropy. 

The most prominent theories referring to the origin of anisotropy were described, as well as  

observable effects of the rock anisotropy and methods of anisotropic effects quantification – 

the elastic stiffness coefficients and Thomsen’s parameters, their definitions and physical 

meaning. Different symmetry classes of a medium, i.e. isotropy, transverse isotropy and 

orthorhombic symmetry, were characterised. In order to set a basis for further comparison, 

three main approaches to the rock behaviour modelling were described (granular, inclusion 

and macroscopic) and exemplified with different models proposed by various authors.  

Chapters 4 and 5 describe and summarise the comparison of an inclusion (Fjær, 2006) 

and a macroscopic model (Prioul et al., 2004). Due to technical problems with the true-

triaxial apparatus, the models were tested with the use of the results of ultrasonic waves 

velocity measurements carried out under hydrostatic and non-hydrostatic stresses, 
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published by Coyner (1984) and Cruts et al. (1995). The most prominent features, application 

workflow variations and limitations of the models were investigated. The quality of  

the stiffness coefficients approximations was assessed in terms of partial and global misfit 

errors and trends reconstruction. Chapters 2-4, forming the first part of the thesis,  

are summarised together in chapter 5.  

The second part of the thesis (chapter 6) consists of a description of the true-triaxial 

apparatus and laboratory work - the apparatus maintenance, modification and upgrading 

workflow and analysis of the apparatus subsystems tests carried out mostly between January 

and June 2017 (except for the first sensors calibration performed in November 2016).  

Apparatus limitations and flaws are investigated and described, and their probable causes 

listed. Chapter 6 is concluded with the analysis of the apparatus performance, discussion of 

the probable causes of the apparatus malfunction and further modifications which could 

allow to remove the existing problems. 
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2. Theory of rock anisotropy  

 

2.1. Concept of rock anisotropy 

Anisotropy is generally defined as a dependence of the response of the medium upon  

its spatial orientation. In the context of the seismic waves it may be described as  

the dependence of the seismic wave velocity upon the propagation direction within  

the material. Anisotropy is caused by material heterogeneities present on a scale smaller 

than the volume in which anisotropy in observed. This phenomena is not limited to 

particular type of heterogeneities nor range of dimensions – anisotropy can result from 

features both as large as a sequence of layers of various types of rocks and as small as 

molecular configuration of the particles composing the medium (Fjær et al., 2008). There are 

two main mechanisms responsible for creation of the anisotropic effects.  

The intrinsic anisotropy originates from the original internal structure of the material 

and properties of its building elements. This type of anisotropy may result from preferred 

orientation of anisotropic minerals and pores (Vernik, 1993), presence of bedding planes 

(Thomsen, 1986) and resultant parallel alignment of minerals along them (Sayers, 1994).  

The induced, or extrinsic (i.e. produced by other mechanisms), anisotropy results from  

the impact of stress acting on the rock mass and may be related to factors such as high levels 

of differential stress (Nur and Simmons, 1969), presence of set (or sets) of aligned 

microcracks (Hudson, 1981) and large scale fractures (Mueller, 1991). Both types of 

anisotropy are schematically presented in fig. (2-1).  

 

 

Fig. 2-1. Anisotropy sources: intrinsic (left) and extrinsic (right) (after: Fjær et al., 2008) 
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Despite the variety of possible causes and its complexity, anisotropy can be included in 

the mathematical description of elastic waves propagation within the medium. It is usually 

made with use of effective parameters, describing the behaviour of the entire medium 

volume rather than characteristics of each grain, pore or crack. Introduction of anisotropy 

into the mathematical formulation tends to require numerous input parameters, which are 

not easily extracted from the geophysical and the laboratory data making the entire process 

rather difficult. In order to simplify the calculations it is a common practice to neglect 

the influence of anisotropy. However, this may introduce significant error in computations, 

as it is experimentally confirmed that most earth crust rocks are anisotropic  

(Thomsen, 1986). It was also analytically described and experimentally observed that a stack 

of isotropic elements may produce anisotropic behaviour of the entire medium volume.  

This phenomena is most clearly observed in wide-angle survey results (Backus, 1962). 

 

 

2.2. Stress-strain relationship in anisotropic material 

The stress-strain relationship in an anisotropic sample may be expressed using equation (1).  

As in the isotropic case, strain is directly related to stress, and this relation is proportional to 

a corresponding elastic stiffness matrix element. The choice of the stiffness matrix element 

depends on the orientation of the material and the direction of the exerted stress and  

the investigated strain.  

𝜎𝑖𝑗 =∑𝐶𝑖𝑗𝑘𝑙 ∙  𝜀𝑙𝑘
𝑙,𝑘

 (1) 

 

where: 𝜎𝑖𝑗 − 𝑠𝑡𝑟𝑒𝑠𝑠, 𝐶𝑖𝑗𝑘𝑙 − 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑚𝑎𝑡𝑟𝑖𝑥, 𝜀𝑘𝑙 − 𝑠𝑡𝑟𝑎𝑖𝑛. 

 

The elastic stiffness matrix expressed in a three-dimensional space allows i,j,k and l  to vary 

from 1 to 3, and hence in the most general form it consists of 81 elements. The number of 

constants reduces significantly due to symmetry of the matrix, equation (2), resulting from 

characteristics of stress and strain tensors presented in equations (3) and (4).   

 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑗𝑖𝑙𝑘 (2) 

𝜎𝑖𝑗 = 𝜎𝑗𝑖 (3) 
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𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (4) 

 

where: 𝑢 − 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑥 − 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.  

 

Equation (2) indicates that the change of order in pairs of indices (i.e. ij and kl ) does not 

affect the value of the element. It suggests that deformation amplitude depends only on a 

direction and magnitude of a stress vector, but not on its sense.  Taking into consideration 

the strain energy relation with strain and stress derivatives, expressed by equation (6), it is 

possible to validate equation (5) and further limit the number of the elastic stiffness matrix 

constants. As the order of the indices pairs is neither affecting the constant, the number of 

independent elements of the 𝐶𝑖𝑗𝑘𝑙 matrix goes down to 21. This number of constants is 

sufficient to describe behaviour of any anisotropic medium and may be even further reduced 

in case of presence of additional symmetries.  
 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 (5) 

𝜕𝜎𝑖
𝜕𝜀𝑗

=
𝜕2𝑊

𝜕𝜀𝑗𝜕𝜀𝑖
=
𝜕𝜎𝑗

𝜕𝜀𝑖
 (6) 

 

where: 𝑊 − 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑏𝑦 𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒). 

 

2.2.1. Orthorhombic symmetry  

In case of three mutually perpendicular symmetry planes the medium can be described as 

orthorhombically symmetric. This kind of symmetry is assumed to be sufficient to 

reasonably capture the properties of rocks  (Fjær et al., 2008). Assuming that the symmetry 

axes coincide with the three-dimensional coordinate system axes, an expression for stress 

vector should be identical for situation in which one of the axes is turned around (i.e. 𝑥′ = 𝑥,

𝑦′ = 𝑦, 𝑧′ = −𝑧). However, the produced results are different due to the change of  

the constants sign according to the axis inversion operation shown by equation (7).  

 

[
1 0 0

0 1 0

0 0 −1

] [

𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32
𝑎13 𝑎23 𝑎33

] [
1 0 0

0 1 0

0 0 −1

] = [

𝑎11 𝑎21 −𝑎31
𝑎12 𝑎22 −𝑎32
−𝑎13 −𝑎23 𝑎33

] (7) 
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If applied to all stress components and possible orientations, the number 

of independent elements of the elastic stiffness matrix is reduced to nine elements:-

𝐶1111, 𝐶2222, 𝐶3333, 𝐶1122, 𝐶1133, 𝐶2233, 𝐶2323, 𝐶1313 and 𝐶1212. In order to simplify the indices, 

Voigt’s notation is used: 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6. Vanishing elements 

can be replaced with 0, and therefore the elastic stiffness matrix and the stress and the strain 

vectors simplify to expressions (8), (9) and (10), respectively.  

 

𝑪 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

  0    0    0  
  0    0    0  
  0    0    0  

  0    0    0  
  0    0    0  
  0    0    0  

𝐶44 0 0
0 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

 

 

(8) 

 

 

𝝈 =

[
 
 
 
 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦]

 
 
 
 
 

 (9) 𝜺 =

[
 
 
 
 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
2𝛤𝑦𝑧
2𝛤𝑥𝑧
2𝛤𝑥𝑦]

 
 
 
 
 

 (10) 

 

The above vectors include terms for both normal (𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜀𝑥 , 𝜀𝑦 and 𝜀𝑧) and shear 

components (𝜏𝑦𝑧, 𝜏𝑥𝑧, 𝜏𝑥𝑦 , 2𝛤𝑦𝑧, 2𝛤𝑥𝑧 and 2𝛤𝑥𝑦), allowing to cover both forms of deformation. 

Normal components indices points the axis along which stress is exerted or the body is 

deformed. In case of the shear components, the first index indicates “face” of the body 

(perpendicular to the axis given by the index) to which the interaction is applied and  

the second specifies the direction of stress loading or deformation. Distribution of the stress 

components around a three-dimensional body is presented in fig. (2-2). 

 

 

Fig. 2-2. Stress tensor visualization. 
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To determine which elements of the matrix should be considered, it is necessary to solve 

equation (11), expressing the final form of stress-to-strain relationship, for each of the stress 

vector components.  

𝝈 = 𝑪 𝜺 (11) 

  

The resultant expressions (12) are sufficient to describe most types of rocks. Stiffness matrix 

coefficients 𝐶11, 𝐶12, 𝐶13, 𝐶22, 𝐶23 and 𝐶33 are related to stresses and deformations along  

the axes, meanwhile coefficients 𝐶44, 𝐶55 and 𝐶66 are exclusively used for calculating relations 

between shear stresses and shear strains with additional scaling factor of two.  

 

𝜎𝑥 = 𝐶11𝜀𝑥 + 𝐶12𝜀𝑦 + 𝐶13𝜀𝑧 

𝜎𝑦 = 𝐶12𝜀𝑥 + 𝐶22𝜀𝑦 + 𝐶23𝜀𝑧 

𝜎𝑧 = 𝐶13𝜀𝑥 + 𝐶23𝜀𝑦 + 𝐶33𝜀𝑧 

𝜏𝑦𝑧 = 2𝐶44 𝛤𝑦𝑧 

𝜏𝑦𝑧 = 2𝐶55 𝛤𝑥𝑧 

𝜏𝑦𝑧 = 2𝐶66 𝛤𝑥𝑦 

(12) 

 

2.2.2. Isotropy  

Isotropy is an extreme case of symmetry leading to significant simplification of the stiffness 

coefficients matrix. The number of independent parameters reduces to two, transforming 

the stress-to-strain relationship into equations (13).  

𝜎𝑥 = (𝜆 + 2𝐺)𝜀𝑥 + 𝜆𝜀𝑦 + 𝜆𝜀𝑧 

𝜎𝑦 = 𝜆𝜀𝑥 + (𝜆 + 2𝐺)𝜀𝑦 + 𝜆𝜀𝑧 

𝜎𝑧 = 𝜆𝜀𝑥 + 𝜆𝜀𝑦 + (𝜆 + 2𝐺)𝜀𝑧 

𝜏𝑦𝑧 = 2𝐺 𝛤𝑦𝑧 

𝜏𝑦𝑧 = 2𝐺 𝛤𝑥𝑧 

𝜏𝑦𝑧 = 2𝐺 𝛤𝑥𝑦 

(13) 

 

where: 𝜆, 𝐺 (𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠) − 𝐿𝑎𝑚𝑒′𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 

 

Lame’s constants, 𝜆  and 𝐺, can be related to particular elements of the stiffness coefficients 

matrix by combining equations (12) and (13), which gives identities (14) shown below.  
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In case of an isotropic medium, Lame’s parameters may be replaced with different pair of 

elastic moduli according to the relationships shown in table 2-1.   

 

𝐶11 = 𝐶22 = 𝐶33 = 𝜆 + 2𝐺 

𝐶12 = 𝐶13 = 𝐶23 = 𝜆 

𝐶44 = 𝐶55 = 𝐶66 = 𝐺 

(14) 

 

Table 2-1. Relationship between elastic moduli for isotropic medium. 
 

Modulus 𝝀 & 𝑮 𝑯 & 𝑮 𝑲 & 𝑮 𝑬 & 𝝂 

Plane wave 
modulus H 

𝜆 + 2𝐺 𝐻 𝐾 +
4

3
𝐺 𝐸

1 − 𝜈

(1 + 𝜈)(1 − 2𝜈)
 

Shear modulus 
G 

𝐺 𝐺 𝐺 𝐸
1

2(1 + 𝜈)
 

Bulk modulus K 𝜆 +
2

3
𝐺 𝐻 −

4

3
𝐺 𝐾 𝐸

1

3(1 − 2𝜈)
 

Young’s  
modulus E 

𝐺(3𝜆 + 2𝐺)

𝜆 + 𝐺
 

𝐺(3𝐻 − 4𝐺)

𝐻 − 𝐺
 

9𝐾𝐺

3𝐾 + 𝐺
 𝐸 

Lamé’s 
coefficient 𝜆 

𝜆 𝐻 − 2𝐺 𝐾 −
2

3
𝐺 𝐸

𝜈

(1 + 𝜈)(1 − 2𝜈)
 

Poisson’s ratio 𝜈 
𝜆

2(𝜆 + 𝐺)
 

𝐻 − 2𝐺

2(𝐻 − 𝐺)
 

3𝐾 − 2𝐺

2(3𝐾 − 𝐺)
 𝜈 

 

Equations (13) indicate that not only the sense of stress and strain vectors, but also 

the direction do not affect the behaviour of the body. Changes along the direction parallel to 

the coordinate system axes are governed by both moduli, while angular (shear) deformation 

depends exclusively on shear modulus of the medium. Small number of parameters required 

to describe an isotropic body and possibility to substitute them with other moduli make it 

much easier to use the isotropic model for practical purposes. It may explain the tendency 

to ignore anisotropic effects in field studies where all necessary parameters are hardly 

available.  

 

2.2.3. Transverse isotropy  

Transverse isotropy is an intermediate case of symmetry, somewhere in between 

orthorhombic symmetry and isotropy, used to describe a medium containing parallel-
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oriented symmetry planes localised along an unique symmetry axis. The difference between 

the orthorhombic symmetry and transverse isotropy are shown in fig. (2-3).  

 

Fig. 2-3. Graphical representation of transverse (left)  
and orthorhombic (right) symmetries. . 

 

 

 It is assumed that this type of medium is characterised with fully rotational symmetry, and 

therefore the properties of a TI (Transversely Isotropic) medium do not change within  

a symmetry plane, but may vary in any other direction. In order to fulfil these conditions a 

new set of the stiffness coefficients definitions has to be established (equations 15).  

 

𝐶11 = 𝐶22 

𝐶13 = 𝐶23 

𝐶12 = 𝐶11 − 2𝐶66 

𝐶44 = 𝐶55 

(15) 

 

Transverse isotropy assumes that some of the directions of wave propagation are governed 

by the same stiffness moduli, as their oscillations occur within the same symmetry planes. 

This assumption allows to place equality sign between 𝐶11 and 𝐶22, and between 𝐶44 and 𝐶55 

due to coincidence in the direction and modes of corresponding wave oscillations 

(the relationship between the elastic stiffness coefficients and the direction and mode of 

wave propagation will be explained more in detail in the next chapter). Moreover, it allows 

to simplify other, more complex, elements of the matrix reducing the number of 

independent constants to five. Applying this relations to the general form of the elastic 

stiffness coefficients matrix (8) allows to obtain 𝑪 matrix for TI medium (16). 
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𝑪 =

[
 
 
 
 
 

𝐶11 𝐶11 − 2𝐶66 𝐶13
𝐶11 − 2𝐶66 𝐶11 𝐶13

𝐶13 𝐶13 𝐶33

  0    0    0  
  0    0    0  
  0    0    0  

       0                  0            0
    0              0            0
    0              0            0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶66]

 
 
 
 
 

 

 

(16) 

 

TI medium theory may be successfully applied to describe horizontally layered sedimentary 

rock or stress-induced anisotropy (Zoback, 2007). Combining transverse isotropy with  

the previously introduced symmetry variants it is possible to develop more complex rock 

models for layered or/and fractured rocks, as ones presented in fig. (2-4).  

 

 

Fig. 2-4. Isotropic (left), transversely isotropic (centre)  
and orthorhombic (right) rock models. 

 

 

2.3. Stiffness coefficients and seismic velocities  

Seismic wave propagation in an isotropic medium can be described using Lame’s 

coefficients or other pair of moduli, as shown in table 1. For the purposes of giving a typical 

example of seismic velocities expressed in terms of medium moduli, equations (17) and (18) 

are introduced:   

𝑉𝑃 =
√
𝐾 +

4
3𝐺

𝜌
 

(17) 

𝑉𝑆 = √
𝐺

𝜌
 (18) 

 

where: 𝐾 − 𝑏𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠, 𝜌 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦.  
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In the anisotropic case, elastic moduli of a medium can be directly related to the stiffness 

matrix coefficients 𝐶𝑖𝑗, which can be used to approximate seismic wave propagation within 

given body. The stiffness constants for TI medium can be related to various modes, 

directions and polarizations of a propagating wave, as described by Bhuiyan and Holt (2016):  

 

• 𝐶11 − P-wave modulus computed from propagation within the symmetry plane, 

• 𝐶33 − P-wave modulus computed from propagation along the symmetry axis, 

• 𝐶44 − S-wave modulus computed from propagation along the symmetry axis, 

• 𝐶66 − S-wave modulus computed from propagation within the symmetry plane and 

wave polarization in the symmetry plane.  

• 𝐶13 − constant calculated from quasi P-wave velocities measured at an angle between 

the symmetry plane and the symmetry axis.  

 

The definitions introduced above describe the elements of the elastic stiffness matrix as a 

result of wave velocity measurements carried out in the investigated medium, and therefore 

they can be treated as effective parameters describing all seismic wave propagation-related 

phenomena. Hence, vertical propagation of P- and S-waves in transversely isotropic 

medium with horizontally oriented symmetry planes can be expressed in terms of the 𝐶𝑖𝑗 

coefficients, as in equations (19) and (20).  

 

𝑉𝑃0 = √
𝐶33
𝜌

 (19) 

𝑉𝑆0 = √
𝐶44
𝜌

 (20) 

  

2.4. Alternative parametrization of TI medium 

In order to complement the list of elements required to alternatively characterise anisotropic 

medium introduced by Thomsen (1986), containing vertical P- and S-wave velocities 

expressed in the way presented in equations (19) and (20), it is necessary to define three more 

dimensionless parameters.          
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𝜀 =
𝐶11 − 𝐶33
2𝐶33

 (21) 

𝛾 =
𝐶66 − 𝐶44
2𝐶44

 (22) 

𝛿 =
(𝐶13 + 𝐶44)

2 − (𝐶33 − 𝐶44)
2

2𝐶33
 (𝐶33 − 𝐶44)

  (23) 

 

Thomsen’s parameters 𝑉𝑃0, 𝑉𝑆0, 𝜀, 𝛾 and 𝛿 together with density 𝜌 are sufficient to describe 

the wave propagation within the medium. Dimensionless parameters carry information 

regarding anisotropy strength and shape of the waterfront. Parameter 𝜀 provides 

quantitative information about the deviation of the P-wave velocity within the symmetry 

plane in comparison to the P-wave velocity along the symmetry axis. Thomsen’s parameter 

𝛾 carries analogical information for S-wave polarised parallel to the symmetry plane.  

The above relations are presented in equations (24 a), (24b) and (24c). Parameter 𝛿 is related 

to normal moveout velocities, defining curvature of the wave front and may be used as 

shown in equation (25a), (25b) and (25c).  

 

𝑉𝑃
2(𝜃 = 90) = 𝑉𝑃0

2 (1 + 2𝜀) (24a) 

𝑉𝑆𝐻
2 (𝜃 = 90) = 𝑉𝑆0

2 (1 + 2𝛾)  (24b) 

𝑉𝑆𝑉
2 (𝜃 = 90) = 𝑉𝑆0

2  (24c) 

𝑉𝑃(𝑁𝑀𝑂)
2 = 𝑉𝑃0

2 (1 + 2𝛿) (25a) 

𝑉𝑆𝑉(𝑁𝑀𝑂)
2 = 𝑉𝑆0

2 (1 + 2
𝑉𝑃0
2

𝑉𝑆0
2
(𝜀 − 𝛿)) (25b) 

𝑉𝑆𝐻(𝑁𝑀𝑂)
2 = 𝑉𝑆0

2 (1 + 𝛾) (25c) 

 

where:  𝜃 − 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 

𝑉𝑆𝐻 −  𝑠ℎ𝑒𝑎𝑟 𝑤𝑎𝑣𝑒 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑝𝑙𝑎𝑛𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒. 

 

However, equations (24 a-c) are only a specific case of more general formulations (26 a-c) 

allowing to compute seismic velocities for any arbitrary angle (Thomsen, 1986).  
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𝑉𝑃
2(𝜃) = 𝑉𝑃0

2 (1 + 𝜀 sin2 𝜃 + 𝐷∗(𝜃)) (26a) 

𝑉𝑆𝐻
2 (𝜃) = 𝑉𝑆0

2 (1 + 2𝛾 sin2 𝜃) (26b) 

𝑉𝑆𝑉
2 (𝜃) = 𝑉𝑆0

2 (1 +
𝑉𝑃0
2

𝑉𝑆0
2 𝜀 sin

2 𝜃 −
𝑉𝑃0
2

𝑉𝑆0
2 𝐷

∗(𝜃)) (26c) 

where 

𝐷∗(𝜃) =
1

2
(1 −

𝑉𝑆0
2

𝑉𝑃0
2 )

{
 
 

 
 

[
 
 
 
 

1 +

4 (
1

2𝐶33
2 [2(𝐶13 + 𝐶44)

2 − (𝐶33 + 𝐶44)(𝐶11 + 𝐶33 − 2𝐶44)])

(1 −
𝑉𝑆0
2

𝑉𝑃0
2 )

2 sin2 𝜃 cos2 𝜃

+

4 (1 −
𝑉𝑆0
2

𝑉𝑃0
2 + 𝜀) 𝜀

(1 −
𝑉𝑆0
2

𝑉𝑃0
2 )

2 sin4 𝜃

]
 
 
 
 

1
2

− 1

}
 
 

 
 

. 

 

(27) 

 

As they are derived directly from the elastic stiffness matrix, they can be related to  

the elastic properties of the medium. At the same time it is possible to estimate them by 

analysing wave fronts registered during field studies which makes them an useful tool in 

anisotropy studies and quantitative seismic data interpretation, providing a direct link 

between elastic properties of a medium and observed large-scale data. In the majority of 

studies Thomsen’s parameters of rocks had relatively small values (𝜀, 𝛾, 𝛿 ≪ 1), as  

the discrepancies between seismic velocities in particular directions tend to be rather small. 

This observation suggests that earth-like media may be treated as an isotropic background 

with additional slightly pronounced anisotropic effects.  The influence of Thomsen’s 

parameters on seismic wave fronts is visualised in fig. (2-5).  

 

 

Fig. 2-5. P-wave wave fronts propagating within an anisotropic half-spaces  
(after Thomsen, 1986). 



14 
 

According to equation (26a) the vertical velocity (𝜃 = 0°) is equal for both, isotropic and 

anisotropic wavefronts, and discrepancies appear when the angle has a non-zero value. 

For the intermediate angles, 𝜃 𝜖 (0,90°), where the influence of  𝛿 parameter is well 

pronounced, the differences between the wave fronts are obvious (the parameter 𝛿, although 

not directly used in the formulas, is actually included in one of the terms of equation 27). 

As proven by fig. (2-5), different values of the parameters 𝜀 and 𝛿 cause non-ellipticity of 

the emanating wavefront. The horizontal velocity (𝜃 = 90°) is the same in both cases, as 

the horizontal 𝑉𝑃 is influenced only by Thomsen’s 𝜀.  

Due to their versatility, Thomsen’s parameters can describe any transversely 

isotropic medium regardless its spatial scale. They can be used to describe wave propagation 

within a centimetre-long laboratory sample as well as within a set of field-scale layered 

sediments. For the purpose of even more intuitive description of the transversely anisotropic 

medium, the parameters 𝜀 and 𝛾 can be used to approximate the fractional difference 

between the vertical and horizontal velocities. In order to achieve that, equation (24a) and 

(24b) have to be transformed into equation (28). The terms under the root can be 

approximated using Tylor’s expansion giving equations (29), which can be simply 

transformed into the final forms of the estimates (30). 

 

𝑉𝑃
 (90°) = 𝑉𝑃0

 √1 + 2𝜀 

(28) 
𝑉𝑆
 (90°) = 𝑉𝑆0

 √1+ 2𝛾 

 

𝑉𝑃
 (90°) = 𝑉𝑃0

 (1 + 𝜀) 

(29) 
𝑉𝑆
 (90°) = 𝑉𝑆0

 (1 + 𝛾) 

 

𝜀 =
𝑉𝑃
 (90°) − 𝑉𝑃0

𝑉𝑃0
  

(30) 

𝛾 =
𝑉𝑆
 (90°) − 𝑉𝑆0

𝑉𝑆0
  

 

 

The discrepancies between isotropic and anisotropic wavefronts can be also 

described using phase and group velocities, introduced in equations (31) and (32), 

respectively. In an isotropic medium both velocities are equal, and they start to diverge as 
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soon as any anisotropy is introduced. The discrepancies between the velocities grow with 

increasing level of anisotropy in the medium. The concept of phase and group velocities is 

shown in fig. (2-6).  

 

𝑉𝑝ℎ𝑎𝑠𝑒 =
1

√𝑝2 + 𝑞2
 (31) 

𝑉𝑔𝑟𝑜𝑢𝑝 = √𝑉𝑥
2 + 𝑉𝑧

2 (32) 

 

where:  𝑝 =
sin(𝜃)

𝑉(𝜃)
 − ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠, 𝑞 =

con(𝜃)

𝑉(𝜃)
− 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠,  𝑉𝑥  ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙  

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑉𝑧 − 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟. 

 

 

 
 
 

Fig. 2-6. Group and phase velocities and angles (after Thomsen, 1986). 
 

2.5. Thomsen’s parameters in orthorhombic medium  

Despites their versatility, Thomsen’s parameters in their original form do not allow to 

correctly describe more complex systems with higher number of symmetry axes and 

symmetry planes than transversely isotropic medium (e.g. layered medium with a set of 

cracks perpendicular to the layering). In order to apply Thomsen’s parametrization to more 

complex symmetries, it is necessary to adjust the definition of the parameters.  

To rearticulate Thomsen’s equations, a new coordinate system has to be oriented according 

to the symmetry planes in the medium, as shown in fig. (2-7). In the presented example,  



16 
 

𝑥3 is the symmetry axis for layering in the medium, meanwhile 𝑥1 axis is parallel to crack 

normal vectors, resembling the situation presented in fig. (2-3)  

 

 

 
Fig. 2-7. Orthorhombic model of layered medium with a set of cracks perpendicular to 

the layering (after Tsvankin, 1997). 
 

For this kind of medium not all of the identities presented in equations (15) are still valid, as 

changes in the medium parameters are no longer related to a unique symmetry axis and may 

be varying along other directions. The stiffness matrix coefficient 𝐶44 does not equal 𝐶55 –  in 

the orthorhombic medium these coefficients stand for S-wave moduli for propagation along 

𝑥3 symmetry axis and polarised in [𝑥2, 𝑥3] and [𝑥1, 𝑥3] planes, respectively. Accordingly,  

the seismic velocities and Thomsen’s parameters for waves propagating along 𝑥3 axis and  

S-wave oscillating within the [𝑥1, 𝑥3] symmetry plane were expressed by Tsvankin (1997), 

here in equations (33-37). The parameters indices refer to 𝑥2 axis, normal to the chosen 

polarisation plane. 

𝑉𝑃0 = √
𝐶33
𝜌

 (33) 

𝑉𝑆
(2) = √

𝐶55
𝜌

 (34) 

𝜀 
(2) =

𝐶11 − 𝐶33
2𝐶33

 (35) 

𝛾 
(2) =

𝐶66 − 𝐶44
2𝐶44

 (36) 

𝛿 
(2) =

(𝐶13 + 𝐶55)
2 − (𝐶33 − 𝐶55)

2

2𝐶33
 (𝐶33 − 𝐶55)

  (37) 
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In the case of shear waves polarised in [𝑥2, 𝑥3] plane, parallelly to 𝑥1 axis, Thomsen’s 

parameters are defined by equations (38-41) using different set of the elastic stiffness matrix 

coefficients. Vertical velocities 𝑉𝑃 and 𝑉𝑆
(2)

 and six new parameters can replace the stiffness 

matrix coefficients 𝐶11, 𝐶22, 𝐶33, 𝐶44, 𝐶55, 𝐶66, 𝐶23 and 𝐶13, and be used instead of them to 

describe anisotropy of the medium. .  

 

𝑉𝑆
(1)
= √

𝐶44
𝜌

 (38) 

𝜀 
(1) =

𝐶22 − 𝐶33
2𝐶33

 (39) 

𝛾 
(1) =

𝐶66 − 𝐶55
2𝐶55

 (40) 

𝛿 
(1) =

(𝐶23 + 𝐶44)
2 − (𝐶33 − 𝐶44)

2

2𝐶33
 (𝐶33 − 𝐶44)

  (41) 

 

In order to substitute coefficient 𝐶12 and to complete the list of parameter necessary to fully 

characterise the orthorhombic media, 𝛿(3) has to be defined. This anisotropy parameter is 

responsible for waves polarised in [𝑥1 , 𝑥2] plane.  

 

𝛿 
(3) =

(𝐶12 + 𝐶66)
2 − (𝐶11 − 𝐶66)

2

2𝐶11
 (𝐶11 − 𝐶66)

  (42) 

 

Due to the introduction of yet another shear wave modulus 𝐶55, the vertical velocity 

of S-wave depends not only on the direction of propagation but also its polarisation, and 

therefore there may be two separate S-waves observed in the propagation records.  

This phenomena is often referred to as shear wave splitting, and has been observed many 

times in experimental data. The discrepancies in velocities between the two S-waves can be 

describe in the same way as it was previously done for horizontal and vertical propagation 

in transversely isotropic medium in one of equations (30). The velocities divergence was 

approximated in equation (43).    

 

𝛾(𝑆) =
𝐶44 − 𝐶55
2𝐶55

= 
𝛾 
(1) − 𝛾 

(2)

1 + 2𝛾 
(2)

 ≈
𝑉𝑆
(1) − 𝑉𝑆

(2)

𝑉𝑆
(2)

 (43) 
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3. Rock models  

 

Changing stress field is one of the most prominent factors affecting seismic velocities in 

rocks, also having an effect on their internal structure and volume. Comparable changes may 

be caused by pore fluid substitution and temperature variations. The most important 

mechanisms responsible for the rock stiffness stress-dependence are porosity change, grain 

contacts alteration and closure or generation of cracks (Adams and Williamson, 1923).  

The two last factors are commonly used as a starting point for rock models formulation. 

Grain contacts-based models are based on scaling of the influence of changes of  

an individual contact zone on the entire rock volume. Crack closure analysis is a basis for 

inclusion approach, in which the rock volume is treated as a solid medium with inclusions 

or voids affecting its elastic properties. Porosity changes may be also introduced as an 

additional parameter to both classes of models.  

 

3.1. Granular approach  

In the granular approach the rock is considered to be a set of interacting grains, responding 

to changes in the stress field and consequently affecting the effective elastic properties of the 

medium. Force applied to the system causes deformation of the grains and elastic, as well as 

geometrical, changes of their contact zones. One of the first attempts to describe this 

mechanism was made by Hertz (1882), who analysed interactions between two identical 

spherical grains, as presented in fig. (3-1).  

 

 

Fig. 3-1. Spherical grains contact.. 
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Hertz assumed that the grains are linearly elastic and that the contact zone between 

the grains 𝑏 is relatively small in comparison to the grains radii 𝑎 and its surface is changing 

under the influence of applied force 𝐹, as shown in equation (44). As a consequence of grains 

deformation, the distance between the centres of granules 𝑠 is also changing. The amplitude 

of both geometrical changes are somehow proportional to the elastic moduli of the solid, 

 i.e. Young’s modulus 𝐸𝑠 and Poisson’s ratio 𝑣𝑠. Finally, changes in the force applied to  

the grains imply alteration of the normal stress along the contact surface 𝜎 according to 

equation (46). This equation indicates that stress distribution is a function of the exerted 

force and the contact area, which is consistent with the general stress definition.  

 

𝑏 = (
3(1 − 𝑣𝑠

2)𝑎𝐹

4𝐸𝑠
)

1
3

 (44) 

𝑠 = (
9(1 − 𝑣𝑠

2)2𝐹2

2𝐸𝑠
2𝑎

)

1
3

 (45) 

𝜎 =
3𝐹

2𝜋𝑏2
(1 −

𝑟2

𝑏2
)

1
2

 (46) 

 

where: 𝑟 − 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑖𝑛𝑠. 

 

Proportionality between the increment of force ∆𝐹 and the advancing deformation ∆s can be 

also expressed by an individual force coefficient 𝐷𝑛. Mindlin (1949) extended Hertz’s theory 

by introducing terms responsible for shear force 𝐹′, lateral displacement 𝑠′ and shear force 

coefficient 𝐷𝑡. This allowed to involve lateral deformations and movements in the contact 

zone, a behaviour frequently observed in complex systems consisting of larger number of 

interacting elements,  and therefore made so-called Hertz-Mindlin’s theory more suitable 

for description of rock-like media. Both coefficients in their simplest forms depend on shear 

modulus 𝐺𝑠, Poisson’s ratio 𝑣𝑠 and contact radius 𝑏 exposing the importance of the lateral 

deformations for the effective elastic properties of the medium. Young’s modulus 𝐸𝑠 was 

substituted with shear modulus 𝐺𝑠 according to the relationships shown in table 1.   

𝐷𝑛 =
∆𝐹

∆𝑠
= (

3𝐸𝑠
2𝑎𝐹

4(1 − 𝑣𝑠
2)2
)

1
3

=
2𝐺𝑠𝑏

1 − 𝑣𝑠
 (47) 
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𝐷𝑡 =
∆𝐹′

∆𝑠′
=
[6𝐸𝑠

2𝑎𝐹(1 − 𝑣𝑠
2)2]

1
3

(2 − 𝑣𝑠)(1 + 𝑣𝑠)
=
4𝐺𝑠𝑏

2 − 𝑣𝑠
 (48) 

 

 

It is worth noting that the normal and the shear stress distributions along the contact surface 

differ significantly, both in their functions complexity and locations of maximum 

concentration. Stress functions are shown in fig. (3-2).  

 

 

Fig. 3-2. Stress distribution along the sphere contact surface (after White, 1983). 
 

To transform the equations into a more practical form, the relation between the confining 

force 𝐹 and the initial external pressure 𝜎𝑝 was established. The proportionality between 

these quantities depends on the external surface of the spheres, coordination number 𝑁𝑐 

(being the average number of contacts per sphere) and porosity 𝜙, which carry a significant 

piece of information about the internal structure of the medium.  

 

𝐹 =
4𝜋𝑎2𝜎𝑃
𝑁𝑐(1 − 𝜙)

 (49) 

 

Finally, Digby (1981) introduced the relationship between the external stress exerted on  

the grains contacts and bulk and shear moduli, 𝐾 and 𝐺 respectively. It was assumed that  

grains are randomly packed and that there is no slip on the grain contacts. Digby’s model is 

expressed by equations (50) and (51). 
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𝐾 =
𝜕𝜎𝑃
𝜕𝜀𝑣𝑜𝑙

=
𝑁𝑐(1 − 𝜙)

6𝜋𝑎
𝐷𝑛 = [

𝑁𝑐
2(1 − 𝜙)2𝐺𝑠

2𝜎𝑃
18𝜋2(1 − 𝑣𝑠

 )2
]

1
3

 (50) 

𝐺 =
𝑁𝑐(1 − 𝜙)

10𝜋𝑎
(𝐷𝑛 +

3

2
𝐷𝑡) =

5 − 4𝑣𝑠
5(2 − 𝑣𝑠)

[
3𝑁𝑐

2(1 − 𝜙)2𝐺𝑠
2𝜎𝑃

2𝜋2(1 − 𝑣𝑠
 )2

]

1
3

 (51) 

 

where: 𝜀𝑣𝑜𝑙 =
3𝑠

2𝑎
− 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛.  

 

Walton (1987) developed the theory by taking into consideration the influence of possible 

slip on the contact grains, implying that the friction between the grains, governed by  

the friction coefficient, has an impact on the elastic moduli of the medium. Walton’s model 

is expressed by equation (52-54).  

 

𝐾 =
1

6
[
3𝑁𝑐

2(1 − 𝜙)2𝜎𝑃
𝜋4𝐵2

]

1
3

 (52) 

𝐺 =
1

10
[
3𝑁𝑐

2(1 − 𝜙)2𝜎𝑃
𝜋4𝐵2

]

1
3

=
3

5
𝐾 (53) 

𝐵 =
3

2𝜋

(1 − 2𝑣𝑠)(1 − 𝑣𝑠)

𝐸𝑠
  

(54) 

 

The link between the external stress 𝜎 and the elastic moduli of the medium, combined with 

equation for velocities (17) and (18), makes it possible to investigate the influence of stress 

on seismic waves propagation in a rock-like medium.  

However, the stress dependency of the elastic moduli is a complex phenomenon and 

may be affected by various factor which are not directly covered by Walton’s theory.  

Grain shape, rotation and rearrangement, uneven stress distribution within a grain 

assembly, fluid saturation and cementing of the grain contacts may have a significant impact 

on the effective properties of the medium (Makse et al., 2001). In order to include those 

factors, some of the parameters of the model may be changed – in Walton’s theory the power 

𝑛 of the confining stress was assumed to be 𝑛 = 1/3, but its value can be shifted to adjust  

the model to a particular system. Moreover, at high effective stresses partial grain 
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plasticisation may occur, causing additional discrepancies between the predictions of  

the model and the experimental data. Unequal grain radiuses and partial slipping on  

the grain contacts were addressed by Bachrach and Avseth (2008), who introduced 

additional parameters for effective contact radii and volume fraction of slip and non-slip 

contacts. Finally, Norris and Johnson (1997) rederived the expressions for the elastic moduli 

using various energy density functions for different contact types in order to introduce 

stress path dependency into the granular media models, and proved that stress sensitivity of  

the system also depends on the loading path.  

 

3.2. Inclusion approach  

In the alternative approach, the medium is considered as a solid containing various 

inclusions or voids. For small concentration of inclusions 𝜉
𝑖𝑛𝑐𝑙
 it is assumed that there is no 

interaction between them. Therefore, the effective elastic moduli of the medium (𝐾∗ and 𝐺∗) 

can be assumed to be the result of perturbation of the solid material moduli (𝐾𝑠 and 𝐺𝑠) 

proportional to the concentration of inclusions. The relationship between the solid medium 

and the effective moduli is captured by equations (55) taken from Fjær et al. (2008).  

 

𝐾∗ = 𝐾𝑠(1 − 𝑄𝐾𝜉𝑖𝑛𝑐𝑙) 

(55) 

𝐺∗ = 𝐺𝑠(1 − 𝑄𝐺𝜉𝑖𝑛𝑐𝑙) 

 

where: 𝑄𝐾,𝐺 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑠 𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑢𝑙𝑖. 

 

Assuming positive values of the parameter 𝑄𝐾 and 𝑄𝐺, it could be concluded that  

the presence of voids causes drop of the effective elastic moduli value. The amplitude of  

the decrease depends on the impact factor itself and the inclusions concentration.  

 

 

Fig. 3-3. Crack geometry. 
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If the voids are assumed to be of form of thin and flat cracks, they can be described 

with additional terms containing information about their shape and distribution in  

the medium. For the purpose of simplicity, disc-like cracks, shown in two dimension in  

fig. (3-3), are described with the aspect ratio 𝛼 and the crack density parameter 𝜉.  

 

𝛼 =
𝑐

𝑎
 (56) 

𝜉 =
𝑁

𝑉
< 𝑎3 > (57) 

 

where: 𝑐 − 𝑐𝑟𝑎𝑐𝑘 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, 𝑎 −  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, <>  −𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑐𝑟𝑎𝑐𝑘𝑠,  

 𝑁 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑐𝑘𝑠, 𝑉 − 𝑣𝑜𝑙𝑢𝑚𝑒. 

 

The aspect ratio 𝛼, being a dimensionless parameter, captures only the proportion between 

the dimensions of cracks. The crack density parameter 𝜉 approximates the number of cracks 

per unit volume and contains averaged information about their diameter.  

Carrying information about both cracks geometry and distribution makes the density 

parameter 𝜉 suitable to be used as a concentration factor in more complex inclusion models.  

 

3.2.1. Random crack distribution 

Budiansky and O'Connell (1976) assumed random orientation of cracks and managed to 

expand the general equations (55) into more precise formulations. The model proposed by 

the mentioned authors involves the crack density parameter 𝜉,the elastic moduli and  

the Poisson’s ratio of the solid (𝐾𝑠, 𝐺𝑠 and  𝑣𝑠, respectively) and the drainage parameter 𝐷.  

 

𝐾∗ = 𝐾𝑠 (1 −
16

9

1 − 𝑣𝑠
2

1 − 2𝑣𝑠
𝐷𝜉) (58) 

𝐺∗ = 𝐺𝑠 (1 −
32

45
(1 − 𝑣𝑠) [𝐷 +

3

2 − 𝑣𝑠
] 𝜉) (59) 

1

𝐷
= 1 +

4

3𝜋𝛼

1 − 𝑣𝑠
2

1 − 2𝑣𝑠

𝐾𝑓

𝐾𝑠
 (60) 

 

 where: 𝐾𝑓 − 𝑓𝑙𝑢𝑖𝑑 𝑏𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠, 𝐷 − 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟.  
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The drainage parameter 𝐷, giving an insight into the properties of the fluid filling the cracks,  

can vary greatly not only with type of fluid, but also with saturation. For dry rocks, i.e. 𝐾𝑓 = 0, 

the parameter reduces to 𝐷 = 1. In case of fully-saturated thin cracks, fulfilling  

the relationship 𝛼 ≪ 𝐾𝑓/𝐾𝑠, the parameter 𝐷 approaches 0, decreasing dramatically  

the compliance of the cracks. The relationship between the moduli and the aspect ratio of 

the cracks excludes cases of highly compressible fluids filling the voids. However, aspect 

ratio does not affect the effective moduli in any of both situations (Mavko and Nur, 1978). 

Analysis of the impact of the drainage parameter 𝐷, i.e. saturation, on the elastic moduli is 

presented in fig. (3-4). The results of this simple modelling suggest that for dry fractured 

rocks even small values of stress may result in much higher strain amplitudes than for the 

stresses in a medium without cracks. Moreover, presence of any fluid in the cracks causes 

counteraction against the deformation of the medium, consequently increasing the effective 

moduli. The dependence between the fluid bulk modulus 𝐾𝑓 and the effective moduli is not 

linear – the biggest changes of the effective moduli are observed for low fluid modulus values 

suggesting strong influence of gas on the effective rock stiffness. The relationship between  

the effective shear modulus 𝐺∗ and saturation is much less intuitive than in the case of  

the effective bulk modulus 𝐾∗. The dependence of these two parameters comes from  

the deformation of insulated cracks induced by shear stress and influenced by the fluid bulk 

modulus. In this conditions any kind of deformation is a result of interplay between  

the solid and the cracks, and hence it is sensitive to the impact of compressibility of  

the crack-filling fluid.  

 

 

 

Fig. 3-4. Effective moduli modelling (𝐾𝑠 = 37 𝐺𝑃𝑎, 𝐺𝑠 = 44 𝐺𝑃𝑎, 𝑣𝑠 = 0.2, 𝛼 = 0.01, 𝜉 = 0.125)   
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To maintain consistency between the inclusion approach and Biot’s theory, it is 

recommended to compute the effective moduli for dry rock (𝐷 = 1) and add the saturation 

effects using Biot’s theory afterwards. This approach is proved to provide more accurate 

effective moduli approximations, especially in the low frequency limit, when the fluid has 

enough time to equilibrate (Fjær et al., 2008).  

 

3.2.2. Sets of parallel cracks 

The orientation of cracks in subsurface is highly correlated with the anisotropy of stress field, 

and therefore is hardly ever random. Cracks spatial arrangement is subjected to the principle 

stresses - their planes are usually observed to be perpendicular or subperpendicular to  

the minimum principle stress direction, and consequently parallel or subparallel to  

the maximum principle stress (Crampin, 1990).  

 

 

Fig. 3-5. Sets of perpendicular cracks (after Fjær, 2006). 
 

In case of preferential direction of cracks opening it is more convenient to use stiffness 

coefficients instead of bulk moduli of the rock. Equation (61) shows the general form of  

the effective stiffness coefficient 𝐶𝑖𝑗
∗ .  When there is more than one set of cracks, the crack 

density parameter 𝜉 and the crack impact factor 𝑄 should be defined separately for each of 

them, which transforms the general form into equation (62). 

 

𝐶𝑖𝑗
∗ = 𝐶𝑖𝑗

0 (1 − 𝑄𝑖𝑗𝜉) (61) 

𝐶𝑖𝑗
∗ = 𝐶𝑖𝑗

0 (1 − 𝑄𝑖𝑗
(1) 𝜉(1) − 𝑄𝑖𝑗

(2) 𝜉(2)− . . . ) (62) 

 

where:  𝐶𝑖𝑗
0 − 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑄𝑖𝑗

(𝑘), 𝜉(𝑘) −

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑓𝑜𝑟 𝑘 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑟𝑎𝑐𝑘𝑠. 
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This model can be further refined and adjusted to particular situations. Fjær (2006) assumed 

the coexistence of pores and three sets of non-interacting penny-shaped fractures,  

as shown in fig. (3-5), and obtained a set of equations (63) for stiffness coefficients of 

an anisotropic medium. 

 

𝐶11
∗ = 𝐶11

0 (1 − 𝑄11
(𝑃)
𝜙 − 𝑄33 𝜉𝑥 − 𝑄11(𝜉𝑦 + 𝜉𝑧))  

𝐶22
∗ = 𝐶22

0 (1 − 𝑄11
(𝑃)𝜙 − 𝑄33 𝜉𝑦 − 𝑄11(𝜉𝑧 + 𝜉𝑥))  

𝐶33
∗ = 𝐶33

0 (1 − 𝑄33
(𝑃)
𝜙 − 𝑄33 𝜉𝑧 − 𝑄11(𝜉𝑥 + 𝜉𝑦))  

𝐶12
∗ = 𝐶12

0 (1 − 𝑄13
(𝑃)
𝜙 − 𝑄13(𝜉𝑥 + 𝜉𝑦) − 𝑄12 𝜉𝑧)  

𝐶13
∗ = 𝐶13

0 (1 − 𝑄13
(𝑃)𝜙 − 𝑄13(𝜉𝑧 + 𝜉𝑥) − 𝑄12 𝜉𝑦) (63) 

𝐶23
∗ = 𝐶23

0 (1 − 𝑄13
(𝑃)
𝜙 − 𝑄13(𝜉𝑦 + 𝜉𝑧) − 𝑄12 𝜉𝑥)  

𝐶44
∗ = 𝐶44

0 (1 − 𝑄44
(𝑃)
𝜙 − 𝑄44(𝜉𝑦 + 𝜉𝑧) − 𝑄66 𝜉𝑥)  

𝐶55
∗ = 𝐶55

0 (1 − 𝑄44
(𝑃)
𝜙 − 𝑄44(𝜉𝑧 + 𝜉𝑥) − 𝑄66 𝜉𝑧)  

𝐶66
∗ = 𝐶66

0 (1 − 𝑄66
(𝑃)𝜙 − 𝑄44(𝜉𝑥 + 𝜉𝑦) − 𝑄66 𝜉𝑧)  

 

Each of the effective stiffness coefficients has its corresponding set of 𝑄𝑖𝑗   impact factors, 

linking the effective moduli with the crack densities. In this particular model, the effective 

stiffness coefficients are not only affected by the presence of cracks, but also by the porosity 

of the medium 𝜙, influence of which is given by the 𝑄𝑖𝑗
𝑃  impact factors. In case of no intrinsic 

anisotropy some of the stiffness coefficients can be expressed with the uniaxial compaction 

modulus 𝐻0 and the shear modulus 𝐺0, as shown in equations (64).  

 

𝐶11
0 = 𝐶22

0 = 𝐶33
0 = 𝐻0  

𝐶44
0 = 𝐶55

0 = 𝐶66
0 = 𝐺0 (64) 

𝐶66
0 = 𝐶13

0 = 𝐶23
0 = 𝐻0 − 2𝐺0  
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Hudson (1981) defined the impact coefficients 𝑄 using equations (65) and (66). For both 

groups of 𝑄 factors, the crack- and the porosity-related, Poisson’s ratio 𝑣𝑠 is the most 

prominent medium parameter influencing their values. Some of the crack-related impact 

factors (i.e. 𝑄11, 𝑄33 and 𝑄12) are also influenced by the drainage parameter 𝐷, and therefore 

are also dependent to the saturation and the properties of the fluid, meanwhile the rest 

(including all of the porosity-related factors) depends only on properties of the solid fraction.  

 

𝑄11 =
16

3

𝑣𝑠
2

1 − 2𝑣𝑠
𝐷  

𝑄33 = 𝑄13 =
16

3

(1 − 𝑣𝑠)
2

1 − 2𝑣𝑠
𝐷  

𝑄12 =
16

3

𝑣𝑠(1 − 𝑣𝑠)

1 − 2𝑣𝑠
𝐷 (65) 

𝑄44 =
16

3

1 − 𝑣𝑠
2 − 𝑣𝑠

  

𝑄66 = 0  

  

𝑄11
𝑃 = 𝑄33

𝑃 =
1

2
(
1 + 𝑣𝑠
1 − 2𝑣𝑠

+ 10
1 − 2𝑣𝑠
7 − 5𝑣𝑠

)  

𝑄13
𝑃 =

1 − 𝑣𝑠
2𝑣𝑠

(
1 + 𝑣𝑠
1 − 2𝑣𝑠

− 10
1 − 2𝑣𝑠
7 − 5𝑣𝑠

) (66) 

𝑄44
𝑃 = 𝑄66

𝑃 = 15
1 − 𝑣𝑠
7 − 5𝑣𝑠

  

 

In order to insert stress dependence into the model, the crack densities are expressed in 

terms of stresses and strains, as shown in equations (67). The influence of the rock 

composition and characteristics is directly expressed with the parameter somehow related 

to tensile strength 𝑇0. The influence of normal stresses, shear stress and strains on cracks can 

be individually moderated using additional model parameters 𝑛, 𝛽 and 𝜂. Model parameter 

𝑛 controls the influence of the normal stresses. Parameter 𝛽 governs the influence of  

the shear deformation and 𝜂 indicates the stress sensitivity of the cracks. 
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𝜉𝑥 = 𝜉𝑥
0 (
𝜎𝑥
0 + 𝑇0
𝜎𝑥 + 𝑇0

)

𝑛

𝑒−𝛽(2𝜀𝑥−𝜀𝑦−𝜀𝑧)+𝜂𝛤
2
  

𝜉𝑦 = 𝜉𝑦
0 (
𝜎𝑦
0 + 𝑇0

𝜎𝑦 + 𝑇0
)

𝑛

𝑒−𝛽(2𝜀𝑦−𝜀𝑥−𝜀𝑧)+𝜂𝛤
2
 (67) 

𝜉𝑧 = 𝜉𝑧
0 (
𝜎𝑧
0 + 𝑇0
𝜎𝑧 + 𝑇0

)

𝑛

𝑒−𝛽(2𝜀𝑧−𝜀𝑦−𝜀𝑥)+𝜂𝛤
2
  

 

where: 𝜉𝑖
0 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑟𝑎𝑐𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑎𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 𝜎𝑖

0 𝑎𝑛𝑑 𝑠𝑡𝑟𝑎𝑖𝑛𝑠 𝜀𝑥 = 𝜀𝑦 = 𝜀𝑧 = 0), 

𝛽 𝑎𝑛𝑑 𝜂 − 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑙𝑜𝑐𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑠ℎ𝑒𝑎𝑟𝑖𝑛𝑔, 

 𝑛 − 𝑛𝑜𝑡𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡. 

 

Cracks creation and opening, usually linked with the tensile strength of the rock, is affected 

by both normal and shear stresses due to the mechanisms presented in fig. (3-6).  

 

 

 

 

Fig. 3-6. Normal and shear stress effects on cracks: A - crack closure due to normal 
stress, B - cracks opening associated with shear deformation, C - crack closure associated 

with shear deformation (after Fjær, 2006). 
  

 Fjær (2006) expressed the modelling results in terms of velocities and strains, as there 

is a direct link between the displacement of particles and the alterations of cracks affecting 

the seismic velocities values. Stress values were presented as an additional piece of 

information to explain the causes of resultant deformations. In order to obtain the velocities 

of elastic waves it is necessary to implement the effective stiffness coefficients into equations 

(19) and (20) taking into account the direction of propagation in relation to the symmetry 

axes and planes.  
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According to Sayers and Kachanov (1996) anisotropy of the fractured rock can be 

expressed in terms of second and forth degree crack density tensor providing reasonable fit 

with experimental data. However, this approach will not be discussed in more detail, as no 

new elements introduced by the authors will be covered in the practical part of the thesis.  

 

3.3. Macroscopic approach  

An anisotropic medium can be also described with macroscopic models, which do not 

differentiate between the influence of particular components of the medium, but rather 

assign effective parameters to the entire rock volume. In order to describe an anisotropic 

medium with stress-dependent stiffness coefficients, it is necessary to use non-linear 

elasticity, where the relation between the effective stiffness coefficients and stress is 

expressed with the use of third-order elastic constants (Thurston, 1974). One of  

the experimentally verified models was introduced by Prioul et al. (2004). The Authors 

assumed that the deformation of the rock caused  by a static external stress, characterised by 

relatively high strains, is governed by the non-linear components of the stiffness coefficients 

matrix. However, the deformations resulting from wave propagation, usually causing much 

smaller strains, are linearized, as in the standard elastic theory. Another assumption is that 

the third-order tensor is implicitly isotropic, and therefore it can be expressed with three 

independent stiffness coefficients, i.e. 𝑐111, 𝑐112 and 𝑐123, and their linear combinations 𝑐144 

and 𝑐155 constant within defined stress range. 

 

𝑐144 =
𝑐112 − 𝑐123

2
 

(68) 

𝑐155 =
𝑐111 − 𝑐112

4
 

 

According to Prioul and Lebrat (2004) the constrains of the third-order stiffness tensor 

(assuming that compression is expressed with positive values of stress and strain) assuring 

that P- and S-waves are affected mostly by the stress changes in the directions of their 

propagation and polarization are: 

 

𝑐111 > 𝑐112 > 𝑐123 
(69) 

𝑐155 > 𝑐144                    and 𝑐155 > 0 
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The effective elastic constants for VTI medium expressed in terms of nonlinear elasticity 

were defined by Thurston (1974) and  Sinha and Kostek (1996) with equations (70). 

 

𝐶1111
 = 𝐶11

0 (1 + 2𝜀11) + 𝜎11 + 𝑐111𝜀11 + 𝑐112(𝜀22 + 𝜀33)  

𝐶2222
 = 𝐶11

0 (1 + 2𝜀22) + 𝜎22 + 𝑐111𝜀22 + 𝑐112(𝜀11 + 𝜀33)  

𝐶3333
 = 𝐶33

0 (1 + 2𝜀33) + 𝜎33 + 𝑐111𝜀33 + 𝑐112(𝜀11 + 𝜀22)  

𝐶1122
 = 𝐶2211

 = 𝐶12
0 (1 + 𝜀11 + 𝜀22) + 𝑐112(𝜀11 + 𝜀22) + 𝑐123𝜀33  

𝐶1133
 = 𝐶3311

 = 𝐶13
0 (1 + 𝜀11 + 𝜀33) + 𝑐112(𝜀11 + 𝜀33) + 𝑐123𝜀22  

𝐶2233
 = 𝐶3322

 = 𝐶13
0 (1 + 𝜀22 + 𝜀33) + 𝑐112(𝜀22 + 𝜀33) + 𝑐123𝜀11  

𝐶1212
 = 𝐶66

0 (1 + 2𝜀22) + 𝜎11 + 𝑐144𝜀33 + 𝑐155(𝜀11 + 𝜀22)  

𝐶2121
 = 𝐶66

0 (1 + 2𝜀11) + 𝜎22 + 𝑐144𝜀33 + 𝑐155(𝜀11 + 𝜀22) (70) 

𝐶1221
 = 𝐶2112

 = 𝐶66
0 (1 + 𝜀11 + 𝜀22) + 𝑐144𝜀33 + 𝑐155(𝜀22 + 𝜀33)  

𝐶1313
 = 𝐶44

0 (1 + 2𝜀33) + 𝜎11 + 𝑐144𝜀22 + 𝑐155(𝜀11 + 𝜀33)  

𝐶3131
 = 𝐶44

0 (1 + 2𝜀11) + 𝜎33 + 𝑐144𝜀22 + 𝑐155(𝜀11 + 𝜀33)  

𝐶1331
 = 𝐶3113

 = 𝐶44
0 (1 + 𝜀11 + 𝜀33) + 𝑐144𝜀22 + 𝑐155(𝜀11 + 𝜀33)  

𝐶2323
 = 𝐶44

0 (1 + 2𝜀33) + 𝜎22 + 𝑐144𝜀11 + 𝑐155(𝜀22 + 𝜀33)  

𝐶3232
 = 𝐶44

0 (1 + 2𝜀22) + 𝜎33 + 𝑐144𝜀11 + 𝑐155(𝜀22 + 𝜀33)  

𝐶1331
 = 𝐶3113

 = 𝐶44
0 (1 + 𝜀22 + 𝜀33) + 𝑐144𝜀11 + 𝑐155(𝜀22 + 𝜀33)  

 

Distinctive lack of symmetry between elements 𝐶𝑖𝑗𝑘𝑙 and 𝐶𝑗𝑖𝑘𝑙, 𝐶𝑖𝑗𝑙𝑘 and 𝐶𝑗𝑖𝑙𝑘 is caused by  

the presence of terms 𝐶𝑖𝑗
0𝜀𝑘𝑙  and 𝜎𝑚𝑛, indicating that the described system is not exactly equal 

to a typical transversely isotropic medium. These terms are usually very small in comparison 

to the rest of terms 𝐶𝑖𝑗
0  and 𝑐𝑖𝑗𝑘𝜀𝑚𝑛 (Prioul et al., 2004), changing the effective moduli values 

by no more than 0.1% (Thurston, 1974 and Rasolofosaon, 2006). Their impact is much below  

the accuracy of the method, and therefore can be neglected. This simplification allows to 
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restore typical symmetry of stiffness coefficients and rewrite equations (70) using Voigt 

notation.  

𝐶11
 ≈ 𝐶11

0 + 𝑐111𝜀11 + 𝑐112(𝜀22 + 𝜀33)  

𝐶22
 ≈ 𝐶11

0 + 𝑐111𝜀22 + 𝑐112(𝜀11 + 𝜀33)  

𝐶33
 ≈ 𝐶33

0 + 𝑐111𝜀33 + 𝑐112(𝜀11 + 𝜀22)  

𝐶12
 ≈ 𝐶12

0 + 𝑐112(𝜀11 + 𝜀22) + 𝑐123𝜀33  

𝐶13
 ≈ 𝐶13

0 + 𝑐112(𝜀11 + 𝜀33) + 𝑐123𝜀22 (71) 

𝐶23
 ≈ 𝐶13

0 + 𝑐112(𝜀22 + 𝜀33) + 𝑐123𝜀11  

𝐶44
 ≈ 𝐶44

0 + 𝑐144𝜀11 + 𝑐155(𝜀22 + 𝜀33)  

𝐶55
 ≈ 𝐶44

0 + 𝑐144𝜀22 + 𝑐155(𝜀11 + 𝜀33)  

𝐶66
 ≈ 𝐶66

0 + 𝑐144𝜀33 + 𝑐155(𝜀11 + 𝜀22)  

 

Stiffness coefficients 𝐶11
0 , 𝐶33

0 , 𝐶44
0 , 𝐶66

0  and 𝐶13
0  are used to describe a VTI medium in  

the absence of stress. With the assumption of constant 𝑐𝑖𝑗𝑘  values within specified stress 

ranges, it is possible to exchange 𝐶𝑖𝑗
0  with stiffness coefficients measured in well-defined 

reference point 𝐶𝑖𝑗
𝑅, and  𝜀𝑘𝑙  with ∆𝜀𝑘𝑙 = 𝜀𝑘𝑙 − 𝜀𝑘𝑙

𝑅 .  The impact of the external stress is included 

by adding terms consisting of third-order parameters (defined for the unstressed or  

the reference stress state) and strains, being related to stresses via Hook’s law.  

The third-order constants are assumed to be sufficient to completely describe anisotropic 

response of a medium, even though they are not directly related to an individual phenomena 

or type of medium components interaction responsible for stiffening (or weakening) of a 

rock. The most significant feature of this rock model is the linearity of change of the stiffness 

coefficients with changing stress. One of the results of the described assumptions is that 𝐶𝑖𝑗 

under increasing hydrostatic stress would be represented by a straight line, which was not 

expected in the previously described model classes.
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4. Models comparison  

 

The models presented by Fjær (2006) and Prioul et al. (2004), as representatives of two 

different classes of rock models using strains to approximate the effective stiffness 

coefficients, were selected for further comparison in terms of trends and individual 

measurement points prediction accuracy. Originally, both models were supposed to be 

tested with the use of data obtained with the true-triaxial apparatus owned by NTNU and 

SINTEF Petroleum Research Formation Physics Laboratory. Eventually, due to the technical 

problems described in Technical Report (chapter 6), the data was taken from papers 

published by other authors. 

 

4.1. Models implementation  

The modelling procedures for both models were reconstructed on the basis of  

the aforementioned publications and implemented in MATLAB software. Simplified version 

of the scripts used during modelling can be found in APPENDICES A and B. The quality of 

approximation was estimated for each of the stiffness coefficients and in total with squared 

misfit function 𝑆𝐸 (𝑆𝐸𝑖𝑗  and 𝑺𝑬, respectively) and average percent error 𝐴𝑃𝐸 (equations 𝐴𝑃𝐸𝑖𝑗  

and 𝑨𝑷𝑬, respectively). Although SE is not normalised, and hence it favours the fit of 

coefficient with higher value, it was determined to be a helpful error estimator during 

modelling. Scripts used to estimate the errors can be found in APPENDIX C.  

 

𝑆𝐸𝑖𝑗 = ∑[𝑐𝑖𝑗
(𝑘),𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑐𝑖𝑗

(𝑘),𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
]
2

𝑘

 (72) 

𝐴𝑃𝐸𝑖𝑗 = 
1

𝐾
∑|

𝑐𝑖𝑗
(𝑘),𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑐𝑖𝑗

(𝑘),𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑐𝑖𝑗
(𝑘),𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 ∙ 100%|

𝑘

 (73) 

𝑺𝑬 =  ∑𝑆𝐸𝑖𝑗
𝑖,𝑗

 (74) 

𝑨𝑷𝑬 = 
∑ 𝐴𝑃𝐸𝑖𝑗𝑖,𝑗

𝐼𝐽
 (75) 

 

where: 𝑘 − 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟, 𝐾 − 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐽 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  

𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡. 
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4.1.1. Inclusion model (Fjær, 2006) 

Due to significant differences in parametrization and applying the influence of stress in  

the models, it was impossible to establish a common basis of initial parameters applicable 

to both of them. Initial values of the stiffness coefficients in Fjær’s model are hard to be  

pre-estimated, as they represent properties of solid material unaffected by pores and cracks. 

Rock densities and porosities were taken from publications in which the experimental data 

was published. Moreover, constant values were assigned to drainage parameter (for dry 

rocks 𝐷 = 1), parameter related to the tensile strength and Poisson’s ratio (typical values for 

sandstones: 𝑇0 = 2 𝑀𝑃𝑎 and 𝑣 = 0.2, respectively). Initial stiffness coefficients 𝐶𝑖𝑗
0  (via 𝐻0 and 

𝐺0, according to equations 64) and crack densities 𝜉
𝑖
0  were estimated together to fit  

initial values of the effective stiffness coefficients observed during the experiments.  

In the absence of strain measurements in the available datasets, the stiffness coefficient 

matrix obtained for the initial stress state (including the effects of porosity and cracks) is used 

to compute strains for the entire stress cycle. It is assumed that shear stresses are 𝜏𝑥𝑦 = 𝜏𝑥𝑧 =

𝜏𝑧𝑦 = 0. The porosity change was expressed in the same way as in the original publication by 

Fjær (2006):  

 

𝜙 =
𝜙0 − 𝜀𝑣𝑜𝑙
1 − 𝜀𝑣𝑜𝑙

 (76) 

𝜀𝑣𝑜𝑙 = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 (77) 

 

Further inverting for model parameters is a two-step iterative procedure. First, model 

parameters 𝑛, 𝛽 and 𝜂 are inverted for by minimizing the misfit between the predicted and 

the experimentally estimated stiffness coefficients for all measurement points in the dataset.  

Then, after finding a set of model parameters giving an error function minimum, values of 

solid material uniaxial compaction strength 𝐻0 and shear modulus 𝐺0, parameter related to 

tensile strength 𝑇0 and Poisson’s ratio 𝑣 are redefined in order to further minimize the misfit 

function. These two steps are repeated several time, as long as parameter values changes 

make the total squared error 𝑺𝑬 value decrease by more than 0.01 𝐺𝑃𝑎2. 
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4.1.2. Macroscopic model (Prioul et al., 2004) 

In the model published by Prioul et al. (2004) the initial stiffness coefficients 𝐶11
0 , 𝐶33

0 , 𝐶44
0 , 𝐶66

0  

and 𝐶13
0  come directly from the experimentally observed velocities, densities and estimated 

Thomsen’s parameters, according to equations (19-23), as they are identified with  

the effective stiffness coefficients at the reference pressure. Analogically to Fjær’s model, 

strains are estimated with the use of Hook’s law for TI medium. The third-order elastic 

constants 𝑐𝑖𝑗𝑘  are estimated with an inversive algorithm, attached in APPENDIX D, using  

the differences in experimentally estimated second-order coefficients and strains between 

the reference and other measurement point(s) - according to Prioul et al. (2004) it is sufficient 

to run the inversion using readings from only two measurement points taken under 

hydrostatic pressure.  

 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∆𝐶11

1

∆𝐶33
1

∆𝐶66
1

∆𝐶44
1

⋮

∆𝐶11
𝑛

∆𝐶33
𝑛

∆𝐶66
𝑛

∆𝐶44
𝑛

⋮

∆𝐶11
𝑁

∆𝐶33
𝑁

∆𝐶66
𝑁

∆𝐶44
𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∆𝜀11
1 ∆𝜀22

1 + ∆𝜀33
1 0

∆𝜀33
1 ∆𝜀11

1 + ∆𝜀22
1 0

1

4
(∆𝜀11

1 + ∆𝜀22
1 )

1

2
∆𝜀33

1 −
1

4
(∆𝜀11

1 + ∆𝜀22
1 ) −

1

2
∆𝜀33

1

1

4
(∆𝜀22

1 + ∆𝜀33
1 )

1

2
∆𝜀11

1 −
1

4
(∆𝜀22

1 + ∆𝜀33
1 ) −

1

2
∆𝜀11

1

 
⋮
 

∆𝜀11
𝑛 ∆𝜀22

𝑛 + ∆𝜀33
𝑛 0

∆𝜀33
𝑛 ∆𝜀11

𝑛 + ∆𝜀22
𝑛 0

1

4
(∆𝜀11

𝑛 + ∆𝜀22
𝑛 )

1

2
∆𝜀33

𝑛 −
1

4
(∆𝜀11

𝑛 + ∆𝜀22
𝑛 ) −

1

2
∆𝜀33

𝑛

1

4
(∆𝜀22

𝑛 + ∆𝜀33
𝑛 )

1

2
∆𝜀11

𝑛 −
1

4
(∆𝜀22

𝑛 + ∆𝜀33
𝑛 ) −

1

2
∆𝜀11

𝑛

 
⋮
 

∆𝜀11
𝑁 ∆𝜀22

𝑁 + ∆𝜀33
𝑁 0

∆𝜀33
𝑁 ∆𝜀11

𝑁 + ∆𝜀22
𝑁 0

1

4
(∆𝜀11

𝑁 + ∆𝜀22
𝑁 )

1

2
∆𝜀33

𝑁 −
1

4
(∆𝜀11

𝑁 + ∆𝜀22
𝑁 ) −

1

2
∆𝜀33

𝑁

1

4
(∆𝜀22

𝑁 + ∆𝜀33
𝑁 )

1

2
∆𝜀11

𝑁 −
1

4
(∆𝜀22

𝑁 + ∆𝜀33
𝑁 ) −

1

2
∆𝜀11

𝑁
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[

𝑐111
𝑐112
𝑐123

] +

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸11
1

𝐸33
1

𝐸66
1

𝐸44
1

⋮

𝐸11
𝑛

𝐸33
𝑛

𝐸66
𝑛

𝐸44
𝑛

⋮

𝐸11
𝑁

𝐸33
𝑁

𝐸66
𝑁

𝐸44
𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (78) 

 

 

where: 𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡, 𝑁 − 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑟 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡,

∆𝜀𝑖𝑗
𝑛 = 𝜀𝑖𝑗

𝑛 − 𝜀𝑖𝑗
𝑟 , ∆𝐶𝑖𝑗

𝑛 = 𝐶𝑖𝑗
𝑛 − 𝐶𝑖𝑗

𝑟 , 𝐸𝑖𝑗
𝑛 −𝑚𝑖𝑠𝑓𝑖𝑡 𝑒𝑟𝑟𝑜𝑟 
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The inversion is carried out by numerical minimization of the misfit vector 𝑬 in  

equation (78) derived from equations (68) and (71). The result are later tested against  

the constraints given by equation (69). As the resultant third-order stiffness tensor is 

assumed to be isotropic within a specified stress range, for some datasets it is necessary to 

invert for multiple sets of third-order coefficients valid within different stress limits. It is 

carried out by changing the data and reference points included in the inversion, and running 

the algorithm for each of the sets separately.  

 

4.2. Hydrostatic stress cycle  

In order to compare accuracy and characteristic features of the models in easily controllable 

conditions, they were used to approximate results of hydrostatic test carried out on Berea 

sandstone with relatively regular sampling and broad stress range (from 2.5 to 100 𝑀𝑃𝑎), 

published by Coyner (1984). Available dataset consisted of axial P- and S-wave velocities, 

which allowed to estimate 𝐶33 and 𝐶44 for all measurement points. Estimated initial porosity 

of the sample was 𝜙0 = 17.8 % and density 𝜌 = 2.197 𝑔/𝑐𝑚3.  

4.2.1. Inclusion model – n, 𝜷, 𝜼 and porosity change impact 

 The parameters of the inclusions model were estimated according to the procedure 

described in the previous subchapter. Uniaxial compaction strength value was found to be 

𝐻0 = 53.6 𝐺𝑃𝑎, shear modulus 𝐺0 = 24.6 𝐺𝑃𝑎, parameter related to tensile strength 

 𝑇0 = 2.3 𝐺𝑃𝑎 and Poisson’s ratio 𝑣 = 0.2. Initial crack densities in direction parallel to  

the bedding were set to be equal and were 𝜉𝑥 = 𝜉𝑦 = 0.0716, while crack density in  

the perpendicular to the bedding was 𝜉𝑧 = 0.0733.  Higher value of “vertical” crack density is 

rather unexpected, as it suggests that horizontal components of the in-situ stress field were 

larger than vertical, favouring opening of the cracks perpendicular to the direction of  

the vertical stress. Other possible explanations may be the presence of intrinsic anisotropy 

in the sample (supported by the presence of bedding,  may invalidate the relation between 

𝐻0, 𝐺0 and initial stiffness coefficients) or damage experienced by the rock during drilling. 

Constant reduction of the vertical stress, due to the removal of overburden disturbs  

the initial stress state and may lead to rock failure. It is worth mentioning that according to 

the relations (63) and (64) the stiffness coefficient 𝐶13 has negative value in the unstressed 

state (approximately −1.27 𝐺𝑃𝑎). Although unexpected, this value does not violate general 

bounds for VTI medium suggested by Holt (2016) shown by equation (79). 
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−√𝐶33(𝐶11 − 𝐶66)  ≤ 𝐶13 ≤ √𝐶33(𝐶11 − 𝐶66) (79) 

−√14.04(14.53 − 7.51)  ≤ 𝐶13 ≤ √14.04(14.53 − 7.51)  

−9.93 𝐺𝑃𝑎 ≤ 𝐶13 ≤ 9.93 𝐺𝑃𝑎  

 

Although still within the theoretical bounds, the negative value of 𝐶13 may not represent 

correctly the actual stiffness coefficient of the medium and be just an evidence of violation 

of the model assumptions.  

 

 

 
Fig. 4-1. Comparison of inclusion model parameters influence. 

 

Fig. (4-1) shows few variants of the model, each having its own set of parameters 𝑛 and 𝛽, 

plotted for the purpose of demonstrating the influence of individual parameters on  

shape of the approximated curve. The parameter 𝑛 proved to have the most significant 

impact on the shape of the modelled function. According to the obtained results, it is  

the only parameter shaping the modelled rock response in the initial part of compression, 
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which coincides with assumption that 𝑛 governs the influence of the normal stress on crack 

closure. When the relation between hydrostatic stress and stiffness coefficients becomes 

approximately linear, i.e. above 40 𝑀𝑃𝑎, the curves become almost parallel. In this stress 

range the slope of the modelled 𝐶33 can be slightly modified with parameter 𝛽, steering 

the stress sensitivity of the rock due to shear deformation. However, for this dataset the best 

fit is given by models with the smallest 𝛽 values, which suggest small effect of this 

deformation mode on rock stiffness. For 𝐶44 parameter 𝛽 has hardly any influence on  

the function shape. In this particular case, the parameter 𝜂 has negligible impact regardless 

its value, and thus was not included in the plot. It is worth noticing that one set of parameters 

𝑛 and 𝛽 does not provide the best fit for both stiffness coefficients, 𝐶33 and 𝐶44, and therefore 

it is more convenient to compare the sets in terms of misfit error sum or average rather than 

individual errors of particular coefficients. The most accurate realisation had 𝑨𝑷𝑬 = 𝟐. 𝟐𝟗 % 

(𝐴𝑃𝐸33 = 1.54 and 𝐴𝑃𝐸44 = 3.02 %). 

 

 

 

Fig. 4-2. Influence of porosity changes. 
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The influence of the porosity change on the inclusion model was also investigated. 

According to the assumptions used to model rock deformation, porosity decreases linearly 

with increasing hydrostatic stress. It is possible to model stress-related changes in  

the stiffness matrix used to invert for strains, but it would be very difficult to apply these 

updates for more complex stress paths with varying principal stresses and lack of constant 

stress change trends. Fig (4-2) shows an approximation of the stiffness coefficients with  

the best data fit obtained with changing porosity, another approximation obtained with  

the same parameters and constant porosity and, finally, one with constant porosity and 

readjusted model parameters. Parameters providing the best fit for the changing and the 

constant porosity variants of the model are shown in table 4-1.  

 

Table 4-1. Alternative parametrization and errors (inclusion model, fig. 4-2). 
 

Variant 

Changing porosity 

𝜙 = 0.178 → 0.157 

Constant porosity 

 𝜙 = 0.178 

𝑯𝟎 [GPa] 
53.6 55.8 

𝑮𝟎 [GPa] 
24.6 26.2 

𝑻𝟎 [GPa] 
2.3 2.4 

𝒗 
0.2 0.2 

𝝃𝒚 = 𝝃𝒙 
0.0716 0.0713 

𝝃𝒛 
0.0733 0.0734 

𝒏 
0.55 0.51 

𝜷 
2.5 2.5 

Error 𝑨𝑷𝑬 [%] 
2.29 3.23 

 

 

The difference in the resultant curve shape and the accuracy of approximation between  

the two approaches is significant. The use of constant porosity value during modelling 

(without introducing any changes in the model parameters) makes the predicted coefficient 

values drop, which becomes more and more pronounced with increasing stress,  

causing increasing deviation of the modelled curve from the experimental data.  

Excluding the porosity change from the model made the average percent error rise from 

 2.29 to 3.68 %. An attempt to minimize the misfit by adjusting the model parameters caused 

a slight improvement in the approximation quality, but cannot be considered successful 
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(shown in more detail in table 4-1). Compensating the stiffness drop by increasing the initial 

moduli and modifying 𝑛 lifted the curve, but did not allow to correctly recreate 

experimentally observed trends. This proves that in order to provide maximum data fit it is 

necessary to treat porosity as yet another variable and update its value for each stress state 

within the cycle. 

4.2.2. Macroscopic model – interval selection impact 

The initial parameters of the macroscopic model 𝐶33
0  and 𝐶44

0  (15.49 and 7.48 𝑀𝑃𝑎) 

were estimated with the use of the experimental data and Thomsen’s parameters 𝜀, 𝛾 and 𝛿 

of Berea sandstone in nearly unstressed state (0.20, 0.18 and 0.15, respectively) were taken 

from Sarkar et al. (2003). Reference points were selected arbitrary depending on the number 

and width of the selected stress ranges in which the third-order coefficients are constant. 

The reference point were introduced to the inversive algorithm together with  

the experimental data giving several combinations of 𝑐𝑖𝑗𝑘  used for modelling purposes.   

The impact of the number of independent third-order tensors on prediction accuracy 

is shown in fig (4-3). The macroscopic model was computed for 1, 2 and 3 independent  

third-order stiffness coefficient tensors (“lines”). According to Prioul et al. (2004) it is 

sufficient to know the stiffness parameters for only two hydrostatic points to successfully 

invert for 𝑐𝑖𝑗𝑘  coefficients, but in this study (where no 𝐶11 and 𝐶66 are known, nor modelled) 

all the points were accounted for to provide sufficient number of equation in the system.  

The third order coefficients defining the slope of the model function are shown in table 4-2. 

The errors were averaged for all the points except for the reference points, for which squared 

and percent error are equal to zero. If table (4-3) and fig. (4-3) are analysed together, it 

becomes apparent that the errors value drops drastically with increasing number of 

reference points and, consequently, sets of third-order parameters describing the modelled 

functions. 

 

Table 4-2. Alternative parametrization and errors (macroscopic model, fig. 4-3). 
 

Variant Reference 

points [𝑴𝑷𝒂] 
𝒄𝟏𝟏𝟏 [𝑮𝑷𝒂] 𝒄𝟏𝟏𝟐 [𝑮𝑷𝒂] −𝒄𝟏𝟐𝟑 [𝑮𝑷𝒂] 

APE 

[%] 

1 line 2.5 3850 1400 2200 17.2 

2 lines 2.5 22.5 10150 1550 4350 500 5400 950 3.49 

3 lines 2.5 12.5 30 13200 4450 1350 7500 1350 450 6100 2650 800 1.44 
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Fig. 4-3. Influence of number of sets of third-order stiffness coefficients. 
 

Using only one third-order tensor for a broad range of stresses does not allow to approximate 

almost any stiffness coefficient with satisfactory accuracy. Increasing the number of 

independent stiffness coefficients functions for the dataset is the same as locally minimizing 

the error, and therefore increases the global accuracy of modelling. The higher number of 

fitting function, the closer the errors for particular points are to the global average for given 

stiffness coefficient, i.e. the lower standard deviation of error value. Hence, analysing 

the standard deviation of local errors in relation to the global error for the selected stiffness 

coefficient may be a plausible statistical method of defining the minimum number of stress 

intervals used for modelling. Standard deviation for particular variants of the model are 

compared in table (4-3). Although the number of intervals has very large impact on the error 

values, it is not the only factor affecting them – the selection of reference points can have 

significant influence on the quality of the approximation.  
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Table 4-3. Standard deviation of error (macroscopic model, fig. ...). 
 

Variant 𝒔𝟑𝟑 𝒔𝟒𝟒 

1 interval 7.99 6.66 

2 intervals 3.47 1.56 

3 intervals 1.33 0.88 

 

First negative consequences of apparently incorrectly chosen stress intervals can be 

observed in the plot representing the variant with two stress intervals, fig (4-3), where  

the last values modelled by the first coefficients approximation (𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 20 𝑀𝑃𝑎) are 

higher than the very first values given by the second function. This observation is 

incompatible with the general data trend, and therefore could be used as a direct indicator 

of incorrect intervals definition. As for the number of independent intervals, also the error 

value may be used to support the reference points selection. Fig. (4-4) and (4-5) represent  

two different realisations of the model with the same number of independent stress 

intervals, but different reference points and, in consequence of that, parametrization. 

 

 

 

Fig. 4-4. Influence of reference points selection (𝐶33). 
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Fig. 4-5. Influence of reference points selection (𝐶44). 

 

The first approximation (realisation 1) has been already described in the comparison of  

the influence of the number of stress intervals as the realisation giving the best fit to the data, 

while the second (realisation 2) is the very first one obtained with the script after 

implementing it in MATLAB. The first stress interval is identical for both realisations.  

The intermediate stress intervals share common reference point, but differ in length, 

whereas the last intervals have both different reference points and stress ranges. 

Consequently, as the input information for the inversive algorithm was different,  

the parametrization of the model for the second and the third interval also differs.  

The reference points, the third-order coefficients and error values of realisation 2 of  

the model are shown in table 4-4. The errors for each modelled coefficient and interval for 

both realisation are compared in table 4-5. 

 

Table 4-4. Parameters and errors of realisation 2 (macroscopic model) 
 

2nd & 3rd ref. 

point [𝑴𝑷𝒂] 
𝒄𝟏𝟏𝟏 [𝑮𝑷𝒂] 𝒄𝟏𝟏𝟐 [𝑮𝑷𝒂] −𝒄𝟏𝟐𝟑 [𝑮𝑷𝒂] 𝑨𝑷𝑬 [%] 

12.5 22.5 4800 1550 1400 500 2900 950 2.02 

 

Table 4-5. Comparison of errors for each interval and stiffness coefficient. 
 

Model 

realisation 

no. 

𝑺𝑬𝟑𝟑 [𝑮𝑷𝒂
𝟐] 

interval 

𝑺𝑬𝟒𝟒 [𝑮𝑷𝒂
𝟐]  

per interval 

𝑨𝑷𝑬𝟑𝟑 [%]  
per interval 

𝑨𝑷𝑬𝟒𝟒 [%]  
per interval 

1 

2.23 

0.19 2.66 

0.06 

0.03 0.62 

3.93 

0.57 1.47 

1.34 

0.51 1.62 

2 0.15 6.83 0.04 1.66 0.58 2.13 0.30 2.42 
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Comparison of tables 3 and 5 points out slight differences in parametrisation between both 

realisation of the model, which combined with the choice of different reference points gives 

origin to the increase of approximation average percent error of ∆𝑨𝑷𝑬 = 0.5%. The reference 

points selection has the largest impact on the final accuracy of the model - they should be 

chosen with extraordinary caution, after deeper analysis of possible quasilinear trends 

within the dataset. Shifting the reference point by only few megapascals may have significant 

consequences, especially for intervals coinciding with regions characterised by fast changes 

of modelled coefficients. As the model is not referring to any physical phenomena in 

particular, it is most reasonable to base the reference points selection on experimental 

observations. It is also worth noting that smaller number of data points within given interval 

is not automatically accompanied by lower error value, as in the second interval of 𝐶44 

approximation. This behaviour highlights difficulties related to defining the stress intervals 

and arbitrary character of the selection criterions. Moreover, due to nonlinearity of rock 

behaviour, it may be very difficult to fit the model regardless the positioning of reference 

points without further increasing the number of independent (from the modelling point of 

view) stress intervals.  

 

4.2.3. Model realisations comparison  

 

 

 

Fig. 4-6. Inclusion and macroscopic models comparison. 
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 The most accurate realisations of the two models are shown together in fig. (4-6).  

The model described by Prioul et al. (2004) gives smaller misfit error (𝑨𝑷𝑬 = 1.44 %  for  

the macroscopic versus  𝑨𝑷𝑬 = 2.29% for the inclusion model), but required at least three 

complete sets of input parameters to achieve the same accuracy as Fjær’s inclusion model. 

The macroscopic model is also characterised by smaller difference of approximation quality 

between the modelled stiffness coefficients, i.e. the average errors for 𝐶33 and 𝐶44 are almost 

identical. In case of the inclusion model it was necessary to fit one of the parameters with 

better accuracy than the other in order to minimize the final model misfit. A significant 

advantage of the inclusion model is that it is able to recreate the trends within the entire 

stress cycle during an individual modelling procedure, whereas the macroscopic model 

requires division of the dataset into quasi linear well-defined stress intervals and invert for 

the model parameters in separate procedures.  

 

4.3. Biaxial stress cycle   

In order to compare the models in a more demanding environment, they were both used 

to approximate results of an experiment carried out on Colton sandstone with the use of a 

triaxial cell and published by Cruts et al. (1995) and Dillen et al. (1999). The same dataset was 

used by Prioul et al. (2004) to test the macroscopic model, which gives an opportunity to 

verify the modelling reliability and check the consequences of numerical inversion of strains.  

 

 
 

 

Fig. 4-7. Stress cycle (Cruts et al. 1995). 
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The measurements were made on cubic block (cube edge length of 205 𝑚𝑚) with porosity 

𝜙 = 13% and bulk density 𝜌 = 2.38 𝑔/𝑐𝑚3. In order to maintain the VTI anisotropy of  

the rock, stresses 𝜎11 and 𝜎22 were equal during the entire stress cycle (shown in fig. 4-7).  

Due to abundance of experimentally estimated stiffness coefficients (𝐶11 estimated from 𝑉11 

and 𝑉22, 𝐶44 from 𝑉13, 𝑉31, 𝑉23 and 𝑉32, and 𝐶66 from 𝑉12 and 𝑉21 – first index indicates the 

direction of propagation and the second the polarization direction) inversion were initially 

carried out with the use of stiffness constants averages.  

4.3.1. Inclusion model – impact of error minimization 

Smaller maximum stresses (σmax =  10.5 𝑀𝑃𝑎) give an opportunity to have a better 

look into small-scale accuracy of the approximations and discrepancies between the models.  

In the case of the inclusion model it allowed to investigate various error minimization 

approaches. First and probably the most obvious way to invert for the model parameters is 

to minimize the global misfit error, so that the average percent error estimated for all 

stiffness coefficients has the lowest possible value. Another tested approach was to achieve 

the lowest equal values of average approximation error estimated separately for stiffness 

coefficients related to P- (𝐶11 and 𝐶33) and S-wave (𝐶44 and 𝐶66) propagation. Finally, the last 

used inversion criterion was to minimize the misfit error of P-wave- and S-wave-related 

coefficients independently. The model parameters obtained from each of the mention 

inversions are presented in table 4-6 (minimized error highlighted with orange background). 

 

Table 4-6. Inclusion model parametrization - influence of the inversion criterions. 
 

Inversion 

mode 
Global error 

Equal partial 

error 

Privileged 

𝐶11 and 𝐶33  

Privileged 

𝐶44 and 𝐶66  

𝑯𝟎 [𝑮𝑷𝒂] 90 90 90,1 90 

𝑮𝟎 [𝑮𝑷𝒂] 29,8 29,8 30 29,4 

𝑻𝟎 [𝑮𝑷𝒂] 2,2 2,2 2,2 2,2 

𝒗 0,199 0,199 0,199 0,199 

𝝃𝒚 = 𝝃𝒙 0,0913 0,0913 0,0913 0,0913 

𝝃𝒛 0,0953 0,0953 0,0951 0,0963 

𝒏 0,056 0,062 0,054 0,081 

𝜷 0.4 0.4 0.4 5.0 

𝑨𝑷𝑬𝑪𝟏𝟏 & 𝑪𝟑𝟑[%] 1.04 1.74 0.96 4.35 

𝑨𝑷𝑬𝑪𝟒𝟒 & 𝑪𝟔𝟔[%] 1.96 1.74 2.14 0.88 

𝑨𝑷𝑬 [%] 1.50 1.74 1.55 2.62 
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All realisations of Fjær’s inclusion model are shown together and compared with  

the experimental results in fig. (4-8). For all the inversion modes the initial moduli (𝐻0, 𝐺0 

and 𝑇0), Poisson’s ratios 𝑣 and crack densities 𝝃𝒊 are fairly stable and their values differ 

by less than 2%.  The most significant changes can be observed for 𝑛 parameter denoting  

the stress sensitivity related to normal stress – it’s value changes by 50% between 

 the best approximations of P- and S-wave moduli. Lower values of 𝑛 parameters  

improved the fit of P-wave coefficients, 𝐶11 and 𝐶33, slightly decreasing the accuracy of  

the approximation of S-wave-related constants, 𝐶44 and 𝐶66. 

 

 

 
Fig. 4-8. Inclusion model parametrization - influence of the inversion criterions. 
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The increment of 𝑛 value, apart from increasing the rate of change of all modelled 

coefficients, causes an asymmetrical response, slightly improving the fit of S-wave 

coefficients and provoking a significant drop of 𝐶11 and 𝐶33 estimation quality.  

In consequence, the inversion promoting the 𝐶44 and 𝐶66 misfit minimization gives  

an estimation error of P-wave coefficients exceeding by a factor of 5 the error for the S-wave-

related coefficients and produces the largest global error among all fitting algorithms.  

The results indicate that, for this particular dataset, higher values of the parameter 

describing the impact of shear deformation on the crack density 𝛽 allow to obtain better fit 

for 𝐶44 and 𝐶66. On the other hand, all the other inversion variants gave significantly reduced 

values of this parameter, highly limiting the impact of the shear deformation mode. Although  

the results of the inversion privileging 𝐶44 and 𝐶66 applied to the model are the only set of 

parameters giving reasonably good fit for both, lower and higher values of S-wave-related 

stiffness coefficients, they do not provide good fit for high values of 𝐶11 and 𝐶33. Yet another 

argument against the inversion favouring the fit of 𝐶44 and 𝐶66 coefficients is that  

the resultant initial parameters violate the bounds shown in equation (79), giving the initial 

value of 𝐶13
𝜎=0 = −14.15 𝐺𝑃𝑎 and limits: 

 

−√17.48(19.88 − 8.67)  ≤ 𝐶13 ≤ √17.48(19.88 − 8.67) 

−14.00 𝐺𝑃𝑎 ≤ 𝐶13 ≤ 14.00 𝐺𝑃𝑎 

 

The other three inversions yield very low values of the parameter 𝐶13
𝜎=0 , being just at the edge 

of the ranges given by Holt (2016). As in the case of Berea sandstone, it may indicate  

the presence of a lithological sources of anisotropy in the sample, and therefore it raises 

doubts about the fulfilment of the model assumptions. Accordingly to the described above 

asymmetrical growth of the approximation error for P- and S-wave-related stiffness 

coefficients in relation to 𝑛 parameter changes, the minimum global error criterion 

promotes better fit of 𝐶11 and 𝐶33. The resultant errors of approximation for the two pairs of 

coefficients differ by a factor of 2. Using the parameter 𝑛 = 0.062 (being the result of  

the inversion aiming to minimize equal average error of both groups of coefficients), 

although not providing the lowest global error, gives an equilibrium between overestimated 

pressure wave and underestimated shear wave coefficients. Hence, this inversive algorithm 

was used for further comparison with realisations of the macroscopic model.  



MODELS COMPARISON   
 

49 
 

4.3.2. Macroscopic model – impact of inversive algorithm 

The initial values of Thomsen’s parameters required to carry out modelling with  

the use of the macroscopic model were taken from the same publication as the model itself 

(Prioul et al., 2004) - vertical velocities 𝑉𝑃0 = 2.77 𝑘𝑚/𝑠 and 𝑉𝑆0 = 1.89 𝑘𝑚/𝑠, Thomsen’s 

epsilon 𝜀 = 0.05, gamma 𝛾 = 0.03 and delta 𝛿 = 0.05. In the case of experimental results 

published by Cruts et al. (1995)there was no need to apply more than one set of macroscopic 

model parameters to cover the entire stress interval. Due to the abundancy of  

the experimental stiffness parameters, inversions were run first on averages of stiffness 

matrix elements (giving four equations per measurement point - one for each stiffness 

parameter, i.e. 𝐶11, 𝐶33, 𝐶44 and 𝐶66) and later with all available stiffness constants (nine 

equations per measurement point). Prioul et al. (2004) suggested that to invert for  

the coefficients 𝑐𝑖𝑗𝑘  it is sufficient to include in the inversive algorithm experimental result 

from only two measurement points, at which the sample was subjected to a hydrostatic 

stress field (in here points 𝐴 and 𝐵). The inversive algorithm described in section 4.1.2 and 

shown in APPENDIX D using coefficients averages did not manage to recreate the results 

obtained in the original publication, nor achieve comparable estimation accuracy using  

the parameters obtained under this assumption. Attempts to increase the accuracy of  

the inversion by computing the third-order coefficients with the use of the experimentally 

approximated values of all available stiffness coefficients (instead of their averages) 

improved significantly the fit, and achieved almost the same level of approximation accuracy 

as obtained by the model Authors. However, its results are characterised with larger misfit 

difference between the P- and S-wave-related coefficients.  

 

Table 4-7. Macroscopic model parametrization - influence of 
 the measurement points selection. 

 

Inversion mode 
Prioul et al., 2004 

(points 𝑨 & 𝑩) 

Prioul et al., 2004 

(points 𝑨 − 𝑰) 

Two hydrostatic 

points (𝑨 & 𝑩) 
All measurement 

points (𝑨 − 𝑰) 

𝒄𝟏𝟏𝟏 [𝑮𝑷𝒂] 7700 7400 5800 6900 

𝒄𝟏𝟏𝟐 [𝑮𝑷𝒂] 1000 1400 1900 1550 

𝒄𝟏𝟐𝟑 [𝑮𝑷𝒂] -100 - 600 - 1800 - 850 

𝑨𝑷𝑬𝑪𝟏𝟏 & 𝑪𝟑𝟑[%] 1.22 1.05 0.70 0.84 

𝑨𝑷𝑬𝑪𝟒𝟒 & 𝑪𝟔𝟔[%] 1.03 0.80 1.67 1.05 

𝑨𝑷𝑬 [%] 1.12 0.92 1.19 0.94 
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An inversion using all the data from six hydrostatic measurement point failed to bring  

the third-order coefficients closer to the values providing decent fit to the experimental data. 

After more meticulous investigation it was found that the results of the inversions using 

experimentally estimated stiffness coefficients from all hydrostatically compressed 

measurement points violated some of the conditions given by equations (69) - in some cases 

the relations between 𝑐144 and 𝑐155 were not preserved. Finally, an inversive algorithm 

exploiting data from all measurement points (within hydrostatic and biaxial intervals) 

managed to achieve required fit quality without breaking the constrains of the model,  

but still did not manage to outscore the original parameter set proposed by  

Prioul et al. (2004). The third-order stiffness coefficients obtained from the inversions using 

all available stiffness coefficients from a short hydrostatic interval and all measurement 

points are presented in table 4-7. The resultant second-order stiffness coefficients are shown 

in fig (4-9) and (4-10).  

 

 

 

Fig. 4-9. Macroscopic model parametrization - influence of  
the measurement points selection (𝐶11 and 𝐶33). 
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Fig. 4-10. Macroscopic model parametrization - influence of  
the measurement points selection (𝐶44 and 𝐶66). 

 

All of the analysed sets of third-order stiffness coefficients succeeded in approximating  

the trends and the exact values of 𝐶11 coefficient. In the case of 𝐶33, the models using 𝑐𝑖𝑗𝑘  

parameters estimated from a pair of hydrostatic measurement points manage to recreate  

the stiffness parameters for all hydrostatic points, but were further from the experimentally 

estimated values for biaxial stress intervals - the model using parameters estimated from 

points A & B given by Prioul et al. (2004) underestimated the values of 𝐶33 by almost 0.7 𝐺𝑃𝑎. 

The differences between the approximations are significantly more pronounced for  

the parameters 𝐶44 and 𝐶66. The third-order stiffness tensors provided by the model Authors 

gave better approximation of the coefficient 𝐶66. The parameter set estimated from two 

hydrostatic points, behaving similarly to the analogical set given by Prioul et al. (2004) in  

the case of 𝐶33, underestimated 𝐶66 and failed to recreate the change trends for all points 

within biaxial stress intervals. However, all the sets gave a reasonable fit for 𝐶44, which could 

be related to the high number of equations for 𝐶44 (4 out of 9 for each point) implemented in 

the inversive algorithm.  
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A certain level of discrepancies between the inversion results and the third-order 

stiffness tensor proposed by Prioul et al. (2004) was expected due to the inaccessibility of  

the original strain records. One of the possible causes of such large differences in  

the parameter values and approximation quality could be the use of different numerical 

operators used to minimize the error between the experimental results and modelled data. 

Moreover, the misfit in the built-in MATLAB functions is defined as non-normalised 

difference between the predicted and the experimentally estimated stiffness coefficients  

(in a similar way as the squared error 𝑺𝑬 used to preliminarily assess model accuracy) - 

initially it was assumed to be irrelevant and was identified as a possible cause of  

the algorithm dysfunction in the final phase of the project.  

 

4.3.3. Model realisations comparison  

The realisation of the inclusion model giving an equal value of average estimation 

error for both pairs of coefficients (𝐶11&𝐶33 and 𝐶44&𝐶66) and the results of macroscopic 

modelling obtained with the use of the parameters from inversion including all available 

stiffness coefficients from the entire stress cycle are compared in fig. (4-11). Although both 

models are characterised with the approximation error below the uncertainty of 

measurement, assumed by Prioul et al. (2004) to be 2% of the estimated second-order 

stiffness parameter value, the difference in modelling quality is significant. The coefficients 

𝐶11and 𝐶66 are approximated better by the macroscopic model, which outdoes the inclusion 

model in terms of the error value and trends reconstruction. In comparison to  

the macroscopic approach, the inclusion model tends to overestimate 𝐶11 and does not 

capture the subtle changes of 𝐶33 between the measurement points 𝐶 and 𝐺. This differences 

are well reflected in the estimation errors of 𝐶11 and 𝐶33 coefficients of the macroscopic and  

the inclusion model given in tables 4-6 and 4-7 (0.84% and 1.74%, respectively). Even clearer 

differences can be observed in the part of fig (4-11) showing the approximations of 𝐶44 and 

𝐶66 (𝐴𝑃𝐸44&66
𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐

= 1.05% and 𝐴𝑃𝐸44&66
𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 = 1.73%). Although both approaches give  

an opportunity to reconstruct the trends of coefficient changes fairly accurately,  

the inclusion model underestimates their amplitude giving “averaged” values of the stiffness 

constants – it underestimates the high coefficients values (points 𝐴,𝐷 and 𝐻) and 

overestimated the low ones (points 𝐸, 𝐺 and 𝐼). Similar approximation quality can be 

achieved only if inclusions model parameters are computed separately for P- and S-wave-
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related stiffness coefficients, as shown in fig. (4-8). However, it is worth noting that  

the differences between the minimum and maximum values of stiffness coefficients are 

relatively small (between 13.6 and 15.8%), and therefore a model using general physical 

properties of the rock, and not statistically extracted macroscopic parameters, may be 

expected to face serious problems in approximating the entire matrix of stiffness parameters 

within such a short interval in a relative low-stress regime.  

 

 

 
Fig. 4-11. Models comparison. 
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5. Theory & numerical modelling - 

summary and conclusions  

 

In order to set up a basis for understanding different approaches to describe  

the anisotropy and estimate its impact on the experimental results, the anisotropy concept 

and various possible anisotropy sources were introduced. Two main types of anisotropy, 

 i.e. intrinsic and extrinsic, were defined, as well as the mechanisms responsible for their 

creation (which affect the manner of their physical analysis and mathematical description). 

Describing the general form of Hook’s law, used to explain the stress-strain relationship, 

supported by introduction of the elastic stiffness coefficients, normal and shear components 

of stress and strain vectors, allowed to present the most common anisotropy classes 

(orthorhombic and transverse isotropy). Their characteristics, most popular applications 

and influence on the shape of the stiffness matrix were described. To simplify the indexing 

system of the elastic stiffness matrix elements, Voigt’s notation was also introduced.  

To establish a link between the experimental results and the theoretical description of 

anisotropy, seismic velocities of P- and S-waves in isotropic and anisotropic medium were 

defined. An alternative parametrization of an anisotropic body, so called Thomsen’s 

parameters, was shown and the relations between the parameters and the shape of  

a propagating wavefront were explained. 

Different classes of the rock models, used to model the response of the rock to external 

stresses, were introduced. The granular approach, originating from the analysis of  

the interactions between individual grains within the medium, was described. Various stages 

of the granular model complexity (simple linearly elastic grains deformation analysis 

gradually gaining additional terms responsible for lateral displacements, slipping and  

the influence of cementation on the contacts stiffness) were shown. The inclusions models, 

based on the analysis of the influence of pores and cracks on the effective rock parameters, 

were introduced. Different types of inclusions, varying in shape and orientation, and their 

impact on the mathematic apparatus of this class of models were described. Crack density 

and fracture impact coefficients, together with parameters responsible for different modes 

of rock deformation, were defined and introduced into the model. Finally, the macroscopic 

rock model using only the effective characteristics of the rock was described. In contrast to 

the previously mentioned model classes, this approach is not based on any particular 
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physical phenomena and its parametrization is defined through statistical analysis of 

the rock behaviour within selected stress interval. 

The final stage of this part of the thesis was to compare two from the described models 

in terms of approximation accuracy and general trends reconstruction. The inclusions 

model presented by Fjær (2006) and the macroscopic model published by Prioul et al. (2004) 

were selected for the comparison. The models represent different model classes, but both of  

them use strains to approximate the effective stiffness coefficients, which allow to model  

the behaviour of a transversely isotropic rock under hydrostatic and non-hydrostatic 

stresses. MATLAB software was used as a main platform for model implementation, 

parameters inversion and approximation error estimation. Initially, the models were 

supposed to be tested with the use of stress, strain and ultrasonic data collected with  

the true-triaxial apparatus from Formation Physics Laboratory (SINTEF Petroleum 

Research). Due to the technical problems described in Chapter 6, it was necessary to 

introduce significant changes in the thesis structure and its objectives, and use the data 

published by other authors. At first, the models were tested using the data from hydrostatic 

measurements carried out on Berea sandstone with stresses varying between 2.5 and 

100 𝑀𝑃𝑎 (Coyner, 1984).  

The second test was performed with the data from biaxial stress cycle with minimum 

stress value of 0.7 and maximum of 10.5 𝑀𝑃𝑎 with the use of a sample of Colton sandstone 

(Cruts et al., 1995). Because of the lack of the original strain data (in both cases only the stress 

and the ultrasonic velocity measurements were available) it was necessary to linearize the 

stress-strain relationship and invert for strains numerically – this could have significant 

influence on the final results of modelling, and therefore was taken into consideration as one 

of the possible factors responsible for deviations of the models from the experimentally 

obtained values of the stiffness parameters. Apart from direct comparison of the results given 

by both models, various parametrizations, model elements, parameter inversions modes 

and error minimization methods were investigated.  

 

The inclusion model, using the uniaxial compaction strength 𝐻0 and the shear  

modulus 𝐺0 of the rock unaffected by pores and cracks, the initial crack densities in each of  

the principal directions 𝝃
𝒊
0 , the initial porosity 𝜙0, the tensile strength parameter 𝑇0 and 

Poisson’s ratio 𝑣 as the initial parameters, was used to estimate the effective stiffness 

parameters, within the entire stress cycle, with an individual model realisation. The 
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inversion for the model parameters 𝑛, 𝛽 and 𝜂 scaling the impact of sensitivity of the rock 

and cracks to normal and shear deformation was performed by minimization of the percent 

error of approximation of particular stiffness coefficients or their averages. The initial 

stiffness coefficients (at stress state 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = 0, no influence of cracks and pores) were 

estimated directly from 𝐻0 and 𝐺0. The impact of inclusions was introduced with the use of 

the initial porosity 𝜙0, the initial crack densities 𝝃
𝒊
0 and the impact factor 𝑄. During  

modelling, the porosity and crack densities were updated according to stresses and strains 

experienced by the rock and the parameters 𝑛, 𝛽 and 𝜂. The model was computed by 

introducing the updated values of porosity and crack densities into the equations for  

the effective stiffness coefficient, in each selected stress state. The initial parameters were 

also updated in order to minimize the misfit between the estimated and the experimental 

stiffness coefficients.  

One of the first difficulties was to estimate the initial values of moduli 𝐻0 and 𝐺0, 

representing the parameter of a solid material. These value cannot be directly measured and 

should be approximated together with other model parameters, so that the stiffness 

coefficients in the point under the lowest hydrostatic stress are approximately equal to  

the experimentally obtained values. It should be also taken into account, that the 

relationship between the solid material moduli (𝐻0 and 𝐺0) and the initial stiffness 

coefficients is based on the assumption that anisotropy of the rock originates only from 

the extrinsic sources. In the case of intrinsic anisotropy this relation could be inaccurate, and 

therefore the initial stiffness coefficients values should be controlled during the entire 

modelling process. One of the possible control mechanism is to test the stiffness coefficients 

against theoretical bounds (Holt, 2016). It could be also argued that the initial crack densities 

are significantly affected by the drilling and coring processes, and hence they have very 

limited relation with the in-situ conditions experienced by the rock. Both tests indicated that 

the most prominent model parameter is 𝑛, reflecting the influence of the normal stress on 

crack density. The impact of the parameters 𝛽 and 𝜂 (scaling the influence of shear 

deformation and crack stress-sensitivity, respectively) on the results of the both tests was 

very limited, but it should be assumed that it could be more pronounced under different 

experimental conditions. According to the tests run on different variants of Fjær’s inclusions 

model it was concluded that updating the porosity values, regardless of the amplitude of 

changes, helps to obtain better fit with the experimental data, and therefore should not be 

neglected. Using a unique set of parameters (based on the physical properties of the rock) 
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allows to employ the inclusion model for the entire experimental interval and extrapolate 

the stiffness coefficients beyond it. As shown in the hydrostatic example, the inclusion model 

is very accurate in recreating the trends and the rate of change within very broad stress 

ranges. On the other hand, it was also observed that the set of parameters providing the best 

global fit does not estimate the P- (𝐶11 and 𝐶33) and S-wave-related parameters (𝐶44 and 𝐶66) 

with equal accuracy. The low-stress regime was identified as the zone with the highest 

discrepancies in the approximation quality. The difference between the 𝑛 parameter values 

giving the best fit for the mentioned coefficients pairs was as high as 50% (at the same time 

the initial parameters values were changed by less than 2%), which could suggest that it 

would be beneficial to introduce an additional scaling factor or parameter differentiating 

between the modelled stiffness coefficients. Nevertheless, despite the possible assumptions 

violation (presence of the intrinsic anisotropy) the inclusion model manages to recreate the 

experimental results with relatively high accuracy.  

 

The macroscopic model requires Thomsen’s parameters (or the stiffness coefficients) of  

the rock at the reference hydrostatic stress state as input. The third-order stiffness 

coefficients 𝑐111, 𝑐112 and 𝑐123, governing the impact of the deformation of the rock on  

the effective stiffness coefficients, are computed with the use of an inversive algorithm using 

experimental results from various points within the analysed interval. In case of broad 

experimental intervals it is convenient to use more than one reference point, and therefore 

also a set of model parameters. Selection of the reference points and the interval length is 

theoretically unrestricted.  

As the third-order stiffness coefficients are not directly related to a particular physical 

phenomena (e.g. grain contact stiffening, crack closure or opening), nor to any of the rock 

moduli, they cannot be estimated a priori. Moreover, Prioul and Lebrat (2004) suggested 

theoretical bounds for the 𝑐𝑖𝑗𝑘  coefficients, which define only some relative relationships 

between the coefficients - there are no clear limits of the third-order tensor elements values, 

and hence the ability to control the model parameters before running the simulation is 

limited. Due to the statistical character of the third-order stiffness coefficients, they are 

highly dependent to the numerical inversion method, and therefore they are vulnerable to 

any changes introduced to this algorithm. The number of experimentally estimated stiffness 

coefficients used as the input for the inversion plays a crucial role in limiting the estimation 

error – the third-order stiffness coefficients obtained for a single pair of measurement points 
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differed significantly from the coefficients obtained with the use all available data points and 

the results of analogical inversion published by the model Authors. The results suggest that 

the number of independent estimations of each stiffness coefficient (depending on  

the types, propagation and polarization directions of ultrasonic waves recorded on each 

measurement point) used during the inversion affects the accuracy of approximation of 

particular 𝐶𝑖𝑗 coefficients. In that case, the predictive power of the model would be directly 

dependent to the abundance of the experimental results. The assumption that the third-

order stiffness coefficients denote constant gradients in the strain-stress coordinates forces 

fragmentation of the model in case of wide stress intervals. Although the initial stiffness 

coefficients can be extracted easier than in the inclusion model, they have to be estimated 

separately for each of the modelling intervals, which increases the number of required 

parameters significantly. Moreover, because of the local character of the model parameters, 

it may be risky to extrapolate the data outside the analysed interval. Due to the arbitrary 

character of the selection of number and length of the modelling intervals, the accuracy of 

the model may depend greatly on the choices made by the interpreter. However, it was 

concluded that interval selection can be assessed objectively by comparing standard 

deviation of errors in particular intervals with standard deviation of all partial errors. 

Furthermore, comparing the extreme values of any neighbouring intervals allows to avoid 

under- or overestimation of the stiffness coefficients on the interval edges. Despite all 

potentially harmful features, the macroscopic model flexibility (in terms of coefficients 

values and intervals position) allows to obtain precise approximation within selected stress 

interval – the macroscopic model managed to achieved better approximation accuracy in 

both test.  

 

In summary, despite significant differences in parametrization, model parameters 

inversion routine and application range, they can both be successfully used to model  

the elastic stiffness parameters of VTI media in hydrostatic and non-hydrostatic stress states. 

Both models were able to estimate the stiffness coefficients of the rock with accuracy error 

below 2% (which can be treated as a reasonable experimental error value). Due to  

the dissimilarities in the very basic model assumptions, the models can be interchangeably 

applied, depending on the modelling purpose – the inclusions model can be used as  

a reasonable approximation of stiffness parameters values and their change rates within 
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wide stress ranges, whereas the macroscopic model can be more successful in short intervals 

(well constrained by the experimental results intervals).
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6. Technical report 

 

6.1. Apparatus general description  

The true-triaxial apparatus located in SINTEF Petroleum Rock Physics Laboratory was 

originally constructed and operated by Royal Dutch Shell. It was first described briefly by 

Sayers et al. (1990). The apparatus consists of two perpendicular sets of steel beams being 

a frame for the entire measurement setup. On the opposite sides of the frame there are 

Enerpac RSM-300 hydraulic jacks installed, one pair for each axis. This particular actuators 

placement reduces possible shear stress component which could affect orientation of 

a sample. Rock samples are installed in the central point of the space created by the frame, 

in the crossing point of axes given by the actuators. It is positioned with the use of steel-made 

acoustic transducer holders (element SP2) and an aluminium frame (element SP1) designed 

to facilitate the process by keeping the sample and the other elements of the system tightly 

together. When hydrostatic stress of around 0.5 𝑀𝑃𝑎 is applied the frame can be removed. 

The apparatus and SP1 frame are presented in fig. (6-1). 

 

 

 

 

 
Fig. 6-1. Sample placement in the apparatus. 
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In order to create pressure inside the actuators, they are connected to a hydraulic system 

consisting of several hand and electronic pumps, located below the apparatus table.  

In purpose of measuring forces exerted by the actuators, each axis is equipped with a load 

cell produced by HBM, model C2, characterised by maximum measurable force of 200 𝑘𝑁 

and accuracy of 0.2 %. To transmit force from the actuators to a sample, a set of holders 

(elements SP2) was used. Each holder consists of two steel elements (one being in direct 

contact with the actuators and the other having a hole dedicated to host an acoustic 

transducer inside) and an exchangeable contact platen (element SP3, fig. 6-2). To improve  

the contact between the transducer and the platen, an metal string was inserted inside  

the holder.  

 

 

 
Fig. 6-2. Transducer holder. 

 

Strain along each of the main axes was originally measured with the use of linear variable 

displacement transducers (LVDT) produced by SANGAMO Schlumberger attached to  

the SP2 steel holders. An individual “column” of the setup is presented in fig. (6-3).  

 

 

 
Fig. 6-3. Measuring system elements and sample placement in the apparatus. 
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The face platens, providing contact between the acoustic transducer holders (SP2) and  

a sample, were originally made with aluminium. SP1 frame, used to mount samples into  

the apparatus, required three pairs of platens of dimensions of  47x47, 47x50 and 50x50 mm, 

making it necessary to use a different force-stress relationship for each of the pairs.   

The apparatus has not been used for several years, and therefore it required maintenance 

work, elements quality control and multiple modifications to be introduced. As there was no 

instruction, nor technical specification available, each of the elements had to be investigated 

and tested separately in order to verify how to operate them correctly.  

 

6.2. Sensors modification and calibration  

One of the first modifications introduced to the apparatus was to exchange connectors of all 

LVDTs and load cells. Original 7-pin connectors were exchanged with 15-pin versions to 

allow plugging them in QuantumX MX840A amplifier.  

The distance between the elements of the loading system elements made it impossible 

to insert a reference sensor without an additional support. In order to carry out  

calibration of the load cells it was necessary to manufacture an additional steel-made 

reference transducer adapter (element C1), as shown in fig. (6-4). Due to the weight of  

the adapter, an additional support was necessary. The PVC supporting element (C2) is shown 

in fig. (6-5) together with the entire calibration setup. More detailed plans of these elements 

are presented in APPENDIX E  

 

 

Fig. 6-4. The reference load sensor placement. 
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Fig. 6-5. PVC supporting element C2 (left) and the calibration process (right). 
 

In the case of Sensotec Model 53 (reference transducer) and HBM C2 load cells, a two-point 

calibration scheme was used for a force range extremes of approximately 0 and 160 𝑘𝑁,  

and later verified with a supplementary test carried out during loading and unloading 

process. Results of both tests are presented in fig. (6-6) and, in more detail, in APPENDIX F.  

 

 

 
Fig. 6-6. Load cells calibration results. 
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All loading cells exhibited highly linear and repeatable behaviour, and therefore they were 

declared as fit to use in forthcoming tests.   

Calibration of LVDTs was carried out using the multipoint method. It allowed not only to 

define a relationship between the observed voltage and the resultant displacement, but also 

to estimate a range of linearity for each of the sensors. Extremes of the measurement range 

are indicated by abrupt increase of deviation from the linear trend, and should be 

individually used to verify any experimental results obtained with the displacement sensors. 

According to the producer, the LVDTs were expected to give linear relationship within  

the range of 5 mm. In order to provide accurate and precise displacement measurements 

during the procedure, a digital micrometre was used. The results of calibration are presented 

in fig. (6-7).  

 

 

 

 
 

Fig. 6-7. LVDTs calibration results. 
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Transducers S1 and S3 are characterised with well-defined linearity extremes on both ends 

of the measuring range, meanwhile transducer S2 does not have a clear extreme for negative 

displacement values. Furthermore, for S2 and S3 the linearity ranges are highly 

unsymmetrical and are shifted towards the positive displacement values (compression). 

It could be related to individual characteristics or damages experienced by the sensors.  

 

6.3. Hydraulic system modification 

In the original form, the hydraulic system consisted of a set of three electric pumps 

supported with an additional set of two handpumps and three rotary pumps, as presented 

in fig (6-8).  Each of the electric pumps was connected to a particular subsystem, supported 

with an individual rotary pump, responsible for providing hydraulic pressure to a particular 

pressure actuator mounted in the apparatus frame. The hand pumps were installed in  

a more universal manner, allowing to control the horizontal and vertical pressure separately. 

All the subcircuits could be cut off from the hand pumps with the use of control valves, and 

therefore they can be operated separately using the electric and the rotary pumps. 

 

 

Fig. 6-8. Original hydraulic system. 
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As there was no software for the electric pumps available, a decision to detach the electric 

system to limit possible costs and time of preparation of the apparatus has been made.  

For further simplification, one of the hand pumps was also detached, and the other was 

connected to all three actuator subsystems. Hence, it could be used to build hydrostatic 

stress on a sample without the need for equilibrating the fluid pressure between  

the subsystems. The rotary pumps were unaltered, as they provided excellent conditions for 

controlling pressure differences when valves between the main hand pump and actuators 

were closed. In order to have a full control over the pressure after modifying the main pump- 

and rotary pump-operated subsystems, some of the valves were relocated, so that each of 

the subsystems could be monitored and operated separately. The original elements were 

kept in place even after they were detached from the hydraulic system – all of the above 

alterations were carried out by modifying the high-pressure piping network and adding or 

removing valves and plugs.  The final configuration of the hydraulic system is presented in 

fig. (6-9). The entire system was designed and constructed to sustain a pressure of 20 000 psi 

(≈ 1380 bar).  

 

 

Fig. 6-9. Hydraulic system after modifications. 
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6.4. Initial tests of the apparatus 

The very first step towards reliable experimental results was to carry out initial tests on 

standard cubic samples made with aluminium and PEEK, and to determine an error limit 

characteristic for the apparatus. Initial tests carried out in the true triaxial conditions, 

according to a very plain stress paths, as the one presented in fig. (6-10), aroused suspicion 

that the measuring setup does not function correctly. 

 

 

Fig. 6-10. True triaxial initial test. 
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Test T-A0 was conducted in conditions of equal forces exerted by the actuators on SP2 

holders. As the face platens attached to the holders differ in size, it was expected that  

the resultant stress experienced by the sample would be varying depending on the axis, 

which could affect the value of strain in particular directions. Surprisingly there was no 

correlation between the theoretically calculated stresses (according to the platens surfaces) 

and the readings of the displacement sensors. In order to identify the source of this 

behaviour more detailed test had been initiated.  

At first, both samples were tested in conditions of uniaxial compaction in terms of 

deformation along the axis parallel to the stress direction. In between the measurements (54 

in overall) the samples were rotated, and LVDTs and their holders were exchanged, which 

aimed for identification of errors originating from these elements. The magnitudes of 

discrepancies were noted and compared to identify the most prominent error source.  

The described arrangement was schematically depicted in fig. (6-11 ). 

 

 

 
Fig. 6-11. Uniaxial measurement setup. 

 
 

The results showed large discrepancies depending on the number of experiment repetitions 

(within the force limits where anelastic deformations were not expected), SP2 holders 

selection and sensor positioning. Some of the most distinctive tests are presented 

 in fig (6-12).  
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Fig. 6-12. Uniaxial tests of PEEK standard sample. Holders were marked with numbers from 
1 to 4, and B and O letters indicating originally corresponding force actuator, whereas the 

LVDTs symbols refer to a originally corresponding axis of measurement. 
 
 

In the plot representing test T-A1, being the very first test in the entire series, it is 

clearly visible that displacement magnitudes were changing from one measurement to 

another. As the maxima were decreasing with each test it was possible to relate this effect 

with deformation of a teflon foil used as a bedding between the face platens and the samples. 

Before further tests, the foil was exposed to a long term stress in order to ensure full 

development of the creeping effect. Furthermore, the order of measurements of particular 

holder-sensor combinations was being changed to eliminate any other time-related effects, 

which could affect the results. In test T-A2, the differences between the measurements are 
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significantly less pronounced, although some discrepancies are still present – the values of 

displacement obtained for stress of 5 MPa  have a standard deviation of 0.0062 mm from an 

average of 0.187 mm. In the last of the presented plots, T-A3, one of the measurement 

(Holders:14, LVDT:S1) differs significantly from the others in this measuring series, which 

could be most likely explained by a random disturbance of the system during the sensors 

and holders exchange. The value of standard deviation in test T-A3 is still relatively low 

(0.0076 mm). More importantly, the average of the sensor reading for a stress of 5 MPa is 

lower by more than 10% (0.168 mm) than in test T-A2, although the measurements were 

taken in theoretically identical conditions. This results suggested that there may be some 

additional effects related to the location of the sensor (which during an individual 

measurement series was installed in the same place in relation to the tested cube) and 

sample alignment.  

To verify and possibly specify the above conclusions, another round of uniaxial 

measurements was carried out with three LVDTs mounted on the tested column, as shown 

in fig. (6-13). The increased number of sensors aimed to capture any possible heterogeneity 

in the sample behaviour, and additionally establish a reliable force-stress function for each 

pair of contact platens.  

 

 

 
Fig. 6-13. Uniaxial test with three LVDTs. 

 

Some of the most distinctive results (from 13 tests in overall) are presented in fig. (6-14).  

The measurements revealed significant variations in the sample behaviour, changing from 

one part of the sample to another.  
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Fig. 6-14. Uniaxial tests of PEEK standard sample with use of three LVDTs 
simultaneously. 

 
 

Average values of displacement (for force of 15 kN) and their average standard deviations 

are presented in table 6-1. The tests, carried out using a pair of the intermediate (in terms of 

dimensions, 47x50 mm) platens, are characterised with the highest standard deviation, 

followed by the results obtained with a pair of the smallest ones. The biggest platens,  

the only ones that cover the entire surface of the sample, provide the most homogeneous 

results, suggesting the most uniform stress exertion. At the early stage of compression  

the deformation of the system was not linear in relation to the exerted force.  This range of 

non-linearity differs for each of the sensors suggesting that not only the sample compressed, 

but there were also another heterogenous factors contributing to the shortening of  

the column, such as sample rotation, contact improvement, etc. Computation of the average 

values of displacement (giving an estimate of strains, and therefore allowing to approximate 
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the stresses exerted by the platens on a sample) provided interesting, but highly unexpected 

results.  

Table 6-1. Processed results of the uniaxial test with simultaneous use of three LVDTs. 
 

Platens size [mm] 47 x 47 47 x 50 50 x 50 

Average displacement [mm] 0,132 0,168 0,155 

Average standard deviation  

of displacement [mm] 
0,015 0,036 0,011 

 

As all the readings were taken at the same compressive force level and as the deformation of 

the sample is assumed to be governed by isotropic form of Hook’s law (equation 1),  

the resultant displacement 𝑑(related to strain as 𝜀 = 𝑑/𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ) was expected to be 

inversely proportional to the surface of the platens 𝑠, according to equation (81).  

 

𝜎 =
𝐹

𝑠
          (80) 

𝜀 =
𝐹

𝐶𝑠
 (81) 

 

where:  𝐶 − 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑖), 𝐹 − 𝑓𝑜𝑟𝑐𝑒, 𝑠 − 𝑠𝑢𝑟𝑓𝑎𝑐𝑒. 

 

The experimental data indicates that the smallest platens produced the smallest strain, while  

the highest values were observed when the intermediate platens were mounted.  

This observations stand against equation (81), indicating serious flaws of the measuring 

system. After a more profound analysis of the data, the most probable causes for this 

abnormalities within the sample placement subsystem were determined: 

 

• Wrong LVDT calibration; 

• Sample-platens misalignment (causing heterogenous compression); 

• LVDTs out of the stress axis (causing decrease in measurement accuracy). 

For the purpose of defining the main causes standing behind the tests results,  

calibration of the displacement sensors was carried out again (and proved that the original 

calibration was correct). A side effect of the tests and the recalibration of the sensors was that 
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one of the LVDTs was found drifting and had to be replaced with a more modern transducer 

produced by HBM (which required an additional adapter H2 – APPENDIX K). To test  

the alignment of the system, the PEEK sample was installed into the cube holder (SP1) with 

FUJI Pressure Measurement Film (two sheets – a colour-forming and a colour-developing 

layer) in between its walls and the contact platens, as shown in fig (6-15). When exposed to 

stress, microcapsules on the colour-forming sheet break releasing ink on the underneath 

developing layer, giving an estimate of the stress value and distribution on a tested surface. 

 

 

 

Fig. 6-15. Pressure measurement film placement and test results. Films were marked 
with numbers from 1 to 4, and B and O letters indicating originally corresponding force 

actuator. 
 

Performing alignment tests in the true triaxial mode ruled out free-column effects which 

could have caused system rotation during the uniaxial tests, when sides of the sample were 

not supported. After introducing the sample into the apparatus, the stress exerted on 
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the sample was monotonously increased for 2 minutes up to around 7 MPa (stress estimates 

were made with use of the load cells readings divided by the surface of the platens), and after 

reaching that level it was kept constant for another 2 minutes. The colour-developing sheets 

used in the test are presented in fig (6-15).  

As observed in the pressure-sensitive film images, stress distribution within  

the system was highly uneven. All the films (apart from film B, which will be discussed later) 

bear similar ink pattern. In the central part of the films, there is a blank circular area 

corresponding to an empty space created by the acoustic sensor bed located in the centre of 

the steel holders (SP2). Blank spots observable on the diagonals of the films, in between the 

central point and their corners, result from the presence of M5 screw threads used to attach 

the platens to the holders. In addition, each of the films reveal weakly painted zones not 

related to the features of the platens. Left side of sheets 1 and 4, as well as the bottom parts 

of films 2 and 3, indicate hardly any effects of pressure, which is a direct evidence of sample-

to-platens misalignment. The vertical axis (films B and O), despite being tested with only one 

correctly developed film, indicates an irregular stress distribution likewise (faulty 

development of the film was caused by incorrect placement of the colour-forming sheet). 

According to the colour scale included in the instruction, the stress experienced by different 

regions of the platens may be extremely different, below 2.5 MPa in the weakly coloured 

areas and exceeding 10 MPa in the strongly painted ones. There were no attempts to repeat 

the test, as even partial results confirmed serious misalignment of the measurement system.  

Any possible errors introduced by misalignment could have a significant impact on 

the reliability of the experimental results. Due to highly uneven force distribution, it would 

be almost impossible to determine average stress experienced by the sample, which is used 

as a parameter in rock model. Furthermore, the true triaxial apparatus design allows to 

install only one LVDT per axis, and therefore, in case of large stress heterogeneity, there 

would be no means to determine the error value and a discrepancies range. Consequently, 

displacement measurement would not provide reliable value of strain, making it impossible 

to correct the acoustic measurement results for sample shortening and to test experimental 

results against the strain-based rock models. In the face of strong evidence of serious flaws 

of the measuring system, a decision to postpone tests on rock samples was made until 

solving the alignment-related problems.  

The most obvious countermeasure to any possible deviation of the LVDTs from  

the measurement axis would be to replace them with strain gauges attached directly to  
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the sample. Unfortunately, this is impossible as the face platens are in contact with most of 

the sample surface. In order to limit the LVDT misalignment effects, a new set of sensor 

holders (SP3) was manufactured. They are characterised with larger contact surface between 

the acoustic transducer holder (SP2) and the displacement sensor which should allow to 

limit LVDT deviations. The comparison of the original and the modified set is presented  

in fig. (6-16). More detailed plans can be found in APPENDIX J .    

 

 

 
Fig. 6-16. Original and modified LVDT holder (element H1). 

 
 

6.5. Sample placement system  (elements SP1-4) modification 

In order to minimise the misalignment effects, it was decided to redesign the sample 

positioning system, so that it was adapted to a new set of six identical contact platens instead 

of previously used three pairs of different dimensions. The new platens dimensions were 

perfectly matching the size of a sample (50 x 50 mm), which made it easier to evaluate  

placement accuracy and alignment before starting the test. Moreover, the modification 

removed free space between the platens and SP1 frame elements, and accordingly decreased 

chances of platens rotation during sample placement in the apparatus. In addition, using 

one set of platens of the same dimensions made it possible to establish an unique, more 

reliable force-to-stress function. To allow the system to accommodate during sample 

contraction, the edges of the platens were cut off, as shown in fig (6-17). In order to decrease 

the acoustic impedance contrast between the platens and samples, and therefore boost  

amount of wave energy transmitted from the transducer to the cube, another set of platens 

was manufactured with PEEK. Detailed drawings of the described parts can be found in 

APPENDIX H .  
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Fig. 6-17. Platens (SP3) with cut off edges to accommodate sample contraction. 

 
 

New SP1 aluminium frame had to be manufactured. In order to adjust it to the uniform 

size of the platens, its internal construction was slightly simplified. Internal dimensions of 

the original frame were adjusted to the radius of SP2 transducer holders and in the direct 

proximity of the sample were regulated by additional limiting elements, responsible for 

reducing displacement and rotation of the platens. Using six platens of the same 

dimensions, matching both, the sample and the acoustic transducer holders size, allowed to 

remove all the limiting elements. External dimensions and features were kept exactly as in 

the original design. Technical drawings of the new frame elements can be found in 

APPENDIX G .   

At first, the new frame was tested according to a procedure similar to the one used in  

test T-A0. In order to minimize sheer stresses and make it easier for the cube to adjust its 

position to the system elements, the PEEK sample was wetted with paraffin to facilitate 

slipping (Dillen et al., 1999). It was later covered with teflon foil and placed inside the 

aluminium frame SP1 with more paraffin in between the foil and the face platens. During 

mounting, all elements of the new sample positioning system seemed to fit almost perfectly, 

leaving no space for platens to rotate. At the same time it was possible to move the cylinders 

SP2 back and forth, which made it easier for the system to adapt to exerted force during 

mounting. The frame was placed in the central position of the apparatus using an additional 

aluminium bar. Circular markings were made on the outer contact surface of SP2 cylinders 

in order to facilitate their proper placement in relation to the hydraulic actuators.  

In consequence, the risk of misalignment between the main frame of the apparatus and  

the sample positioning system was reduced. Before dismantling SP1 frame, the system was 

first kept under pressure of 0.5 𝑀𝑃𝑎 for about half of hour. Between dismemberment of  

the frame and initiation of the main part of the test, the hydrostatic stress was increased up 

to 2 𝑀𝑃𝑎 and decreased back to 0.5 𝑀𝑃𝑎 several times, allowing the cube to adjust its 
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position (schematically presented in fig. 6-18). Results of one of the first tests carried out with 

the use of SP1 frame are shown in fig. (6-19). 

 

 

Fig. 6-18. Procedure for sample stabilization. 
 

 

Fig. 6-19. True triaxial test - new SP1 frame. 
 
 

As the platens were of the same size, and therefore the force-stress relation was assumed to 

be identical for all of them, only one stress function was plotted. It is clearly visible that  

the displacements differ significantly from one axis to another. The difference between  

the readings of LVDTs installed along S1 and S3 axes reaches 48% under hydrostatic stress 

of 10 𝑀𝑃𝑎 (0.089 and 0.170 𝑚𝑚, respectively). The results came as a surprise, as the frame 

and the face platens should have limited alignment-related problems within the sample 

placement system; therefore, the reading had been expected to be more uniform in 

comparison with the previous tests. To rule out some of the time-related effects, the sample 

was kept inside the apparatus under pressure of around 3 𝑀𝑃𝑎 (it was slightly changing due 

to a leak in the hydraulic system) for almost 16 hours before further tests. It was assumed 
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that the sample may have had not enough time to equilibrate within the system before  

the previous tests and it was still tilted in relation to the face platens – leaving it for a long 

time under stress, with all surfaces covered with a film of paraffin, may have solved the 

problem. The results of the repeated test are shown in fig. (6-20). In the repeated tests  

the difference between the readings was slightly limited (down to 42%), but still could not 

be taken as satisfactory.  

 

 
Fig. 6-20.True triaxial test - new SP1 frame (repeated after 16 hours). 

 
 

In the light of the above results, the decision to carry out more advanced analysis of 

deformation along only one of the axes under hydrostatic stress conditions was made.  

The tests procedure was similar to the one used in tests T-B1, T-B2 and T-B3. In this case the 

free-column effects should not be present – the test was performed with all three sets of the 

SP2 cylinders in contact with actuators, exerting pressure on the sample from all directions. 

The main point of the measurements was to determine if the sample exposed to hydrostatic 

stress is deforming uniformly in particular directions. Hence, it could be determined 

whether the discrepancies observed in the previous tests were related to unequal stresses on 

the particular axes. Else, if the sample was deforming heterogeneously along one axis and 

the readings were dependent on the placement of the sensor, it would mean that the 

observed displacement values are not representative, and should not be directly used to 

describe the behaviour of the sample. After minor modifications of the LVDT holders, the 

transducers were installed on SP2 cylinders on S3 axis. The measurements were preceded by 

the procedure P0 presented in fig. (6-18). Between the tests, the sample was not removed 

from the system, but positioning of the LVTDs was changed, so that the results could be 

matched both to the transducer itself and to the transducer location. A simplified apparatus 
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drawing with marked LVDTs placement positions is shown in fig. (6-21).The results are 

shown in fig. (6-22).  

 

 

 
Fig. 6-21. LVDTs localization during tests T-D1, T-D2 and T-D3 (positions 1-4). 

 
 

 
 
 

 
 



TECHNICAL REPORT    
 

81 
 

 

 

 
Fig. 6-22. True triaxial tests – new SP1 frame (all LVDTs on S3 axis). 

 
 

All the readings from T-D measurement series, are characterised by clearly visible 

heterogeneity in the recorded system behaviour. Although the sample was always exposed 

to the same maximum stress, the highest value of displacement is changing for each of  

the sensor positions. The recorded deformations of the system along S3 axis tend to get 

closer to their average with each further test (standard deviation of the maximum values 

given by the LVDTs decreases – 0.055, 0.045 and 0.035, respectively).  

 

 

 
 

Fig. 6-23. Cumulative plot of T-D test series (colour code: blue – LVDT position 1, orange 
– LVDT position 2, green – LVDT position 4).. 
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As repeated loading of rock samples could introduce changes in their internal composition, 

it should not be treated as a possible sample stabilizing procedure. To visualise more clearly 

the recorded behaviour of the system as a function of the LVDT position, a cumulative plot 

was made (fig. 6-23). In order to make the comparison clearer, time relations between  

the measurements were not preserved (the results were scaled horizontally). Moreover,  

the colours were set to match the position of the LVDT and not the sensor itself.  As observed 

in the cumulative plot, the character of deformation of the system is repetitive. It may suggest 

that this behaviour does not result from random fluctuations – it may be caused by sample 

placement, system misalignment or uneven stress distribution on the contact between  

the sample and the face platens. In order to discriminate possible sources of discrepancies, 

the LVDT-based measurements were supported with yet another employment of the stress-

sensitive film. The measurement procedure is exactly the same as the one used in  

the previous test with FUJI film. The resulting images, spatially organized to recreate  

the PEEK cube (markers indicate corresponding SP2 holders), are presented in fig. (6-24).  

 

 

 

Fig. 6-24. Stress-sensitive film after true-triaxial test. 
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The results, compared with the previously obtained images, indicate more uniform stress 

distribution. Platens 1 and 3 are exceptions, as the films show that in their case stress was 

concentrated mostly close to the upper and lower edges. Having in mind that the intensive 

red colour indicates stresses of around 10 𝑀𝑃𝑎 and white of less than 2 𝑀𝑃𝑎, it may be 

concluded that this irregularity can be responsible for the observed uneven sample 

deformation. All the platens were initially treated with very fine sandpaper (P1200), as they 

were assumed to have been flattened during manufacturing. After closer inspection of the 

contact surfaces of new SP3 elements (especially number 1 and 3), it was decided to polish 

them once more with the use of coarser sandpaper (P300 and P600) in order to remove larger 

irregularities. This time, the lower part of an SP2 cylinder was attached to the platens to 

provide some additional weight and to lower the centre of gravity preventing tilting. During 

polishing, minor manufacturing flaws were spotted (platens were locally melted, which 

could result from using high-speed milling tool) and were partially removed.  

An attempt to test each set of SP3 platens and SP2 cylinders separately before and 

after polishing in a MTS uniaxial load frame was made, but the results indicated that  

the frame itself introduces an additional error. Face platens of the uniaxial frame exerted 

force heterogeneously – it could be concluded that the initial heterogeneities propagated 

into measurements carried out with PEEK sample alone, with a set of SP2 holder and with 

SP3 platen as shown in fig. (6-25). Observed disparity should not affect smaller cylindric 

samples usually tested in the machine, but made it impossible to draw unambiguous 

conclusions about the quality of platens surfaces, as the stress was distributed mostly on the 

edges of the SP2 cylinders and it was very likely to cause a slight tilt of all elements. 

Eventually, the platens were checked with the use of a calliper, as there were no more non-

invasive testing tools available. 

 

 

 
Fig. 6-25. Stress-sensitive film - tests performed on MTS uniaxial load frame. A - MTS 

frame built-in upper face platen against lower face platen, B - MTS frame built-in upper 
face platen against PEEK sample, C - SP3 platen against PEEK sample. 
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As a means to increase measurement reliability, there were further changes made in 

the true triaxial apparatus and the measurement procedure. Misalignment of the sample 

placement system in relation to the outer frame and the hydraulic actuators was identified 

as yet another of the possible factors causing heterogeneous behaviour of the sample. So far, 

the contact between SP2 holders and the actuators could not be precisely controlled, and 

therefore there could be some deviations of the centre of the contact area from the centre of 

the holders. This could cause uneven force exertion and tilting of the holders, introducing 

further heterogeneities in stress distribution within the system and provoke uneven 

deformations of the sample. Hence, in order to promote more precise and repetitive 

positioning of the SP2 holders and the force actuators, additional aluminium rings were 

inserted in the contact area (shown in fig. (6-26) and in more detail in APPENDIX I).  

 

 

 

Fig. 6-26. Aluminium ring (SP4) installed on the SP2 holder. 
 
 

Radii of the bigger and the smaller holes in the rings match the dimensions of the holder and 

the actuator endings, respectively.  The rings work both as a “sighting” device and  

a guideway for the endings of the actuators, which move through the smaller hole on the top 

of the rings before making contact with the holder surface. When mounted on all six holders, 

the rings increase accuracy of positioning of the entire sample placement system 

significantly. To verify whether polishing and the rings had an impact on the stress 

distribution, another test with the use of the stress-sensitive film was carried out. Results, 
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presented in fig. (6-27), indicate more heterogenous stress distribution than observed in  

the previous tests. The obtained images suggest that surfaces of the platens is significantly 

smoother – the biggest improvement was observed in films corresponding to platens no. 1 

and 3, which finally do not exhibit lack of contact between the central part of the platen and 

the sample. Furthermore, the stress disturbance zones around the M5 screw threads are 

significantly smaller than in the previous tests for all platens on the lateral axes (no. 1 – 4). 

Notwithstanding, heterogeneity of the stress distribution shown by the test was still 

considered insufficient to provide fully reliable results. Also, the repeated test proved that 

the melted zones observed during polishing were affecting stress distribution – one of  

the discoloured spots could be directly associated with an anomaly marked on the film from 

platen no.3.  However, the anomaly is relatively small, and therefore should not have 

significant impact on sample loading. 

 

 

 

 

Fig. 6-27. Stress-sensitive film after true-triaxial test (after polishing) 
 and a picture of the surface of face platen no. 3. 
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Moreover, the measurement procedure was modified according to SINTEF Petroleum 

Research employees recommendations. It was suggested that stress loading rate could be 

too high, and might not allow the sample to accommodate to the exerted force. This could 

introduce additional time-related effects and affect homogeneity of deformation. It is worth 

noting that the procedure described by the stress-sensitive film producer assumed high 

stress loading rate - in case of slower stress increment those irregularities may not be so 

pronounced and the stress distribution may be much closer to heterogeneous (than 

indicated by the developed films). Therefore, in the further tests loading was applied at a 

constant rate of 0.05 𝑀𝑃𝑎/𝑚𝑖𝑛. This value results from a trade-off between giving providing 

more time to accommodate and necessity to operate the hydraulic pumps manually during 

the entire procedure, which makes longer tests burdensome.  

The first presented test, T-E1 shown in fig. (6-28), was performed with LVDTs on each of  

the apparatus axes. During the test, the cubic PEEK sample was loaded up to 10 𝑀𝑃𝑎.  

From the very beginning of the test, heterogenous behaviour of the sample is well visible. 

Two of the LVDTs, S1 and S3, indicate almost identical deformation character in response to 

the hydrostatic pressure applied to the sample. Initially steep curve, probably due to closing 

of empty space in between the apparatus elements, gradually flattens out. From the stress 

value of 3 𝑀𝑃𝑎, stress-displacement relation registered along S1 and S3 axes is almost linear.  

 

 

 

Fig. 6-28.True triaxial test - decreased loading rate. 
 

The sensor installed on S2 axis reacts to the applied stress with certain delay, initially 

indicating even slight extension of the system. Shortening in this direction starts when 

hydrostatic stress exceeds 0.3 𝑀𝑃𝑎, and it has approximately linear character up to  
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the maximum stress value, where its amplitude finally equals the values indicated by S1 and 

S3 sensors. However, directly after the end of registration of T-E1 test, stress was further 

increases at much higher rate causing displacement to diverge once again.  In order to better 

visualise the difference in reaction to exerted force, deformation was presented as a function 

of stress in fig. (6-29). To facilitate comparison of the stress-deformation relations,  

the displacement along S2 axis was corrected to match the value of the other displacements 

at the stress value where all of them exhibit linear behaviour. After shifting the curve 

upwards, it is clear that the sample deforms heterogeneously, but it still remains unknown 

whether the deformation is uniform or heterogeneous along individual axes, as it was 

observed in the previous experiments carried out with high loading rate.   

 

 

 
Fig. 6-29. True triaxial test - decreased loading rate & displacement correction. 

 

In order to clarify whether the modifications (face platens polishing, rings and slow 

loading rate) limited the heterogenous stress distribution, observed as uneven deformation 

of the sample, another true triaxial experiment was carried out. In between the tests, LVDTs 

were transferred to S3 axis, but the position of the sample was not changed. Test T-E2, shown 
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in fig. (6-30), was conducted according to the same outlines as T-E1 in order to recreate  

deformation of the sample observed in the previous test.  

 

 

 

Fig. 6-30. True triaxial test - decreased loading rate (all LVDTs on S3 axis). 
 

An attempt to recreate the conditions was successful as the readings of LVDT S3, which 

position in relation to the sample was the same during T-E1 and T-E2 tests, are almost 

identical along the entire loading cycle (as shown in table 6-2). 

 

Table 6-2. LVDT S3 readings comparison (tests T-E1 and T-E2). 
 

Stress [MPa] 3,73 6,66 10,0 

Displacement - test T-E1 [mm] 0,0694 0,0963 0,1194 

Displacement – test T-E2 [mm] 0,0718 0,0942 0,1193 

Difference [%] 3,45 2,27 0,08 

 

In order to remove any possible long-term time effects, test T-E2 was repeated 15 days 

later. Between the tests, the PEEK sample was kept under pressure of 3 𝑀𝑃𝑎. Combined 

results of tests T-E2 and T-E3, presented in fig. (6-31), indicate that the discrepancies 

between the readings are still high, although the amplitude of recorded deformations 

changed. This effect was probably causes by creeping of the setup elements.  

To gain a better insight into time-delayed deformations, loading was stopped at 

5.5 𝑀𝑃𝑎 and stress was not increased for almost half an hour during T-E3 test. It was assumed 

that any displacement difference would be a result of creep of the system, and therefore  
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(if significant) would indicate that the loading rate is still too high for the sample to 

equilibrate. The recorded displacement amplitude shift was of around 0,0005 mm for all 

LVDTs, as shown in fig. (6-32). However, after a more detailed study of the registered stress 

values it was concluded that the pressure within the system kept changing although  

the pumps were not used, making the described results questionable. 

 

 

 
Fig. 6-31. True triaxial tests - comparison of T-E2 and T-E3 tests. 

 

 

 

Fig. 6-32. True triaxial tests - deformations without active loading. 
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Tests T-D1-3 and T-E2-3 prove that deformation of the system was not sufficiently controlled 

in the original setup, where each axis was equipped with an individual displacement sensor.  

In the light of the evidence from the most recent experiments, it could be concluded that 

similar readings of displacement observed along S1 and S3 axes during test T-E1 could be 

more a result of random factors (mostly of the sensor position) than of similar characteristics 

of deformation. This also shows that the attempt to limit the heterogeneity of deformation 

of the sample under hydrostatic stress was unsuccessful despite all changes and 

modifications. It could be suspected than the reliability of measurements would only worsen 

in case of more complex stress paths. It would be impossible to distinguish between  

the effects of randomly heterogenous stress distribution within the system and of purposeful 

stress differences between particular axes.  

As the main goal of using true triaxial apparatus was to investigate anisotropy of rocks, 

which requires strict control of stress and strain values, it was decided that the apparatus in 

the current technical condition should not be used for experiments on rock samples. Due to 

technical and time limitations, further modifications were not performed and ultrasonic 

setup was not plugged into the apparatus.  

 

Fig. 6-33. Stress-sensitive films placement (top) and test results (bottom). 
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Despite the decision to cease any further modification, the last attempt to shorten  

the list of possible causes of the heterogenous behaviour was made. In order to investigate 

stress distribution in the outer pars of the sample placement system, the stress-sensitive 

films were placed inside the SP2 holders, in between steel components of cylinders 1 and 4  

on S3 axis. The main purpose of the test was to indicate whether the stress heterogeneities 

appeared on the sample – platen contact or they were already present in the outer parts of 

the measurement column and later transferred (and probably magnified) to the sample.  

The stress-sensitive films placement was schematically shown (together with the test results) 

in fig. (6-33). The test was carried out according to the previously described standard 

procedure, but in this case the maximum stress was limited to 6 𝑀𝑃𝑎.  

The results show highly heterogenous stress distribution on the contact surface inside 

the SP2 holders. According to the developed films, force is transmitted almost completely by 

the outer part of the cylinders where the stress exceeds 10 𝑀𝑃𝑎, whereas the central part of 

the holders experiences stresses smaller than 2 𝑀𝑃𝑎. It is impossible to tell the exact values, 

as both observed colours are outside the colour scale provided by the film producer. Some 

minor anomalies (white spots) are observable in both films, but their dimensions allow to 

neglect them in the analysis. Shapes and areas of the central zones (not participating in stress 

transfer) are different for both holders which is very likely to strengthen the stress deviations 

and may be a result of misalignment of the entire system in relation to the actuators.  

The results may indicate that the central parts of the cylinder components are actually not 

in contact with each other. Lack of force transmission in this part of SP2 cylinders could 

cause so-called arching effect, decreasing the stress in the centre of theoretical contact area 

and increasing the stress concentration in the outer parts of the cylinder.  

 

Fig. 6-34. Probable stress distribution in cross-section of SP2 cylinder. 
-  cross-section (right) oriented perpendicularly to the contact surface (left). 
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A graphical representation of the possible stress distribution inside the cylinder was shown 

in fig. (6-34). This effect could have significant influence on loading tests and their results, 

making it even more difficult to control the stress value and distribution during  

the measurements. To determine the source of the differences between the “white” zones it 

would be necessary to carry out yet more tests with the stress-sensitive films on the SP2 

cylinder – actuators contacts. Unfortunately, it was determined to be impossible due to  

stress-sensitive film characteristics and contact location and area.  

 

6.6. Technical report summary and conclusions  

Chapter 6 was dedicated to describe all the modifications made to the true-triaxial 

apparatus and the tests carried out to assess the technical condition of the device. It is worth 

noting that in September 2016 the apparatus was prequalified for use and was assumed to 

require only minor alterations and maintenance work - none of the encountered 

complications had been expected, and hence the initial work schedule outdated almost 

immediately (followed by author’s hopes for a successful ending much later). Therefore, in 

order to give a better insight into the modification process and reflect author’s growing 

awareness of apparatus limitations and flaws, all the changes introduced in each one of  

the subsystems were described chronologically.  

In the course of the last two months of autumn semester and the entire spring semester 

2016/2017 all of the true triaxial apparatus original subsystems were modified. A total of 34 

elements were manufactured to support or substitute original parts of the device, and further 

25 were modified to a various extent (complete list in APPENDIX L). The hydraulic system 

was reshaped to bypass out-of-order electric pumps and to provide more heterogenous 

pressure distribution in the actuators during hydrostatic stages of loading cycle.  

The displacement sensors and load cells were modified to be compatible with available 

amplifiers. New LVDT holders were manufactured in order to limit misalignment of  

the transducers. Faulty sensor was substituted and dedicated adapter was made.  

Both loading cells and LVTDs were recalibrated multiple times to ensure high measurement 

quality. The sample placement system was completely reconstructed – new frame (SP1), face 

platens (SP3) and additional “sighting” rings (SP4) were inserted. All these new elements of 

the sample placement system were made for the purpose of limiting system rotation,  

and therefore limit heterogeneities of stress distribution on sample walls.   
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Despite all these changes, it was still impossible to carry out reliable measurements of 

stress-strain relation in the standard PEEK and aluminium cubic samples. Results of almost 

all tests indicated heterogenous deformation of the sample, under both uniaxial and 

hydrostatic stress. As the standard samples were very unlikely to have any form of 

anisotropy, it was a sufficient evidence of device malfunction. The discrepancies were 

observed for different axes and for different sensor positions along an individual axis using 

displacement sensors and stress-sensitive films. The registered displacements did not 

depend solely on force exerted by the actuators, but also LVDTs positioning.  When analysed 

together, the data indicates that during the measurements the sample remains misaligned 

in relation to the stress axes. Consequently, it was not possible to reliably estimate  

the shortening of the sample, which is required to correct experimentally estimated 

ultrasonic velocity. Moreover, heterogenous deformation did not allow to prove correctness 

of the force-stress relations used to estimate stresses experienced by the sample. 

Furthermore, the original arrangement of the apparatus elements does not provide enough 

space for more than only one LVDT per axis during a standard triaxial experiment, making it 

impossible to have sufficient control over stress distribution heterogeneities. In the current 

technical condition of the apparatus, the error introduced by the device was too large for 

reliable interpretation of static and dynamic data. The shortcomings would have significant 

consequences on tests quality and anisotropy parameters computations, and therefore no 

experiments on rock samples were performed.  

There are many factors that could cause heterogenous stress distribution. Due to  

large number of elements, interactions between them (also captured by the sensors) and 

spatial limitations of the obtained data it was very difficult to select the main elements 

responsible for the deviations of the sample. During data interpretation it was impossible to 

distinguish between shortening of the sample and of the entire column – LVDTs readings 

also captured deformation of the platens and the Teflon foil on the surface of the sample. 

The effects related to free space closing at the sample-SP3 platen and at SP3 platen-SP2 

cylinder contacts were also observed. The described heterogeneities could as well  be a result 

of imperfections of the system outside the measuring area of the sensors.   

An attempt to identify and neutralize an individual flaw of the system was unsuccessful, 

nevertheless it allowed to shorten the list of possible causes. The observations from the tests 

carried out using LVDTs and stress-sensitive films were supported with lack of improvement 

despite all the modifications of particular elements of the system. All sensors were tested in 
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large number of various tests and their readings were found to be sufficiently precise, 

accurate and repeatable. Introduction of new SP1 frame, significantly reducing free spaces 

between the frame elements and the face platens, allowed to rule out the rotation of  

the platens in relation to the sample. Usage of face platens of standardized dimensions 

eliminated incorrect force-stress relationship as a source of discrepancies. Quality of  

the surface of SP3 platens have been controlled multiple times since the first imperfections 

were spotted. Moreover, all SP2 cylinders were precisely measured and no deviations were 

observed. The aluminium rings (SP4) significantly limited inaccuracy and increased 

repeatability of the sample placement inside the apparatus outer frame.  

The most probable causes of the discrepancies, according to the author, is misalignment 

of the hydraulic actuators, which is later transferred to the measuring column and  

the sample. Deviation from the axis could be provoked by a construction defect of the outer 

frame (too “soft” construction, faulty element junctions, elements tilting, etc.), inaccurate 

actuators mounting or heterogeneous stroke of the pistons. The last of the possible reasons, 

although not obvious, may also play a role as the ENERPAC actuators are relatively old and 

were originally produced for general industrial applications where precise stroke control was 

not necessary. Tilting may be also caused by lack of sufficient control over the contact zone 

between the actuators and the sample placement system elements. Although SP4 rings 

limited inaccuracy of positioning of SP2 holders, a question regarding the quality of  

the contact is unanswered. Due to relatively small dimensions of the actuator contact surface 

(diameter of 32 mm), any irregularities on its face platen may be translated into significant 

effects for the entire system.  

The author has come up with several proposals to improve the apparatus performance. 

First and the most important one is to carry out detailed study of the actuators alignment. 

In case of proving construction defects, the actuators should be repositioned and/or 

substituted, preferably with devices of larger face platens dimensions (matching  

the dimensions of SP2 holders contact surface or bigger). Increase of the contact surface 

between these two elements would allow to transmit the force from actuators to  

the measurement column in more controllable and stable manner. Moreover, according to 

Cruts et al. (1995) equipping the platens with spherical seats could increase the flexibility of 

the system by allowing small rotations of the sample. Furthermore, it could be beneficial to 

adjust the entire system to larger sample dimensions. Bigger sample and larger face platens 

surface could significantly limit the influence of small deviations occurring in the column 
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and reduce the need for exceedingly precise elements placement. In order to exercise more 

control over the course of experiments, it would also be of great use to introduce additional 

displacement sensors, as the number of one LVDT per axis has been proven to be 

insufficient. Due to spatial limitations, it would not be possible to increase the number of 

standard displacement sensors around the sample. As nearly the entire surface of the sample 

is in contact with the face platens, it is neither  possible to mount strain gauges on the sides 

of the specimen. An alternative solution is to install a set of at least three optical sensors  

(e.g. interferometers) in the current position of LVDTs on the acoustic transducer holders 

(SP2). Having more data on deformation of the system would allow to estimate more 

representative values of strain (for further static and dynamic data processing and analysis) 

and to control the quality of measurements more strictly. Finally, plugging working electrical 

pumps into the hydraulic system would give an opportunity to increase possible duration of 

experiments, to customize loading rate (most importantly to lower minimum feasible rate of 

stress change) and to limit unwanted pressure deviations. All of the above may improve  

the apparatus performance by further limiting time-related effects.  
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Appendices  

 

APPENDIX A - Fjær (2006) model (MATLAB script) 

 

%% INPUT 

 

clear 

  

H=X;                 %plan wave modulus of rock without cracks or 

pores 

G=X;                 %shear modulus of rock without cracks or pores 

n=X;       %model parameters 

B=X;             

m=X; 

Cr_11_0=X;          %Initial crack density x-axis 

Cr_22_0=X;         %Initial crack density y-axis 

Cr_33_0=X;          %Initial crack density z-axis 

Ten=X;               %Parameter related to tensile strength [MPa] 

v=X;                %Poisson's ratio  

fi_0=X;              %porosity [0 - 1.0] 

rho_b=X;             %solid density [g/cm3] 

rho_s=rho_b/(1-fi_0); %bulk density 

D=1;                   %drainage parameter 

% Initial stresses [at the reference state, MPa] 

T_11_r=X;       %x-axis 

T_22_r=X;       %y-axis 

T_33_r=X;       %z-axis  

% Stresses  

T_11=[X X X X X]; 

T_22=[X X X X X]; 

T_33=[X X X X X]; 

%Stiffness matrix elements of rock without cracks or pores  

%- according to relations given by Fjaer et al.2006 

c_33_r=H; 

c_44_r=G; 

c_11_r=H; 

c_66_r=G; 

c_13_r=H-2*G; 

c_12_r=H-2*G; 

%% Q-factors  

Q_11=(16/3)*(v^2/(1-2*v))*D; 

Q_33=(16/3)*((1-v)^2/(1-2*v))*D; 

Q_13=(16/3)*((1-v)^2/(1-2*v))*D; 

Q_12=(16/3)*((v*(1-v))/(1-2*v))*D; 

Q_44=(16/3)*((1-v)/(2-v)); 

Q_66=0;  

Q_11_p=(1/2)*(((1+v)/(1-2*v))+10*((1-2*v)/(7-5*v))); 

Q_33_p=(1/2)*(((1+v)/(1-2*v))+10*((1-2*v)/(7-5*v))); 

Q_13_p=((1-v)/(2*v))*(((1+v)/(1-2*v))-10*((1-2*v)/(7-5*v))); 

Q_44_p=15*((1-v)/(7-5*v)); 

Q_66_p=15*((1-v)/(7-5*v)); 

%% Stress vector   

d_T_11=T_11-T_11_r; 
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d_T_22=T_22-T_22_r; 

d_T_33=T_33-T_33_r; 

d_T=zeros(length(T_11),6); 

  

for i=1:1:length(T_11) 

 

d_T(i,1)=d_T_11(i); 

d_T(i,2)=d_T_22(i); 

d_T(i,3)=d_T_33(i); 

 

end 

  

d_T=d_T'*10^6; 

  

%% Stiffness matrix  

c_11_T0=c_11_r*(1-Q_11_p*fi_0-Q_33*Cr_11_0-Q_11*(Cr_22_0+Cr_33_0)); 

c_33_T0=c_33_r*(1-Q_33_p*fi_0-Q_33*Cr_33_0-Q_11*(Cr_11_0+Cr_22_0)); 

c_44_T0=c_44_r*(1-Q_44_p*fi_0-Q_44*(Cr_22_0+Cr_33_0)-Q_66*Cr_11_0); 

c_66_T0=c_66_r*(1-Q_66_p*fi_0-Q_44*(Cr_11_0+Cr_22_0)-Q_66*Cr_33_0); 

c_12_T0=c_12_r*(1-Q_13_p*fi_0-Q_13*(Cr_11_0+Cr_22_0)-Q_12*Cr_33_0); 

c_13_T0=c_13_r*(1-Q_13_p*fi_0-Q_13*(Cr_33_0+Cr_11_0)-Q_12*Cr_22_0); 

  

C=[c_11_T0 c_12_T0 c_13_T0 0 0 0; c_12_T0 c_11_T0 c_13_T0 0 0 0;...   

         c_13_T0 c_13_T0 c_33_T0 0 0 0; 0 0 0 c_44_T0 0 0;... 

         0 0 0 0 c_44_T0 0;0 0 0 0 0 c_66_T0]; 

 

C=C*10^9; 

 

%% Inverting for strain  

  

E=zeros(size(d_T)); 

  

for i=1:1:length(T_11) 

 

E(:,i)=C\d_T(:,i); 

 

end 

  

%% Predefinitions  

Cr_11=zeros(length(n),length(B),length(T_11)); 

Cr_22=zeros(length(n),length(B),length(T_11)); 

Cr_33=zeros(length(n),length(B),length(T_11)); 

c_11_FjaerLin=zeros(length(n),length(B),length(T_11)); 

c_33_FjaerLin=zeros(length(n),length(B),length(T_11)); 

c_44_FjaerLin=zeros(length(n),length(B),length(T_11)); 

c_66_FjaerLin=zeros(length(n),length(B),length(T_11)); 

E_vol=zeros(1,length(T_11)); 

fi=zeros(1,length(T_11)); 

  

%% Crack densities  

for k=1:1:length(n) 

for l=1:1:length(B) 

for i=1:1:length(T_11) 

  

E_vol(i)=E(1,i)+E(2,i)+E(3,i);              %Volumetric strain for 

porosity change 

F=E(3,i)-(E(1,i)+E(2,i))/2;                 %Maximum shear strain  
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fi(i)=(fi_0-E_vol(i))/(1-E_vol(i));         %Updated porosity 

  

%Crack densities  

Cr_11(k,l,i)=Cr_11_0*(((T_11_r+Ten)/(T_11(i)+Ten))^n(k))*(1-

(B(l)*(2*E(1,i)-E(2,i)-E(3,i))+m*F^2)); 

Cr_22(k,l,i)=Cr_22_0*(((T_22_r+Ten)/(T_22(i)+Ten))^n(k))*(1-

(B(l)*(2*E(2,i)-E(1,i)-E(3,i))+m*F^2)); 

Cr_33(k,l,i)=Cr_33_0*(((T_33_r+Ten)/(T_33(i)+Ten))^n(k))*(1-

(B(l)*(2*E(3,i)-E(2,i)-E(1,i))+m*F^2)); 

 

%Effective elastic stiffness coefficients 

c_11_FjaerLin(k,l,i)=c_11_r*(1-Q_11_p*fi(i)-Q_33*Cr_11(k,l,i)-

Q_11*(Cr_22(k,l,i)+Cr_33(k,l,i))); 

c_33_FjaerLin(k,l,i)=c_33_r*(1-Q_33_p*fi(i)-Q_33*Cr_33(k,l,i)-

Q_11*(Cr_11(k,l,i)+Cr_22(k,l,i))); 

c_44_FjaerLin(k,l,i)=c_44_r*(1-Q_44_p*fi(i)-

Q_44*(Cr_22(k,l,i)+Cr_33(k,l,i))-Q_66*Cr_11(k,l,i)); 

c_66_FjaerLin(k,l,i)=c_66_r*(1-Q_66_p*fi(i)-

Q_44*(Cr_11(k,l,i)+Cr_22(k,l,i))-Q_66*Cr_33(k,l,i)); 

  

end 

end 

end 

  

%% PLOT  

X_plot(c_33_FjaerLin,c_44_FjaerLin,T_11,n,B) 

  

%% Error  

%Summed squares of residuals   

[SquareError]=X_error(c_11_FjaerLin, c_33_FjaerLin,c_44_FjaerLin, 

c_66_FjaerLin); 

  

%Average percentage error  

[PercError]=X_error(c_11_FjaerLin, c_33_FjaerLin,c_44_FjaerLin, 

c_66_FjaerLin); 
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APPENDIX B - Prioul et al. (2004) model (MATLAB script) 

clear  

  

%% Input  

  

clear 

  

rho_b=X;             %bulk density [g-cm3] 

fi=X;                 %porosity [0-1.0] 

  

rho_s=rho_b/(1-fi);     %solid porosity  

  

%Third rank stiffness tensor elements estimation (from the paper)for 

T_referebce 

  

c_111 =X;           

c_112 =X;           

c_123 X;           

c_144=(c_112-c_123)/2; 

c_155=(c_111-c_112)/4; 

  

%Thomsen's parameters  

Vp0=X; %axial P-wave velocity [km/s]-reference state     

Vs0=X; %axial S-wave velocity [km/s]-reference state 

e=X;   %epsilon -reference state 

g=X;   %gamma -reference state 

d=X;   %delta -reference state 

  

%Stiffness matrix elements 

c_33_r=Vp0^2*rho_b; 

c_44_r=Vs0^2*rho_b; 

c_11_r=2*e*c_33_r+c_33_r; 

c_66_r=2*g*c_44_r+c_44_r; 

c_12_r=c_11_r-2*c_66_r; 

  

%C13 approximation  

delta=4*c_44_r^2-4*(c_44_r^2-2*d*c_33_r*(c_33_r-c_44_r)-(c_33_r-

c_44_r)^2); 

delta_a=1; 

delta_b=2*c_44_r; 

delta_c=c_44_r^2-2*d*c_33_r*(c_33_r-c_44_r)-(c_33_r-c_44_r)^2; 

c_13_1=(-delta_b-sqrt(delta))/(2*delta_a); 

c_13_2=(-delta_b+sqrt(delta))/(2*delta_a); 

  

if c_13_1 > 0 

    c_13_r=c_13_1; 

else 

    c_13_r=c_13_2; 

end 

  

%% Stress vector   

  

T_r=X; %reference state hydrostatic stress [MPa] 

  

%Stress cycle  
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T_11=[X X X X X]; 

T_22=[X X X X X]; 

T_33=[X X X X X]; 

T_11=T_11-T_r; 

T_22=T_22-T_r; 

T_33=T_33-T_r; 

  

T=zeros(length(T_11),6); 

  

for i=1:1:length(T_11) 

T(i,1)=T_11(i); 

T(i,2)=T_22(i); 

T(i,3)=T_33(i); 

end 

  

T=T'*10^6; 

%% Stiffness matrix  

  

C=[c_11_r c_12_r c_13_r 0 0 0; c_12_r c_11_r c_13_r 0 0 0;...   

         c_13_r c_13_r c_33_r 0 0 0; 0 0 0 c_44_r 0 0;... 

         0 0 0 0 c_44_r 0;0 0 0 0 0 c_66_r]; 

      

C=C*10^9; 

  

%% Inverting for strain  

  

E=zeros(size(T)); 

  

for i=1:1:length(T_11) 

E(:,i)=C\T(:,i); 

end 

  

%% Predefinitions  

  

c_11_Prioul=zeros(1,length(T_11)); 

c_33_Prioul=zeros(1,length(T_11)); 

c_44_Prioul=zeros(1,length(T_11)); 

c_66_Prioul=zeros(1,length(T_11)); 

  

%% New stiffness coefficients & velocities  

  

for j=1:1:length(T_11) 

c_11_Prioul(j)=c_11_r+c_111*E(1,j)+c_112*(E(2,j)+E(3,j)); 

c_33_Prioul(j)=c_33_r+c_111*E(3,j)+c_112*(E(1,j)+E(2,j)); 

c_44_Prioul(j)=c_44_r+c_144*E(1,j)+c_155*(E(2,j)+E(3,j)); 

c_66_Prioul(j)=c_66_r+c_144*E(3,j)+c_155*(E(1,j)+E(2,j)); 

end 

  

Vs_axial=sqrt(c_44_Prioul/rho_b); 

Vs_radial=sqrt(c_66_Prioul/rho_b); 

Vp_axial=sqrt(c_33_Prioul/rho_b); 

Vp_radial=sqrt(c_11_Prioul/rho_b); 

  

%% PLOTS  
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Prioul_Colton_plot(c_33_Prioul,c_11_Prioul,c_44_Prioul,c_66_Prioul,V

p_axial,Vp_radial,Vs_axial,Vs_radial) 

  

%% Error 

  

[SquareError,PercError]=Errors(c_11_Prioul,c_33_Prioul,c_44_Prioul,c

_66_Priou; 

  

Error_sum=sum(SquareError); 

PercError_ave=(PercError(1)+PercError(2)+PercError(3)+PercError(4))/

4;) 
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APPENDIX C - Prediction error estimation (MATLAB script) 

function [SquareError,PercError]=Errors(c,11,c_33,c_44,c_66) 

  
%% Experimental values  

  
c_11_exp_1=[X X X X X]; 
c_33_exp_1=[X X X X X]; 
c_44_exp_1=[X X X X X]; 
c_66_exp_1=[X X X X X]; 

 

... 

 
%% Average values  

 
c_11_ave=c_11_exp;  
c_33_ave=c_33_exp; 
c_44_ave=c_44_exp; 

c_66_ave=c_66_exp; 

  
%% Square errors 

  
SE_c_11=sum((c_11_ave-c_11).^2); 
SE_c_33=sum((c_33_ave-c_33).^2); 

SE_c_44=sum((c_44_ave-c_44).^2); 
SE_c_66=sum((c_66_ave-c_66).^2); 

 
%% Percentage errors  

 
Pe_c_33_p=zeros(1,length(c_33)); 
Pe_c_44_p=Pe_c_33_p; 

Pe_c_11_p=Pe_c_33_p; 
Pe_c_66_p=Pe_c_33_p; 

 

  
for k=1:1:length(c_33) 

  
Pe_c_33_p(k)=abs(((c_33_ave(k)-c_33(k))/(c_33_ave(k)))*100); 
Pe_c_44_p(k)=abs(((c_44_ave(k)-c_44(k))/(c_44_ave(k)))*100); 
Pe_c_11_p(k)=abs(((c_11_ave(k)-c_11(k))/(c_11_ave(k)))*100); 
Pe_c_66_p(k)=abs(((c_66_ave(k)-c_66(k))/(c_66_ave(k)))*100); 

 
end 

  
Pe_c_33=sum(Pe_c_33_p)/length(c_33); 
Pe_c_44=sum(Pe_c_44_p)/length(c_44); 
Pe_c_11=sum(Pe_c_11_p)/length(c_11); 
Pe_c_66=sum(Pe_c_66_p)/length(c_66); 

 
SquareError=[SE_c_11 SE_c_33  SE_c_44 SE_c_66]; 
PercError=[Pe_c_11 Pe_c_33 Pe_c_44 Pe_c_66]; 
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APPENDIX D - Inversion for third-order elastic stiffness 

coefficients (MATLAB script) 

 

%% Input parameters  

T_r=X;             %Reference hydrostatic stress [MPa] 

  

%Rest of the points  

T_11=[X X X X X];          

T_22=[X X X X X];          

T_33=[X X X X X];           

rho_b=2.38;          %Bulk density [g/cm3] 

  

T_r=T_r*10^6; 

T_11=T_11*10^6; 

T_22=T_22*10^6; 

T_33=T_33*10^6; 

  

%%Stiffness coefficients at reference point [GPa] 

  

c_33_r=X; 

c_11_r=X; 

c_44_r=X; 

c_66_r=X; 

% c_13_r=0;               %C_13 may be given or may be computed 

below 

  

c_33_r=c_33_r*10^9; 

c_11_r=c_11_r*10^9; 

c_44_r=c_44_r*10^9; 

c_66_r=c_66_r*10^9; 

  

%Thomsen's parameters  

Vp0=X;               %axial P-wave velocity [km/s]-reference state     

Vs0=X;               %axial S-wave velocity [km/s]-reference state 

e=X;                 %epsilon -reference state 

g=X;                 %gamma -reference state 

d=X;                 %delta -reference state 

  

%C13 approximation  

delta=4*c_44_r^2-4*(c_44_r^2-2*d*c_33_r*(c_33_r-c_44_r)-(c_33_r-

c_44_r)^2); 

  

delta_a=1; 

delta_b=2*c_44_r; 

delta_c=c_44_r^2-2*d*c_33_r*(c_33_r-c_44_r)-(c_33_r-c_44_r)^2; 

  

c_13_1=(-delta_b-sqrt(delta))/(2*delta_a); 

c_13_2=(-delta_b+sqrt(delta))/(2*delta_a); 

  

if c_13_1 > 0 

    c_13_r=c_13_1; 

else 

    c_13_r=c_13_2; 

end 
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c_12_r=c_11_r-2*c_66_r; 

%% Stiffness coefficients at measurement point [except for the 

reference point] - experimental [GPa] 

  

c_33=[X X X X X];          

c_44=[X X X X X];          

c_11=[X X X X X];          

c_66=[X X X X X];          

  

c_33=c_33*10^9; 

c_11=c_11*10^9; 

c_44=c_44*10^9; 

c_66=c_66*10^9; 

  

 

 

 

if length(T_11)==length(c_33) 

else 

    disp(' ') 

    disp('WARNING!!! C_ij coefficients not inserted') 

    disp(' ') 

    return 

end 

  

%% Inverting for strains  

  

T=zeros(6,length(T_11)); 

E=zeros(6,length(T_11)); 

E_11=zeros(size(T_11)); 

E_22=E_11; 

E_33=E_11; 

  

for i=1:1:length(T_11) 

     

T(1,i)=T_11(i)-T_r; 

T(2,i)=T_22(i)-T_r; 

T(3,i)=T_33(i)-T_r; 

  

end 

  

C=[c_11_r c_12_r c_13_r 0 0 0;... 

   c_12_r c_11_r c_13_r 0 0 0;...   

   c_13_r c_13_r c_33_r 0 0 0;... 

   0 0 0 c_44_r 0 0;... 

   0 0 0 0 c_44_r 0;... 

   0 0 0 0 0 c_66_r]; 

  

  

for i=1:1:length(T_11) 

     

E(:,i)=C\T(:,i); 

  

E_11(i)=E(1,i); 

E_22(i)=E(2,i); 

E_33(i)=E(3,i); 
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end 

  

%% Inverting for third order elastic coefficients  

  

C_ij=zeros(4*length(T_11),1); 

E_coeff=zeros(length(T_11),3); 

  

for i=1:1:length(T_11) 

C_ij((i*4)-3)=c_11(i)-c_11_r; 

C_ij((i*4)-2)=c_33(i)-c_33_r; 

C_ij((i*4)-1)=c_66(i)-c_66_r; 

C_ij(i*4)=c_44(i)-c_44_r; 

end 

  

for i=1:1:length(T_11) 

E_coeff((i*4)-3,:)=[E_11(i) E_22(i)+E_33(i) 0]; 

E_coeff((i*4)-2,:)=[E_33(i) E_11(i)+E_22(i) 0]; 

E_coeff((i*4)-1,:)=[(0.25*(E_22(i)+E_11(i))) (0.5*E_33(i)-

0.25*(E_11(i)+E_22(i))) (-0.5*E_33(i))]; 

E_coeff((i*4),:)=[(0.25*(E_22(i)+E_33(i))) (0.5*E_11(i)-

0.25*(E_33(i)+E_22(i))) (-0.5*E_11(i))]; 

end  

  

C_ijk=pinv(E_coeff)*C_ij; 

  

%% Display  

  

c_111_GPa=C_ijk(1)/10^9; 

c_112_GPa=C_ijk(2)/10^9; 

c_123_GPa=C_ijk(3)/10^9; 

c_144_GPa=(c_112_GPa-c_123_GPa)/2; 

c_155_GPa=(c_111_GPa-c_112_GPa)/4; 

  

table(c_111_GPa,c_112_GPa,c_123_GPa,c_144_GPa,c_155_GPa) 
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APPENDIX E - Calibration support elements (C1 and C2) 

Steel load cell support element C1 (left) and PVC support C2 (right). 
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APPENDIX F - Load cells calibration  

 

SENSOTEC verification 

 

HBM C2 calibration 

 
Force [kN] Signal [mV/V] 

 

S1 
0.31 -0.0011 

158.50 1.5936 

S2 
0.09 -0.0216 

159.7 1.5895 

S3 
1 0.0108 

159.2 1.6004 

 

 

 

 

 

 

HBM C2 verification 

Force [kN] 

Sensotec S1 Sensotec S2 Sensotec S3 

0.10 0.4 0.22 0.26 0.03 0.03 

1.92 2.0 2.20 2.32 2.11 2.31 

6.02 5.95 6.00 5.95 6.05 6.30 

20.02 20.12 21.00 20.91 20.30 20.31 

60.00 60.00 60.00 60.00 60.50 60.17 

100.00 100.34 100.50 100.51 100.50 99.70 

160.00 160.62 161.00 161.02 159.12 159.12 

145.00 145.62 141.70 141.92 149.30 149.33 

101.51 120.06 96.00 96.30 99.27 99.53 

10.85 10.55 10.70 10.50 11.20 11.29 

2.58 2.64 2.80 2.72 2.58 2.67 

0 0.04 0 0 0.02 0.09 

 

 

 

Force [kN] 

MTS Insight 

system 

Sensotec 

0.00 0.00 

2.05 1.90 

6.07 5.77 

20.18 19.90 

59.90 59.80 

100.60 100.60 

160.05 160.04 

159.94 159.89 

99.82 99.50 

9.88 9.62 

2.61 2.49 

0.00 0.06 
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APPENDIX G - Aluminium frame elements (SP1) 
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APPENDIX H - Modified face platens (SP3) 

 

 

 

 

APPENDIX I - Aluminium rings (SP4) 
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APPENDIX J - LVDT holders (H1) 
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APPENDIX K - HBM LVDT adapter (H2) 

 

 

 

APPENDIX L - modified and produced apparatus elements.  

New elements 

Name Quantity 

SP3 - PEEK face platens  15 

SP3 – Aluminium face platens 4 

SP1 - frame elements  4 

C1 & C2 - Calibration support holders 2 

SP2 - LVDT holders  3 

H2 – LVDT adapters  2 

Pipes for hydraulic system  3 

PEEK cube 1 

SUM 34 

 

Modified elements 

Name Quantity 

SP3 - PEEK face platens  12 

LVDT connectors  4 

Load cells connectors 4 

Hydraulic valves  5 

SUM 25 
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APPENDIX M - Risk assessment  

 

 


