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Assignment

Measuring the fractional flow reserve (FFR) is the current gold standard for diagnosis of stable
coronary artery disease. Traditional invasive procedures tomeasure arterial pressure drop, and per
se FFR, constitute a major consumer of scarce healthcare resources for a group of diseases rapidly
increasing in incidence. As a consequence, non-invasive diagnosis using CT images and computa-
tional fluid dynamics (CFD) simulations is emerging as a cost-effective and risk-reducing alterna-
tive to traditional methods. However, these techniques are affiliated with the solving of complex
mathematical models requiring extensive computational power. The feasibility of computational
FFR (FFRCT) in clinical applications relies on the development of accurate and computationally
effective models.

A considerate amount of the computational expense is associated with the discretization of the
pulsatile nature of coronary flow. Based on the fact that FFR is a time averaged quantity, stationary
flow simulations of time averaged conditions have become increasingly popular in the methodol-
ogy of several research groups working on FFRCT. However, there is a cavity in research of ques-
tioning the significance of the steadiness assumption. For the development ofmodels to be applied
in NTNU’s FFRCT project, it is desirable to investigate the effect of assuming steady conditions.
Themaster’s projectwill investigate the effect of the steadiness assumption, with themain objective
being

• Determine the importance of pulsatility in flow simulations for the assessment of FFRCT
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In the work with this objective, it is expected that the work would include the following tasks

• Contribute to the development of a methodology for calculations of FFRCT

• Make patient-specific models for coronary flow simulations

• Perform steady and unsteady CFD simulations and compare the results

Amaster’s thesis is to be submitted in partial fulfillment of aMaster of Science degree in the field
Applied Mechanics at the Department of Structural Engineering, NTNU. The project is credited
30 ECTS in the course TKT4915 - Computational Mechanics.
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Abstract

An emerging method for non-invasive diagnosis of coronary artery disease is the computational

assessment of fractional flow reserve (FFR), a patient normalized physiological index quantifying

arterial pressure drop. Computational FFR (FFRCT) is assessed through combining CT images

with fluid dynamics simulations. To improve feasibility of suchmethods for clinical use, it is desir-

able to validate the assumption of quasi-steady behavior of coronary blood flows.

The present work was incorporated in the development of models and methods in NTNU’s re-

search project on FFRCT. Computational fluid dynamics (CFD) simulations were used in the vali-

dation of a coupled 3D-0Dmodel for coronary circulation. Themodel was further used in patient-

specific simulations tailored to the data from8 patients recruited at St. OlavsHospital, Trondheim.

Steady and transient blood flow simulationswere compared to evaluate the implications of neglect-

ing pulsatility in the calculation of FFRCT.

The results demonstrate that assuming steady flow conditions introduce negligible errors com-

pared with othermodel errors and the variations in repeated invasive FFR procedures. The FFRCT

results obtained with the present methodology and models are promising, yet with occasionally

severe errors in per-patient comparison with invasive FFR. Further development of models and

methods is required for adequacy in diagnostic applications.
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Beregningsbasert diagnostisering av koronarsykdom
En sammenligning av stasjonære og transiente strømningssimuleringer

Sammendrag

FFR er en pasientnormalisert, fysiologisk indeks for diagnostisering av koronarsykdom, basert på

trykkfall i koronararteriene. Fluiddynamiske simuleringer av blodstrømning kan brukes til å anslå

FFR ikke-invasivt, men er assosiert med beregninger som stiller store krav til regnekraft. For å

øke anvendeligheten av slike metoder er det ønskelig å undersøke effekten av å anta stasjonære

strømningsforhold i simuleringer, som et alternativ til transiente.

Arbeidet i denne oppgaven har vært knyttet til utvikling av modeller og metoder i NTNUs

forskningsprosjekt på FFRCT. Numeriske strømningssimuleringer (CFD) har blitt brukt i valid-

eringen av en koblet 3D-0D beregningsmodell for koronarstrømning. Modellen ble videre brukt

i pasientspesifikke simuleringer tilpasset data fra 8 pasienter rekruttert ved St. Olavs Hospital.

Stasjonæreog transiente simuleringerble sammenlignet for å vurderekonsekvensenav å anta stasjonære

forhold i beregninger av FFRCT.

Resultateneviser at forskjellenmellomstasjonæreog transiente simuleringer erneglisjerbar sam-

menlignet med andre modellfeil og variasjon i invasive FFR-målinger. Selv om beregningene av

FFR i enkelte tilfeller trefferbra ved sammenligningmed invasivemålinger, krevesdetmerutvikling

av modellene og metodene som er brukt før de kan brukes i kliniske anvendelser.
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1
Introduction

Cardiovascular diseases constitute a major healthcare challenge in the world. With more than 17
million deaths each year it has the highest mortality rate in the world, and numbers are expected
to increase considerably the coming years [1]. Nearly half of the deaths are caused by coronary
artery disease (CAD) [2], a group of diseases already requiring substantial clinical resources for
treatment and diagnosis. Invasive pressure measurements to determine the fractional flow reserve
(FFR)has established as the leading procedure for diagnosis of stableCAD.Despite being superior
to alternatives in both cost [3–5] and reliability [6–8], its effectiveness is disputable due to a high
rate of negative diagnosis results [9].

In the emerging field of personalized medicine, novel techniques exploiting the latest devel-
opments in medical imaging, computer science and fluid dynamics are challenging conventional
methods to derive FFR. Non-invasive diagnosis of CAD based on physical calculations is on the
verge of altering the current paradigm of clinical diagnostics, by the use of sophisticated computer
simulations of blood flow on patient-specific models.
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Figure 1.0.1: Anatomy of the coronary arteries [10].

1.1 Coronary Artery Disease

The coronary arteries (CAs) constitute the oxygen supply network for the heart muscle. The two
main branches, the right coronary artery (RCA) and left coronary artery (LCA), branch off the as-
cending aorta immediately after the aortic valve, and propagate into the heart walls to ensure blood
perfusion the the vast majority of the heart muscle tissue (myocardium). In the left coronary tree,
the leftmain (LM) artery bifurcate into the left anterior descending (LAD) and the left circumflex
(LCX) arteries, further subdividing until reaching the level of arterioles.

Coronary artery disease (CAD) is signified by insufficient oxygen supply to the myocardium.
Themost common symptomofCAD is chest pain (angina pectoris), usually increasing in intensity
with exercise. CAD is caused by narrowing or stiffening of the CAs, limiting their abilities to trans-
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port blood effectively. Such conditions are predominantly caused by atherosclerosis, the deposi-
tion of cholesterol on the inner vessel walls (endothelium), gradually being calcified to atheroscle-
rotic plaque [11]. Ischeamia is the condition of degradation of themyocardium caused by scarcity
of oxygen. If untreated, ischaemia may ultimately lead to heart attack (myocardial infarction), and
in severe cases heart failure and death [12].

Figure 1.1.1: 3D model of a lumen segment of a coronary tree, with an illustration of a stenosed
artery.

1.2 Diagnosis of Coronary Artery Disease

Diagnosis of stable CAD relies on the clinical assessment of the functional severity of stenoses1 in
the CAs, i.e. their significance in obstructing the blood flow. A patient-specific physiological index
called the fractional flow reserve (FFR) has emerged as the gold standard for evaluation of CA
stenoses [6, 7]. FFR is (by the clinical definition) the ratio of the cardiac cycle average pressures
downstream (distal) and upstream (proximal) of the stenosis.

FFR =
Pd
Pp

(1.1)

1Stenosis: A narrowing section of an artery.

3



Pressures can bemeasured in patients by catheterization, through a clinical procedure called in-
vasive coronary angiography (ICA).The pressures aremeasured at specific locations in theCAs by
using a pressure sensor attached to a guidewire. An FFR-value of less than 0.75 will require further
intervention, as the risk of severe events due to ischaemia is significant [7]. In clinical studies and
diagnosis, a cut-off value of 0.80 is common [6, 8].

CAD is a major health problem, being the group of cardiovascular diseases that takes the most
lives each year [2]. Better treatment and diagnosis of CAD is essential to overcome the expected
increase in CAD related deaths. Although FFR measured in vivo is diagnostically accurate, it is
ineffective to perform ICAs on all angina patients, as negative tests have high occurrence. In 2013,
thePLATFORM study reported that among ICAs on 187 suspectedCADpatients, therewere only
foundobstructive lesions in 27%[9]. It lays a great potential in reducing thenumbernegative ICAs,
to reduce the occupation of clinical resources and to avoid unnecessary risk for patients.

1.3 Computational FFR

Anemergingmethod for determiningFFR is through calculations insteadofmeasurements, assess-
ing the computational FFR(FFRCT). Fluidmechanical theory is applied to simulate the bloodflow
in the CAs to compute the stenotic pressure drops, and per se FFR. By the use of computational
fluid dynamics (CFD), the diagnosis process may elude invasive procedures, for the benefit of the
patients as well as health institutions. Hlatky et al. reported that FFRCT could reduce costs by 30%
when used to guidemedical intervention procedures, and a 12% reduction in events post-diagnosis
[5]. These findings are supported by several other studies [3, 4, 9].

When computing FFRCT, a CT scan of the patient’s heart can be used to extract the 3D geom-
etry of the CA blood flow domain (lumen), a process called segmentation. The 3D model is then
subjected to the required steps to solve the fluid mechanical equations and obtain the CFD results
for pressure and flow. Relevant patient-specific measurements are incorporated in the computa-
tions to assure similarity with the real blood flow. Finally, the results are post-processed in order
to obtain the estimated FFR-values at the relevant locations in the CAs.
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Figure 1.3.1: Workflow for noninvasive computation of FFRCT: a) Cardiac computed tomog-
raphy angiography (CCTA) of a patient’s heart, b) 3D segmentation of the coronary arteries, c)
CFD simulations of the flow, and d) FFRCT results for the coronary arteries.

1.3.1 Previous Work on FFRCT

The application of patient-specific mathematical modeling has already proven to be valuable both
for diagnostics and in virtual assessment of individual treatments [9, 13]. Recent developments in
imaging and computer technology are contributing to the feasibility of highly sophisticated com-
putations in clinical procedures.

Several research communities around the world aim at solving the challenges with in silico2 as-
sessment of FFR. Among the most successful are Stanford University-based HeartFlow, Inc., re-
ceiving FDA3 approval for their FFRCT software as a commercial diagnostic tool to be used in clin-
ical procedures. They also achieved a position among the top 15 healthcare deals of 2016, after
raising almost $100M in fundings [14]. However, there are still challenges to overcome to en-
hance the feasibility and accuracy of FFRCT methods. In the HeartFlow NXT trial results [15],
FFRCT had a probability of detection (sensitivity) of 86% for lesions with FFR<0.8. It is especially
desirable to increase the sensitivity, as the success of a diagnostic procedure relies heavily on the
ability to avoid false negatives.

Morris et al. from the University of Sheffield has developed methods and models achieving
97% accuracy in signifying severe lesions in 35 patients [16]. However, their models are based on
input from invasive measurements, and computations require 12-24 hours of run time, which is
impractical in clinical applications. A considerate amount of the computational cost is associated

2In silico: From latin, ”in computer” or ”via computer simulations”.
3FDA: U.S. Food and Drug Administration
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with simulating the pulsatility in coronary flows. Thus, some researchers have approached FFRCT

with stationarymodels, only accounting for the averages of pressure andflowover the cardiac cycle.
Tu et al. have reported to simulate steady 3D coronary flows in 5 minutes [17], identifying

severe stenoseswith an accuracy of 88%. Theydonot discusswhether the steadiness conditionmay
contribute significantly to the errors in FFR. Zhang et al. [18] also assess time-averaged flows, with
a sensitivity of 80%. They argue that steady state is a limitation when transient pressure waveforms
are of interest. However, they do not discuss the significance of assuming stationary flow for the
prediction of FFR.

Although both unsteady and steady computations are well established in concurrent FFRCT-
methodologies, noneof the aforementioned studies verifies their choiceof inclusionor exclusionof
pulsatility in their models. A study by Huo et al. have investigated the importance of unsteadiness
in in vitro experiments, concluding little significance to time average pressure drop across a stenosis
[19]. In similar experiments,Mates et al. report of quasi-steady behavior of stenotic coronary flows
[20].

There is a very limited basis in previous studies on FFRCT to confirm that these findings also
apply forCFD simulations. One study byBulant et al. published previously this year [21] visits the
comparison of steady and transient simulations, reporting small deviations in computed FFRCT.
Except from these results, there are no publications known to the author that are fully dedicated to
question the significance of the steadiness assumption in CFD simulations for the assessment of
FFR.
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1.4 Thesis Objectives

When reducing complex computational models it is crucial to justify the assumptions made, and
to verify that the consequent errors are negligible. In the development of the methodology for the
FFRCT-project atNTNU4, one of themain goals is to achieve accurate FFRCT computations at low
computational expenses. This thesis aims at comparing steady and transient flow simulations for
derivation of FFRCT, with the main objective being:

• Determine the significance of errors introduced by assuming steady flow conditions inCFD
simulations for the assessment of FFRCT

In order to achieve this, it is expected that the following single objectives should be met:

• Contribute to the development of a methodology for calculations of FFRCT

• Validate a computationalmodel for numerical simulations of patient-specific coronary flows

• Perform steady and unsteady 3D CFD simulations and compare the results

1.5 Outline

The rest of this thesis is structured in five chapters. Chapter 2 is a collection of theoretical topics
from fields of relevance to the subsequent chapters. In chapter 3, the methods and computational
modelsdevelopedandapplied in thework is presented indetail. Chapter 4presents the results from
the generation of patient-specific models and the CFD simulations. A comprehensive discussion
of the methods and results is arranged in chapter 5. Finally, the thesis is recapitulated in chapter 6
through a summary of the work and the final conclusions from the discussion.

4NTNU’s FFRCT-project: ”Model based, non-invasive diagnosis of coronary artery disease with 3D ultrasound and CT”
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2
Theoretical Background

This chapter contains a selection of theoretical topics of relevance to FFRCT computations. Com-
putational biomechanics is amultidisciplinary field, and themodeling of coronary flow is no excep-
tion. Medicine, imaging technology, mathematics, chemistry, mechanics, computer technology,
fluid dynamics and biology are just some of the professions being absorbed in the development of
non-invasive FFR methods.

For the limited extent of this thesis, this chapter is confined to include a selection of theoretical
topics relevant for the discussion of the applied methods and the results obtained in this work. In
the first section, the physiology of the coronary arteries is presented, focusing on the underlying
mechanisms governing coronary flow. Secondly, fundamental fluid mechanics theory and basic
CFD methodology are presented. In the last section, the intersecting field of physiology and fluid
mechanics is presented through the mathematical modeling principles of coronary flows.
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2.1 Coronary Blood Flow

As stated in the introduction, the coronary arteries are supplying themyocardiumwith oxygenated
blood. During systole, the ejection phase of the heart, blood is pumped out from the left ventricle
(LV) through the aortic valve and into the ascending aorta, where theCAsbranchoff (figure 2.1.1).
Themost characteristic feature distinguishing coronary blood flow fromother cardiovascular flows
is the suppressed blood flow during systole [22]. Due to the contraction of themyocardium, tissue
pressure increase the back pressure on the distal CAs, resulting in an increased resistance to flow
[12]. As a consequence coronary flow is maximal during diastole, the relaxation phase of the car-
diac cycle. This pattern is more prominent in the LCA than in the RCA due to the proximity of the
LV (the systolic pressure in the right ventricle (RV) is considerably lower than in the LV) [11].

Figure 2.1.1: Flow in the coronary arteries: a) flow is limited during systole and b) increased
coronary flow during diastole.

2.1.1 Resistance to flow

The driving force of coronary flow is the pressure in the ascending aorta. When this pressure ex-
ceeds the opposing pressure from the distal and peripheral parts of the CAs, coronary flow is pos-
itive. In general, the resistance to flow in the human arterial tree is located in the arterioles [23],
with the contribution from large, conduit CAs being negligible under normal circumstances [12].
However, when a stenosis is present resistance in the larger vessels become significant. Based on in
vitro experiments, Young andTsai [24] proposed a formulae for the pressure drop across a stenosis,
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ΔPstenosis =
Kv

ReD
ρu² +

Kt

2

(
A0

As
− 1

)2

ρu², (2.1)

where A0 and As are the original and stenosed cross-sectional lumen area respectively, and ρ is
the density of the blood. u is the mean velocity in the unobstructed part of the vessel, and ReD is
the Reynolds number (to be defined in 2.2.3). Kv and Kt are constants being dependent upon the
geometry and severity of the stenosis. For a given flow rate Q, equation (2.1) becomes

ΔPstenosis =
Kvμ
A0D0

Q+
Ktρ
2A0²

(
A0

As
− 1

)2

Q² = a1Q+ a2Q², (2.2)

whereD0 is the original lumen diameter and μ is the dynamic viscosity of blood. The first term
is associated with the viscous friction loss due to the contraction of the vessel. The second term
rise from separation of the flow in the expanding region of the stenosis, where pressure drop is
proportional to the square of the flow rate [23].

Figure 2.1.2: Illustration of streamlines through a stenotis. The pressure drop in the narrowing
section of the stenosis is proportional to the flow, while the separation of flow in the expansion
generates a pressure drop proportional to the flow rate squared.

2.1.2 Baseline conditions

Baseline, or resting coronary flow rate is approximately 4-5 percent of the total cardiac output
(CO), on average ∼225 ml/min [11]. The distribution of flow between the LAD and RCA de-
pendson thephysiologyof the coronary tree,which canbe leftor rightdominant. About 60percent
of the coronary flow runs through the LCAs (LAD and LCX) in a right (sic) dominant coronary
tree, prevailing in approximately 90 percent of the cases [25]. In the opposite case, the LCA flow
is almost 80 percent of the coronary flow.

11



2.1.3 Hyperemia

Hyperemia, the state of maximal coronary flow, is the natural response to increased oxygen de-
mand by the myocardium. Blood flow increases primarily as a result of arteriolar vasodilation, au-
toregulated expansion of the coronary arterioles decreasing the peripheral resistance [11]. During
hyperemia, the main contribution to the coronary resistance is redistributed from the arterioles to
the capillaries [26]. For clinical procedures, hyperemia can be provoked through exercise or the
use of pharmacologic agents.

Adenosine is a common agent used when measuring FFR invasively. The individual response
to adenosine is varied, making it difficult to predict hyperemic flow rates from baseline conditions.
Hyperemic coronary bloodflowas a response to adenosine is 2 to 5 times of the basal flow rate [27–
29]. Aortic pressure and heart rate (HR) is mildly affected by adenosine. An insignificant or small
(5-16mmHg) decrease in mean arterial blood pressure (MAP), and small to moderate increase in
HR by 15-20% has been observed in different studies [27, 29, 30].

2.1.4 Fractional flow reserve

The fractional flowreserve (FFR) is usedbyphysicians to assess the functional severity of a stenosis.
It is derived from the ratio of the actual flow in a stenosed vessel to the hypothetical flow if the vessel
had no stenosis (2.3).

FFR =
Qs

Qh
(2.3)

With negligible assumptions, this equals the ratio of pressure distal and proximal to the stenosis
[23]:

FFR =
Pd
Pp

(2.4)

FFR is a time averaged quantity, defined by the mean pressures over one cardiac cycle. The
derivation of equation (2.4) from (2.3) is visited in appendix A. Since pressure drops in the large,
unobstructed vessels are negligible, it is common practice to use the aortic pressure as Pp in equa-
tion (2.4).
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2.2 FluidMechanics

The study of the mechanics of fluids has occupied scientists’ attention for thousands of years. The
progress has evolved from the calculation of buoyancy forces in ancientGreece, to the state-of-the-
art computations of turbulence in supercomputers. In the perpetual search for comprehension of
the nature, the exquisite behavior of fluids never seem to temper the human curiosity.

2.2.1 Governing Equations

The contemporary paradigm for mathematical description of continuous fluid motion is by the
Navier1-Stokes2 (N-S) equations. Although the theoretical foundation was established early in
the 19th century, a complete understanding of its nature and behavior remains one of the greatest
challenges in physics and mathematics [33]. The N-S equation is Newton’s 2nd law expressed for
fluids, or the balance of the rate of change of momentum with fluid forces. As conservation of
mass is required to completely describe the fluidmotion, the N-S equations often refer to both the
momentum equations and the continuity equation in CFD-terminology. For an incompressible,
Newtonian fluid3, the N-S equations (with continuity) on conservation form are [34]:

∂u
∂t

+ (u ·∇)u = −1

ρ
∇P+ ν∇2u (2.5a)

∇ · u = 0 (2.5b)

Equation (2.5a) is the vector equation containing three equations for balance of momentum in
3 dimensions, and equation (2.5b) expresses conservation of mass (or divergence-free flow for an
incompressible fluid). u is the velocity vector, P is the pressure, and t is time. ρ and ν are material
constants of the fluid, density and kinematic viscosity respectively. ∇ is the del operator in three
dimensions, and∇2 = ∇ ·∇.

In the momentum equation, the left-hand-side terms are associated with acceleration of the
fluid, transient and spatial respectively. On the right-hand-side, the first term represents the pres-

1Claude-Louis Navier (1785-1836), French engineer and physicist [31]
2Sir George Gabriel Stokes, 1st Baronet (1819-1903), physicist and mathematician from Ireland [32].
3Newtonian fluid: A fluid in which the viscous stresses are linearly proportional to the strain rate.
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sure forces (opposing the flow as convention), and the second term the viscous forces. To ade-
quately define a fluid flow problem, equation (2.5) has to be combined with initial and boundary
conditions. Boundary conditions (BCs) are commonly prescribed either in terms of the value of
a field variable on the boundary (Dirichlet BCs), or the value of its normal gradient across the
boundary (Neumann BCs).

The incompressible N-S equations is an example of a hyperbolic-parabolic system of partial
differential equations (PDEs). Analytical solutions of (2.5) are only obtainable for very simple
boundary conditions and geometrical configurations. For practical problems, solving of the N-S
equations requires either making simplifying assumptions about the physical problem or solving
the equations numerically.

Internal pipeflow is a special caseof fluidmechanical problems. ThePoiseuille4 solution is an an-
alytical solution of the N-S equations for simple flows in pipes of constant, circular cross-sections.
Assuming rigid walls and steady, laminar flow, Poiseuille’s equation for the velocity profile is

u(r) =
r2l
4μ

dP
dx

(
1−

(
r
rl

)2
)

(2.6)

In equation (2.6), μ = ν/ρ is the dynamic viscosity, and rl is the radius of the lumen cross-
section. r is the radial coordinate from the center of the tube, and x is the longitudinal coordinate.
Evidently, the velocity profile according to equation (2.6) is parabolic. Integrating equation (2.6)
over the cross-section yields in the expression for volumetric flow rate:

Q =
πr4l
8μ

dP
dx

(2.7)

For situations where the assumption of rigid, straight tubes with steady flow conditions cannot
be justified, equations (2.6) and (2.7) are inadequate. In such situations the N-S equations can be
solved numerically, applying methods from the field of fluid mechanics called computational fluid
dynamics (CFD).

4Jean Léonard Marie Poiseuille (1797-1869), French physicist and physiologist [35].

14



2.2.2 Computational Fluid Dynamics

It is presently not known whether smooth solutions to the N-S equations always exist [33]. Nev-
ertheless, considerate research in the validation of numerical solution algorithms have ensured the
establishment of CFD as an indispensable tool on the frontiers of modern fluid mechanics.

Finite Element Methods for Fluid Problems

Several methods are available to solve the Navier-Stokes equations numerically. The most com-
monly applied methods can be divided into three groups: finite difference methods (FDM), finite
volume methods (FVM) and finite element methods (FEM). They all represent numerical meth-
ods as mathematical tools to solve physical problems modeled by PDEs. For all three groups, the
PDEs are discretized in time and space. Since FEM are employed in the present work, these are
given the most attention in the following.

In the FEM for fluid dynamics, the N-dimensional spatial domain containing the fluid is parti-
tioned into a finite number of regularly shaped elements. Examples of 2D triangular elements are
shown in figure 2.2.1. Each element is equipped with a set of interpolation functions, e.g. linear
or quadratic, determining the order of the element. These functions are used to represent the field
variables, such as pressure and flow, within the element as functions of the element nodal values.

Figure 2.2.1: Two simple triangular 2D elements, the Lagrange P1 with linear interpolation
functions, and P2 with quadratic. 3D tetrahedral elements can consist of four faces of these
elements.
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TheFEMapproach the physical problem through theweak form representationof the governing
differential equations [36]. Theweak formof an equation is obtainedbymultiplying its variables by
arbitrary weighting functions (w) before integrating over the domain (Ω), and thus reducing the
degrees of the derivatives. The N-S (momentum) equations on weak form are shown in equation
(2.8), assuming zero boundary integrals and applying the divergence theorem on the pressure and
viscous terms [34].

∫
Ω
w · ∂u

∂t
dΩ +

∫
Ω
w · (u ·∇)udΩ +

∫
Ω

P
ρ
∇ · wdΩ +

∫
Ω
∇w : ν∇udΩ = 0 (2.8)

TheFEMseeks to solvewhat is called theweak formulationof thePDEs. Avoiding themathemat-
ical stringency, the weak formulation of (2.8) can be expressed simplified as ”find u on the function
space V such that (2.8) is satisfied” [37]. A discrete FEM function space V consists of the union
of the interpolation (or shape) functions of all elements. If the function space is not discrete, but
contains infinitely many functions, solving the weak formulation gives the exact solution of (2.8)
[34].

The non-linearity of the N-S equations makes it difficult to solve even in its weak formulation.
Several different methods exist for linearizing equation (2.5), and many rely on the splitting of
pressure and velocity in the equations [34]. One such scheme is the incremental pressure cor-
rection scheme (IPCS), which has shown good efficiency in comparison with alternative schemes
[38]. Discretizing the N-S equations with the implicit Euler method in time, and linearizing the
non-linear convection term as un−1 ·∇un, equations (2.5) become [39]

un + Δtun−1 ·∇un − Δtν∇2un +
Δt
ρ
∇Pn = un−1 (2.9a)

∇ · un = 0, (2.9b)

where Δt = tn − tn−1 is the time step. Equations (2.9) are still implicit in pressure, Pn, which
(due to incompressibility) only occur in the momentum equation. The strategy of the IPCS is to
replace this unknown pressure with Pn−1, and find the correct pressure and velocity fields in an
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algorithm that can be summarized as follows

1. Replace Pn with Pn−1 and compute a tentative velocity un∗ by solving (2.9a)

2. Find the pressure correction by requiring no divergence of a corrected tentative velocity
(this gives a Poisson equation in pressure correction and u∗)

3. Update pressure and velocity with the correction terms

The mathematical details of this algorithm is presented in chapter 4.1 in [39]. Formulating the
resulting linear PDEs (equation (2.9a) in u∗ and Pn−1, and a Poisson equation in pressure correc-
tion and u∗) on weak form, the FEM can be applied to solve the problem. Expressing the field
variables as linear combinations of the element shape (interpolation) functions, e.g. velocity as

uh =
Nels∑
i=1

Uiφi, (2.10)

a discretized version of the weak formulation is obtained [40]. In (2.10), uh is the numerical
approximation of the velocity u,Ui are the unknown nodal degrees of freedom of element i, and φi
are the known (chosen) element shape functions. Nels is the number of elements.

Since the weak form of the equationsmust be satisfied for an arbitrary choice of weighting func-
tions w, they can be chosen as wj = φj. As a result, one will obtain a weak formulation in known
shape functions and the unknown nodal degrees of freedom, which can be reduced to a system of
algebraic equations [40]

AU = L, (2.11)

where Aij = A(φi, φj) and Lj = L(φj) are the weak form integral terms in the shape functions
and known variables or constants (e.g. Δt, ν, un−1 and Pn−1 in the IPCS [39]). Finally, the system
of (linear for IPCS) algebraic equations in equation (2.11) is to be solved or approximated with
appropriate solver algorithms to determine the unknown nodal degrees of freedomU.
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CFD Methodology

Application of the CFD methodology requires either the use of specialized commercial or open
source software, or programming of the solution algorithms. Irrespective of the choice, certain
steps are involved when going from geometry to CFD-solution, summarized in table 2.2.1.

Step Description

Meshing The process of subdividing the computational domain into cells. Spe-
cialized software may be used, based on mathematical principles for
generating meshes of high quality. Quality of the mesh is associated
with the shape and regularity of the elements, such as low aspect ra-
tios, blunt angles and low growth rate between adjacent cells.

Pre-processing In the pre-processing step the fluid mechanical properties of the flow
problem are defined. Material parameters for the fluid are assigned to
the flow domain, such as viscosity and density. Further, the physics to
be incorporated in the simulations are specified, e.g. turbulence mod-
eling, unsteadiness or multiple phases. Finally, the boundary condi-
tions are imposed on the outer bounds of the mesh.

Solving Solving of the fluid flow problem is performed with solution algo-
rithms that may be chosen by the analyst. The time steps and num-
ber of iterations (or convergence criteria) are specified, along with nu-
merical parameters controlling the solution process, for instance relax-
ation terms and numerical diffusion coefficients.

Post-processing Thefinal step is post-processing of the obtained results. Field variables
such as velocity andpressure aremanipulated to express the desired re-
sults visually or numerically. Validation and verification of the results
is also essential to assess the validity of the computed solution.

Table 2.2.1: CFD Methodology
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Errors in CFD

It is important to stress that numerical solutions areonly approximate, hence associatedwith errors.
In CFD, errors can be categorized into:

• Modeling errors

• Discretization errors

• Convergence errors

• Round-off errors

The modeling errors are caused by discrepancies between the physical model and the actual
physical system. These errors are strictly speaking not rising from the numerical approximation,
but from the choice and simplification of PDEs and associated BCs. The significance of modeling
errors can be evaluated through validation of the simulation results.

Discretization, or truncation errors are the errors associated with the discretization of the PDEs
in time and space. They come from the difference between the exact solution of the PDEs and the
solution of the numerical equations applied to represent the PDEs [41].

Convergence errors are due to the finiteness of iterations or mesh elements. The variation in
the solution between consecutive iterations or different levels of mesh refinement is associated
with how well the solution has converged. Iterative errors arise both in time (e.g. the number of
time steps conducted until a convergence criteria or a periodic state is reached) and in the solution
algorithms, where iterations may be required to solve a system of coupled (linear or non-linear)
algebraic equations.

Round-off errors arise from the fact that only a certain number of digits (normally 32 or 64) can
be stored for each floating point number in the calculations. A remedy is to set reference conditions
equal to zero, provided that the absolute value of the variable is insignificant to the physics (for
instance setting reference pressure to zero when simulating incompressible flows).
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Figure 2.2.2: Types of errors in CFD: a) modeling errors, b) round-off errors, c) discretization
errors and d) convergence errors.

The last three groups of errors are due to the finiteness of the FEM representation of infinite
concepts. These errors can be assessed through verification analyses, evaluating the degree of im-
provement in the solution obtained from increasing the refinement levels, iterations or the order
of the numerical methods applied.

Verification and validation play major roles in the assessment of CFD results. Validation of sim-
ulation results involves ensuring that themathematical models represent the physical problem and
characteristics sufficiently, whereas verification is the process of assuring that the mathematical

20



equations are being solved correctly, through examining the errors caused by the discretization or
implementation.

2.2.3 Dimensionless Numbers

Dimensionless numbers are applied in fluid mechanics to compare the relative contributions from
different physical phenomena. The Reynolds5 number is the ratio of inertial forces to viscous
forces, and is defined as

ReD =
ρuD
μ

(2.12)

The denotation D signifies that the characteristic length dimension of the flow is a diameter, of
for instance a tube or vessel. μ = ν/ρ is the dynamic viscosity. Turbulence in flows are character-
ized by high Reynolds numbers, but is also dependent upon the geometry of the flow domain and
the roughness of any confining walls [43]. Typical ReD in the LAD is∼400 [44], well below 2200,
which is an approximate limit for transition to turbulence in hemodynamical flows[23]. However,
stenoses and hyperemic conditions alter the local Reynolds number, and may provoke turbulence
in the flow.

In periodic, pulsatile flows, it may be relevant to estimate the significance of oscillatory patterns
in the flow. The Womersley6 number is defined as

Wo = rl
√

ωρ
μ
, (2.13)

and represents a measure of the ratio of transient inertial forces to viscous forces, where ω is the
angular frequency of the periodically pulsatile flow. ForWo larger than 3-4, unteadyness starts to
become significant [23]. In flows where viscous forces are dominant (i.e. lowWo flows), velocity
profiles exhibit small deviations from the parabolic profile given in equation (2.6), and can thus be
regarded as quasi-steady [46]. Womersley numbers in the CAs are ∼2 under normal conditions
[44].

5Osborne Reynolds (1842-1912), Irish physicist and innovator in fluid dynamics [42].
6John Ronald Womersley (1907-1958), British computer scientist and mathematician [45].
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2.3 Coronary FlowModeling

Combining the knowledge of coronary blood flow with fluid mechanics theory yields in the mod-
eling principles for coronary flows. Manyof these principles are commonwith general, arterial flow
modeling. It is a common approach to describe arterial blood flow through an electrical analogy.

2.3.1 Electrical Analogy for Cardiovascular Flows

The main characteristics of hemodynamic flows can be adequately modeled by electrical circuits
of resistors, capacitors and inductors in series and parallel. Relative pressure and volumetric flow
rate are analogous to voltage and electric current in an electrical circuit respectively [22].

Figure 2.3.1: An electrical circuit as a model for arterial flow. ΔPtot is the pressure potential,
i.e.the total pressure drop over the modeled system. R, C, and L represents the resistance,
compliance, and inductance of the system respectively.

Thepressure potential is the pressure drop over a vessel length. The pressure required to sustain
a given flow rate is affected by different physical phenomenons, such as wall friction, fluid inertia
resisting acceleration, and elasticity of the vessel walls. The mechanical physics governing these
resistances to flow has their electrical counterparts in resistance, inductance, and capacitance ele-
ments respectively [22]. The mechanical and analogous electrical equations are presented in table
2.3.1, originating from the physical laws denoted.
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Mehcanical Equation Electrical Equation

ΔPr = RQ (2.14)

Poiseuille’s equation

U = RI (2.15)

Ohm’s law

ΔPl = L
∂Q
∂t

(2.16)

Newton’s 2nd law of motion

U = L
∂I
∂t

(2.17)

Inductance equation

ΔPc =
1

C

∫
Qcdt (2.18)

Material constitutive law

U =
1

C

∫
Idt (2.19)

Capacitance equation

Table 2.3.1: Mechanical and corresponding electrical equations. U is voltage, and I is the
current.

ΔPr, ΔPl and ΔPc are the viscous, inertal and capacitive pressure potentials respectively. Qc is
the flow into the capacitor, while R, L and C represents the viscous resistance, fluid inertance and
wall compliance respectively. Assuming Poiseuille flow in an artery of constant, cylindrical cross-
section, gives:

R =
8μl
πr⁴

, L =
ρl
πr²

, C =
3πr³l
2Eh

, (2.20)

where l is the vessel length. In the expression forC, E is themodulus of elasticity of the wall, and
h is the wall thickness [47].

Equation (2.18) relates pressure potential over a capacitor with the flow rate into it. Since flow
cannot run through the capacitor, the flow rate into it equals the rate of change of its volume. In
the electrical terminology, the current into the capacitor equals the rate of change of its charge.
Expressed mathematically, this becomes:
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Qc =
∂Vc

∂t
, (2.21)

where Vc is the capacitive volume. Combining (2.21) with (2.18), gives the relation between
the volume of the capacitor and the pressure potential required to sustain it:

ΔPc =
1

C
Vc (2.22)

In a vessel, it is only physically meaningful to have capacitors in parallel with the running flow.
The capacitor itself can be interpreted as a balloon being filled and emptied with blood.

Figure 2.3.2: Mass conservation for a capacitor in parallel, Qin = Qout + Qc, and an illustration
of the balloon interpretation.

From conservation of mass, it is evident that the following holds for a capacitor in parallel:

Qc = Qin − Qout (2.23)

And further, combining equations (2.21) and (2.23),

∂Vc

∂t
= Qin − Qout (2.24)
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2.3.2 Lumped Parameter Coronary Model

Lumped parameter models are 0D models incorporating the electrical elements presented above
in circuits to model cardiovascular systems. The simplest type is the 2-elementWindkesselmodel,
with one resistance and one capacitance in parallel.

Figure 2.3.3: The 2-element Windkessel model of arterial flow. ΔP is total pressure drop (or
potential) in the system, R is the resistance, and C is the compliance.

More comprehensive 3 and 4 elementWindkesselmodels incorporate inductance aswell. In the
coronary arteries however, inductance (or inertance) can be neglected due to the relatively small
diameters of the vessels [23, 48]. Another important feature determining coronary flow should
however be emphasized: intramyocardial pressure, increasing the systolic resistance to flow. Man-
tero et al. [48] proposed a lumped parameter model incorporating the pressure from the left ven-
tricle. A version of this model (hereafter referred to as cor-0D) is presented in the electrical circuit
schematic in figure 2.3.4.
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Figure 2.3.4: A lumped parameter model of the coronary circulation, modified from [48]. P
aorta is the aortic pressure, equal to the pressure at the ostium of the coronary arteries. PLV
is the left ventricular pressure. Pp, Pa, Pm and Pd are the proximal (= Pao, aortic pressure),
arterial, intramyocardial and distal (venous) pressures respectively. Rp, Rm and Rd are the
proximal, intramyocardial and distal resistances. Ca and Cm are the arterial and intramyocardial
compliances.

The cor-0D model can also be represented by two coupled ordinary differential equations. Ap-
plying equations (2.22) with (2.24), the time derivatives of the pressure drops over the two capac-
itors in parallel are:

∂(ΔPca)
∂t

=
∂Pa
∂t

=
1

Ca
(Qp − Qm) (2.25a)

∂(ΔPcm)
∂t

=
∂(Pm − PLV)

∂t
=

1

Cm
(Qm − Qd) (2.25b)

In equation (2.25),Q is denotedwith the same index as the resistor it runs through (i.e. Qm is the
flow through Rm). Furthermore, the flow rates through the resistances are functions of resistances
and pressures in the model according to (2.14).

2.3.3 Boundary Conditions

In any computational model of coronary circulation, the conditions on the boundaries of the com-
putational domain has to be specified. 3D domains obtained from CT images are curtailed to the
accessible image data of sufficient quality. Consequently, the domains are cut off when features are
too small to be accurately captured by CT. When performing 3D CFD simulations, the pressure
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or velocity has to be prescribed at the inlet and outlets, as well as on the vessel walls. While in-
let and wall conditions can be quite readily assumed (for rigid walls), conditions at the outlets are
subject to great uncertainty, yet crucial for the final FFR results [49, 50]. 3D outlets are artificial
boundaries in the sense that they usually do not constitute physically distinguishable locations in
the CAs. As a result, outlets are commonly coupled with 1D or 0D models relating the outlet BCs
to the conditions at locations that can be more precisely approximated [51].

Walls

The no-slip condition requires velocity to be zero at the walls. Further, vessel walls may be mod-
eled as either rigid or compliant. For the latter, a coupled structural and fluid mechanical problem
has to be solved, which is associated with extensive computational effort. Hence, it is desirable to
reduce the complexity by assuming rigid walls, provided that this does not affect the physiological
resemblance of the model significantly.

Inlet

At the inlet of a CA, conditions may be well estimated by clinical measurements. Aortic pressure
waveforms can be obtained from measuring brachial blood pressure. Flow rates can also be as-
sessed non-invasively, by novel ultrasound techniques: Transthoracic Doppler Echocardiography
(TTDE) can be used to measure the flow rates in the main coronary branches [52]. Prescribing
either a flow or a pressure waveform to the inlet are well established practices in unsteady hemody-
namical CFD simulations [51].

Outlets

Imposing a pressure or flow rate to anoutletwould constrain the interior solution tomatch a certain
flow level or pressure drop in that branch. Amore physiologically justified approachwould be to let
the flow distribute to the branches according to the resistance it meets in both the 3D domain, and
at the boundaries (i.e. the peripheral resistances). By this approach, the total peripheral resistance
is lumped at each outlet, coupling the outlet pressure and flow at each location by equation (2.14).

A further development of the lumped resistance outlet is a 2-element Windkessel model con-
nected to the outlets. The compliance introduces the peripheral elasticity, incorporating the outlet
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flow’s dependency on the rate of change of pressure. In coronary arteries, the peripheral resistances
are highly dependent on the LVpressure [12]. Thus, a third option for setting the outlet conditions
would be to use time varying resistances, or simply employ the cor-0Dmodel to relate pressure and
flow. Still, the total peripheral resistances of the coronary sub-trees downstream the 3D outlets
have to be determined. This can be done by using Murray’s law.

Murray’s Law

Murray’s law is based on the principle of evolutionary optimization of shapes to minimize energy
requirements in biological systems. It states that vessel radius is a function of the flow it conveys,
governedby theminimization of hemodynamic power requirements. PublishedbyMurray in 1926
[53], the law relates the radius to flow in a vessel as:

Qi = kr3i (2.26)

Equation (2.26) assumes Poiseuille flow, i.e. that the viscous forces are proportional to r−4, and
further that the metabolic power is proportional to the vessel volume, or r². Combining equation
(2.14) and (2.26), the peripheral resistance of a branch, Ri is related to the radius as

Ri ∝ r−3
i (2.27)

Murray’s law is widely applied in distributing peripheral resistances for coronary flowmodeling
[13, 54, 55]. However, it has its limitations, as it is based on strict assumptions of the geometri-
cal configuration of arterial trees. Other methods for determining terminal resistances have been
proposed, relying more on empirical observations [56–58].
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3
Methods

This chapter is concerned with the methodology developed and applied in CFD simulations of
coronary flows for FFRCT computations in the LCA. The first section presents the computational
models employed in the simulations. Section 3.2 relates the models to patient data, and how these
are used in patient-specific simulations. A considerate part of the work has consisted in develop-
ing physiologically and computationally valid models and methods. More than 200 cardiac cycles
have been simulated until reaching the final setup. Themethodologywas developed incrementally,
continuously performing validation and verificationwork. Theverification and validationmethods
used are presented in sections 3.3 and 3.4, respectively. Finally, section 3.5 describes the statistical
treatment of transient and steady simulation results.
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3.1 ComputationalModels

The computational model applied in CFD simulations consists of a 3D domain of the LCA, where
the 3D incompressible N-S equations are solved, coupled with the lumped parameter model cor-
0D connected to the outlets. Input to the model is the inlet pressure waveform, the left ventricle
(LV) pressure and patient-specific model parameters. The model is illustrated in figure 3.1.1.

Figure 3.1.1: Computational model of coronary artery flows. Details of the lumped parameter
outlet model are presented in 2.3.2.
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All software used in the present work are either licensed with open source, or developed in-
house. Table 3.1.1 gives a presentation of the software and utilities applied.

Software Description

Python [59] An open source programming language affiliated with a plethora of
packages, continuously updated by contributors from all over the
world.

VMTK [60] The Vascular Modeling Toolkit (VMTK) is an open source project
consisting of a framework for the segmentation and meshing of 3D
geometries from CT images.

FEniCS [61] A collection of software components forming a general purpose FE
solver for differential equations. It is developedby theFEniCSProject,
which is licensed under the GNU General Public License (GPL) as
free software.

cbcflow [62] Anassemblyof solvers for solvingfluidmechanical problemsgoverned
by the incompressible N-S equations. It builds on the FEniCS library,
and is licensed under the GNU GPL.

coronary3D A python implementation of the computational model in figure 3.1.1,
and configuration script for cbcflow, defining a coronaryflowproblem.
Developed in-house in the Biomechanics Division at the Department
of Structural Engineering,NTNU,with the presentwork contributing
with implementations and development.

coronary0D A python implementation of the cor-0D model, solved for a given in-
let pressure or flowwaveform, LV-pressure waveform and constant ve-
nous pressure. The source code is found in appendix B.

ParaView [63] An open source post-processing tool for visualization and analysis of
large datasets.

Table 3.1.1: Computational software and utilities used in this thesis.
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Python, with related packages, was used for everything from plotting of results to implementa-
tion of the computational models. VMTK was employed in the segmentation and meshing pro-
cess. Theflow in the 3Ddomainwas solvedbyusingFEniCS, through the cbcflowmodule. Defining
the patient-specific flow problems and computation of the cor-0D BCs was performed in the coro-
nary3D python script, and the coronary0D script was an aid for validation and rapid prototyping of
model parameters. ParaViewwas used in the post-processing of theCFD results. A comprehensive
description of the computational models developed and applied follows.

3.1.1 Numerical Methods

3D CFD

The problem to be solved is governed by the unsteady, incompressible N-S equations in 3D, with
Dirichlet BCs (pressure specified at the 3D inlet and outlets). Linear Lagrange P1 tetrahedral el-
ements (figure 2.2.1) were applied for interpolation of the field variables in pressure and velocity.
The time step Δt was 0.001 s in the transient simulations, except cases where a Δt of 0.0005 s was
necessary to avoid diverging solutions. Transient simulations were run for 5 or 10 cycles with pe-
riod of 0.8 s. In the stationary case, Δt was 0.0001 s, and simulations were run for 1000 iterations.
The only other difference between the steady and unsteady simulations was in the boundary con-
ditions. Floating point numbers were stored with 64 digits.

The FEniCS extension cbcflow [62] was used for the computations presented in this work. This
tool provides efficient implementations of schemes to solve the incompressible N-S equations, as
well as a framework for implementation of lumped parameter models and assignment of BCs. The
incremental pressure correction scheme (IPCS) implemented in cbcflowwas used for the coupling
of pressure and velocity fields. This scheme is based on a multistep technique proposed by Goda
[64], and involves the calculation of a tentative velocity field each time step based on the previ-
ous pressure solution. TheN-S equations are linearized to first order accuracy, semi-implicit in the
convection term (see equation (2.9) and [39] for more details).

Numerical diffusion was enabled through specifying a streamline diffusion coefficient (sdc) in
the solution algorithm of cbcflow. Numerical streamline diffusion introduce an artificial diffusion
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term to the N-S equation acting only in the advection direction of the flow [61]. The use of nu-
merical diffusion was motivated by stability issues experienced in the development of the com-
putational methodology. Higher values of sdc (∈ [0,1]) means stronger weight to the numerical
diffusion term.

3D/0D Coupling

The coupling of 3D outlet boundaries with the cor-0D model was implemented in coronary3D.
During the transient simulations, the outlet BCs for the subsequent time step are updated from the
results of the cor-0D model. The pressure at the next time step was set to a computed proximal
pressure in the 0D model, Pp. The exact value of Pn+1

p comes from equation (2.14) applied on the
resistor Rp in cor-0D:

Pn+1
p = Pn+1

a + RpQn+1
p (3.1)

Qn+1
p in (3.1) should equal the 3D outlet flow on the next time step, Qn+1

3D . Since this is not
known a priori, but is a result of the 3D CFD solution at the next time step (with a given BC of
Pn+1
3D ), the above formulation is implicit in time. To solve this condition exactly would require

iterations on the subsequent time step to ensure matching flow in the cor-0Dmodel and out of the
3D domain. In the present simulations however,Qn+1

p was approximated byQn
3D. Thus, the outlet

BC for the subsequent time step was set as:

Pn+1
3D := Pn+1

a + RpQn
3D (3.2)

Pn+1
a was computed by the explicit Eulermethod applied to equation (2.25a) in chapter 2, giving

Pn+1
a − Pna
Δt

=
1

Ca
(Qn

p − Qn
m) =

1

C

(
Qn

3D − Pna − Pnm
Rm

)
(3.3)

Similarly, the other pressures in the 0D model were updated with the explicit Euler method on
(2.25b).
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Figure 3.1.2: Coupling of the 3D and cor-0D model at the outlets. Pp from the cor-0D solution
at next time step, assuming Qn+1

p = Qn
3D, is imposed on the boundary.

3.1.2 Boundary conditions

Boundary conditions were assigned to the walls, inlet and outlets of the 3D domain. The vessel
walls were modeled as rigid, and assigned with the no-slip BC for velocity in all simulations.

Transient Boundary Conditions

A generic aortic pressure waveform was assigned to the inlet, adapted from Kim et al. [65], and
adjusted topatientmeasurementsofmeanandpulsepressure. At theoutlets, the lumpedparameter
model cor-0D was assigned, as a model of the coronary sub-tree distal to the outlet. Thus, the
proximal pressure in the model, Pp represents the pressure at the 3D outlet (rather than the aortic
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pressure, as in figure 2.3.4). The incentive for using this model was to obtain physiological shapes
and phase shifts of the pressure and flow waveforms. The distal pressure in the model, Pd, was
assumed to be constant, and equal to a venous pressure of 5mmHg. The left ventricle pressure was
specified through a waveform obtained from Kim et al. [65] (to ensure it was in phase with the
inlet aortic pressure curve). The applied pressure waveforms are shown in figure 3.1.3.
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Figure 3.1.3: Input waveforms of normalized aortic and LV pressure. Used as input to the
computational model, and tailored to patient-specific pressures.

The total peripheral resistance Rtot and total compliance Ctot of the coronary tree were specified
in the input parameters. Rtot was corrected each cardiac cycle to match a given hyperemic target
flow rate in the LM artery. This was performed by computing the difference between the average
inlet flow the previous cycle and the target flow rate, and then compute Rtot for the next cycle as

Rc+1
tot = (1− γ · δQ) · Rc

tot, (3.4)

where c is the number of the cycle, γ is a relaxation coefficient (=0.9) and δQ = Qtarget − Q̄inlet.
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Rtot and Ctot were further distributed to the outlets. The inverse of Rtot equals the sum of the
inverse of no parallel outlet resistances:

1

Rtot
=

no∑
i=1

1

Ri
(3.5)

Resistances were assumed to be proportional to the inverse of the terminal vessel radii cubed,
according to Murray’s law (2.27), and distributed between the outlets of the flow domain accord-
ingly. Combining equations (2.27) and (3.5) gives:

Ri =

∑no
j=1 rj³
ri³

Rtot (3.6)

The total equivalent capacitance is the sum of all parallel outlet capacitances [23]. From equa-
tion (2.20), arterial compliance scaleswith r³. Accordingly,Ctot wasdistributedbetween theoutlets
as follows:

Ci =
ri³∑no
j=1 rj³

Ctot (3.7)

Furthermore, the resistance and compliance of each outlet, Ri and Ci was distributed between
the parameters in the cor-0D model. The fractions of Ri in Rp, Rm and Rd were set to 0.35, 0.5 and
0.15 respectively. Similarly, Ci fractions were 0.1 and 0.9 in Ca and Cm. These values were chosen
to obtain physiological flow waveforms, ensured by the validation work outlined in 3.4. Previous
work using the cor-0D as outlet BCs in coronary CFD simulations was consulted in the process
[65].

At every time-step, the pressure Pp computed from the cor-0D model was assigned to each 3D
outlet, as explained in 3.1.1.
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Figure 3.1.4: The cor-0D model as applied on the outlet boundaries of the 3D domain. Pa-
rameters are explained in figure 2.3.4.

Steady Boundary Conditions

For the steady simulations, the main objective when specifying the BCs was to ensure consistency
with the transient simulations. For comparison of steady and transient FFRCT computations, the
steady BCs should equal the time averaged transient BCs. At the inlet, a constant pressure equal
to the average transient inlet pressure was assigned. Each outlet was given a resistance equal to the
average, equivalent resistance of the cor-0D model, computed as:

Req,i =
P̄p,i − Pd

Q̄i
(3.8)

Consequently, neither pressure nor flow is constrained to specific values at the outlet, only the
relation between them. As a result, themagnitudes of flow and pressure at the outlets are solutions
of the interior 3D calculations, where any discrepancy from the average transient solution is due
to the loss of unsteady flow patterns. As opposed to the unsteady BCs, the total resistance was not
updated to match the target flow in the steady simulations, to ensure comparability between the
steady and transient results.
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Figure 3.1.5: Schematic overview of the computational workflow.
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3.2 Patient-SpecificModel Setup

Clinicalmeasurements andCTimages frompatients recruited for thepilot studyofNTNU’sFFRCT

research project were used to make patient-specific models.

3.2.1 Segmentation and Meshing

CT (CCTA) images of the patients were used with VMTK to create the 3D flow domains and the
computational grids. The pipeline for generating meshes was:

1. Read and enhance CCTA image file set

2. Create level set for segmentation

3. Make geometry of level set and prepare for meshing

4. Generate computational mesh

Figure 3.2.1: The four steps involved in making a patient-specific computational mesh. 1)
original and enhanced CT image, 2) initial and modified level set of a CA segment, 3) geometry
before and after clipping and adding extensions to inlet/outlets and 4) radius adapted mesh of
tetrahedral cells.
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• In step 1, the image files were processed. To facilitate the segmentation process, the contrast
and exposurewas altered by using the scikit-image1 python algorithm exposurewith intensity
levels of tissue and plaque as input parameters.

• Step 2 involved setting the intensity levels for each partition of the CAs to be modeled. In
VMTK, this was performed using the colliding frontsmethod. Parameters controlling the in-
flation, regularization and attraction to the image gradients at the lumen surface were spec-
ified for each segment. This process relies heavily on the operator’s interpretation of the
images.

• The complete segmented geometry was created in step 3, based on the levels set in step 2.
To prepare the geometry for CFDmeshing, outlets and inlets were cut to obtain plane, nor-
mal faces for the boundaries. Furthermore, normal extensions of the inlet and outlets were
created using the VMTK routine vmtkflowextensions. Extensions of a length 4 times the ra-
dius of the inlet/outlets were assumed to be sufficient to elude artificial constraints on the
flow domain of interest. In cases where it was found necessary, the vmtksurfacesmoothing
was applied to filter out non-physiological unevenness.

• In the final step, the computational mesh was generated. VMTK offers the opportunity to
create radius adapted mesh, which was employed in the present work. Radii are computed
from the maximal inscribed sphere at each point along the centerlines of the flow domain.
This data is used to set the element size according to the radius at each point, ensuring a rel-
ative measure for the refinement of the mesh throughout the domain. Specifying the edge-
lengthfactor in VMTK controlled the refinement of the meshes. All meshes were built up of
tetrahedral cells.

3.2.2 Physiological Parameters and Boundary Conditions

For every patient, the clinical measurements were employed to set the BCs and to estimate the
hyperemic flow conditions.

The pressure curve assigned to the inlet was scaled to match the MAP for each patient, as well
as the pulse pressure (PP), computed as PP = SBP - DBP. The LV pressure curve was adjusted to

1scikit-image: a collection of image manipulation Python modules developed in the SciPy community [66].
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match a maximal pressure equal to the SBP. The total flow rate in the LM was approximated to be
2% of the CO for all patients. This was based on the assumption that 50% of the coronary flow
would be conveyed through the left coronary tree, and that total coronary flow is approximately
4% of the CO [11].

As the clinical measurements provided were baseline data, assumptions were made on the hy-
peremic flow conditions. First of all, it was assumed that the pressures remained unaltered in the
hyperemic state. The target hyperemic flow rate,Qtarget, was assumed to be four times the estimated
baseline coronary flow. This is a pragmatic average of results from studies on adenosine induced
hyperemia [27–29].

Based on the target hyperemic flow, the initial guess of the total coronary resistance Rtot was
computed as

R1
tot ≈

ΔP
Qtarget

=
MAP− Pd

Qhyp
(3.9)

This value was updated each cycle tomatch the target flow rate by equation (3.4). For the steady
simulations, the resistance at each outlet was computed as shown in equation (3.8), and kept con-
stant.

Someparameterswerenot set specific for eachpatient. These includes the rheological properties
of blood,modeled as aNewtonianfluidwith a density of ρ=1.50 g/cm³ and a constant dynamic vis-
cosity of μ = 0.035 g/(cm· s). In addition, venous (distal) pressure, Pd = 5mmHg, the total coronary
compliance Ctot = 0.056 cm³/mmHg, and the period T = 0.8 swere set equal in all patients.

3.3 Verification

In this thesis, verification was performed by ensuring mesh independent results, periodic and iter-
ative convergence in the variables of interest for this thesis, pressure and FFR, and evaluating the
effect of numerical diffusion. Verification of the implementation of solvers in cbcflow and compar-
ison with analytical solutions has already been performed by Valen-Senstad et al. [38]. All verifi-
cation results are presented in the next chapter, section 4.2.
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Comparison of meshes was conducted on three patient geometries. Four meshes of different
refinement were made from each geometry, consisting of approximately 0.5 million (M), 1M, 2M
and 3M elements. The refinement level was controlled by adjusting the edgelengthfactor (elf) in
VMTK. An initial guess of the elfwould give a mesh ofNels elements. A desiredmesh size of f ·Nels

elements was then obtained bymultiplying the initial elf by a factor of∼ 3
√

f. Transient simulations
were run for 10 or 5 cardiac cycles. For two of the patients the total resistanceRtot was updated each
cycle to match a target flow rate. On the last patient, Rtot was kept constant. Otherwise, simulation
methodology was as explained in sections 3.1 and 3.2.

Errors in pressure and FFR were analyzed by comparing with the 3M solutions. The error in
pressure at a location i of a kmillion mesh was computed as

emP,i =
P̄3Mi − P̄kMi

ΔP3Mavg
, (3.10)

where P̄i is the average pressure of the last cycle, andΔP3Mavg is the average pressure drop between
inlet and outlets in the model.

The error in FFR was evaluated in the absolute difference, as FFR is already normalized to the
inlet pressure:

emFFR,i = FFR3M
i − FFRkM

i (3.11)

FFR for a location iwas computed as

FFRi =
P̄i
P̄inlet

, (3.12)

Results from a selection of interior locations and all outlets were analyzed. The method for se-
lecting locations and computing pressure is described in section 3.5.

Convergence to a periodic state was ensured bymonitoring the residual in mean cyclic pressure
at the 3D outlets throughout the simulations. In addition, two simulations were run on different
geometries for 10 cycles to determine the required number of cycles to reach convergence. The
residuals δc in pressure and FFR for a cycle c was assessed for all outlets according to equations
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(3.13) and (3.14), where i indicates an outlet.

δcP,i =
P̄ci − P̄c−1

i

ΔPcavg
, (3.13)

δcFFR,i = FFRc
i − FFRc−1

i (3.14)

Similarly, residuals δi were computed for every iteration for steady simulations.
Finally, an observation was made on the significance of the streamline diffusion coefficient sdc

in the numerical solution algorithm. Three transient simulations were run on the samemesh, with
sdc of 0.25, 0.5 and 1.0 respectively. The error relative to the sdc = 0.25 results was computed for
pressure and FFR in the same manner as in equations (3.10) and (3.11).

3.4 Validation

Validation of the computational model presented so far involved comparison with related work. In
addition, comparisonwasmadewith results from the lumped parametermodel cor-0D, as amodel
for the complete LCA circulation. Emphasis was put on the comparison of flow waveforms, not
being constrained in the model (but computed as a result of the interaction between the 3D and
0D models).

The process of tuning the cor-0D model parameters to obtain physiological relationships be-
tween pressure and flow required running several 3D CFD simulations. This process was time
consuming, as the simulation of at least one cardiac cycle at fairly large meshes was necessary to
obtain any valuable information. However, early simulation results indicated that the pressure and
flowwaveformsexperiencedmarginal changes in shape throughout the3Ddomain. Thismotivated
employing the cor-0Dmodel as a simplifiedmodel for the complete LCA circulation to rapidly as-
sess the effect of changing themodel parameters. The cor-0Dmodelwas implemented in a separate
python script, coronary0D, and solved with explicit Euler method in time. With an inlet waveform
prescribed to the proximal pressurePp, a resulting flow curve for a given configuration of themodel
parameters was obtained within seconds.
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Transient and steady FFRCT results were compared with available data from clinically measured
FFR.These results were not emphasized in the validation of the computational model as a tool for
comparison of steady and transient simulations. Replication of clinical measurements is still too
ambitious with the present model and methodology, until they are further developed.

Finally, a qualitative evaluation of the flow in critical regions of the 3D domains was performed.
The simulation results were analyzed in stenotic regions of some of the patient geometries with
prominent stenoses. Local Reynolds and Womersley numbers were computed, and flow patterns
were inspected through velocity profiles and streamlines.

3.5 Statistical Analysis

Statistical analysis was performed to compare transient and steady simulation results. The mean
pressureswere computedat selected locations in the3Ddomainandat all outlets. Interior locations
were chosen from relevance to FFR, i.e. distal to stenoses (where prominent) or distal in the main
branches of the CAs. Pressures were computed from the spatial averages on cross-sections normal
to the flow direction using ParaView. Furthermore, all time averages were computed over the last
cardiac cycle simulated.

Figure 3.5.1: Examples of interior locations used to compare steady and transient CFD results.
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Differences in pressure and FFR were computed for each location. The errors of the steady so-
lution at a location iwere computed by equations (3.15).

esP,i =
P̄ti − P̄si
ΔPtavg

(3.15a)

esFFR,i = FFRt
i − FFRs

i (3.15b)

FFRi is defined as stated in equation (3.12), and ΔPtavg is the average pressure drop from inlet
to outlets of the transient solution. Xt and Xs are transient and steady results respectively. Errors
were assessed both on a per patient level, and a per location level. Mean absolute error (MAE) for
a patient was computed asmean(|esP/FFR|) over the error sampling locations in that patient’s LCA.
In addition, the root mean square error (RMSE) metric was computed for the errors in (3.15) as

RMSEFFR/P =

√√√√ 1

nloc

nloc∑
i=1

(esFFR/P,i)2, (3.16)

where nloc is the number of locations. Since RMSE sums squares of errors, larger errors are pe-
nalized more than what is the case with MAE.

Per location, the correlation between FFR and errors were evaluated, as well as the maximal
errors of each patient. In addition, correlation between errors and local Womersley numbers was
assessed.

Errors were analyzed with statistical tests. Normality of the error distributions was tested with
the Shapiro-Wilk test for small sample data. The null hypothesis is normally distributed data, with
low scores (W ∈[0,1]) indicating skewness or kurtosis in the distribution [67]. Difference be-
tween errors at interior locations and outlets was further evaluated with the theMann-Whitney U
test, with the null hypothesis that errors fromone sample is just as likely to be larger as smaller than
the mean of the other sample. Correlations were assessed with the non-parametric Spearman’s
rank order correlation coefficient (Spearman’s rho) and linear regression. All statistical analyses
were performed with the statsmodule in the Python package SciPy [68].
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Finally, the average percentage errors in outlet flows were computed for each patient as

esQ =
1

no

no∑
i=1

Qt
i − Qs

i

Qt
i

· 100, (3.17)

whereQt
i andQs

i are the flows out of outlet i for transient and steady simulations.
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4
Results

This chapter contains the presentable results from this project’s work. Section 4.1 is concerned
with the results from patient-specific modeling, i.e. LCA geometries and mesh, and personalized
simulation parameters. Sections 4.2 and 4.3 treats the results fromverification and validation of the
simulationmethodology and results. Finally, in section 4.4, steady and transient simulation results
are compared and analyzed.

All modeling and simulation was performed using two different workstations with specifica-
tions: (i) 15 x Intel Xenon Processor E5-2630 v4 3.1GHz (10 cores), 32GB (8x4GB) RAM, and
(ii) 8 x Intel Core i7-4790 CPU (4 cores) 3.60GHz, 32GB (8x4GB) RAM.
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4.1 Patient-specificModels

8 of the patients recruited at St. Olavs Hospital, Trondheim for the pilot study of NTNU’s FFRCT-
project were incorporated in the work. In the following, patients are denoted by their pilot ID
for consistency with the research project. Pilot 8 was excluded due to bad CT image quality. The
clinical measurements from St. Olavs Hospital were reported as presented in table 4.1.1. CO is
based on velocity measurements by PW Doppler1 ultrasound, and MAP has been computed from
SBP and DBP according to

MAP =
1

3
SBP+

2

3
DBP (4.1)

Pilot ID Sex HR MAP SBP DBP CO
[bpm] [mmHg] [mmHg] [mmHg] [l/min]

1 F 66 95.6 119 84 3.8
2 F 57 83.6 123 64 4.1
3 M 73 92.6 122 78 6.2
4 M 67 105.6 139 89 5.5
5 M 62 88.3 115 75 6.8
6 M 50 97.7 133 80 6.5
7 M 54 99.6 151 74 5.5
9 M 52 84 116 68 5.3

Mean 60.13 93.38 127.25 76.50 5.46
±SD ±8.17 ±7.76 1±2.68 ±8.14 ±1.07

Table 4.1.1: Clinically measured baseline data of the patients. The pilot ID refers to the iden-
tifications used in the related research project, HR (heart rate), MAP (mean arterial pressure),
SBP (systolic blood pressure), DBP (diastolic blood pressure) and CO (cardiac output) and SD
= standard deviation.

3D geometries and computational meshes were generated following the steps in 3.2.1. The re-
sulting meshes applied in steady and transient simulations are listed in table 4.1.2.

1Pulsed-Wave Doppler: pulsed signal ultrasound for localized measurements of blood flow velocity [69].
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Pilot ID no Nels

1 5 1241329
2 5 914716
3 8 940891
4 7 1378784
5 11 1230978
6 8 1150302
7 11 963708
9 6 1288344

Table 4.1.2: Computational meshes for transient and steady simulations. no is the number of
outlets, and Nels is the number of tetrahedral elements in the mesh.

The patient-specific parameters employed in the simulations were computed and used as de-
scribed in 3.2.2, and are summarized in table 4.1.3.

Pilot ID MAP PLV,max PP Qtarget R1
tot

[mmHg] [mmHg] [mmHg] [ml/s] [mmHg · s/cm³]

1 95.6 119.0 35.0 5.07 17.88
2 83.6 123.0 59.0 5.47 14.38
3 92.6 122.0 44.0 8.27 10.60
4 105.6 139.0 50.0 7.33 13.72
5 88.3 115.0 40.0 9.07 9.19
6 97.7 133.0 53.0 8.67 10.70
7 99.6 151.0 77.0 7.33 12.90
9 84.0 116.0 48.0 7.07 11.18

Mean 93.38 127.25 50.75 7.28 12.57
±SD ±7.76 ±12.68 ±12.98 ±1.43 ±2.77

Table 4.1.3: Patient-specific simulation parameters. Pressures were used to scale the input
waveforms. Qtarget is the hyperemic target flow in the LM, and R1tot the initial (first cycle) total
resistance.
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Figure 4.1.1: All patient 3D models of the LCA (numbered by pilot ID).
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4.2 Verification

Coupled3D-0DCFDsimulationsof hyperemic coronarybloodflowswereperformedwithmodels
and methods as presented in the previous chapter. The details of the verification methods was
described in 3.3.

4.2.1 Mesh Study

The meshes used to compare refinement levels are listed in table 4.2.1. Examples of the different
meshes are presented in figure 4.2.1.

Pilot ID No. of elements

0.5M 1M 2M 3M

2 531973 914716 2078932 3090150
5 782444 1230978 2105123 3071280
7 651131 963708 1952472 2915975

Table 4.2.1: Meshes for mesh study of approximately 0.5M, 1M, 2M an 3M elements.

Figure 4.2.1: Snapshots of meshes with different refinement level from pilot 7 (upper row) and
5 (lower row).
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Simulations were run for 10 cardiac cycles for pilot 5 and 7, and 5 cycles for pilot 2. Results
from the last cycle were analyzed at outlets and interior locations. The mesh errors, as defined in
equations (3.10) and (3.11), are plotted in figure 4.2.2, with numerical values in table 4.2.2.
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Figure 4.2.2: Comparison of mesh refinement levels. Mean errors with standard deviation.

Mesh MAE

eMp eMFFR
0.5M 0.190±0.038 0.011±0.007
1M 0.110±0.027 0.006±0.003
2M 0.034±0.006 0.002±0.001

Table 4.2.2: Mesh errors. Mean±SD over outlets and interior locations.

4.2.2 Convergence to Periodic State

Simulations were run for 10 cardiac cycles to evaluate convergence on the 1M meshes of pilot 5
and 7. The residuals in pressure and FFR were computed at every outlet for each cycle, according
to equations (3.13) and (3.14). Residuals for all transient simulations are plotted in figure 4.2.3.
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Figure 4.2.3: Convergence of transient simulations. Average outlet residual for all pilots
(number of outlets as in table 4.1.2). Shaded areas are the 95 % confidence intervals.

Among all pilots, themaximal |δcp| and |δcFFR| the last cycle was 2.73·10−3 and 2.30·10−4 respec-
tively. Steady simulations were all run for 1000 iterations. Convergence for all patients is shown in
figure 4.2.4. Maximal residual the last iteration was 8.39·10−6 in pressure and 1.27·10−6 in FFR.
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Figure 4.2.4: Average outlet residuals in pressure and FFR for all steady simulations, plotted
every 20th iteration.

The difference between mean inlet flow and the sum of outlet flows (error in conservation of
mass) was on average 0.047%±0.063% for transient simulations, and 0.049%±0.066% for steady
simulations. The (decidedly) largest error in continuity was found in the transient and steady sim-
ulations of pilot 7, both with 0.2% difference between inlet and outlet flow.

4.2.3 Streamline Diffusion Coefficient

To evaluate the significance of the streamline diffusion coefficient sdc, simulations on the 1Mmesh
of pilot 5 were run with sdc = 1.0, 0.5 and 0.25. The errors relative to sdc = 0.25 were computed for
the two other cases as described in 3.3. In figure 4.2.5, themean errors are presented with standard
deviation. The numerical values are given in table 4.2.3.

sdc MAE

esdcp esdcFFR

0.5 0.0517±0.0437 0.0024±0.0020
1.0 0.1335±0.1035 0.0068±0.0052

Table 4.2.3: Streamline diffusion error. Mean±SD over outlets and interior locations (n=14).
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Figure 4.2.5: Effect of streamline diffusion coefficient. Mean error with SD.
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4.3 Validation

The results were compared with other, physiologically validated simulation results of coronary
flows. Figure 4.3.1 shows computed flow waveforms for pilot 5 together with model results by
Kim et al. [65] and Taylor et al. [13], in addition to the simple cor-0D model results.
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Figure 4.3.1: Comparison of flow waveforms with Kim et al. [65] and Taylor et al. [13], and
the lumped parameter cor-0D model solutions. Sum outlets are the total flow out of the 3D
domain of pilot 5, while references are waveforms for the LM coronary artery. Curves are scaled
to the average flow rate of the corresponding 3D result (rest or hyperemic), for comparison of
the shapes. True averages can be read from the legend ([ml/s]).
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The models used by Kim et al. and Taylor et al. have been developed in the HeartFlow project,
where simulations have been confirmed to replicate realistic coronary flows [70]. They alsomodel
coronary circulation with 3D CFD and cor-0D models at the outlets, but their comprehensive
models further include the aorta and the RCA in the 3D model, and a lumped parameter heart
model. The total outlet flow is plotted for each patient in figure 4.3.2.
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Figure 4.3.2: Sum of outlet flow for all patients. Cycle average flow rates in parentheses
([ml/s]).
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In table 4.3.1 the minimal FFRCT for each patient is compared with clinically measured FFR
(where available).

Pilot ID FFR FFRCT Difference

Transient Steady Transient Steady

1 0.40 0.89 0.89 -0.49 -0.49
2 0.81 0.77 0.77 0.04 0.04
3 0.87 0.84 0.85 0.03 0.02
4 0 0.77 0.78 - -
5 1 0.88 0.88 - -
6 0.50 0.91 0.91 -0.41 -0.41
7 0.89 0.95 0.95 -0.06 -0.06
9 1 0.92 0.92 - -

Table 4.3.1: Comparison of minimal FFRCT with clinical FFR from ICA. 0 signifies total
occlusion, and 1 means no ICA was performed (diagnosed healthy from CT images).

The flow was evaluated through some prominent stenoses, of pilots 1, 2, 4 and 5. Stenotic
Reynolds (Re) and Womersley (Wo) numbers were computed (the radius of a stenosis was com-
puted as rs =

√
As/π, where As is the stenotic area).

Pilot %stenosis rs[cm] ResD RetD,max Wo

1 75 0.10 570 841 1.74
2 70 0.07 593 845 1.36
4 65 0.06 444 618 1.13
5 25 0.15 112 152 2.68

Table 4.3.2: Evaluation of prominent stenoses in pilots 1, 2, 4 and 5. rs is the stenosis radius.
Stenosis degree is given in percent reduction in original lumen area. ResD and RetD,max are the
steady and maximal transient mid-stenotic Reynolds numbers, defined in equation (2.12). Wo
is the Womersley number, defined in equation (2.13), for the primary harmonic of the pulsatile
flow (ω=2π/T).

Finally, stenotic velocity profiles and post stenotic streamlines were inspected, shown in figure
4.3.3 and 4.3.4.
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Figure 4.3.3: Velocity profiles through stenoses of pilots a) 1, b) 2, c) 4 and d) 5. Steady
solution (upper profiles) and maximal transient profiles (lower).
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Figure 4.3.4: Streamlines dowsntream of stenoses in pilots a) 1, b) 2 and c) 4.

4.4 Comparison of Transient and Steady Simulations

Transient and steady simulationswere runon the8patients listed in table4.1.3, applying themeshes
in table 4.1.2. The simulations followed the setuppresented in 3.1, using the patient-specific param-
eters in table 4.1.3 as described in 3.2.2. Transient simulations were runwith a time stepΔt= 0.001
s, except from pilots 4 and 6, where 0.0005 s was required for convergence. All steady simulations
had Δt= 0.0001 s. Convergence of the transient simulations was supported in residuals, being <
10−2 and 10−4 in outlet pressures and FFR respectively for the the last cycle (residuals are defined
in 3.3). Similarly, steady simulations had residuals < 10−5 and 10−6 the last iteration. Numerical
streamline diffusion coefficient was set to 1.0 in all simulations.

Pressures andFFRwere computedandcomparedat interior locations (n=30)andoutlets (n=61),
as outlined in section 3.5. Normality of the distributions of esP at outlets and interior locations (and
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all combined) was tested with the Shapiro-Wilks test, resulting in a scores W=0.94 and W=0.98
(W=0.96), p=0.005 and p=0.74 (p=0.01). Similarly, normality tests for esFFR gave W=0.93 and
W=0.89 (W=0.93), p=0.006 and p=0.004 (p=0.0002) for outlets and inlets (and all combined)
respectively. Difference in interior and outlet error distributions was further tested by the Mann-
WhitneyU test fornon-parametricdistributions, resulting inU=961(p=0.90) andU=1003(p=0.64)
for errors in FFR and pressure respectively. In the subsequent analysis, all errors are treated as com-
ing from one population.

Mean average errors (MAE) andRMSEwere computed per patient, with errors defined in equa-
tions (3.15). Results are shown in table 4.4.1. By definition, esP,i is the relative error in pressure
(relative to the average 3D inlet-outlet pressure drop), and the esFFR,i is the absolute error in FFR.

Pilot FFRt
CT MAE RMSE

ID nloc(no + ni) n = nloc esp esFFR esp esFFR
1 8 (5+3) 0.93±0.03 0.0297±0.0193 0.0019±0.0012 0.0354 0.0022
2 8 (5+3) 0.87±0.06 0.0240±0.0115 0.0031±0.0015 0.0263 0.0034
3 12 (8+4) 0.92±0.04 0.0152±0.0068 0.0015±0.0007 0.0167 0.0016
4 10 (7+3) 0.93±0.07 0.0211±0.0229 0.0015±0.0016 0.0311 0.0022
5 16 (11+5) 0.96±0.03 0.0129±0.0129 0.0007±0.0007 0.0172 0.0009
6 11 (8+3) 0.97±0.02 0.0183±0.0222 0.0006±0.0007 0.0263 0.0009
7 17 (11+6) 0.97±0.02 0.0338±0.0321 0.0011±0.0010 0.0362 0.0011
9 10 (6+4) 0.95±0.02 0.0177±0.0055 0.0011±0.0003 0.0186 0.0012

Table 4.4.1: Errors of the steady simulations, as compared with transient solutions. nloc (no+ni)
is the number of locations (outlets+interiors). Mean(FFRti)±SD is reported for each patient. The
MAE are in mean(|esP/FFR|)±SD, and RMSE are in mean.

MeanFFRof thepatient samplewas0.94±0.03. Theaveragemeanerror inpressurewas0.0216±0.0072
(2.16% of the average pressure drop). Similarly, MAE in FFR was 0.0014±0.0008 across patients.
In comparison, average RMSE is 0.0260±0.0079 and 0.0017±0.0009 in pressure and FFR respec-
tively.

Combining all patient locations into one sample, theMAE in pressure was 0.0216±0.0203, and
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RMSE was 0.0269. Taking the direction of the errors into account, mean esP was -0.0176. Similarly
for FFR, MAE was 0.0013±0.0013, RMSE=0.0017 and with direction, mean error is -0.0012. All
location errors esP,i and esFFR,i are plotted versus FFRt

i in figure 4.4.1. Outlet errors are also plotted
versus the local Womersley number in figure 4.4.2.
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Figure 4.4.1: Plot of steady errors versus FFR, with least squares linear regression of FFR
errors. The shaded area is the 95 % confidence interval for the regression line.
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Figure 4.4.2: Plot of steady errors versus local Womersley number, with least squares linear
regression of the errors. The shaded area is the 95 % confidence interval for the regression line.

The correlation between FFRt
i and the errors was analyzed. Spearman′srho was 0.67 for esP, and

0.90 for esFFR (all p<0.001). Similarly, correlation with Wo gave Spearman′srho -0.59 (p=<0.001)
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and -0.36 (p=0.004) for pressure andFFR errors. Least squares linear regression gave the following
relation between the steady FFR-error and FFR

esFFR,i = −0.0239 + 0.0241 · FFRt
i, (4.2)

with standard error 0.0011 (p<0.001).

The largest error (in magnitude) in FFR was -0.0051, found in pilot 2. Maximal sampled errors
are listed for each patient in table 4.4.2, along with their respective FFRt (which coincide for max-
imal errors in FFR and pressure in all cases). The patient average max errors were 0.0504±0.0193
in pressure and 0.0017±0.0009 in FFR.

Pilot ID FFRt max(|esP|) max(|esFFR|)

1 0.90 0.0543 0.0034
2 0.77 0.0388 0.0051
3 0.84 0.0277 0.0027
4 0.77 0.0666 0.0048
5 0.88 0.0467 0.0024
6 0.91 0.0744 0.0024
7 0.95 0.0704 0.0022
9 0.92 0.0240 0.0015

Table 4.4.2: Maximal errors of steady simulations, as compared with transient solutions. FFRt

is the transient FFR value at the location where the maximal error is sampled.

The average steady error in outlet flows were computed for each patient, according to equation
(3.17). For all patients, themean error in flowwas -0.139%±0.102%, with the largest error inmag-
nitude found in pilot 2, -0.348%.

63



64



5
Discussion

This chapter contains a profound discussion of applied methods and results presented in the pre-
ceding chapters. The chapter is divided into two sections. The first is dealing with the discussion of
methods and models applied, regardless of the outcome of the results. The second discuss results,
models and methods enlightened by the findings of the previous chapter.

5.1 On theMethods

The applied methodology for constructing patient-specific 3D domains is very susceptible to fal-
lacies made by the operator. In this respect, the correct capture of critical stenoses and branching
vessels is at themercy of the operator’s abilities to interpret theCT images. Another limitation lays
in the mesh generation methods. For compatibility with the solver (FEniCS), no inflation layers
were created from the vessel walls. It is desirable with higher mesh refinement in the normal di-
rection from walls, due to high velocity gradients in the boundary layers. Without mesh inflation
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layers, the viscous losses in the proximity of the walls may be underestimated. This is of impor-
tance for the comparison of pulsatile and steady flows, as stenotic wall shear stress is particularly
affected by oscillating flows [71]. Yet, the verification of mesh refinement outlined in 3.3 aims at
quantifying the errors caused by themesh, and thus diminish its significance in theCFD solutions.

The presented approach for tailoring simulations to patient-specific parameters is incomplete.
SBP values applied were based solely on brachial pressure, which is shown to be 8-10mmHg lower
than systolic aortic pressure [72]. Total coronary compliance was assumed equal in all patients, as
well as the rheological parameters of blood, and LCA flowwas approximated to 2% of cardiac out-
put in all patients. Andmost notably, the hyperemic conditions were based on the assumption of a
universal fourfold increase of baseline coronary flow. However, the primary goal of this thesis is not
to predict real FFR as accurately as possible, but to investigate differences in transient and steady
simulations of physiological, hyperemic coronary flows. Thus, emphasis was put on developing
physiologically reliable models, sufficient for such an analysis. There are still some milestones to
reach until perfectly tailored models can be feasibly integrated in the presented methodology.

Previous studies do not agree if heart rate increases during adenosine induced hyperemia. Wil-
son et al. reported no significant changes in heart rate [27], while others have suggested 15-20%
increase [29, 73]. As the primary goal of this thesis is to assess thedifferencebetween time averaged
transient and steady simulations, pulsatile features are of obvious interest. From oscillatory flow
theory, velocity patterns deviate more from steady solutions with increasing Womersley number
[74]. The conservative approach for evaluating the error of a steadiness assumption would seek
to maximize oscillatory characteristics of the transient flows, and thus maximize the Womersley
number (within a physiological range). In the present work, this is approached by increasing the
mean baseline heart rate with 25% giving an average hyperemic period of 0.8 s, as an estimated
lower bound for the mean period of the population. Due to the lack of conformity in research on
hyperemic heart rate, this estimate was used in all patient simulations. Furthermore, clinical stud-
ies have shown that FFR does not change significantly despite as much as a 40% increase in heart
rate [75, 76].
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Few studies have addressed the validity ofmodeling vessel walls as rigid in coronary flow simula-
tions. Findings byMalvè et al. show that for the computation of wall shear stress (WSS), rigidwalls
introduce significant qualitative andquantitative errors [77]. However,Morris et al., state that ”(...)
there is no strong evidence that it is necessary to represent the motion or compliance of the vessel” for the
computations of virtual FFR, yet without citing any studies [50]. The presented methods rely on
the validity of the rigid wall assumption in the 3D domain. More complex fluid-structure interac-
tion models were regarded as too comprehensive for the scope of this thesis. However, reduced
order models (1D or 0D) could perhaps incorporate the arterial compliance more feasibly, and
evaluate the rigid wall assumption.

5.2 On the Results

5.2.1 Patient-specific Models

Judging the physiological resemblance of the created patient-specific LCA geometries is beyond
the scope of this thesis. Yet, it is suspected that the lack of experience with cardiology and CT
images can have caused geometrical artifacts, including misinterpretation of stenoses and miss-
ing branches. Despite this, these are not expected to significantly affect the comparison results of
steady and unsteady flow simulations. It is however, in the context of using FFRCT for diagnosis, a
weakness that the presentedmethodology formaking geometries fromCT images involves several
manual tasks requiring profound knowledge of CA physiology and pathology. Geometrical dis-
agreement is a considerable challenge, as both uncertainty in stenosis radii and missing branches
downstream of stenoses have a pronounced effect on the computed FFR [49].

5.2.2 Verification

The mesh study gave conforming results across the three patients studied, despite different setup
for updating total resistance. As the error in FFR of the 1M meshes was (on average) less than
0.007, below the level of importance in a diagnostic context [78], this refinement level was chosen
for the subsequent simulations. In addition, simulations on 1M meshes were considerably more
feasible than the finer meshes regarding computation time. Although the 2M mesh showed less
discrepancy with the 3M results (as expected), the choice of a 1M mesh was not expected to have
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decisive effect in the comparison study of steady and transient simulations.

The 10 cycle simulations on pilot 5 and 7 indicated that 5 cycles would be sufficient for conver-
gence in cyclic average pressure and FFR, with residuals reaching 10−3 and 10−4 respectively. In
subsequent 5-cycle simulations, these limits were not significantly exceeded. Steady simulations
had even better convergence, with all residuals <10−5. The number of iterations could have been
reduced to the half (500) without losing accuracy compared with 5 cycle transient simulations.
Conservation of mass was <0.05% of the flow rates on average. Themaximal of 0.2% error for pilot
2 is high, and may have a significant effect on the computed pressure results. The cause for these
errors are suspected to be associated with the mesh refinement level. Still, since the mesh error in
FFR was judged to be sufficiently small, the continuity error was not suspected to contribute sig-
nificantly to the FFR results.

The streamline diffusion coefficient was set to 1.0 in the final simulations. The results from one
patient gave indications that this would yield in an unimportant error in FFR (<0.01). This error
was not expected to have influence on the comparison study of transient and steady simulations, by
the same arguments as stated in the discussion of themesh verification. However, only one patient
geometry was studied, so the error may be different for the others.

5.2.3 Validation

The model results are in good agreement with previous work and physiologic coronary flow pat-
terns. The average flow rates are within normal range of baseline or hyperemic LCA flow rates
[27, 28]. Furthermore, themodel evidently reproduces characteristic coronary flow patterns, with
suppressed flow during systole which increase in diastole. For hyperemic conditions, this pattern
is less prominent, in agreement with simulation results of Taylor et al. [13]. It is expected that a
correct representation of the oscillatory patterns in the flow waveforms has a direct impact on the
time average pressure drop. This statement is based on the fundamentals in oscillatory flow theory,
where the relation between flow rate and pressure gradient is governed by the amplutides and peri-
ods of the waveform harmonics [74]. The simulation results are qualitatively similar in all patients,
with no conspicuous instance in either flow, pressure or FFR.
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The computed FFR results deviate from to the corresponding clinical FFR measurements. Al-
though some simulations show good agreement, the differences betweenmeasurements and com-
putations are spanning from 0.03 to 0.5, with simulations over-predicting FFR. Furthermore, the
fairly good agreement in some patients might just as well be luck, or a fortunate combination of
parameters, rather than accuracy. It is not in themain objectives of this thesis to replicate clinically
measured FFR. However, the following discussion may be valuable to the further development of
the presentedmodels andmethods. There are particularly two aspects suspected to be the cause of
these errors. One lies in errors in post-stenotic resistance. Missing daughter branches in the coro-
nary tree would increase the peripheral resistance of a stenotic mother branch, as there are too few
resistances in parallel downstream of the stenosis. This would lead to an underestimation of the
flow in the critical branch, thus limiting the stenotic pressure drop, being proportional to flow rate
squared over severe stenoses [24]. In addition, distribution of terminal resistances is a source of er-
ror. Based on the general Murray’s law, outlet resistances are assumed to be inversely proportional
to the terminal radius cubed. Considering the fact that outlet radii are products of the semi-manual
segmentation processmake results highly sensitive to operator skills. Furthermore,Murray’s law is
based on an idealization of physiology, which is an oversimplification of real arterial trees [56, 57].

The other main cause is suspected to be the approximation of hyperemic flow rate in the LCA
itself. This relies on rough estimates of both coronary flow fraction of cardiac output and the hyper-
emic conditions. More advancedmethods exist, such as estimatingflowbasedonallometric scaling
laws, relating cardiac mass with flow [79]. Such methods were not applied in this work, partially
due to limited patient material. Another potential remedy to uncertainty in hyperemic flow is the
use of novel Doppler-ultrasound techniques to measure coronary flow rates non-invasively [52].
This is under development at NTNU, and is a promising way to enhance the presented models
further.

Many researchers agree that correct representation of coronary geometry and hyperemic flow is
crucial for the success of FFRCT as a diagnostical tool [13, 49, 50]. These challenges are universal,
and beyond the scope of this thesis to discuss further. Still, the results obtained in the present work
are promising, despite limited extent in the patient-specific tailoring of models.

The comparison of steady and transient velocity profiles does not give any indication of salient
unsteady features in the profiles. However, they indicate separated flow and obvious deviations
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from parabolic profiles in post-stenotic regions. There are also prominent secondary flows and ro-
tations in the flowfields, with large vortices downstreamof stenoses. Nonetheless, previous studies
have shown that reduced order models (1D or 0D) of coronary flows are comparably accurate for
calculations of pressure drop [54, 80]. Hence, itmaynot benecessary to account for suchlikemulti-
dimensional features in the assessment of FFR, except from through lumped descriptions of their
bulk behavior.

Stenotic pressure losses are strongly associated with the expansion of flows, where turbulence
may occur in severe stenoses [24]. However, separated flows may be still laminar, despite strong
rotation. Reynolds numbers in the simulated flows are low compared with typical transition val-
ues in hemodynamical flows of ∼2200 [23], justifying the exclusion of turbulence models in the
numerical methods. Furthermore, the Womersley numbers computed at severe stenosis locations
were low (<2.7), giving indications of quasi-steady flow regime in these locations [71].

5.2.4 Comparison of Transient and Steady Simulations

In the preceding chapter, the discrepancy in steady and transient results was denoted the (steady)
error, with the transient solutions being regarded as the ground truth. This notationwill be applied
in the following discussion. Absolute errors in FFR and relative errors in pressure were assessed.
The errors were sampled at several locations within each patient geometry, and were assessed both
on a per-patient level and as all sampled errors combined.

The error distributions were not found to be highly skewed, yet significantly different from a
normal distribution (p<0.05). As a consequence, normality was rejected and non-parametric tests
were used in subsequent statistical analyses. Errors sampled internally in the 3D domain and at
the outlets were not found to be significantly different with theMann-Whitney U test (p>0.6), and
were therefore treated combined.

The mean patient error in FFR was 0.0014±0.0008 (units FFR), and in relative pressure error
0.0216±0.007 (or 2.16% of the average patient 3D-model pressure drop). There were no big dif-
ferences in evaluating the errors from the patient means or the means of the whole population of
sampled errors. All errors in FFR were remarkably lower than the relative pressure errors. This is
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obvious from the fact that FFR is distal pressure normalized to a high inlet pressure, whereas the
absolute pressure error was normalized to the much lower average inlet-to-outlet pressure drop.
The latter choice was motivated by how errors in pressure should be interpreted: Since the abso-
lute pressure level is irrelevant for the (incompressible) flows, a much more meaningful value for
normalization was found to be the 3D pressure drop. Since errors in pressure and FFR both derive
from deviations in steady and transient pressure, they are intrinsically biased. For the purpose of
evaluating errors relevant in a clinical context, FFR-errors are given the most attention in the fol-
lowing.

Except from a few locations with high FFR values, steady simulations overestimate FFR com-
pared with unsteady simulations (i.e. underestimate the pressure drop). There were found strong
and significant correlations between FFR and the steady errors, being most pronounced in the ab-
solute error in FFR (Spearman’s rho = 0.90, p<0.001). The error in FFR is shown to be increasing
with decreasing FFR in a linear relationship given in equation (4.2). This has implications for the
evaluation of the errors, as the mean error is not representative for the error in the critical range of
FFR. The correlation between errors and local Womersley number was much weaker, yet statisti-
cally significant (p<0.01). However, on the basis of the presented findings, Womersley number is
not expected to have strong predictive power in the assessment of errors caused by a steady flow
assumption.

This linear relationship is reasonable from a physical point of view. If there is a systematical
difference in steady and time averaged pressure gradient, this difference would accumulate in the
pressure drop. Higher pressure drops, would give higher absolute errors in pressure, and higher
pressure drops give lower FFR. Thus, if there would be a constant difference between steady and
transient pressure gradients, there would be a linear relationship between FFR error and FFR.The
resulting difference in pressure gradient would further lead to a difference in flow rate, which is ob-
served in an average difference in outlet flow of 0.139% between steady and unsteady simulations.

The average root mean square error in FFR is 0.0017±0.0008 over the patient sample, which
is higher than the average mean absolute error. As the RMSE gives a higher penalty to errors of
larger magnitude, this indicates that large errors are not well represented in the mean error. Since
the power of FFR as an index lays in its reliable cut-off value to signify severe stenoses [7], errors
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associated with FFR of 0.75-0.80 are of particular interest. Maximal error in FFR per patient was
on average 0.0017±0.0009, with the single highest value 0.0051. Invasively measured FFR is re-
ported with two significant figures. Hence, an error of 0.005 in FFR can be suspected to determine
the diagnosis outcome, due to round-off error. However, the uncertainty in clinical FFR is in the
same order of magnitude. Studies by Berry et al. have reported that the repeatability of invasive
FFR is high, with amean difference of±0.04 in FFR between two consecutive ICA procedures on
the same patient [78]. These results are supported by others, finding coefficients of variation (stan-
dard deviation over mean) of 2.5-4.2% [76, 81]. In this regard, the absolute maximal steady error
is still <25% of the repeatility errors of invasive FFR procedures, and the mean FFR error <10%.
The steady error in FFRCT is therefore not likely to be decisive for clinical intervention.

The findings of small deviations in FFR between steady and transient coronary flow is in agree-
ment with previous studies. Through in vitro experiments, Mates et al. concluded that stenotic
coronary flow is quasi-steady in behavior [20]. Huo et al. found, also through in vitro experiments,
that the error in pressure drop was <5% when comparing steady and pulsatile flows through ar-
tificial coronary stenoses [19]. The only known study addressing the validity of steady 3D flow
simulations to derive FFRCT, by Bulant et al. [21], is also in agreement with the present work.
They reported a mean error in FFR of 0.9%±1.2%. In the more detailed treatment in his unpub-
lished doctoral thesis, Bulant reports amean error of 0.004±0.005 in FFR, andmean relative error
of 0.036±0.016 in pressure [58], which are slightly higher than themean errors found in this study.
As a distinction from the present work, Bulant et al. assessed errors averaged over large vessel seg-
ments. By such amethod, internal variations in the steady errorwithin one patient geometrywould
be averaged out by the global mean error. A combination of such a volume-averaging evaluation of
errors and the present approach applied to several distal segments in each branch is a third option.
By doing so, the evaluation of errors could be assessed per sub-domain, and not per vessel or per
specific location, as in the aforementioned and present approach respectively. Consequently, in-
ternal relations between steady error and FFR could be analyzed on a stronger statistical basis than
what is done in the present study.

Although in good agreement with relatedwork, there are certain aspects with the present results
that are disputable. Steady FFR errors are in the same order of magnitude as the mesh and nu-
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merical diffusion error, and acting in opposite directions. Although equal meshes and streamline
diffusion coefficient values are used in transient and steady simulations, their associated numerical
errorsmay not be equal. If in fact the assumed numerical errors are significantly lower in the steady
simulations, this may affect the comparison results, leading to underestimated FFR errors. The
mesh refinement level was chosen on the consideration that the associated errorswere insignificant
to the computed FFR values in a clinical context, and due to practical limitations set by moderate
computational resources. Numerical streamline diffusion was desired due to instability problems
in early simulations. In hindsight of the comparison results, it would have been desirable with a
lower criteria for verification errors, as it is not known if these are equal in steady and transient
simulations.

In spite of this, the present work inevitably reveal small differences between steady and unsteady
simulations in FFRCT, and it is not expected that refining the numerical methods would affect the
main conclusions of this thesis. Other errors in the model are evidently much larger, which is seen
from the comparison of computed andmeasured FFR. Uncertainty in patient parameters, geome-
try and distriubution of resistances are expected to bemuchmore influential on the computedFFR
results than the steadiness assumption. State-of-the-art FFRCT researchers have developedmodels
which are performing well for diagnosis, yet with 0.06 (Morris et al. [16]) and 0.03 (HeartFlow
[15]) mean difference between FFRCT and invasive FFR. In comparison, steady errors are negli-
gible. As a summary of the preceding discussion, it can be concluded that the errors introduced
by assuming steady conditions in coronary flow simulations are insignificant for the assessment of
FFR.
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6
Concluding Remarks

This chapter recapitulates the main constituents of the three preceding chapters. The work is sum-
marized in the first section. In section 6.2, the concluding remarks from the discussion in the pre-
vious chapter are stated. Finally, limitations of the study are identified and directions for further
work are suggested.

6.1 Summary of theWork

This thesis is concerned with patient-specific CFD simulations of coronary blood flow for the as-
sessment of FFR and coronary artery disease. Patients recruited in NTNU’s ongoing FFRCT re-
search project were processed in silico using a combination of open source and preliminary in-
house software utilities. The work presented has been highly integrated in the parallel progress of
the research project. Through continuous validation of models and implementations, the docu-
mented methods and results have contributed to developments in the project.
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Patient-specificmodels were constructed frommaterial provided by clinicians at St. Olavs Hos-
pital, Trondheim. Steady and transient flow simulations were conducted on 8 patients, with the
aim of quantifying discrepancies in FFRCT results. For the purpose of verifying the computational
methods, the effect of mesh refinement level, periodic convergence criteria and numerical diffu-
sion was inspected. In addition, the validity of the CFD results was assessed through validation of
the physiological and physical features of the solutions. Finally, the results obtained from steady
and transient simulations were compared and analyzed, leading up to a discussion on the applied
methods and major findings.

6.2 Conclusion

The computational model applied and developed during this work resembles physiological coro-
nary flows, and is in agreement with comparable state-of-the-art simulation models.

The mean difference in FFRCT from steady and unsteady flow simulations was 0.0014±0.0008
units FFR, well below the deviations in repeated invasive FFR procedures of∼0.02-0.04. Further-
more, there was found a strong and linear relationship between FFR and the steady error with the
applied methodology, with larger steady errors occurring at locations with low FFR values.

Although maximal deviations between steady and unsteady computed FFRCT reach the order
of the clinical measurement precision (0.005), these are not expected to have decisive action for
clinical intervention.

Per patient comparison of clinical FFR and FFRCT show promising results. Still, agreement is
only seen occasionally, with pronounced errors on certain patients. The presented methods for
tailoring the computational model to patient specifications is sufficient for a comparison of steady
and unsteady simulations of physiological coronary flows, but further development is required to
adequately reproduce invasive FFR for clinical applications.

Based on the findings of this work, simulation of steady flow conditions introduce insignificant
errors for the assessment of FFRCT.
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6.3 Limitations

This study is confined to investigate flows only in LCAs, and not the RCAs. This can be justified
from an argument that unsteadiness is more prominent in the LCAs due to the high influence of
LV pressure counteracting systolic flow. However, the decision is based primarily on the need to
limit the scope of this work. A complete investigation of the coronary arterial tree could either
substantiate or question the conclusions made.

The verification of mesh refinement and streamline diffusion coefficient was only performed on
transient simulations. These sources of errors may be different in steady and unsteady flows. Since
themesh andnumerical diffusion errors are in the order of the steady errors, a complete verification
of steady simulations would reveal the difference in steady and transient numerical errors.

The population sample of this work is limited in extent, both with respect to the number of
patients and the span of FFR, concentrated around higher values. A larger group of patients would
strengthen the statistical foundation of the presented results.

6.4 Suggestions for FurtherWork

In subsequent work following directly in the track of this work, the following topics are of high
relevance:

• Investigate the difference in numerical errors for steady and transient simulations

• Expand the current study with more patients and a broader span of FFR

• Compare steady and unsteady flows when matching inlet flow rate instead of pressure

More universally, computational assessment of FFR have several other challenges to manage.
One of particular relevance in this project is the semi-manual segmentation process. Future studies
should aim at developing automated segmentation processes not requiring operator interference,
and being able to manage variable CT image quality.

The problem with uncertainty in hyperemic conditions should be addressed, with an investi-
gation of the potential for Doppler-ultrasound flow measurements to be used in tailoring patient-
specific models. The present models can easily be adjusted to be used with flow rates as inlet con-
ditions.
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Reduced order models (0D and 1D) may further lower the computational expenses. In addi-
tion, suchmodels may be used to inspect the significance of the rigid wall assumption by introduc-
ing arterial compliance in the models. Since the apparent difference between 3D and 0D model
characteristics is small in this work, reduced ordermodels may be a prospering direction for future
work.
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A
Derivation of FFR

The clinically applied definition of FFR is

FFR =
Pd
Pp
, (A.1)

where Pd is the pressure distal (downstream) to a stenosis, and Pp is the proximal pressure, equal
to the aortic pressurePao byconvention. FFR is however essentially basedon the ratioof volumetric
coronary blood flow in the presence of a stenosis to the hypothetic flow in a healthy artery:

FFR =
Qs

Qh
(A.2)

Qs is the stenotic flow, andQh is the possible flow in a healthy vessel. Applying thatQ = ΔP/R,
(A.2) can be rewritten as

FFR =
ΔPsRh

ΔPhRs
(A.3)

Where ΔPs = Pd − Pv is the pressure drop from distal of the stenosis, to the venous pressure.
ΔPh = Pao−Pv, assuming that the pressure drop from the aorta to the distal location in the healthy
coronary artery is negligible. Further assuming that Rh = Rs, meaning that the peripheral resis-
tance is not affected by the stenosis, (A.3) becomes:
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FFR =
Pd − Pv
Pao − Pv

(A.4)

Finally, neglecting the venous pressure being much smaller than arterial pressures, one arrives
at (A.1).

Q.E.D.
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B
Coronary0DCode

1 # ###################################################
2 # Get s o l u t i o n f o r t h e cor −0D model f rom i n p u t c u r v e s ( P_ a o r t a o r Q_LM)

a s i n l e t BC and t h e l e f t v e n t r i c l e (LV) p r e s s u r e c u r v e .
3 #
4 # Cor−0D model [ 1 ] :
5 #
6 # R_p P_a R_m P_m R_d
7 # .−−mmm−−.−−mmm−−.−−mmm−−−P_d
8 # ~P_in −| | |
9 # o r −| = C_a = C_m

10 # ~Q_in−| | |
11 # | | ~P_LV
12 # V V |
13 # V
14 #
15 # ~ : i n p u t c u r v e
16 # . : p r e s s u r e l o c a t i o n
17 # mmm: r e s i s t a n c e
18 # = : c a p a c i t o r
19 # V : g round
20 # Q_x i s t h e f l o w t h r o u g h R_x
21 #
22 # [ 1 ] Mante ro e t a l . ( 1 992 ) , The c o r o n a r y bed and i t s r o l e i n t h e

c a r d i o v a s c u l a r s y s t em : a r e v i e w and an i n t r o d u c t o r y s i n g l e −b r a n c h
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model
23 #
24 # ###################################################
25

26 impo r t numpy a s np
27 impo r t o s
28 impo r t C o n f i g P a r s e r
29 impo r t m a t p l o t l i b . p y p l o t a s p l t
30 f rom s c i p y impo r t i n t e r p o l a t e
31 impo r t c s v
32 impo r t s e a b o r n a s s n s
33 f rom sympy . p h y s i c s . u n i t s impo r t Pa
34 f rom pdb impo r t pm
35

36 # ###################################################
37 ## P a r am e t e r s t o be mo d i f i e d
38

39 T = 0 . 8 # P e r i o d [ s ]
40 N = 50 # S e t h i g h e r i f s o l u t i o n i s no t t h e s t e a d y
41 d t = 0 . 0 0 1
42 i n l e t T y p e = ’Q ’ # ’ P ’ o r ’Q ’
43 w r i t e = F a l s e
44 ou t p u t F i l eName = ’ o u t p u t _ f i l e n am e . ou t ’ # Output p r e s s u r e o r f l o w
45

46 # P a t i e n t s p e c i f i c ( a l l u n i t s a r e i n t h e cg s−s y s t em ) :
47 R t o t = 4 1 9 42 . 1 5 6 1 8 8 8 5 12 # To t a l c o r o n a r y r e s i s t a n c e
48 Cto t = 0 . 0 0 0 0 4 2 0 3 # To t a l c o r o n a r y c omp l i a n c e
49 LVTarge t = 1 5 3 3 2 0 . 3 # L e f t v e n t r i c l e max ima l p r e s s u r e t a r g e t ( SBP )
50 PaoAvgTa r g e t = 1 1 7 7 2 3 . 3 3 # A v e r a g e a o r t i c p r e s s u r e t a r g e t (MAP)
51 P a o P u l s e T a r g e t = 5 3 3 2 8 . 8 0 # A o r t i c p u l s e p r e s s u r e t a r g e t (PP)
52 i n f l o wA v gT a r g e t = 1 . 6 6 6 6 6 6 7 # I n l e t f l o w t a r g e (Q)
53

54 ## Data i n p u t c u r v e s ( f o rm a t : [ t ime p r e s s u r e ] )
55 LVData = np . g e n f r om t x t ( ’ p a t h / t o / LV_p r e s s u r e _ c u r v e ’ )
56 PaoData = np . g e n f r om t x t ( ’ p a t h / t o / a o r t i c _ p r e s s u r e _ c u r v e ’ )
57 qLMData = np . g e n f r om t x t ( ’ p a t h / t o / i n l e t _ f l o w _ c u r v e ’ )
58

59 # ###################################################
60

61 ## D i s t r i b u t i o n o f p a r am e t e r s :
62 R_p = 0 . 3 5 * R t o t
63 R_m = 0 . 5 * R t o t
64 R_d = 0 . 1 5 * R t o t
65 C_a = 0 . 1 * C to t
66 C_m = 0 . 9 * C to t
67
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68 # S e t p e r i o d = T
69 LVData [ : , 0 ] *= T
70 # LV P r e s s u r e
71 LVData [ : , 1 ] *= LVTarge t
72 tC = np . l i n s p a c e ( 0 ,T , 1 0 0 )
73 vNumpy = np . i n t e r p ( tC , LVData [ : , 0 ] , LVData [ : , 1 ] , p e r i o d =LVData [ −1 ,0])
74 LVfun = i n t e r p o l a t e . i n t e r p 1 d ( tC , vNumpy , k i n d = ’ c u b i c ’ )
75

76 ## Compute i n l e t
77 d e f c omp I n l e tCu r v e ( d a t a , i n l e t A v e r a g e T a r g e t , i n l e t P u l s e T a r g e t =0 , P=True ) :
78 n_ p o i n t s = d a t a . s h a p e [ 0 ]
79 Ta = d a t a [−1 ,0] − d a t a [ 0 , 0 ]
80 i n t e g r a l = 0 .
81 f o r i i n r a n g e ( n_po i n t s −1) :
82 i n t e g r a l += ( d a t a [ i +1 ,0]− d a t a [ i , 0 ] ) * 0 . 5 * ( d a t a [ i +1 , 1 ]+ d a t a [ i , 1 ] )
83 # R e s c a l e t ime t o match s p e c i f i e d p e r i o r
84 i n t e g r a l /= Ta
85 t imeD = ( d a t a [ : , 0 ] − d a t a [ 0 , 0 ] ) /Ta *T
86 i f P==True :
87 f l owD = d a t a [ : , 1 ] / i n t e g r a l
88 f l owD −= f lowD . min ( )
89 f l owD = f lowD / f lowD . max ( ) * i n l e t P u l s e T a r g e t
90 a v g = np . sum ( f lowD ) / f lowD . s h a p e [ 0 ]
91 f l owD −= av g
92 f l owD += i n l e t A v e r a g e T a r g e t
93 e l s e :
94 f l owD = d a t a [ : , 1 ] * i n l e t A v e r a g e T a r g e t / i n t e g r a l
95

96 vNumpy = np . i n t e r p ( tC , timeD , f lowD , p e r i o d = t imeD [−1])
97 r e t u r n i n t e r p o l a t e . i n t e r p 1 d ( tC , vNumpy , k i n d = ’ c u b i c ’ )
98

99 PaoFun = c omp I n l e tCu r v e ( PaoData , P aoAvgTa r ge t , P a o P u l s e T a r g e t )
100 QinFun = c omp I n l e tCu r v e ( qLMData , i n f l o wA v gT a r g e t , P= F a l s e )
101

102 d e f dpd t ( Q_ins , Q_outs , C) :
103 r e t u r n ( ( Q_ins−Q_outs ) /C)
104

105 ## I n i t i a l c o n d i t i o n s
106 P_a = 1 1 9 9 8 9 . 8
107 P_d = 6 6 6 6 . 1
108 P_p = P_a
109 P_m = P_a
110 P_LV = LVfun (0 )
111 Q_in = 0 .
112 V_m = (P_m − P_LV) /C_m
113 n = np . c e i l (T/ d t )
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114 t n = np . l i n s p a c e ( 0 ,T , np . c e i l (T/ d t ) )
115 d t = T/( l e n ( t n ) )
116

117 Pp = np . a r r a y ( [ ] )
118 Pa = np . a r r a y ( [ ] )
119 Pm = np . a r r a y ( [ ] )
120 Qd = np . a r r a y ( [ ] )
121 Qp = np . a r r a y ( [ ] )
122 Qm = np . a r r a y ( [ ] )
123 t t o t = np . a r r a y ( [ ] )
124

125 ## S o l v e w i t h e x p l i c i t E u l e r i n t ime :
126 f o r p e r i o d i n r a n g e (N) :
127 f o r t i n t n :
128 # cor −0D BCs :
129 P_LV = LVfun ( t )
130 i f i n l e t T y p e == ’Q ’ :
131 Q_in = QinFun ( t )
132 e l i f i n l e t T y p e == ’ P ’ :
133 P_p = PaoFun ( t )
134 e l s e :
135 p r i n t ” E r r o r : i n v a l i d i n l e t T y p e ”
136

137 # _X a r e n e x t t ime s t e p v a l u e s
138 _Q_in = Q_in
139 _P_p = P_p
140

141 # E x p l i c i t E u l e r method
142 Q_m = (P_a−P_m) /R_m
143 _P_a = P_a + d t * dpd t (Q_in ,Q_m, C_a )
144 Q_d = (P_m−P_d ) /R_d
145

146 _V_m = V_m + d t * (Q_m−Q_d)
147 _P_m = _V_m/C_m + P_LV
148

149 P_a = _P_a
150 P_m = _P_m
151 V_m = _V_m
152

153 Q_d = (P_m−P_d ) /R_d
154 _P_p = P_a + Q_in * R_p
155 _Q_in = (P_p−P_a ) /R_p
156

157 Q_in = _Q_in
158 P_p = _P_p
159
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160 Pp = np . append (Pp , P_p )
161 Pa = np . append ( Pa , P_a )
162 Pm = np . append (Pm , P_m)
163 Qd = np . append (Qd , Q_d)
164 Qp = np . append (Qp , Q_in )
165 Qm = np . append (Qm,Q_m)
166 t t o t = np . append ( t t o t , p e r i o d *T+ t )
167

168 ## E x t r a c t o n l y n l a s t c y c l e s :
169 # The s t e p r e s p o n s e o f t h e s y s t em i s e x t r e m e l y c omp l i a n t . Only t h e l a s t

n c y c l e s s h o u l d be s a v e d ( t h e p e r i o d i c s o l u t i o n )
170

171 d e f g e t L a s t C y c l e s ( c y c l eD a t a , n oCy c l e s ) :
172 c y c l e D a t a = c y c l e D a t a [ t t o t > t t o t [−1]− noCy c l e s *T]
173 r e t u r n c y c l e D a t a
174

175 noCyc = 1
176 Pp = g e t L a s t C y c l e s (Pp , noCyc )
177 Pa = g e t L a s t C y c l e s ( Pa , noCyc )
178 Pm = g e t L a s t C y c l e s (Pm , noCyc )
179 Qd = g e t L a s t C y c l e s (Qd , noCyc )
180 Qp = g e t L a s t C y c l e s (Qp , noCyc )
181 Qm = g e t L a s t C y c l e s (Qm, noCyc )
182 t t o t = t t o t [ t t o t > t t o t [−1]−noCyc *T]
183 t t o t = t t o t − min ( t t o t )
184

185 ## P l o t t i n g
186 p l t . f i g u r e ( )
187 p l t . s u b p l o t ( 211 )
188 p l t . t i t l e ( ’ I n l e t c u r v e i s %s ’ % ( i n l e t T y p e ) )
189 p l t . p l o t ( t t o t , np . d i v i d e (Pp , 1 3 3 3 . 2 2 ) , l a b e l = ’ P_p ’ )
190 # P l o t i n t e r n a l model p r e s s u r e s :
191 # p l t . p l o t ( t t o t , np . d i v i d e ( Pa , 1 3 3 3 . 2 2 ) , l a b e l = ’ P_a ’ )
192 # p l t . p l o t ( t t o t , np . d i v i d e (Pm , 1 3 3 3 . 2 2 ) , l a b e l = ’P_m ’ )
193 p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
194 # S e t one x− t i c k e v e r y c y c l e :
195 p l t . x t i c k s ( np . a r a n g e ( round (min ( t t o t ) , 0 ) , max ( t t o t )+T , T) )
196 p l t . s u b p l o t ( 212 )
197 p l t . p l o t ( t t o t , Qp , l a b e l = ’ Q_in ’ )
198 # P l o t i n t e r n a l model f l o w s :
199 # p l t . p l o t ( t t o t ,Qm, l a b e l = ’Q_m ’ )
200 # p l t . p l o t ( t t o t , Qd , l a b e l = ’Q_d ’ )
201 p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
202 # S e t one x− t i c k e v e r y c y c l e :
203 p l t . x t i c k s ( np . a r a n g e ( round (min ( t t o t ) , 0 ) , max ( t t o t )+T , T) )
204 p l t . show ()
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205

206 ## Wr i t e o u t p u t d a t a t o f i l e
207 i f w r i t e == True :
208 i f i n l e t T y p e == ’ P ’ :
209 nd = np . c o l umn_ s t a c k ( ( t t o t , Qp) )
210 e l s e :
211 nd = np . c o l umn_ s t a c k ( ( t t o t , Pp ) )
212 # Wr i t e t o f i l e
213 w i t h open ( ou t pu tF i l eName , ’ wb ’ ) a s f :
214 f o r l i n e i n nd :
215 f . w r i t e ( ” %15 .9 f %15 .9 f \n ” % ( l i n e [ 0 ] , l i n e [ 1 ] / 1 3 3 3 . 2 2 ) )
216 f . c l o s e
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