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Abstract

Oil dispersants are used extensively in order to minimize the environmental damage that

often follows an oil spill. A widely used dispersant, Corexit 9500A, consists of four sur-

factants with different properties and a solvent making sure that the interfacial tension

between the oil and water is as low as possible. Low interfacial tension enhances natural

dispersion of the oil. Due to the surfactant’s different affinities to water and oil, individual

leaching rates occur for the surfactants. This changes the relative composition, and thus

decrease the efficiency of the dispersant. Experiments to determine these leaching rates

have been conducted on oil slicks at the sea surface by Resby et al. (2007). Such rates are

equally interesting subsurface, but have not been investigated.

By using SINTEF’s Inverted Cone system, single oil droplets, treated with the dispersant

Corexit 9500A, were captured and analyzed. The instrument used for analyses was a liquid

chromatography-mass spectrometer. Direct injection of the samples into the electrospray

ionization source was used to reduce unwanted effects due to the different chemical and

physical properties of the surfactants. To extract information from the analyzed droplets,

prediction models were built using partial least squares regression.

It was discovered that the relative composition of surfactants in a rising oil droplet changes

over time. The total amount of surfactants was found to decrease to 63 % of the initial mass

after 15 minutes, and to 60 % after 120 minutes. The relative concentration of the surfac-

tants was found to mainly be determined during the first 15 minutes of contact time with

seawater. The relative amount of the anionic surfactant, DOSS, was decreasing compared

to the nonionic surfactants, Span 80, Tween 80 and Tween 85, before stabilizing.

It has been proven that the relative composition of the dispersant are changing while the

oil droplet is rising towards the surface. This changed composition are affecting the dis-

persant effectiveness.
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Sammendrag

Dispergeringsmidler blir mye brukt for å minimere miljøskadene som gjerne følger oljesøl.

Et mye brukt dispergeringsmiddel, Corexit 9500A, består av fire surfaktanter med ulike

egenskaper, og et løsemiddel som sørger for at overflatespenningen mellom olje og vann

blir så lav som mulig. Lav overflatespenning mellom olje og vann tilrettelegger for naturlig

dispergering av oljen. På grunn av surfaktantenes ulike affiniteter til vann og olje, vil hver

surfaktant ha en egen lekkasje-rate ut av oljedråpene. Dette fører til endring av den relative

sammensetningen til dispergeringsmiddelet, og dermed lavere effektivitet. Resby et al.

(2007) bestemte de ulike utlekkingsratene for surfaktantene for oljeflak på havoverflaten.

Tilsvarende rater under overflaten er også interessant, men har ikke blitt forsket på.

Enkelt-oljedråper behandlet med dispergeringsmiddel ble fanget ved hjelp av SINTEFs In-

verted Cone-apparatur, og ble analysert ved hjelp av et væskekromatografi-massespektrometer.

Prøvene ble injisert direkte inn i en elektrospray-ioniseringskilde for å redusere uønskede

effekter på bakgrunn av surfaktantenes ulike kjemiske og fysiske egenskaper. Prediksjon-

smodeller ble laget med en minste kvadraters metode-tilnærming for å kunne ekstrahere

mest mulig informasjon ut fra de analyserte oljedråpene.

Det ble fastslått at den relative sammensetningen av surfaktanter endres over tid hos ol-

jedråper som stiger mot overflaten. Summen av surfaktanter ble funnet til å avta til 63 %

av opprinnelig masse i løpet av de 15 første minuttene, og videre til 60 % ved 120 minut-

ter. Den relative konsentrasjonen av surfaktanter ble funnet til å hovedsakelig bli avgjort

i løpet av de første 15 minuttene i kontakt med sjøvann. Den relative andelen av den an-

ioniske surfaktanten, DOSS, avtok sammenlignet med de ikke-ioniske surfaktantene, Span

80, Tween 80 og Tween 85, før sammensetningen stabiliserte seg.

Det har blitt bevist at den relative sammensetningen av Corexit 9500A endrer seg mens

oljedråpen stiger mot havoverflaten. Dette endrer dispergeringsmiddelets effektivitet.
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1 Introduction

Oil spills in coastal waters pose a burden to the society and threaten the ecosystem. It

may damage both marine and terrestrial natural resources. The spill sources are typically

related to activities in oil exploration and production, and transportation of oil. Other

sources include natural seeps, operational discharges and run-off from land-based activ-

ities (Wang and Stout, 2010). Acute releases require special attention and may require

expensive response and cleanup activities. Net Environmental Benefit Analysis (NEBA) is

conducted in situations with acute releases, considering advantages and disadvantages for

different responses and their effects on flora, fauna and their habitats (Baker, 1995). The

considered responses include mechanical removal of the oil, burning it on the sea surface,

chemical treatment and doing nothing. In certain situations, use of chemical dispersants

result in lower overall environmental impact than other countermeasures (Lessard and

DeMarco, 2000). The chemical dispersants typically consist of anionic and nonionic sur-

factants combined with a solvent. The goal is to reduce the interfacial tension between oil

and water, allowing the oil to be dispersed into the sea. This is achieved by choosing the

mixture that packs the oil surface best.

Dispersants applied to surface oil slicks have been used since the late 1960’s and their ef-

fects, and the fate of the oil, are well know. During the response actions to the Deepwater

Horizon oil spill in 2010, close 3 million liters of chemical dispersants were applied to the

surface and subsurface (Kujawinski et al., 2011). This was the first large-scale application

of dispersants in deep water. How the oil is affected over time after such subsurface in-

jections of dispersants is less known. Oil with injected dispersant breaks up into smaller

droplets, and a larger fraction of the oil is dispersed into the water column. The remaining

fraction will reach the surface and create an oil slick, however, with a changed dispersant

composition. A commonly used oil dispersant, Corexit 9500A, contains four surfactants

with different properties, which behaves differently on the oil-water interface and in the

oil phase.

Place et al. (2010) emphasized the importance of robust analytical methods to detect the

surfactants in Corexit 9500A formulations and seawater, for which they published in 2014

(Place et al., 2014). They were able to quantify the individual surfactants by using large-

volume injection liquid chromatography with mass spectrometry (LVI-HPLC/MSMS), how-

ever, the sensitivity was several orders of magnitude better for the anionic surfactant,

dioctyl sodium sulfosuccinate (DOSS) than for the nonionic surfactants. Quantification
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of the nonionic surfactants, Span 80, Tween 80 and Tween 85 in the collected samples

proved to be difficult using LVI-HPLC/MSMS.

Resby et al. (2007) studied the fate of oils with applied dispersants on the surface, and

were able to map the leaching rates for the individual surfactants in different oils at differ-

ent temperatures. They quantified surfactants using mass spectrometry and multivariate

calibration, due to high complexity. Because of different physical conditions at the sea sur-

face and subsurface, the surfactants are assumed to leak out of the oil with different rates

after a subsea injection of dispersants. Similar knowledge of oil fate after subsea injection

of dispersant, as for the sea surface is yet to be available. Hence the goal of this thesis; To

determine the leaching rates for the surfactants in Corexit 9500A for dispersant-treated oil

droplets rising in the water column.

To reach this objective, samples had to be gathered and analyzed, and data had to be pro-

cessed. SINTEF’s Inverted Cone-system was used to obtain oil droplets with realistic con-

ditions, liquid chromatography with mass spectrometry was used for analysis and multi-

variate approach was used to quantify the surfactants in the oil droplets.

In the following sections, relevant theory about subsea oil spills and the physical and

chemical properties of oil and surfactants, mass spectrometry, chemometrics and some

statistics are presented. The section Materials and methods provides information about

the used equipment and instruments and some challenges during experimentation. Re-

sults and discussion provides comments of each step in the procedure together with re-

sults of the analyses. The last sections, Conclusion and Further work provide some con-

cluding words regarding the results and the method together with ideas and suggestions

to improve the the method and get deeper understanding of the surfactant leaching for

droplets rising in the water column, and how this knowledge can be implemented for use.
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2 Theory

In order to acquire knowledge about the leaching rates for the individual surfactants found

in oil dispersants, certain expertise in several disciplines is needed. Oil droplets are af-

fected by the seawater as they are rising towards the surface, where leaching of surfactants

are connected to the properties of the released oil and the surfactants themselves. Insight

in the analytical methods is required to achieve the best possible data. Knowledge about

how to process the data to maximize the extracted information, are required to get closer

to a solution. A theoretical background for subsurface blowouts, oil- and surfactant chem-

istry, instrumental analysis and handling of data are presented in the following section.

2.1 Subsurface oil blowout

Release conditions and oil properties matter when the fate of the oil is to be predicted,

and measures to be determined. Factors like water depth, ocean currents and gas fraction

are important to take into consideration. Differences between deep and shallow water

releases are presented below, together with theory behind initial and secondary droplet

formation.

2.1.1 Shallow and deep water oil release

Why it is important to separate between deep and shallow water is due to gas behavior.

In this thesis, depths <300 m will be considered as shallow water, while >300 m will be

considered as deep water. The depth 300 m is chosen as the equilibrium conditions where

natural gases allow formation of gas hydrates from natural gas (Johansen, 2003).

When there is a blowout, like a broken pipe from an oilfield, there are both oil and gas

present. At lower depths, the pressure will reduce the volume and thus the buoyancy. The

buoyancy will be further reduced due to non-ideal gas behavior, hydrate formation and

gas that dissolves in the seawater. In shallow water, gas can be considered ideal (Johansen,

2003).

At moderate and shallow depths, gas from the release point will generate a strong buoy-

ancy. The plume will consist of dispersed oil, entrained water and gas which will form a

radially expanding, thin slick at the surface, close to the release point (Yapa and Li, 1997).
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The formed gas hydrates consist of solid state seawater and natural gas. When gas comes

in contact with cold water at high pressure, ice-like hydrates are formed. Figure 2.1 shows

equilibrium conditions for both methane and natural gas with a mixture of 80 % methane,

10 % ethane and 10 % propane. At even deeper water, hydrates can be formed at almost

any temperature, but with different formation rates. Among the factors affecting the for-

mation rate, are the latent heat that is released when hydrates are formed, and the lim-

ited amount of gas at the hydrate-water interface (Yapa et al., 2001). Hydrate growth will

only continue as long as the surrounding water is saturated with gas, which prevents the

hydrate to dissolve (Teng et al., 1997). As hydrates are formed, the plume buoyancy are

reduced.

Figure 2.1: Equilibrium lines for hydrate formation for methane (CH4) and natural gas
(80 % methane, 10 % ethane and 10 % propane). The sea temperature profiles are mea-
sured in the Norwegian sea and the Gulf of Mexico. Figure from Johansen (2003).

Gas will gradually dissolve in seawater (Barton, 1991). The rate of dissolution is affected by

the magnitude of the mass transfer coefficient, the bubble’s surface area and the difference

in concentration between the surface of the bubble and the surrounding water. In deep

water, the Krichevsky-Kasarnovsky relation (Equation (2.1)) must be applied for predicting

the solubility, while Henry’s law (Equation (2.2)) can be used for lower pressures (Lekvam
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and Bishnoi, 1997).

ln
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x l
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= ln H
P s

1
2,1 +

V̄ ∞,l
2 · (P −P s

1)

RT
(2.1)

p = kH c (2.2)

V̄ ∞,l
2 is the partial molar volume for solute 2, assumed to be independent of pressure P of

solute 2 in solvent 1, P s
1 is the saturation pressure of pure solvent, f is the fugacity and H

is Henry’s constant. p is the partial pressure, c the concentration for the liquid and kH is

pressure over concentration.

The magnitude of the mass transfer coefficient is uncertain as bubble behavior is highly

depending on size. Small bubbles tend to be internally stagnant, and larger ones usually

oscillate and have internal circulations. Depending on the case, different correlations are

used. One correlation that is used is the Sherwood number, Sh, a non-dimensional num-

ber depending on the droplet diameter, d , the diffusivity of the dispersed phase in the liq-

uid, D , and the mass transfer coefficient, K , see Equation (2.3). An emiprical correlation

done by Hughmark (1967) is shown in Equation (2.4).

Sh = K

d
D (2.3)

Sh = 2+0.95Re1/2Sc1/3 (2.4)

Re and Sc is the Reynolds number (Equation (2.5)) and Schmidt number (Sc = v/D , v) is

the kinematic viscosity of the continuous phase).

As these factors affect the buoyancy of the plume, the plume itself becomes sensitive to

cross currents and stratification layers (Johansen, 2003). Cross currents bend the bubble

plume trapping it in a stratification layer because of heavy, entrained bottom water, which

reduces the buoyancy even further. At this point both oil droplets and gas bubbles tend

to escape the plume due to individual buoyancy. The separation process for both bubbles

and droplets is self-reinforcing as the plume buoyancy gets weaker. An illustration of the

process is shown in Figure 2.2. The plume is at this point expected to follow a Lagrangian

particle (gas bubble and oil droplet) transport phase, with negligible group buoyancy ef-

fect and plume dynamics (Socolofsky et al., 2015).
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Figure 2.2: The process where gas bubbles and big oil droplets separates and escapes from
the bending plume due to own buoyancy. Figure by Johansen (2003).

As the buoyancy of the rising plume dies, the rest of the oil droplets will continue to rise

towards the sea surface. Small droplets rise slowly, and are likely to be naturally dispersed

into the water column. Droplets that reach the sea surface will form a thin slick and be

far away from the release point. Bigger droplets leave the plume at an earlier stage and

will form a thick slick closer to the release point. If this fraction is big enough, they will

emulsify. The physical properties of the oil will affect the droplet size distribution, at what

time they escape the plume, and eventually the appearance of the oil slick that are formed

at the surface.

2.1.2 Initial oil droplet formation

Both the properties of the oil and the conditions at the nozzle are important for the ini-

tial droplet formation. There are several mechanisms responsible for droplet breakups.

Among them: Pendant droplets caused by a higher buoyancy force than interfacial forces,

instabilities of the jet and atomization. Five different instabilities are shown in Figure 2.3.

Masutani (2000) studied droplet breakup in jets and concluded that the breakup regime

could be described in a Reynolds vs. Ohnesorge diagram as shown in Figure 2.4.

The Reynolds number is a dimensionless number that is used to predict flow patterns for

different fluids (Reynolds, 1883). The number is a result of the relations seen in Equa-
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Figure 2.3: Jet breakup of oil droplets by changing the velocity. In the most left release,
Reyleigh instability is seen, as the droplets are close to monodisperse. In the middle pic-
ture, as a result of increased velocity, there is distribution of both small and big droplets.
The most right picture shows complete atomization (Masutani, 2000).

tion (2.5).

Re = −ρU D

µ
(2.5)

The Weber number, W e, is used for analyzing fluid flow at the interface between two liq-

uids (Day et al., 2012). The Weber number equation is shown in Equation (2.6).

W e = U 2Dρ

σ
(2.6)

The Ohnesorge number (Equation (2.7)) is as combination of the Weber number and the

Reynolds number. The number relates surface tension forces with viscous forces (McKin-

ley and Renardy, 2011).

Oh = µ

(ρσD)1/2
(2.7)

In the equations above, D diameter at the exit, U is the velocity, σ the interfacial tension
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Figure 2.4: Jet breakup instability regime by Masutani (2000). The points were collected in
study of oil injection into water. The double lines are the boundaries between the different
breakup regimes. a represents the Rayleigh breakup regime, b represents the breakup that
can be seen in the three middle pictures in Figure 2.3, and c represents atomization.
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between oil and water, ρ the density and µ the viscosity of the jet fluid.

The maximum size of a stable droplet, dmax , in turbulent conditions can be predicted by

using Equation (2.8) (Hinze, 1955).

dmax = a

(
σ

ρ

)3/5

ε−2/5 (2.8)

a represents a proportionality constant, ρ the density of the continuous phase and ε the

turbulent dissipation rate. In the turbulent conditions around the jet, ε decreases as the

distance from the nozzle increases. This causes the time needed to finish the breakup

process to increase, and before the process is finished, droplets are transported to areas

with lower values of ε.

In their work with bubble clouds, MartıÌĄnez-Bazán et al. (2002) used Equation (2.8) to

define a critical droplet size by having a local, downstream value of ε in the jet. The dis-

sipation rate in a turbulent round jet scales with the relative downstream distance X /D

and the exit dissipation rate ε0 ∼U 3/D and gives Equation (2.9). The empirical factor A in

Equation (2.9) is depending on the relative break up length X ′/D .

dmax

D
= AW e−3/5 (2.9)

Hinze (1955) introduced a new dimensionless number, NV i , that accounts for the internal

viscous stress in the fluid droplets, which was changed to the viscosity number V i =µU /σ

by Wang and Calabrese (1986). They discovered that droplet breakup was determined by

the Weber number scaling for low V i numbers (0-1) and Reynolds number scaling for a

large viscosity number (V i >> 1). A semi-empirical equation (Equation (2.10)) for the

intermediate case with both interfacial tension and viscous forced affecting the droplet

breakup were derived.

dmax

D
= AW e−3/5

[
1+BV i

(
dmax

D

)1/3 ]3/5
(2.10)

B is an empirical coefficient. A modified Weber number was introduced to include the

correction for the viscosity effect based on the results from the TowerBasin experiments

by Brandvik et al. (2013). Equation (2.11) shows the modified Weber number:
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W e∗ = W e[
1+BV i

(
dmax

D

)1/3 ] (2.11)

When the droplets are rising up through the water column, they reach their terminal veloc-

ity when the drag force equals the droplet’s buoyancy. This velocity is given by the relation

in Equation (2.12):

∆ρgV = A
1

2
f ρwU 2 (2.12)

∆ρ is the difference in density for water and oil, g is the gravitational constant, V=
π

6
D3

the droplet volume, A=πa2 the cross sectional area, f the friction factor, ρw the density of

water and U the rise velocity. U is given in Equation (2.13):

U =
√

4g ′D
3CD

(2.13)

CD = (2a/D)2 f is the drag coefficient and g ′ =∆ρg/ρw the specific gravity of a droplet in

water. An other important factor is the deformation of the droplet. The drag coefficient is

a product of the friction factor and the deformation factor. The friction factor is a function

of the viscosity ratio between oil and water, the interfacial tension and the Reynolds num-

ber. The deformation factor is a function of difference in density between oil and water,

the interfacial tension and the equivalent circular diameter. This factor is calculated by

Equation 2.14.

CD = f De f = f

(
2a

D

)2

= 10(1+1.3Mo
1
6 )+3.1 Eo

10(1+1.3Mo
1
6 )+Eo

(2.14)

Where Mo and Eo is the Morton and Eötvös number, which is shown in Equation (2.15)

and (2.16).

Mo = g
µ4

ρLσ3
(2.15)
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Eo = (ρw −ρ)gD2

σ
(2.16)

Droplet deformation can thus be predicted for different interfacial tensions and equiva-

lent circular diameters. This can be used to correct the rise velocity due to changes in the

interfacial tension.

2.1.3 Droplet size distribution

Useful models for prediction of droplet size distribution can only be made if a relevant sta-

tistical droplet distribution is considered. The two most used distribution functions used

for droplet breakup are the lognormal distribution and the Rosin-Rammler distribution

(Lefebvre, 1988). Lognormal distribution is the normal distribution of the logarithms of

the droplet sizes, which is a normal distribution of x = ln(d) with mean value m = 〈x〉 and

standard deviation σx based on x.

Figure 2.5: Comparison of lognormal distribution and the Rosin-Rammler distribution.
The top figure contains the cumulative distributions while the bottom contains the fre-
quency distributions (Johansen et al., 2013).
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The lognormal distribution, the Rosin-Rammler distribution is a two-parameter distribu-

tion function. It is defined in terms of a characteristic diameter, di , corresponding to a

cumulative volume fraction, Vi , and a spreading parameter, α. The function is shown in

Equation (2.17). A comparison of the Rosin-Rammler distribution function and lognormal

distribution is shown in Figure 2.5.

V (d) = 1−exp[−ki (d/di )α] (2.17)

In experiments done by Johansen et al. (2013), the Rosin-Rammler distribution function

fits data over a wider range than the lognormal distribution for both dispersant-treated

and untreated oils.

2.1.4 Secondary droplet formation

Tip-streaming is an important phenomenon for the work in this thesis, as the daughter-

droplets contain an unknown amount of surfactants after the secondary droplet breakup.

Taylor (1934) observed deformation and bursting of a droplet of one fluid in another fluid,

while controlling the interfacial tension, the droplet’s viscosity and the deformation rate

of the outer fluid. This breakup happens after the initial droplet formation and is thus

named secondary droplet breakup. Tip streaming is a result of reduced interfacial tension

between the sea water and the oil droplet. The phenomenon can be seen as the droplets

get a shape of an umbrella, a pin or a cone. Non-spherical shapes occur due to surfactants

relocating on the droplet surfaces; they are swept sideways like seen in the schematic il-

lustration in Figure 2.6 and 2.7. Figure 2.9 and 2.10 shows actual examples of the phe-

nomenon.

The secondary breakup can be observed as a thread, as shown in Figure 2.8, and was ob-

served by Anna and Mayer (2006). They characterized the growth and maximum length

as a function of flow variables and surfactant content and the period of droplet breakup.

They discovered that the thread formation is dependent on surfactant bulk concentration

and flow parameters. The thread increases in length when the outer liquid flows increas-

ingly faster than the inner liquid. Other reasons for this formation can be shearing by a

coflowing fluid or elecrohydrodynamic forcing (Gopalan and Katz, 2010).
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Figure 2.6: A rising droplet in an immis-
cible fluid with similar viscosity. The po-
sition on the interface is described by a
cylindrical coordinate system; r (s) and
z(s). S is the arclength parameter. From
drop pole to pole: 0 < s < l (Eggleton et al.,
1999)

Figure 2.7: A buoyant droplet as seen in
Figure 2.6, with added surfactants. Sur-
factants are added to reduce the interfa-
cial tension. Under dynamic conditions,
the interfacial tension effect induced by
the surfactants is changed (Eggleton et al.,
2001).

Figure 2.8: Thread formation due to flow parameters and surfactant bulk concentration
from experiments observed in the imaging section of the Inverted Cone system .

2.2 Oil chemistry

The physiological and chemical properties of oil are important to understand in order to

be able to establish sufficient models for predicting leaching rates for surfactants in oil

dispersants (Brandvik and Daling, 2015a).

2.2.1 Chemical composition

The oil found in typical oil fields is no homogeneous fluid with a standard set of proper-

ties. Crude oil consists of a mixture of different components that can be divided into two

main groups, hydrocarbons and non-hydrocarbons (Brandvik and Daling, 2015a). Hy-

drocarbons are components consisting only of hydrogen- and carbon atoms, whereas the
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Figure 2.9: Tip-streaming facilitated by
surfactants. The surfactants are dragged
to the sides of droplet as shown in Fig-
ure 2.7. Small droplets are breaking out
from mother droplet (Dunnebier, 2015).

Figure 2.10: The surfactants are dragged
away from the upper droplet surface and
down to the sides where it induces sec-
ondary droplet breakup (Davies et al.,
2016).

non-hydrocarbons include nitrogen, sulfur and oxygen (NSO-) components as well as hy-

drogen and carbon. An overview of the components are found in Table 2.1

Table 2.1: Chemical composition of crude oil.

Hydrocarbons Components

Paraffins n-alkanes, iso-alkanes
Waxes Long paraffins
Naphtenes Cycloalkanes
Aromatics Unsaturated cyclic hydrocarbons

Non-hydrocarbons

Resins Big, NSO
Asphaltenes Condensed polycyclic aromatic NSO

Paraffins consist of n-alkanes and iso-alkanes. Short chains (< 5 C-atoms) will exist as

gases, while chains existing of 5-16 C-atoms will be liquids. Paraffins with more than 20

C-atoms are classified as waxes as they precipitate at low temperatures. Naphtenes are cy-

cloalkanes where at least one ring is saturated, usually 1-5 rings as either cyclopentanes or

-hexanes. Paraffinic side chains may be present. Aromatics are unsaturated cycloalkanes.

Up to 40−50 % of crude oil may consist of 1-5 coupled aromatic rings.

The heteroatomic rings, the non-hydrocarbons, are big molecules that may contain ni-

trogen, sulfur and oxygen. They are usually polar and have surface active components.
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Asphaltenes are the biggest components in crude oil and consist of dark, heavy aromatics

(6-20 aromatic rings) and forms micelles.

2.2.2 Physical properties

Several parameters are important for oils’ behavior and fate at the sea surface. Boiling-

, flash- and pour point, oil density and viscosity, and fraction of waxes, resins and as-

phaltenes which emulsifies, will be presented below (Brandvik and Daling, 2015a).

As the oils are mixtures of several components, they also have several boiling points. Thus,

the boiling point is presented as a curve showing the relative distribution of light and

heavy components in the oil. This parameter is important as it affects the degree of evap-

orative loss at sea and its influence on other physical properties.

The flash point of oils is important as the components in the oils are highly flammable. It

is defined as the temperature where the oil generates ignitable gas. Explosions may occur

in hot storage tanks, or if the sea temperature is higher than the flash point. The flash

point gets higher due to evaporative loss.

Density is important as it affects the oil’s ability to spread at the surface and the degree

of natural dispersion. An oil with high density spreads less on the surface, and is more

affected by waves. For oil in water it is common to use API (American Petroleum Institute)

gravity, which is a dimensionless unit that compares the oil density to the water density,

see Equation(2.18). Oils with values below 10 ◦API will sink, while the ones above will

float. Heavy oil is classified as values below 22.3 ◦API , light oil at 31.1 ◦API and above,

while medium oil is between those two.

◦API = 141.5

Specific gravity
−131.5 (2.18)

Pour point is defined as the temperature where oil solidifies due to wax. At the sea surface,

this will happen when the pour point of the oil is 10−15 ◦C above the sea temperature.

Having a high fraction of waxes increase the pour point.

Viscosity is flowing resistance and matters a lot if the oil has to be removed mechani-

cally. The viscosity increases with decreasing temperature and emulsifying oil. After some

time at the sea, the lighter components evaporate, increasing the fraction of resins and as-
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phaltenes and thus increases the viscosity. The emulsions that are formed usually contain

water as well, which increases the viscosity further.

2.2.3 Weathering processes

Knowledge about how oil behaves at the sea surface is crucial for choosing the most effec-

tive response. There are three main factors that are influencing the oils rate of weathering

at the sea: The original physical and chemical properties, environmental conditions and

properties of the water (Brandvik and Daling, 2015b). An overview of weathering processes

affecting an oil slick at the sea surface is shown in Figure 2.11.

One of the most important processes occurring is evaporation. As the slick spreads out on

the surface, the lightest components evaporate and thus changing the relative composi-

tion and properties of the oil. Generally, all the lightest components (<C11, boiling points

up to 200 ◦C) will evaporate within the first 24 hours, followed by the somewhat heavier

compounds (C11-C15, boiling points up to 270 ◦C) within some days.

Water solubility of the oil is another factor to consider. The smaller molecules in the oil,

like benzene or toluene, can dissolve in the sea water. Heavier components are insoluble.

Evaporation is typically 10-100 times quicker than the solubility in the water phase.

Some components in the oil will slowly be oxidized to resins and eventually asphaltenes

under influence of sunlight. As the fraction of heavy components in the mixture increases,

so does the stability of the water-in-oil emulsions.

Micro-organisms exist in the seawater, and some of these are using oil components as an

energy source. With favorable conditions, the number of micro-organisms will increase

and affect the rate of biodegradation. The amount of phosphates, nitrogen, oxygen and

the temperature are important factors to obtain the wanted conditions. All oil compo-

nents, except asphaltenes can be degraded by the micro-organisms, and the degradation

can only take place on the interface between oil and water. As a result of natural disper-

sion, the oil-water surface increases and thus increases the biodegradation rate.

Even after extensive weathering and emulsification, the oil still usually has a density lower

than for water, and would normally not sink. Although, if there are areas with high con-

centrations of sediments, these may stick to the oil and thus make it heavier than water.

The weathering process that is most important in making crude oil persistent on the sur-
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Figure 2.11: An overview of the weathering processes occuring on an oil slick at the sea
surface (Brandvik and Daling, 2015b).
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face is water-in-oil emulsification. This process delays both evaporation and the natural

dispersion processes and increases the viscosity significantly.

Wind creates waves on the sea surface. With sufficient energy in the waves, these will break

up the oil slick and create droplets with diameter ranging from 1−1000µm. The droplets of

less than 100µm, the rise velocity will be less than 1-2 meter per hour, and are considered

permanently dispersed. The rate of this kind of natural dispersion will typically be about

0.5−2 vol% per hour in the initial stages of an oil spill. The oil’s ability to spread on the sea

surface can be dominant in the initial stages of an oil spill. “Windrows” will be formed by

currents, waves and changes in wind direction.

2.3 Oil dispersants

Oil dispersants are mixtures of surface active components, called surfactants, in a solvent.

The surfactants exist of two main components, one hydrophilic part and one lipophilic

part. The hydrophilic part can be a carboxy-group, hydroxy unit, conjugated double bonds

or a ionic charge. Aliphatic chains from fatty acids are representing the lipophilic parts.

Choosing the right solvent is important as it contributes to the chemical and physical

properties of the dispersant. Dispersants used nowadays are concentrates that are ap-

plied directly onto the oil slick. The amount of used dispersant is usually 2−4 % of the

amount of the oil (Brandvik and Daling, 2015c).

The chemical dispersants are enhancing the effects of the natural dispersant by creating

more droplets that are small enough considered to be permanently dispersed. The re-

quired energy gets significantly lowered. This results in a higher fraction of the total oil

slick to be removed from the surface. The hydrophilic and lipophilic properties of the sur-

factants make the molecule stick on the interface between oil and water, which results in

lowered interfacial tension. The interfacial tension (IFT) is typically 20−30 mNm−1 with-

out surfactants and below 0.1 mNm−1 with injected or applied surfactants. This effect is

achieved by using several different sized surfactants, to optimize the packing around the

oil droplets.
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2.3.1 Chemical composition of surfactants

Between phases, whether it is liquid, solid or gaseous, there is a force trying to minimize

the interfacial area (Mørk, 2004). When using chemical dispersants, the goal is to lower the

interfacial tension so natural dispersion is facilitated. In order to get as low IFT as possible,

the surfactants have to be packed onto the surface of the oil droplet. Close packing of the

surfactants on the surfaces is achieved by having surfactants with different characteristics.

The surfactants classification is usually based on their hydrophilic group. This results in

the following groups: Anionic-, cationic-, non-ionic-, amphoteric and zwitterionic surfac-

tants (National Research Council, 1989).

Anionic surfactants have a negative charged hydrophilic group, examples include sulfos-

uccinate esters, like dioctyl sodium sulfosuccinate (DOSS), and oxyalkylated C12-C15 alco-

hols and their respective sulfonates. DOSS (Figure 2.12) is a component in the commer-

cially used oil dispersant Corexit 9500A.

Figure 2.12: Dioctyl sodium sulfosuccinate (DOSS), an anionic surfactant used in the com-
mercial oil dispersant Corexit 9500A. The charge causes the polarity to be higher compared
to Span 80, Tween 80 and Tween 85.

Cationic surfactants’ hydrophilic group is positively charged. A cationic surfactant is the

quaternary ammonium salt: RN(CH3)3
+CL–. Such compounds are usually toxic and are

not used.

The non-ionic surfactants are not charged, but have highly polar heads and nonpolar tails.

These are the most commonly used surfactants in commercial dispersant formulations.

Among them are sorbitan monooleate ester (Span 80, Figure 2.13), ethoxylated sorbitan

monooleate ester (Tween 80, Figure 2.14) and ethoxylated sorbitan trioleate ester (Tween

85, Figure 2.15).
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Figure 2.13: Sorbitan monooleate, Span 80. A non-ionic surfactant used in the commercial
oil dispersant Corexit 9500A. The head contains polar groups while the tail is nonpolar.
The HLB value for Span 80 is 4.3, indicating that it is highly lipophilic.

Figure 2.14: An ethoxylated sorbitan monooleate, Tween 80. A non-ionic surfactant used
in the commercial oil dispersant Corexit 9500A. Tween 80 has a HLB-value of 15, which is
on the hydrophilic side of the scale and has a high affinity to water.

Figure 2.15: Ethoxylated sorbitan trioleate, Tween 85. A non-ionic surfactant used in the
commercial oil dispersant Corexit 9500A. Tween 85 has a HLB value of 11, indicating a
higher affinity to water than to oil.
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For the amphoteric and zwitterionic surfactants, the hydrophilic group can contain either

a negative or a positive charge, or both. An example of such could be a molecule with a

quaternary ammonium group as mentioned previously, and a sulfonic acid group. Such

compounds are not found in commercial formulations.

The Hydrophile-Lipophile Balance (HLB) were introduced by Griffin (1954) to describe

how the behavior of a surfactant is affected by the balance between the hydrophilic and

lipophilic groups in the molecule. All nonionic surfactants have an HLB-value. The useful

range of 1 (most lipophilic) to 20 (most hydrophilic). Hexane for instance, without any

hydrophilic groups, have HLB value as low as zero, and would not be active on the surface.

Stated by Bancroft (1913); the dominant group of a surfactant tends to be oriented in the

external phase. Which means that lipophilic surfactants (HLB, 3 to 6) would stabilize a

water-in-oil emulsion, while a hydrophilic surfactant (HLB, 8 to 18) would stabilize an oil-

in-water emulsion.

As the HLB says something about the surfactant’s affinity to water and oil, it is highly rel-

evant when looking at the leaching rate for the individual surfactants. The HLB values of

the components in Corexit 9500A are shown in Table 2.2. Span 80 has a higher affinity to

oil than both Tween 80 and Tween 85, as well as DOSS, due to its ionic nature.

Table 2.2: HLB values for the surfactants found in the oil dispersant Corexit 9500A (Resby
et al., 2007).

Surfactant (trade name) HLB-value Molar mass [g/mol]

Span 80 4.3 428.62
Tween 80 15 ∼1310
Tween 85 11 1838.68
DOSS Ionic 444.56

2.3.2 Dispersants as an oil spill response method

A common oil spill response is using chemical dispersants. The environmental damage

can be reduced both by applying dispersant on oil slicks at the sea surface, and injecting

the dispersant subsurface, close to the release point. There are several advantages and

disadvantages by using chemical dispersant, see Table 2.3 for an overview.

When the use of dispersant is a potential response option, there are several considerations
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Table 2.3: Benefits and disadvantages by using chemical dispersant as a tool for enhancing
the natural dispersion and removal of surface oil slicks. (Brandvik and Daling, 2015c)

Benefits Disadvantages

Less damage to marine animals at the sea
surface

More oil in the water column

Less damage along the shore Might be lethal on marine organisms
Enhanced biodegradation Not effective on all oil types
Fast response Reduced effect on weathered oil
Can reduce water-in-oil emulsification Potentially short window of

opportunity

that have to be taken. If natural resources and habitats that are threatened and to what

extent, and the efficiency is expected to be as well as it has to be sufficient water depth

and circulation so a rapid dilution of the dispersed oil is achieved.

As the oil increases in concentration in the water column, it is present as both dissolved

oil components and as small droplets. Dissolved components, called the water soluble

fraction (WSF), are considered as a potential source to acute toxic effects on marine or-

ganisms. The used dispersants consist of biodegradable components of low toxicity and

only have a minimum contribution to the total toxicity.

Resby et al. (2007) tested the dispersant effectiveness over time for Oseberg oil with Corexit

9500A applied on the surface. The results indicated an efficiency of 94 % after 1 minute and

95 % after 24 hours while decreasing to 63 % and 32 % after 1 and 2 weeks at 15 ◦C. At the

same temperature, the total dispersant concentration went from 4 wt% when the disper-

sant was applied and decreased slightly as Span 80 went from an initial concentration of

0.5 wt% to around 0.05 wt% after two weeks.

2.3.3 Analysis of surfactants

Measuring of the effects that surfactants give are studied more than the surfactant itself.

As the surfactants used in the Corexit 9500A dispersant are quite different in the matter

of properties, this must be taken into account when analyzing them. Big differences in

properties like polarity and having both a polar and a nonpolar side, molecular weight and

spatial extent leads to problems that are not encountered when analyzing the surfactants

individually.
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For analysis of Span 80, both Gas-Chromatography (GC) (Sahasrabudhe and Chadha, 1969)

and High Pressure Liquid Chromatography (HPLC) (Garti et al., 1983) have been used.

The combination of Thin-Layer Chromatography (TLC) and GC provided a method for

identification, separation, and to some extent quantitative estimation. Garti et al. (1983)

analyzed Span 80 with mixtures of isopropanol and water. The result was fingerprint chro-

matograms for qualitative identification of the sorbitan ester.

DOSS has been analyzed using different methods. Kujawinski et al. (2011) used a liquid

chromatography coupled to a linear ion trap mass spectrometer to examine water sam-

ples collected from the Gulf of Mexico after the Deepwater Horizon oil spill. Ueno et al.

(1978) looked at Aerosol OT (DOSS) in monomeric- and micellar state by using Carbon-13

Nuclear Magnetic Resonance (13C-NMR) and retrieved information about the chemical

shifts for the functional groups. Fourier Transform Infrared spectroscopy (FT-IR) has been

used to obtain knowledge about the structural formation of different aggregates for DOSS

in water-in-oil microemulsions (Gonzalez-Blanco et al., 1997). Proton Nuclear Magnetic

Resonance (1H NMR) has been used to study the formation of micelles by changing the

counterions (Stahla et al., 2008). Two more usable methods for analyzing have been done

by Ramirez et al. (2013), who measured DOSS in several stages after the Deepwater Hori-

zon platform incident. Method (1): Online solid-phase extraction liquid chromatography -

tandem mass spectrometry (SPE-LC-MS/MS) for low concentration samples, and method

(2): Direct injection LC-MS/MS for samples that do not require preconcentration. Both

methods for quantifying the amount of DOSS in seawater.

Tween 80 and 85 are less found in literature. One method for identification and quantifica-

tion of the ethoxylated sorbitan esters in crude oil was developed by Eide et al. (2006). Full-

scan positive electrospray ionization mass spectrometry (ESI-MS) with a single quadrupole

LC-MS with direct injection without fragmentation is a usable method for quantifying the

surfactants in oil samples.

Resby et al. (2007) were able to successfully quantify the surfactants by evaluating the

spectra. A calibration set was created containing 25 different compositions of the surfac-

tants in Corexit 9500A, following a d-optimal design. The average spectra were normalized

and weighted in order to give all the mass sizes equal importance so the focus could be on

obtaining the systematic variation in the dataset extracted by the multivariate calibration.

Place et al. (2014) were the first to develop an analytical method for quantitative analysis of

all the surfactants in Corexit 9500A. Using large-volume injection liquid chromatography
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(LVI-LC) with MS/MS, they were able to analyze the surfactant components (in seawater)

with minimal sample preparation.

2.4 Mass spectrometry

Mass spectrometry is an analytical tool for obtaining information about unknown com-

pounds. It is common to divide it into atomic mass spectrometry and molecular mass

spectrometry. Atomic mass spectrometry is a tool that quantitatively can determine close

to every element in the periodic table, while molecular mass spectrometry can provide

information about structures of organic, inorganic and biological molecules, and both

quantitative and qualitative information of the composition of complex mixtures. The

mass spectrometer converts analyte molecules to ions, which are separated based on their

mass-to-charge (m/z) ratio. These ions are directed to a transducer that converts the ion

abundance to an electrical signal. A common way to filter the ions is by using quadrupole

mass analyzers, a device consisting of four parallel placed cylindrical rods. An oscillating

electrical field is created in the quadrupole, enabling the ions to be filtered based on their

stability in their trajectory. (Skoog et al., 2013)

2.4.1 Time-Of-Flight Mass Spectrometry

In Time-Of-Flight Mass Spectrometry (TOF-MS), the ion’s m/z-ratio is determined by us-

ing time measurement. A pulsed electric field is applied to push ions orthogonally to their

original trajectory into the accelerating column, resulting in ions having the same amount

of kinetic energy (Chernushevich et al., 2001). The ions enter a drift space with no electri-

cal field, where the TOF-separation occurs. The geometry minimizes the effect of the en-

trance velocity, which leads to a higher resolution. A schematic of the an tandem QqTOF

mass spectrometer is shown in Figure 2.16. A tandem QqTOF mass spectrometer can be

described as a triple quadrupole where the last quadrupole section is replaced by the TOF-

analyzer.

The mass resolution of TOF (Equation (2.19)) is calculated as:

RFWHM = m

∆m
= t

2∆t
≈ Leff

2∆z
(2.19)
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Figure 2.16: A schematic diagram of a tandem QqTOF mass spectrometer, where Q0, Q1
and Q2 are quadrupoles in the system. (Chernushevich et al., 2001)

RFWHM is the resolution at full peak width at half-maximum. m and t represents the mass

and the flight time for the ion, ∆m and ∆t are the widths of the peaks measured at 50 % of

the mass and time scales. ∆z is the thickness of the ion packets approaching the detector,

and Leff is the effective length of the TOF-analyzer, which takes into account extended drift

time in the electrostatic mirror and the accelerating column.

The flight time is given by Equation (2.20).

t = Leffp
2eUacc

p
m/z (2.20)

Uacc is the full accelerating voltage in the TOF. The resolution in the TOF is generally lim-

ited by the spatial and velocity spread of ions in the z-dimension, stability of the power

supply, precision of the mechanical work, grid scattering and the quality of its microchan-

nel plates.

2.4.2 Liquid Chromatography Mass Spectrometry

Chromatographic separation of compounds coupled to mass spectrometry combines two

powerful analytical techniques, allowing mixtures with multiple components to be iden-
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tified with higher specificity and sensitivity than the individual techniques alone (Covey

et al., 1986). Chromatography is a technique where the components in a mixture are sep-

arated while being carried by a gaseous or liquid mobile phase through a stationary phase

(Skoog et al., 2013). High-performance liquid chromatography (HPLC) uses a liquid mo-

bile phase to carry the sample through a column, allowing compounds to be separated

based on e.g. size, affinity to the column material or chirality. Different properties of the

compounds in the mixture facilitate separation before a detector generates a signal pro-

portional to the amount of material that hits it. Coupling an HPLC to an MS allows com-

pounds in complex mixtures to be separated and to introduce a time gradient for the mass

spectrometric identification (Figure 2.17).

Figure 2.17: Illustration of the information given by the LC-MS-system (Wikipedia, 2017)

2.4.3 Limit of blank, detection and quantitation

Limit of blank (LoB), limit of detection (LoD) and limit of quantitation (LoQ) are terms that

are used to say something about a system’s sensitivity, analytical sensitivity and functional

sensitivity (Armbruster and Pry, 2008). Characterization of the analytical performance of

instruments are important to understand their capability and limitations. LoB is defined

as the highest apparent concentration of analyte that is expected to be found when repli-

cates of a sample containing no analyte are analyzed. Equation (2.21) shows how LoB is

estimated. If the data are assumed to be normally distributed, LoB represents 95 % of the

observed values, while the remaining 5 % show a response that could have been produced

of a low concentration analyte.
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LoB = mean blank +1.645(SD blank) (2.21)

Meanblank are the mean values for the ion masses in the blank sample, and SDblank the

standard deviation. Samples with low concentrations may produce less response than

the LoB, but is still considered a reasonable starting point for estimating LoD. Sufficient

analyte concentration is required to produce a signal that can be distinguished from an-

alytical noise. LoD is defined as the lowest analyte concentration where the analyte can

be distinguished from the noise, and is thus greater than LoB. Equation (2.22) shows the

mathematical relation of LoD. An alternative approach utilises samples with known con-

centrations of the compound of interest. This empirical approach allows objective data to

be compared to the blank response, and the LoD can be used to determine the concen-

tration needed to distinguish whether it is present or absent. A minimum signal-to-noise

ratio is usually applied when using this method. Once a LoD is determined, it can be

confirmed by examining values for samples containing LoD or near LoD concentration.

If Equation (2.22) is used, less than 5 % should be less than LoB. Limit of quantification

is defined as the lowest concentration where the analyte can reliably be detected. This

functional sensitivity may be equal to, or higher than LoD, but will never be lower.

LoD = LoB+1.645(SD low concentration sample) (2.22)

2.5 Preprocessing

Data often contain noise, non-linearities and irrelevant components. Raw data may be

used directly for analysis, but often result in bad results. Removing or minimizing varia-

tion could increase the information obtained from the data, removing the possibility for

unwanted variation to dominate the results in the analysis.

2.5.1 Normality

Statistical tests like correlation, factor and discriminant analysis and a lot of classical sta-

tistical tests and calculations of probability levels are based on the assumption of data that

are normally distributed (Reimann and Filzmoser, 2000). A natural first step before inves-

tigating data further, is checking the distribution. Three common procedures for checking
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whether a sample come from a population with normal distribution, graphical, numer-

ical and formal methods (Razali et al., 2011). Graphically it can be done with tools like

histograms, boxplots and one-dimensional scattergrams, shown in Figure 2.18. Graphi-

cal methods are fast and useful for checking normality, but are not sufficient to provide

conclusive evidence for the assumption for normality.

Figure 2.18: Graphical representation of x, a variable with mean = 0 and standard deviation
= 0.1. a) shows the values of x, fluctuating around zero. b) shows a histogram with a density
line. c) is a boxplot and d) is a one-dimensional scattergram

The data are rarely normally distributed, and some additional terms can be needed to ex-

plain the properties of the data. Among the numerical methods is checking the data for

skewness and kurtosis. Skewness tells something about how the data is leaning. The skew-

ness coefficient, γ1, of a variable X is measured by the standardized third central moment

(moment about the mean), see Equation (2.23) for the skewness coefficient (Groeneveld

and Meeden, 1984).
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skew(X ) = γ1 = E

[(
X −µ
σ

)3]
(2.23)

E is the expectation operator, µ is the mean (Equation (2.24)) and σ the standard devia-

tion (Equation (2.25)) for the skewness calculated using R in this thesis, resulting in Equa-

tion 2.26 (Meyer et al., 2017). Figure 2.19 shows a graphical representation of the behavior

of positively, negatively and unskewed data.

µ= 1

n

n∑
i=1

xi (2.24)

σ=
√

1

n −1

n∑
i=1

(xi −µ)2 (2.25)

γ1 =
1

n −1

∑n
i=1(xi −µ)3

σ3
(2.26)

Kurtosis is a variable that tells something about the flatness or “tailedness” of a variable.

Positive kurtosis indicates a sharper peak relative to normal distribution, while negative

kurtosis indicates a flat peak. Basically the kurtosis represents a movement of “peak-mass”

without affecting the variance, so the changes in the peak or the tails must compensate the

other. The kurtosis coefficient is defined as the standardized fourth moment about the

mean, see Equation (2.27) for the definition, and Equation (2.28) for the equation-version

used in R.

kurt(X ) =β2 = E(X −µ)4

(E(X −µ)2)2
(2.27)

β2 −3 =
1

n

∑n
i=1(xi −µ)4

σ4
−3 (2.28)

The β2 −3 part is used to compare the value to normal distribution, leaving normal dis-

tributed data with kurtosis equal to zero. The standard deviation used in Equation (2.28) is

defined in Equation (2.25). A graphical representation of kurtosis is shown in Figure 2.20.

Four formal methods for testing normality is the Shapiro-Wilk test, Kolmogorov-Smirnov
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Figure 2.19: Skewness of data, the blue line
represents unskewed data, green line repre-
sents positive skewness and red line repre-
sents negative skewness

Figure 2.20: Kurtosis. The blue line shows
data with positive kurtosis, laptukurtic dis-
tribution, the green line shows data with
zero kurtosis, mesokurtic distribution, sim-
ilar or identical to normal distribution, and
the red line shos data with negative kurtosis,
platykurtic distribution.
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test, Lilliefors test and Anderson-Darling test. While skewness and kurtosis can be catego-

rized as descriptive statistics, the recently mentioned normality tests can be categorized

as theory-driven methods. The Kolmogorov-Smirnov statistics belongs to the supremum

class of the Empirical Distribution Function tests, based on a large gap between the hy-

pothesized and empirical distribution. Equation (2.29) shows the proposed test:

T = supx |F∗(x)−Fn(x)| (2.29)

‘sup’ is the supremum function, F∗(x) the hypothesized distribution function, and Fn(x)

is the empirical distribution function estimated, based on a sample. For normality testing,

F∗(x) is normal distributed with a known standard deviation, σ and mean, µ.

The Lilliefors test (Equation (2.30)) is a modified version of the Kolmogorov-Smirnov test.

Where the Kolmogorov-Smirnov suits situations with completely known parameters of the

hypothesized distribution, the Lilliefors is more appropriate when it is difficult to initially

or completely specify the parameters, since the distribution is unknown. The parameters

for the Lilliefors test are estimated based on a sample, and can be defined:

D = maxx |F∗(X )−Sn(X )| (2.30)

Sn(X )is the sample cumulative distribution function, and F∗(X ) the cumulative normal

distribution function.

The Anderson-Darling test belongs to the quadratic class of the empirical distribution

function statistics, and is based on the squared difference, (Fn(x) − F∗(x))2, defined as

shown in Equation (2.31).

W 2
n = n

∫ ∞

−∞
[Fn(x)−F∗(x)]2ψ(F∗(X ))dF∗(x) (2.31)

Whereψ is a non-negative weight function that can be computed byψ= [F∗(x)(1−F∗(x))]−1.

An easier form to do the computation is shown in Equation (2.32).

W 2
n =−n − 1

n

n∑
i=1

(2i − i ){logF∗(Xi )+ log(1−F∗(Xn+1−i ))} (2.32)
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Where F∗(Xi ) is the cumulative distribution function of the specified distribution, xi the

ordered data and n the sample size.

The Shapiro-Wilk test (Equation (2.33)) is a test that is able to detect deviation from nor-

mality due to skewness and kurtosis, and is a much used test due to good power properties

(Mendes and Pala, 2003). The test is defined as:

W = (
∑n

i=1 ai yi )2∑n
i=1(yi − ȳ)2

(2.33)

Where yi is the ith order statistic, ȳ is the sample mean, ai = (a1, ..., an) = mT V −1

(mT V −1V −1m )1/2 and

m = (m1, ...,mn)T the expected values of independent and identically distributed random

variables. The W -value ranges between zero and one, where small values leads to rejection

of normality and a value of one indicates normality in the data.

2.5.2 Centering

Centering of data causes parameters to fluctuate around zero instead of the parameters’

mean value, and are thus used to focus on the relevant variation in the data (van den Berg

et al., 2006). The centering-process is based on an assumption of presence of offsets in the

data, and is used to remove these (Bro and Smilde, 2003). This is shown in Equation (2.34)

for an R-component bilinear model of a data matrix X(I × J ).

X =ΦΘT +E ↔ xi j =
R∑

r=1
φi rθ j r +εi j (2.34)

Φ(I ×R) and Θ(J ×R) holds the parameters φi r and θ j r , which are used to indicate pop-

ulation parameters. The E-matrix holds the unknown errors. The model associated with

offsets that are constant across the first mode is shown in Equation (2.35):

X =ΦΘT +1µT +E ↔ xi j =
R∑

r=1
φi rθ j r +µ j +εi j (2.35)

µ(J ×1) holds the constant terms µ j ( j = 1, ..., J ), and 1 is a one-vector of size (I ×1).

An offset is described as a part of a model that is constant across one or more modes. The
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act of first centering across first mode, and then center that output across second mode

is called double centering. Such offsets can arise in during chromatography or capillary

electrophoresis, where the detector may add a constant offset to the dataset. Centering

can be referred to as centering across the first mode, which is subtracting the column av-

erage, which is shown in Equation (2.36) and with matrix notation in Equation (2.37):

yi j = xi j −
∑I

i=1 xi j

I
(2.36)

with yi j , an element in the centered data matrix. Subtracting row average can also be

done, and is called centering across second mode.

Y = X−1mT (2.37)

Y holds the centered data, while, 1 is an I -vector of ones.

Centering is performed to make interval-scale data behave as ratio-scale data, which is

the assumed type of data in most multivariate models. The difference can be shown as the

rank of the model is reduced, the model has increased fit to the data, specific removal of

offsets, and avoidance of numerical problems (Bro and Smilde, 2003)

In some situations can subtraction of the column or row average lead to models that fit

the original data worse than without preprocessing. This can occur when missing data is

handled, as the projection cannot be done with any elements missing. Subtracting val-

ues and projection onto the nullspace of vectors cannot be done with missing data. If the

data is heteroscedastic, the centering preprocessing step may not be as efficient as if the

data is homoscedastic. Centering is an extension of the bilinear (or multilinear) model,

and offsets are assumed to be present in the model of the data. When the data has miss-

ing elements, a situation where the model cannot be fitted in a least squares sense when

centering occurs. Subtracting averages with the same structure as the offsets will gener-

ally eliminate offsets. This is true for offsets constant across one mode, which is the used

method later in this thesis.
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2.5.3 Scaling

Scaling methods affect the data as a preprocessing step where each element is scaled by

a factor, which can be different for each element (van den Berg et al., 2006). By scaling

the data, differences can be adjusted, allowing the focus to be on the important variation.

Scaling is especially important when different types of variables are analyzed together.

(Esbensen et al., 2002). With scaling of variables, a reduced variable can be defined as:

x̃ j =
x j

d j
(2.38)

Y = WX (2.39)

Where d j is the scaling parameter. Equation (2.39) shows the matrix notation of the oper-

ation with the scaling matrix, W, dataset X and scaled data, Y.

There are several ways to scale data, with different approaches and results. Some used

methods are autoscaling, PARETO-, range-, level-, max- and VAST scaling (Parente and

Sutherland, 2013). Autoscaling uses the standard deviation as the scaling factor for each

element (Equation (2.40)). After autoscaling has been performed, all elements have a stan-

dard deviation equal to one, allowing the data to be analyzed on the basis of correlations

and not covariance. An advantage of using autoscaling, is that it lets variables with lower

absolute values contribute.

zi j =
xi j − x̄ j

s j
(2.40)

x̄ j is the column mean, and s j the standard deviation. With PARETO, each variable is

scaled by the root of its standard deviation, leaving a variance equal to the inspected vari-

able’s standard deviation. Range scaling uses the difference between the minimum and

maximum (max(x j )-min(x j )) value as a scaling factor. Only two values are used to esti-

mate this range, unlike standard deviation scalings, where all variables are taken into ac-

count. This method is highly sensitive to outliers, and will work better after outliers have

been removed. Level scaling may use the mean values of the variables, x̄ j , as scaling fac-

tors. As for range scaling, outliers may have a negative effect. The median can be used

to get a more robust estimator of the mean if the scaling is done before outliers are re-
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moved. With max-scaling, all variables are normalized by their maximum values, leaving

their value to be between zero and one. This method should only be applied after removal

of outliers. VAST scaling, an acronym for Variable Stability scaling, is an extension of au-

toscaling which focuses on variables without strong variation. This is done by using the

product between the standard deviation and the coefficient of variation, s j /x̄ j . The result

is higher importance for variables with a small relative standard deviation.

Normalization of the variables can also be done with other values than max(x j ), see Equa-

tion (2.41).

xnorm = 1

k
x (2.41)

Factor k often is set to normalize vector x so its length is 1 or that the sum of the elements

in the normalized vector equals 1. Other alternatives for choosing k-value is k = ∑n
i=1 |xi |

or using the value of the largest peak in a spectrum, as mentioned above, or choosing k so

the sum of the variable elements equals 1 (Equation (2.42)).

k =
√

n∑
i=1

x2
i (2.42)

2.5.4 Outlier detection

Statistical outliers differ a lot from other observations, due to problems like false reading

or experimental error. Outliers can be spotted by visual inspection, requiring knowledge

about both the samples and the method used. There are several methods for using es-

tablished methods for detecting outliers (Wisnowski et al., 2001; Ellenberg, 1976), but this

may result in loss of valuable data. Cho et al. (2008) used quantile regression for detec-

tion of outliers in mass spectrometry data. They created a program to detect outliers us-

ing linear, non-linear and non-parametric quantile regression techniques in the computer

language R.
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2.6 Chemometric Methods

Instruments used in science and technology have improved, and provide massive amounts

of information that no longer can be analyzed by just looking at them, or using simple

plotting. More sophisticated, computer-based methods are needed to get the job done

(Eriksson et al., 2006).

2.6.1 Principal Component Analysis

Principal component analysis (PCA) can be said to be the basis for multivariate analysis,

by capturing essential data patterns of a data matrix. PCA was formulated in statistics

already in by Pearson (1901), but has been rediscovered several times in different disci-

plines. There are several reasons for doing PCA, like outlier detection, variable selection,

data reduction and classification (Wold et al., 1987).

In order to examine the relationships in a data set, it is useful to transform the original set

of variables to a new set of n uncorrelated variables, called principal components. These

principal components are linear combinations of the original data, derived in decreasing

order of importance. The transformation of the data is an orthogonal rotation in n-space

(Chatfield and Collins, 1980). The general PCA model is shown in Equation (2.43).

X = TPT +E (2.43)

Where T is the scores matrix, the “object pattern”, P the (transposed) loadings matrix, the

“variable pattern”, and E a matrix containing the residuals. If the data matrix X is explained

using all the principal components, the residual matrix E equals zero. The goal is to get

maximum information from fewest possible principal components, and thus prevent cre-

ating a model that tries to explain noise. The scores matrix can be plotted, which is a

projection of the data onto the latent axes. This can aid in detecting any clusters of ob-

jects, possible outlying objects or if there are any interesting patterns. The loadings give

information about how the specific variables are weighted when defining the direction

of a latent variable. The loadings plot can be used to get information about how much

each variable contributes to each principal component or to see which variables that are

correlated (Alsberg, 2016).
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(a) Score plot. (b) Loading plot.

Figure 2.21: Figure 2.21a represents the objects projected down on the new coordinate
system spanned by the two first principal components. Figure 2.21b shows the weighting
of the individual variables on the two first principal components

2.6.2 Partial Least Squares Regression

Multiple Linear Regression (MLR) relates an independent variable x, influenced by a con-

stant β to a dependent variable q, which for one dimension can be described by Equa-

tion (2.44) (Alsberg, 2016):

q =β0 +β1x (2.44)

Which for and n-dimensional system can be described as seen in Equation (2.45) and

(2.46):

ŷi = b0 +
m∑

j=1
b j xi j (2.45)

ŷ = Xb (2.46)

Where b can be explained by Equation (2.47):
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b = (XTX)−1XTy (2.47)

MLR is good way to turn data into information when there are few factors, the data do

not have significant collinearity and have well understood responses (Tobias et al., 1995).

Usage of MLR is based on the assumption that the underlying variables are independent.

With dependent underlying variables, the matrix XTX will be impossible to invert, and the

b cannot be calculated. This typically happens if there are more variables than objects.

Principal component regression (PCR) is a way of bypassing rank deficiency, allowing a

regression problem to be solved when MLR fails to do so. PCR uses a PCA decomposition

(Equation (2.43)) of the original data matrix, X, such that the score can be used instead of

the original data, shown in Equation (2.48).

B = (TT
ATA)−1TT

AY (2.48)

Where T is the scores from PCA-decomposition of data matrix X with A principal com-

ponents used to extract the most useful information in the data set. As T is orthogonal

and thus invertible, the regression problem can be solved. With reformulation of Equa-

tion (2.43), PCR can be described with Equation

Ŷ = XB̂PC R (2.49)

B̂PC R = PA(TT
ATA)−1TT

AY (2.50)

PCR uses the principal components without any concerns for the best direction in mat-

ters of predicting values in Y. Projections to latent structures by means of partial least

squares (PLS), go back to 1975, when Herman Wold started to model complicated data

sets in terms of blocks (chains of matrices) (Eriksson et al., 2006). PLS finds latent vari-

ables in X that are related to the values in Y. It is used for constructing predictive models

when the data are highly collinear, and the factors are many (Tobias et al., 1995). In prin-

ciple, MLR could be used with more factors than observations, but this would result in a

model that fits the sampled data perfectly, but with poor ability to predict new data. This

overfitting of data is reduced by using PLS, which tries to extract fewer latent factors. An

iterative algorithm is typically used on the scores of the X- and the Y blocks to get a better
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inner relation compared to the earlier mentioned methods, by maximizing the covariance

between the blocks.

2.6.3 Validation

Validation of models is used to make sure models can be used in the future to predict

new, similar data, and avoid over- and underfitting (explaining noise or not all important

variance, respectively) of the model (Esbensen et al., 1994). Test set and cross validation

can be used together with MLR, PCR and PLS, and can be applied to augmented regression

models such as non-linear regression and neural networks.

Validation requires access to two data sets with known values for data set X and Y. They

should be acquired with similar conditions and be representative for each other and have

the same quality. One set is used to make the model, called the calibration set, and the

other set, the validation set, is used for testing purposes only. This produces a measure of

prediction error.

When a model is based on Xcal and Ycal with the A components, the Xcal values can be

fed back to the model to predict ŷcal. This is shown in Equation (2.51). Comparing the

predicted and measured Ycal gives the modeling error, shown in Equation (2.52).

Xcal +Model → ycal (2.51)

Modelling error = ŷcal −ycal (2.52)

The sum of the squared differences and taking their mean gives the calibrational, resid-

ual Y-variance. The square root of this gives the root mean square error of calibrational

(RMSEC), shown in Equation (2.53).

RMSEC =
√∑

(ŷcal −ycal)
2

n
(2.53)

Following up with the same procedure for the validation variance to get the prediction er-

ror, root mean square error of prediction (RMSEP). The RMSEP can be calculated for each

principal component and be used to choose the correct amount of components to get best
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possible fit of the model. The validation variance can also be used to detect problems, like

presence of outliers, noise and non-linearities. The calibration and validation set should

be as similar as possible, and preferably identical. In such case the only difference be-

tween them would be the sampling variance. Enough samples in the calibration set must

be used to create a satisfactory model, and the test set should be large enough to provide

a good testing of the model.

Cross validation can be used when test sets are difficult to obtain. It is based on using all

available objects, making a model of one part of the data, and test set with the other parts.

If the data is divided into A and B, a model can be made with A and tested with B, and then

make a model with B and test with A. The prediction error calculated for both models and

the total error is defined as their mean.

In cases with few samples, full cross validation (Leave-One-Out (LOO) validation), is used

to make one model for each sample, but leaving one of the objects out and using it for

testing only. The difference gives a validation Y-variance. An alternative to this is using

bootstrapping, which uses random re-sampling of subset of samples in the calibration

set, with replacement. Leverage correction is a more primitive method, requiring only

to create a model and use itself as validation set. This results in over-optimistic values,

and should only be used in initial stages of modeling. It saves time, but should always be

replaced by a more reliable method.
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3 Materials and methods

For gathering of samples, the Inverted Cone (IC) system was used, analyses were done on

an LC/MS TOF system, and a PLS approach was used to determine leaching rates for the

surfactants. The procedures for the use of the IC system, sample collection, analyses, and

treatment of data are presented in the following section.

3.1 Experimental Setup

Maini and Bishnoi (1981) introduced a concept of controlling a vertical velocity gradient of

water in a tunnel to stabilize buoyant particles, bubbles and droplets. University of Hawaii

adopted the idea in 2011 to study the long term fate of rising oil droplets. Buoyant oil

droplets are injected below the exit of an Imhoff sedimentation cone, allowing the droplets

to be controlled and moved by adjusting the countercurrent. The droplets are captured in

a constant-area, an imaging section where they are observed over a time period (Davies

et al., 2016). Droplets observed in the IC system were caught in order to be able to do

further analysis. The oil used in this study was Oseberg blend (SINTEF ID: 2013-0439)

and the dispersant was Corexit 9500A (SINTEF ID: 2002-0051). Analyses were conducted

using an Agilent 6200 Series TOF and 6500 Series Q-TOF LC/MS system with direct sample

injection.

3.1.1 The Inverted Cone system

The system uses a transparent, cylindrical vertical water tunnel with a water reservoir at

the top. A tapered Imhoff cone is connected to a contraction with the constant imaging

section. The reservoir in the system is fed by a continuous source of filtered seawater that

flow through the system and to waste. A force downwards is created by gravity, where the

countercurrent can be adjusted by controlling a needle valve at the bottom of the system.

The main idea is to adjust the countercurrent so it is equal to the droplets buoyancy, and

thus preventing the droplet from moving. Figure 3.1 shows a schematic diagram of the IC

system.

The imaging section is used to study droplets for both droplet stability and tip-streaming,

and makes it possible to quantify droplet sizes as a function of time. Classical particle
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Figure 3.1: Schematic illustration of the Inverted Cone system. The system is 3 meters
high, with 2 meters of water tunnel above the imaging section. The tunnel, together with
constant pressure exerted by the water reservoir, a steady flow with little turbulence is
created. This allows single oil droplets to be observed in the imaging section. Dispersant
and oil are mixed right before the nozzle.
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sizing methods such as laser diffraction (LISST-100/Malvern Mastersizer) are hard to inte-

grate into the system due to its geometry. Particle sizing is thus done by imaging systems.

The Equivalent Circular Diameter (ECD, DC ) is used for size measurements from images.

The equation for calculating DC is shown in Equation (3.1), which relies on the assump-

tion that the z-dimension of the particle is directly proportional to C A, the area covered by

the convex surface.

DC = 2

√
C A

π
(3.1)

The assumption is fairly accurate for stable, spherical droplets, but for increased droplet

sizes, the droplets forms disk-like, spheroidal shapes. In such situations, DC will under-

estimate the size and volume of the droplet. An equivalent spheroidal diameter (DSp ) is

shown in Equation (3.2).

DSp = 2
√

(0.5Lma j )20.5Lmi n) (3.2)

Lma j is the projected major axis length, and Lmi n is the projected minor axis length. The

ratio DC /DSp can be studied to observe the droplets transformation to spherical over time.

A silhouette-based imaging system is used for determining the size of the droplets. An

overview of the imaging section is shown in Figure 3.2. In the imaging section, the water

tunnel is encapsulated within a square container filled with water to reduce the optical

distortion from the curved surface on the inner cylinder of the system. Droplets caught

in this section can be controlled both manually and automatically. The automatic control

keeps the droplet within a 35 mm section. The system has been calibrated against a dual

axis stage micrometer. This provided pixel-sizes that were close to the theoretical size for

the configuration for the camera and the lens.

During runs, the typical acquisition rate is 7 Hz, but can be increased to 15 Hz in situations

where better resolution is required. Based on Equation (3.3) that shows the relationship to

pixel size, the minimum droplet diameter (Dmi n) that can be detected is 56µm. The pixel

size PS was found to be 14µm during camera and lens configuration tests.

Dmi n = 2

√
12P 2

S

π
(3.3)
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Figure 3.2: An illustration of the configuration of the imaging section on the Inverted Cone
system (Davies et al., 2016).

An average of 50 images with flowing water is used to create a background for reducing

noise in each of the acquired images during droplet tracking. When the system is running,

three processing steps are applied to every image recorded:

1. Noise reduction by subtracting the background image.

2. The new, corrected image is binarized into an image of zeros and ones to differenti-

ate between the droplet and water.

3. Geometrical statistics are calculated for the binary image.

Figure 3.3 shows the velocity profile and its effect on oil droplets with surfactants. The

turbulent flow close to the wall makes the droplet control challenging. An example of this

phenomenon from the IC experiments is shown in Figure 3.4.

A nozzle with diameter of 1.5 mm was used for the experiments. Untreated oil droplets

in sizes ranging from 150 to 8000µm were achieved adjusting the flow rate. To ensure a

stable and correct ratio between oil dispersant and the oil and proper mixing, the mixing

chamber starts directing the flow towards waste before starting the injection into the water

tunnel.

Understanding and controlling the IC system are two completely different matters, as a lot

of controllable and uncontrollable factors are affecting the droplet and system behavior.

Controllable software parameters like injection rate, countercurrent flow and the reaction

time for the droplet-tracking can be adjusted to achieve the wanted droplet size and con-

trol it. Software understanding is a key point to master the system. Even though software
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Figure 3.3: A schematig diagram illustrating the flow and its effect on the droplet and tip-
streaming Davies et al. (2016). The illustration is relevant for the movement inside the
cylinder in the imaging section of the Inverted Cone system.

Figure 3.4: An oil droplet rising (from right to left) close to the cylinder wall in the Inverted
Cone system that experiences turbulence as shown in Figure 3.3.
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parameters are correct, problems occur. The most commonly encountered problems are

the ones affecting the imaging section, making the image analysis less precise or useless.

This can happen when there are several droplets of similar size, air bubbles are stuck in

the inner cylinder, oil gets smeared on the inner cylinder or because of scratches at the

cylindrical surface. Air bubbles can be prevented by filling the water tunnel slowly from

the lower water inlet. Smeared oil can be reduced by using as low amounts of oil as pos-

sible and comprehensive cleaning. Several droplets in the imaging section can be hard to

handle, and requires the flow control to be handled manually, reducing the possibility for

automation. The surface scratches cannot be removed and has to be handled by specific

tweaks in the software, this is typically only a problem for the smallest droplets. In order to

control the smallest droplets, the lower water inlet has to be opened to reduce the coun-

tercurrent flow to almost zero, while still having the flow control valve partly open. This

changes the dynamic area of the resulting in increased control of the droplets with low

buoyancy.

3.1.2 Droplet catching

By reducing the countercurrent, droplets trapped in the imaging section rises from the

small observation cylinder to the broader water tunnel, before they reach the reservoir

and eventually the spread out on the surface. These droplets can be captured before they

reach the surface by using a simple capturing device.

In order to catch oil droplets in the IC system, a hydrophobic material that could be wetted

by the oil droplet was required. Iyengar et al. (1997) used Teflon materials (jars, sheets,

storage bags and so on), as the material is suitable for sampling with its noncontaminating

for both organic and inorganic compounds and its low diffusion rates of water.

A hollow hemisphere of steel wire mesh with the possibility to attach a Teflon sheet was

used as a capturing device to capture droplets as they entered the water reservoir of the IC

system. Figure 3.5 shows an illustration of the sampling device. Fine meshed Teflon sheets

were used to capture the droplets. Figure 3.6 and 3.7 shows an illustration and an image

of the droplet capturing setup.
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Figure 3.5: An illustration of the device used for capturing oil droplets above the water
tunnel in the Inverted Cone system. a) The device that is lowered down into the water
reservoir to capture the oil droplets. A teflon sheet is put in tension against the net of
the capturing device. b) The capturing device seen from below. The net lets water flow
through, but prevents the teflon sheet from sinking due to the tension against the edges.
c) A fine masked teflon sheet which the oil droplets wets. The sheets measure 9 cm times
15 cm, which fit for both 40 ml sample containers and the capture device.

Figure 3.6: Illustration of how the cap-
turing device is lowered down over the
water tunnel to capture the rising oil
droplets.

Figure 3.7: Picture of setup. The sam-
pling device is lowered down into the
water reservoir and over the water tun-
nel.
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3.1.3 Mass Spectrometry

The instrument used for analysis was an Agilent 6200 Series TOF and 6500 Series Q-TOF

LC/MS System. Injection volume was set to 1µL with 10 seconds needle wash in flush

port between each injection. The samples were ionized using dual electrospray ionization

(Dual ESI) with a gas temperature of 325 ◦C. A flow of 0.1 mlmin−1 with a solvent of ace-

tonitrile (95 %), Milli-Q water (5 %) with 4mM ammonium acetate was used, and kept for

2 minutes in each run. The analyses were done in both negative and positive ion mode

in order to be able to detect all the surfactants in Corexit 9500A. DOSS was detected using

negative ion mode (Equation (3.4)), while Span 80, Tween 80 and Tween 85 were detected

using positive ion mode (Equation (3.5)).

The dispersants in Corexit 9500A, DOSS, Span 80, Tween 80 and Tween 85 have fundamen-

tally different properties, which makes them hard to handle in a chromatographic manner.

To avoid troubles with ionic remains in HPLC-columns and other problems, the samples

were injected directly into the MS.

Autotuning of the instrument was performed before each run as a step of quality control.

If the tuning results deviated from the known autotune mixture concentration, a more

thoroughly autotune was performed.

[G(−H)]−+M −−→ [M(−H)]−+G (3.4)

GH++M −−→ MH++G (3.5)

To inspect the degree of carryover, blanks (dichloromethane, DCM) were spiked to 1 mgml−1

with oil, Corexit 9500A and each of its four surfactants. Analyses were done with short

runtime with the samples ran adjacent to each other, before analyzing several blanks. The

carryover was initially found to be significant, requiring long runtime for each sample,

however, further testing at lower, more relevant surfactant concentrations proved the car-

ryover would have less effect on the analysis. To reduce the effect further, the run order of

the samples was set to be done with increasing concentration, allowing any carryover to

only have minor effects. This is done at the expense of randomization of the sample or-

der, which is usually used to minimize the effects of unknown and uncontrollable factors

(Barnard et al., 2013).
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To determine the detection limit, series samples of dichloromethane (DCM) spiked with

low, known concentrations, were analyzed. The concentrations spanned from 1 ngml−1

and up to 1 mgml−1 for each of the surfactants. With the presumed Corexit composition

(see Table 3.1) the lowest concentration is equivalent to droplets with diameter around

100µm. The highest concentrations would be equivalent to droplets way larger than pos-

sible sizes, and were analyzed to get a clear picture of the mass spectrogram-patterns pro-

duced by the surfactants.

3.2 Preparations

Certain precautions were followed to avoid contamination of the samples. The proce-

dure for preparation of the sample containers, the sampling device as well as pre-analysis

preparations are presented. All the prepared containers and samples were stored within a

cold environment. The dichloromethane (DCM) used in the preparations and as solvent

was of HPLC-grade (minimum 99.9 % pure) from Rathburn Chemicals (Caberston Road,

Walkerburn, Scotland. Batch number: 16E24SA).

3.2.1 Sample containers

The sheets of Teflon were cut to fit both the sample containers (Glass (40 ml)) and the

capturing device, and still have a sufficiently big surface area to easily capture the droplets.

The sheets were rolled and put into the containers. Each of the containers were washed

using DCM (10 ml x 5). Fine meshed Teflon sheets were used as the droplet failed to wet

the sheets with coarse meshes.

3.2.2 Sampling device

The capturing device was cleaned with DCM (50 ml x 3) to remove contamination and

prepare for contact with the Teflon sheet. The Teflon sheets were attached to the edges of

the capturing device, and were put in plastic bags to avoid unwanted oil spills to reach the

samples. The storage time in the plastic bags were determined by the length of the runs.
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3.2.3 Analyses

The samples were extracted from the Teflon sheets using DCM (5 ml). The samples were

damped to 100µL (20 minutes) using a Stuart Block Heater at 35 ◦C to get higher oil and

surfactant concentrations, and transferred to glass vials with insert (200µl).

3.2.4 Calibration samples

Before calibration sets could be planned and calibration samples could be made, infor-

mation about the instrumental limitations had to be known. This included finding if there

was any carryover in the system from the different samples, and the lower detection limit

for each of the surfactants. For the calibration samples, the same oil and dispersant as in

the collected oil droplets from the IC system was used. The same DCM as used for sam-

ple extraction on the IC samples was used as solvent. The used anionic surfactant was

solid Aerosol-OT Ca2
+ (AOT, or dioctyl sodium sulfosuccinate, DOSS) from a 60 % AOT so-

lution in ethanol that was evaporated dry. This was dissolved in DCM. The counterion,

Ca2+, was used instead of Na+ to reduce the dependence on salinity in seawater. Despite

the counter ion, the abbreviation DOSS will be used through this thesis. The other used

surfactants were sorbitan monooleate, Span 80, (Lot: 120H0454), polyethoxyethylene sor-

bitan monooleate, Tween 80 (Lot: 90H0678) and polyethoxyethylene sorbitan trioleate,

Tween 85 (Lot: 50H0850) from Sigma Chemical Company, St. Luis. All the surfactants and

Corexit 9500A were added to solvent samples with and without oil, with different concen-

trations.

The nonionic surfactants, Span 80, Tween 80 and Tween 85 does not have commercially

isotopically-labeled intern standards, so an alternative method for quantification was needed.

Internal standard exists for DOSS, allowing ion suppression to be compensated for (Place

et al., 2014), but was not used during the experiments in this study. To get an understand-

ing of the ion suppression caused by the complex oil matrix, equal concentrations of the

surfactants was analyzed in both DCM and oil. The ratio between the intensities from the

DCM results and oil results were investigated.
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3.3 Data Analysis

The data analysis was conducted using the software available at SINTEF Sealab in Trond-

heim, and R version 3.3.2, an open source software environment used for statistical com-

puting (R Core Team, 2016). The analyses, and calibration sample preparations, were

based on an assumed Corexit 9500A composition due to Nalco’s proprietary formulation.

The presumed composition of the oil dispersant is shown in Table 3.1.

Table 3.1: Corexit 9500A, assumed composition

Component Percentage of
Corexit 9500A [%]

Solvent 20
Sum of surfactants 80
DOSS 16
Span 80 8
Tween 80 14
Tween 85 42

3.3.1 Raw mass spectrometic data

All data was obtained by using Agilent MassHunter Workstation Software for LC/MS for

Data Acquisition. The raw data was processed and exported using MassHunter’s software

for Qualitative Analysis. The chromatograms were smoothed using a Gaussian function

with 15 points and a width of 5 points, and automatically integrated 100 % of the detected

peak to get the integration done equally each time. As the samples were injected directly

and not through a column, the integrated peak contained all the compounds in the ana-

lyzed sample. When using the same flow, the peak came at the same time for each run,

so the integrated chromatograms could be manually inspected to check that the sample

was integrated, and not just background noise. Mass spectrograms were extracted from

the integrated chromatograms, and exported as centroid data to .xml-files.
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3.3.2 Statistical analysis

Handling of .xml-files was done with the programming language R, with using the existing

function libraries pls and mzR for handling data. Data was inspected using univariate

statistics prior to multivariate statistics.

For the calibration sets, the correlation coefficient, between abundance and surfactant

concentration, was calculated for all ion masses and was used to select which variables

to inspect further. The variables with correlation coefficient values closest to 1, as well

as other ion masses selected based on the structures for the individual surfactants, were

inspected using descriptive statistics and considered before any decisions were made.

3.3.3 Partial Least Squares Regression

As the samples contains 19501 variables (m/z-values), an univariate approach would only

get a fragment of information and not a complete picture. Multiple linear regression could

have been a possible approach, but the number of observed samples (typically < 50) was

less than 19501. This results in that the least squares approach with b = (XTX)−1XTy fails,

as (XTX) cannot be inverted when the number of variables exceeds the number of samples.

An alternative was to compress the data using principal component analysis (PCA) and use

the scores from the new projections could be used instead of the original data. This prin-

cipal component regression (PCR) finds the principal components that explains the most

variance in the data. However, it does not consider whether the variance is relevant for

the surfactant concentration or not, and may include irrelevant principal components. By

using partial using partial least squares regression (PLSR), the surfactant concentrations

could be used directly as a guiding hand when decomposing the TOF-data, so the an im-

proved regression model for the system could be produced.

Both PLS1, PLS with one Y-variable, and PLS2, PLS with several Y-variables were tested to

create models and predict data. The PLS1-models were made using samples with oil in

DCM that were spiked with each of the surfactants and analyzed to produce the X-data,

and the individual surfactant concentrations as Y-data. The PLS2 models were made using

samples with oil in DCM and spiked with Corexit 9500A and analyzed in positive mode to

produce the X-data, while the Y-data consisted of the concentrations of Span 80, Tween

80 and Tween 85. The same procedure was followed in negative mode, but with only the

DOSS-concentration as Y-data.
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Due to relatively small amounts of objects, all of them were used to create the calibration

sets. For validation, Leave-one-out (LOO) was used, to calculate the root mean square

error of prediction (RMSEP). The models were inspected graphically with RMSEP plot-

ted versus n principle components, leverage correction for the samples used to build the

model, together with loading plots and a score plot for with the two first principle com-

ponents as axes. To refine the models, samples were removed from the calibration sets for

different reasons, as too high concentrations or that the sample was an outlier.
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4 Results and discussion

The following section is divided into work done at the Inverted Cone, the mass spectrom-

eter and with the data analysis. Important steps in the procedure are commented. After

each step is commented, some conclusive results are presented, followed by some ideas

and suggestions regarding method improvements.

4.1 The Inverted Cone

Oil droplets that were rising in seawater in 15 and 120 minutes were captured using the

Inverted Cone system. The 0-minute droplets were created in the laboratory.

4.1.1 Droplet samples

Three different sizes, small droplets with d ≈ 300µm, medium sized around 700-800µm

and large, around 1200µm, were acquired using the Inverted Cone system at 15 and 120

minutes with three replicates of each (Table 4.1). The three sizes are based on empiri-

cal knowledge from releasing treated oil with different flow ratios. Droplet sampling at 15

minutes was chosen because of the limitations of the Inverted Cone (IC) system. In most

cases, single droplets were captured, but the oil injection creates a distribution of different

droplets, allowing single droplets of the smallest size hard to get. 15 minutes was gener-

ally the shortest time it was possible to get a single droplet in focus without disturbance

of similar droplets, for all sizes (around 5 to 10 droplets for the smallest size). It is also in-

teresting to see if there is any rapid leakage of the surfactants between time t = 0 minutes

and t = 15 minutes. 120 minutes represents a typical rising time from the oil droplets are

formed, and their journey towards the surface. With three points, t = 0, 15 and 120 there is

a possibility to see if any trends occur for the surfactants as a function of time. The droplet

diameters are determined several times each second as the droplets rise. Figure 4.1 shows

a medium sized droplet that was kept in place for two hours.

4.2 Mass spectrometry

The initial steps for estimating the degree of carryover and limit of detection are com-

mented. The calibration sets used for model building are shown, and mass spectra for
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Table 4.1: Droplets caught with the Inverted Cone system after 15- and 120 minutes of con-
trol time. The oil used was Oseberg Blend, which was injected with 1vol% Corexit 9500A.
The large droplets (in bold, around d=1200µm), were analyzed.

Rising time d [µm] Rising time d [µm]

15 min 300 120 min -
300 -
300 -

740 700
740 730
800 700

1210 1200
1120 1225
1250 1130

Figure 4.1: Oil droplet (Equivalent Circular Diameter ≈ 780µm) with injected dispersant
(Corexit 9500A) at a oil:dispersant rate = 100:1. A slight decrease over a period of 2 hours
can be seen, even though the droplets keeps a seemingly spherical shape. This droplet
was not caught.
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an oil droplet with unknown composition of dispersant, captured by using the Inverted

Cone system, in positive and negative mode are shown. The analyses was performed by

injecting the samples directly into the electrospray ionization source.

4.2.1 Carryover detection

After the initial testing of the degree of carryover, the spectra showed that carryover indeed

was a problem for Tween 80, Tween 85 and DOSS. No signs of Span 80 could be seen in the

blank spectra one minute after the injection. For Tween 80 and Tween 85, their patterns

were still recognizable in the blank spectra ten minutes after injection, with considerable

higher intensity than the blanks analyzed prior to the surfactants. As ten minutes was

used for flushing the system before the next dispersant was tested, the blank spectra did

reached normal values. Thus the time needed before the blank spectra reached normal

could not be estimated. Carryover was harder to detect for DOSS, as contamination was

a problem. As mentioned by Place et al. (2014), the DOSS signal appeared regularly in

blank samples. They identified autosampler vial caps as a potential source of DOSS con-

tamination. Autosampler vial caps were still used in this study for practical reasons. Low

concentration samples with DOSS gave lower intensities for the DOSS peak than the blank.

If the vial caps provide contamination of DOSS, this could be explained as the blanks were

injected from the same sample more often than the low concentration DOSS samples.

The concentration used for determining the degree of carryover was 1 mgml−1 for all the

surfactants, which is very high compared to relevant concentrations for the oil droplets.

Better planning would have saved time, as the carryover was not detected, or had very

little impact, for either of the surfactants at relevant concentrations. However, DOSS still

regularly appeared in the blanks.

4.2.2 Limit of detection

The limit of detection (LoD) was found by using dichloromethane (DCM) blanks spiked

with known, low concentrations of each of the surfactants. Serial dilution with a factor of

ten was used. The analyses were done with increasing order of concentration, starting at

1 ngml−1 and all the way to 1 mgml−1. For inspection, the correlation coefficient was cal-

culated for every m/z-value, and sorted in descending order. The m/z-values for the 500

highest coefficient values were inspected graphically by plotting the intensities versus the

known concentration with a logarithmic x-axis, to see at which concentration the intensity
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flattens. Exact determinations of the detection limits within one order of magnitude were

not made. See Table 4.2 for estimations of the detection limits.

Table 4.2: Estimated limit of detection (LoD) for surfactants in dichloromethane. Graphi-
cally determined by inspecting the intensity plotted against the known concentration for
the 500 m/z-values with highest correlation coefficient.

Surfactant LoD, range [µg/ml]

DOSS 0.1 - 1
Span 80 1 - 10
Tween 80 1 - 10
Tween 85 1 - 10

4.2.3 Calibration sets

The Corexit 9500 composition assumption in Table 3.1, corresponds to surfactant con-

tents shown in Table 4.3. The only droplet diameter being close to the estimated detection

limits (Table 4.2), is the largest one with a diameter equal to 1200µm. This means that the

instrument faces problems in detecting the surfactants at the stage right after dispersant

injection, with 1 vol% dispersant in the droplet, causing severe troubles for obtaining reli-

able results with the used method. Despite the fact that the method would give unreliable

results, experiments was conducted to see if any trends could be discovered anyway.

Table 4.3: Theoretical surfactant and dispersant content for three different droplet sizes
right after injection, with 1 vol% based on the composition assumption in Table 3.1. The
order of magnitude between droplets with diameter = 700 and 300µm is roughly 10 and,
roughly 5 between droplets with diameter = 1200 and 700µm.

Diameter DOSS Span 80 Tween 80 Tween 85 Corexit 9500A
[µm] [g/ml]

300 2.14e-8 1.13e-8 2.14e-8 6.16e-8 1.41e-7
700 2.73e-7 1.43e-7 2.72e-7 7.83e-7 1.80e-6

1200 1.38e-6 7.21e-7 1.37e-6 3.94e-6 9.05e-6

Table 4.4 shows the calibration sets used to build the partial least squares regression (PLSR)

model for the different surfactants. PLS1 was used for these sets, with the concentrations

shown in the table as Y-block and the intensities in each m/z-value from the mass spec-

trometer as X-block. The concentrations ranges from around 10 % of the surfactant con-
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tent in a droplet at 1200µm and up to several hundred percents larger. Each of the sample

was analyzed five times to get more accurate results.

Table 4.4: Calibration set for oil droplets spiked with surfactants. The sets for each sur-
factant are combined by two separate sets analyzed in block. The number in the right
column represents the amount of the surfactant relative to an oil droplet with diameter
equal 1200µm with 1 vol% Corexit 9500A content, with the assumed dispersant composi-
tion shown in Table 3.1.

Conc. [µgml−1] % of d =
1200µm

Conc. [µgml−1] % of d =
1200µm

DOSS 0.1 7.3 Tween 80 0.1 7.3
1.0 72.7 0.5 36.5
1.1 80.0 0.75 54.7
1.2 87.3 1.0 72.9
1.4 101.8 1.1 80.2
1.6 116.3 1.2 87.5
1.7 123.6 1.4 102.1
10 727.1 1.6 116.7

1.7 124.0
5.0 364.6

Span 80 0.1 13.9 Tween 85 0.1 2.5
0.5 69.4 0.5 12.7

0.56 77.7 1.0 25.3
0.63 87.4 3.0 76.0
0.72 99.9 3.5 88.7
0.75 104.1 4.0 101.4
0.81 112.4 4.5 114.1

1.0 138.8 5.0 126.7
5.0 693.8 10.0 253.5

For PLS2, a calibration set existing of Corexit 9500A in oil was used, with the relative con-

centrations of surfactants as Y-block, see Table 4.5. Span 80, Tween 80 and Tween 85 are

analyzed in positive mode and were all put in the same Y-block. Model was also built in

negative mode by using Corexit 9500A in the oil in the X-block and DOSS concentrations

in the Y-block.
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Table 4.5: Calibration set for PLS2-model. The used surfactant concentration is relative to
Corexit 9500A in total, with the surfactants adding up to 80 %.

Concentration [g/ml]
Corexit DOSS (16%) Span 80 (8%) Tween 80 (14%) Tween 85 (42%)

100 ngml−1 1.6e-8 8.0e-9 1.4e-8 4.2e-8
1µgml−1 1.6e-7 8.0e-8 1.4e-7 4.2e-7

10µgml−1 1.6e-6 8.0e-7 1.4e-6 4.2e-6
100µgml−1 1.6e-5 8.0e-6 1.4e-5 4.2e-5

1 mgml−1 1.6e-4 8.0e-5 1.4e-4 4.2e-4

4.2.4 Inverted Cone droplets

The droplets marked in bold in Table 4.1, were each analyzed five times in both negative-

and positive ion mode. Mass spectra for the droplet with d = 1210µm is shown in Fig-

ure 4.2. Only the largest droplets were analyzed because of the TOF-system’s lower limit

of detection. Droplets in a wider range were captured prior to determining the detection

limits on the analyzing system, due to mechanical trouble. Zero minute droplets was not

obtained by using the Inverted Cone, but created in the laboratory, and analyzed with the

same conditions as the 15 and 120 minute droplets.

4.3 Data analysis

4.3.1 Data inspection

Both the data sets for calibration and the captured droplets were inspected by using the

descriptive statistics. Kurtosis, skewness, min, max, median, mean and standard devia-

tion was calculated for each of the 19501 variables (m/z-values) and compared for both

logarithmic transformed data and raw data. Due to variables containing only zeros, some

of the statistical values could not be calculated. The results were plotted in histograms

and in plot against the corresponding m/z value to get an overview of the data. Figure 4.3a

and 4.3b shows the distribution of calculated kurtosis values for each variable for the cap-

tured droplets, analyzed in positive mode. Figure 4.3c and 4.3d shows m/z-values plotted

versus corresponding median values for the same samples as mentioned above. Raw data

was chosen to be used further.
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(a) Negative mode (b) Positive mode

Figure 4.2: Mass spectrometry spectra for the oil droplet with diameter = 1210µm in
negative- and positive mode. The droplet was rising in the water column in the Inverted
Cone system in 15 minutes. Initially 1vol% Corexit 9500A injected into the droplet.

4.3.2 Univariate prediction

The datasets were also approached using univariate statistics. The correlation coefficient

was calculated for each of the m/z-values towards the concentration of each surfactant. All

the highest coefficient values for each surfactant were inspected by plotting the intensity

versus the known concentration. These values gives an indication on where to look for

values that may represent the concentration of the surfactants. This is demonstrated by

the top coefficient values for DOSS, which is an easily identified compound. The total

mass of AOT is dependent on the used counterion, sodium is the most used one, hence

the name DOSS, dioctyl sodium sulfosuccinate, the molar mass is 444.56 gmol−1. After

being ionized, DOSS has a mass of 421.6 gmol−1, which is close to all of the top 10 variables

with highest correlation in the calibration set with DOSS in oil. The ion mass with highest

intensity for the calibration set was m/z = 421.4, deviating 0.2 from the theoretical ion

mass. In the dataset for the droplets ran in negative mode, the highest intensity was found

at m/z = 421.2, deviating with 0.2 from the highest intensity at the calibration set. Using the

intensities from m/z = 421.4 from the calibration set to predict the concentrations for the

unknown droplets with the intensities at m/z = 421.2 resulted predictions with a pattern

similar as found in Figure 4.10a. See Figure 4.4 for the univariate prediction of DOSS.
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(a) Kurtosis, raw data. (b) Kurtosis, logarithmic data.

(c) M/z value versus corresponding median
value, raw data.

(d) M/z value versus corresponding median
value, logarithmic data.
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Figure 4.4: Unknown droplet concentrations predicted by using the m/z around the m/z
= 421 DOSS peak value with the highest intensity in the calibration set with the highest
DOSS-intensity peak for the unknown droplets.

This is also possible for Span 80, industry manufactured product is supposed to contain

more than 60 % of the ion shown in Figure 2.13, with molar mass equal to 428.6. The same

procedure was tested for Span 80 as DOSS, but with no success. For Tween 80 and Tween

85 this is harder, as the contain ions with different ethoxylations. Ions ranging from m/z

values equivalent to zero ethoxylation and up to 40, as it is supposed to sum to 20. For this

reason, the univariate approach for predicting the unknown droplet concentrations was

not pursued further.
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4.3.3 PLS

Creating multivariate models often requires data to be autoscaled, giving all variables a

variance equal to one, allowing both small and large values to contribute when building a

model. When working with dispersants and surfactants in oil, the surfactant amount is low

compared to the oil. With 99vol% oil and 1vol% Corexit 9500A, the oil will contribute with

a heavy matrix effect. The dataset was approached with an assumption that scaling had to

be done to allow the small surfactant volumes to contribute when building a PLS-model.

The data was scaled and a model were built using the PLS-library in R.

Figure 4.5 shows a plot of the root mean square error of prediction versus the number

of principal components (upper left), a plot with actual concentrations for the dataset

samples, and their predicted values using the model (upper right), a loading plot (bottom

left) and a score plot (bottom right).

The loading plot shows a lot of similar values, ranging between -0.02 and 0.01, and no

explicit pattern can be read out of the plot. In the dataset, the main changing factor is the

concentration of DOSS, with a peak around m/z = 421 that should have been possible to

identify in the loading plot right above variable number 3700 in the loading plot.

This may be due to closure effects introduced to the dataset when the data was scaled.

Data are often normalized or scaled to a constant sum, making the data closed. This can

introduce a dependence between variables, where one large variable can go up, making all

others automatically go down. This may cause spurious positive correlations between mi-

nor variables, and spurious negative correlation between major variables (Sjoedin, 1984).

Oil contains several thousand different compounds in a mixture. With the data extracted

from the TOF analysis, the oil components are spread out between m/z = 50 up to m/z

= 2000, rounded to one decimal, resulting in 19501 variables representing the abundance

for the individual oil components. Even though the oil matrix is massive compared to the

surfactant amounts, the surfactant abundance at specific m/z values may exceed the oil

abundance. Thus, when the dataset are autoscaled, the low abundance oil components

are prioritized relatively to the surfactant components. Based on this, the raw data are

used rather than autoscaled data, in order to obtain maximum of information from the

data.
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Figure 4.5: DOSS model v0, built with autoscaled data.
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DOSS / AOT

Two datasets were combined to build a model to predict content of surfactants in captured

oil droplets. One set for concentrations equivalent to oil droplets with diameters between

1100 and 1300µm (Table 4.4) and one with the concentrations 100 ngml−1, 1µgml−1, 10µgml−1,

100µgml−1 and 1 mgml−1. All figures are presented in Appendix A. The first model, v0, was

built using all samples, resulting in the model shown in Figure A.1.

The RMESP vs. nComp plot shows that principal components are required to explain the

variance in the system. A linear relationship can be seen in the top right plot, but as the

plot is dominated by the top two concentrations, the remaining samples can only be seen

as a cluster right above zero. The loading plot shows a sharp peak around m/z = 421 which

represents ionized DOSS mass. The score plot spreads along the x-axis, representing m/z

= 421.

The two highest concentrations DOSS used in v0, 100µgml−1 and 1 mgml−1, are equiva-

lent to droplets with diameters 5000 and 10800µm. Oseberg blend oil treated with 1vol%

Corexit 9500A will not have stable droplets above with a diameter above 1500µm, which

means that the dataset spans over a unnecessary wide concentration range. A new model

was built after removing the samples with the two highest concentrations, shown in Fig-

ure A.2.

A DOSS concentration of 10µgml−1 is equivalent to a droplet with a diameter of 2300µm,

which is still larger than any treated oil droplets will be. Again, the highest concentration

samples was removed to see if a better model could be made. Model v2 is shown in Fig-

ure A.3. The samples that earlier were referred to as a cluster right above zero, can now be

distinguished from each other.

The samples with the lowest concentration were predicted to have the same concentration

as the ones with ten times the concentration. Equal variable-intensities could be due to

the lower detection limit for the TOF analysis system. A new model were made after leav-

ing out the samples with the lowest concentrations. This resulted in the model v3, shown

in Figure A.4. A more or less linear fit can be seen between the predicted and measured

concentrations.

Leverage correction were used, and predicted versus measured concentration was plot-

ted in the interesting concentration area between zero and up to the DOSS content for

droplets with 1 vol% dispersant at with diameter = 1200µm. The plots for the four mod-
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els are shown in Figure A.20. Model v0 is empty, this is due to that the measured and

predicted concentrations are way higher than the area of interest. The next model, v1,

was predicted using the first principal component. Model v1 shows that some predictions

are in the relevant region, but that more or less all samples were predicted to contain the

same amount of surfactant. V2 was predicted using the first two principal components,

and is the model that shows best fit to the used calibration set, with predictions as low as

250 ngml−1, around four times lower than for model v1. The predictions for model v3 used

one principal component, and resulted in a model somewhat similar to v1, but with better

fit for the higher concentrations.

The models were all tested to predict the concentrations for the droplets captured with the

Inverted Cone system as well, see Figure A.26a. Model v2 and v3 are more or less perfectly

overlapping, and predicts similar concentrations for droplets captured at both 0, 15 and

120 minutes. This indicates that information is lost during model refining. V1 shows a

trend that is plausible for DOSS. Even though the starting concentration is predicted to be

50 % higher than theoretical surfactant content at zero minutes, a sharp during the first

minutes of rising is to be expected due to DOSS’ chemical and physical properties. Model

v1 became the model used for further work, see Figure 4.6.

Span 80

For the building of the Span 80 PLS-model, two datasets were combined. One set for

concentrations equivalent to oil droplets with diameters between 1100 and 1300µm (Ta-

ble 4.4) and one with the concentrations 100 ngml−1, 500 ngml−1, 750 ngml−1, 1µgml−1

and 5µgml−1. A model for Span 80 was built using all samples in the datasets, resulting in

model v0 shown in Figure A.5.

Due to the big difference between the highest concentration and the remaining concen-

trations, the low concentration samples can just be seen as a cluster right above zero. The

score plot shows that sample number 11 is nowhere close to the other samples along prin-

cipal component one or two.

Sample 11 was removed, and model v1 was formed, presented in Figure A.6. The predicted

values of sample 45 to 49 differs a lot from the actual value. The concentration 5µgml−1

of Span 80 is equivalent to a droplet with diameter almost 2300µm, which is above what is

possible.
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Figure 4.6: DOSS PLS-model v1.
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The samples with the latter concentration were removed and model v2 was built, see Fig-

ure A.7. The former cluster now shows several concentrations spread along the 1:1 pre-

dicted versus measured-line. Widely varying predictions in the area of the lowest concen-

trations may be because the analyses were done around the detection limit for the TOF.

Sample 28 and 30 were predicted to values far from the actual concentrations, as well as

being the two most outlying samples in the score plot. These were removed, resulting in

model v3, shown in Figure A.8.

Leverage correction plots were produced for Span 80 as well, in order to decide what model

to use. The plots are shown in Figure A.21. The Span 80 models were used to predict

the calibration set concentrations with 6,5,6 and 6 principal components. The number of

principal components for the first two models were easily selected, with a recognizable

U-shape, while model v2 and v3 slowly were diverging towards RMSEP = 1.6e-7 and 1.5e-7

respectively. Model v0 shows wide scattering of the predicted samples, and little correla-

tion between the measured and predicted concentrations. This was expected because of

Corexit 9500A’s low fraction of Span 80, combined with a high detection limit (Table 4.2).

This can also be observed in the model v1. For model v2 and v3, the samples have better

fit compared to model v0 and v1.

In Figure A.26b, the different models are compared after predicting the unknown droplet

concentrations. All the models shows the same trend with a drop in concentration during

the first 15 minutes, and then flattens out until 120 minutes. The models are all predicting

values above the theoretical Span 80 content for a Corexit 9500A treated oil droplet with

diameter 1200µm. Model v0 and v1 are overlapping, and predicts way higher concentra-

tions than the other models. Model v2 and v3 shows a less rapid loss in concentration

during the first 15 minutes, and are closer to a realistic droplet concentration than v0 and

v1. The used model for further work was v2, shown in Figure 4.7.

Tween 80

The models for Tween 80 were built on a dataset combined of two datasets, the one seen in

Table 4.4 and one with the concentrations 100 ngml−1, 500 ngml−1, 750 ngml−1, 1µgml−1

and 5µgml−1. Model v0 was built using all samples in the dataset, see Figure A.9

The predicted values deviates a lot from the actual concentrations for the samples 45 to

50. The highest concentration, 5µgml−1 Tween 80, corresponds to a droplet with diameter
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Figure 4.7: Span 80 PLS-model v2.

70



around 1850µm, which is above the limits where oil droplets treated with Corexit 9500A

are stable. The samples with the highest concentration, as well as sample 45 were removed

to create model v1, shown in Figure A.10.

The validation plot shows that the four lowest concentration are predicted to have the

same concentration 600 ngml−1, which is likely due to the concentrations below the in-

struments detection limit. The three lowest concentrations were removed, and model v2

was made, see Figure A.11

Still the model was quite messy, and the score plot shows that sample 19 and 20 are pulling

significantly more along the first principal component than other samples with higher

concentration. Sample 7, 16, 21 and 22 are deviating a lot from the 1:1 prediction ver-

sus measured concentration-line, and is thus removed together with sample 19 and 20 to

refine the model further, resulting in model v3, see Figure A.12.

Again, removing the samples deviating most (sample 6 to 9 and 15 to 17) from the 1:1 line,

resulting in a more linear line v3 (see Figure A.12).

Leverage correction plots for Tween 80 are shown in Figure A.22 and A.23. The numbers of

principal components used to predict the concentrations in the calibration set for model

v0, v1, v2, v3 and 4 were 5, 5, 5, 4, and 3. The different models for Tween 80 have quite good

fit between the measured and predicted concentration down to a certain concentration.

From the concentrations above the droplet diameter = 1200µm line, down to the concen-

tration 1µgml−1, there fit is good. For the concentrations between 100 ngml−1 and up to

1µgml−1 the predicted concentration are the same. This means that the model only valid

down to 75 % (1µgml−1) of the content of Tween 80 in a d = 1200µm droplet.

Figure A.26c shows each model’s predicted Tween 80 values for the unknown droplet con-

centrations. The model refining has obviously changed the information in the dataset,

as the lines are very different from each other. Model v0 shows a line that suggests that

the concentration has increased during the two hours of rising through the seawater. The

three last models, v2, v3 and v4 are pretty similar, and predicts values that changes the

concentration less than the first two models. Model v1 shows a steep slope during the first

15 minutes. Model v1 was chosen for further work, see Figure 4.8.
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Figure 4.8: Tween 80 PLS-model v1.
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Tween 85

The models for Tween 85 were based on two combined datasets, the one from Table 4.4

and the concentrations 100 ngml−1, 500 ngml−1, 1µgml−1, 5µgml−1 and 10µgml−1. Model

v0, shown in Figure A.14, was built using all the samples in the dataset.

The RMSEP versus nComp plot is telling that less variance is explained using more than

four principal components. The predicted concentrations correlated well for some sam-

ples, and way off for others, especially sample 25 and 49. Looking at the score plot, and

the spread along the first principal component shows that the first component is mainly

determined by sample 11 and 39.

To get a more clean model, sample 39 and 11 were removed. This resulted in model v1,

shown in Figure A.15. The plot showing the explained variance gives more meaning as the

more of the system variance is explained using more principal components. Still, some of

the predicted sample concentrations are far away from the actual concentrations.

The highest concentration, 10µgml−1 Tween 85, corresponds to a droplet diameter of right

above 1600µm, which is above its stable size. Hence the removal of the highest concentra-

tion for the next model, together with sample 24 and 40, for which the predicted concen-

trations deviates a lot from the actual concentrations. Model v2 is shown in Figure A.16.

The predicted versus measured concentration-plot can roughly be said to be two clusters,

one around 4µgml−1 and one between 0 and 1µgml−1. To clean the model further, sample

19, 40 and 41 were removed. See Figure A.17 for model v3.

Based on the scattering on the score plot, sample 11 to 13, 17 and 20 to 22 were removed.

Model v4 was built, see Figure A.18. The first principal component seemed to explain

the concentration well, based on the score plot and its similarities to the predicted versus

measured concentration-plot. The second principal component were mainly stretched

out by three samples, 7, 30 and 31. These samples were removed for creating model v5, see

Figure A.19. The first principal component explains most of the variance in this system,

and the model fits well with its remaining samples.

The models for Tween 85 graphically presented as leverage correction plots in Figure A.24

and A.25. 4, 4, 3,6, and 1 were the used amount of principal components for prediction

of the concentration for the calibration set, chosen by using the RMSEP vs. nComp plots.

Model v0 shows that a lot of the concentration predictions differ from the known concen-
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tration, but still have some predictions as low as 1µgml−1, which is around the lowest pre-

dicted values for the Tween 80. V1 has increased fit for the data, but still generally predicts

to high values for the low concentrations. Model v2 makes the data fit even better, and

with fewer principal components than the two earlier models. Model v3, v4 and v5 are

practically perfect fit, more or less linear from the concentration 100 ngml−1 to around

10µgml−1, and fits the description “overly optimistic”.

In Figure A.26d, the mean concentrations for the predicted values for the droplets with

unknown surfactant composition are plotted versus time for each of the six models. Model

v2, v3, v4 and v5 shows an increasing concentration from 0 minutes to 15 minutes, and

no reduced content from 15 minutes to 120 minutes. Model v0 and v1 however, had less

removed samples, and seems to have more intuitive trends with a concentration that is

getting lower over time. This indicates that important information was removed from the

dataset between v1 and v2. Four different lines representing 100-, 75-, 50- and 25 % of the

Tween 85 content in a droplet with diameter equal 1200µm are visible. Even though the

limit of detection was determined to be in the same area as for Tween 80 and Span 80, a

wider range of relative content of the oil droplet can be seen for Tween 85. This is because

of the higher Tween 85 content in the oil droplet, relative to the other surfactants. Model

v0 was picked for further work for Tween 85, see Figure 4.9.

4.3.4 PLS2

Regression using several columns in the Y-block was done to see the differences between

PLS and PLS2. The X-block consisted of oil with 1 vol% Corexit 9500A. Models were con-

structed in the same way as with PLS for the individual surfactants. However, the mod-

els were built with fewer samples with low concentrations, leading to more inaccurate

models. The v0 model for both positive and negative mode used all samples. For the v1

models, the two highest concentrations were removed, leaving three concentrations with

two orders of magnitude in difference. Model v2 was made after removing highly deviat-

ing from the remaining analyses, as each sample was analyzed five times. Figure B.1, B.2

and B.3 shows model v0, v1 and v2 for DOSS, and Figure B.4, B.5 and B.6 for the surfac-

tants in positive mode. As the relative concentration between the surfactants in Corexit

was unchanged, the difference between Span 80, Tween 80 and Tween 85 is only the scal-

ing. Leverage correction plots for the different models, and comparison of the unknown

droplet predictions are shown in Figure B.7, B.8, B.9 and B.10 for DOSS, Span 80, Tween 80
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Figure 4.9: Tween 85 PlS-model v0.

75



and Tween 85 respectively. Model v1 was used and compared for all the surfactants.

4.3.5 Conclusive results

PLS

Model v1, v2, v1 and v2 for DOSS, Span 80, Tween 80 and Tween 85 respectively were used

to compare the predictions to each other. Figure 4.10a shows the absolute concentration

for the surfactants detected in the oil droplets with 0, 15 and 120 minutes rising time in

seawater. Numbers behind the graphs are presented in Table 4.6. The line representing

DOSS shows a sharp drop in the first 15 minutes, and flattens from 15 to 120 minutes.

Tween 85’s line shows a less step drop in the first 15 minutes compared to DOSS, and

continues with a similar slope until 120 minutes. Tween 80 increases during the first 15

minutes according to the predictions from the used model, and keeps steady until 120

minutes. The Span 80 line shows the same pattern as Tween 80, but with higher concen-

trations. Rising rapidly from 0 to 15 minutes, and continues to rise until 120 minutes.

The line representing the sum of the surfactants shows a drop from 0 minutes to 15 min-

utes, and keeps steady from 15 minutes to 120 minutes. Table 4.7 shows the the relative

amounts of each surfactant at 0 minutes, and the equivalent droplet diameter compared

to a droplet with diameter 1200µm.

Figure 4.10b shows the relative concentration for the detected surfactants. The line repre-

senting the sum of surfactants are removed as the sum at each point is 100 %. The pattern

is similar to Figure 4.10a, but gives a better impression about what happening, as the ab-

solute concentrations of the surfactants never will increase over time. Table 4.8 shows the

leaching rates for each surfactant for 0 to 15 min and 15 to 120 minutes.

The drop in concentration for the sum of surfactants can mainly be explained by the loss

of DOSS. A rapid loss of mass for DOSS is expected due to its ionic nature. The non-ionic

surfactants, Span 80, Tween 80 and Tween 85 are expected to last longer in the oil phase

and on the oil-water interface as they have larger lipophilic parts. Considering the HLB-

values for the non-ionic surfactants (see Table 2.2), Span 80 is most lipophilic, followed

by Tween 85 and then Tween 80. Based purely on the HLB-values, Span 80 will remain

in the oil droplet for the longest time, followed by Tween 85 and Tween Tween 80, with

DOSS remaining in the oil phase the shortest time. This does not reflect the predicted

composition after two hours of rising time, which may indicate that leaching rates are
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not only determined by the HLB value. With improved sensitivity, this can be inspected

further.

(a) Absolute concentration (b) Relative concentration

Figure 4.10: Concentrations predicted for the surfactants used in Corexit 9500A in
dispersant-treated oil droplets with diameter 1200µm. Figure 4.10a shows the absolute
surfactant concentration for samples obtained from 0, 15 and 120 minutes. Figure 4.10b
shows the relative concentration of each of the surfactants in Corexit 9500A, the composi-
tion is relative to the remains of the surfactants. The sum of surfactants constitutes 63 %
and 60 % of the start concentration at the point 15- and 120 minutes.

PLS2

As for the individual surfactants, work based on the PLS2 regression were done. For the

nonionic surfactants, the same number of used principal components results in predic-

tions based on the same latent variables. Thus Span 80, Tween 80 and Tween 85 will never

be anything but scalars of each other. The DOSS predictions are based on other latent

variables, and are independent of the other surfactants. The absolute concentration-plot

suggests that the nonionic surfactants are leaching out of the oil droplet faster than the

anionic surfactant, DOSS. This results in a increase of the relative concentration of DOSS

over a period of time. None of the predictions are decreasing from 15 to 120 minutes, in-

dicating that detection of the individual components poses a problem. If the goal was to

determine the ratio between the nonionic surfactants in total and the anionic surfactant,

this could be a possible method.
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Table 4.6: The predicted mean concentrations of the individual surfactants in found the
Corexit 9500A treated oil droplets with diameter 1200µm at 0-, 15- and 120 minutes rising
time in seawater.

Time [min] Concentration DOSS Span 80 Tween 80 Tween 85 Sum

0 Abs. [µg/ml] 2.44 0.91 1.00 2.03 6.38
15 1.13 0.79 0.76 1.34 4.01

120 1.10 0.78 0.70 1.21 3.80

0 Rel. [%] 38.3 14.2 15.7 31.8 100
15 28.1 19.6 18.8 33.4 100

120 29.0 20.6 18.4 32.2 100

Table 4.7: Predicted, relative concentrations with equivalent droplet diameter for a treated
to contain 1 vol% Corexit 9500A directly after dispersant injection and droplet formation.
The values for the surfactants are relative to the sum of surfactants, and not the Corexit
9500A composition assumption including the solvent.

Predicted conc. [%] % of d = 1200µm Assumed conc. [%]

DOSS 38.3 177.7 20
Span 80 14.2 126.0 10
Tween 80 15.7 72.9 17.5
Tween 85 31.8 51.5 52.5
Sum 70.5 88.1 80

Table 4.8: Table showing the leaching rates for the different surfactants. Volume [ml−1] is
defined as the volume of one oil droplet with diameter 1200µm. The negative values are
defined as loss in absolute- or relative mass.

Leaching rate [ng ml−1/min] Leaching rate [%/min]
0-15 min 15-120 min 0-15 min 15-120 min

DOSS -87.8 -0.2 -0.68 0.01
Span 80 -8.1 -0.0 0.36 0.01
Tween 80 -16.4 -0.5 0.21 -0.00
Tween 85 -45.9 -1.2 0.11 -0.01
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(a) Absolute concentration (b) Relative concentration

Figure 4.11: Predicted concentrations for the unknown oil droplets using the PLS2-model.

4.4 Method improvement

Changes in different parts of the method can lead to an enhanced method and improved

results. These three main parts are sample collection, model building and analyses.

4.4.1 Analyses

The analyses during this study was done with a Q-TOF LC-MS instrument, and the obvious

limitation was the detection limit for the different surfactants. Overcoming this challenge

could be done by using a more sensitive method for quantification of the surfactants. To

be able to obtain information about the leaching rates as a function of droplet sizes, more

sizes than just 1200µm in diameter has to be considered. Way smaller droplets, with di-

ameter 300µm, were captured using the IC system, and would provide useful information

if the contents could be quantified. With the assumed Corexit 9500A composition, an oil

droplet with d = 300µm (1 vol% Corexit 9500A) would contain 11.3 ng Span 80. If 90 % of

the Span 80 content leached out of the droplet while rising towards the surface, it would

result in 1.1 ng. The estimated limit of detection (LoD) for Span 80 for the instrument

used in this study is between 1000 and 10 000 times bigger than the remaining 10 % in the

droplet example above. This means that the droplet with 1.1 ng Span 80 would have to
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be extracted using dichloromethane and damped to 1µL to get to the lower limit of de-

tection concentration of 1µgml−1. As the injected volume for analysis is 1µL, this is only

a theoretical solution to the problem. One solution to the problem would be using an in-

strument with higher sensitivity, allowing even low concentrations in the smallest droplets

to be quantified. Another solution is to collect more samples to increase the total amount

of surfactants. This can be between 5 to 100, or even more droplets with similar size and

other conditions, put together in one sample an analyzed. However, as the oil injection,

droplet focusing and catching are human controlled and droplet controlling partly hu-

man controlled, the process of collecting enough samples can be tedious if 20 droplets

are required for each point of wanted rising time. Some improved sensitivity and merged

droplet samples would increase the quality of the results.

4.4.2 Sample collection

If the setup could be programmed to automatically collect samples at with preset rising

time and diameter, large amounts of samples could be collected, allowing better results to

be obtained. Controlling parameters as injection rate and injection time changes behavior

of the droplets and their size distribution, allowing the wanted droplet size to be injected

into the water tunnel in the IC system. The stable pressure created by the water reservoir

enables stable flow control of the system, which should be possible to program to allow the

wanted droplet size to get to the imaging section of the system, while bigger droplets are

let through, and smaller ones never reaches the imaging section. An automatic capturing

device that lowers down into the water tunnel for droplet capture could be installed at the

water reservoir.

4.4.3 Model building

The oil droplets collected during this study were treated with industry manufactured Corexit

9500A with proprietary composition. Working with a dispersant with unknown composi-

tion, requiring the composition to be assumed, results in suboptimal results. Creating

own dispersants with known amount of each surfactant and solvent, gives the possibil-

ity to create better experimental designs to extract more information from the collected

samples, and to have full control of the each surfactant at all times.

Only PLSR has been used for creating models, which is not necessarily the best solution.
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Different alternatives to PLSR should be tested to create a model as good as possible. A

method that is often employed in regression analysis is neural networks (NN), introduced

by McCulloch and Pitts in 1943 (Erb, 1993). NN has the ability to learn, generalize, cluster

and organize data, with operations based on parallel processing. It can output both binary

and real values, and can by combining experimental values for an object, find other prop-

erties for it (Gasteiger and Zupan, 1993). NN are able to express such relations implicitly

in cases where explicit equations cannot be set up. Gasteiger and Zupan (1993) explains

how NN has been used for relationships between mass spectra and chemical structure, us-

ing large calibration sets and testing sets. However, this was for qualitative purposes, and

not quantitative. Goodacre et al. (1994) compared PLSR, PCR and NN to analyze pyrolysis

mass spectra for quantitative information in complex mixtures. All three methods pro-

vided good calibration models with excellent predictions, but best results were obtained

by using NN, and NN was less affected by low intensity masses with mainly noise, com-

pared to the PLS calibrations. This suggests that NN could provide as good models as PLS,

but requiring large testing sets.
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5 Conclusion

During this study, single oil droplets treated with dispersant, has successfully been cap-

tured using SINTEF’s Inverted Cone system. Each of the surfactants found in Corexit

9500A has successfully been quantified using direct injection with a time-of-flight liquid

chromatography-mass spectrometer. And models for prediction has successfully been es-

tablished using partial least squares regression.

An oil slick’s properties and characteristics are important when different oil spill response

methods are considered. By knowing the leaching rates of the surfactants used in com-

mercial dispersants, the surfactant composition and dispersant effectiveness can be pre-

dicted, and a response method can be picked accordingly. Accurate models for surfactant

leaching could also be implemented into existing oil spill tools like OSCAR (Reed et al.,

1999). This would allow prediction of the fate of subsurface released oil treated with dis-

persant.

For the oil, Oseberg Blend, treated with Corexit 9500A, the anionic surfactant, DOSS, was

found to leak out more rapidly than the nonionic surfactants, Span 80, Tween 80 and

Tween 85. The leaching rate was found to happen rapidly during the first 15 minutes of

rising time in the seawater, with decreased leaching rate towards 120 minutes.

The models established during this study needs improvement before they can be used for

predicting surfactant content, due to the limited instrumental sensitivity. With a thorough

experimental design for calibration and validation, together with increased sensitivity re-

garding surfactant quantification, reliable models can be created using the method pre-

sented in this thesis.
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6 Further work

During this study, a functional method has been established for determination of indi-

vidual leaching rates for surfactants in dispersant-treated oil droplets rising in the water

column. To exploit the potential of the method, reliable models for predicting the disper-

sant composition has to be made.

Expanding the scope by including leaching rates as a function of droplet size, oil types and

relative composition of surfactants would provide necessary information in order to get

accurate predictions. A natural way of continuing the work done in this study is to create

new dispersants to work with, with known concentrations of each surfactant and solvent.

Creating calibration and validation sets using partial least squares regression, using a good

experimental design with the factors droplet diameter, characteristic oil properties, differ-

ently composed dispersants and a variety of oil:dispersant ratios, would provide robust

models for predicting future surfactant concentrations.

Collecting droplets with known starting composition, rising time, oil type and droplet di-

ameter, spanning over a relevant area, would enable accurate leaching rates to be deter-

mined.

After determining the individual leaching rates, dispersant effectiveness tests could be

performed for relevant scenarios. This would determine the interfacial tension between

the oil and water when an oil slick is formed, and fill a knowledge gap.
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A PLSR

A.1 Model refining

The following pages contain figures showing root mean square error of prediction (RM-

SEP) versus the amount of used principal components, leverage correction for the samples

used to build the model, scores and loadings for each model created for each surfactant.

Walkthrough of the figures is carried out in Section 4.3.3. DOSS models are shown first,

followed by Span 80 and Tween 80 models, with Tween 85 models coming last.
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Figure A.1: DOSS PLS-model v0
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Figure A.2: DOSS PLS-model v1
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Figure A.3: DOSS PLS-model v2
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Figure A.4: DOSS PLS-model v3
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Figure A.5: Span 80 PLS-model v0

VI



Figure A.6: Span 80 PLS-model v1
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Figure A.7: Span 80 PLS-model v2
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Figure A.8: Span 80 PLS-model v3
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Figure A.9: Tween 80 PLS-model v0
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Figure A.10: Tween 80 PLS-model v1
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Figure A.11: Tween 80 PLS-model v2

XII



Figure A.12: Tween 80 PLS-model v3
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Figure A.13: Tween 80 PLS-model v4
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Figure A.14: Tween 85 PlS-model v0
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Figure A.15: Tween 85 PLS-model v1
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Figure A.16: Tween 85 PLS-model v2
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Figure A.17: Tween 85 PLS-model v3
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Figure A.18: Tween 85 PLS-model v4
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Figure A.19: Tween 85, PLS-model v5
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A.2 Leverage correction comparison

Correction plots were created for the complete calibration set for each model for each

surfactant. The following order is DOSS, Span 80, Tween 80 and Tween 85.

Figure A.20: DOSS, leverage correction for model v0, v1, v2 and v3.
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Figure A.21: Span 80, leverage correction for model v0, v1, v2 and v3.
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Figure A.22: Tween 80, leverage correction for model v0, v1, v2 and v3.
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Figure A.23: Tween 80, leverage correction for model v4
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Figure A.24: Tween 85, leverage correction for model v0, v1, v2 and v3.
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Figure A.25: Tween 85, leverage correction for model v4 and v5.
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A.2.1 Comparison of predictions

To see if the predictions of the unknown droplets were anything close to realistic, all the

models were compared to each other. The goal was to see if concentrations were com-

pletely wrong or if important information clearly was lost during model refinement.
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(a) DOSS (b) Span 80

(c) Tween 80 (d) Tween 85

Figure A.26: Plots comparing the predicted concentrations of the unknown droplets for
each model for each surfactant.
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B PLSR2

B.1 Model refining

Similar procedure was followed when building PLS2 models. The models built in negative

mode are presented first, and positive mode last.
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Figure B.1: PLS-model v0, built with Corexit 9500A in oil in negative mode. The same
procedure was followed with negative mode, but only with one variable in the Y-block,
the DOSS concentration.
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Figure B.2: PLS-model v1, built with Corexit 9500A in oil in negative mode. The same
procedure was followed with negative mode, but only with one variable in the Y-block,
the DOSS concentration.
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Figure B.3: PLS-model v2, built with Corexit 9500A in oil in negative mode. The same
procedure was followed with negative mode, but only with one variable in the Y-block,
the DOSS concentration.
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Figure B.4: PLS2-model v0, built with Corexit 9500A in oil in positive mode. Identical pat-
terns with different concentrations is the only difference between Span 80, Tween 80 and
Tween 85.
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Figure B.5: PLS2-model v1, built with Corexit 9500A in oil in positive mode. Identical pat-
terns with different concentrations is the only difference between Span 80, Tween 80 and
Tween 85.
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Figure B.6: PLS2-model v2, built with Corexit 9500A in oil in positive mode. Identical pat-
terns with different concentrations is the only difference between Span 80, Tween 80 and
Tween 85.
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B.2 Model comparison

Comparison of the models was done by using leverage correction plots and comparing the

predicted values for the unknown droplet concentrations for each mode. The comparison

of negative mode is presented first, followed by positive mode.
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(a) DOSS, leverage correction, model v0 (b) DOSS, leverage correction, model v1

(c) DOSS, leverage correction, model v2 (d) Predicted values for unknown droplets

Figure B.7: Leverage correction plots and model comparison for DOSS models built using
PLS2
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(a) Span 80, leverage correction, model v0 (b) Span 80, leverage correction, model v1

(c) Span 80, leverage correction, model v2 (d) Predicted values for unknown droplets

Figure B.8: Leverage correction plots and model comparison for Span 80 models built us-
ing PLS2
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(a) Tween 80, leverage correction, model v0 (b) Tween 80, leverage correction, model v1

(c) Tween 80, leverage correction, model v2 (d) Predicted values for unknown droplets

Figure B.9: Leverage correction plots and model comparison for Tween 80 models built
using PLS2
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(a) Tween 85, leverage correction, model v0 (b) Tween 85, leverage correction, model v1

(c) Tween 85, leverage correction, model v2 (d) Predicted values for unknown droplets.

Figure B.10: Leverage correction plots and model comparison for Tween 85 models built
using PLS2
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