
Fatigue damage in an offshore wind
turbine using probability density evolution

Odd Eiken

Civil and Environmental Engineering

Supervisor: Ole Andre Øiseth, KT
Co-supervisor: Michael Muskulus, IBM

Department of Structural Engineering

Submission date: June 2017

Norwegian University of Science and Technology



 



Department of Structural Engineering                 
Faculty of Engineering Science and Technology 
NTNU- Norwegian University of Science and Technology 
 
 
 
 

MASTER THESIS <2017> 
 
 
SUBJECT AREA: Stochastic Dynamics DATE:11/06/2017 NO. OF PAGES:127(incl. appendix) 

 
 
TITLE: 
 

Fatigue damage in an offshore wind turbine using probability density evolution 
 

BY: 
 
 

Odd Eiken  

 
 
RESPONSIBLE  TEACHER: Professor Michael Muskulus 
 
SUPERVISOR(S) 
 

CARRIED OUT AT: Norwegian University of Science and Technology, Department of Structural Engineering 

 

SUMMARY: 
Due to large variability of the offshore environment, the load analysis of an offshore wind turbine is a complex 
task. It is normally performed in the time domain, by running Monte Carlo simulations. However, this is usually very 
time consuming due to the necessity of having long time series in order to sample events with low probability of 
happening. An alternative is to perform the analysis in the frequency domain. However, this method is only valid 
for linear systems, which makes it rather uncertain for fatigue damage results. This project aims to investigate an 
alternative approach based on probability evolution methods, which can obtain accurate results for linear, as well 
as non-linear systems. Nevertheless the methods is not very well known, and a drawback is that it can be 
numerically and computation challenging especially for high-dimensional problems. The benefits of the method is 
that it simulates all possible occurrences without generating a long signal in time domain.  
 
This thesis describes the system as a probability density evolution (PDEM) with a cell mapping technique. The 
system is described as a Markov chain where the state transitions are described with a stochastic matrix. In order 
to keep all probability in the predefined states, a boundary is created at the edges of the displacement and velocity 
states. Different load cases have been tested for the method: a totally correlated harmonic load, completely 
uncorrelated white noise, and partial correlated autoregressive load. Furthermore the Markov chain approach is 
extended to peak to trough evolution describing a half cycle in a stochastic manner. This means that the damage 
calculations are based on probability density evolution rather than time domain simulation, and this new approach 
is therefore compared against already known theory. 
 
The results show that the response probability distributions can be well estimated using the cell mapping 
technique for the investigated loads, and the Markov chain approach. The added boundaries do not disturb the 
final distribution, as long as the limits are not set too narrow. The damage intensity is found for a white noise 
spectrum, and the fatigue damage result seem to fit well with previously developed methods in time domain. This 
result is promising in terms of PDEMs ability of describing the stochastic system in a more precise and reliable 
manner. 

ACCESSIBILITY 
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Summary

Due to large variability of the offshore environment, the load analysis of an offshore wind
turbine is a complex task. It is normally performed in the time domain, by running Monte
Carlo simulations. However, this is usually very time consuming due to the necessity of
having long time series in order to sample events with low probability of happening. An
alternative is to perform the analysis in the frequency domain. However, this method is
only valid for linear systems, which makes it rather uncertain for fatigue damage results.
This project aims to investigate an alternative approach based on probability evolution
methods, which can obtain accurate results for linear, as well as non-linear systems. Nev-
ertheless the methods is not very well known, and a drawback is that it can be numerically
and computation challenging especially for high-dimensional problems. The benefits of
the method is that it simulates all possible occurrences without generating a long signal in
time domain.

This thesis describes the system as a probability density evolution (PDEM) with a cell
mapping technique. The system is described as a Markov chain where the state transitions
are described with a stochastic matrix. In order to keep all probability in the predefined
states, a boundary is created at the edges of the displacement and velocity states. Differ-
ent load cases have been tested for the method: a totally correlated harmonic load, com-
pletely uncorrelated white noise, and partial correlated autoregressive load. Furthermore
the Markov chain approach is extended to peak to trough evolution describing a half cycle
in a stochastic manner. This means that the damage calculations are based on probability
density evolution rather than time domain simulation, and this new approach is therefore
compared against already known theory.

The results show that the response probability distributions can be well estimated using
the cell mapping technique for the investigated loads, and the Markov chain approach.
The added boundaries do not disturb the final distribution, as long as the limits are not
set too narrow. The damage intensity is found for a white noise spectrum, and the fatigue
damage result seem to fit well with previously developed methods in time domain. This
result is promising in terms of PDEMs ability of describing the stochastic system in a more
precise and reliable manner.
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Sammendrag

På grunn av stor variasjon i marine miljø er lastanalysen av en offshore vindturbin en
kompleks oppgave. Vanligvis er analysene utført i tidsdomenet, ved å kjøre Monte Carlo
simuleringer. Dette er ofte veldig tidkrevende på grunn av at det er nødvendig med en lang
tidsserie for å fange opp de hendelsene som har lav sannsynlighet for å skje. Alternativt
kan analysen utføres i frekvensdomenet, men er da kun gyldig for lineære system. Dette
gjør metoden svært usikker for å regne på utmatting. Denne masteroppgaven tar sikte på
en alternativ tilnærming basert på sannsynlighetstetthet evolusjonsmetoden. Denne meto-
den har vist seg å gi gode resultater for både lineære- og ulineære system. Likevel er
denne metoden lite kjent i dag, og en ulempe er at den kan bli utfordrende for systemer
med mange dimensjoner og frihetsgrader. Fordelen med metoden er at den beskriver alle
mulige hendelser uten å måtte generere et langt signal i tidsdomenet.

Masteroppgaven beskriver systemet med sannsynlighetstetthets evolusjon og cell-mapping
metoden. Systemet beskrives som en Markov kjede der overgangen fra en tilstand til en
annen beskrives med en stokastisk matrise. For å hindre sannsynligheten fra å forsvinne fra
systemet er det satt opp en grense rundt forskyvnings og hastighets domenet. Ulike last-
modeller er blitt testet for å metoden: en fullstendig korrelert harmonisk last, fullstendig
ukorrelert hvit støy, og delvis korrelert autoregressiv last. Videre er Markov kjeden utvidet
til å beskrive overgangen mellom vendepunktene i forskyvningene (Topp- til bunnpunkt),
og beskriver alle mulige halv-sykluser stokastisk. Det betyr at beregningsmodellen er
basert på sannsynlighetstetthets evolusjon i stedet for en analyse i tidsdomenet, og disse
resultatene sammenlignes derfor med eksisterende modeller.

Resultatene viser at responsfordelingen kan estimeres med cell-mapping for de nevnte
lasttilfellene, og Markov kjede antagelsen. Grensene som er satt rundt domenet forstyrrer
ikke den endelige fordelingen så lenge grensene ikke er satt for smalt. Halv-syklusene er
funnet for en hvit støy last, og den estimerte utmattingsskaden stemmer godt overens med
tidligere utviklede modeller i tidsdomenet. Dette resultatet er lovende med tanke på om
sannsynlighets tetthets evolusjon kan beskrive det stokastiske systemet på en mer presis
og pålitelig måte.
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Chapter 1
Introduction

In order to reduce CO2 emission from fossil fuels, a lot of research and studies have been
published on how to meet the energy demand with renewable sources. A study by Ernst
& Young [32] expect the growth in offshore wind to triple the capacity (2015) by 2020.
However, a few challenges needs to be addressed to make that happen, like the high cost
of installation and service.

In Norway, a lot of research and development preceded the offshore structures built
for extracting petroleum in the North sea. These platforms were design with high safety
factors because high profit margins made it better to be on the safe side with respect to the
staff on board and environmental risks. In order to make a cost effective wind farm, more
detailed and precise calculation should be carried out in order to reduce overdimensions.
A main aspect in offshore engineering is the cyclic stress variations due to environmental
loading. With an operating expectancy of 40 years, over 108 stress cycles will increase the
probability of fatigue cracking and failure. [6]

Today, calculations are done in time domain with Monte Carlo simulations of the re-
sponse. From these results cycle count methods like the rainflow counting algorithm are
applied in order to calculate the expected life time of the structure, and fatigue. The draw-
back with time simulations, is that in order to have an occurrence with low probability a
long time simulation is needed which makes these calculation computational heavy, and
time demanding for many load cases. [28]

An alternative is to solve the response in a stochastic manner. One of them is the
Probability Density Evolution Method (PDEM) [19] where the time evolution of the prob-
ability density function is described as a Partial Differential Equation. This is often used
for complicated time simulations with nonlinear stochastic structures [20]. Another tech-
nique is the cell-mapping technique which is mainly developed for nonlinear systems [15].
The advantage of the cell mapping method is that the problem is presented as a stochastic
matrix instead of a partial differential equation. However, dividing the system into cells
makes the system more vulnerable to discretization errors, and one has to understand how
to discretize the system.

This thesis has two main focuses. The first is to develop a method for the cell map-
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Chapter 1. Introduction

ping technique with stochastic loads. This is done with a Transition Probability Matrix
describing the transition from one state to another. Setting a boundary around the dis-
placement and velocity states is a new approach preventing any leakage of probability
from the domain of the system. The steady state solution will then be compared against
either Monte Carlo simulations or the theoretical distribution in Chapter 4. The second
focus is to use the Transition Probability Matrix to find the transition between the turning
points in displacements, or half-cycles. The Peak Transition Matrix describes then this
transition between turning points, and with equations derived in Section 3.8 the Damage
intensity can be obtained by utilising the Palmgren-Miner summation. [7] This is the first
time (to my knowledge) that the probability density evolution method is used to calcu-
late fatigue damage, and the result is therefore compared against Monte Carlo simulation
with rainflow counting algorithm [5] [26], and the theoretical solution for a narrow banded
process derived in Section 3.8.
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Chapter 2
Theory

2.1 Loads
For response calculations a representation of the natural random loads have to be stated.
Two extremes are totally uncorrelated white noise, and totally correlated harmonic loads.
Most realistically the load characteristics are between these two extreme cases. In this
thesis an retrogressive AR(0) process is used to represent totally uncorrelated loads, a
random phase sine-load is used to model totally correlated loads, while an AR(1) process
is used to model partial correlated loads. The autocorrelation is the measure of a signals
correlation with it self,

RFF (t, s) = E[F (t)F (s)] (2.1)

where t and s are two instances in time. For an ergodic time-invariant process, the expres-
sion for the autocorrelation simplifies to

RFF (τ) = E[F (t)F (t+ τ)] (2.2)

where τ = |s − t| is the difference between the two points evaluated. The Wiener-
Khintchin theorem [23] states that the Fourier transform of the autocorrelation function
is the power spectral distribution function.

RFF (τ)
F−→ SFF (ω) =

1

2π

∫ ∞
−∞

RFF (τ)e−iωτdτ (2.3)

SFF (ω)
F−1

−−−→ RFF (τ) =

∫ ∞
−∞

SFF (ω)eiωτdω (2.4)

the variance of the variable is integrated over all frequencies,

V ar[F ] = σ2
F = RFF (0) =

∫ ∞
−∞

SFF (ω)dω (2.5)

3



Chapter 2. Theory

which means that the power spectral distribution function could be evaluated as the fre-
quency distribution of the random variable. SFF (ω) is defined for all frequencies, both
positive and negative. However, since the spectral distribution is symmetrical for a real
time signal, on could therefore only consider the one sided spectrum. The symmetry prop-
erty of SFF (ω) is shown in [23], and defines the one sided spectrum:

S+
FF (ω) =

{
2SFF (ω), ω ≥ 0

0, ω < 0
(2.6)

2.1.1 White Noise

2S0

SWW (ω)

ω

(a) One sided Spectral Density

2πδ(τ)

RWW (τ)

τ

(b) Autocorrelation

Figure 2.1: Power spectral Density and autocorrelation functions for a white noise process.

A white noise process is often defined with a constant spectral density over all fre-
quencies between ω = 0 → ω = ∞. The variance of such a process is infinite large, and
the autocorrelation function is derived as a dirac delta function [24].

S+
FF (ω) = 2S0

RFF (τ) = 2πδ(τ)
(2.7)

The mathematical concept of such a process is purely theoretical, and in practical sense
there is no process defined with a constant power for an infinite number of frequencies. In
engineering a white noise process is often constructed with a spectrum with a bandwidth
which extends over all frequencies of interest. In structural dynamics and for offshore wind
turbines with low eigenfrequencies these frequencies often range between zero and some
upper frequency limit. Newland [24] derives the autocorrelation for such a constructed
process which defines the spectral density and the autocorrelation as follows,

S+
FF (ω) =

{
2SFF (ω), 0 < ω < ω1

0, otherwise

RFF (τ) = 2S0
sin(ω1τ)

τ

(2.8)

2.1.2 AR - process
The autoregressive model is defined as a discrete time stationary random process with
linear dependency on its own previous values, and a stochastic noise term. Despite its

4



2.1 Loads

simple definition, it is a powerful class of stochastic models, and is often used to model
sea states, and forecast random processes [25] [22]. The model is said to be of order p,

Fi =

p∑
n=1

φnFi−n +Wi (2.9)

where φ are the parameters describing the linear dependency with the previous values. It is
shown in [3] how the values for the parameters must be chosen in order to have a stationary
process. The stationary condition is that all roots of the equation

mp − φ1m
p−1 − ...− φp = 0 (2.10)

must lie inside the unit circle. W s a white noise term added to the process as a stochastic
term.

AR(1) - process

An autoregressive model of first order (p = 1) is also a Markov process, meaning that the
forecasting of the next state is only dependent on the current state,

Fi+1 = φFi +Wi

= φnF0 +

n∑
i=1

φi−1Wi−1.
(2.11)

The mean value for such a process can be found,

µF = E[Fi+1] = φE[Fi] + E[Wi]

= φnE[F0] + E[W ]

n∑
i=0

φi−1

= φnE[F0] =
n→∞

0,

(2.12)

since the stationary condition states that |φ| ≤ 1, while the variance,

σ2
F = V ar[Fi+1] = φ2V ar[Fi] + V ar[Wi]

= φ2nV ar[F0] + V ar[W ]

n∑
i=0

φ2(i−1)

=
n→∞

σ2
W

1− φ2

(2.13)

The autocorrelation function and spectral density is derived in [13] and is just shown here,

RFF (τ) =
σ2
W

1− φ2
φτ

S+
FF (ω) =

σ2
W∆t

π[1− 2φ cos(ω∆t) + φ2]
for 0 < ω <

π

∆t

(2.14)
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Chapter 2. Theory

5 10 15 20 25 30

0.05

0.1

0.15

ω

S+(ω)

(a) Spectral Density

1 2 3 4 5

1
3

2
3

1

4
3

τ

R(τ)

(b) Autocorrelation

Figure 2.2: Power spectral Density and autocorrelation function for AR(1) load with φ = 0.5,
σ2
W = 1, and ∆t = 0.1s.

AR(2) - process

With a second order (p=2) autoregressive model, the forecasting of the next state is linearly
dependent on the current, and the previous step. The process represent a discretized second
order stochastic linear differential equation, and has two degrees of freedom. That means
for instance that the process can oscillate in one frequency.

Fi = φ1Fi−1 + φ2Fi−2 +W. (2.15)

The properties of higher order Autoregressive processes are usually estimated with the
Yule-Walker equations, [3] and in this thesis the outcome of these parameters are just
shown. The referenced literature will show how these parameters are derived. The station-
ary condition must be satisfied in order to have a stationary, zero mean process.

φ2 + φ1 < 1

φ2 − φ1 < 1

− 1 < φ2 < 1

(2.16)

The characteristic equation for such a process is given,

φ2r
2 + φ1r + 1 = 0 (2.17)

if the parameters are chosen in the region φ2
1 + 4φ2 < 0, which leads to complex roots

of the characteristic equation, the process will oscillate at one specific frequency. The
variance of the process is then given by, [3]

σ2
F =

1− φ2

1 + φ2

σ2
W

(1− φ2)2 − φ2
1

(2.18)
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2.1 Loads

While, the spectrum is,

S+
FF (ω) =

σ2
W∆t

π[1 + φ2
1 + φ2

2 − 2φ1(1− φ2) cos(ω∆t)− 2φ2 cos(2ω∆)]

for 0 < ω <
π

∆t

(2.19)

The autocorrelation function is dependent whether the parameters φ1 and φ2 contains real
or complex roots inserted in the characteristic equation 2.17. With real roots the autocor-
relation function consists of a mixture of damped exponential, while for complex roots the
autocorrelation displays a damped sine wave: [3]

RFF (τ) =
σ2D( τ

∆t ) sin(ω0

(
τ

∆t

)
+ F )

sin(F )
(2.20)

where,

D =
√
−φ2 (2.21)

ω0 = arccos(
φ1

2
√
−φ2

) (2.22)

F = arctan

(
1 +D2

1−D2
tan(ω0)

)
(2.23)

5 10 15 20 25 30

0.05

0.1

0.15

ω

S+(ω)

(a) Spectral Density

0.5 1 1.5 2
τ

R(τ)

(b) Autocorrelation

Figure 2.3: Power spectral Density and autocorrelation function for AR(2) load with φ1 = 0.75,
φ2 = −0.5, σ2

W = 1, and ∆t = 0.1s.
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Chapter 2. Theory

2.1.3 Harmonic Load
A harmonic load can be described with a sin function,

F (t) = F0 sin(ωf t+ θ), (2.24)

where θ is a random phase variable with uniform distribution between 0 < θ ≤ 2π.
Since the load is repeating itself every t = 2π

ω , the proces is stationary, and ergodic. The
autocorrelation of such a process is found by evaluating,

E[F (t)F (t+ τ)] = E[F 2
0 sin(ωf t+ θ) sin(ωf (t+ τ) + θ)]

=
F 2

0

2π

∫ 2π

0

sin(ωf t+ θ) sin(ωf t0θ + ωfτ)dθ,
(2.25)

we might rewrite sin(ωF t+ θ+ωfτ) = sin(ωf t+ θ) cos(ωfτ) + cos(ωf t+ θ) sin(ωfτ).
Evaluation the integral gives,

RFF (τ) =
1

2
F 2

0 cos(ωfτ) (2.26)

The fourier transform of the autocorrelation function gives the spectral density,

S+
FF (ω) =

1

2
F 2

0 δ(ω − ωf ) (2.27)

1 2 3 4 5 6 7

1
2F

2
0

ω

S+(ω)

(a) Spectral Density

0.5 1 1.5 2 2.5 3

− 1
2F

2
0

1
2F

2
0

τ

R(τ)

(b) Autocorrelation

Figure 2.4: Power spectral Density and autocorrelation function for Harmonic load with ωf = 4

2.2 Response
The Force equilibrium of the system is the described with the forces[9]:

Rine +Rdmp +Rint = Rext (2.28)
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2.2 Response

F (t)
M

K

C

Figure 2.5: Sketch of Single Degree of Freedom system

where ine, dmp, int, and ext stands for inertial forces, damping forces, internal forces, and
external forces. For a linear single degree of freedom system the equation simplifies to
this linear second order ordinary differential equation:

ẍ+ 2ζωnẋ+ ω2
nx = m−1F (t) (2.29)

where the damping ratio ζ, and natural frequeny ωn has been introduced.

ζ =
c

2mωn

ω2
n =

k

m

(2.30)

introducing a particular solution to the equation of form:

xp(t) = ηeiωt (2.31)

inserted in the equation of motion:

ηeiωt[(iω)2 + 2ζωn(iω) + ω2
n] = m−1F (t)

x(t) =
m−1

ω2
n − ω2 + 2iζωωn

F (t) = H(ω)F (t)
(2.32)

with the frequency response function H(ω) describing the linear transform between the
load and the response. The absolute value of the frequency response function gives the
amplification of an amplitude, and the phase shift is given by the relation between the
complex part and the real part.

|H(ω)| = m−1√
(ω2
n − ω2)2 + (2ζωωn)2

φ = arctan(
2ζωnω

ω2
nω

2
)

(2.33)

9



Chapter 2. Theory

Which decouples the complex valued function into a amplitude part, and phase part,

H(ω) = |H(ω)|eiφ (2.34)

The autocorrelation and the power spectral distribution for the response could therefore be
found,

Rxx(τ) = E[x(t)x(t+ τ)]

= E[|H(ω)|F (t)|H(ω)|F (t+ τ)]

= |H(ω)|2RFF (τ)

(2.35)

Sxx(ω) =
1

2π

∫ ∞
−∞

Rxx(τ)e−iωτdτ

=
1

2π

∫ ∞
−∞
|H(ω)|2RFF (τ)e−iωτdτ

= |H(ω)|2SFF

(2.36)

The first two statistical moments of the response could therefore be expressed with the
load mean and spectral distribution, and the frequency response function.

µx = E[x(t)] = E[|H(ω)|F (t)] = |H(ω)|µF

σ2
x = Rxx(0) = |H(ω)|2RFF (0) =

∫ ∞
−∞

SFF |H(ω)|2dω
(2.37)

The relation between the velocity and displacement is known, where the velocity is the
first derivative of the displacement, and for a harmonic motion, x(t) = eiωt,

ẋ =
dx

dt
= iωx. (2.38)

The response spectrum for the velocity might therefore be stated,

Sẋẋ(ω) = ω2|H(ω)|2Sxx (2.39)

The variance of the response can for a white noise Gaussian process be obtained analyti-
cally [24].

σ2
x =

∫ ∞
−∞

SFF (ω)|HFX(ω)|2dω =
S0ωn
8k2ζ

(2.40)

σ2
ẋ =

∫ ∞
−∞

SFF (ω)|iωHFX(ω)|2dω =
S0ω

3
n

8k2ζ
(2.41)

2.3 Monte Carlo Simulations
Monte-Carlo-Simulations are widely used when calculating stochastic loads on a structure.
To run a Monte carlo analysis, one has to build a mathematical system that simulates a real
system. Then a large number of random samples is put in to the model which generates a
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2.4 Discrete Fourier transform - Welch Spectrum

large number of output results. [28] This is often done in dynamic simulation, where the
system is described with a differential equation (Eq.2.29), and where the load is considered
a random process. There are different ways to simulate random loads. All of the most
common computer languages today have built in algorithm for drawing random numbers
from different distributions (Python, Matlab, C++, FORTRAN, etc). One way is with a
autoregressive model, where the randomness is added with a random number generator. It
is also possible to create a time sample when the spectral density is known,

X(t) =

N/2∑
k=1

Ak sin(
2π

N
t+ θ) (2.42)

where,

Ak =

√√√√∫ ∆f(k+ 1
2 )

∆f(k− 1
2 )

SFF (f)df (2.43)

N is the length of time series, t is the time vector, ∆t = 1
N , and θ is a random phase

between zero and 2π generated from a random number generator. The longer the time
sample, more harmonic motion is generated, which is key for a good description of the
process.

2.4 Discrete Fourier transform - Welch Spectrum

Generated monte carlo simulations, and response signals are defined in a discrete manner.
In order to estimate the spectral density of a discrete signal the Fourier transform has to
be established for a discrete case. The Welch spectrum is a common method used for this,
and is defined by averaging over multiple samples of the time sample, [29]

P̂
(i)
XX(f) =

1

NU

∣∣∣∣∣
N−1∑
m=0

w(m)xi(m)e−j2πfm

∣∣∣∣∣
2

(2.44)

where w is a window function used for filtering, N is the number of samples and,

U =
1

U

N−1∑
m=0

w2(m) (2.45)

the Welch spectrum is the average of all spectrums,

P̂WXX(f) =
1

K

K−1∑
i=0

P̂
(i)
XX(f) (2.46)

In this thesis the hanning window is used for smoothing in all spectral distribution
estimation.
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2.5 Markov Process
A Markov process has the properties that future values can be predicted based only on the
present state. This is often used in probability theory. When the state space is discrete,
one often refers to a Markov chain and the transition between states is represented with a
transition matrix describing the transition between one state to another.

PTransition = (pij) = P [Yn+1 = xi|Yn = xj ] (2.47)

Such a matrix has the properties of a stochastic matrix since the probability of transition
from a state xi to all other states is equal to one. A stationary solution to a stochastic matrix
is when a state vector p = [P (Y1), pP (Y2), ..., P (Yn)] does not change when multiplied
with the transition matrix. [4]

p ·P = p (2.48)

which also is the eigenvector associated with an eigenvalue of 1, pP = 1p.

2.6 Fatigue

Fatigue Limit

N (cycles to failure)

S (Stress)

Figure 2.6: Typical S-N fatigue curve

A common way of mechanical failure due to vibrations is fatigue which is caused by an ini-
tial crack that gradually propagates under cyclic stresses in the material. This crack grows
faster during high range alternating stresses than under, low range alternating stresses. The
stresses in a structures are found with the stress strain relation which connects the occur-
ring strains to stresses in the structure with a material law often refereed to as the stress-
strain curve. [9] A simplification is to consider a linear stress-strain curve which means
that the stresses in the structure are proportional with the displacement. In a steel structure
this is an often introduced simplification as long as the stresses are smaller than the yield
stress. [9] Larger deformations will cause plastic deformation which decreases the lifetime

12



2.6 Fatigue

considerably and could therefore mean that the fatigue failure is never reached. The rela-
tion between number of cycles until failure and stress range of a cycle is often presented
in a S-N-curve. [24] The S-N curve is found experimentally and describes the number of
cycles N, with a cyclic stress range with fixed amplitude S before material failure. How-
ever, under random loading with various amplitudes of the stress range S, the mechanism
is yet not fully understood [24]. A commonly used damage rule is the Palmgren and Miner
hypothesis where the number of cycles at a stress range divided by the number of cycles
to failure for that stress range (ni/Ni) is summed up,

D(T ) =
∑
i

(
ni(T )

Ni

)
, (2.49)

where failure is expected when the damage D(T ) exceeds 1. If there is a simple har-
monic stress range, the Palmgeen-Miner rule is easy to apply, while for a spectrum load
containing more frequencies one would need a counting algorithm of the stress evolution.

2.6.1 Narrow Banded process

1 2 3 4
a

p(u = a)

Figure 2.7: Rayleigh distribution of peaks for a Gaussian narrow Banded process (σx = 1)

A narrow banded process defined as a process with only one peak for each zero upcrossing
ν+
x (0). The probability of a peak with height higher than a level a is then defined as, [23]

P [u > a] =
ν+
x (a)

ν+
x (0)

(2.50)

The cumulative distribution function is then Fu(a) = 1 − ν+
x (a)

ν+
x (0)

, so if ν+
c (a) can be

differentiated with respect to a, the probability distribution of peaks becomes,

fu(a) = − 1

ν+
x (0)

dν+
x (a)

da
a ≥ 0 (2.51)
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Where the expected a-crossing rate can be obtained with Rice’s formula: [23]

ν+
x (a) =

∫ ∞
0

ẋfxẋ(a, ẋ)dẋ (2.52)

Further on can assume that the process is Gaussian, meaning that the displacement and
velocity is normal distributed. Hence the displacement and velocity (x, ẋ) are independent
variables, (proof [13]) one can state the jointly normal distributed variable as,[14]

fxẋ(x, ẋ) = fx(x) · fẋ(ẋ)

=
1

2πσxσẋ
e
− 1

2

[
( x−µxσx

)
2
+
(
ẋ
σẋ

)2
]

(2.53)

Combining Eq 2.52 and Eq. 2.53 leads to the Raileigh distribution of peaks, (Fig. 2.7)
[24]

fu(a) =
a

σ2
x

e
− a2

2σ2
x for a < 0 (2.54)

The damage is than the integral evaluated over the probability distribution of the peak
amplitudes of the stress and might be evaluated if the S-N curve is available.

D(T ) = ν+
0 T

∫ ∞
0

1

N(S)
p(Sp)dSp (2.55)

For more general loading the rainflow counting is known to yield the most accurate re-
sults. However, the procedure of defining a rainflow cycle is not straightforward as in the
originally stated form, where the whole load story is required known before the counting
process is started [11]. A mathematical stated definition given by Rychlic [26] has made
the rainflow counting method convenient for statistical analysis.

In order to use the method a counting distribution has to be defined for a load F (t), 0 ≤
t ≤ T , and the cycles with peak an trough {(x, y)i}. The counting distribution is then
defined as follows:

NT (u, v) = #{(x, y)i; ti ≤ T and x > u ≥ v > y} (2.56)

Since the failure is defined when the total damage is 1, so a simple estimator fir the time
to failure T̂ is defined,

T̂ =
1

E[D(1)]
(2.57)

and E[D(1)] is defined as the damage intensity. While the counting intensities of the
rainflow count is then defined for a stationary process,

µRFC(u, v) = E[NRFC
T (u, v)]/T (2.58)

The counting intensity is estimated with the counting distribution,

µ̂RFC(u, v) ≈ NRFC
T (u, v)/T (2.59)
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The Damage intensity can the be estimated with the following equation, (proof given in
[12])

E[D(1)] =−
∫ ∫

u≥v
µ̂RFC(u, v)

∂2f(u, v)

∂u∂v
dudv

−
∫ ∞
−∞

µ̂RFC(u, u)
∂f(u, u)

∂v
|u=vdu

(2.60)

and f(u, v) is the damage caused by a cycle with peak an trough {u, v}. A simplification
of a real S-N curve is given with this function, [12]

f(u, v) = (u− v)β , u ≥ v, 2 ≤ β ≤ 5. (2.61)

and β depends on the material. However, since the goal of this thesis is to show that the
method is working, this simplification is introduced.

2.6.2 Markov Method

The peak-trough count could be considered a Markovian process, where the following
trough is predicted only based on the current peak, and where the peak is predicted based
only on the previous trough. If the intensity, µPT (u, v) for a peak trough count is known
the rainflow intensity could be obtained through matrix manipulations. The following
method is presented in [12],

Let ui, ui > ui+1, i = 1, 2, ...n be discrete levels where a half cycle is formed with a
peak and trough {xi, yi}. P is the transition matrix from peak to the following trough,
while P̂ is the transition matrix from the trough to the following peak,

P = (pij) = P [yk = uj |xk = ui]

P̂ = (p̂ij) = P [xk = uj |yk−1 = ui]
(2.62)

The rainflow intensity is then given by,

µRFC(u, v) = µPT (u, v) + qB(I−AB)−1e (2.63)

Where A and B are submatrices of P and P̂ for fixed indices (i, j), i < j,

A = (pkl), i ≤ k ≤ j − 1, i+ 1 ≤ l ≤ j
B = (p̂kl), i+ 1 ≤ k ≤ j, i ≤ l ≤ j − 1

(2.64)

Where, A are the probabilities that peaks at ui, ui+1, ..., uj−1 are followed by troughs at
ui+1, ui+ 2, .., uj , while B are the probabilities that troughs at ui+1, ui+ 2, .., uj are
followed by peaks at ui, ui+1, ..., uj−1. The vector p is defined,

p = [pk] =

n∑
l=j+1

pkl, k = 1, 2, ..., n (2.65)
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and is the conditional probability that a peak with height uk is followed by a trough smaller
than uj . e and q are defined:

e = [pi, pi+1, ..., pj−1]T (2.66)

q = [µPT (ui, ul−1)− µPT (ui, ul)], i+ 1 ≤ l ≤ j. (2.67)

’
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Chapter 3
Methodology

3.1 Numerical solution of the equation of motion
There has been a lot of development in order to solve second order linear differential equa-
tions numerically. For instance the central difference method, and the family of Newmark
beta methods are widely used in the field of structural dynamics. These methods take ad-
vantage of a known time history in order to compute the acceleration and velocities. This
is often efficient when the load series is known, but since it relies on the properties at the
previous state Yi−1, it should not be necessary to take this into account if the process is
Markovian. Instead the Runge-Kutta-Nyström method [18], or other explicit integration
schemes should be used when predicting the next state. The benefit of using this method is
that it is more memory-effective, while the drawback often is that it is computational more
expensive than the Newmark methods. Rewriting the linear equation of motion (Eq.2.29):

ẍ = f(p(t), x, ẋ) = m−1(F (t)− cẋ− kx) = ω2
n

(
F (t)

k
− 2ζ

ωn
ẋi − xi

)
(3.1)

where:

ω2
n =

k

m
and ζ =

c

ccrit
=

c

2mωn
(3.2)

For a second order differential equation the state of the system is described by the dis-
placement x, and the first derivative ẋ, velocity.

Y(t) =
[
ẋ(t) x(t)

]T
(3.3)

the state derivative:
Ẏ(t) = A(Y ) + B(t) (3.4)

where,

A =

[
−ω2

n( 2ζ
ωn
ẋ+ x)

ẋ

]
,B =

[
m−1F (t)

0

]
(3.5)
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In a basic euler scheme,[18] the next state is predicted only by evaluation the state deriva-
tive at the current state.

Yi+1 = Yi + Ẏi∆t (3.6)

The Runge-kutta methods however evaluates the equation at different states along the path.
The fourth order runge kutta is widely used, and evaluates the differential equation at 4
states along the path, and one has to calculate four auxillary quantities that are used in the
Runge-Kutta equation. Higher order Runge-Kutta methods are often neglected since one
need more evaluation points than order of convergence.[18] The Runge-Kutta-Nyström
method is developed for second order differential equations. The method is an extention
of the classical Runge-Kutta method, which reduces the set of evaluation points in half.
The Runge-Kutta-Nystom method makes it therefore possible to evaluate second order
differential equations with only 4 auxillary quantities instead of eight.
The Runge-Kutta-Nyström method gives the next state:

Yi+1 =

[
1 ∆t
0 1

]
Yi +

1

3

[
∆t ∆t ∆t 0
1 2 2 1

]
k1

k2

k3

k4

 (3.7)

the auxiliary quantities k1, k2, k3, k4 are as follows when introduced int the function
of ẍ:

k1 =
∆tω2

n

2

(
Fi
k
− 2ζ

ωn
ẋi − xi

)
k2 =

∆tω2
n

2

(
Fi+ ∆t

2

k
− 2ζ

ωn
(ẋi + k1)− (xi +K)

)
, whereK =

1

2
∆t(ẋ+

1

2
k1)

k3 =
∆tω2

n

2

(
Fi+ ∆t

2

k
− 2ζ

ωn
(ẋi + k2)− (xi +K)

)
k4 =

∆tω2
n

2

(
Fi+∆t

k
− 2ζ

ωn
(ẋi + 2k3)− (xi + L)

)
, whereL = ∆t(ẋ+ k3)

(3.8)
The load which is a function of time has to be evaluated at 3 different time steps. At the
beginning of the integration, at the end, and at the midpoint. For a load case in defined
in discrete time, the first and last step would be known. Either explicit in the beginning,
or a chosen value from a random distribution at the end. The mid value should then be
evaluated by averaging these two forces. For a load case where the force function do
not contain any stochastics the mid value could be evaluated with this function. As an
example this would be the harmonic load (section 2.1.3) where the stochastic properties are
contained in the phase with no evolution in time. A continuous stochastic force evolution
is also possible [16]. This would however mean that the Runge Kutta integration scheme
has to be reevaluated to get a correct evaluation of this continuous process.

Equation 3.7 is now casted as a point map in discrete time, and continuous space,

m(Yi) = Yi+1 (3.9)
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3.2 Cell-to-Cell Mapping

3.2 Cell-to-Cell Mapping
The easiest and most convenient way to build blocks or cells in an Euclidean N-space is
with rectangular hyperrectangle. In R1 it is a line, in R2 it is a rectangle, and in R3 it is
a cuboid. When we have defined our sample space Ω in RN (x1, x2, x3, ..., xN ) we can
divide it into cells with a size of ∆Ω = ∆x1 ·∆x2 ·∆x3 ·...·∆xN . Each cell now represents
a state in the multidimensional state space. Let pi(n) denote the probability in state cell
i at time t = n∆t. The vector p(x) with components pi, i = 1, 2, 3, ..., Ncells such that
p = [P (y = Y1), P (y = Y2), ..., P (y = Yn)]. p is then the cell probability vector and
describes the probability of the system being in a given state. From Kolmogorovs second
axiom in probability theory the sum of all elements in the probability vector

∑Ncells
i=0 pi =

1. [17]
When the system is considered a Markov chain [4], the evolution of probability vector

p can be found through the Transition Probability Matrix P, with the transition probability
pij = Prob{j at n+1|i at n}. The cell mapping can now be described through the evolution
with the Transition Probability Matrix.

p(n+ 1) = p(n)P (3.10)

Where p is the row vector containing the state probabilities. Since the Transition Proba-
bility Matrix controls the whole evolution:

p(m) = p(0)Pm (3.11)

As for m = 2 is the same as solving equation (Eq 3.10) two times, while for large values
of m (m→∞), the transition matrix Pm describes the mapping from each transient state
to a recurrent state. (steady state).

There are different methods developed in order to calculate the Transition Probability
Matrix. Simple Cell Mapping is described by Hsu [15] and tested on a stochastic offshore
structure in a previous master thesis [13]. In simple cell mapping, each cell has only
one domain cell where all the probability is mapped to. General cell mapping is a more
complete method to describe the transition. Each cell might have several domain cells with
different probabilities among the cells in the domain. The benefits of simple cell mapping
is that it is easier to calculate the transition probability matrix, and storing the matrix does
not require a lot of memory. The benefits of using the general cell mapping method is that
it describes the mapping in a more complete sense. However, the drawbacks are that it is
a more costly calculation, and the storing the transition probability matrix requires more
memory.

3.3 General Cell-Mapping
In this thesis the general cell to cell mapping technique is used. For each cell several
points are selected and mapped to new cells as suggested by Hsu [15]. There are also
other algorithms suggested which could be used for the general cell mapping. The adaptive
method [10] divides each cell into sub spaces and maps each subspace into a new cell state
depending of the size of the subspace. This is shown to be a more effective method, jet
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Chapter 3. Methodology

in this thesis I will try to show that the simple method of selecting a number of random
points in each cell will yield accurate results.

With the Runge Kutta integration, the state space in order to find the next state of dis-
placement, and velocity is given by the parameters Yi = [xi, ẋi, pi, pi+ 1

2
, pi+1, k, ζ, ωn].

The first load case is described as an autoregressive model of zero or first order (Section
3.6) where the next load is described with a linear parameter of the previous time step, and
a normal distributed random variable. In order to determine the cell mapping, different
realisations of the distributed random variable with a certain probability is selected, and
the image point of the displacement and velocity is found with the Runge-Kutta-Nyström
method. The other load case investigated is a harmonic load with a random phase. In this
load case the cell mapping is performed by selecting several random points for the random
phase cells.

3.4 The Transition Probability Matrix

Start

Select
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Force step
from dis-

tribution F̂

Select
random

point in cell

Map point
to new state
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Place image
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Save in
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No

Yes

No

Yes

No
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Figure 3.1: Flow chart of Algorithm used to determine the Probability Transition Matrix

The Transition Probability Matrix describes how the system transitions from one proba-
bility state to the next. By considering the system as a Markov chain, the next state is only
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3.4 The Transition Probability Matrix

dependent by its previous state and the mapping is then described on this matrix with an
element pij is the mapping from state j to state i,

P = (pij) = P [Yk+1 = yj |Yk = yi] (3.12)

This makes it possible to construct the matrix with column vectors where each vector
represents which states the cell is mapped to. Usually most of the values in these vectors
are zeros, so in order to save the matrix memory efficient it could be stored as a Row Sparse
Matrix format. That means that the matrix is stored as 3 vectors, one containing all the
data, the Column index, and a vector containing location where the data vector start a new
Row. This is a compressed way of describing the matrix, and techniques are developed
in the scipy.sparce module in order to deal with large matrices. [27] Some of the most
essential code developed in this thesis is found in the Appendix.

Displacement

V
el

oc
ity

(xi, vi)

(x∗i+1, v
∗
i+1)

Figure 3.2: Illustration of a Point mapped outside Range of Cells

3.4.1 Speeding up Python
Considering the Flow chart, Figure 3.1, the calculation will in most cases consist of a large
number of iterations and cells. Writing the code in Python, which is done in this thesis
makes the code easy to read, but in most cases the speed will not be as good as if it was
programmed in languages like C++ or Fortran. In order to make the code in python more
time efficient the Numba library is implemented to vectorize some of the functions like the
Runge-Kutta-Nyström point mapping algorithm. Listing 1 shows how the next states are
calculated. The 3 first lines is Numba code which specifies the input as floating numbers
in an array of either (n), or (m) length. Prescribing the size of the arrays and data type lets
Numba compile the computer code in a more efficient way than regular python code. The
time reduction is about 100 times faster when using Numba to compile the code.
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1 @guvectorize(

2 'void(f8[:], f8[:], f8[:], f8[:], f8[:], f8[:], f8[:], f8[:])',

3 '(m),(n),(n),(n),(n),(n)->(n),(n)',

4 target='parallel')

5 def RKN(par, x, v, F0, F1, F2, xn, vn):

6 omega_n, zeta, k, h = par

7 K = 0.5 * h * omega_n**2

8 for i in xrange(len(x)):

9 k1 = K * (F0[i] / k - 2 * zeta / omega_n * v[i] - x[i])

10 k2 = K * (

11 F1[i] / k -

12 2 * zeta / omega_n * (v[i] + k1) -

13 (x[i] + 0.5 * h * (v[i] + .5 * k1)))

14 k3 = K * (

15 F1[i] / k -

16 2 * zeta / omega_n * (v[i] + k2) -

17 (x[i] + 0.5 * h * (v[i] + .5 * k1)))

18 k4 = K * (

19 F2[i] / k -

20 2 * zeta / omega_n * (v[i] + 2 * k3) -

21 (x[i] + h * (v[i] + k3)))

22 xn[i] = x[i] + h * (v[i] + (k1 + k2 + k3) / 3.)

23 vn[i] = v[i] + (k1 + 2 * k2 + 2 * k3 + k4) / 3.

Listing 1: Runge Kutta Nyström code accelerated with numba

3.5 Restricting Boundaries

For a structure with dynamic loads, the steady state solution is often of interest for long
term considerations of the system. By discretizing the state space, a problem occurs when
the image point from a cell is mapped outside the region, which does not correspond to a
cell. If one simply remove these points, the sum of probability in all cells will get smaller
and smaller for each iteration, and the steady state solution will be zero for all cells. Often
this problem is overcome by selecting a wide range of cells such that the probability of
mapping outside the discrete state space is small. Also it is possible to renormalize the
probability vector p such that the sum of probability in all states is equal to 1 after each
iteration. However, it is not quite clear if this method is sound to use. The probability
leakage from a point mapped outside the range will more often skew the probability plot
towards the more extreme values in either displacement or velocity. A renormalization
over all states might therefore underestimate the distribution in the extreme values. In
this thesis, the problem with probability leakage is overcome by setting boundaries around
the outermost cells. Image points which would be mapped outside the discretized space
will be placed in a cell along the border which is determined by a linear path between the
starting point and image point. Figure 3.2 shows the cell mapped from, and image cell in
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3.5 Restricting Boundaries

red when a point is mapped outside the range of cells. This will introduce truncation errors
at the boundaries, which will be investigated in this thesis. The boundary condition applied
when a image point falls outside the discretized domain is stated as with (x∗i+1, v

∗
i+1) as

the point mapped outside, and (xi+1, vi+1) as the spurious image points mapped inside
the sample space Ω.

L = max

H(|x∗i+1 − xlim|)
|x∗
i+1−xlim|
|x∗
i+1−xi|

H(|v∗i+1 − vlim|)
|v∗i+1−vlim|
|v∗i+1−vi|

(3.13)

xi+1 = xi + (x∗i+1 − xi) · (1− L)

vi+1 = vi + (v∗i+1 − vi) · (1− L)
(3.14)

where H is the heavside step function defined,

H(x) =

{
1 for x ≥ 1

0 for x < 0
(3.15)

Algorithm 1 Simple iteration Algorithm

1: Inputs:
−P
−p0

− tolerance
− max iterations

2: Initialize:
i = 0

3: for max iterations do
4: pi+1 = P · pi
5: err =

∑N
n=1 |pi+1,n − pi,n|

6: i+=1
7: if err ≤ tolerance then
8: break
9: end if

10: end for

3.5.1 Steady State Solution

The steady state solution occurs when the transient behaviour vanishes. For a dynamical
system with initial condition this happens when the homogeneous solution to the differ-
ential equation (Eq. 2.29) is zero and happens only as t → ∞, since the homogeneous
solution is defined [8],

xh(t) = e−ζωnt(A sin(ωDt) +B cos(ωDt)) (3.16)
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where
√
A+Be−ζωnt is the maximum amplitude for a time t. Specifying a tolerance

value ε measuring the amplitude of the signal at a time t

xh(t)

xh(0)
= e−ζωntε ≤ ε (3.17)

tε =
− ln(ε)

ζωn
(3.18)

The time tε is then the time until the transient behaviour reaches a level ε times the initial
amplitude, and for small values of ε this would give an indication on how long time before
reaching steady state. This is used when Monte Carlo Simulations are carried out for the
response in order to compare with the cell mapping results.

Algorithm 1 shows how a steady state solution can be iterated from an initial state
vector p0. When the system reaches a steady state the difference between state pi and the
next state pi+1 should go towards zero.

Another method of finding the steady state solution to the mapping problem is by
considering the eigenvalue problem,

pP = λp, (3.19)

When solving for the eigenvector, an algorithm for solving only the largest eigenvalue is
used, since this would usually lead to the case where the eigenvalue is 1. The largest eigen-
value for a stochastic matrix is always 1 according to the Perron-Frobenius theorem.[2]
In this thesis this is done by implementing the ARPACK software [31] which uses the
Arnoldi Method of finding the larges eigenvalue which is the preferred method of solving
large sparse matrix eigenvalues [1].

3.6 Autoregressive (AR) load model

The white noise process is defined as a continuous stochastic process. In order to use the
Runge Kutta Nyström method and obtain fourth order accuracy in the time stepping of the
equation of motion (Eq: 2.29), the load has to be known at the current time step, the next
time step, and a time step in between the two. In order to take discrete samples in time a
new variable F is defined as the average over an integrated path of the white noise process
W .

F∆t =

∫ t+ ∆t
2

t−∆t
2

W (t)dt (3.20)

the mean:

µF = E[F ] = E

(
1

∆t

∫ t+ ∆t
2

t−∆t
2

W (t)dt

)
=

1

∆t

∫ t+ ∆t
2

t−∆t
2

E[W (t)]dt = µW = 0 (3.21)
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and variance:

σ2
F = E[F 2]− E2[F ] = E

(
1

∆t

∫ t+ ∆t
2

t−∆t
2

W (t1)dt1
1

∆t

∫ t+ ∆t
2

t−∆t
2

W (t2)dt2

)

=
1

∆t2

∫ t+ ∆t
2

t−∆t
2

∫ t+ ∆t
2

t−∆t
2

E[W (t1)W (t2)]dt1dt2

(3.22)

Since the variable W is time-invariant, the expected value of the two variables can be
expressed with the autocorrelation: E[W (t1)W (t2)] = RWW (τ). Since the process also
is a zero-mean process, the variance could be obtained by the following expression, [21]

σ2
F =

1

∆t2

∫ ∆t

−∆t

[∆t− |τ |]RWW (τ)dτ

=
1

∆t2

∫ ∆t

−∆t

[∆t− |τ |]2πS0δ(τ)dτ

=
2πS0

∆t

(3.23)

The continuous White Noise process can now be modelled as a discrete Gaussian Ran-
dom Process where the force realisations are independent samples characterised by their
mean and variance. However, the variance of the signal and response would not be equal
as for the expressions shown in (Eq 2.40) and (Eq 2.41). Due to anti aliasing in a discrete
signal, the power spectra would only be defined for frequencies smaller than the nyquist
frequency fn [29]. In order to find the response variance the integral in (Eq 2.40) and (Eq
2.41) should be evaluated with the followin limits,

σ2
Y =

∫ ωNy

0

S0|HFX(ω)|2dω (3.24)

σ2
Ẏ

=

∫ ωNy

0

S0|iωHFX(ω)|2dω (3.25)

and could be evaluated numerically.

3.6.1 Truncation and Discretization of white noise
Truncation

The noise term associated with the AR models is a normal distributed noise term. In
monte carlo simulations, this noise is simulated by picking a random value weighed by the
normal distribution curve. Since the cell mapping method divides the force range into a
finite number of states, the added noise must be truncated at the force limits,

F ∈
[
−nf∆F

2
,
nf∆F

2

]
, (3.26)

where nf is the number of cells, and ∆F the cell size. Values are then only considered in-
side these limits, and neglected outside. In order to preserve the probability of the random
variable F , the variable is renormalised. This will distort the normal distribution, so the
limits of the truncation should be large enough to contain most of the distribution.
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Figure 3.3: Example of how a normal distribution is discretized into 10 discrete values

Discretization

The truncated discrete continuous variable should be discretized into discrete values. Each
discrete value creates a image point from a cell state, so fewer values would mean faster
computation time. The size should however be large enough to represent a normal distri-
bution. Let F̂ be the discrete variable with nf states. The probability distribution of the
discrete variable is then given by the cumulative distribution of the continuous variable,

The probability of X being between the upper and lower limit of the cell (FU and FL)
is given by the cumulative distribution of a normal random variable:

P (f = F̂i) = P (f ≤ F (F̂i +
∆F

2
))− P (f ≤ F (F̂i −

∆F

2
))

= F(F̂i +
∆F

2
))− F(F̂i −

∆F

2
)

(3.27)

3.6.2 Modified Discrete Noise
The difference between the AR(1) model, and the AR(0) model used to model white noise,
is the correlation with the previous force step φ 6= 0. The correlation changes the statistical
properties of the load, F 6= W . The discretization of the load parameter F could therefore
differ from the random variable W, as opposed to the AR(0) process. The Central Limit
Theorem [30] establishes that when statistical independent random variables with finite
variance are added, the sum tends toward a normal distribution. For φ > 0 the force F
could represent such a summation, though it may not be significant for small values of φ.
For larger values of φ it might be tempting to change the random variable W to a defined
discrete variable containing only a small number of values since this will decrease the
computation time.

let the random variable T be defined for 3 values,

T = β[−1, 0, 1] (3.28)

where β is the width of the variable,

P(T ) =
1

2 + α
[1, α, 1] (3.29)
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P (T )
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2+α

Figure 3.4: Probability distribution of random variable T

The first two moments are found as follows,

E[T ] = T ·P(T )T = 0

V ar[T ] = T2 ·P(T )T =
2β2

2 + α

(3.30)

The constants α, and β must be determined. The magnitude of the force is described by
the width β, and is now defined as a function of the force cell size,

β = ψ∆F (3.31)

where ψ is the parameter describing the with in terms of force cell size. This value should
of course not be less than one which would result in the force mapping back to the same
cell. Large values compared to the force discretization size should also be avoided. In
order to get a correct distribution of the force, the statistical properties must be kept in the
new variable T. Which is zero for the mean, while the variance,

2β2

2 + α
= σ2

W

2(ψ∆F )2

2 + α
= σ2

W

α = 2

(
ψ∆F

σW

)2

− 2

(3.32)

The Force stated is discretized into n bins, with a range between [−λσF , λσF ], so the cell
size is expressed in terms of n and λ,

∆F =
2λσF
n

(3.33)

For a AR(1) force, the relation between the variance of the force, and the variance of the
added white noise is given in Eq. 2.13. The cell size ∆F can therefore be expressed in
terms of the added noise variance,

∆F =
2λσW

n
√

1− φ2
(3.34)
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Which lets us define our constants α and β in such way,

α =
8ψ2λ2

n2(1− φ2)
− 2

β = ψ∆F =
2ψλσW

n
√

1− φ2
= σW

√
α/2 + 1

(3.35)

α > 0 is also required to have the probability positive defined, so the relation in the Force
state discretization,

λ

n
>

1

2

√
1− φ2

ψ
(3.36)

The AR(1) process could now be realised with the change of random noise,

Fi+1 = φFi + Ti (3.37)

(a) MC sim. in continuous Force space (b) Cell Mapping in discrete force space, φ = 0.9

Figure 3.5: Different AR(1) force model distributions with standard deviation σF = 1

Which value ψ should take is not obvious and Figure 3.5 shows that the solution is
highly dependent on the value chosen. The optimal value is therefore found through test-
ing, where the cell space only consist of force cells. For an autoregressive load case this
would be creating a cell space of n− 2 dimensions, where n being the number of dimen-
sions including displacement and velocity. This is a small problem compared with the
whole model which makes it possible to test for several realisations of ψ withing reason-
able time.

There is often a goal to discretize the force into a coarse mesh. A detailed representa-
tion of the displacement and velocity is in general more important than the details in the
force representation. A coarse mesh will more often however result in an error in the final
force distribution. The variance of the random noise added to the AR model could then
be modified to accommodate these discretization errors in the final force distribution. A
possibility is to modify the probability distribution parameter,

α̂ = αξ, (3.38)
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3.6 Autoregressive (AR) load model

where ξ is another scalar found empirical through force mapping. Algorithm 2 shows
how these parameters are estimated in this thesis. The first set of parameters is chosen by
guessing. ψ is then chosen after iterating through different values, and chosen based on
how well the force distribution fits with the expected distribution. When a suitable value
for ψ is chosen, different realisations for the parameter ξ is tried. The best fit is here chosen
based on how well the variation fits compared to the known variation. These parameters
are therefore chosen based on different criteria. ψ is chosen based on how well the shape
fits, while ξ is chosen based on how well the variance of the distribution fits.

The modified distribution parameter α̂ changes the variance of the added noise. For ξ
larger that 1, the added noise decreases, while for values smaller than 1 it decreases. This
value is chosen to accommodate for the changes in variance due to the errors introduced
when the force is discretized into cells.

Algorithm 2 Find force parameters

1: Inputs:
λ, φ, σF

2: Initialize:
ψ0 = min{1, n2λ

√
1− φ2}, ξ = 1, or user defined

3: for range of ψ do
4: determine α and β (EQ 3.35)
5: determine prob. transition matrix P
6: p = steady state probability vector
7: p→ fF (x) linear interpolation
8: Rψi =

∫
(fF (x)− fW (x|0, σF ))2dx

9: end for
10: Select ψ based on lowest residual in Rψ
11: Initialize:

β = ψ∆F
12: for range of ξ do
13: determine α̂ = αξ
14: determine prob. transition matrix P
15: p(F) = steady state vector
16: p→ fF (x) linear interpolation
17: Rξi = (

∫
x2fF (x)dx− σ2

F )2

18: end for
19: Select ξ based on lowest residual in Rξ

return ψ, ξ

3.6.3 AR - force mapping

In the last sections the force model is established. The discrete force model is a discretized
force space where the added noise is a discrete random variable. The mapping function

29



Chapter 3. Methodology

should describe the evolution of force from a state,

m(Fi) = Fi → Fi+1 (3.39)

and for the white noise process this evolution is described with the probability vector
P (W ).
For a AR(1) load the mapping is described through the noise variable T defined in Section
3.6.2 and with Eq. 3.29,

m(Fk) = φ1Fk + P(T ) (3.40)

and for an AR(2) process both the current and the previous force step has to be mapped,

m(Fk, Fk−1) =

{
φ1Fk + φ2Fk−1 + P(T ), for Fk
Fk, for Fk−1

(3.41)

3.7 Harmonic Load

p(θ)

θ2π

1
2π

Figure 3.6: Probability distribution of random variable θ

The force model is described in section 2.1.3, and the response is found with the frequency
response function,[24]

x(t) = H(ω)F0 sin(ωt+ θ) = G sin(ωt+ θ − φ) (3.42)

G = |H(ω)|F0 (3.43)

3.7.1 Probability distribution of response
H(ω) is defined in EQ 2.33, which means that H(ω) is purely deterministic for all real-
isations of θ. the phase φ is the phase difference between the load and the response, and
makes it possible to deal with the frequency response function as a real number.

In order to find a probability density plot of the displacement one has to look at the
amount of the displacement at a certain time x(t∗) lies in the band x 6 x(t∗) 6 x+dx for
0 < θ 6 2π. The first order probability density function p(x) is defined: (See Fig. 3.7).
[24]

Prob(x 6 x(t∗) 6 x+ dx) = p(x)dx = 2dθp(θ)dx (3.44)
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Figure 3.7: Illustrating of time for which t∗ for which x 6 x(t) 6 x+ dx

Taking the derivative of x(t) with respect to θ gives,

dθ =
dx

G cos(ωt+ θ − φ)
(3.45)

Substituting for:

cos(ωt+ θ) =

√
1− sin2(ωt+ θ − φ) (3.46)

Combining eq: (3.42) & eq: (3.45):

dθ =
dx

G
√

1− x2

G2

(3.47)

Leads to result when combining eq: (3.44) & (3.47):

p(x) =
1

π
√
G2 − x2

(3.48)

Figure 3.8 shows that the probability density is lowest at the mean value and increases
towards the extremes. It can also be shown by integration that:

∫ ∞
−∞

p(x)dx =

∫ G

−G

1

π
√
G2 − x2

dx = 1 (3.49)

Which makes it certain that x(t) 6 |G|.
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Figure 3.8: Probability density function of harmonic steady state response

−ωG

ωG

G−G ωt+ θ − φ
x

ẋ

Figure 3.9: Relation between velocity and displacement described with an ellipse for harmonic
response

Joint probability density

The joint probability density of displacement and velocity is also of interest. The derivative
of the displacement (Eq 3.42) gives the equation for the velocity state,

ẋ(t)

ωG
= cos(ωt+ θ − φ) =

√
1− sin2(ωt+ θ − φ) =

√
1−

(
x(t)

G

)2

(3.50)
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Figure 3.10: Illustrating that a certain displacement will result in 2 possible velocity states

Which states that the solution always will be on the ellipse,( x
G

)2

+

(
ẋ

ωG

)2

= 1 (3.51)

The joint probability distribution for independent variables is defined [30]:

P (X,Y ) = P (X|Y ) · P (Y ) (3.52)

so for a given displacement, there is at most two velocity states possible. This is illustrated
in Figure 3.10, and could also be seen by the relation cos(arcsin(x)) =

√
1− x2. This

means that the conditional probability could be described with the dirac-delta function δ,

P (V |X) =
1

2
δ(ẋ+ ω

√
G2 − x2) +

1

2
δ(ẋ− ω

√
G2 − x2) (3.53)

and ultimately the joint probability,

P (X,V ) =
1

2π
√
G2 − x2

[
δ(ẋ+ ω

√
G2 − x2) + δ(ẋ− ω

√
G2 − x2)

]
(3.54)

3.7.2 Harmonic load-mapping
We have defined our probability space for a harmonic load in section 3.7. In order to
implement this in the cell-mapping alporithm the random phase state has to be discretized,
and the time evolution, or mapping function has to be described. The mapping function of
the phase θ is here defined,

m(θ) = θ + ωf∆t. (3.55)

The mapping distance should be equal to the cell size of θ in order to insure that every
point from a certain cell is mapped to the same image cell.

m(θ)− θ = ∆θj for j = 1, 2, 3, ... (3.56)

since the cell size ∆θ = 2π
nθ

, the following criteria should be satisfied,

ωf∆tnθ = 2πj for j=1,2,3,... (3.57)
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3.8 Cycle counting
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Figure 3.11: Deterministic and stochastic description of a path

In order to do any fatigue calculations one has to know how many cycles and of which
magnitude they are. One of the most common way to do this today is the rainflow counting
method [11]. This has to be carried out as a time domain analysis, and the fatigue cycles
are counted according to the rainflow method. A drawback with this method is that in
order to capture events in the response with low probability of occurring, on has to deal
with an extensively long sample. It is therefore of interest to see if one can use the cell
mapping transition matrix in order to find the cycles for fatigue calculations.

3.8.1 Markov chain aproximation
A time signal could be described as a series of turning points, where the derivative is zero.
One half-cycle is defined for a process going from one turning point to the next at some
time. For a dynamic system the turning points would be each time the first derivative of
the displacement, the velocity reaches zero. The signal then forms a series of peaks and
troughs each defining one half cycle. Frendahl and Rychlik shows that these turning points
can be approximated as a Markov chain for Gaussian, as well as for some non-Gaussian
loads [12]. This means that a trough is only dependent on the previous peak and vice versa.
The half cycle forms a peak through count{Mi,mi}. This makes it possible to state the
transition with another stochastic matrix,

Pp = (pij) = P [peakk+1 = xi|peakk = xj ] (3.58)

Finding this Transition Probability Matrix between one extrema to another extrema how-
ever must be found. On could simulate different half cycle paths with a Monte Carlo
simulation and store the results in a matrix. (see Fig. 3.11). In this thesis the Transition
probability matrix derived in section 3.4 describing the transition from one state to the next
state is used to describe the probabilistic half cycle path with initial condition,

P (X,V ) = δ(X = x0) · δ(V ), (3.59)
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3.8 Cycle counting

describing the system starting with an amplitude x0 and zero velocity. With cell mapping
this could be achieved by finding the cell which satisfies the initial condition (transient
state), and iterate with the transition matrix until it reaches the final extrema state (recurrent
state). The recurrent state is the final state of a path when the velocity reaches zero. In
order to describe such a path, the Transition Probability Matrix has to be modified in some
way to satisfy the following: 1. If mapped to a recurrent state, the probability should stay
in this state for every following iterations. 2. If an image cell of a state is defined with a
change of velocity the path should be transitioned to a recurrent state.

The first criterion is dealt with by finding all the recurrent cells which describes a zero
velocity state, cr.

Pmod1 = P · Ir + Îr (3.60)

where Ir is the identity matrix with zero columns at the recurrent states, and Îr is the zero
matrix with ones at the recurrent states.

The second criterion is dealt with by finding all the cells where the mapping crosses
the zero velocity state, and map these cells again as described with the algorithm presented
in section 3.4.

Pmod2 = P̂ = P · Ic + Pc (3.61)

where Ic is the Identity matrix with zeros at the states crossing zero velocity, and Pc is the
transition matrix only describing the mapping from this states. The transition matrix Pc has
to be computed using the algorithm in section 3.4 with similar limitations used in (Eq. 3.13
& Eq. 3.14), where the mapping is prevented from crossing the zero velocity line. This
will result in an accumulation of points mapped to the states along the zero velocity axis.
There are methods developed for manipulating the matrix and finding the recurrent states
with an initial transition state [4]. If one wants to extract the time information, how long
it takes for a half cycle the only way is through iterations [4]. For large problems iteration
might also be the fastest way to extract the cycle results. However, one has to ensure that a
predominant number of image points has reached a recurrent state. Algorithm 3 shows an
algorithm developed in order to iterate a solution to get the Extrema to extrema transition
matrix.

3.8.2 Damage Intensity
The Damage Intensity is usually found by first creating a time signal and then find the
counting intensities from this time signal. (Eq. 2.59) [12] In this thesis a new approach
is considered, by finding the counting intensity through the extrema to extrema transition
matrix. Since this stochastic matrix describes the transition from peak to trough and vice
versa, the steady state vector pp = [P (u = x1), P (u = x2), ..., P (u = xi)] of this system
will describe the peak distribution,

ppPp = pp (3.62)

Now consider two submatrices in Pp where PP→T is the transition from a certain peak
to the following trough, and PT→P is the transition from from a trough to the following
peak.

PP→T = (pij) = P [v = xj |u = xi] for i ≥ j
PT→P = (pij) = P [u = xj |v = xi] for i ≤ j

(3.63)

35



Chapter 3. Methodology

Algorithm 3 Create Extrema Matrix

1: Inputs:
Cell Mapping Transition Matrix: P,
recurrent cells: cr,
crossing cells: cc

2: P̂ = P · Ir + Îr
3: Cell Mapping{cc} → Pc

4: P̂ = P̂ · Ic + Pc

5: Initialize:
set tolerance,
Pp = {zeros, shape(cr.size, cr.size)}

6: for i in every displacement state do
7: p0 ={1 for displacement state, 0 all other}
8: p = P · p0

9: while 1− p(cr) > tolerance do
10: p = P̂ · p
11: end while
12: Pp(j) = p(cr)
13: end forreturn Pp

The probability of having a cycle with a peak of height u followed by a trough with the
depth v can the be expressed with the joint probability function (Eq. 3.52),

P [u = xi, v = xj ] = P [v = xj |u = xi] · P (u = xi)

= pp(ui) ·PP→T(ui, vj)
(3.64)

the counting intensity for the peak trough cycles can then be obtained,

P [x > u, y < v] =

∫ ∞
x=u

∫ y=v

−∞
P [x = u, y = v]dydx

≈
n∑

xi=vi

vj∑
xj=1

pp(xi)P
P→T(xi, xj)

= µPT (u, v)

(3.65)

Having the counting intensity for the peak trough count the next step is to acquire the
rainflow counting intensity. The procedure is defined in section 2.6, and since the intensity
is defined with discrete values and represented in a matrix, the Damage intensity (Eq. 2.60)
can be calculated as follows:

E[D(1)] =

n∑
j=1

n∑
i=j

µRFC(xi, xj)β(β − 1)(u− v)β−2(∆x)2 (3.66)
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3.8 Cycle counting

3.8.3 Damage intensity for Narrow banded process
The damage function is described with equation 2.55. The damage caused by a cyclic peak
is for a narrow banded process N(u) = (2u)−β (since the stress range varies over 2 times
the peak height, (see Eq. 2.61). The damage intensity can then be written,

E[D(1)] = E[ν+
0

∫ ∞
0

(2u)β
u

σ2
x

e
− u2

2σ2
x du]

= ν+
0

[
23β/2

(
1

σ2
x

)β
Γ

(
β

2
+ 1

)] (3.67)
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Chapter 4
Steady State Calculations

Fwind

Fwave

x

Figure 4.1: Sketch of a shallow water wind turbine with natural loads
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The structural properties of the wind turbine in Figure 4.1 could be found by analysing the
modal shapes [8], or with any finite element anslysis software which is done in a previous
master thesis by Hembre [13]. In this thesis the properties for the fundamental mode of a
NREL 5-MW Baseline Wind Turbine will be used in the testing of the method. [13].

Table 4.1: System properties of first modal shape of NREL 5-MW Baseline Wind Turbine

m = 4.1 105 kg
k = 1.8 MN/m
c = 1.7 104 kg/s
ωn = 2.1 rad s−1

fn = 0.33 Hz
ζ = 0.01

Computer Properties

Table 4.2: Computer Properties used in analysis

OS = Windows 10 64-bit operating system
CPU = Intel(R) Xeon(R) CPU E5-2630 v3 @2.4GHz
Cores = 6
Logical processors = 12
Memory = 64 Gb DIMM

4.1 AR(0) load - White Noise
The state Y is described by the displacement, velocity and force acting on the system,
which makes the sample space a 3 dimensional space described with the vectors Ω =
[x, ẋ,F]

Discretization

Let the white noise spectra be defined with an intensity S0 = 1.59 · 108 N2/Hz. The
standard deviation in the force and response can be found with the equations in Chapter
3.6. For this test the cell space is meshed within 3 times the standard deviation in both
displacement, velocity and force which would capture 99.7% of all events. The total num-
ber of cells are 404 010. Both displacement and velocities are discretized into 201 states,
while the force is discretized into 10 states. The fine mesh in the displacement and veloc-
ity state is chosen to accurate map how the system response. While for the force, a few
states is necessary to represent the statistical properties, and the round-off error due to a
coarse mesh is expected to be smeared out through the mapping function (Runge Kutta
Integration).
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4.1 AR(0) load - White Noise

Table 4.3: AR(0) Load Model Parameters

φ = 0
σW = 100 kN
∆t = 0.1 s
nx = 201
nv = 201
λ = 3
nF = 10

4.1.1 Number of Random Mapping Points

(a) 1 Random Point (b) 10 Random Points

(c) 100 Random Points (d) 1 000 Random Points

Figure 4.2: Joint Probability steady state with different number of mapping points in each cell

One interesting aspect is to see how many sampling points is needed in each cell in order
to get a sufficiently accurate plot of the steady state probability distributions. The joint
probability plot (Figure 4.2) shows the distribution of displacement and velocity. The state
of the system is described as in 3 dimensions, which means that there are 10 cells which
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(a) Displacements

(b) Velocities

Figure 4.3: Probability density plot of displacement and velocity with different number of mapping
points in each cell

corresponds to a given displacement and velocity. (The same number as length of force
vector). The joint probability plot is therefore the sum of probability over all 10 force
states. Where the probability density plot of displacement and velocity is summed up over
10 x 201 states. A single mapping point in the 3 dimensional cell space is then in fact
10 mapping points in the displacement-velocity space, and 2100 mapping points in either
displacement, or velocity.

For an analysis where the force mapping, and resolution of the joint probability of
the displacement, and velocity is required a higher number of random mapping points
should be carried out. If however only the one dimensional distributions along either the
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4.1 AR(0) load - White Noise

displacement, or velocity axis is important a much smaller number of random mapping
points is required. Figure 4.3 shows almost the same accuracy for 10 random mapping
points as for 1000 random mapping points.

4.1.2 Time step
Monte Carlo Simulations

Table 4.4: Standard Deviation of displacement with Monte-Carlo-Simulations

Time Step Measured STD. Exact STD error
0.01s 0.1277 0.1273 0.310 %
0.05s 0.1272 0.1273 -0.08 %
0.1s 0.1257 0.1273 -1.24 %
0.2s 0.1243 0.1273 -2.36 %
0.3s 0.1218 0.1273 -4.29 %
0.4s 0.1153 0.1273 -9.45 %
0.5s 0.1024 0.1273 -19.5 %

The time step used in the integration could be crucial for having the correct estimation of
the probability density plot. The first analysis carried out is a Monte Carlo Simulation of
the load, where probability density distribution of the response is estimated. For each step
a force vector is generated with random normal distributed entities with zero mean, and
standard deviation found in (Eq 3.23). Each simulation is about 100h long after deleting
the transient behaviour at the beginning of the signal. The transient threshold is set to
10−10 meaning that the amplitude of the transient signal has decayed 10−10 times. The
analysis shows it is crucial to choose a small time step in order to estimate the distribution
with a decent accuracy.

Cell-mapping

Table 4.5: Standard Deviation of displacement with Cell-Mapping

Time Step Measured STD. Exact STD error
0.01s 0.1419 0.1273 11.5 %
0.05s 0.1302 0.1273 2.34 %
0.1s 0.1283 0.1273 0.841 %
0.2s 0.1262 0.1273 -0.829 %
0.5s 0.1058 0.1273 -16.9 %

For each cell 100 random points are selected in order to determine the image of the cell,
and determine the Transition Probability Matrix. The steady state solution is found by
solving the largest eigenvalue of the Transition probability Matrix. The results show that
for the smallest time step, the cell mapping method will not give accurate results.
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(a) Displacements

(b) Velocities

Figure 4.4: Probability density plot of displacement and velocity for different time steps

Ammount Mapped in Starting Cell

The Monte Carlo Simulations shows that in order to get a satisfactory estimation of the
probability density distribution of either displacement, or velocity a small step size is nec-
essary. Even while all the step sizes in the analysis above are below the critical time step,
and the Nyquist frequency, in order to get a good estimation of the probability density
distribution, an even smaller time step is necessary in order to caption all the distribution
away from the mean.

The plots also reveals the problem that occurs with domain discretization and small
time steps. For the smallest time step ∆t = 0.01s the probability is diffused over a
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4.1 AR(0) load - White Noise

(a) ∆t = 0.01s (b) ∆t = 0.05s

(c) ∆t = 0.1s (d) ∆t = .2s

Figure 4.5: Probability of Image cell mapped to the same state as the starting state

large domain. This result could be explained when a cell size is large relative to the
time integration step a lot of image point will not be able to reach outside the starting
cell. Which means that the Transition Probability Matrix will not be able to describe the
dynamic behaviour in a sufficient manner. The stiffness caused by the cell discretization
is seen in all the time steps tested where Table 4.5 shows a larger standard deviation for all
time steps in the cell-mapping method than for Monte-Carlo simulations.

To check whether the cell size is too large compared to the time step, the amount of
probability mapped in to the same cell could be checked considering only the Transition
Probability Matrix. The amount mapped into the same state are the diagonal entities:
(pij),where i = j. However, when only considering the response displacement, and ve-
locity mapped into the same state this is solved with a basic script. This can be seen in
the Appendix. Figure 4.5 shows the the probability of mapping back to the same response
state for different time step. It is clear that for a time step ∆t = 0.01s a lot of the proba-
bility is mapped back to the same displacement-velocity state, and could therefore explain
why the distribution is so far off.
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4.1.3 Boundary Condition

(a) initial random vector (b) 1st iteration (c) 5th iteration

(d) 25th iteration (e) 50th iteration (f) 100th iteration

(g) 250th iteration (h) 500th iteration (i) 1000th iteration

Figure 4.6: Evolution of response for a white noise load starting with a random vector

The boundaries which limit the displacement, velocity from escaping the discretized do-
main add a distortion to the system. The image point is mapped to a cell in the domain
while the system wants to put the image point outside. The mapping of these points would
therefore be spurious Image points. Figure 4.6 shows how the system behaves at the
boundaries after different number of iterations with the Transition Matrix. The effect form
the boundaries are primarily seen at the first iterations where the probability is spread ran-
domly. For a higher number of iterations, the probability moves towards the centre of the
domain, and the effect from the boundary is therefore marginal.
Figure 4.7 shows how the mean and variance evolves with number of iteration. It seems
that the statistical properties goes toward the steady state solution faster than the tran-
sient behaviour decays (green curve). This shows that the statistical properties also could
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4.1 AR(0) load - White Noise

(a) Mean (b) Variance

Figure 4.7: Evolution of mean and variance of displacement for white noise load

Figure 4.8: Error vs. number of iterations

be implemented in an iteration scheme in order to satisfy convergence of the statistical
properties. Looking at the error (difference between current and previous probability state
vector) Figure 4.8 shows a linear convergence rate.

Steady state for different range specifications

A goal for this thesis is to demonstrate how different ranges of the domain influence the
steady state distribution. Table 4.6 shows how the displacement, and velocity mesh is
discretized for the different setups. The force is discretized into 15 states, and there are
100 of random points in each cell to determine the cell mapping. The steady state solution
is found by solving the largest eigenvalue of the transition matrix.

The result shows that for an accurate estimation of the probability distribution one
should at least look at a range 3 times the standard deviation of the response. For smaller
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range the accumulation of probability can be seen at the boundaries, which would be a
clear indication that the domain range should be widened. Figure 4.9 also shows that a
standard deviation of at least 4 is need in order to remove any significant accumulation of
probability at the boundaries.

Table 4.6: Range specification

Range Mesh ∆x/∆v[m]
4σ 160x160 0.00625/0.0125
3σ 120x120 0.00625/0.0125
2σ 80x80 0.00625/0.0125

1.5σ 60x60 0.00625/0.0125
1σ 40x40 0.00625/0.0125

Figure 4.9: Displacement distribution for different boundary ranges
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4.2 Single Harmonic load

(a) Range = 4σ (b) Range = 3σ

(c) Range = 2σ (d) Range = 1.5σ

Figure 4.10: Joint probability plots for different boundary ranges

4.2 Single Harmonic load

Table 4.7: Single Harmonic Load Parameters

F0 = 100 kN
ωf = 3 rads−1

nθ = 100
nr = 100
∆t = 0.67

The single harmonic load case is described in section 3.7. In this section the steady state
of this load case will be investigated. This means that the discretisation in time, response
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Figure 4.11: 3D Illustration of Steady State Distribution from harmonic load response

(displacement and velocity) and phase is changed to see how these changes influences the
final distribution. Figure 4.11 is a 3D projection of the contour plot in Figure 4.14d as a
spacial illustration of the final distribution.

4.2.1 Variable time step

In order to find out how a different time step influences the steady state response, a rel-
atively fine mesh is chosen in displacement, velocity and phase. The probability space
is 3 dimensional Ω = [x, ẋ, θ], and the displacement and velocity is discretized into 100
states each. The phase discretization is described in Table 4.8 where the number of states
is chosen to satisfy eq 3.57. For calculation the probability transition matrix, 1000 ran-
dom points are selected in each cell, and the steady state is found by solving the largest
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4.2 Single Harmonic load

eigenvector of the transition matrix.
The final results show a lot of probability diffusion for a small time step. Figure 4.12

shows how the probability distribution gets narrower for larger time steps. The largest time
step shows a skewed joint distribution and indicates that the solution could grow unstable.
There migth therefore seem that a time step ∆t = 2

ωf
yields the most accurate results.

Figure 4.13 shows the distribution along the displacement- and velocity axis compared
with the theoretical result provided in Section 3.7. There seem to be a tendency for all
time steps to underestimate the peak probability of the displacement distribution. Both
distributions seem to get closer to the theoretical solution for increasing time steps except
for the largest time step.

Table 4.8: time step used, relation to load frequency, and number of phase cells

∆t ∆tωf nθ
0.1197 s 0.3591 100
0.2394 s 0.7182 100
0.4787 s 1.4361 100
0.5984 s 1.7952 100
0.6667 s 2.0 110
0.8976 s 2.6928 100
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(a) ∆t = 0.12 (b) ∆t = 0.48

(c) ∆t = 0.67 (d) ∆t = 0.90

Figure 4.12: Harmonic load response distribution for different time steps ∆t
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4.2 Single Harmonic load

(a) Displacement

(b) Velocity

Figure 4.13: Displacement-, and velocity harmonic load response distribution for different time
steps compared to exact solution
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4.2.2 Different response mesh
The objective is to demonstrate how a fine mesh versus a coarse mesh affects the results.
The phase is discretized into 100 states, while a time step of 0.6 seconds is chosen. 1000
Random points is chosen in each cell in order to calculate the probability transition matrix,
and the steady state is solved with the eigenvector of the transition matrix.

The result show larger probability diffusion for a coarse mesh than for finer mesh. The
probability distribution along the displacement, and velocity axis gets closer to the theoret-
ical distribution for each refinement of the mesh. How accurate the result has to be can be
how fine the response mesh should be discretized. As opposed to the different time steps,
there does not seem to be any unstable solutions for different response discretizations, but
the solution improves when the mesh is refined.

(a) nx = nẋ = 20 (b) nx = nẋ = 50

(c) nx = nẋ = 100 (d) nx = nẋ = 200

Figure 4.14: Harmonic load response distribution for different response discretizations
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4.2 Single Harmonic load

(a) Displacement distribution

(b) Velocity distribution

Figure 4.15: Displacement-, and velocity harmonic load response distribution for different response
discretizations compared to exact solution

4.2.3 Different phase size

In this section a different size for the phase state is varied while the response mesh is kept
to 100 states in both displacement, and velocity direction. The time step chosen is 0.6
seconds. The transition probability matrix is calculated with 1000 random points, and the
steady state is found by finding the eigenvector.

The results are shown in Figure 4.16 and Figure 4.17. It is shown that the solution
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is improved for finer discretization. There is also nothing that implies that the solution is
unstable for any kind of discretization. However, the solution is gradually improved for a
finer mesh.

(a) nθ = 20 (b) nθ = 50

(c) nθ = 100 (d) nθ = 200

Figure 4.16: Harmonic load response distribution for different phase discretizations
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4.3 AR(1) Load

(a) Displacement distribution

(b) Velocity distribution

Figure 4.17: Displacement-, and velocity harmonic load response distribution for different phase
discretizations compared to exact solution

4.3 AR(1) Load

The structural properties are defined in Table 4.1, while the parameters for the AR(1)
Force model has to be chosen. Usually this is done by comparing the Spectral Density
of the signal generated by the model with a wanted spectral density, however for this
test arbitrary values are chosen in Table 4.9. Figure 4.18 shows the spectral densities fro
the load and response for the chosen values, and the standard deviation of the force and
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response is presented in Table 4.10 using Eq. 2.13, and Eq. 2.37.

Table 4.9: AR(1) Load Model Parameters

φ = 0.9
σW = 100 kN
∆t = 0.1 s
nx = 100
nv = 100
λ = 3
nF = 9 or 10
ψ = 1.16 or 1.22
ξ = 1.98 or 1.73
Random points = 10 000
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(b) Response Spectrum

Figure 4.18: Exact Spectral Distributions of AR(1) load and response

Table 4.10: Excact Standard deviation of force and response of described AR(1) load

σF = 229 kN
σx = 0.5808 m
σẋ = 1.1962 m

4.3.1 Monte Carlo Simulation of response
Monte Carlo simulation is performed in order to see whether the time integration of the
equation holds a sufficient accuracy. The simulation is performed by generating a 15 hour
Force Vector with 1.08 106 samples, which are integrated stepwise in the Runge Kutta
Method described in Section 3.1. Figure 4.19 shows the spectral density and, probability
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4.3 AR(1) Load

(a) Spectral Density distribution (b) Probability Density distribution

Figure 4.19: Spectrum and Distribution from Monte Carlo Simulation of AR(1) load

distribution of the response signal with Monte Carlo simulation. Both plots seem too be
in accordance with the theoretical solution and would therefore expect to give accurate
results in the cell mapping algorithm.

4.3.2 Force Evolution

(a) Force distribution for nF = 9 (b) Force distribution for nF = 10

Figure 4.20: AR(1) Force evolution distribution

Before analysing the response of the system, a cell-to-cell mapping analysis is done
with the load only. For this load, two force discretizations will be investigated. First when
the load space is discretized into an odd number of cells, and secondly when discretized
into an even set of cells. The one dimensional cell space Ω = [F] is therefore divided into
nF = 9 cells, and then into nF = 10 cells. Even if this is a coarse discretization it will be
interesting whether this could produce accurate results. The empirical parameters ψ and ξ
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are found by iterating through different values. These results can be found in the appendix.
Figure 4.20 shows the final distribution and the values for the modified noise paramters.

4.3.3 Cell Mapping results

(a) Displacement distribution

(b) Velocity distribution

Figure 4.21: Displacement, and velocity response of AR(1) laod from Cell Mapping

The cell mapping is performed with either 9 or 10 force cells, while the displacement and
velocity response is discretized into 100 states each. That means the system consist of
either 90 000 cells or 100 000 cells. The steady state result for the two cases are quite
similar. However, it seems that the even discretized force overestimates the response,
while the odd discretized load case underestimates the response. (Fig 4.21 and Table 4.11)
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4.4 Harmonic load with withe noise

Table 4.11: Standard deviation of AR(1) Load response

σx σv error
nF=9 0.5754 1.1844 -0.9588%
nF=10 0.5881 1.2111 1.250%

4.4 Harmonic load with withe noise

Table 4.12: Harmonic load with white noise Model Parameters

σW = 40 kN
F0 = 100 kN
ωf = 3 rads−1

∆t = 0.1 s
λ = 3
nf = 20
nx = 201
nv = 201
nθ = 90

4.4.1 Monte Carlo Simulation of response

(a) Spectral Density distribution (b) Probability Density distribution

Figure 4.22: Spectrum and Distribution from Monte Carlo Simulation of Harmonic Load with white
noise

The Monte Carlo simulation shows that the response is not a Gaussian process, due to the
shape of the velocity which does not have the characteristic ”bell shape” of the Gaussian
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Chapter 4. Steady State Calculations

normal distribution. It is therefore interesting to wee whether the cell mapping method is
capable of such a non-Gaussian probability distribution.

4.4.2 Cell Mapping

(a) Cell-Mapping (b) Monte-Carlo simulation

Figure 4.23: Join probability distribution for Harmonic Load with White Noise

Table 4.13: Standard deviation of harmonic load with white noiseresponse

σx σv
Monte Carlo 0.0631 0.155
Cell Mapping 0.0696 0.167
Difference 9.38 % 6.88 %
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4.5 AR(2) Load with spectral peak

(a) Displacements

(b) Velocities

Figure 4.24: Displacement and velocity distribution for Harmonic Load with White Noise

4.5 AR(2) Load with spectral peak

With the autoregressive parameters φ1, and φ2 chosen in Table 4.14, the process will
oscillate, with a frequency ωf = 6.1rads−1 (Eq 2.20). This is above the natural frequency
of the system, meaning that the response will contain two dominating frequencies. (see
Figure 4.25) The force will in this section be mapped with a the modified noise term, and
with a truncated discretized white noise term with 25 discrete values. Section 4.3 shows
that it is possible to estimate the response with the modified noise term derived in Section
3.6.2. For the second order autoregressive load, the modified noise term will be compared
with a normal distributed noise term, to see the difference in performance. The modified
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Figure 4.25: Exact Spectral Distributions of AR(2) load and response

Table 4.14: AR(2) Load Model Parameters

φ1 = 1.6
φ2 = -0.95
σW = 100 kN
∆t = 0.1 s
λ = 3
nf = 25
nx = 200
nv = 200
ψ = 3.83
ξ = 3.13

random noise is either mapped with 1 random point, or 1000 random points.
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4.5 AR(2) Load with spectral peak

4.5.1 Monte Carlo Simulation of response

(a) Spectral Density Distribution (b) Probability Density Distribution

(c) Time domain response and force sample

Figure 4.26: Results from 28h Monte Carlo Simulation of Response from AR(2) load

The Monte Carlo simulation shows that for the chosen time step, the spectral densities,
and the variances are according to theory. In the following the assumption that the autore-
gressive process presented in Table 4.14 is a Gaussian process is introduced, meaning that
all the final distributions goes towards a Gaussian normal distributed variable when time
increases. The assumption is based on Figure 4.26b after the Monte Carlo simulation of
the load.

4.5.2 Force Evolution
The parameters ψ and ξ for the force are found minimizing the residual in shape, and
variance according to Algorithm 2. Since the assumption that the process is Gaussian
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Chapter 4. Steady State Calculations

is introduced, the discrete force model is compared to a Gaussian normal variable with
variance according to Eq. 2.18. The other force evolution is done by a truncated discretized
white noise term with no modification.

Figure 4.27: Steady state AR(2) Force distribution

4.5.3 Cell Mapping Results

(a)

(b)

Figure 4.28: Joint Distr. of Steady State AR(2) Cell Mapping Response with modified noise

Figure 4.29 shows the different steady state displacements. The distribution of the modi-
fied added noise comes closest to reproduce the expected steady state response distribution,
while the truncated discrete normal distributed noise is much more diffusive.
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4.5 AR(2) Load with spectral peak

(a) Displacement

(b) Velocity

Figure 4.29: Steady State of AR(2) Cell Mapping Response with modified noise

Table 4.15: Standard deviation of AR(2) Load response

σx[m] σv[m]
Monte Carlo 0.4094 0.8904
Mod.Noise(1RP) 0.4321 0.9383
Mod.Noise(1000RP) 0.4374 0.9484
Norm.Noise 0.5204 1.1313
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Chapter 4. Steady State Calculations

4.6 Two Harmonic loads

Figure 4.30: 3D illustration of probability distribution from response from 2 harmonic loads using
cell mapping

Two harmonic loads acting on the structure could for instance be multiple frequencies
of the rotor blade propagating in the structure. Investigating the Single harmonic cell
mapping in Section 4.2 shows that a fairly fine discretization of both the displacement and
velocities, and the phase is needed to obtain accurate results. With yet another harmonic
load case added added to the problem, a new dimension for the phase state is added to the
probability space. With the parameters in Table 4.16 the probability space is discretized
to 118 Million cells. For such a large probability space, the calculation of the Transition
probability Matrix will be time consuming. Since the time used to calculate the matrix
is expected to grow proportional with number of random points selected in each cell, this
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4.6 Two Harmonic loads

Table 4.16: Two Harmonic Parameters

F1 = 100 kN
F2 = 100 kN
ωf1 = 1.5 rad s−1

ωf2 = 3 rad s−1

nθ1 = 107
nθ2 = 110
nx = 100
nv = 100
∆t = 0.67s
Random points = 1 or 500

test is carried out with either 1 random point, or 500 random points to see what accuracy
could be expected with only 1 random mapping point in each cell.

4.6.1 Results

(a) 1 Random point (b) 1 Random point (Gaussian Filter, σ = 3)

(c) 500 Random points (d) 1000 Monte Carlo simulations

Figure 4.31: Steady state joint probability distribution of 2 harmonic loads response

Figure 4.31 shows the joint probability distribution for the cell mapping result as well as
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Chapter 4. Steady State Calculations

Figure 4.32: Displacement and Velocity probability distribution for 2 harmonic loads response

the Monte Carlo simulations. The steady state is found by iterating the Transition Proba-
bility Matrix. Since the solution with only 1 random point seem quite noisy. (Fig.4.31a),
the result image is convolved with a Gaussian distribution (Gaussian Filtered) in order to
smooth the image. While both results acknowledges the two peaks in the distribution,
the final distribution is a lot more diffusive than the Monte Carlo simulation. Figure 4.32
shows the displacement and velocity distributions for Monte Carlo simulations and cell
mapping with different number of random points.
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Chapter 5
Fatigue Calculations

The method described in Section 3.8 will in this chapter be tested. The object is first to
observe how a half cycle behaves during iteration with the Transition Probability Matrix.
The results from the half-cycle mapping will be extracted and used to create the peak-to-
trough transition matrix, and the peak-trough intensity µPT (u, v) will be found. The last
step is to obtain the Damage Intensity and see how the results obtained with the peak-to-
trough matrix are compared with results from the WAFO toolbox [5] which extracts the
damage calculations from a generated time series with the theory presented in Section 2.6
.

5.1 White noise Load, narrow banded response

Table 5.1: Fatigue test Model Parameters

S0 = 5 GN2/Hz
φ = 0
σW = 800 kN
∆t = 0.05 s
nx = 301
nv = 301
nF = 20
λx = 4
λv = 4
λF = 3
no. random points = 10

The Model parameters used in this section is shown in Tab 5.1. This is a flat load spec-
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Chapter 5. Fatigue Calculations

trum similar to the one used in Section 4.1. The difference is basically that the intensity of
the load is higher, and the response state discretization is different. The range is also wider
for response, meaning that the model describes more states at the tails of this distribution.

The response of a low damped structure with a flat load spectrum is often considered
to be a narrow banded process, due to the dominant response around the eigenfrequency.
Figure 5.1 suggests that this could be considered as a good estimation for the current
system, and seems to be generally true for most excitations.

Figure 5.1: Response and force signal in time domain from load described in Table 5.1

5.1.1 Half-cycle iteration
Figure 5.2 and Figure 5.3 shows how a half cycle is presented with the transition probabil-
ity matrix. The difference with starting the iteration at x0 = −2.8m and at x0 = −2.0m
is that a large amount of probability hits the boundary when an iteration is started close to
the boundary of the displacement state. While the undisturbed probability distribution can
be seen in figure 5.3 which looks close to a Gaussian distribution in both displacement and
time, the boundary is disturbing the distribution in Figure 5.2. Both in displacement where
a large portion of probability is absorbed in the outer cell, but also the time distribution
get a trailing tail which differs from the undisturbed cycle. This is further seen in the Peak
Transition Matrix visualised in Figure 5.4 where there is a higher intensity at the top left,
and bottom right corner.
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5.1 White noise Load, narrow banded response

(a) Displacement (b) Time

(c) Half-cycle path iteration (d) joint PDF for peak displ, and time

Figure 5.2: Result from half cycle iteration with white noise load spectrum, (starting from x0 =
−2.8m)
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(a) Displacement (b) Time

(c) Half-cycle path iteration (d) joint PDF for peak displ, and time

Figure 5.3: Result from half cycle iteration with white noise load spectrum, (starting from x0 =
−2.0m)
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5.1 White noise Load, narrow banded response

5.1.2 Peak Transition Matrix

The results from the half cycle iteration is stored in the Peak Transition Matrix, where each
row represent the displacement distribution from a peak state ui.

Figure 5.4: Peak Transition Matrix: Probability that peak ui at time k, is followed by peak uj , at
time k + 1

Figure 5.5: Steady state of Peak Transition Matrix, peak distribution (blue), and Rayleigh Distribu-
tion of peaks (red)
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Chapter 5. Fatigue Calculations

5.1.3 Rainflow Intensities and Damage intensity

(a) Ranflow intensity (b) Damage Intensity

Figure 5.6: Rainflow and Damage Intensity for White Noise Load response

5.1.4 Comparing with WAFO and Narrow banded approximation

Figure 5.7: Damage Intensity curves for various methods

In Figure 5.7 the Damage intensity curves are shown for the different methods. The
WAFO-toolbox curve is found by simulating a 10h long time sample, where a rainflow
count is performed and the damage is calculated according to the result of this rainflow
count. The Narrow banded process curve is a realisation of Eq. 3.67 where the damage
is estimated from the Rayleigh distribution of peaks. The Transition Matrix curve shows
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5.1 White noise Load, narrow banded response

the results from the method in Sec 3.8. Which estimates the damage intensity considering
the process as a Markov chain and therefore finds the rainflow intensity without any time
domain simulation.
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Chapter 6
Discussion

6.1 General Cell Mapping Accuracy and Discretion
All of the results presented in Chapter 4 show that it is possible to obtain precise estimates
of the response probability distribution with the general cell mapping algorithm provided.

Timestep

The Runge Kutta Nyström scheme is provided for the linear equation of motion, and dif-
ferent time steps show different accuracy of the integration. While the critical time step
is about tcr = 2/ωn before the solution becomes unstable, a time step of t = 1/(2ωn) is
needed to obtain a standard deviation error of < 1% for a flat load spectrum. For smaller
timesteps the final distribution gets more accurate, and the results imply that the theoreti-
cal distribution is approached as t→ 0. The results show that a time step smaller than tcr
should be used when applying a spectrum load.

Cell Discretization

The mapping distance is proportional to the time step used in the Runge Kutta Nyström
integration. Since the response displacement, and velocity is discretized into cells, a spu-
rious amount of image points are mapped back to the same starting cell. The results show
that the discretization of displacement and velocity into cell states causes the distribution
to be wider than the exact distribution. This should be as expected since different states
are mapped from a cell with a volume rather than a specific point, and the diffusion is
caused by the size of this cell space. The results provided show that when a large amount
of probability is mapped back to the same displacement/ velocity state, an artificially wide
distribution is acquired.

Since the state mapping is a function of the time step used, and while lengthen the time
step causes the final distribution to tighten, and the discretized response space causes the
distribution to widen, one could speculate if there is a optimal relation between a chosen
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Chapter 6. Discussion

time step and the cell discretization. This has not been investigated further in this thesis,
where the time step, and response discretization has been made appropriate small.

Domain Boundaries

How large effect the boundaries have on the cell-to-cell mapping solution is interesting,
since image points who would leave the domain is placed back on the border again. The
steady state solution shows that for a Gaussian process, accurate probability density esti-
mates can be obtained as long as the domain is at least three times the standard deviation
wide. When the domain is narrower, an accumulation of probability reaches the edges
and disturb the overall probability density function. It seems therefore that as long as the
border cells represents state which has a low probability of happening, the spurious image
points from these states will not have a large impact on the dynamics of the system.

The effects of the border can also be seen on the half-cycle iteration. Starting the sys-
tem near an edge causes a larger amount of probability to hit the boundary on the opposite
side. Again, as long as these starting states are extremas with low probability of happen-
ing, this will not have a large influence in the peak trough,- nor rainflow intensities. Eq.
3.65 shows that the counting intensities are found by multiplying with the peak distribution
vector.

Steady State

Two methods has been used to find the steady state of a Transition Probability Matrix.
While the eigenvector with a eigenvalue of 1 is mathematically correct and the most elegant
solution to the problem, for large matrices it computationally heavy to find. The iteration
scheme presented in this thesis on the other hand is faster, but requires an idea of how
many iterations is needed to reach steady state. The results in this thesis show that there is
a linear convergence rate for the iteration scheme, and the statistical properties converges
faster than the transient decay. This means that the steady state is obtained efficiently, and
reveals one of the differences between Monte Carlo simulations. While for a Monte Carlo
simulation one can start sampling after the transient behaviour vanishes, the probability
density evolution provides the steady state at once the transient behaviour has vanished.
Of course each iteration with the Probaility Transition Matrix is more demanding than
forecasting the next values in a Monte Carlo simulation, but this illustrates one of the
advantages with the probability density evolution method compared to time simulations.

Load Model Description

Two different types of load have been tested. There is the autoregressive representation
of a stochastic load, and the harmonic load represented with a random phase. For the
autoregressive load, the force space is represented with a relatively coarse mesh. For a
flat spectral load density, the force distribution is equal to the added noise. The force
distribution is therefore only dependent on the truncation and discretization of the added
noise.

The first and second order autoregressive load model is a linear combination of pre-
vious step(s), and a diffusive added noise. The results might indicate that discretizing the
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6.2 Fatigue

force space leads to larger diffusion of the probability distribution. As a remedy the added
normal distributed noise is changed to a modified noise, where the variance of this noise
is changed to fit the finial force distribution. The results in this thesis shows that when the
distribution of the discretized force model is close to the continuous force distribution an
accurate result of the response displacement and velocity is obtained. This result is sur-
prising since changing the variance of the added noise would change the intensity of the
load and alter the stochastic process. This means that the process has to be transformed
when changing the state space from a continuous space to a discrete space, and this trans-
form has to be made in order to get the same statistical properties. However, going back to
a continuous space, the process has to be transformed back to its original stated form since
the modified added noise has different statistical properties as the normal distributed added
noise. The results show that a discrete force model must be modelled with lower intensity
in order to get the same statistical properties of the final load distribution. However, more
investigation should be put in to understand how the transform between continuous space
to discrete space is related.

The harmonic load has a more complicated probability distribution, and needs a finer
discretization of the phase in order to have good accuracy of the response distribution.
The single harmonic load results have shown that the Runge Kutta Nystrm method has a
critical time step around tcr = 2/ω, and that the most accurate results are obtained for a
time step close to the critical time step. This contradicts the results for a optimal time step
for a flat load spectrum, and seems therefor only valid for a load with a single frequency
component. For finer response and random load phase discretization, the results seem to
improve gradually,but since the distribution goes towards infinity at the peaks, it will be
impossible to recreate the exact solution with discretized displacement, and velocities.

6.2 Fatigue
The results from the cycle count method will be discussed in this section. In Chapter 3, the
method is developed in order to acquire results considering the peak to trough process as a
Markov chain, and the Peak Transition Matrix is found by iterating the Probability Tran-
sition Matrix from one extrema to the next. The result are then compared to a theoretical
damage curve considering the signal as a narrow banded process, and by generating a time
signal from the response spectrum and doing the rainflow counting with a MATLAB tool-
box [5] (Appendix C). The Rainflow intensity shown in Figure 5.6a is found from Markov
transition between states, and therefore without any simulation in time. The method is
described in Section 3.8.

Peak Transition Matrix

An image of the peak transition matrix is shown in Figure 5.4 and is a result of the half
cycle iteration performed in Section 5.1.1. The image shows that the narrow banded ap-
proximation is quite precise, since the transition mainly changes the sign of the peak. The
long diagonal starting at the upper left corner describes the mapping from a peak to an op-
posite trough, while the diagonal at the middle of the figure describes the transition back
to the starting base point, which contradicts the narrow banded approximation. This is
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then also seen in the peak distribution (Fig 5.5). where the Rayleigh distribution of nar-
row banded peaks estimates larger densities for higher peaks, while the cell mapping peak
distribution acknowledges the fact that an extrema close to zero does not always change
sign, which leads to a distribution with higher densities close to zero. The difference be-
tween the narrow banded Reyleigh distribution of peaks, and the steady state of the Peak
Transition Matrix is therefor as could be expected.

Damage Intensity

The Damage Intensity curves for the different methods are shown in Figure 5.7. The
method of finding the peak to transition matrix seem to agree with the results acquired
with the WAFO - toolbox, while the Damage Intensity curve for a narrow banded process
seem to somewhat underestimate the damage. The differences between the WAFO gener-
ated Damage Intensity and the Transition Matrix Damage Intensity curve could be due to
several factors. One factor might be the Markov approximation of a peak to trough process,
which is assumed. However, in Frandahl and Rychilcs paper [12], they acknowledges that
this assumption is generally accurate for a Gaussian process. Another difference is that
the peaks represent discrete states in the Peak Transition Matrix, and that the Damage
Intensity is the sum of the rainflow intensity matrix with the damage function, while the
rainflow count with the WAFO - toolbox is done in continuous space. Even while the Peak
Transition Matrix is defined in discrete space, the advantage is that the time information is
not needed, and the damage calculations can be done without generating large time series.
Due to these differences between the methods, small differences in the results should also
be expected.

6.3 Remarks on Computational speed
This thesis has not provided any run time test for the code developed, and the speed of
calculation is of course dependent of the hardware available. The computer used in this
thesis with the properties described in Table 4.2 manages to map about 2-3 million points
per second with Runge Kutta Nyström function (see Listing 1). This could however be
done faster by running the code in parallel. For the cases studied in this thesis all cells are
mapped within minutes even for the largest problems, while adding more random points
increases the time linearly.

The steady state solution is found either by solving the largest eigenvalue of the matrix
with Arnoldi method, or iterating with a probability vector until the probability vector
reaches a steady state. The statistical properties of the distribution converges faster than
the transient behaviour of the system vanishes, and iterating to a steady state is therefore
usually faster than solving the eigenvalue problem with the Arnoldi method.
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Chapter 7
Conclusion

The results in Chapter 4 show that the structural response of a single degree of freedom
system can be described as a Markov chain for several load cases. The load cases tested are
autoregressive 1st and 2nd order Gaussian processes, and a harmonic load case with one or
two frequency component. The results show that a finer mesh is required for an accurate
description of the harmonic load case than for the autoregressive processes. Since the state
space is discretized in the force models. The statistical properties of the noise term should
be changed in order to keep the statistical properties of the steady state distribution. The
Autoregressive formulation of a process is often considered a continuous space - discrete
time process, while in this thesis the space is discretized as well. Changing the variance
of the noise term acts therefore as a remedy for the errors introduced by the discretization.
When adjusting the added noise term to preserve the statistical properties of the load, this
thesis shows that the process can be modelled with only a few force states, and 3 discrete
noise values. Doing this reduces the number of calculations for the problem, which again
makes it possible to look at larger problems in the future.

A restricting factor is the computer capacity in order to solve large matrix operations,
and compute large problems. This thesis show that problems with discrete probability
space of at least 100 Million states (which is the largest problem solved in this thesis) are
solvable with the computer capacity available today. Since it also is possible to reduce
the load space with the modified added noise, this opens up the possibility to investigate
more complex load models without exceeding the computer capacity. This is due to the
modified random noise added to the autoregressive load formulation. While a large set of
calculations requires a high end CPU, saving a large system (with many cell states) in-
creases the size of the Transition Probability Matrix and requires a large memory (RAM).
This becomes even more important for multidegree of freedom systems.

The boundary conditions introduced when calculating the Probability Transition Ma-
trix keeping the probability from escaping any defined state are introduces so that the
matrix can be considered a stochastic matrix with the properties associated with such a
matrix. The results show that the response space should be at least 3 times the standard
deviation for a Gaussian response process to acquire results which are not affected by
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the boundaries in any considerable manner. For the half cycle iterations, it is seen that
the boundaries disturb the probability distribution when an iteration is started close to a
boundary. However, for damage calculations this does not seem to affect the final damage
intensity, since the peak probability close to the border is small.

In Chapter 5 The Damage intensity is found with rainflow counting through a Transi-
tion Matrix using the probability density evolution method. The method provides accurate
results compared with time domain simulation for a low damped structure with a white
noise load spectrum. While for other structures and load cases the method has yet to be
tested. This result encourages to further investigating random processes where the peak
trough process can be considered Markovian with the probability density evolution cell-
mapping technique.

Further work

The method for fatigue calculation described in Section 3.8 could be tested for more com-
plex load cases than in this thesis in order to understand the method better.

One extension of this work should be to implement a moving average load in order to
describe weakly stationary loads, and fluctuations in the average load applied on a struc-
ture. Also, investigating what happens when the state space of an autoregressive model is
discretized is not yet very well understood, however in order to do the cell mapping, and
the Markov approximation of the system this is essential in order to acquire good results.

When the dynamics of the cell mapping method for stochastic loads is well understood,
an extension to a multidegree of freedom system would be natural in order to simulate
more complex structures with several eigenfrequencies.

The discretization in the cell mapping method is done in Cartesian coordinates. An-
other way is to define the response mesh for the displacement and velocities in polar co-
ordinates. This is actually a more natural way of describing the system, since the solution
of an damped vibration without an external load is a logarithmic spiral in the velocity-
displacement space.
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Appendix
A Modified noise Force Mapping results

(a) 1st.iteration Residuals (b) 2nd. iteration residuals (c) 3rd. iteration residuals

(d) 1st. iteration distribution (e) 2nd. iteration distribution (f) 3rd. iteration distribution

Figure 1: Results after 3 iteration of force parameters starting width ψ = 1.0 and ξ = 1.0 and 9
force states.

(a) 1st.iteration Residuals (b) 2nd. iteration residuals (c) 3rd. iteration residuals

(d) 1st. iteration distribution (e) 2nd. iteration distribution (f) 3rd. iteration distribution

Figure 2: Results after 3 iteration of force parameters starting width ψ = 1.0 and ξ = 1.0 and 10
force states.
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B Code: Cell Mapping

1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7 @jit('i4(f8)', nopython=True)

8 def H(x):

9 '''

10 Heavside step function: returns 0 if x<0, and 1 if x>=0

11 '''

12 if x >= 0:

13 return 1

14 else:

15 return 0

16

17

18 @guvectorize(

19 'void(f8[:], f8[:], f8, f8, f8[:], f8[:])',

20 '(n),(n),(),()->(n),(n)')

21 def Wall(x, v, xlim, vlim, xn, vn):

22 '''

23 Keeps displ. and vel. within domain

24 '''

25 for i in xrange(len(xn)):

26 if xn[i]**2 > xlim**2 or vn[i]**2 > vlim**2:

27 L = max(

28 H(abs(xn[i])-xlim)*(abs(xn[i])-xlim)/abs(xn[i]-x[i]),

29 H(abs(vn[i])-vlim)*(abs(vn[i])-vlim)/abs(vn[i]-v[i]))

30 xn[i] = x[i] + (xn[i] - x[i]) * (1 - L)

31 vn[i] = v[i] + (vn[i] - v[i]) * (1 - L)

32

33

34 @guvectorize(

35 'void(f8[:], f8[:], f8[:], f8[:])',

36 '(n),(n)->(n),(n)')

37 def Wall_zero_vel(x, v, xn, vn):

38 '''

39 Limits the velocity to change sign

40 '''

41 for i in xrange(len(x)):

42 if vn[i] / v[i] < 0:

43 xn[i] = (x[i] - xn[i]) / (v[i] - vn[i]) * v[i] + x[i]

44 vn[i] = 0

45
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46

47 @jit('f8[:](f8, f8[:])')

48 def limit_F(F_lim, f):

49 '''

50 Limits the force from escaping domain

51 '''

52 for i in xrange(f.size):

53 if abs(f[i]) > F_lim:

54 f[i] = f[i] / abs(f[i]) * F_lim

55 return f

Listing 2: Different Boundary functions
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1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7 import numpy as np

8 import scipy.stats as ss

9 from scipy.sparse import csc_matrix

10 import time

11 import cell_discretization as cell

12

13

14 def Pmatrix(mesh, par, cells='all', Rand_P=10, zero_vel='no'):

15 '''

16 cells : which cells to map

17 Rand_P : number of Random points in each cell

18 zero_vel : 'yes', 'no': creates a boundary at v=0 if yes.

19 mesh :dict that specify cell centrep. (see cell_discretization.py)

20 par :dict containing defined parameters. (see cell_discretization.py)

21 Default: get from cell_discretization

22

23 '''

24 LC = cell.load_case(par)

25 print 'Load case: ', LC

26 dt = par['dt']

27 x = mesh['x']

28 v = mesh['v']

29 dx = x[1] - x[0]

30 dv = v[1] - v[0]

31 size = [x.size, v.size]

32 ar_load = False

33 harm_load = False

34 flim = 0

35 if LC in [1, 3, 4, 6, 7, 8]: # If load is AR(p)

36 ar_load = True

37 F = mesh['F']

38 AR = par['AR']

39 sigma_w = par['sigma_w']

40 dF = F[1] - F[0]

41 n_F = len(F)

42 flim = F[-1] + (F[1] - F[0]) / 2. * .99

43 for i in xrange(len(AR)):

44 size.append(F.size)

45 if AR.all() == 0:

46

47 size_w = n_F
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48 W = np.linspace(-3 * sigma_w, 3 * sigma_w, size_w)

49 dW = W[1] - W[0]

50 WU, WL = W + 0.5 * dW, W - 0.5 * dW

51 pW = (ss.norm.cdf(WU, loc=0, scale=sigma_w) -

52 ss.norm.cdf(WL, loc=0, scale=sigma_w))

53 pW = pW / np.sum(pW)

54 else:

55 W, pW = cell.AR_NOISE()

56 size_w = 3

57 if LC in [2, 4, 5, 7, 8, 9]: # If harmonic load

58 harm_load = True

59 phi = mesh['phi']

60 F0 = par['F0']

61 omega_f = par['omega_f']

62 dphi = phi[1] - phi[0]

63 size.append(phi.size)

64 if LC in [5, 8, 9]:

65 phi2 = mesh['phi2']

66 size.append(phi2.size)

67 dphi2 = phi2[1] - phi2[0]

68 ndim = len(size) # number of dimentions

69 RKNpar = par['omega_n'], par['zeta'], par['k'], dt

70 ncells = 1

71 for i in range(ndim):

72 ncells = ncells * size[i]

73 C = np.arange(ncells, dtype=np.uint32).reshape(size)

74 n_it = 1e8 # no. it in each chunk (hardware dependend)

75 if ar_load: # (chunks might be solved in parallel!)

76 Rand_P = Rand_P * size_w

77 if type(cells) is str: # When all cells are mapped

78 numthreads = int(ncells * Rand_P // n_it + 1)

79 chunklen = ncells / numthreads

80 else: # When a list of cells are mapped

81 numthreads = int(cells.size * Rand_P // n_it + 1)

82 chunklen = cells.size / numthreads

83 c = np.arange(ncells, dtype=np.uint32)

84 if type(cells) is str:

85 if cells == 'all':

86 cells = c

87 chunks = [cells[i * chunklen:min([cells[-1] + 1,

88 (i + 1) * chunklen])] for i in range(numthreads)]

89 print "Number of chunks: ", len(chunks)

90 print 'Number of iterations to be solved in millions: ',

91 round(ncells * Rand_P / 1e6, 2)

92 rx = np.random.rand(chunklen * Rand_P) - .5

93 rv = np.random.rand(chunklen * Rand_P) - .5

94 rk = [np.random.rand(chunklen * Rand_P)-.5 for i in xrange(ndim - 2)]
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95

96 xlim = size[0] * dx / 2. - .1e-3 * dx

97 vlim = size[1] * dv / 2. - .1e-3 * dv

98 t0 = time.time()

99 it = 0 # number of iterations

100 i = 0 # numbers of loop while t < t0

101 tt0 = time.time()

102 P = csc_matrix((ncells, ncells))

103 i = 0

104 for chunk in chunks:

105 print 'Calculating chunck no. %s of %s' %

106 (i + 1, len(chunks))

107 t0 = time.time()

108 n = len(chunk) * Rand_P

109 if ndim == 3:

110 X, V, K1 = argwhere3d(size[1], size[2], chunk)

111 elif ndim == 4:

112 X, V, K1, K2=argwhere4d(size[1],size[2],size[3],chunk)

113 X = np.repeat(X, Rand_P)

114 V = np.repeat(V, Rand_P)

115 X = index_to_value(X, x, rx[:n])

116 V = index_to_value(V, v, rv[:n])

117

118

119 if LC == 1: # AR(0) or AR(1)

120 f0 = np.repeat(K1, Rand_P)

121 f0 = index_to_value(f0, F, rk[0][:n])

122 f2 = np.tile(W, n / size_w) + f0 * AR[0]

123 f1 = 0.5 * (f0 + f2)

124 xn,vn,K1n=map(X,V,f0,f1,f2,RKNpar,xlim,vlim,flim,zero_vel)

125 xn_idx=find_index(xn+dx/2*(size[0]%2),dx)+size[0]/2

126 vn_idx=find_index(vn+dv/2*(size[1]%2),dv)+size[1]/2

127 K1n_idx=find_index(K1n+dF/2*(n_F%2),dF)+n_F/2

128 cn=C[xn_idx,vn_idx,K1n_idx]

129 data_i=np.tile(pW,n/size_w)/Rand_P*size_w

130

131

132 elif LC ==2: # single harmonic

133 phi0 = np.repeat(K1, Rand_P)

134 phi0 = index_to_value(phi0, phi, rk[0][:n])

135 f0 = F0[0] * np.sin(phi0 )

136 f1 = F0[0] * np.sin(phi0 + omega_f[0] * dt / 2 )

137 f2 = F0[0] * np.sin(phi0 + omega_f[0] * dt )

138 xn,vn,f2=map(X,V,f0,f1,f2,RKNpar,xlim,vlim,flim,zero_vel)

139 xn_idx=find_index(xn+dx/2*(size[0]%2),dx)+size[0]/2

140 vn_idx=find_index(vn+dv/2*(size[1]%2),dv)+size[1]/2

141 K1n=(phi0+omega_f[0]*dt*N)%(2*np.pi)
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142 K1n_idx = np.int_(K1n / dphi)

143 cn = C[xn_idx, vn_idx, K1n_idx]

144 data_i = np.ones(n) / Rand_P

145

146

147 elif LC == 3: # AR(2)

148 f0 = np.repeat(K1, Rand_P)

149 fneg1 = np.repeat(K2, Rand_P)

150 f0 = index_to_value(f0, F, rk[0][:n])

151 fneg1 = index_to_value(fneg1, F, rk[1][:n])

152 f2 = np.tile(W, n / size_w) + f0 * AR[0] + fneg1 * AR[1]

153 f1 = 0.5 * (f0 + f2)

154 xn,vn,K1n=map(X,V,f0,f1,f2,RKNpar,xlim,vlim,flim,zero_vel)

155 xn_idx=find_index(xn+dx/2*(size[0]%2),dx)+size[0]/2

156 vn_idx=find_index(vn+dv/2*(size[1]%2),dv)+size[1]/2

157 K2n = f0

158 K1n_idx = find_index(K1n + dF / 2 * (n_F % 2), dF) + n_F / 2

159 K2n_idx = find_index(K2n + dF / 2 * (n_F % 2), dF) + n_F / 2

160 cn = C[xn_idx, vn_idx, K1n_idx, K2n_idx]

161 data_i = np.tile(pW, n / size_w) / Rand_P * size_w

162

163

164 elif LC == 4: # AR(1) or AR(0) + single harmonic

165 f0 = np.repeat(K1, Rand_P)

166 f0 = index_to_value(f0, F, rk[0][:n])

167 f2 = np.tile(W, n / size_w) + f0 * AR[0]

168 f1 = 0.5 * (f0 + f2)

169 K1n = limit_F(flim, f2)

170 K1n_idx = find_index(K1n + dF / 2 * (n_F % 2), dF) + n_F / 2

171 phi0 = np.repeat(K2, Rand_P)

172 phi0 = index_to_value(phi0, phi, rk[1][:n])

173 f0 += F0[0] * np.sin(phi0)

174 f1 += F0[0] * np.sin(phi0 + omega_f[0] * dt / 2)

175 f2 += F0[0] * np.sin(phi0 + omega_f[0] * dt)

176 xn,vn,fn=map(X,V,f0,f1,f2,RKNpar,xlim,vlim,flim,zero_vel)

177 xn_idx=find_index(xn+dx/2*(size[0]%2),dx)+size[0]/2

178 vn_idx=find_index(vn+dv/2*(size[1]%2),dv)+size[1]/2

179 K2n = (phi0 + omega_f[0] * dt ) % (2 * np.pi)

180 K2n_idx = np.int_(K2n / dphi)

181 cn = C[xn_idx, vn_idx, K1n_idx, K2n_idx]

182 data_i = np.tile(pW, n / size_w) / Rand_P * size_w

183

184

185 elif LC == 5: # two harmonic loads

186 phi0 = np.repeat(K1, Rand_P)

187 phi0 = index_to_value(phi0, phi, rk[0][:n])

188 K1n = (phi0 + omega_f[0] * dt ) % (2 * np.pi)
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189 K1n_idx = np.int_(K1n / dphi)

190 phi1 = np.repeat(K2, Rand_P)

191 phi1 = index_to_value(phi1, phi2, rk[1][:n])

192 K2n = (phi1 + omega_f[1] * dt ) % (2 * np.pi)

193 K2n_idx = np.int_(K2n / dphi2)

194 f0=(F0[0]*np.sin(phi0) +

195 F0[1] * np.sin(phi1))

196 f1=(F0[0]*np.sin(phi0+omega_f[0]*dt/2) +

197 F0[1]*np.sin(phi1+omega_f[1]*dt/2))

198 f2=(F0[0]*np.sin(phi0+omega_f[0]*dt) +

199 F0[1]*np.sin(phi1+omega_f[1]*dt))

200 xn,vn,fn=map(X,V,f0,f1,f2,RKNpar,xlim,vlim,flim,zero_vel)

201 xn_idx = find_index(xn+dx/2*(size[0]%2),dx)+size[0]/2

202 vn_idx = find_index(vn+dv/2*(size[1]%2),dv)+size[1]/2

203 cn = C[xn_idx, vn_idx, K1n_idx, K2n_idx]

204 data_i = np.ones(n) / Rand_P

205

206

207 col_i = np.repeat(chunk, Rand_P) # column idx

208 row_i = cn.flatten() # row idx

209 P_i = csc_matrix((data_i, (row_i, col_i)),

210 shape=(ncells, ncells))

211 P += P_i

212 it += n

213 t = time.time() - t0

214 i += 1

215 print 'Time used calculating chunk: %s seconds.' %(round(t, 2))

216 print 'loop took: ', time.time() - tt0

217 print 'Monte carlo points in each cell: ', int(Rand_P)

218 print 'Step took %s seconds' % (time.time() - t0)

219 print

220 print 'Total iterations done in millions: ', it * 1e-6

221 return P

Listing 3: Transition Matrix
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1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9 from scipy.sparce import csc_matrix

10

11

12 def boundary_matrix(P, Rand_P, mesh, par):

13 '''

14 P : probability matrix

15 Rand_P : number of simulations for boundary cells

16 mesh : x, v, F : arrays of centerpoints in cells

17 par : [omega_n, zeta, k, dt, AR1, sigma_w]

18 '''

19 def find_crossing_cells(P, mesh):

20 ndim = len(mesh.keys())

21 x = mesh['x']

22 v = mesh['v']

23 del mesh['x']

24 del mesh['v']

25 size = [x.size, v.size]

26 for key in mesh.keys():

27 size.append(mesh[key].size)

28 mesh['x'] = x

29 mesh['v'] = v

30 ncells = np.prod(size)

31 v_neg = np.arange(size[1] / 2 - 1 + size[1] % 2)

32 v_pos = np.arange(size[1] / 2 + 1, size[1])

33

34 C = np.arange(ncells).reshape(size)

35 if ndim == 3:

36 cneg = C[:, v_neg, :].flatten()

37 cpos = C[:, v_pos, :].flatten()

38 elif ndim == 4:

39 cneg = C[:, v_neg, :, :].flatten()

40 cpos = C[:, v_pos, :, :].flatten()

41

42 c_sign = np.zeros(ncells, dtype=np.int8)

43 c_sign[cneg] = -1

44 c_sign[cpos] = 1

45 row_ind = P.indices

46 col_ptr = P.indptr

47
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48 boundry_cells = [] # Cells states that crosses zero vel.

49 for i in cneg: # looping through all negativ velocity states

50 cn = row_ind[col_ptr[i]:col_ptr[i + 1]]

51 if (c_sign[cn] == -1).all():

52 pass

53 else:

54 boundry_cells.append(i)

55

56 for i in cpos: # looping through all positive velocity states

57 cn = row_ind[col_ptr[i]:col_ptr[i + 1]]

58 if (c_sign[cn] == 1).all():

59 pass

60 else:

61 boundry_cells.append(i)

62 print ('crossing cells in Matrix [percent]: ',

63 round(len(boundry_cells) / float(ncells) * 100., 2))

64 return np.array(boundry_cells)

65

66 def find_zero_cells(mesh):

67 '''

68 returns cells where velocity is zero

69 '''

70 ndim = len(mesh.keys())

71 x = mesh['x']

72 v = mesh['v']

73 del mesh['x']

74 del mesh['v']

75 size = [x.size, v.size]

76 for key in mesh.keys():

77 size.append(mesh[key].size)

78 mesh['x'] = x

79 mesh['v'] = v

80 ncells = np.prod(size)

81 v_zero = np.arange(size[1] / 2 - 1 + size[1] % 2, size[1] / 2 + 1)

82 C = np.arange(ncells).reshape(size)

83 if ndim == 3:

84 c_zeros = C[:, v_zero, :].flatten()

85 elif ndim == 4:

86 c_zeros = C[:, v_zero, :, :].flatten()

87 return c_zeros

88

89 def Identity(n, c):

90 '''

91 Creates an identity matrix with n elements and ones placed at c

92 '''

93 cols = c

94 rows = c

98



95 data = np.ones(c.size)

96 ID = csc_matrix((data,(rows, cols)),shape=(n, n), dtype=np.int8)

97 return ID

98

99 n, n = P.shape

100 print 'finding crossing cells...'

101 b = find_crossing_cells(P, mesh)

102 Ib = Identity(n, np.delete(np.arange(n), b))

103 z = find_zero_cells(mesh)

104 Iz = Identity(n, np.delete(np.arange(n), z))

105 Izb = Identity(n, z)

106 Pb = Pmatrix(mesh, par, cells=b, Rand_P=Rand_P, zero_vel='yes')

107 return (Pb + P * Ib) * Iz + Izb

Listing 4: Modified Transition Matrix P̂ (Algorithm 3)
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C Code: Cycle counting

1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9

10 def extrema_transition(file, b_iter=1000):

11 '''

12 returns extrema transition matrix for x values from X_max -> -X_min

13 '''

14 mesh, par, P_init = load_sparse_csc(file)

15 ndim = len(mesh.keys())

16 x = mesh['x']

17 v = mesh['v']

18 del mesh['x']

19 del mesh['v']

20 size = [x.size, v.size]

21 for key in mesh.keys():

22 size.append(mesh[key].size)

23 mesh['x'] = x

24 mesh['v'] = v

25 ncells = np.prod(size)

26 n = len(x)

27 E = np.zeros((n, n))

28 Pb = boundary_matrix(P_init, b_iter, mesh=mesh, par=par)

29 v0_idx = np.argmin(abs(v))

30 if ndim == 3:

31 # cells along x - axis

32 cx = np.arange(ncells).reshape(size)[:, v0_idx, :]

33 cx = cx.flatten()

34 elif ndim == 4:

35 # cells along x - axis

36 cx = np.arange(ncells).reshape(size)[:, v0_idx, :, :]

37 cx = cx.flatten()

38 for j in np.arange(n):

39 x0_idx = j

40 if ndim == 3:

41 # cells at starting point

42 c0 = np.arange(ncells).reshape(size)[x0_idx, v0_idx, :]

43 c0 = c0.flatten()

44 elif ndim == 4:

45 # cells at starting point
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46 c0 = np.arange(ncells).reshape(size)[x0_idx, v0_idx, :, :]

47 c0 = c0.flatten()

48 p = np.zeros(ncells)

49 p[c0] = 1. / len(c0)

50 p = P_init * p

51 max_it = 1000

52 tol = 5.e-5

53 PXT = np.zeros((max_it, n))

54 if ndim == 3:

55 r_shape = size[0], size[2]

56 axis = [1]

57 elif ndim == 4:

58 r_shape = size[0], size[2], size[3]

59 axis = [2, 1]

60 for i in xrange(max_it):

61 p = Pb * p

62 px = p[cx].reshape(r_shape)

63 for a in axis:

64 px = np.sum(A, axis=a)

65 PXT[i, :] = px

66 p[cx] = 0

67 if p.sum() < tol:

68 PXT = PXT[:i + 1, :]

69 break

70 PX = np.sum(PXT[np.arange(i), :], axis=0)

71 E[:, j] += PX / np.sum(PX)

72 print 'iterations: ', i

73 print 'cell number: ', j

74 print

75 fn = '../PROGRAM - Eddinburgh/saved/matrix/%s' % (file)

76 np.savez(fn + '_extrema_full', mesh=mesh, par=par, Matrix=E)

77 return E

Listing 5: Peak Transition Matrix Pp (Algorithm 3
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1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9 from numba import jit

10

11 @jit

12 def PT_intensity(E):

13 '''

14 E : Extrema - to Extrema matrix

15 '''

16 n, n = E.shape

17 p_p = power_method(E)

18 p_p = gaussian_filter(p_p, 0)

19 P = np.zeros(E.shape)

20 INT = np.zeros(E.shape)

21 for i in range(n): # P[u=x_i, v=x_j]

22 P[i, :i] = E[i, :i] * p_p[i]

23 for i in range(n): # p(x>u, y<v)

24 for j in range(i + 1):

25 INT[i, j] = np.sum(P[i:, :j + 1])

26 return INT

27

28

29

30

31 def rainflow_int(INT_PT, E):

32 '''

33 Algorith finding the rainflow intensity matrix

34 from the transition matrix and peakt-trough intensity matrix

35 '''

36 n, n = E.shape

37 I = np.zeros((n, n))

38 for i in range(n):

39 I[i, n - 1 - i] = 1

40 I = np.matrix(I)

41 M = np.matrix(E)

42 E = (I * M * I) #Ematrix maps with matrix x=[max_x->min_x]

43 P = np.zeros(E.shape)

44 P_hat = np.zeros(E.shape)

45 for i in range(n):

46 P[i, i:] = E[i, i:]

47 P_hat[i, :i + 1] = E[i, :i + 1]
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48 INT_PT = I * np.matrix(INT_PT) * I

49 INT_RFC = np.zeros(INT_PT.shape)

50

51 @jit

52 def A_matrix(i, j, P):

53 return np.matrix(P[i:j, i + 1:j + 1])

54

55 @jit

56 def B_matrix(i, j, P_hat):

57 return np.matrix(P_hat[i + 1:j + 1, i:j])

58

59 @jit

60 def p_vector(j, P):

61 n, n = P.shape

62 p = np.zeros(n)

63 l = np.arange(j + 1, n)

64 for k in range(n):

65 p[k] = np.sum(P[k, l])

66 return np.matrix(p).T

67

68 @jit

69 def e(i, j, P):

70 return p_vector(j, P)[i:j]

71

72 @jit

73 def q_vector(i, j, int_pt):

74 l = np.arange(i + 1, j + 1)

75 return np.matrix(int_pt[i, l - 1] - int_pt[i, l])

76

77 for i in xrange(n):

78 print i

79 for j in xrange(i, n):

80 A = A_matrix(i, j, P)

81 B = B_matrix(i, j, P_hat)

82 q = q_vector(i, j, INT_PT)

83 INT_RFC[i, j] = INT_PT[i, j] +

84 q * B * np.linalg.inv(np.eye(j - i) - A * B) * e(i, j, P)

85 return np.array(I * INT_RFC * I)

Listing 6: Peak Trough-, and Rainflow Intensity
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1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9

10

11 def damage(INT, file):

12 INT = np.array(INT)

13 mesh, par, E = load_extrema_matrix(file)

14 n, n = E.shape

15 x = mesh['x']

16 dx = x[1] - x[0]

17

18 def fdd(u, v, beta): #second derivative of damage function

19 return -beta * (beta - 1.) * (u - v)**(beta - 2.)

20

21 steps = 50

22 damage = np.zeros(steps)

23 beta = np.linspace(2, 5, steps)

24 i = 0

25 for beta_i in beta:

26 FDD = np.zeros((n, n))

27 for vi in range(n):

28 for ui in range(vi, n):

29 u = x[ui]

30 v = x[vi]

31 FDD[ui, vi] = fdd(u, v, beta_i)

32 I = 0 #integral sum

33 M = FDD * INT

34 for j in range(n): # summing over all entities in matrix

35 for k in range(j):

36 I += M[j, k] * dx**2

37

38 damage[i] = - I # Damage for beta_i

39 i += 1

40 return beta, damage

Listing 7: Damage function
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1 % Script written to find damage curve from rainflow counting

2 % using the WAFO - toolbox

3

4 % written by: Sebastian Shafhirt

5 % edited by: Odd Eiken

6

7

8

9 close all

10 clear all

11 clc

12 tic

13

14 %% INPUT

15 % Time series

16 T = 2000; % Simulation time

17 dt = .05; % Time step

18 Ns = T/dt+1; % Number of samplings

19 t = (0:dt:T); % Time vector

20 n =T / 2; % Number of wave components

21 phase = 2*pi*rand(1,n); % Random phase

22

23 % Damage Calculation

24 beta = (2:0.05:5);

25 %beta = 5;

26 nb = length(beta);

27

28 %% Generate time series from spectrum

29

30 % Frequency vector

31 f1 = 0;

32 f2 = 1/2/dt;

33 df =(f2-f1)/(n-1);

34 f = (f1:df:f2) + df.*rand(1,n);

35

36 % system

37 b = f / (2.1 / 2 / pi);

38 zeta = 0.01;

39 k = 1.8e6;

40 S0 = (8e5)ˆ2*0.05/pi;

41 AR1 = 0.;

42 sigma_w = 5e8;

43 % White Noise Response Spectrum

44 S = S0 * 2 * pi * (k.ˆ2*((1-b.ˆ2).ˆ2+(2*zeta*b).ˆ2)).ˆ(-1);

45 A = sqrt(2*S_AR*df); % Amplitude for each wave component

46 % Wave elevation time series

47 for i = 1:length(t)
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48 x(i) = sum(A .* cos(2 * pi * f*t(i) + phase));

49 end

50 disp('Signal Generated, log size:')

51 disp(log10(size(t,2)))

52

53 %% Damage

54 % t = gather(t);

55 % x = gather(e);

56

57 % RFC

58 tp = dat2tp([t',x']);

59 RFC = tp2rfc(tp);

60

61 % Total damage - WAFO

62 fb = power(ones(1,nb)*2,beta); % factor to match cc2dam func.

63 DRFC = cc2dam(RFC,beta);

64 dRFC = fb.*DRFC/T;

65

66 % Total damage - Script

67 nRFC = length(RFC);

68 D = sum(power(repmat((RFC(:,2)-RFC(:,1)),1,nb),

69 repmat(beta,nRFC,1)))/T;

70

71 % Save to csv

72 csvwrite('Damage.csv', D)

73 disp('Damage Calculated')

74

75

76 %% Rainflow counting distribution

77 minRFC = min(RFC(:,1));

78 maxRFC = max(RFC(:,2));

79 if minRFC < -4 || maxRFC > 4

80 disp('u does not fit')

81 end

82

83 u = (4:-0.1:-4);

84 nu = length(u);

85 NRFC = zeros(nu);

86

87 for ui = 1:nu

88 for vi = ui:nu

89 for i = 1:nRFC

90 if RFC(i,2) > u(ui) && u(vi) > RFC(i,1)

91 NRFC(ui,vi) = NRFC(ui,vi) + 1;

92 end

93 end

94 end
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95 end

96 NRFC = NRFC/T;

97

98

99 %% Plots

100

101 figure

102 plot(beta,D)

103 title('Damage intensity as function of \beta')

104 xlabel('\beta')

105 ylabel('intensity')

106

107

108 toc

Listing 8: Damage function from WAFO - Toolbox (MATLAB)
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D Code: Other

1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9 import time

10

11 def iterate_steadystate(Matrix, p0=0, max_it=0, tol=0):

12 '''

13 Matrix : Probability matrix

14 max_it : maximum number of iterations.

15 Default 10x vector lenght

16 tol : how big change in next state is tolerated.

17 Default = nummerical precision.

18 '''

19 n, n = P.shape

20 print "size: ", n

21 if max_it == 0:

22 max_it = n * 10

23 if tol == 0:

24 tol = 1e-5

25 t0 = time.time()

26 if type(p0) == int:

27 pi1 = np.random.rand(n)

28 pi = pi1 / np.sum(pi1)

29 else:

30 pi = p0

31 pi1 = np.ones(n)

32 e = np.zeros(max_it / 2)

33 n = norm(pi - pi1, 1); i = 0

34 print "No. Iterations:"

35 while n > tol and i < max_it / 2:

36 pi1 = P.dot(pi)

37 pi = P.dot(pi1)

38 n = norm(pi - pi1, 1)

39 e[i] = n

40 i += 1

41 if i%50 == 0:

42 print i*2

43 t = time.time() - t0

44 fig, ax = plt.subplots()

45 ax.semilogy(np.arange(e.size) * 2, e)
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46 ax.set_xlabel('Iterations')

47 ax.set_ylabel('error')

48 print 'Number of iterations done: ', i*2

49 print '%s Iterations took %s seconds' % (i, t)

50 return pi

Listing 9: Steady state iteration (Algorithm 1)
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1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9

10

11 def map_to_same(file):

12 '''

13 Takes a Transition matrix and finds how much probability

14 is mapped into the same (x, v) - state

15 '''

16 mesh, par, P = load_sparse_csc(file)

17 x = mesh['x']

18 v = mesh['v']

19 F = mesh['F']

20 indptr = P.indptr

21 indices = P.indices

22 data = P.data

23 p = np.zeros(x.size * v.size)

24 n_F = F.size

25 for i in xrange(len(indptr) - 1):

26 L = indptr[i]

27 U = indptr[i + 1]

28 same_state = np.arange(n_F) + i - i % n_F

29 ind = indices[L: U]

30 dat = data[L: U]

31 for j in xrange(U - L):

32 if ind[j] in same_state:

33 p[i / n_F] += dat[j] / n_F

34 return p.reshape(x.size, v.size)

Listing 10: Finding ammount mapped to same displ. Vel. state
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1 # -*- coding: utf-8 -*-

2 """

3 @author: Odd Eiken

4 Created 2017

5 """

6

7

8 import numpy as np

9 from scipy.ndimage import gaussian_filter

10

11 def data(p, mesh, smoothen=0):

12 ndim = len(mesh.keys())

13 x = mesh['x']

14 v = mesh['v']

15 del mesh['x']

16 del mesh['v']

17 size = [x.size, v.size]

18 for key in mesh.keys():

19 size.append(mesh[key].size)

20 mesh['x'] = x

21 mesh['v'] = v

22 Q = p.reshape(size)

23 if ndim == 4:

24 Q = np.sum(Q[:, :, :, np.arange(size[3])], axis=3)

25 PXV = np.sum(Q[:, :, np.arange(size[2])], axis=2)

26 PXV = gaussian_filter(PXV, smoothen)

27 PX = np.sum(PXV[:, np.arange(size[1])], axis=1)

28 PV = np.sum(PXV[np.arange(size[0]), :], axis=0)

29 return PX, PV, PXV.T

Listing 11: Get probability distribution from probability vector
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