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A B S T R A C T

In this master thesis, a comparative study of the feasibility of fluid-structure
interaction (FSI) tools has been done in light of simulating the problem of
obstructive-sleep apnea (OSA). Part of the study has been done by simulat-
ing the benchmark; Flow Induced Oscillations of a Flexible Beam, by the different
solvers; COMSOL, Abaqus and Abaqus coupled with ANSYS Fluent through
third party coupling code MpCCI. By evaluating the results produced a quali-
fying approach for simulating the case of OSA is done.

By assessing through FSI simulations, insight to the problem at hand can be
gained. Making a proper problem formulation can be crucial to get a physical
meaningful analysis. When setting up FSI simulations, several choices have
to be made to make the most suitable approach. For instance if the type of
discretization should be described with a Lagrangian, Eulerian or an Arbitrary
Lagrangian-Eulerian (ALE) formulation, and how the coupling of the fluid and
solid domain should be done.

The capturing of the interface and the interaction between the fluid and
structure proves to be essential for the simulations. In addition to the choice
of dicretization and coupling of the domains, the simulations is sometimes
limited by technical problems and the feasibility of tools.

The use of computational FSI analysis can be a cumbersome task even if sim-
ulations yield decent results. The majority of the benchmark simulations did
not produce the results expected. Only two of four simulations reached oscil-
lations resembling the pattern shown in other studies. Thus indicating errors
in model description and/or weaknesses of tools. For instance the capability
to solve for non-linear behaviour.

The main issue for the benchmark simulations were related to the deforma-
tion and mesh motion of the fluid domain by the use of the ALE method, which
often required a finer mesh tuning increasing the computational cost. The re-
sults from the benchmark were post processed in COMSOL and Abaqus, and
compared in order to see to what extent they correlated. For additional per-
spective a comparable study is referred to in context of some of the findings
[5].

By formulating a simpler problem description for the case of OSA some of
the issues related to large deformations were bypassed. The simulation of the
soft palate yielded coarse yet useful results, which can be used to get some in-
sights to the disease. However, due to some of the flow specifics other problems
were encountered, mainly regarding the embedded 3D simulations done with
Abaqus. These primarily concerned convergence criteria for the equilibrium
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equations, where a low Reynolds number and high flow velocity demanded
fine tuning of mesh and additional equilibrium convergence iterations.
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S A M M E N D R A G

I denne masteroppgaven har en komparativ studie av brukbarheten til fluid-
struktur interaksjon (FSI) verktøy blitt gjort i lys av å simulere problemet med
obstruktiv søvnapné (OSA). En del av studien er gjort ved å simulere en stan-
dard test; Flow Induced Oscillations of a Flexible Beam, av de forskjellige simuler-
ingsverktøyene; COMSOL, Abaqus og Abaqus kombinert med ANSYS Fluent
via en tredjeparts koblingskode, MpCCI. Ved å evaluere de oppnådde resul-
tatene er det gjort en kvalifiserende tilnærming for simulering av sykdommen
OSA.

Ved å vurdere problemstillingen gjennom FSI-simuleringer kan man få innsikt
i detaljene rundt fenomenet. Å lage en god problemformulering kan være
avgjørende for å få en fysisk meningsfull analyse. Når FSI-simuleringer settes
opp, må det gjøres flere valg for å gjøre den mest hensiktsmessige tilnærmin-
gen. For eksempel om diskretisering av domenene bør beskrives med en La-
grangian, Eulerian eller en vilkårlig Lagrangian-Eulerian (ALE) formulering,
og hvordan koblingen av domenene skal utføres.

Samspillet mellom væsken og strukturen viser seg å være avgjørende for
simuleringene. I tillegg til valget av diskretisering og kopling av domenene,
kan simuleringene noen ganger begrenses av tekniske problemer og mangler
ved verktøyene.

Bruken av beregningsbasert FSI-analyse kan være en besværlig oppgave,
selv om simuleringer er gjennomførbare og anstendige resultater oppnåes.
De fleste av referansesimuleringene produserte ikke de forventede resultatene.
Kun to av fire simuleringer nådde svingningene og mønsteret vist i andre
studier. Dette indikerer at feil har blitt gjort i modellbeskrivelsen og/eller
svakheter i verktøy. For eksempel evnen verktøyene har til å løse for ikke-
lineæritet.

Hovedproblemet i tilfellet av den standard utformede simuleringstesten var
relatert til deformasjon og mesh-bevegelse av væskedomenet ved bruk av ALE-
metoden, som ofte krevde en finere maskingesting som ofte krever ett finere
mesh og som øker kjøretiden. Resultatene ble etterbehandlet i COMSOL og
Abaqus, og sammenlignet for å se i hvilken grad de korrelerte. For ytterligere
perspektiv er en sammenlignbar studie referert til i sammenheng med noen av
funnene [5].

Ved å formulere en enklere problembeskrivelse for tilfelle av OSA ble noen
av problemene knyttet til store deformasjoner omgått. Simuleringen av den
myke ganen ga grove, men likevel nyttige resultater for å få innsikt i syk-
dommen. På grunn av noen av strømningsspesifikasjonene oppstod imidlertid
andre problemer. Spesielt i de innebygde 3D-simuleringene gjort med Abaqus.
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Disse vedrørte hovedsakelig konvergenskriterier for likevektsligningene, hvor
det relativt lave Reynolds tallet og høy luftstrømningshastighet krevde finjus-
tering av mesh og ytterligere iterasjoner.
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P R E FA C E

the project

This is the master thesis for the degree of master of science in mechanical
engineering, faculty of engineering of NTNU.

Currently NTNU runs a research project funded by Research Council of Nor-
way that address improved understanding of obstructive sleep apnea (OSA).
The project is a collaboration between Medical Faculty (PhD-position) and Fac-
ulty of Engineering Science (2 PhD-positions). The project addresses a combi-
nation of both fluid and solid mechanical issues related to the upper airway.
A part objective is to combine the fluid and solid models in FSI simulation to
evaluate to what extent there is an interaction between the two domains. A
comparative study of FSI simulation coupling is advisable to qualify an ap-
proach to this.

This project is carried out with support from SINTEF. Headquartered in
Trondheim, SINTEF is the largest independent research orginaisation in Scan-
dinavia. A feasibility and comparative study of FSI simulations coupling codes
by internal and external co-simulation and from different solvers is beneficial.
The study will involve finite volume (FVM) and finite element analysis (FEA)
code using Arbitrary Lagrangian Eulerian (ALE). The concerning FEA code
Abaqus is provided by Simulia, and Comsol by Comsol, Inc. The CFD solver
Fluent is provided by Ansys, Inc. and the coupling code MpCCI is developed
by Fraunhofer SCAI.

outline

The purpose of this master thesis is to make a study of the feasibility of Abaqus
coupled with Fluent in comparison to in-house coupling by Abaqus and Com-
sol. This is done in the light of simulating the problem of obstructive-sleep
apena (OSA). Prerequisites for this study are knowledge about the mechanics
of solids and fluids. The scopes of disciplines each has its own research field.
The mechanics related to OSA is muscle tissue and airflow. To start, an intro-
duction describing the problem and basic anatomy/physiology/pathophysiol-
ogy related to OSA is given in part one.

A combination of both solid and fluid belongs to the fluid-structure interac-
tion field, a research field gaining popularity the last decade. The mathematics
to solve these problems, whereof the majority exists of numerical methods, are
also of importance. These prerequisites are treated in part two, the theory part
of the thesis. This part is divided into chapters explaining the basis of mul-
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xiv preface

tiphysics, discretisation, fluid and solid mechanics, numerical approach and
computational methods, and computational FSI.

When the introduction to the problem of OSA and the prerequisites of FSI
and numerical methods are understood, one can continue to part three, which
formulates and treats a academic test problem; Flow Induced Oscillations of a
Flexible Beam, for the sake of benchmarking correlations and channel flow with
a flexible beam and an obstruction to resemble the case of OSA.



Part I

I N T R O D U C T I O N

By evaluating obstructive sleep apnea syndrome through compu-
tational fluid-structure interaction simulations knowledge can be
gained about the physical behaviour of the disease. Formulating so
called benchmark problems by FSI and testing different solvers can
be the key to gaining advantage. To be able to tackle this, defining
some of the groundwork for both the medical and the engineering
side of the problem has to be done. The report will thus address
a combination of both fluid and solid mechanical issues related to
fluid-structure interaction and the upper airway.

Some physiological background related to OSA is necessary to un-
derstand the concept and purpose of the study. Part I will give some
insights into the fundamental anatomy of the upper airway and the
disease. Then a brief introduction of the interests and applications
for computational FSI for this problem will be given.





1
O B S T R U C T I V E S L E E P A P N E A

1.1 the disease

For the case of OSA, only the upper respiratory system is of interest. The upper
airway consists of the nose and nasal cavity, the mouth and oral cavity, and the
throat which is composed of the pharynx and larynx [Figure 1].

Figure 1: Upper airway anatomy [12].

1.1.1 Background knowledge

"The pathogenesis of obstructive sleep apnea (OSA) has been under investigation for
over 25 years, during which a number of factors that contribute to upper airway (UA)
collapse during sleep have been identified." - Cloudagh & T.Douglas, 2005 [11]

Obstrucive Sleep apnea is a potentially serious sleep disorder [30], which ap-
proximately affects 2 - 4% of the population. It causes breathing to repeatedly
stop and start during sleep. This type of apnea is caused by the airway being

3
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sucked close on inspiration during sleep. The phenomena is perhaps best de-
scribed by Blumen et al. [9]

"Pathophysiology of the obstructive sleep apnea syndrome shows three components:
intra and peripharyngeal obstacles, excessive pharyngeal wall compliance and upper
airway dilator muscle dysfunction. The upper airway dilator muscle contraction oc-
curs at the beginning of inspiration, thus maintaining opened the pharyngeal lumen
through inspiration."

Figure 2: Obstrucive sleep apnea syndrome [31].

The airway is kept patent by the dilating muscles which have higher than
normal activity during wakefulness. But during sleep the muscle tone falls
and the airway narrows [9]. The upper airway dilating muscles, which are
composed of striated muscle tissue, normally relaxes during sleep. In patients
with OSA, the dilating muscles can no longer successfully oppose negative
pressure within the airway during inspiration. Snoring may then occur; fol-
lowed by airway occlusion and subsequent apnea.
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Figure 3: The maxilla and mandible [18].

Any narrowing in the pharynx will comply for the predisposal of OSA. Fac-
tors which cause narrowing of pharynx may be, e.g obisity, large tonsils or
shortening of the mandible or maxilla [Figure 3]. Abnormal hormone levels
conditions such as hypothyroidism or acromegaly may also narrow the upper
airway with tissue infiltration.

1.1.2 Sites of airway collapse

In most subjects suffering from OSA, airway closure usually occurs within
the oral pharyngeal region [13]. This region is also typically smaller in OSA
patients. Airway narrowing is a dynamic process and may vary among sub-
jects, including both the retroglossal and hypopharyngeal areas. However the
retropalatal region of the oropharynx is the most common site of collapse.

1.1.3 Treatments

(a) Continuous Positive Airway
Pressure (CPAP) [29].

(b) Mandibular Advancement
Device (MAD) [24].

Figure 4: Two recommended methods of treatment.
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Treatments for obstructive sleep apnea are available. One treatment involves us-
ing a pumping device (CPAP/APAP) that keep the airway open by providing
air pressure while breathing [Figure 4]. The compressed air is then delivered
through a mask covering the patient’s nose and/or mouth. Another option is
using a oral prosthesis (MAD) to thrust your mandible forward during sleep,
thus moving the tongue out of the oropharynx.

In more severe cases, surgery may be an option. Hyo-mandible Suspension is
an example of a surgery with aim to treat OSA. By repositioning and securing
the hyoid [Figure 5] from above the thyroid cartilage to just over it, the tounge
base and epiglottis advances forward [10]. Thereby opening the retrolingual
and hypopharyngeal airway passage in the pharynx. This treatment has been
shown to be highly effective [1].

Figure 5: Hyoid Suspension [10].

1.2 interests

Because Obstructive sleep apnea affects such a large part of the population,
methods which gives insight to understanding the disease is preferable. To-
day not only clinical studies has the ability to produce interesting results.
New ways of understanding the human body is made available through bio-
mechanical research and the use of computers. Investigation of scenarios to
best describe and model diseases by means of computational multiphysics is
also of interest. This field have lately gained popularity due to its applicability
to describe problems from everyday issues to complex problems [6].
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1.3 framework for modelling

Different models describing the problem of OSA has been proposed in the past.
Due to the complexity of the problem it can be difficult to describe adequately.
Not only can the airflow through the nasal and mouth cavity be cumbersome
to characterize. It may become turbulent in some areas of the mouth and throat.
Thus, realistically turbulence models need to be employed.

By making this a engineering problem it can be crucial to define proper
initial and boundary conditions. To get realistic flow conditions it may be es-
sential to be able to set the initial and boundary conditions at a distance to the
phenomena which is to be observed. From a CFD point of view, when mod-
elling the case of OSA it might not be satisfactory to describe the flow only
through lesser parts of the upper airway.

To make a simpler model some assumptions can be made. For instance if
the material of the tongue is considered homogeneous, elastic and isotropic
the properties have a constant Young’s modulus, E and Poisson ratio, ν [25].
These properties are defined later in [Chapter 4]. Whenever simplifications are
made some drawbacks to the realism is also made. Different material proper-
ties, linear or non-linear behaviour produce various results. For instance, the
mechanical properties of the tongue can best be described as inhomogeneous
and anisotropic [25].

Figure 6: Suggested schematics of model [35].
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A simplification of the problem of OSA has been done by Rasani, Inthavong,
and Tu [35]. The physiological mechanisms in the pharyngeal airway are very
closely related to the flow in compliant tubes [25]. The partial collapse of the
airway and a nonlinear flow rate retardation is reassembling the phenomena
of flow rate limitation. The narrowing of the airway in the pharynx leads to
increased transmural pressure via the venturi effect (Giovanni Battista Ven-
turi, 1746–1822). The effect can be derived from Bernoulli’s equation [40]. If
boundary deformation is to be accounted for, such as by use of a conforming
mesh discussed later in [Chapter 3], an Arbitrary Lagrangian-Eulerian (ALE)
method can be used.

As partly mentioned in [Section 1.2], it should be noted that a simple model
reassembling the one by Rasani, Inthavong, and Tu [Figure 6] might not ac-
count for the behavior of the flow prior to the oropharynx. The changing be-
havior of the airflow going through the oral cavity and also the nasal cavity is
likely to be of importance when reaching the pharynx. Thus, it may be difficult
to accurately define inlet and outlet conditions and account for turbulent flow.

To proper define an problem description is important in any case of simulat-
ing. Especially in complex cases such as OSA. Nevertheless, the methods and
applications for solving such a problem description is also of interest. This is
of particular concern in this report. The depth of which will be presented in
part II and following chapters.



Part II

T H E O RY

In part II the theory of the thesis is presented. The primary objective
of this part is to set a general foundation for the FSI workings and
applications. First an introduction to FSI’s role in the area of mul-
tiphysics is presented. A state of the art fluid and solid mechanics
analysis will then be given. The capability and applications of com-
putational fluid dynamics (CFD) and finite element analysis (FEM)
will be evaluated in light of modelling the problem of OSA.





2
M U LT I P H Y S I C S

2.1 basis of multiphysics

Multiphysics applies almost everywhere in engineering, sciences and medicine,
and even in our daily lives [6]. The expression however might be confusing.
After all there is only one set of physical laws, and nothing multiple about it.
Many phenomenas in the world is multiphysical in nature. Meaning different
domains and forces interact with each other simultaneously. These systems
have the potential to best be described by computational simulations. Before
computers were able, physical effects were often observed and described in
isolation. With the developing of tools capable of solving coupled systems the
area of multiphysics has been enhanced.

Figure 7: Multiphysic domains [23].

The coupling of systems is defined by COMSOL Inc. as follows

• Coupled physcial phenomena in computer simulation.

11
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• The study of multiple interacting physical properties.

By examining the multiple forces in play the effects of these in combination
and in isolation may be investigated. The analysis of corresponding coupled
systems may be most challenging and is intended to be solved by numerical
methods.

One particular interesting and challenging area in multiphysics is fluid-
structure interactions (FSI). Predictive FSI methods to solve problems involving
coupling of fluid flow with structural mechanics is highly demanded in many
fields of interest [6]. In ordinary engineering problems however, effects of FSI
is often negligible, due to minute traction forces or very stiff structures. In the
case of bio-mechanical engineering the effects should not be disregarded and
an efficient FSI solver is beneficial.

In coupled multiphysics problems, such as FSI, changes in one subsystem
causes a response in other subsystems. Like most fields in engineering, FSI
analysis types can be divided into three main categories, represented in [Fig-
ure 8].

Figure 8: Main FSI categories.

Experimental analysis is perhaps the most rewarding and trustworthy anal-
ysis. It is often used for validation of numerical analysis, but has limits in costs
and in some cases the constraints on scaling. For instance such as simultane-
ously satisfying Reynolds and Froude numbers criteria in complex tests.

Analytcial solutions is seldom found for all, but rather for a limited set of
problems. These are substantial in order to understand the problem and for the
validation of numerical solvers. While there are some use of analytic methods
in solution of fluid- and structure-only problems. The inherently nonlinear and
time-dependent nature of FSI makes it very difficult to apply analytic methods
to [6].

Computational FSI analysis has the advantage of potentially requiring low
resources. Due to advances in computational power and numerical algorithms,
increasingly complex problems can be simulated [7]. Despite these suggestions,
issues in the efficiency and the stability of certain FSI problems remain. These
challenges relies among others upon; problem formulation, fluid-structure cou-
pling, numerical discretization, software modularity and the effectiveness of
computational architecture.



3
M E S H D I S C R E T I S AT I O N

3.1 introduction

In applying a computational FSI to a problem description one needs to choose
an appropriate kinematic description of the continuum, managing the dynam-
ics of both the fluid and the structure. There are several reference frames or
coordinate systems to be considered for mesh forming. The governing equa-
tions of motion are generally described from either an Eulerian or a Lagrangian
point of view [6]. Deformation and movement are factors to be considered.

Figure 9: Lagrangian and Eulerian reference frame [41].

3.2 eulerian formulation

The Eulerian formulation, in FSI also known as the immersed boundary method,
use a fixed formulation of coodrinates. An Eulerian frame is fixed in space
and the continuum moves with respect to the grid. In the Eulerian description,
large distortions in the continuum motion can be handled with relative ease.
For this reason, the Eulerian frame is used widely in fluid dynamics. A disad-
vantage is that the interface is not tracked accurately, which for FSI problems
is of importance. Also it generally comes at the expense of the resolution of
flow details. Where high gradients are expected, a fine mesh is needed. Thus it
may not satisfy the need for accuracy when handling vortex induced flow, nor
the case of OSA where pressure gradients are of particular interest. However,
considering problems of large mesh displacements the method is often able to
perform more stable and less time consuming simulations [5].

13
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3.3 lagrangian formulation

A Lagrangian frame moves with the material. The Lagrangian description
makes it possible to track back loading history of the material, and therefore,
suitable when working with material with history dependent behavior. Easily
tracking free surfaces and interfaces between materials yield accurate material
displacements. Large deformations however, lead to mesh tangling implying a
less precise solution. Remeshing is needed in this case, which in particular for
a 3D case often proves computational expensive. When considering materials
which is highly elastic, deformations are relatively smaller and the Lagrangian
frame is attractive. For this reason, the Lagrangian frame is used widely in
structure mechanics.

3.4 arbitrarian lagrangian-eulerian method

The Abitrary Lagrangian-Eulerian (ALE) method is one of the most commonly
used methods for capturing the interaction between structure and fluid [27].
This method is a combination of the classical two descriptions of motion, the
Lagrangian motion and the Eulerian motion, with the purpose to summon
their respective advantages and minimize their disadvantages.

The ALE description offers freedom in moving the computational mesh and
large distortions of the continuum can be handled with high resolution and
accuracy. Nodes either follow the continuum as in the Lagrangian description,
are fixed as in Eulerian description or move arbitrary to get continuously re-
zoning capability. An ALE description can be used in order to account for
boundary deformation and, thus, deformation of the fluid mesh. The result is
a computational mesh that can avoid large mesh distortion with good resolu-
tion.

Different ways of formulating the frame of reference when modelling FSI
have been proposed in the past, each having its advantages and disadvantages.
The Arbitrary Lagrangian Eulerian method have the advantage of providing
a strong coupling, explained further in [Section 6.3.2]. As long as rotations,
translations and/or deformations of the solid remain within certain limits, this
method works very well and is recommended [27]. However, for problems in
which these limits are violated, elements become ill-shaped and ALE alone
does not suffice. As a solution to this problem an often used combination is
ALE with some form of re-meshing. This can however, be a difficult and time
consuming task [26]. Also the relocation of solutions from the old mesh to the
new mesh may create artificial diffusion, resulting in loss of accuracy.
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3.5 mesh generation

The FSI solution procedures is based on the handling and conforming of
meshes. Two distinct method exists; the conforming mesh methods and non-conforming
mesh methods [17]. These bases on the Lagrangian and Eulerian formulations,
respecively. The conforming mesh methods consists of using the interface be-
tween the solid and fluid domain as a physical boundary. Hence adopting the
interface as a part of the solution. When movement or deformation is done to
the solid, a mesh update is required to solve the next step.

(a) Conforming mesh. Left t = t1; Right t = t2.

(b) Non-conforming mesh. Left t = t1; Right t = t2.

Figure 10: Solid sphere moving in fluid [17].

The non-conforming mesh methods uses the interface location and the bound-
ary conditions as constraints imposed on the model equations. Thus a mesh
update is not needed since the fluid and solid equations can be solved indepen-
dently within their own respective grids. The non-conforming mesh methods
are based on the framework of the immersed methods (IB). The goal of the IB
is to avoid mesh updates in the numerical procedure altogether. Thus minimiz-
ing computational effort and time needed.





4
S O L I D M E C H A N I C S

4.1 introduction

The following sections will state and briefly explain the governing equations
of the structure. Much of its content is based on the the free and open educa-
tional book by Saravanan, U., 2013 [39]. The structural equations to model the
deformation of the solid are derived.

4.2 material

An elastic material has the ability to resist a distorting influence or deforming
force and to return to its original size and shape when that influence or force
is removed. When describing the relative elasticities of a material, both the
modulus and the elastic limit have to be considered.

Figure 11: A 0-D representation using lumped stiffness.

Most elastic materials such as springs exhibit linear elasticity and can be
described by a linear relation between the stress and strain. This relationship
is known as Hookes law which can be stated as a relationship between tensile
force F and corresponding displacement x.

F = kx (1)

The elastic components, as previously mentioned, can be modeled as springs
of elastic constant E, given by the formula

σ = Eε (2)

where σ is the normal stress in [Pa], E is the elastic modulus of the material
in [Pa] and ε is the strain that occurs under the given stress.

17
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4.3 structure equations

The equations of the structure come from the conservation of momentum and
material model for elasticity.

4.3.1 Rigid body motion

For a solid which is assumed rigid its motion is governed by the six equations
of motion. In 2D cases the equations are reduced to three. Euler’s equations
states that

M = Iω̇+ω× (I ·ω) (3)

where I is the moments of inertia in tensor form, ω the angular velocity
vector, ˙omega the angular acceleration vector and M is the moment about the
center of mass [34].

In this case the problem is an initial value problem. Hence, there are no
boundary conditions. By integrating the pressure and shear stress over the
surface of the body the sum of the force and moment can be obtained.

F =

∫
A
pnsdA+

∫
A
τsdA (4)

M =

∫
A
pr×nsdA+

∫
A
r× τsdA (5)

4.3.2 Conservation of momentum

Figure 12: Components of stress
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Two kinds of forces can be experienced in a body. These are

• Contact forces

• Body forces

This is described by - Anderson, 1995 [2] as

• Body forces, which act directly on the volumetric mass of the element. These
forces ”act at a distance”; examples can be gravitational and electromagnetic
forces.

• Surface forces, which act directly on the surface of the element. They are only
due to two sources.

– The pressure distribution acting on the surface, imposed by the outside fluid
surrounding the element.

– The shear and normal stress distributions acting on the surface, also im-
posed by the outside fluid by means of friction.

Assume that the Cauchy stress, σ varies over an infinitesimal element in the
current configuration [39]. When expanding the Cartesian components of the
stresses using Taylor’s series up to first order in 2D, the directional components
are

σxx(x+∆x,y) = σxx(x,y) +
∂σxx

∂x

∣∣∣∣
x,y
∆x

σxy(x+∆x,y) = σxy(x,y) +
∂σxy

∂x

∣∣∣∣
x,y
∆x

σyx(x,y+∆y) = σyx(x,y) +
∂σyx

∂y

∣∣∣∣
x,y
∆y

σyy(x,y+∆y) = σyy(x,y) +
∂σyy

∂y

∣∣∣∣
x,y
∆y

The equilibrium of forces for the element is due to the stresses and body
forces it experience. From [Figure 12] it follows that the equilibrium forces in
the x-direction gives

Net forces =

[
σxx(x,y) +

∂σxx

∂x

∣∣∣∣
x,y
∆x− σxx(x,y)

]
∆y

+

[
σyx(x,y) +

∂σyx

∂y

∣∣∣∣
x,y
∆y− σyx(x,y)

]
∆x+ ρbx∆x∆y = 0
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where ρ is the density of the element and bx is the body force in the x-
direction. Analogues to the x-direction this can also be done in the y-direction.
When the higher order Taylor expansions[
+ ∂σ∗
∂(x,y,z)

∣∣∣
(x,y,z)

∆(x,y, z)
]

is neglected the equation simplifies to

∂σxx

∂x
+
∂σyx

∂y
+ ρbx = 0. (6)

Note that this method is used throughout all deductions on infinitesimal
scale. In the 3D case the equilibrium forces in the x-direction is (in other nota-
tions)

Net forces =

[
σxx +

∂σxx

∂x
∆x

]
∆y∆z− σxx∆y∆z

+

[
σyx +

∂σyx

∂y
∆y

]
∆x∆z− σyx∆x∆z

+

[
σzx +

∂σzx

∂z
∆z

]
∆x∆y− σzx∆x∆y+ ρgx∆x∆y∆z = 0

which when simplified becomes

∂σxx

∂x
+
∂σyx

∂y
+
∂σzx

∂z
+ ρbx = 0. (7)

The total force in 3D can be written

F = [ρb+∇ ·σ]dxdydz

Inserting F = ma and m = ρ dxdydz and b = g the result is

ρa dxdydz = [ρg+∇ ·σ] dxdydz

ρ
Du

Dt
dxdydz = [ρg+∇ ·σ] dxdydz

ρ
Du

Dt
=∇ ·σ+ ρg (8)

which is the final expression for the conservation of linear momentum, also
named as equilibrium equations [39]. Here the deviatoric stress σdev from
σ = −pI+σdev is related to the material model used. The symbols u, σ, f, ∇,
p, I, ρ, denote the velocity, Cauchy stress tensor, body force, gradient operator,
pressure, and the unity tensor respectively.
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4.3.3 Deformation

Figure 13: Reference and current configurations [6].

In [Figure 13], X is the coordinates of the initial or reference configuration at
t = 0. A time-varying vector field over Ω0 is defined y = y(X, t). A mapping
between the coordinates of the material in the reference configurations to the
current configuration can then be given as

x(X, t) = X+y(X, t), (9)

where x represents the coordinates of the current configuration.
The deformation gradient F is given by

F =
∂x

∂X
= I+

∂y

∂X
, (10)

which can be used to define the Cauchy-Green deformation tensor C as

C = FTF, (11)

and the Green-Lagrange strain tensor E as

E =
1

2
(C− 1). (12)

Density of the solid is determined by the volume change [6]. This is the same
as the determinant of the deformation gradient J which is given by



22 solid mechanics

J = det(F). (13)

Using principal of virtual work the Cauchy stress tensor σ can be expressed
as

σ = J−1FST T . (14)

Here the S is the second Piola-Kirchoff stress tensor. Since the Cauchy stress
(and hence the Kirchhoff stress) is symmetric, the second Piola-Kirchoff stress
is also symmetric. The structural mechanics variations formulation in the cur-
rent configuration is

∫
Ωt

w · (ρ(a− f) −∇ ·σdΩ+

∫
(Γt)h

w · (σn−h)dΓ = 0. (15)

When equation (15) holds for all admissible w, the conclusion is

ρ(a− f) −∇ ·σ = 0 (16)

at every point inside Ωt and

σn−h = 0 (17)

at every point on the traction boundary, (Γt)h [6].
When the solid is not assumed rigid, three sets of equations are necessary.

The first is already derived, the equilibrium of stresses.

ρ
Du

Dt
=∇ ·σ+ ρb (18)

For the cases studied in this thesis the only material model of relevance is
the Linear Elasticity model. When in addition assuming isotropic material the
model states

σij =
E

1+ ν

[
εij + δij

ν

1− 2ν
εkk

]
, (19)

Here E is the Young’s modulus, ν the Poisson’s ratio and δij the Kronecker
delta.

The last equation is the strain relations

εij =
1

2

(
∂ui
∂xj

+
∂uj

∂xi

)
(20)

where εij is the strain and ui is the displacement in the xi direction.
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4.3.4 Initial and boundary conditions

ρ
Du

Dt
=∇ ·σ+ ρb

det(F) = 1 (21)

σ = G(F · FT − I) − pI

In the above equations the symbol G denote the solid shear modulus. The
system of equations in (21) are the momentum balance, the continuity and
the constitutive relation describing the rheological behaviour of the fluid and
solid, respectively [27]. To solve the system (21) two IC’s and one BC is needed.
This is the initial displacement and velocity of the solid and the pressure p
on the solid boundary. Where the solid is in contact with air the deformation
and velocity can be assumed zero initially. The pressure p need not be consid-
ered because it is a function of the surrounding density of the fluid ρ and the
internal energy e. These necessary conditions are provided from the fluid [2].





5
F L U I D D Y N A M I C S

5.1 introduction

Figure 14: Roadmap of fundamental principles [2].

Three fundamental equations lay the groundwork for all fluid dynamics.

25
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Figure 15: The fundamental principles of fluid dynamics.

These principles shown in [Figure 15] are the continuity from mass conser-
vation, momentum form Newtons’s second law and the energy equation from
conservation of energy. These equations can be deduced in both an Eulerian
and a Lagrangian frame.

Much of the material in this chapter bases on the book by Anderson JR., 1995
[2], which was first found trough a secondary source [43]. This excellent book
was acquired and used to a great extent in the following sections.

Considering the case of Flow Induced Oscillations of a Flexible Beam [Chapter 8]
and the OSA palate model [Chapter 9] assumptions for the flow are made.
Coherent to [Chapter 4], the governing equations of flow are deduced and
explained.

5.2 reference frame and scale

Figure 16: Fixed finite control volume to the left. Moving control volume to the right
[2].

Figure 17: Fixed infinitesimal control volume to the left. Moving infinitesimal control
volume to the right [2].
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In [Figure 16] the finite control volume to the left is fixed in space with the
fluid moving through it. The finite control volume to the right is moving with
the fluid such that the same fluid particles are always in the same control
volume. In [Figure 17] the infinitesimal fluid element is fixed in space with the
fluid moving through it. The image to the right in the same figure shows the
infinitesimal fluid element moving with the velocity V along a streamline. The
velocity V is equal to the local flow velocity at each point.

In fluid dynamics different scales with different reference frames can be
used. The scale can either be continuum or infinitesimal. The reference frame
can either be fixed in space or moving with the fluid. These are called the Eule-
rian and Lagrangian frame of reference, respectively. By applying fundamental
physical principles to a finite control volume fluid flow equations on integral
form can be deduced. These governing equations can then be manipulated to
get partial differential equations [2].

5.3 conservation of mass

5.3.1 Continuum scale with fixed frame

Consider a control volume of arbitrary shape and of finite size fixed in space
like the left model in [Figure 16]. The fluid moves through the volume, across
the surface. Mass conservation can in this case be described as in [Figure 18].

Figure 18: Conservation of mass [2].

In mathematical terms the net mass flow out of the control volume through
the surface ∂V = S ⊆ R3 in [m2] can be described by

∫∫
S
ρv ·ndS

where v,n ∈ R3 the velocity in [ms ] and normal to the closed surface S
respectively.

The time rate of decrease of mass inside volume V ⊆ R3 in [m]3 is given by

−
∂

∂t

∫∫∫
V
ρdV .

Then
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∂

∂t

∫∫∫
V
ρdV +

∫∫
S
ρv ·ndS = 0 (22)

which is the mass conservation in integral form [2].

5.3.2 Infinitesimal scale with fixed frame

Consider a control volume of arbitrary shape and of finite size fixed in space
like the one in [Figure 17]. The fluid moves through the volume, across the
surface. The mass conservation in this case can be described in the same way
as for the continuum scale [Figure 18].

Figure 19: Model of infinitesimal element fixed in space [2].

The infinitesimal element is a cube [Figure 19]. Thus the consideration of
direction is simpler than the continuum scale. Net outflow in the x-direction is

(ρu) |x+dx dydz− (ρu) |x dydz

Since dx is infinitesimal, the higher order terms of the taylor expansion can
be neglected. This produces (ρu)|x + dx

∂(ρu)
∂x

∣∣∣
x
. Thus the net outflow in the x

direction becomes
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(ρu) |x+dx dydz− (ρu) |x dydz =

[
(ρu)|x + dx

∂(ρu)

∂x

∣∣∣∣
x

]
dydz− (ρu) |x dydz

=
∂(ρu)

∂x

∣∣∣∣
x

dxdydz

The same procedure can be used in the y and z directions. When the mass
decrease is set to a negative quantity and assuming constant density ρ in space,
the statement can be expressed as

[
∂(ρu)

∂x

∣∣∣∣
x

+
∂(ρv)

∂y

∣∣∣∣
y

+
∂(ρw)

∂z

∣∣∣∣
z

]
dxdydz = −

∂ρ

∂t
dxdydz

∂ρ

∂t
+

[
∂(ρu)

∂x

∣∣∣∣
x

+
∂(ρv)

∂y

∣∣∣∣
y

+
∂(ρw)

∂z

∣∣∣∣
z

]
= 0

which when the terms in the brackets is identified as ∇ · (ρv), leads to

∂ρ

∂t
+∇ · (ρv) = 0. (23)

This is the continuity equation on a partial differential form. The equation
is obtained directly in partial form because of the infinitesimal small aspect of
the element. Since the element is assumed fixed in space it leads to the specific
differential form. Which is named the conservation form [2].

5.3.3 Continuum scale with moving frame

In the figure to the right in [Figure 16] the element is moving with the fluid. In
this case mass conservation can be described as

D

Dt

∫∫∫
V
ρdV = 0 (24)

During the inteval Dt the particle stay the same. The material derivative is
given by

D

Dt
=
∂

∂t

∣∣∣∣
particle

=
∂

∂t

∣∣∣∣
space position

+

3∑
i=1

∂xi
∂t

∣∣∣∣
particle

∂

∂xi
. (25)
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The density is thus

D

Dt
ρ(x(t),y(t), z(t), t) =

∂

∂t
ρ(x(t),y(t), z(t), t)

∣∣∣∣
particle

=
∂

∂t
+
∂ρ

∂x

∂x

∂t
+
∂ρ

∂y

∂y

∂t
+
∂ρ

∂z

∂z

∂t

=
∂ρ

∂t
+ ρ∇ · v. (26)

5.3.4 Infinitesimal scale with moving frame

A infinitesimal fluid element moving with the flow is represented in the right
part of [Figure 17]. The element shape and volume will change as it moves with
the stream. The mass of the element however is fixed. The variable volume and
fixed mass for this element can be expressed by ∂m and ∂V respectively,

∂m = ρ∂V . (27)

Since the element is moving with the fluid, again the notation of material
derivative can be used [2]. As in the continuum scale case, the rate of change
of the mass in time is equal to zero. Thus

D(∂m)

Dt
= 0 (28)

(29)

Combining this with equation (27),

D(ρ∂V)

Dt
= 0

∂V
Dρ

Dt
+
D(∂V)

Dt
= 0

Dρ

Dt
+
ρ

∂V
· D(∂m)

Dt
= 0 (30)

By using the divergence theorem, which in physical meaning states 1
∂V ·

D(∂V)
Dt = 0, the equation finally becomes

Dρ

Dt
+ ρ∇ · v = 0. (31)

5.3.5 Unity in the equations

A total of four equations have been deduced, (22), (23), (24) and (31). These are
four equations in integral or partial differential form, for either the conserva-
tive or non-conservative case. The equations are not fundamentally different,
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but rather four different forms of the same equation; the continuity equation.
For instance, with some manipulations the integral form of equation (22) can
yield the differential form of equation (23).

One of the main difference is that the partial differential forms assume first
order differentiability, implying continuity. While the integral forms allow the
presence of discontinuities inside the fixed control volume. Therefore the in-
tegral form is considered to be more fundamental than the partial differential
form [2].

5.4 conservation of momentum

Figure 20: Forces in the x-direction [2].

Considering a moving infinitesimal fluid element, it can experience both body
and surface forces. Newton’s second law states F = ma. As a reminder from
[Chapter 4], when considering a moving infinitesimal fluid element, it can also
experience body and/or surface forces [2].

Let f denote the body force per unit mass, then

body force on fluid element = ρf dxdydz.

From [Figure 20] it follows that the net surface forces (abbreviated NSF) in
the x-direction can be given as



32 fluid dynamics

NSFx =
[
p−

(
p+

∂p

∂x
dx

)]
dydz+

[(
τxx +

∂τxx

∂x
dx

)
− τxx

]
dydz

+

[(
τyx +

∂τyx

∂y
dy

)
− τyx

]
dxdz+

[(
τyz +

∂τzx

∂z
dz

)
− τzx

]
dxdy

=

[
−
∂p

∂x
+
∂τxx

∂x
+
∂τyx

∂t
+
∂τzx

∂z

]
dxdydz

When again neglecting the Taylor expansions terms the total force becomes

F =

−∇p+


∂τxx
∂x +

∂τyx
∂y + ∂τzx

∂z
∂τxy
∂x +

∂τyy
∂y +

∂τzy
∂z

∂τxz
∂x +

∂τyz
∂y + ∂τzz

∂z

+ ρf

dxdydz
= [−∇p+ (∇ · τ)T + ρf] dxdydz

The last term (∇ · τ)T is the divergence of the matrix, div(τ). Defining F =

ma and setting m = ρ dxdydz, a = Dv
Dt and the stress tensor σdev = σTdev the

equation may further be developed to

ρ
Dv

Dt
dxdydz = [−∇p+ (∇ ·σdev) + ρf] dxdydz

ρ
Dv

Dt
= −∇p+∇ ·σdev + ρf (32)

Which are the Navier-Stokes equations in non-conservation form. The the
conservation form can be deducted

ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p+∇ ·σdev + ρf (33)

5.4.1 Shear stresses

Fluids like water and air is often considered Newtonian. Isaac Newton de-
scribed the flow behavior of fluids with a simple linear relation between shear
stress [mPa] and shear rate [1s ]. This relationship is now known as Newton’s
Law of Viscosity.
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Figure 21: Shear stress as a function of shear rate.

When the fluid is assumed Newtonian

τ︸︷︷︸
Shear stress

= µ︸︷︷︸
viscosity

× γ̇︸︷︷︸
Shear rate

where the the proportionality constant µ is the molecular viscosity [Pa · s] of
the fluid. The molecular viscosity is also a function of temperature.

Figure 22: Force components of the stress tensor on an infinitesimal element [39].

Considering the infinitesimal element of a viscous fluid with a stress tensor
such as the one in [Figure 22]. Here the tensor may be written as
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σ =

 σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


When the fluid is in equilibrium, the tensor is symmetric, τij = τji. This is

true of Newtonian fluids, in which the shear stresses are proportional to the
rate of shearing by the constant µ. The stresses can be described as

τij = τji = µ

(
∂ui
∂xj

+
uj

xi

)
− δijp (34)

In order to include the effect of a viscosity of compression that resists changes
in the volume of the fluid, an extra term to the diagonal elements is added. This
term is proportional to the divergence of the velocity field by a constant λ.

τii = σi = −p+ 2µ
∂ui
∂xi

+ λ∇ · v (35)

where λ is the second viscosity coefficient also in [Pa · s]. Combining equa-
tion (35) with the Naver-Stokes equation in conservation form (33) the stresses
in each direction may be written

σxx = σx = −p+ λ∇ · v+ 2µ∂u
∂x

(36)

σyy = σy = −p+ λ∇ · v+ 2µ∂v
∂y

(37)

σzz = σz = −p+ λ∇ · v+ 2µ∂w
∂z

(38)

σxy = σyx = µ

(
∂v

∂x
+
∂u

∂y

)
(39)

σxz = σzx = µ

(
∂u

∂z
+
∂w

∂x

)
(40)

σyz = σzy = µ

(
∂w

∂y
+
∂v

∂z

)
(41)

Stokes made the hypothesis that the relationship between the molecular and
the second viscosity coefficient is λ = −2

3µ [2]. With the assumption of Newto-
nian fluid, the stress tensor can after some matrix calculation be written as
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σ = −pI

+


−2
3µ∇ · v+ 2µ

∂u
∂x µ

(
∂v
∂x +

∂u
∂y

)
µ
(
∂u
∂z +

∂w
∂x

)
µ
(
∂v
∂x +

∂u
∂y

)
−2
3µ∇ · v+ 2µ

∂v
∂y µ

(
∂w
∂y + ∂v

∂z

)
µ
(
∂u
∂z +

∂w
∂x

)
µ
(
∂w
∂y + ∂v

∂z

)
−2
3µ∇ · v+ 2µ

∂w
∂z


= −pI+ 2µε̇ (42)

where ε̇ is the strain rate tensor ε̇ij =
(
∂ui
∂xi

+
∂uj
∂xj

)
, with dimension [1s ].

5.5 conservation of energy

Figure 23: First law of thermodynamics [2].

The physical principle stated in this section is merely the first law of thermo-
dynamics.

5.5.1 Rate of change of energy inside fluid element

The fluid element has two contributions to its total energy E given in
[
J
Kg

]
=[

m2

s2

]
• The internal energy due to random molecular motion, e in

[
J
Kg

]
• The kinetic energy due to translational motion, v

2

2 in
[
J
Kg

]
The time rate of change is given by the operator

[
D
Dt

]
and the mass of the

element is ρ dzdydz [2]. Thus the time rate of change of energy inside the
element (abbreviated A) is given by

A = ρ
D

Dt

(
e+

v2

2

)
dxdydz. (43)
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5.5.2 Net flux of heat into element

The topic of heat flux is extensive. Generally heat flux happens due to volu-
metric heating such as absorption or emission of radiation, thermal conduc-
tion and convection [2]. Considering the element at hand, heat flux into the
element happens largely due to thermal conduction (abbreviated H) or heat
transfer across the surface due to temperature gradients. The volumetric heat
effect, ρq̇ dxdydz is therefore neglected.

H = −

(
∂q̇x

∂x
+
∂q̇y

∂y
+
∂q̇z

∂z

)
= −∇ · q̇ dxdydz (44)

where q̇ =
(
q̇x q̇y q̇z

)T
is the heat flux.

5.5.3 Rate of work due to body and surface forces

Figure 24: Energy fluxes in x direction [2].



5.5 conservation of energy 37

To evaluate the rate of work due to forces, stating the difference between work
done by body and surface forces is necessary [2]. For body forces acting on the
fluid element moving at a velocity v, the rate of work done is

W = ρf · vdxdydz (45)

With the help of [Figure 24], the deduction of rate of work (abbreviated RWS)
done by surface forces can be obtained.

RWS =

−∂(up)∂x
+
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z︸ ︷︷ ︸
x direction

dxdydz

+

−∂(vp)∂y
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z︸ ︷︷ ︸
y direction

dxdydz

+

−∂(wp)∂z
+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z︸ ︷︷ ︸
z direction

]

dxdydz

=

−∇ · pv+∇ · u
 τxx

τyx

τzx

+∇ · v

 τxy

τyy

τzy

+∇ · v

 τxz

τyz

τzz


dxdydz

= [−∇ · pv+∇ · (v · τ)]dxdydz
=∇ ·σv dxdydz

(46)

5.5.4 The energy equation

With (45) and (43) the rate of change of energy inside fluid element becomes

ρ
D

Dt

(
e+

v2

2

)
dxdydz = [−∇ · q̇+ ρf · v−∇ ·σv]dxdydz

ρ
D

Dt

(
e+

v2

2

)
= ρf · v+∇ · (σv− q̇). (47)

This is the non-conservative form. Again, writing out the material derivative
gives the conservation form
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ρ
D

Dt

[(
e+

v2

2

)
+ v ·∇

(
e+

v2

2

)]
= ρf · v+∇ · (σv− q̇). (48)

5.6 dynamic state relations

To fully determine the fluid behaviour there is still two relation needed. Choos-
ing ρ and e as independent variables the state relation gives

p = p(e, ρ)
T = T(e, ρ) (49)

For incompressible fluid this gives

ρ = constant

cv =
R

γ− 1

e = cpT = cVT =
RT

γ− 1

And for perfect gas and constant specific heat,

p = ρRT

e = cVT =
1

γ− 1

p

ρ

Here n is the quantity of material in [mol], R the specific gas constant in[
J

mol·K

]
. cp and cV is the specific heat in

[
J

Kg·K

]
for a constant pressure and a

constant volume, respectively.

5.7 navier-stokes equations

In non-conservative partial differential form the system determining the fluid
behavior is, namely (31), (32) and (47).

Dρ

Dt
+ ρ∇ · v = 0.

ρ
Dv

Dt
− ρf−∇ ·σ = 0 (50)

ρ
D

Dt

(
e+

v2

2

)
− ρf · v−∇ · (σv− q̇) = 0
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5.8 euler equations

When the inertia forces due to convective contribution is much larger then the
viscous forces i.e there is flow with a higher Reynolds number the viscosity can
be neglected and the Navier-Stokes equations becomes the Euler equations. In
this case the flow is characterized as inviscid, which is often the case in airflow.

Dρ

Dt
+ ρ∇ · v = 0.

ρ
Dv

Dt
− ρf+∇p = 0 (51)

ρ
D

Dt

(
e+

v2

2

)
− ρf · v+∇ · (q̇+ pv) = 0

Using the Euler equation, many fluid dynamics problems involving low vis-
cosity and assumed invicid can easily be solved. However, the assumed negli-
gible viscosity is no longer valid in the region of fluid near a solid boundary.

5.9 airflow

Concerning the case of airflow both in the Flow Induced Oscillations of a Flexible
Beam benchmark producing Von Kármán vortex street and in simulating the
soft palate in light of OSA, some assumptions can be made for the fluid equa-
tions. The fluid is considered to be close to that of air. It is thus considered
incompressible, isotropic and Newtonian vicious with a constant viscosity µ.
Furthermore, the only body force that can be present is gravitation.

5.9.1 Incompressibility and isotropy

For the special (but very common) case of an incompressible fluid the density
ρ is assumed constant [6]. In the case of an incompressible flow, the pressure
constrains the flow in such a way that the volume of fluid elements is constant.
In formula incompressibility means

J = det(F) = 1

ρ = constant (52)
e = cT

Since the density is assumed constant equation (31) alters to

∇ · v = 0 (53)

This means that the velocity is divergence free.
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5.9.2 Newtonian viscous flow

When the incompressibility condition is inserted into the shear stress relations
described in [Section 5.4.1] the term (∇·σdev)T in the momentum equation (32)
simplifies to

(∇·σdev)T = µ∇2v

and the momentum equation (32) simplifies to

ρ
Dv

Dt
= ρf−∇p+ µ∇2v. (54)

The momentum equation and the energy equation form a system of equa-
tions which is now

∇ · v = 0

ρ
Dv

Dt
= ρf−∇p+ µ∇2v (55)

ρ
D

Dt

(
e+

v2

2

)
= ρf · v+∇ · (σv− q̇)

5.9.3 Initial and boundary conditions

∇ · v = 0

ρ
Dv

Dt
= ρf−∇p+ µ∇2v. (56)

The system (56) needs one BC at the entire boundary for v and one IC, also
for v. Initially the the solid has zero velocity, thus by the no-slip conditions the
same applies to the fluid at this boundary [2].

5.9.4 Nondimensional equations

For fluid dynamics, characteristic parameters can be selected to nondimension-
alize the equations [6]. Nondimensionalized equation helps to gain a greater
insight into the relative size of various terms present in the equation. The
Navier-Stokes equations when incompressible case is assumed can be nondi-
mensionalised using the parameters in [Table 1].
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Variable L U L
U

1
L

Parameter x ′ = x
L v ′ = v

U t ′ = t
L
U

∇ ′ = ∇1
L

... U2

L ρ0 ρ0U
2

... f ′ = f
U2

L

ρ ′ = ρ
ρ0

p ′ = p
ρ0U

2

Table 1: Characteristic parameters.

Here L, U and ρ0 is the characteristic length, velocity and density. Incom-
pressibility is assumed such that the fluid density is constant. When the pa-
rameters are applied to (55) it yields

∇ ′ · v ′ = 0 (57)
Dv ′

Dt ′
= f ′ −∇ ′p ′ + 1

Re
(∇ ′)2v. (58)

where Re is the Reynolds number. The Reynolds number is the most impor-
tant dimensionless number in fluid dynamics and is used to provide a criterion
for determining dynamic resemblance. It represents the ratio between inertial
force and vicious force. The Reynolds number is used to describe the flow
as laminar or turbulent. In flows where vicious forces are dominant and the
Reynolds number is low laminar flow occurs. Laminar flow is when the flow
is occurring smoothly or in regular paths. This is in contrast to turbulent flow,
where the flow is dominated by inertial forces and high Reynolds number
occur.

Re =
dynamic pressure

shear stress
=

ρ0U
2

L
µU
L2

=
inertia forces
vicious forces

=
ρ0U
µ
L

=
ρ0UL

µ

For the Flow Induced Oscillations of a Flexible Beam benchmark the standard
parameters are as follows

• inflow velocity u∞ = U = 51.3
[
cm
s

]
• dynamic viscosity µf = µ = 1.82 · 10−4

[ g
cm·s

]
• density ρf = ρ0 = 1.18 · 10−3

[
g
cm3

]
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This corresponds to Reynolds number

Re =
ρ0LU

µ
=
1.18 · 10−3

[
g
cm3

]
· 1.0 · 51.3

[
cm
s

]
1.82 · 10−4

[ g
cm·s

] = 332.6.

Which typical is in the low laminar flow regime. Low Reynolds Numbers can
produce vibrations to small structures due to vortex shedding downstream of
the structural body encountered.

5.10 vortex induced vibrations

Vortex Induced Vibration (VIV) manifests itself in several applications where
flexible structures are subject to external forces. The phenomena is also present
in smaller scale systems such as the Flow Induced Oscillations of a Flexible Beam
benchmark. In short VIV happens due to fluid flow interacting with a structure
generating periodic motion to the system [47].

5.10.1 Vortex shedding

When subjected to flow at certain conditions, a structure may produce the phe-
nomena called vortex shedding. When structures are emerged by an unsteady
oscillating flow vortices are created behind the structure and detach period-
ically from either sides. This results in a so called von Kármán vortex street.
Periodic shedding creates low pressure vorticies downstream, resulting in lift
and drag forces acting on the structure.
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Figure 25: Vortex shedding patterns for different Reynolds number. Cylindrical object
[8].

5.11 lift and drag

The Forces acting on the structure are the lift and drag forces. The aerodynamic
forces on a body comes primarily from differences in pressure and viscous
shearing stresses. The drag force is given by

FD = CD
1

2
ρfu

2Aref (59)

,
where ρf is the fluid density, u the velocity and Aref the projected reference

area [6]. The drag and lift force are dependent on the drag coefficient CD and
lift coefficient CL, respectively. The lift force is determined by the equation
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FL = CL
1

2
ρfU

2Aref

However, when the pressure distribution on the surface is known, determin-
ing the total lift requires adding up the contributions to the pressure force
from local elements of the surface, each with its own local value of pressure.
The total lift is thus the integral of the pressure, in the direction perpendicular
to the far-field flow, over the entire surface. This can be state as

FL =

∮
pn · kdS.



6
C O M P U TAT I O N A L F L U I D - S T R U C T U R E I N T E R A C T I O N

"Fluid–structure interaction (FSI) is a class of problems with mutual dependence be-
tween the fluid and structural mechanics parts. The flow behavior depends on the
shape of the structure and its motion, and the motion and deformation of the structure
depend on the fluid mechanics forces acting on the structure." - Bazilevs et al., 2013 [6]

A typical FSI problem is a scenario where a moving and deformable struc-
ture is emerged and surrounded in fluid flow. The physical quantities of the
structure and flow will then interact with each other. Each domain has its own
fields or physical quantities which influence the other [6].

Figure 26: Representative fields of fluid-structure domains [43].

Fluid-structure interaction requires the discretisation of both the structure
and fluid. Each of these must then be solved. Depending on the coupling the
system may be solved in turns or simultaneously.

6.1 coupled systems

A system is defined as coupled if two or more physical systems interact with
each other, and the solution of either one is dependent on the other. Neither
the fluid nor the structural system can be solved independently, due to the
unknown forces in the interface region. This is perhaps best described by the
wordings of Zienkiewicz, Taylor, and Zhu [48]

"Coupled systems and formulations are those applicable to multiple domains and
dependent variables which usually (but not always) describe different physical phe-
nomena and in which;

• neither domain can be solved while separated from the other

• neither set of dependent variables can be explicitly eliminated at the differential
equation level."

45
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The coupled domains do not overlap, which require a set of physical mean-
ingful interface conditions [6]. The coupling conditions are the compatibility
of the kinematics and traction at the fluid-structure interface. Since the struc-
ture domain is on motion and in most cases the motion follows the material
particles, it follows the Lagrangian description of the structural motion. Thus
the shape of the fluid sub-domain must change in order to accommodate the
motion of the structure.

FSI is generally divided into two, the one-way and two-way FSI. One-way
FSI provides an economic alternative since only the structure is subject to the
fluid behaviour, and not the other way [21]. One-way FSI has what is called
a weak coupling between a fluid and a structure. When the structural mo-
tions and deformations are small and will not influence the fluid motion to a
large extent, the one-way FSI might be a valid choice. When both systems are
subject to the others behaviour, it is a Two-way FSI. Physical properties like
deformation, pressure, shear stress are continuously transferred between the
two domains. Two-way FSI should be used when the interaction between the
fluid and the structure is significant. For applications exposed to VIV, Two-way
coupling is the best approach [6].

Figure 27: Typical FSI solver setup [46].

By introducing the interface, a third domain in addition to the fluid and
structure domains, a system of transfer can be developed. The interface do-
main makes it possible to handle date of non-matching meshes and allows
for independent re-meshing of sub-domains. Such an approach, suggested in
[Figure 27], enables the transfer of data such as traction forces and kinematic
data.

The choice of discretization for the fluid and structure may be challenging
in the process of coupling [48]. In case of using a non-conforming mesh [Sec-
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tion 3.5], separate fluid and solid discretizations a non-matching mesh will
occur at the intersection. It is then essential to ensure that the fluid and struc-
ture have correct coupling of their kinematics and traction.

A standard computational domain denoted byΩ is represented in the figure
[Figure 28] [6]. Note that the subscripts "I" refer to the interface, "E" to external
and "t" to the time configuration. As shown the domain has an internal bound-
ary Γ1 and an external boundary Γ2. The Ω1 and Ω2 represent the fluid domain
and structural domain, respectively. Thus the whole domain Ω = Ω1 ∪Ω2 and
at the non-overlapping interface Γ1 = Ω1 ∩Ω2 = 0.

Figure 28: Schematics of fluid and solid spatial domains in a FSI problem [6].

When basing on [Figure 28], FSI formulation at the continuous level can be
stated as

∫
(Ω1)t

w1 ·
(
ρ

(
∂v

∂t
+ v ·∇v− f

)
−∇ ·σ1

)
dΩ

+

∫
Γ1

w1 · (σ1n1 −h1)dΓ

+

∫
(Ω1)t

q1∇ · vdΩ (60)

+

∫
(Ω2)t

w2 ·
(
ρ

(
d2y

dt2
− f

)
−∇ ·σ2

)
dΩ

+

∫
Γ1

w2 · (σ2n2 −h2)dΓ

+

∫
Γ1

(w1 ·σ1n1 +w2 ·σ1n1)dΓ = 0

where h1 and h2 are the corresponding prescribed traction vectors. From
[Chapter 4] and [Chapter 5] the individual equations for the fluid and structure
sub-domains was derived, namely
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ρ
Dv

Dt
= ρf−∇p+∇ ·σ1 in (Ω1)t, (61)

∇ · v = 0 in (Ω1)t (62)

and

ρ
Du

Dt
=∇ ·σ2 + ρf in (Ω2)t (63)

Here σ1 and σ2 are the Cauchy stress tensors for the fluid and the solid,
respectively. When the traction boundary conditions are satisfied

σ1n1 −h1 = 0 on (Γ1h)t (64)

and

σ2n2 −h2 = 0 on (Γ2h)t (65)

When introducing w1 = w2 on Γ1 to the remaining terms

∫
Γ1

(w1 ·σ1n1 +w2 ·σ1n1)dΓ = 0 (66)

The concluding equation is presented as

σ1 ·n1 −σ2 ·n2 = 0, (67)

on Γ1 with n being the outer normal at the boundary [6]. This is the dynamic
constraint giving equivalence of the Cauchy stress tensors in the two domains
[27].

In order to couple the two domains a kinematic restraint or no slip condition
is applied on the boundary of the solid [26]

u2 −u1 = 0 => u1 =
∂d2
∂t

, (68)

where u1 is the fluid velocity and d2 is the displacement vector of the structure.
Different schemes can be used to obtain a coupled solution. Besides the

Newton-Raphson and Gauss-Seidel schemes, a staggered scheme is also appli-
cable. These three types are briefly described in following sections. However,
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the staggered scheme is of most importance since it is the focus scheme of the
thesis’s methodology.

Different methods are available for solving FSI problems. The two methods
commonly divided into are the monolithic approach and the partitioned ap-
proach.

Figure 29: Schematics of monolithic and partitioned approaches [17].

6.2 monolithic approach

A monolithic or direct approach, as represented in [Figure 29], aims to solve
both the structural and the fluid equations simultaneously in one single matrix
system [6]. The DOF from all the sub-systems (fluid, solid, interface and mesh)
are accumulated into single matrix equation, which is highly non-linear and
involves all cross-derivatives.

(
Ks Kfs

Ksf Kf

)(
us

uf

)
=

(
Fs

Ff

)

The interface conditions are implicit in the solution procedure. As such it
makes the monolithic approach considered more robust than the partitioned.
This approach can potentially achieve better accuracy for a multi-disciplinary
problem [17]. However, the matrix system tends to be very large for large
models and the computational time increases a lot since the methods requires
a lot of memory. The monolithic approach requires a code developed for this
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particular combination of physical problems. Therefore virtually excluding the
possibility of using quite capable existing fluid and structural solvers.

Monolithic solvers are often regarded impractical. The physical models has
to be implemented within a single solution environment, which is difficult and
sometimes less effective. To be able to keep up with the latest developments of
research the solver also has to be continuously modified.

An example of commercial software that implements the monolithic ap-
proach is ADINA [22]. ADINA is using finite elements (FEM) to discretize
both the structure and the fluid, whereas in computational fluid dynamics
(CFD) the traditional discretization approach is to use finite volumes (FVM).
Monolithic solvers such as the one utilized by COMSOL appear to be uncondi-
tionally stable (possible to use larger time steps) as compared to a partitioned
scheme.

6.3 partitioned approach

By the partitioned FSI approach (represented in [Figure 29]), fluid and struc-
ture are solved separately within two distinct solvers [6]. Each solver uses its re-
spective mesh discretization and numerical algorithm. Hence, the partitioned
approach has the benefit of reserving software modularity, because a existing
flow solver and structural solver are coupled. These solvers are usually focused
within their own physical domains. Therefore the partitioned approach has the
advantage of flexibility by being able to combine different solvers with differ-
ent numerical methods. This can become convenient when solving advanced
FSI problems as the interface geometry become complicated.
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Figure 30: Examples of software.

A coupling algorithm is needed to couple the solvers at the interface in both
space and time. The partitioned approach can be categorized into two differ-
ent kinds of coupling algorithms; loosely coupled and strongly coupled. It is
important to notice that the method for solving each subsystem has nothing
to with the method of coupling. For instance, an explicit coupling can be used
when implicit solvers are used for both fluid and structure.

Figure 31: Schematics of convergence process [3].
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The partitioned method usually follows a convergence process like the one
given in [Figure 31]. More detailed description is given by Michler et al., 2004
[32]

1. Transfer the motion of the structural boundary to the fluid

2. Update the position of the moving fluid mesh

3. Advance the fluid system in time and compute the new pressure

4. Convert the new fluid pressure into a structural load

5. Advance the structural system in time under the fluid-induced load

The general goal is to obtain a coupled solution within the desired accuracy.
As such the coupling algorithm usually contains an iteration scheme and a in-
terpolation method. This is to transfer data between the systems. This depends
on how the problem is coupled. The coupling can be either loosely coupled or
strongly partition coupled.

6.3.1 Loose coupling

Loosely coupling is most often referred to as a staggered scheme. The method
is perhaps best introduced by Bazilevs et al., 2013 [6]

"For a given time step, a typical loosely-coupled algorithm involves the solution
of the fluid mechanics equations with the velocity boundary conditions coming from
the extrapolated structure displacement rate at the interface, followed by the solution of
the structural mechanics equations with the updated fluid mechanics interface traction,
and followed by the solution of the mesh moving equations with the updated structural
displacement at the interface."

Figure 32: Loose/implicit coupling [38].

In loosely coupled approaches, the equations of fluid mechanics, structural
mechanics, and movement of meshes are solved sequentially. A loosely cou-
pled algorithm is explicit and the codes will have only one bidirectional ex-
change of solved variables per time step, in a sequentially staggered manner
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[6]. The loosely coupled scheme is thus considered favorably in terms of ef-
ficiency. The most usual algorithm for loosely coupled system is to solve the
system in a sequentially staggered manner, but the Gauss-Seidel method, the
Newton-Raphson method and the Jacobi method are applicable.

The iterative staggered partitioned scheme is energy conservative at the in-
terface. This makes it more stable than the explicit/strong coupling. This how-
ever, often makes it more time consuming. On the other hand the loosely cou-
pled schemes also has some drawbacks. When applied the added mass effect
discussed later in [Section 7.5.2] can make the scheme unstable.

As seen in [Figure 30], Abaqus’ FSI solver is partitioned and uses a loose
partition coupling algorithm. Thus the fluid and structure equations are solved
subsequently.

6.3.2 Strong coupling

Figure 33: Strong/explicit coupling [38].

Strongly coupled solvers completely satisfy the equilibrium of traction forces.
In addition to Gauss-Seidel they consist of monolithic and partitioned Newton-
Raphson schemes. Strongly coupled systems utilize an iteration method to ob-
tain convergence before further time-stepping. Within each time-step, data is
transferred between the fluid and structural solver until the solution converges.
This is shown in [Figure 33]. For the sake of accuracy, the structure influences
the fluid and the other way around in such a strong way, that more than one it-
erations per time step are needed before advancing to the next time step. Three
categories of coupling techniques can be used in the monolithic and strongly
coupled approach: the block-iterative, quasi-direct, and the direct coupling [6].
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Figure 34: Possible interface tracking strategy [46].

The Newton-Raphson schemes can be solved as a whole or sequential, mono-
lithic and partitioned respectively. A system of equations that corresponds to
this scheme is

N1(d1,d2,d3) = 0
N2(d1,d2,d3) = 0
N3(d1,d2,d3) = 0

where d1, d2 and d3 are vectors of nodal unknowns. These corresponds to
the unknown functions u1, u2 and u3.

To solve these equations with Newton-Raphson it is necessary to get a solu-
tion of the linear equation system [6]

A11x1 +A12x2 +A13x3 = b1

A21x1 +A22x2 +A23x3 = b2

A31x1 +A32x2 +A33x3 = b3

Here x1, x2 and x3 the correction increments for d1, d2 and d3. b1 = −N1,
b2 = −N2 and b3 = −N3 are the residuals of the nonlinear equations and
Aβγ =

∂Nβ

∂dγ
.

Consistent partitioned Newton-Raphson methods tend to offer good robust-
ness, but the implementation can be computational expensive and cumber-
some. In both Gauss-Seidel and staggered schemes the sub-domains are solved
sequentially. They are also solved in separate systems of equations.

6.4 interface capturing and tracking

In general there are two possible ways of defining the interface between the
fluid and structure [Figure 35] [6].
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Figure 35: Interface definition.

When interface capturing is used, the solid and fluid mesh are moving inde-
pendently. This is primarily used with an Eulerian fluid mesh. Although this
method does not constrain the scale of deformations, in case of holding up to
the conservation equations it is less accurate.

In the case of using interface tracking, the fluid and structure are moving to-
gether. No overlapping or gaps between the sub-domains occurs. This method
is considered more accurate than interface capturing. However it is not suffi-
cient when there is large deformations. Thus, re-meshing is needed. In the Flow
Induced Oscillations of a Flexible Beam and OSA palate model case only interface
tracking is used.
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N U M E R I C A L A P P R O A C H A N D S O F T WA R E U T I L I T Y

7.1 introdutcion

A general presentation of the different numerical approaches and methods
will be given. In addition to FSI being a three-field problem, where the motion
of the structure and the fluid domains may initially be unknown [6]. All the
issues related to numerical discretizations of single field problems, such as
stability, robustness, accuracy, speed and ability to handle complex geometries
are also present in FSI problems.

The fluid and structure domains can be discretisized by different methods
just like normal fluid and solid solvers can. A flexible approach is to have
separate fluid and structure discretizations for the individual sub-problems.
The choice of discretization schemes is important, since this is how the differ-
ent terms in the equations are approximated. Such as the advective and the
diffusive terms typically used in CFD. A rule of thumb is that higher order
schemes gives a more accurate approximation, but are far more unstable [33].
Lower order schemes such as upwind can create numerical diffusion, but often
stabilizes the simulation.

Three ways of describing the physical domains is presented here. Each method
is similar in that it represents a systematic numerical method for solving par-
tial differential equations (PDE). The major difference is the implementation.

7.2 finite difference

The finite difference method is based on the differential form of the PDE [44].
Each derivative is replaced with an approximate difference formula, usually
derived from a Taylor series expansion. The domain or grid may be divided
into hexahedral cells, in which the solution will be obtained at each nodal
point.

∇2u = S− >
∂2u

∂x2
= S.

The Taylor series expansion around a given point is given as

∂2u

∂x2
≈
uj−1 − 2uj +uj+1

∆x2
.

57
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Often the choice is between upwind, central and downwind schemes [4]. The
upwind scheme is called conditionally stable. Whereas the downwind and the
central scheme are unconditionally unstable. The main disadvantage of the
upwind scheme is that it introduces a large amount of numerical diffusion
due to the first order truncation error. Thus smearing out the solution if not
run in fine enough mesh. If the truncation error is made to approach zero, the
solution to the differential equation would approach the true solution to the
PDE. If however providing a solution is more important than the accuracy, the
upwind scheme will easier provide convergence than a unstable scheme.

7.3 finite element

One reason for the finite elements method’s (FEM) success in multiphysics
analysis is that it is a very general method. This is described in the book by
Shröder and Wriggers [42]. In the finite element method the dependant values
are stored at the element nodes. The discretization is based upon a piecewise
representation of the solution in terms of specified basis functions. The com-
putational domain is divided into smaller finite elements, where the solution
is constructed from the basis functions.

Figure 36: Finite Element Method [20].

The actual equations that are solved are typically obtained by restating the
conservation equation in weak form. The field variables are written in terms
of the basis functions, the equation is multiplied by appropriate test functions
and then integrated over an element. Since the FEM solution is in terms of
specific basis functions, a great deal more is known about the solution than for
either FDM or FVM. This can be a double-edged sword, as the choice of basis
functions is very important and boundary conditions may be more difficult to
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formulate. Again, a system of equations is obtained (usually for nodal values)
that must be solved to obtain a solution.

7.4 finite volume

In finite volume the dependant values are stored in the center of the finite
volume [33]. As opposed to FEM each cell the energy from conservation of
mass and momentum is ensured in FVM. The discretization is based upon an
integral form of the PDE [19]. These are the conservation of mass, momentum
and energy equations which was shown in [Chapter 5]. The boundary-value
problem is given as

∇2u = s =>
∂2u

∂x2
= S.

With FVM this statement is converted to an integral conservative form before
discretization. The last term includes the surface flux effects.∫

Ω

∂2u

∂x2
=

∫
Ω
S.

Manipulations of the equations rely on the Gaussian divergence theorem;
generally∫∫∫

V
∇ · FdV =

∮
S(V)

F · N̂dS. (69)

The PDE is written in a form which can be solved for a given cell. The
domain is discretized onto cells or finite volumes, which for every volume
the governing equations are solved. The resulting system of equations usually
involves fluxes of the conserved variables.

Figure 37: Fluid Volume Method [36].
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The advantage this method holds over FDM is that it does not require the use
of structural grids. Also the effort to convert the given mesh in to a structured
numerical grid internally is avoided [19]. The approximate solution is discrete,
but the variables are typically placed at cell centers rather than nodal points
as in FDM and FEM. However, there also exists face-centered finite volume
methods. In any case, the values of field variables at non-storage locations (e.g.
vertices) are obtained using interpolation.

7.5 parameters

In this section some parameters which is of importance to the FSI simulations
will be presented. First off the CFL number which is a condition named after
Courant-Friederichs-Lewy is of importance when it comes to transient prob-
lems [33]. Other parameters such as the added mass matrix plays a significant
role on slender structures exposed to incompressible flow where the mass ratio
between the two is low.

7.5.1 CFL number

Usually in CFD the CFL-number gives the relationship between how time is
resolved compared to the spatial resolution. A CFL number larger than one
implies that a quantity are convected through one cell faster than one time
step can capture as shown in the figure [Figure 38]. The CFL number show
the ratio between how far the signal travels and the length of one cell. For
first order schemes the equations only consider neighboring cells. If the signal
travels further than the neighbour this might lead to instability. Therefore the
CFL condition is usually set to be less than one in order to properly capture
the transient behaviour. Violating the condition may lead to instability and the
simulation might blow up.

Figure 38: CFL-number

The same applies to FSI, where there also has been defined a time-interval
where the computations are conditionally stable [15]. This interval results from
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an upper boundary from the Courant-Friederichs-Lewy condition and a lower
boundary, β, resulting from the highest eigenvalue of the added mass matrix.

β < ∆t < CFL < 1.0.

A CFL number less than 1.0 is often set by default as a criteria by the solver.
For instance in Abaqus CFD. This can also be adjusted and removed as a
priority check before simulations.

7.5.2 Artificial added mass

The artificial added mass effect is an effect occurring in the loosely coupled
scheme [15]. The added mass effect causes inaccuracy of traction forces such
that the deformation of the structure is not done accurately. The effect happens
when similar densities between fluid and solid is fully coupled. The name
originates from that the fluid closest to the coupling interface will act as extra
mass on the structure, increasing its inertia. The structural solver does not
consider the inertia from the fluid mass which interfere with the structure.
This again leads to instabilities. Using a second order staggered scheme this
problem is avoided due to the scheme proving unconditionally stable even at
low mass ratios.

µ =
ρs

ρf
(70)

Strong coupled algorithms are also affected by the density ratio. An in-
creased number of iterations in each time step are needed to achieve conver-
gence of forces along the interface. The effect occurs for instance in blood vessel
FSI simulations where the density of blood and the vessel walls are similar. In
the case of Flow Induced Oscillations of a Flexible Beam this might become a prob-
lem. However, for the case of OSA depending on the material definitions, this
will not be a considerable problem [6].

7.6 possible software

There exists a wide range of software for modelling fluid flow and structural
analysis. Most commercial software such as Abaqus and ANSYS, are not likely
to give out specific information about how the finer details. However, some
solver like COMSOL often states their intentions to build an all out FEM based
solver [23]. On the other hand, open source CFD software such as openFOAM
is free to use and can even be modified by changing solver information. Access
is given to key-files and the user may also modify source code in the built-in
solvers themselves.

Abaqus, ANSYS and also COMSOL have embedded FSI solvers. ANSYS for
example, may use its structural solver ANSYS Mechanical coupled with its
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CFD solver ANSYS Fluent to solve a FSI problem. It is also quite possible to
couple two different commercial or open source solvers, like Abaqus and open-
FOAM. Thus gaining some of the best aspects within two worlds of structural
analysis and fluid flow.

The particular solvers use different solving techniques for FSI. In this matter
the term black box applies. Both Abaqus and ANSYS claims to be able to solve
for non-linear structural analysis and fluid flow. Figuring out the specifics of
this is as mentioned not an easy task.

7.6.1 COMSOL

The software COMSOL uses as stated the FEM approach on both solid and
fluid domains [23]. Thus it is suited for strong coupling. This however, imply
that COMSOL is not a preferred choice for turbulent or transient flow. Which
may be the case for OSA. In addition questions arise about the solid solvers
ability to solve for nonlinear FEM.

7.6.2 Abaqus CAE & CFD

Most likely Abaqus uses a partitioned approach when solving FSI problems.
The solvers Abaqus/CFD and Abaqus/CAE can be coupled to iterate part-
solutions to convergence. The developers claim that these can provide a broad
range of non-linear and coupled fluid-structural problems [45]. The solvers
are said to be capable of solving laminar and turbulent flow with a deforming
mesh using the ALE method discussed in [Section 3.4]. It is further claimed
that FSI problems where the boundary motion is relatively independent of the
fluid flow may be solved. An approach using these tools seems like a efficient
and perhaps easier method for the case of OSA than combining other software
for an partitioned approach.

7.6.3 ANSYS Fluent

The solver Fluent developed by ANSYS Inc. has a decent reputation in the
computational fluid dynamics community. As stated on their web page:

ANSYS Fluent is the most powerful CFD software tool available and have well-
validated physical modeling capabilities to deliver fast, accurate results across the
widest range of CFD and multiphysics applications. - ANSYS Inc., 2017 [21].

ANSYS Fluent utilizes the finite volume. Therefore it often proves more sta-
ble, since unstructured meshes are easier implemented. One advantage due to
its popularity is that it often supports coupling through third party coupling
codes for FSI applications.
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7.6.4 Alternative software openFOAM & Abaqus CEL

The open source CFD solver OpenFOAM is less likely qualified to solve the
range of problems that other commercial solvers can solve. However, the fact
that it is free to use and can be modified has its advantages. OpenFOAM
has lately become popular. It is widely used by students and is continuously
increasing its capability of solving a broader range of problems. For instance
it has been noted that multiphase flow and transient flow can be solved using
customized solvers from the software [28].

Figure 39: Volume of Fluid.

For multiphase problems OpenFOAM is capable of utilizing the volume of
fluid (VOF) method introduced by Hirt and Nichols [16]. The method belongs
to the class of Eulerian advective schemes, a numerical recipe to track the shape
and position of the surface. For the problem of OSA multiphase do not apply.
However, this method is also used by Abaqus’s Coupled Eulerian-Lagrangian
method (CEL), which can be used to simulate both 2D and 3D FSI problems
in Abaqus CAE [45]. The exact process of which is unfortunately not a part
of this report. In short, the Eulerian region is initialized by a volume fraction
which represents the fluid distribution. The Volume of Fluid method is based
on the idea of a fraction function α on the form:

∂α

∂t
+u · ∇α = 0 (71)

The discontinuous phase boundary is replaced with a soft boundary gov-
erned by the phase fraction, α. Thus the interface is tracked indirectly through
the phase fraction and not explicitly. A sufficient resolution in the boundary
zones is a requirement for accurate boundary tracking. This can be done by
increasing the mesh resolution which gives sharper boundary. Finer meshing
often implies costly computational effort. If solution accuracy is to be achieved
the Abaqus CEL method often requires a longer time to reach a solution.
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7.6.5 MpCCI

Developed at the Fraunhofer Institute SCAI the application MpCCI is a third
party coupling code designed to couple numerous supported simulation codes
[37].

Figure 40: Using MpCCI. Overview of the simulation process [37].

The solvers to couple with MpCCI uses their own respective methods and
interfaces. Thus experience with the specific solvers is an advantage. This is
stated in the manual as [37]:

The application of MpCCI requires a good knowledge of the employed simulation
codes. Therefore, it is recommended to use those codes for a co-simulation the user has
already some experience with.

The general simulation process is show in [Figure 40]. The model files A and
B used for simulation are input files from the specific solvers to couple. This
can for instance be Abaqus CAE and ANSYS Fluent. The files can be created
and modified through the Abaqus and Fluent interface or modified directly by
changing the content of the files. Licence to the specific solvers to couple are
required.



Part III

S I M U L AT I O N S

In part III design and simulation of the benchmark Flow Induced
Oscillations of a Flexible Beam introduced by Wall (1999) will be at-
tempted. Comparison of the different codes used and discussion of
the findings are presented to further gain advantage towards mod-
elling the case of OSA. A perspective from a critical point of view
given the different results is upheld and concluding remarks are
drawn.
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8.1 introduction

In order to understand the how to and procedures of different coupling ap-
proaches the codes has to be used for simulations. The 2D FSI benchmark
producing von Kármán vortex streets was chosen as the comparative study
used and simulated in the different solvers. The specific solvers selected to run
this benchmark is the embedded COMSOL solver, both monolithic and segre-
gated approach, Abaqus embedded co-simulation and Abaqus CAE coupled
with Ansys Fluent via the third party coupling code MpCCI.

Figure 41: Velocity field after 2.6 seconds. Comsol’s fully coupled approach.

8.1.1 Rig specifications

Two computer setups where used for the numerical simulations. The first, a
fairly outdated stationary rig, uses an Intel(R) Core(TM) i5-4440 CPU with
clock rate 3.10 GHz and running a 64-bit operative system. The installed mem-
ory is 8.0 GB RAM. This rig was used for running the embedded FSI solvers
of COMSOL and Abaqus.

The other rig, a laptop, was mainly used because of issues with server licens-
ing when running MpCCI on the first rig. Therefore the only viable option was
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to opt for a second rig to run MpCCI with Abaqus Fluent coupling. The sec-
ond rig has a Intel(R) Core(TM) i7-3520M CPU with a clock rate of 2.90 GHz.
It has 2 Cores and 4 logical processors. This computer also has installed 8.0 GB
RAM and is running a 64-bit operative system.

8.2 benchmark modelling

The Von Karman benchmark is called by several names. Some refer to it as
flow induced oscillations of a flexible beam or flow past a thin elastic beam attached to
a fixed rigid block, which are more specific descriptions. The test problem was
proposed in Wall (1999) to study the accuracy and robustness of FSI methods
[6].

Figure 42: Problem setup [6].

The problem setup is pictured in [Figure 42]. The specifics of this case are
listed below.

• Flow is driven by a uniform inflow of 0.513
[
m
s

]
.

• Fluid density is 1.18
[
g
cm3

]
.

• Dynamic viscosity is 1.82× 10−5
[
Pa
s

]
.

• The density of the beam is 100
[
kg
m3

]
.

• The Young’s modulus of the beam is 2.5× 105 [Pa].
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• The poisson’s ratio is 0.35.

• The Reynolds number is 333.

The mesh is set to be allowed to move freely in the fluid domain except at
the inflow and on the rigid block. Here the mesh is fixed. It is also constrained
at the lateral boundaries and outflow boundary to not move in the normal
direction. In this benchmark the numerical method of ALE is employed. The
boundary conditions used are listed below.

• For the fluid: imposed velocity at inlet, slip conditions for the upper and
lower wall and a zero pressure at the outlet.

• For the solid: imposed null displacement at the left end.

• For the interface: kinematic continuity (vs = vf) and dynamic equilibrium
(pf = σsn) are imposed for both strong and weak coupling.

8.2.1 Structure properties

The solid beam is to be assumed elastic and compressible. From [Chapter 4]
the governing equations describing the structure in 2D is given by

ρ

(
∂vs

∂t
+ (vs ·∇)vs

)
=∇ ·σs, (72)

or in the Lagrangian perspective

ρs
∂2d

∂t2
=∇ · (JσsF−T ). (73)

Here the deformation gradient tensor F is F = I+∇d. The Cauchy stress
tensor describes the material.

8.2.2 Fluid properties

The flow is considered incompressible ρ = constant, and there is no body forces
present b = 0 [6]. The 2D version of the Navier Stokes equations is

∂ρ

∂t
+∇ · ρvf = 0

ρ

(
∂vf
∂t

+ (vf ·∇)vf

)
= ρb−∇p+∇σdev. (74)

Thus considering the flow assumptions this becomes
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∇ · vf = 0

ρ

(
∂vf
∂t

+ (vf ·∇)vf

)
= −∇p+ µ∇2vf. (75)

The variables of interest are the velocity vf and pressure p.

8.3 comsol

The benchmark was first set up in COMSOL. Both the fully coupled and the
segregated solver are used. The total simulation time is set to 5 seconds to get
perspective both at initial movement and when possibly reaching more or less
stable oscillations. Triangular mesh elements are used in both models.

Figure 43: Velocity and pressure plots over time. Fully coupled solver.

Different plots i.e tip displacement, velocity, pressure and converging plots
are shown to get a clear view of the simulations. In addition a single fluid
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element is monitored in both simulations. The element is chosen at the upper
side and downstream of the tip’s initial placement at exact coordinates (110, 80)
[Figure 44].

Figure 44: Selected fluid element.

8.3.1 Fully coupled solver

Figure 45: Mesh displacement after 2.0 seconds.
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The first attempt at the problem using COMSOL was with the fully coupled
solver. The Jacobian is updated once per time step. Geometric nonlinearity is
included and Comsol’s constant newton scheme for nonlinear methods is used.
A dampening factor of 1.0 is used.

(a) Tip displacement.

(b) Lift and drag.

Figure 46: Fully coupled approach.
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The exact detail of COMSOL’s nonlinear method is unknown. The scheme
causes the solver to make larger updates in an aggressive manner to speed
up the solution progress [23]. It should be noted that solving for non-linearity
results in significantly longer solution time. The solution time in this case with
a finer mesh consisting of 9458 mesh elements and 338 boundary elements was
1 hour 35 minutes and 41 seconds.

As seen in upper graph in the [Figure 46], there is no movement to the tip
before 0.5 seconds. The inlet velocity follows a ramp function shown by the
red line going from zero to full velocity at the start up. This was implemented
as a safety precaution to get the simulation to run past the fluctuations at
the beginning. Which would become greater at higher velocities. Thus a small
delayed response in the simulation is seen.

8.3.2 Segregated solver

After the fully coupled solver, the problem was set up in COMSOL’s segre-
gated solver. The segregated solver uses two main steps, one for each material
involved. The first segregated step is in this case for the solid displacement
field which has spatial coordinates as variable. The second step is for the fluid
velocity field, which uses the pressure as variable. The maximum number of
iterations allowed within each step is set to 20, which is the default. As in the
fully coupled solver the Jacobian is updated once per time step, and the solvers
non-linear method is set to constant newton with a dampening factor of 0.6. In
this case solution time with mesh consisting of 18800 mesh elements and 338

boundary elements was 3 hours 20 minutes and 48 seconds.
As can be seen in the figure for tip displacement [Figure 47], the oscillations

for the segregated approach reach close to about 6.5mm amplitude before 5
seconds pass. Just like the fully coupled approach the inlet velocity in the seg-
regated approach follows a small ramp function at the start of the simulation,
seen by the red line.
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(a) Tip displacement.

(b) Lift and drag.

Figure 47: Segregated approach.

The results for the selected fluid element downstream of the tip for both the
fully coupled and the segregated approach is given side by side in [Figure 48].
Also in these plots differences can be seen between the two simulations. The
different mesh used in the two simulation is surely responsible to some degree,
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but this alone is unlikely to explain the difference seen. Another reason might
be a less strict convergence criteria in one of the two.

(a) Element velocity. (b) Element velocity.

(c) Element pressure. (d) Element pressure.

(e) Total kinetic energy. (f) Total kinetic energy.

Figure 48: Comparison of the selected fluid element. Fully coupled to the left. Segre-
gated solver to the right.
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Both the fully coupled and segregated solver should reach the same results
as long as there is no difference in the model description, i.e mesh or other
criteria. However, the default convergence criteria are sometimes too loose.
The convergence tolerances with both solvers should be tightened to make sure
that they reach the same solution. The same solution should be reached expect
when the simulation has no unique solution. This seems to be an issue between
the two simulations as they vary in the results produced. The convergence
plots are given in [Figure 49].

(a) Residual error in the segregated approach.

(b) Fully coupled approach. (c) Segregated approach.

Figure 49: Residual errors and reciprocal of step size.

As can be seen the residual error for both the fluid and structure segregated
steps is quite high. Thus the criteria should be tightened further. The reciprocal
of step size is one divided with the actual step size, [ 1∆t ]. COMSOL has the
ability to change the step size under simulation [23]. This is done by default
if not checked, like in this case. If the convergence criteria are being held with
good margin the step size is increased by the solver. If however the margin
is low, COMSOL reduces the step time such that the margin to the criteria is
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held. Thus a large reciprocal of step size is deemed to result in poor solution
accuracy.

8.4 abaqus

(a) Whole fluid mesh.

(b) Whole structure mesh. (c) Obstacle in fluid mesh.

Figure 50: Abaqus 3D mesh one element thick.

An attempt to simulate the benchmark was also made with the embedded
Abaqus FSI solver. The FSI partition in Abaqus is done by first creating two
models. One for the fluid domain and another for the solid, Abaqus CFD and
CAE models respectively. Solving by the embedded FSI solver of Abaqus is
called co-simulation. Unfortunately it is not possible to do a standard 2D co-
simulation in Abaqus. This is because at this time the Abaqus CFD solver only
supports 3D modelling. However, by choosing 3D and setting the depth of
the mesh cell equal to one element thick (typical in the z-direction) it could
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perhaps be able to perform like the 2D case. This however is not confirmed by
the Abaqus developers.

(a) Velocity at 2.075 seconds. (b) Pressure at 2.075 seconds.

(c) Velocity at 3.425 seconds. (d) Pressure at 3.425 seconds.

(e) Velocity at 4.5 seconds. (f) Pressures at 4.5 seconds.

Figure 51: Velocity and pressure plots over time. Abaqus embedded 3D solver.

The velocity and pressure plots for the benchmark simulated in Abaqus
are shown in [Figure 51]. The Abaqus version used is v. 6.12 and licence are
provided to students by NTNU.

A fairly straight forward mesh is used. The fluid mesh consists of 28578
HEX8 elements and the solid mesh consists of 240 C3DR8 elements. The C3DR8
is a general purpose eight node linear brick element with reduced integration
to one point [45]. The open square seen in the fluid mesh in [Figure 50] is
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imposed a no-slip condition and has no flow moving through it, such that it
is considered a fixed solid block from the fluid perspective. The solid flag is
modeled as a simple beam which is constrained at the left end where it is in
contact with the open square. Thus meshing the fixed solid square is avoided
and less elements needed. The intersection between the two domains are set
to where the solid flag mesh is in contact with the surrounding fluid mesh.

It should be noted that simulating in 3D, even if only one element thick, will
cost more than the 2D case due to using elements with higher node count. It
may also be beneficial to consider the computational cost which arise when
simulating a finer mesh in large areas of the CFD model. To make it easier for
the two models to interact, it is advised to use about equal grid size of the mod-
els. However, solvers today often has the ability to handle non-conformities in
meshes [37]. Thus this should not be a considerable problem.

Figure 52: Vertical tip movement.

A dynamic explicit solver was chosen for the structural part. The FSI is done
by co-simulation, which is a step-wise solving of the models. Based on the
selected time step, the CFD solver will solve for the fluid in lesser steps until
the coupling step is reached. When the coupling step is reached the Abaqus
CAE solver solves for the structure. In this simulation the CFD time step was
fixed to a low step size, 0.0005 seconds. The structural explicit solver would
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solve at 100 times that, every 0.05 seconds. The simulation continues in this
segregated manner until a solution is reached. This is unlike when using the
dynamic implicit solver for the structure, where the time step of one model
becomes strictly dependent on the other. If the CFD model is dependent on a
time step far lesser then the solid model solved by FEM would appreciate, the
simulation might crash.

With a total run time of approximately 6 hours and 30 minutes. The sim-
ulation reach what seems to be more or less stable vertical tip displacement
oscillations in about 4 seconds [Figure 52].

(a) Pressure plot. (b) Velocity plot.

Figure 53: Node point pressure and velocity.

As seen in [Figure 52], the later displacements seems to be in agreement
with expected results. However, it is obvious that the mesh in this simulation
could be better tuned around the structure and coarser towards the inlet, outlet
and lateral boundaries. Less elements on the whole could make it possible to
increase the step size, gain performance during simulation, reaching a solution
faster and with better accuracy. The structure mesh could be divided into more
elements, enabling better accuracy of the motion.

The plots given in [Figure 53] shows the pressure and velocity at the unique
nodal point chosen downstream just like in the case of the COMSOL simu-
lations. These plots also seems to be congruent with earlier simulations. The
pressure oscillates more initially, but settles as expected oscillating around zero
as time passes.
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8.5 abaqus coupled with fluent

To expand the horizon and find possible approaches to solving FSI problems a
coupling of Abaqus with Fluent was attempted. This was done with the use of
the coupling code MpCCI by Fraunhofer SCAI. The main goal by this approach
was to find out if the usage of MpCCI was in all doable and creditable.

Fortunately the MpCCI software has a manual for details and instructions
on usage [37]. The manual also contains some tutorials in 2D and 3D which can
be run if licences to the specific solvers to couple are held. A similar problem
tutorial of flow induced oscillations of a flexible beam was actually found in
this manual. Therefore the only challenge was to redefine the simulation and
indeed run it through Abaqus coupled with Fluent. This however proved to
be a cumbersome task. Mainly because of server license issues with Abaqus
at NTNU, but also because the input files from the tutorial seemed outdated.
Thus modifications had to be made to the coupling and input files.

Figure 54: Vertical tip movement.

After adjustments the oscillations happens frequently. This is coherent to the
other simulations done by the embedded solvers of COMSOL and Abaqus. The
run time for this simulation was fairly quick, about 20 minutes. The vertical
tip movement can be seen in [Figure 54].

The fluctuations created by the low solid density, Young’s modulus and high
fluid inlet velocity can be troublesome to handle for the solvers. It can there-
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fore be important that the fluid mesh is predisposed to foresee large movement
and that the overall quality is sufficient. In addition the time step should be
minimal. If not the possibility for negative volumes or inverted mesh cells are
greater. The simulation would only run at one specific time step of 0.02. The
exact reason for this is not known. The coupling had trouble following the
fluctuations at the beginning. By raising the time step it is possible these fluc-
tuations were not accounted for properly, thus giving the coupled solvers the
ability to continue. If using an inappropriate time step the solution will often
either produce ill-shaped results or diverge to the extent that the convergence
criteria ends the simulation.

Figure 55: MpCCI interface.

The MpCCI GUI (background) and the MpCCI Monitor (foreground) inter-
face is shown in [Figure 55]. Even though the simulations were not managed
to run to an desirable extent, the main goal of this specific simulation was
reached. The coupling code MpCCI proves to be usable in coupling different
solvers. However, to which extent is not known for sure. Due to less experience
with the usage of MpCCI and external coupling codes in general at NTNU,
this might be a step towards gaining experience with just that. In retrospect
the task seemed much more cumbersome than it actually was, which tend to
be common when applying unknown methods of simulation.

8.6 comparing results

A comparison of the vertical tip displacement from the simulations are given
in [Figure 56]. The plot scales and color are matched to enable a clearer view.
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(a) COMSOL fully coupled approach. (b) COMSOL segregated approach.

(c) Abaqus 3D embedded solver. (d) Abaqus and Fluent via MpCCI.

(e) Data from Froehle et al., 2015 [14].

Figure 56: Comparison of tip movement.
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solver number of elements solution time

COMSOL fully coupled 9796 1 h 35 min 41 s
COMSOL segregated 19307 3 hours 20 min 48 s

Abaqus embedded 28578 6 h 30 min
MpCCI coupling 9388 20 min

Table 2: Number of elements and solution time by the respective solvers.

The number of elements used and the respective solution time for each
solver are shown in [Table 2]. The number of elements used are fairly high,
especially in the 3D embedded Abaqus simulation. This simulation required
a finer mesh around the tip to be able to run. To produce a more defined von
Kármán vortex street it is also convenient that the overall fluid mesh is in finer
detail.

Distinct differences can be seen in the vertical tip movement plots. In all
simulations except the two done in COMSOL the displacement oscillations
seems to increase as time goes, up to a certain point. The 3D embedded solver
seems to reach and fit the more stable oscillations as expected in comparison
to the data from Froehle et al., 2015 [14]. The displacement plots from COMSOL
indicates either not properly defined simulations (i.e mesh, convergence or
material properties) or the solver is unable to solve for non-linear behavior in
the extent that Abaqus can. The simulation done with MpCCI is most likely
not on point due to the inappropriate step size used.

The non-matching results can occur due to numerous reasons. Although per-
haps the most likely is modest experience with almost all of the solvers used.
The mesh of the fluid and structural domains are set up differently in the
solvers. Thus the mesh and the number of elements used is not identical from
one simulation to the next. In addition different solving parameters used might
not have been considered thoroughly. The probability of not using a correct
material description, boundary condition or having managed to not properly
define geometry is present. When setting up simulations by uncharted meth-
ods such sources of error may occur. Small differences in the results are still
to be expected, due to the solvers using different coupling approaches and de-
scribing domains based on different numerical methods, specifically the FEM
and FVM. In addition some of the solvers are likely more capable at handling
nonlinear material behaviour than others.

Plots of the velocity and pressure at the selected point downstream of the tip
for some of the different solvers are given in [Figure 59]. Although differences
can be seen across the simulations in the plots, there are also similarities in the
velocity and pressure response.
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(a) Node velocity. (b) Node pressure.

Figure 57: Comparison of the selected node. COMSOL fully coupled approach.

(a) Node velocity. (b) Node pressure.

Figure 58: Comparison of the selected node. COMSOL segregated approach.

(a) Node velocity. (b) Node pressure.

Figure 59: Comparison of the selected node. Abaqus embedded solver.
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A useful way of displaying quality of mesh discretization is by running the
simulations with different mesh and time step sizes. Storing these results the
tip motion can be plotted in the same figure for the different used number of
elements and step sizes. Unfortunately due to the number of simulations this
was not done. Only the time step which first proved appropriate to run each
simulation was used and it’s results kept. Thus the information acquired by
this approach on the meshing feasibility is modest. In retrospect, not consider-
ing this was surely a mistake.

To get some perspective on the difficulty and issues often encountered when
simulating FSI problems some of the results are seen in context of the findings
of Bavo AM et al., 2016 [5].

Figure 60: Simulating flexible leaflet by ALE and Eulerian technique [5].

The process of FSI benchmarking can be a cumbersome process, not unlikely
to run into convergence failure due to inappropriate discretization and step
size, misrepresentative initial and boundary conditions, equilibrium equations
not solved properly and all of the issues mentioned above. Most of which was
touched by the simulations done in this report.

The performance of the benchmark simulations done in this report seems
particular limited by mesh motion and deformation of the fluid domain. Us-
ing the ALE method might not be adequate in describing large deformations.
It is also important to note that the choice of solver will influence the results.
As partly mentioned in [Chapter 3] there are some typical issues considering
the ALE method. When both structural and fluid grid deforms, it generally
has higher computational cost compared to for instance the immersed bound-
ary method (IB) [5]. Thus for problems where conforming mesh are used and
the structural domain undergoes large displacements, issues often appear. In
addition, a very refined fluid mesh is required in the area of movement. This
can be seen in [Figure 60]. As stated by Bavo AM et al., 2016 [5]:
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"Theoretically the ALE technique would be preferable when the interface is sharply
defined, and the variables are calculated directly on the surface and not obtained from
the interpolation, as in the IB methods."

(a) Number of elements used.

(b) Time.

Figure 61: Comparison of computational time by ALE and IB methods [5].

Admitting the accuracy potentially gained from the ALE method, it might
not be suitable for simulating larger 3D problems where high structural dis-
placements take place. If the fluid grid is under severe deformation in a limited
amount of time the remeshing and smoothing algorithms to preserve quality
for the domain might not be sufficient to ensure convergence. In such cases
the simulations are commonly performed with IB based methods, which al-
lows for faster solutions [Figure 61], no remeshing and good handling of the
fluid grid deformation [5]. In spite of these suggestions the ALE method is
further used in this report to perform the 2D and 3D case of OSA [Chapter 9].
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PA L AT E M O D E L I N G

9.1 introduction

To set up simulations for the case of OSA a simple model was made based on
the geometry described by M.R. Rasani et al., 2011 [35]. The geometry repre-
sents a channel domain shown in [Figure 62]. The channel consists of a rigid
plate connected to a flexible plate representing the hard palate and soft palate
respectively. In addition a obstruction to hinder flow through is introduced. An
ALE formulation is used to account for the solid mesh motion that follows the
fluid deformation. The flow in this case can be characterized by the unsteady
Navier Stokes and continuity equation given in [Chapter 5].

Figure 62: Idealized model of oral and nasal passage through upper airway [35].

The obstruction is representing the tongue moving back into the throat en-
abling the collapse of the pharynx, as explained in [Section 1.1]. This is mod-
eled as a circular elastic plate which is merged into the channel. In the 2D case
both the obstruction and the flexible plate will be subject to deformation. Thus
the interface between the fluid and the structures are found at two separate
places. The obstruction and soft palate plate are simultaneously interacting
with the flow in between. A 2D case is first simulated in COMSOL. Then a 3D
case is simulated by the embedded FSI solver Abaqus.

89
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9.2 the model

The changes in pressure in the channel and the deformation of the elastic
plates is monitored when fluid flow is sent through. For simplicity both the
obstruction plate and the soft palate plate is considered homogeneous, elastic
and isotropic. Thus the properties of both the plates have a constant Young’s
modulus, E and Poisson ratio, ν. No turbulence model (k-ε) is used to simulate
the flow. This is to keep the simulation as simple as possible. Displacements
of the midpoint of the upper plate representing the tongue will be monitored
as well as the tip of the soft palate plate. Changes in velocity and lift and drag
will also be monitored trough the simulation.

The material properties used for the fluid and the solid was set to represent
air and the obstruction and soft palate to that of muscle tissue, respectively. For
simplicity, the obstruction representing the tongue was initially considered to
have density equal to that of water [25]. However, this was changed in the 2D
case to be able to better understand special behaviours of the simulation. The
material properties used are given in [Table 3].

solid ρs [
Kg
m3

] E[Pa] ν

Tongue & soft palate 125 1.415 ×105 0.33

fluid ρf [
Kg
m3

] µ[Pa · s]

Air 1.185 - 1.982 ×10−5

Table 3: Material properties in 2D palate model.

Figure 63: 2D mesh displacement in COMSOL after 0.15 seconds.
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9.3 initial and boundary conditions

The inlet condition for the flow was set to velocity of 1.2
[
m
s

]
. At the outlet the

pressure is set to zero. In the solid model walls is constrained to be rigid and
with a no-slip condition. Only movement in the fluid and in the elastic plates
is to be possible. However, initially to keep the simulations simple no force or
pressure is applied to the elastic plate from above (which if necessary could
act as the weight of the tongue). The mid flexible plate is fixed at the left end
where it is in contact with the fixed plate and the elastic obstruction is fixed at
the left and right end where it is in contact with the channel walls, and free to
move otherwise. The fluid-structure interface is imposed to where the air is in
contact with the obstruction and the soft palate.

The 3d case follows the much of the same initial and boundary conditions
as the 2D case. However, in this simulation the obstruction is rigid, not able
to move. Thus only the soft palate is able to move when interacting with the
fluid.

9.4 2d simulation

Figure 64: Developed velocity in simple 2D model in COMSOL.

A comparison between two simulations are done. In the second model the
obstacle is set at a lower height than in the first, measured from the lowest
point on the obstruction to the channel bottom wall. Thus representing the
tongue at two initial placements.

The first and second model are given the names; open model and narrow model,
respectively [Table 4]. The thickness of the flexible obstruction and the flexible
tip is 0.6 mm and 0.2 mm, in both models respectively. Like in the simulation
of the Flow Induced Oscillations of a Flexible Beam a fluid element is selected for
pressure comparison in the channel, positioned under the obstruction in both
models at coordinate (64, 4). This is shown in [Figure 67]. The simulation of
the narrow model requires a finer mesh due to the narrowing of the channel
resulting in larger movement of the flexible structures. Both simulations is set
to run up to a end time of 0.2 second, at constant time step size ∆t of 0.001.
Both simulations reach a solution in less than 15 minutes.
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open model Number of elements Height [mm]

18989 8

narrow model Number of elements Height [mm]

36122 6

Table 4: Specifics of 2D models.

The flexible plate representing the soft palate is moving down to enable
the initially constricted flow on it’s upper side [Figure 65]. The obstruction
is slightly pushed upwards by the flow, then drawn downwards due to the
pressure drop.

(a) Pressure distribution. Open model. (b) Pressure distribution. Narrow model.

(c) Pressure at single point in flow. Open
model

(d) Pressure at single point in flow. Nar-
row model.

Figure 65: 2D simulation pressure.
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(a) Vertical displacement of obstruction
midpoint. Open model.

(b) Vertical displacement of obstruction
midpoint. Narrow model.

(c) Vertical displacement of flexible tip.
Open model.

(d) Vertical displacement of flexible tip.
Narrow model.

Figure 66: 2D simulation displacements.

The pressure in the channel distributes as first expected. Considering the
material definitions used in the simulations the vertical displacement of the
obstruction is noteworthy [Figure 66]. The low pressure is attracting down-
wards both the obstruction and the flexible tip in a manner of suction when air
flows into the channel. Thus narrowing the channel further and hindering flow
through. The partial collapse of the channel is reassembling the phenomena of
flow rate limitations [25]. Hence the transmural pressure is increased.
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Figure 67: Selected fluid element (red), obstruction midpoint (blue) and flexible tip
(green). Axes in [mm].

9.5 3d simulation

After simulating the 2D case a 3D simulation was done by the embedded FSI
solver in Abaqus. To further experiment with the model some of the parame-
ters where changed. The end time for this simulation is set to 1.0 seconds.

Figure 68: 3D Palate model in Abaqus. Cut view (symmetry about the z-axis).

In this case the density of the soft palate is set close to that of water [Table 5].
The 3D simulation show much of the same velocity response as the 2D simula-
tions. In contrast to the 2D case the obstructive plate is set to rigid and is not
subject to deformation. As seen in [Figure 68] the flow reaches higher velocity
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closer to the center of the channel. This is due to the no-slip conditions at the
interior walls and the palate.

solid ρs [
Kg
m3

] E[Pa] ν

Soft palate 1040 1.415 ×105 0.33

fluid ρf [
Kg
m3

] µ[Pa · s]

Air 1.185 - 1.982 ×10−5

Table 5: Material properties in 3D palate model.

At one point the 3D simulation in Abaqus encountered a specific error in the
CFD solver. Due to relative high dynamic viscosity resulting in low Reynolds
numbers the solver had trouble converging the momentum equation, specified
in [Section 5.4]. This particularly seems to be an issue when simulating for
high flow velocities. Therefore additional iterations on the affected equilibrium
equations are needed to be able to handle this issue. To avoid changing the
properties and maintain material integrity the inlet flow velocity was reduced
to 0.6

[
m
s

]
.

Figure 69: Vertical tip displacement. 3D Palate model in Abaqus.
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Some interesting results where produced by the 3D simulation [Figure 69].
Like in the 2D case the flexible tip continues to move downward, but devel-
ops a oscillating pattern closer to 0.4 second gaining in amplitude. Further
simulations and closer investigation of this was not done. However, the pro-
duced result indicates that due to the obstruction being rigid and not moving,
small vortexes and local pressure changes are produced. Thus resulting in tip
oscillations.

9.6 discussion

The 2D case gives a simple and coarse understanding of the phenomena of
OSA. Yet it provides insight to the main issue with the disease. The low pres-
sure created when breathing in due to the blockage causes the pharynx to
collapse. Thus methods to hinder this are attractive. Some appliances has al-
ready been proposed in [Section 1.1.3]. However, finding new and better ways
of dealing with this problem is of interest. Helping to find these ways describ-
ing the disease by FSI seems to be of great value.

Being the more experimental simulation, the 3D case can provide perspec-
tive and touches on the subject dealing with instability of the soft palate. To
which degree this resembles reasonable behaviour is not studied further. The
specific case is not the focus of this thesis. In addition comparative data is
lacking for this particular setup.

Simulation by FSI has the capability to give insights and understanding of
the physics defining the problem by parts and on the whole. Ultimately a more
detailed description is desirable in the extent in solving close to the realistic
case. To do this a model made from a CT scan of the upper airway can be
analyzed by applications of FSI. This however is a whole new scenario which
can prove to be a challenge. To tackle a problem description of this scale the
different methods discussed in [Section 8.6] might be of helpful.

9.6.1 Initial and boundary conditions

The inlet and boundary conditions presumed in the simulations done in this
report can be considered to provide a less descriptive solution of the problem.
Thus the results has to be investigated thoroughly and made sense of in light
of only reassembling the practical problem to a certain degree. By simplifying
the problem description and isolating the whole into lesser problems insight to
finer details can be gained. It is also often considered beneficial to go about the
simulation of the problem by increasing difficulty. This enables consideration
of important aspects of the problem and gives room for experimenting. Which
is not easy in greater, complex and time consuming simulations.

As mentioned in [Section 1.3] defining proper initial and boundary condi-
tions for this problem can be essential in producing reliable results. Describing
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complex problems with simple models can be troublesome in the sense that
imposed conditions has difficulty representing the real system. In the case
of OSA a simple model like the one simulated in this report is for instance
not expected to account for the behaviour of the flow prior to the oropharynx
and further downstream into the laryngopharynx. Thus the more realistic flow
characteristics are not likely accounted for. Therefore from a CFD point of view,
the placement and specifics of considered initial and boundary conditions is
of importance. Modeling a larger and more defined case accounting for longer
sections of the upper airway, and setting the boundary conditions at a distance
can be an option to describe better flow characteristics. For instance turbulent
flow, which in addition to being important in describing airway resistance, re-
sults in more accurate description of pressure distributions and it’s impact on
the structural behaviour by FSI.
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C O N C L U S I O N A N D P E R S P E C T I V E S

10.1 introduction

The objective of this master thesis was to compare and study the feasibility of
selected solvers capable of solving FSI. This was done in light of simulating
the problem of OSA, which yet proves challenging in the fields of medicine
and FSI [25].

From the findings and evaluations made throughout this report some conclu-
sions and perspectives can be stated concerning the feasibility of the different
software and their applications. Primarily it is of importance that the solver
is accurate, robust and can solve the problem by the material models it is as-
signed to an adequately degree in a limited amount of time. It is also beneficial
that the solver is practical. The user interface capability and procedure of these
tools vary greatly.

10.2 conclusion

Computational FSI analysis proves to be a challenging branch of multiphysics.
The common goal in simulating different scenarios is to get a physical mean-
ingful and accurate solution in a a reasonable amount of time. However, the
process of simulation often has drawbacks such as mesh discretization, cou-
pling and convergence issues, in addition to trouble with the solvers. The for-
mer also seems to increase with the scale of the simulation. Hence it can be a
time consuming process.

The choice of dicretization and coupling of the domains are important. The
ALE method is able to produce accurate results, but the method might not
be suited for problems containing large structural displacements. Using this
method for larger and more complex problems are perhaps not adequate to
account for the grid deformation. This is also stated by Bavo AM et al., 2016 [5].

The ways to simulate the problem of OSA are numerous. However, for dif-
ferent problems descriptions there clearly are combinations of tools which are
better than others. To achieve a meaningful solution the solver must be able to
proper model and mesh the scenario. Reaching a solution with reasonable accu-
racy is preferable without a time consuming simulation. Also, it should be able
to solve for nonlinear materials, transient and incompressible flow. Turbulent
models may also become beneficial in describing the problem. The importance
of having a adequate problem description should not be underestimated.

99
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A simple model is a good stepping stone for simulating more challenging
problems, but often produces less desirable and adequately results. However,
a step-wise modeling approach in terms of difficulty may be beneficial. Start-
ing with an easy model and evaluating the results found from parameters set.
This also enables to get a better understanding of imposed boundary condi-
tions and effects of turbulent flow. A decent knowledge of FSI and experience
with the simulation tool is recommended before embarking on more complex
scenarios.

Using COMSOL can results in stable and quick results for non-complex and
simple simulations. It has a user-friendly interface and is fairly easy to learn.
However, the solver tends to be heavy on the CPU and uses a lot of memory.
This applies especially for the fully coupled approach where all equations are
solved in one matrix, K. It is possible to solve for nonlinear material behaviour
in COMSOL. However, it’s ability to solve for nonlinear structural behaviour
is not specifically tested in this project. Therefore little can be said about it’s
application for nonlinear materials.

By combining different models by a partitioned approach existing solvers
superior in their own domains may be combined. Thus reserving software
modularity and presenting flexibility to solve more advanced FSI problems.
Coupling two solver which is developed by the same company may also be
beneficial due to compatibility across the FSI interface and ease for the analyst.
Bringing a third party coupling solver into the picture can have drawbacks
to the user interface. The possible gains from coupling solver specialized in
their respective fields through third party software must be weighed against
its practical use.

The Abaqus CFD solver feasibility and applicability is unfortunately not
tested to a satisfactory degree. Thus it may or may not be at the same level
as for instance the Ansys Fluent solver, which commands great respect in the
CFD community. However, the Abaqus CAE solver is considered to be in the
top class at material description and behaviour. In addition to being able to
solve FSI embedded by coupling Abaqus CAE and Abaqus CFD, it can also
solve FSI with the coupled eulerian method (CEL) using IB. It should be noted
however that the accuracy of this approach has been disputed [5]. The CEL
method may prove beneficial in simulating the more detailed case of OSA.
Thus when considering by both theoretical and practical sense the appliances
of the commercial solver Abaqus still makes it a preferable choice.

10.3 perspective

The widely usage of FEM and CFD software indicates that the different solvers
will develop more in the future. Although FSI has gained popularity and is
used more frequently in science and engineering, the field is far from complete
and is continuously under development. Though it can be cumbersome to han-
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dle, the ALE method has many appliances where it produces accurate results.
However, much points to development taking place around the IB method,
proving capable of handling simulations with large deformations in shorter
time spans. Forthcoming the solvers will hopefully be better suited to solve
the problem of OSA. One thing is certain, the field of computational fluid-
structure interaction has great potential, and therefore likely has a promising
future.





B I B L I O G R A P H Y

[1] M.D Abidin Michael. "Hyoid Suspension to the Mandible for the Treatment
of Obstructive Sleep Apnea". URL https://clinicaltrials.gov/ct2/

show/record/NCT02738112. Feb.15.2017.

[2] J.D Anderson JR. "Computational fluid dynamics, the basics with applica-
tions". McGraw-Hill Inc., Singapore, 1995.

[3] CAE Assiciates. URL https://caeai.com/blog/fluid-structure-

interaction. May.20.2017.

[4] O. Axelsson. Finite Difference Methods. Encyclopedia of Computational Me-
chanics. Volume 1: Fundamentals. John Wiley & sons, 2004.

[5] AM. Bavo, G. Rocatello, F. Innaccone, J. Degroote, J. Vierendeels, and
P. Segers. “Fluid-Structure Interaction Simulation of Prosthetic Aortic
Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-
Eulerian Techniques for the Mesh Representation.” In: (2016).

[6] Yuri Bazilevs, Kenji Takizawa, and Tayfun E. Tezduyar. Computational
Fluid-Structure Interaction: Methods and Applications. 1st. Wiley, 2013.

[7] Alexander M. Belostosky, Pavel A. Akimov, Taymuraz B. Kaytukov, Irina
N. Afanasyeva, Anton R Usmanov, Sergey V. Scherbina, and Vladislav V.
Vershinin. “About Finite Element Analysis of Fluid-Structure Interactiom
Problems.” In: Procedia Engineering 91 (2014), pp. 37–42.

[8] Robert D. Blevins. Flow-Induced Vibrations. 2nd. Krieger publishing com-
pany, 2001.

[9] M. Blumen, F. Chabolle, E. Rabischong, P. Rabischong, and B. Frachet.
“Dilator muscles of the pharynx and their implication in the sleep apnea
syndrome of obstructive type. Review of the literature.” In: 115.2 (1998),
pp. 73–84.

[10] Lexington Clinic. URL https://www.lexingtonclinic.com/osasurgery/

hyoid.html. Jan.11.2017.

[11] Ryan M. Clodagh and Bradley T. Douglas. “Pathogenesis of obstructive
sleep apnea.” In: Applied Physiology 99.6 (2005), 2440–2450.

[12] OpenStax College. Anatomy and Physiology. URL http://cnx.org/

contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.26. June.06.2017.

[13] Jerome A. Depssey, Sigrid C. Veasey, Barbara J. Morgan, and Christopher
P. O’Donnel. “Pathophysiology of Sleep Apnea.” In: Physiological Reviews
90.1 (2010), pp. 47–112.

103

https://clinicaltrials.gov/ct2/show/record/NCT02738112
https://clinicaltrials.gov/ct2/show/record/NCT02738112
https://caeai.com/blog/fluid-structure-interaction
https://caeai.com/blog/fluid-structure-interaction
https://www.lexingtonclinic.com/osasurgery/hyoid.html
https://www.lexingtonclinic.com/osasurgery/hyoid.html
http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.26
http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.26


104 Bibliography

[14] Bradley Froehle and Per-Olof. Persson. “A High-Order Discontinuous
Galerkin Method for Fluid-Structure Interaction With Efficient Implicit-
Explicit Time Stepping.” In: Journal of Computational physics (2015).

[15] C Förster, W.A Wall, and E. Ramm. “Artificial added mass instabilities
in sequential staggered coupling of nonlinear structures and incompress-
ible viscous flows.” In: Computer Methods in Applied Mechanics and Engi-
neering, Volume 196.7 (2007), pp. 1278–1293.

[16] C. W. Hirt and B.D. Nichols. “Volume of Fluid (VOF) Method for the Dy-
namics of Free Boundaries.” In: Journal of Computational Physics Volume
39 (1981).

[17] Gene Hou, Jin Wang, and Anita Layton. “Numerical Methods for Fluid-
Structure Interaction — A Review.” In: Communications in Computational
Physics 12.2 (2012), pp. 337–377.

[18] Health Hype. URL http://www.healthhype.com/. Jan.02.2017.

[19] University of Illinois. Computational Fluid Dynamics. URL https : / /

uiuc-cse.github.io/me498cm-fa15/lessons/fluent/fvm.html. May.25.2017.

[20] University of Illinois. URL http://verl.npre.illinois.edu/NumericalMethodsandCFD.

html. May.28.2017.

[21] ANSYS Inc. URL http://www.ansys.com/. Feb.01.2017.

[22] Adina R&D Inc. URL http://www.adina.com/fluid- structure-

interaction.shtml. June.02.2017.

[23] COMSOL Inc. URL https://www.comsol.com/blogs/fem-vs-fvm/.
March.13.2017.

[24] Dear Doctor Inc. URL http://www.deardoctor.com/articles/sleep-

apnea-faqs/. Jan.08.2017.

[25] Tu Jiyuan, Kiao Inthavong, and Goodarz Ahmadi. Computational Fluid
and Particle Dynamics in the Human Respiratory System. 1st. Springer Nether-
lands, 2013.

[26] R. van Loon, P.D Anderson, and F.N van de Vosse. “A fluid–structure
interaction method with solid-rigid contact for heart valve dynamics.”
In: Journal of Computational Physics 217 (2006), pp. 806–823.

[27] R. van Loon, P.D Anderson, F.N van de Vosse, and S.J. Sherwin. “Com-
parison of various fluid–structure interaction methods for deformable
bodies.” In: Computers and Structures 85 (2007), 833–843.

[28] OpenCFD Ltd. URL http://www.openfoam.com/. June.03.2017.

[29] WEb MD. URL http://www.webmd.com/sleep- disorders/sleep-

apnea / continuous - positive - airway - pressure - cpap - for - sleep -

apnea. Jan.16.2017.

http://www.healthhype.com/
https://uiuc-cse.github.io/me498cm-fa15/lessons/fluent/fvm.html
https://uiuc-cse.github.io/me498cm-fa15/lessons/fluent/fvm.html
http://verl.npre.illinois.edu/NumericalMethodsandCFD.html
http://verl.npre.illinois.edu/NumericalMethodsandCFD.html
http://www.ansys.com/
http://www.adina.com/fluid-structure-interaction.shtml
http://www.adina.com/fluid-structure-interaction.shtml
https://www.comsol.com/blogs/fem-vs-fvm/
http://www.deardoctor.com/articles/sleep-apnea-faqs/
http://www.deardoctor.com/articles/sleep-apnea-faqs/
http://www.openfoam.com/
http://www.webmd.com/sleep-disorders/sleep-apnea/continuous-positive-airway-pressure-cpap-for-sleep-apnea
http://www.webmd.com/sleep-disorders/sleep-apnea/continuous-positive-airway-pressure-cpap-for-sleep-apnea
http://www.webmd.com/sleep-disorders/sleep-apnea/continuous-positive-airway-pressure-cpap-for-sleep-apnea


Bibliography 105

[30] G. C. Mbata and J. C. Chuckwuka. “Obstructive sleep apnea hypopnea
syndrome.” In: Ann Med Health Sci Res 2.1 (2012), pp. 74–77.

[31] Mayo Foundation for Medical Education and Research. URL http :

//www.mayoclinic.org/. Feb.01.2017.

[32] C. Michler, E.H van Brummelen, R. de Borst, and S.J. Hulshoff. “A, mono-
lithic approach to fluid structure interaction.” In: Computers & Fluids
33.Issue 5-6 (2004), 839–848.

[33] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method
in Computational Fluid Dynamics. 1st. Volume 113. Springer International
Publishing, 2015.

[34] Madara M. Ogut and Kremer Gul. "Engineering Design: A, the Practical
Guide". Trafford, 2004.

[35] M. R. Rasani, K. Inthavong, and J.Y. Tu. “Simulation of pharyngeal air-
way interaction with airflow using low-Re turbulence model.” In: Model-
ing and Simulation in Engineering (2011).

[36] The Visual Room. URL http://thevisualroom.com/finite_volume_

method_4.html. Feb.03.2017.

[37] Fraunhofer SCAI. MpCCI 4.4.2-1 Documentation. URL http : / / www .

mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc.pdf. March
20, 2017.

[38] Fraunhofer SCAI. MpCCI – The Independent Code Coupling Interface. URL
http://www.probabilistik.de/vortrag/v2011_brodbeck.pdf. March
22, 2017.

[39] U. Saravanan. "Advanced Solid Mechanics". McGraw-Hill Inc., Indian In-
stitute of Technology Madras, 2013.

[40] Sciphile.org. URL http://sciphile.org/lessons/bernoullis-principle-

and-venturi-tube. March.03.2017.

[41] Sharcnet. URL https://www.sharcnet.ca/Software/Ansys/17.0/en-

us/help/exd_ag/exp_dyn_theory_ref_frame.html. March.20.2017.

[42] Jörg Shröder and Peter Wriggers. Advanced Finite Element Technologies.
1st. Volume 566. Springer International Publishing, 2016.

[43] Adriaan Sillem. "Feasibility study of a tire hydroplaning simulation in a
infnite element code using a coupled Eulerian-Lagrangian method". Delft uni-
versity of technology, October 2008.

[44] Bjorn Sjodin. "What’s The Difference Between FEM, FDM, and FVM?" URL
http://machinedesign.com/fea-and-simulation/what-s-difference-

between-fem-fdm-and-fvm. April.19.2017.

[45] Dassault Systèmes. URL http://www.3ds.com/products-services/

simulia/products/abaqus/. Jan.19.2017.

http://www.mayoclinic.org/
http://www.mayoclinic.org/
http://thevisualroom.com/finite_volume_method_4.html
http://thevisualroom.com/finite_volume_method_4.html
http://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc.pdf
http://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc.pdf
http://www.probabilistik.de/vortrag/v2011_brodbeck.pdf
http://sciphile.org/lessons/bernoullis-principle-and-venturi-tube
http://sciphile.org/lessons/bernoullis-principle-and-venturi-tube
https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/exd_ag/exp_dyn_theory_ref_frame.html
https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/exd_ag/exp_dyn_theory_ref_frame.html
http://machinedesign.com/fea-and-simulation/what-s-difference-between-fem-fdm-and-fvm
http://machinedesign.com/fea-and-simulation/what-s-difference-between-fem-fdm-and-fvm
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/


106 Bibliography

[46] Sander Vaher. "A Weakly Coupled Strategy for Computational Fluid-Structure
Interaction: Theory, Implementation and Application". Swansea University,
June 2013.

[47] C.H.K. Williamson and R. Godvardhan. “Vortex-induced vibrations.” In:
Fluid Mechanics, Volume 36 (2004), pp. 413–455.

[48] O.C. Zienkiewicz, R.L Taylor, and J.Z Zhu. The finite element method - its
basis fundamentals. 7th. Elsevier, 2013.


	Abstract
	Sammendrag
	Acknowledgments
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables
	Listings
	Acronyms
	Preface

	Preface
	The Project
	Outline

	Introduction
	1 Obstructive sleep apnea
	1.1 The Disease
	1.1.1 Background knowledge
	1.1.2 Sites of airway collapse
	1.1.3 Treatments

	1.2 Interests
	1.3 Framework for modelling


	Theory
	2 Multiphysics
	2.1 Basis of multiphysics

	3 Mesh discretisation
	3.1 Introduction
	3.2 Eulerian formulation
	3.3 Lagrangian formulation
	3.4 Arbitrarian Lagrangian-Eulerian Method
	3.5 Mesh generation

	4 Solid mechanics
	4.1 Introduction
	4.2 Material
	4.3 Structure equations
	4.3.1 Rigid body motion
	4.3.2 Conservation of momentum
	4.3.3 Deformation
	4.3.4 Initial and boundary conditions


	5 Fluid dynamics
	5.1 Introduction
	5.2 Reference frame and scale
	5.3 Conservation of mass
	5.3.1 Continuum scale with fixed frame
	5.3.2 Infinitesimal scale with fixed frame
	5.3.3 Continuum scale with moving frame
	5.3.4 Infinitesimal scale with moving frame
	5.3.5 Unity in the equations

	5.4 Conservation of momentum
	5.4.1 Shear stresses

	5.5 Conservation of energy
	5.5.1 Rate of change of energy inside fluid element
	5.5.2 Net flux of heat into element
	5.5.3 Rate of work due to body and surface forces
	5.5.4 The energy equation

	5.6 Dynamic state relations
	5.7 Navier-Stokes equations
	5.8 Euler equations
	5.9 Airflow
	5.9.1 Incompressibility and isotropy
	5.9.2 Newtonian viscous flow
	5.9.3 Initial and boundary conditions
	5.9.4 Nondimensional equations

	5.10 Vortex Induced Vibrations
	5.10.1 Vortex shedding

	5.11 Lift and drag

	6 Computational Fluid-Structure Interaction
	6.1 Coupled systems
	6.2 Monolithic approach
	6.3 Partitioned approach
	6.3.1 Loose coupling
	6.3.2 Strong coupling

	6.4 Interface capturing and tracking

	7 Numerical approach and software utility
	7.1 Introdutcion
	7.2 Finite Difference
	7.3 Finite Element
	7.4 Finite Volume
	7.5 Parameters
	7.5.1 CFL number
	7.5.2 Artificial added mass

	7.6 Possible software
	7.6.1 COMSOL
	7.6.2 Abaqus CAE & CFD
	7.6.3 ANSYS Fluent
	7.6.4 Alternative software openFOAM & Abaqus CEL
	7.6.5 MpCCI



	Simulations
	8 Flow Induced Oscillations of a Flexible Beam
	8.1 Introduction
	8.1.1 Rig specifications

	8.2 Benchmark modelling
	8.2.1 Structure properties
	8.2.2 Fluid properties

	8.3 COMSOL
	8.3.1 Fully coupled solver
	8.3.2 Segregated solver

	8.4 Abaqus
	8.5 Abaqus coupled with Fluent
	8.6 Comparing results

	9 Palate modeling
	9.1 Introduction
	9.2 The model
	9.3 Initial and boundary conditions
	9.4 2D simulation
	9.5 3D simulation
	9.6 Discussion
	9.6.1 Initial and boundary conditions


	10 Conclusion and perspectives
	10.1 Introduction
	10.2 Conclusion
	10.3 Perspective

	Bibliography


