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We study all possible Majorana modes in two-dimensional spin-orbit coupled ferromagnetic superconductor-
normal state-superconductor (SNS) Josephson junctions and propose experiments to detect them. With the S
region in a non-trivial topological phase and a superconducting phase difference φ = π across the junction, two
delocalized Majorana fermions with no excitation gap appear in the N region. In addition, if S and N belong
to different topological phases and have well-separated the Fermi surfaces, localized Majorana fermions with a
finite excitation gap also emerge at both SN interfaces for all φ.
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The search for Majorana fermions in condensed matter
physics has recently escalated1,2. A Majorana fermion is its
own anti-particle and not only would its discovery be an ex-
traordinary achievement, but it also supports fault-tolerant
topological quantum computation in two dimensions (2D),
where the qubits are decoherence free and protected against
local perturbations by topology3. This is due to the Majorana
fermion obeying non-Abelian statistics, where exchange op-
erations between particles do not just produce overall phase
factors, as in the case of fermions or bosons, but are non-
commutative4,5. Traditionally, the ν = 5/2 state in quantum
Hall systems4 and spinless (spin-polarized) px + ipy super-
conductors, proposed e.g. in stronitium ruthenate6 and cold
atom systems7, have been considered for finding Majorana
fermions. More recently, also strongly spin-orbit coupled
(SOC) systems with a spin-singlet s-wave superconducting
order parameter have been shown to host Majorana fermions
in the presence of a magnetic field, due to an effective p+ ip-
wave symmetry8–11. This includes both topological insulators
(TIs)8,12,13 and more generic SOC semiconductors11,14–19. Es-
pecially SOC semiconductors have generated much attention,
both due to technological maturity and to the experimentally
demonstrated superconducting proximity effect in InAs20, and
will be the focus here. Majorana fermions have been shown
to appear in these SOC materials at vortex cores and at exter-
nal edges, i.e. edges to the vacuum14–19. However, in order
to utilize the Majorana fermions it will be necessary to con-
tact the structure producing them and therefore it is the ”in-
ternal” edge created at a superconducting-normal state (SN)
interface that is, by far, the most interesting. In this Rapid
Communcation we will answer the question of when Majo-
rana fermions appear at internal edges in a generic 2D SOC
semiconductor and how they can be detected. We will do this
by studying, both analytically and numerically, a finite length
SNS Josephson junction in a Rashba SOC 2D system. At first
glance one could possibly expect a SN interface to behave the
same way as a S-vacuum edge. However, due to the supercon-
ducting proximity effect, the effective superconducting gap
∆eff is small, but finite, also on the N side of the interface.
Consequently, the topological phase (TP) in the N region is
determined by setting ∆ = ∆eff ∼ 0 in the same phase di-
agram as used for the S region, which can produce a signif-

icantly different result from a S-vacuum interface. We will
here show the following: (1) If S and N belong to the same
non-trivial TP, there are two zero-energy Majorana fermions
when the superconducting phase difference across the junc-
tion is φ = π, due to closing of the Andreev bound state
(ABS) spectrum in the junction. This has already been es-
tablished in L → 0 junctions14, but here we also show that
these Majorana modes persist for any L and, moreover, that
they are delocalized over the whole N region and that there
is no gap to normal fermionic excitations. However, since the
Majorana modes have different fermion parity, they can be de-
tected through a 4π contribution to the Josephson current. We
call these ABS Majorana modes. (2) If S and N belong to dif-
ferent TPs, of which S is in a non-trivial phase, there will be
one chiral Majorana mode localized at each SN interface for
all φ. We call these phase boundary (PB) Majorana modes.
However, if the Fermi surfaces (FSs) of S and N are not well-
separated, the ever-present ABS spectrum in the junction will,
due to hybridization, destroy the PB Majorana modes. Since
the PB Majorana modes are well-localized and have a finite
excitation gap, they can both be detected by a local density of
states (LDOS) probe, such as scanning tunneling microscopy,
and are the only Majorana mode which qualify for quantum
computation.

Model.—We use a 2D square lattice model with nearest
neighbor hopping t = 1, doping µ < −2t, and Rashba
SOC α to model a generic 2D SOC semiconductor: Hkin =

−t∑〈i,j〉,σ c†iσcj,σ − ∑i,σ µ(i)c†iσci,σ + α
∑
i[(c
†
i↑ci+x↓ −

c†i↓ci+x↑) − i(c†i↑ci+y↓ + c†i↓ci+y↑) + H.c.]. Here ciσ is the
fermion annihilation operator on site i with spin σ. In order
to break the spin-degeneracy and produce Majorana fermions
we add a Zeeman field to the whole SNS structure: HVz

=

−Vz
∑
iσσ′ σzσσ′c

†
iσciσ′ . Experimentally Vz can be provided

by proximity to a ferromagnetic insulator. Finally, in the S
regions of the structure we model the proximity induced su-
perconducting state by H∆ =

∑
i ∆(i)c†i↑c

†
i↓ + H.c.. The

superconducting order parameter is ∆ = ∆0 in the S regions
and zero otherwise. We also assume smooth interfaces and
Fourier transform with momentum ky in the direction parallel
to the SN interfaces. Our model is equivalent to that of Sato et
al.17 and we quickly restate the four different TPs possible for
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µ < −2t: (I): 0 < V 2
z < (4t+µ)2+∆2, (II): (4t+µ)2+∆2 <

V 2
z < µ2 + ∆2, (III): µ2 + ∆2 < V 2

z < (4t− µ)2 + ∆2, and
(IV): (4t− µ)2 + ∆2 < V 2

z . It is important to know here that
phase (I) is a trivial TP with two (non-superconducting) FSs
centered around Γ = (0, 0), (II) is a non-trivial TP with one
FS centered around Γ, (III) is also a non-trivial TP but with
its FS centered around M = (π, π), whereas (IV) is a triv-
ial band insulator. Thus, Majorana modes exist at S-vacuum
edges at ky = 0 in phase (II) and at ky = π in phase (III)17.
Note that due to the superconducting proximity effect at SN
interfaces, ∆ in the above PB equations needs to be the effec-
tive order parameter and should thus be ∆0 for the S regions
and ∆eff ∼ 0 for the N region.

ABS Majorana modes.—We first consider an analytical de-
scription of the above model in phase (II) at very low car-
rier concentrations, i.e. an effective model of a lightly doped
semiconductor with one FS centered around Γ in both S
and N. In this regime we can approximate the band struc-
ture as Ek = |k|2/(2m) − µ′ −

√
α′2|k|2 + V 2

z , where
m = (2ta2)−1, µ′ = µ + 4t, α′ = aα, with a = 1 be-
ing the lattice constant, but for brevity we will here drop
the prime (′). This directly connects to previous continuum
model work on SOC semiconductors11,14 and will also al-
low us to analytically extract the ABS spectrum. The s-
wave spin-singlet order parameter ∆0 has the component
∆k = −α∆0(ky − ikx)/(2

√
α2|k|2 + V 2

z ) in this band after
a pseudospin-transformation. Effectively, we are thus left with
a Hamiltonian which maps perfectly onto a spinless p + ip
superconductor. To model a realistic scenario, we allow for
both different chemical potentials and masses of the quasipar-
ticles in the S and N parts of the junction, denoted {µs,ms}
and {µn,mn}, respectively. In this way, an effective resis-
tance is present upon transmission between the S and N re-
gions due to the Fermi-vector mismatch. In order to compute
the ABS energies, we set up the wavefunctions in each of the
three regions in the junction and match them appropriately at
the interfaces, using a framework similar to Ref.19. Lengthy
calculations provide the allowed ABS energies ±εn where

εn =
α∆0√

2

(
[(q2

x − k2
x)2(1− C) cos2(γ/2) + 8q2

xk
2
x

× cos2(φ/2)]/(α2k2
F + V 2

z )[2k4
x + 2q4

x + 12q2
xk

2
x

− 2(k2
x − q2

x)C]
)1/2

with C = cos 2qxL. (1)

Above, kx =
√
k2
F − k2

n where kF = [2msµs +

2m2
sα

2 + 2ms

√
V 2
z +m2

sα
4 + 2msµsα2]1/2 while qx =

(ms/mn)
√
q2
F − k2

n with qF = [2mnµn + 2m2
nα

2 +

2mn

√
V 2
z +m2

nα
4 + 2mnµnα2]1/2. Here, ky = kn is the

transverse momentum index which is quantized for a finite
width W of the junction, whereas the phase factor γ, defined
via eiγ = (ky + ikx)/kF , is related to the k-space structure
of the superconducting gap. The above bound-state expres-
sion can then be used to calculate the Josephson current in
the short-junction regime L � ξ: I(φ) = 2e∆0

~
∑
n
∂εn
∂φ tn

with tn ≡ tanh(βεn/2) and β the inverse temperature. As
a consistency check for the above result, we briefly consider

the limit of equal masses and chemical potentials in the sys-
tem, ms = mn and µs = µn. In this case, Eq. (1) is seen
to reduce to the form εn =

√
D cos(φ/2) where D is a trans-

mission constant independent on L. This is in agreement with
Ref.21, where 1D tunneling between pure p-wave supercon-
ductors was considered.
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FIG. 1: (Color online) (a) ABS energy spectrum in the Josephson
junction as a function of φ. Blue (thin) lines correspond to differ-
ent finite ky , whereas the red (thick) line denotes the mode ky = 0.
In an equilibrium situation, the lower energy states ε < 0 would be
populated upon increasing φ (black solid arrows). For an adiabatic
ac voltage bias it is possible to keep one single branch populated (red
dashed arrow). (b) ABS energy spectrum as a function of ky . The
inset shows a zoom-in of the behavior near ky = 0. The parameters
are chosen to be relevant to experiments but still allow the one-band
model: ∆0 = 0.02 meV (a fraction of the bulk superconducting
gap), Vz = 1 meV (due to proximity to a ferromagnetic insulator),
mn/me = 0.04 and mnα

2 = 0.01 meV (pertaining to InAs quan-
tum wells22), ms/me = 0.2 and msα

2 = 0.05 meV (motivated by
the proximity to bulk superconducting leads), µs = µn = 0.1 meV
(tunable via an overall gate voltage), and W/ξ = 10.

In Fig. 1 we display the energy spectrum of the ABSs in the
junction. In Fig. 1(a) we show energy versus φ for multiple
transverse modes ky . The most striking feature is the appear-
ance of a zero-energy crossing precisely at φ = π for ky = 0.
For finite values of ky , the ABS-levels repel each other just as
in ordinary s-wave superconductors. In Fig. 1(b), we consider
energy versus ky . The ABS-levels oscillate strongly with mo-
mentum, similarly to the numerical lattice-results discussed
below. Again, we see the zero-energy crossing at ky = 0 when
φ = π. We find both here and in the numerical results that the
two states associated with the zero-energy crossing, the two
ABS Majorana fermions, are fully delocalized in the N region.
However, as pointed out in Refs.12,15, the absence of processes
that violate the conservation of fermion parity locally ensures
that there is no transition between these two states, thus keep-
ing their Majorana nature intact. The question is now, is it
possible to experimentally identify the above mentioned ABS
Majorana modes? Here we demonstrate a route for doing so
via standard transport measurements. Consider Eq. (1) and
the normally incident mode n = 0 for which we obtain:
ε0 =

√
D(L) cos(φ/2). Note that the effective transmission
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coefficient is now dependent on the length L of the junction.
The 4π-periodicity is given by the zero-energy levels crossing
at φ = π instead of repelling each other. Since the Josephson
current may be written as I(φ) = 2e∆0

~ [∂ε0∂φ t0+
∑
n 6=0

∂εn
∂φ tn],

it is clear that as long as the first term has an appreciable mag-
nitude compared the higher n 6= 0 modes (which is expected
since the transmission probability peaks at normal incidence),
its periodicity should be reflected in the current-phase relation
of the total Josephson current. It is important to note that the
observation of this 4π-periodicity, or equivalently a fractional
Josephson effect, is not possible for a dc bias under equilib-
rium conditions. The reason for this is that then the popula-
tion of the positive and negative energy branches of the ABSs
in Fig. 1 would always be zero and filled, respectively. The
negative of these energy branches is 2π-periodic, and thus the
effect would be lost. On the other hand, by applying a bias
voltage to the junction with a Josephson period of τJ , one can
ensure to populate a single branch when adiabatically varying
φ(t) as long as τJ is smaller than the relaxation time asso-
ciated with e.g. a bound-state emitting a photon and then re-
laxing into the negative branch. By keeping only one single
branch populated for all phases in this way, one would observe
precisely the announced 4π-periodicity, which has previously
been discussed for 1D p+ip systems12,15,21. The experimental
technique for non-equilibrium population of a single branch
in a controllable fashion has been clearly demonstrated in the
context of Josephson junctions23.

PB Majorana modes.—Having established the appearance
of Majorana fermions at φ = π when S and N belong to the
same non-trivial TP, we return to the lattice model and its more
general phase diagram. Here we will show that a Majorana
fermion can also be located at the SN interface for any φ if, in
addition to S being in a non-trivial TP, N is in another phase.
The position of this PB Majorana fermion will be at the PB
between the S and the N region and is thus a manifestation of
the termination of the non-trivial TP in S, akin to a S-vacuum
edge. Therefore the inverse proximity effect, i.e. the reduction
of ∆ on the S side of the interface captured in a self-consistent
treatment, can move the Majorana fermion well into the S re-
gion. Below we only report standard non-self-consistent re-
sults, but we have confirmed our results even when including
self-consistency. In Fig. 2 we plot the eigenvalue spectrum at
φ = 0 for different junction lengths [the superconducting co-
herence length is defined as ξ = 2~vF /(π∆0)], for S in phase
(II) and N in phases (I)-(III), counted from the top. The case
treated analytically above, with S and N in (II), corresponds
to Figs. 2(c) and 2(d) but here φ = 0, so no ABS Majorana
fermions are present. We see that the ABS spectrum is some-
what more spread out in ky in the numerical solution, due to
the anharmonicity of the band structure, and that more and
lower lying ABS levels appear for longer junctions. However,
we reproduce all significant results from the analytical treat-
ment. Most notably, the zero-energy ABS Majorana fermions
appear only at φ = π and ky = 0. If instead S and N are both
in phase (III), the results are analogous with the exception of
the Majorana fermions now appearing at ky = π. This is a di-
rect consequence of the ABS spectrum being centered around
the same ky value as the FS in N. Moving on to Figs. 2(e) and
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FIG. 2: (Color online) Eigenvalue spectrum for φ = 0 junctions
with L = 8 ∼ 2ξ (a),(c),(e) and L = 40 (b),(d),(f) in the case where
S belongs to phase (II) and N to phase (I) with Vz = 1.2 (a),(b), (II)
with Vz = 1.8 (c),(d), and (III) with Vz = 3 (e),(f). Here α = 1,
∆0 = 0.4, µs= -3.5, and µn= -2.5. For simplicity only Vz was
varied to produce the different TPs in N while keeping a fixed Fermi
level mismatch in the form of µs 6= µn, but the different TPs can be
implemented using a wide range of parameters.

2(f), where N is in phase (III), the ABS spectrum is centered
around ky = π and it is again rather spread out in k-space.
Here we also have a proper PB between the S and the N re-
gions with the Majorana modes associated with phase (II) in
S located at ky = 0. Thus, the ABS spectrum and the PB Ma-
jorana modes are well separated in k-space, as clearly seen in
Figs. 2(e) and 2(f), and the PB Majorana mode is present. Fi-
nally in Figs. 2(a) and 2(b), N is in phase (I) and there is again
a PB between S and N. However, both the ABS spectrum and
the PB Majorana modes are now centered at the same ky = 0
point, and we see a large hybridization between these two fea-
tures, resulting in the destruction of the zero-energy PB Majo-
rana fermions. Note that this hybridization is not only strong
at large L, where the ABS spectrum appears at low (but fi-
nite) energies, but exist even in Fig. 2(a), where the ABSs are
located at energies ∼ 0.2t for small ky-values. In the very
short junction limit, where the ABS spectrum joins the bulk
continuum, we start seeing small remanent traces of the PB
Majorana modes at the SN interfaces, although in our lattice
model L is now so short that the Majorana modes themselves
start to significantly overlap, causing a finite gap. It is thus
hard to determine which effect is largest in terms of gapping
out and destroying the two distinct interface Majorana modes
in the L → 0 case. Not shown in Fig. 2 is N in phase (IV).
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FIG. 3: (Color online) (a) LDOS per unit cell and energy (white =
0 to black = 0.55) as a function of position from the junction center
(in units of a) and energy for φ = 0. The vertical lines mark the SN
interfaces. (b) N(0) (integrated LDOS for |E| < 0.01) as a function
of φ at Majorana peak position (black, ×) and in the middle of N
(red, ◦). The inset displays the two interface Majorana fermions by
plottingN(0) for φ = 0 as a function of distance. The dotted vertical
lines mark the SN interfaces. Here α = 1, ∆0 = 1, Vz = 3.5, µs=
-3.5, µn= -2.5, and L = 8 ∼ 2ξ.

Here N is a band insulator which cannot support ABS lev-
els inside the insulating gap, and we thus find PB Majorana
modes at ky = 0 for S in phase (II). Lastly, analogously to
the results in Fig. 2, for S in phase (III) we find PB Majorana
modes at ky = π for N in phases (I),(II), and (IV), as then
there is a PB between S and N and the ABS spectrum does
not interfere. We thus conclude that PB Majorana modes exist
only when S is in a non-trivial TP, there is a PB between S
and N and, most importantly, only when the FSs of S and N
are not centered at the same k-point.

In Fig. 3 we explore the spatial distribution of the PB Ma-
jorana modes in the prototype case of S in phase (II) and N in
phase (III) [cf. Fig. 2(e)]. In Fig. 3(a) the LDOS as a function

of both energy and distance from the middle of the junction
is plotted. The bulk gap appears at ∼ 0.12 in S, whereas the
ABS spectrum in N reaches down in energy to at ∼ 0.05 for
φ = 0. The light gray band at even low energies on either
side of the interfaces are the PB Majorana modes, the constant
DOS being a feature of the Dirac spectrum in 1D. To comple-
ment this data we plot in the inset in Fig. 3(b) N(0), the low-
energy carrier density, as a function of distance, which shows
the well resolved PB Majorana fermions at the two SN inter-
faces. Thus the PB Majorana modes constitute two counter-
propagating chiral Majorana modes well localized to the two
SN interfaces. Finally in the main panel in Fig. 3(b) we ex-
plore the dependence on the superconducting phase difference
φ across the junction, by plotting N(0) at the peak position
of the Majorana fermion (black crosses) and in the middle of
the junction where the ABS spectrum is present (red circles).
Here we see that the Majorana fermion persists for all φ. The
slight increase in N(0) at the Majorana position at very large
φ is due to the ABS spectrum finally closing at φ = π, as seen
clearly in the red curve with circles. Note, however, that while
the PB Majorana modes are only well resolved in energy for
φ < π in k-integrated data, they are still well resolved in k-
space for all φ. This is in contrast to the ABS Majorana mode
which, first of all, only exists at zero energy for φ = π, and
even then, they are not separated in energy from other low-
lying parts of the ABS spectrum. The localization to the SN
interfaces, and the existence at all φ, which allows for energy
separation from the ABS spectrum, means that the PB Majo-
rana modes can be easily detected by a LDOS probe such as
scanning tunneling microscopy. To allow for a broad window
of detection, short junctions are preferred as then the ABS
spectrum appears at higher energies.
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