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ABSTRACT

Flow models are useful to predict wind con-
ditions for wind energy production purposes.
However, as wind power development expands
into areas of even more complex terrain and
challenging flow conditions, more research is
needed to investigate the ability of such models
to describe turbulent flow features. In this study,
the performance of a hybrid RANS/LES (DES)
model in highly complex terrain has been in-
vestigated. The model was compared with mea-
surements from a long range pulsed lidar, which
first were validated with sonic anemometer data.
The accuracy of the lidar was considered to be
sufficient for validation of flow model turbulence
estimates. By reducing the range gate length
of the lidar a slight additional improvement in
accuracy was obtained, but the availability of
measurements was reduced due to the decreased
intensity of the backscattered signal. The DES
model was able to capture the variations of
velocity and turbulence intensity along the line-
of-sight of the lidar beam but overestimated the
turbulence level in regions of complex flow.

Keywords - Detached Eddy Simulation, Tur-
bulence, Lidar, Range Gate Length

I. INTRODUCTION

In recent years, computational fluid dynamics
(CFD) have frequently been applied for pre-
dicting wind conditions in the wind energy in-
dustry. Such flow models can provide a three-
dimensional description of the flow field in a

large area using input data from point mea-
surements or meso-scale meteorological models.
However, although CFD models have become
increasingly advanced, the challenge of accu-
rately describing turbulent flow, e.g. in complex
terrain, remains. For a large three-dimensional
area, the requirement of spatial and temporal
resolution to accurately resolve turbulent struc-
tures is simply not computationally affordable.
An approach which has proved to yield valuable
results for turbulence prediction is the Large
Eddy Simulation (LES) method, which separates
the flow in large and small scale eddies to save
computational effort [1].

Research has been done regarding the per-
formance of various LES models for describing
turbulent wind conditions in complex terrain.
A comprehensive blind test including several
models, called the Bolund experiment, has been
conducted by Bechmann et al. [1], where the
accuracy of these models across an isolated hill
was tested. The performance of the LES mod-
els included in the analysis yielded somewhat
disappointing results with significant speed-up
errors over the Bolund Hill. One reason for
the large deviations might be the challenge of
obtaining the correct free stream boundary con-
dition, which the LES models failed to do in this
study [1]. A similar experiment has been done
by Bechmann and Sørensen [2], where a hybrid
RANS/LES model was tested over the Askervein
Hill in Scotland. In this model, the near-wall
regions are resolved in a Reynolds-Averaging
manner with the two-equation k-Epsilon turbu-
lence model. The model was able to predict
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the high turbulence level in the complex wake
region downwind of the hill reasonably well, but
underestimated the mean velocity [2].

Experiments like Askervein Hill and Bolund
Hill have provided invaluable insights into flow
model performance and provided a benchmark
for further flow model development. However,
as wind power development expands into areas
of even more complex terrain and challenging
flow conditions, there is a need for full-scale
validation cases which reflects the challenges the
wind industry meets today. This paper presents a
validation case in highly complex terrain, using
a pulsed Doppler lidar. Lidars are particularly
useful for this purpose as they can measure the
spatial distribution of the wind along the lidar
beam. However, there are limitations in the lidar
technology that need to be addressed to obtain
high-accuracy measurements.

Several studies have proven lidars to be reli-
able for measuring ten-minute mean velocities
[3][4], but the research done regarding turbu-
lence estimation shows that lidars are not able
to accurately describe the turbulent features of
the wind field. One of the main limitations of
lidar systems is related to the spatial averaging
along the lidar beam. This effect is most promi-
nent in the accuracy of turbulence estimations
when small fluctuations are of vital importance.
Sjöholm et al. [5] investigated the spatial aver-
aging effect for a ZephIR coherent wave lidar by
comparing one-dimensional velocities with sonic
measurements projected onto the line-of-sight
(LOS) of the lidar. Two periods with different
atmospheric conditions were investigated; one
with low clouds and high backscattering, and one
with clear conditions. The power density spectra
were almost identical for low frequencies, but
the lidar spectrum fell off more rapidly than the
sonic spectrum for higher frequencies in both
cases, proving that the lidar did not capture the
small-scale turbulent features of the wind as
accurately as the sonic anemometer. The spectra
deviated at approximately 0.02 Hz in the clear
conditions case and 0.05 Hz in the low cloud
case with stronger backscattering. Cañadillas
et al. [6] investigated the same effect for a
WindCube pulsed lidar with a range gate length

of 20m on an offshore site. In this case, the
power density spectra for line-of-sight velocities
from the lidar and the sonic anemometer were
only comparable up to a frequency of 0.21 Hz
due to the scanning pattern of the lidar. The
spectra showed a good compliance, and it was
concluded that the spatial averaging along the
lidar beam had a negligible effect for this range
of frequencies.

Another important limitation of the lidar tech-
nology is that a horizontally homogeneous ve-
locity field is assumed when deriving the three-
dimensional wind field, which is not a valid
assumption in complex terrain. Several studies
regarding the performance of lidars in com-
plex terrain have been conducted, among others
by Guillén et al. [3] and Vogstad et al. [7].
Guillén et al. found that the deviation between
ten-minute averaged lidar and cup anemometer
measurements was significantly larger when the
wind direction was such that the complex terrain
features were most prominent. A greater discrep-
ancy was also observed for higher turbulence
intensities, and for higher vertical velocities [3].
Vogstad et al. [7] tested the performance of three
different lidars; WindCube V1, ZephIR 300 and
Galion/StreamLine in complex terrain by com-
paring measurements with cup anemometer data.
A numerical flow model was used to correct for
the inhomogeneities of the terrain when deriving
the three-dimensional velocity field. They found
that the uncertainty of the ten-minute averaged
velocities from all lidars were in the order of
2.5% when applying the appropriate numerical
corrections, which is comparable to the uncer-
tainty of cup anemometers [7].

These studies [3][7] show that lidars may
be used for point validations of the three-
dimensional velocity field, but they are not capa-
ble of providing an estimate for turbulence vali-
dations without applying numerical corrections.
The novel approach to flow model turbulence
validation in this study uses a free-scanning lidar
operating in fixed direction stare-mode aligned
with the mean flow direction. This way, accurate
estimations of the wind fluctuations along the
line-of-sight may be derived, which can be used
to validate how the flow model predicts the
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variations of turbulence in the mean flow along
the same line. The results can also give an
indication of where the model succeeds or fails
in predicting turbulence transport, production or
dissipation.

In this study, the main objectives are to (1)
evaluate the accuracy of 1D lidar measurements
with a focus on turbulence estimation, (2) inves-
tigate a possible method to increase the accuracy
of turbulence estimations with the lidar, and (3)
use the lidar data to validate a computational
flow model in highly complex terrain. Lidar line-
of-sight measurements will be validated with
sonic anemometer data projected onto the lidar
beam, and the effect of spatial averaging will be
investigated by changing the range gate length of
the lidar. For the flow model validation, a hybrid
RANS/LES (DES) model will be applied along
a horizontal lidar beam parallel to the mean flow.

II. EXPERIMENTAL SETUP AND
METHODOLOGY

The measurement campaign was carried out
by Meventus in Roan in Sør-Trøndelag, Norway,
with a ground-based StreamLine XR pulsed lidar
in the proximity of a meteorological mast. In
the following sections, a brief description of the
site will be provided before the setup of the
instruments and the methodology of the analysis
will be explained.

A. Site Description
The site is located in central Norway, approx-

imately 3 km from the coastline. The terrain at
the site is complex, with rocky, mountainous and
open topography. A steep ridge located 1300m
west of the lidar and mast is expected to generate
complex flow with large-scale turbulent eddies.
The positions of the lidar and mast, and the
surrounding terrain are shown in Fig. II.1.

B. Experimental Setup for Lidar Validation
The triangular lattice mast is located at 366m

elevation. Cup anemometers are installed on
the mast at different heights, and a 3D sonic
anemometer is mounted at 98m height. The
StreamLine XR v14-8 lidar is located 344m

Fig. II.1: Map of the site with the position of the lidar
(64◦08’20.7”N 10◦19’04.0”E) and the meteorological

mast (64◦08’09.7”N 10◦19’00.7”E). The height contours
represent 5m height difference.

north of the mast at 370m elevation. The range
gate length of the lidar is 18m.

The lidar was programmed to perform dif-
ferent scanning operations depending on the
observed wind conditions. With southerly and
northerly winds, the lidar was operating in stare-
mode, i.e. with constant azimuth and elevation
angles, towards the sonic anemometer. Due to
an error in the measurement campaign design,
the lidar was operating with an error in azimuth
angle of 0.08◦, causing it to measure ∼0.5m
to the right of the sonic anemometer. This is
not expected to have a significant impact on the
results.

Line-of-sight velocities from the lidar were
collected with a sampling frequency of 1 Hz
throughout a two-month period from 13.04.2015
to 11.06.2015. Corresponding horizontal and
vertical velocities and wind directions were col-
lected with the sonic anemometer for the same
period. A mounting error in the direction of
the sonic anemometer of −7◦ was detected
and corrected for. This was done by observing
how the correlation between the lidar and sonic
anemometer data changed when adding an error
term to the direction measured by the sonic
anemometer. The correlation was highest when
subtracting 7◦, indicating that this is the true
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wind direction. Fig. II.2 illustrates the setup of
the two instruments.

Fig. II.2: Schematic of the lidar and mast positions. Left:
side view of the setup. The elevation angle is 15.26◦.

Right: top view of the setup. Azimuth angle = 180◦ + a,
a = 6.86◦. The azimuth angle used in the campaign is

186.94◦, causing a deviation of ∼0.5m (0.08◦) from the
sonic anemometer. The sonic anemometer is mounted on

a 5m long boom at an angle b = 45◦.

1) Data Analysis:
The sonic anemometer measurements were

projected onto the line-of-sight of the lidar to al-
low for a comparison of one-dimensional veloci-
ties along the lidar beam. The sonic anemometer
measurements were related to grid north by
correcting for a difference of 1.18◦ between
geographical and grid north at the site. The
lidar measurements were corrected for a bearing
of 1.1◦ from grid north, calculated from GPS
measurements.

To provide information about the quality of
the lidar data, these include values for the pitch
and roll angles and the intensity of the backscat-
tered signal. The pitch and roll angles are the
forward/backward and sideways tilt angles of the
lidar. During the measurement period, these were
checked remotely to be within a 0.25◦ threshold.
This yields a maximum deviation of 1.55m of
the beam from the sonic anemometer. When
validating the lidar data, a stronger filtration of
these values was performed to ensure that the
beam deviation was within 1m, corresponding
to a maximum 0.16◦ pitch and roll angle. The
intensity, defined by equation II.1, is a measure
of the strength of the backscattered signal.

Intensity = 1 + SNR (II.1)

SNR is the signal-to-noise ratio of the signal.
An analysis was carried out to determine how
the correlation of the lidar and sonic anemometer
data was affected by filtration of intensity values.

Velocity measurements and turbulence inten-
sity estimates were compared using standard
linear regression analysis. The turbulence inten-
sity along the line-of-sight (LOS) is given by
equation II.2 [8].

TIlos =
σlos

Ulos

(II.2)

The coefficient of determination R2, defined
by equation II.3 [9] for data sets x and y, was
used as a measure of the correlation between the
lidar and sonic anemometer measurements.

R2 =
(
∑

(x− x)(y − y))2∑
(x− x)2

∑
(y − y)2

(II.3)

A spectral analysis was performed for a more
detailed comparison of the data. Power density
spectra illustrate how the energy is transferred
from larger to smaller eddies. As a reference, the
spectra were compared with the theoretical Kol-
mogorov slope of -5/3 in the inertial subrange
[10].

The effect of changing the range gate length
of the lidar was investigated by reprocessing
raw lidar data in the program Raw Data Pro-
cessor v14 developed by Halo Photonics. A 24
hour period on 30.04.2015 with large variations
in wind velocity and direction was chosen for
this analysis to challenge the lidar with varying
wind conditions. The wind velocity and direction
measured by the sonic anemometer during this
period are illustrated in Fig. II.3. Data were
reprocessed with range gate lengths of 9m and
30m.

C. Experimental Setup for DES Model Valida-
tion

The large-scale turbulent structures of inter-
est in this study are expected to be generated
downwind of the ridge located approximately
1300m southwest of the lidar. The ridge has a
steep vertical cliff with an elevation of 150m
facing westward. For the purpose of validating
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Fig. II.3: Wind velocity and direction during 30.04.2015
measured by the sonic anemometer.

the flow model, the lidar was operating in stare-
mode towards this ridge, parallel to the mean
flow as shown in Fig. II.4. The velocity was
measured along the length of the beam, and the
locations a)-c) were used for a more detailed
spectral analysis.

Fig. II.4: Map describing the location of the lidar and
meteorological mast, and the ridge of interest to the
study. Flow model results were compared with lidar

measurements along the line-of-sight parallel to the mean
flow, and points at distances a) 1000m, b) 600m and c)
400m from the lidar were used for further evaluations.

A detailed assessment of wind data from a
cup anemometer at 100m height at the mast
was used to identify a period with steady wind
speeds and wind direction approximately orthog-
onal to the ridge. The estimated Monin-Obukhov
length scale [11] was found to be near-neutral
(|MOL| > 450) for the entire period, implying
that the vertical heat flux is close to zero. The
conditions during the selected time period are
presented in Table II.1.

Initially, a systematic bearing for the lidar of
1.7◦ from grid north was detected by binocular
measurements. To account for this bearing, the
lidar was operating with an azimuth angle of
262◦ to align with the mean wind direction
(260◦). At a later stage in the measurement cam-
paign, GPS calculations were performed sug-
gesting the offset to be 1.1◦. Hence, there was
an error between 0.3◦ and 0.9◦ between the lidar
beam and the mean wind direction. An elevation
angle of 2◦ was used to prevent the lidar beam
to intersect with the ground.

1) Simulation Procedure:
Classical methodology regarding wind farm

modeling using computational fluid dynamics
(CFD) refers to two general strategies: the
Reynolds Averaged Navier-Stokes (RANS) and
Large Eddy Simulation (LES) methods. In the
RANS method, the simulation is executed aim-
ing for a steady state solution, for which the tur-
bulent properties are modeled in the framework
of applied transport models. As a result, the tran-
sient behavior of turbulent flows is suppressed.
The general principle of the LES method is to
resolve the turbulent structures in the main flow,
i.e. the large eddies, and model the effect of the
smaller eddies. Although this approach will yield
more realistic results, the computational cost is
much higher [12].

Due to the filtering of large and small ed-
dies, LES models encounter severe difficulties
in the near-wall region, for which the correct
physical characteristics cannot be reproduced
due to insufficient mesh resolution. This is a
significant problem for atmospheric boundary
layer flows with high Reynolds numbers, as the
mesh requirement becomes computationally un-
affordable. To solve this issue, a Detached Eddy
Simulation (DES) is used in this study. A DES is
a hybrid RANS/LES method which compensates
this shortcoming by applying the RANS model
in the near-wall region. The switch from LES
to RANS is based on the to-wall distance, as
well as the modeling length scale and cell size
[2]. The hybrid RANS/LES approach selected
for this numerical study was first proposed by
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TABLE II.1: Wind conditions observed during the selected time period.

Time period Wind speed @100m
Mean (min, max) [m/s]

Wind direction @100m
Mean (min, max) [◦]

Monin-Obhukov
length scale (min) [m]

14.06.2015 13:00-22:30 8.3 (7, 10) 260 (250, 290) (450)

Spalart [12]. Details about the transport models,
as well as the filtering strategies are described
by Bechmann et al. [2].

The computational domain was constructed by
Fraunhofer IWES’ terrainMesher, and the sim-
ulations were performed by Fraunhofer IWES
in OpenFOAM. A region covering a 9.5 km x
7.3 km area orthogonal to the wind direction
was meshed by ∼56 million degrees of freedom,
with increasing mesh resolution near the surface.
The governing equation system is the Navier-
Stokes equations, and the RANS and LES flow
models are applied without heat transfer (neutral
conditions).

The inlet condition with a mean bulk velocity
of 8.3 m/s was first estimated by a RANS
simulation using the k-Epsilon turbulence model.
This simulation also served as the starting point
for the DES simulation. However, to obtain the
required eddy structures in the inlet profile for
the DES simulation, a prolonged inlet with cir-
culating flow was used. The velocity fluctuations
were triggered by surface shear which caused
an instability in the momentum equation. The
domain with the prolonged inlet is shown in Fig.
II.5.

Fig. II.5: Illustration of the computational domain with
the prolonged inlet. The ridge of interest can be seen in

the center of the domain.

The DES simulation was executed over 25000
physical seconds, which corresponds to approxi-
mately 20 flow through times (FFT). The results
were averaged over 15 FFT, which can demon-

strate a plausible statistical representation. The
simulation results were extracted along a line
parallel to the mean flow, i.e. at an azimuth
angle of 260◦. Due to a misrepresentation of
the terrain, the simulation results intersected the
surface at an elevation angle of 2◦. To solve
this issue, the results were extracted using an
elevation angle of 3◦.

A spectral analysis was performed for a few
locations along the beam. The spectra were
compared with the predicted Kaimal spectrum
for the longitudinal wind speed, which is given
by equation II.4 [13].

nSu(n)

u∗2
=

105f

(1 + 33f)5/3
(II.4)

u∗ is the friction velocity, Su is the power
density for the longitudinal wind and f is the
normalized frequency, related to frequency n,
height z and velocity U(z) by relation II.5.

f =
nz

U(z)
(II.5)

The friction velocity is estimated using the
logarithmic law, given by equation II.6 [14].

u(z) =
u∗
K
ln
( z
z0

)
(II.6)

K is the von Karman constant (= 0.4) [14],
and z0 is the surface roughness which is ap-
proximately 0.03m for bare mountains [15]. The
friction velocity is estimated at 100m height at
the measurement mast. Using the mean velocity
of 8.3 m/s yields a friction velocity of 0.41 m/s.

III. RESULTS AND DISCUSSION

In this section, a validation of the lidar will be
presented by comparison with sonic anemometer
data. Next, the effect of changing the range
gate length of the lidar will be analyzed. Lastly,
lidar measurements will be used to validate a
numerical DES flow model.
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A. Validation of Lidar Measurements
For evaluating the accuracy of turbulence es-

timates with the lidar, the data were compared
to sonic anemometer measurements with a sam-
pling frequency of 1 Hz. As an initial analysis,
the effect of the level of filtration of lidar data
was investigated. Noisy measurements were re-
moved by increasing the filtering limit on the
intensity value of the lidar signals, and the cor-
relation between the lidar and sonic anemometer
data were evaluated for increasing values. Fig.
III.1 shows how the coefficient of determination
changes with the limiting intensity value, and
how the availability of measurements is affected.

Fig. III.1: Coefficient of determination R2 and
availability versus the lower intensity limit. The total
number of measurements during the time period is

5.1x106, and the number of measurements towards the
sonic anemometer is 2.55x106.

The figure shows that the coefficient of deter-
mination has a maximum value of R2 = 0.9454
with an optimal intensity limit of 1.1. The slope
of the linear regression line for this limit is
0.9705. With a higher limit, the reduction of
availability will dominate and cause a decrease
in the coefficient of determination. This effect
occurs because the differences between the lidar
and sonic anemometer measurements are ampli-
fied for large and rapid (fluctuating) changes in
velocity, which typically occurs across long time
gaps.

Note that the availability of measurements is
low (less than 50%) for all limiting values of the
intensity in Fig. III.1. This is mostly because

there are missing periods in the data set when
the lidar has been occupied performing other
scan patterns, and not scanning towards the sonic
anemometer. When increasing the intensity limit,
periods with clear conditions are also filtered out.
Fig. III.2 illustrates how the temperature, relative
humidity, and intensity are related. In clear con-
ditions with low humidity and high temperature,
the intensity is low due to a lack of particles
in the air and hence a weak backscattering. It
can be seen that the intensity is close to the
lowest limit used in the analysis in Fig. III.1
(1.01) during clear-condition periods. With the
optimal intensity limit of 1.1, the availability is
reduced to 37% due to a loss such periods. The
figure only shows a time period of 24 hours
on 30.04.2015, but the illustrated phenomenon
is applicable for all times and causes a loss
of clear-condition periods with higher intensity
limits.

Fig. III.2: Temperature, relative humidity and intensity
versus time for a 24 hour period on 30.04.2015. The
lowest intensity limit used in the analysis of 1.01 is

included as a reference.

In Fig. III.3, the one-dimensional wind ve-
locity measured with the lidar and the sonic
anemometer with a sampling frequency of 1
Hz and the optimal intensity limit of 1.1 are
plotted as a function of time. The lidar mea-
surements follow the sonic measurements very
well, although the sonic anemometer captures
more fluctuations than the lidar. As explained
in section I, the spatial averaging along the lidar
beam removes some of the small-scale features
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Fig. III.3: Time series of one-dimensional 1 Hz velocities
from 13.04.2015 - 11.06.2015 measured with the lidar

and the sonic anemometer.

of the wind, and hence the small fluctuations
are not described as accurately as with the sonic
anemometer. Similar results were observed by
Sjöholm et al. [5].

Fig. III.4 shows a correlation plot of one-
dimensional ten-minute averaged velocities from
the lidar and the sonic anemometer. The co-
efficient of determination during this period is
R2 = 0.9972, and the linear regression slope is
1.0043. The figure confirms the lidars’ ability to
obtain accurate mean velocities. The ten-minute
averaged velocities correlate almost perfectly
and are comparable with results from similar
experiments done in previous research [4][7].

Fig. III.5 shows a correlation plot with the
optimal intensity limit of 1.1 and a sampling
frequency of 1 Hz. There is a larger spread in this
case than for the ten-minute averaged velocities
in Fig. III.4, which is also reflected in the lower
coefficient of determination R2 = 0.9454 and
slope of the linear regression line 0.9705.

In Fig. III.6, the turbulence intensities along
the line-of-sight estimated by the lidar and the
sonic anemometer are plotted as a function of
velocity. There is a larger spread for low veloci-
ties, and the deviations decrease with increasing
velocity. Considering equation II.2, it is clear
that the value of the turbulence intensity is more
sensitive to small changes in U for low veloci-
ties, causing a larger spread. On a mean level,

Fig. III.4: Correlation plot of ten-minute averaged
velocities from 13.04.2015 - 11.06.2015. The coefficient
of determination is R2 = 0.9972 and the linear regression

slope is 1.0043.

Fig. III.5: Correlation plot of one-second velocities from
13.04.2015 - 11.06.2015. The coefficient of determination
is R2 = 0.9454 and the linear regression slope is 0.9705.

the lidar slightly underestimates the turbulence
intensity.

Fig. III.7 shows the power density spectra for
the lidar and the sonic anemometer as well as the
theoretical Kolmogorov -5/3 slope for the inertial
subrange [10].

Both spectra have a steeper slope than the the-
oretical Kolmogorov slope. This is most likely
due to the low availability of 37% with the
optimal intensity limit. With low availability,
there are several time gaps in the data set which
are ignored when computing the power density
spectra. The changes over these time gaps will
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Fig. III.6: Turbulence intensity versus velocity for the
lidar and the sonic anemometer.

Fig. III.7: Power density spectra for the lidar and the
sonic anemometer, and the theoretical Kolmogorov slope.

be detected as a change over one second and will
contribute to an erroneous power density level.

The figure also shows that the lidar spectrum
has a lower power density for higher frequencies
than the sonic anemometer spectrum. Hence,
the lidar does not capture the small-scale tur-
bulent features of the wind as accurately as the
sonic anemometer due to the spatial averaging
along the lidar beam. The deviation between
the spectra occurs at approximately 0.03-0.07
Hz. Similar results were observed by Sjöholm et
al., with a deviation in the spectra at 0.02-0.05
Hz [5]. As mentioned in section I, Cañadillas
et al. concluded that the spatial averaging had
a negligible effect up to 0.21 Hz [6]. In their

analysis the availability was over 90%, which
might be a reason for the favorable results.

B. Effect of Range Gate Length
Fig. III.8 shows how the coefficient of de-

termination changes with the intensity limit for
the different range gate lengths during the 24
hour analysis period on 30.04.2015. It can be
seen that R2 is higher for longer range gate
lengths with low intensity limits (< 1.1), and
higher for shorter range gate lengths with higher
limits (> 1.1). This is because the intensity of
the signal decreases when the range gate length
is shortened. With a short range gate length,
the amount of noisy measurements with low
intensity is larger, contributing to a lower corre-
lation. However, when the noisy measurements
are removed as the intensity limit is increased, a
shorter range gate length with a smaller spatial
averaging effect gives a better correlation than a
longer range gate length.

Fig. III.8: Coefficient of determination versus lower
intensity limit for the three different range gate lengths

on 30.04.2015.

Table III.1 summarizes the optimal case for
each range gate length. The table shows that
the optimal intensity limit is higher for shorter
range gate lengths. This appears to be because
the smaller spatial averaging effect with shorter
range gate lengths dominates the effect of re-
duced availability. Thus, the intensity limit can
be increased further before the correlation de-
creases, notwithstanding the reduced availability.
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TABLE III.1: Optimal R2 values and the corresponding
intensity limit and availability for the different range gate

lengths. The total number of measurements during the
time period is 85729, and the number of measurements

towards the sonic anemometer is 74462.

Range gate
length [m]

Opt. R2

[-]
Opt. intensity

limit [-]
Availability

[%]
9 0.9657 1.36 48.1
18 0.9657 1.34 49.7
30 0.9650 1.32 50.4

Note that the optimal intensity limit is higher
with the original 18m range gate length for this
period (1.34) than for the longer period discussed
in section III-A (1.1). For the longer two-month
period, the availability was very low also for low
intensity limits, causing the decrease in R2 to
happen at a lower intensity value than for this
period.

In Fig. III.9, the power density spectrum for
the sonic anemometer is plotted together with the
lidar spectra using different range gate lengths.
The data were filtered with an intensity limit
of 1.32 to obtain the best possible correlation
for all range gate lengths, before concurrent
measurements were plotted.

Fig. III.9: Power density spectra for the lidar with
different range gate lengths, the sonic anemometer and

the theoretical Kolmogorov slope.

The sonic spectrum is almost parallel with the
Kolmogorov slope in the inertial subrange. The
availability for this period is approximately 50%,
which might explain the gentler slope and more
accurate power density level compared to the

spectra in Fig. III.7. The lidar spectra have a
steeper slope than the sonic spectrum, and the
deviation occurs at approximately 0.05 Hz for
all three range gate lengths. However, a higher
power density is obtained with a range gate
length of 9m for the very highest frequencies.
This proves that slightly more turbulence infor-
mation is captured using the shortest range gate
length tested in this study. The spectra for 18m
and 30m range gate lengths look very similar,
suggesting that the improvement is smaller by
reducing the range gate length from 30m to 18m
than from 18m to 9m with a fixed intensity
limit.

The sharp drop in power density at approx-
imately 10−3 Hz is most likely related to the
scanning pattern of the lidar. The staring pe-
riods towards the sonic anemometer comprise
600 measurements, interrupted by changes in
azimuth and elevation. This results in a rapid
change of power density at 1/600 ≈ 1.67x10−3

Hz.

C. Validation of DES Model
In Fig. III.10, the velocity computed with

the DES model averaged for 15 FFT and the
lidar measurements averaged for the time period
14.06.2015 13:00-22:30 are plotted along the li-
dar beam parallel to the mean flow. The velocity
is normalized by the upstream free flow velocity
at 250m from the lidar, which is a suitable
location to place a meteorological mast. The
DES model underestimates the speed-up over the
ridge at approximately 1300m from the lidar
and overestimates the wind deficit downwind
the ridge. Here, the DES results are obtained
in the wall-function region, where the RANS
model is applied. Closer to the lidar, the DES
model provides good estimates for the wind
speed variations along the line-of-sight.

Similar results were observed by Bechmann
et al. for the Askervein Hill. For the complex
flow region downwind of the hill, the DES model
was found to overestimate the flow separation
and hence underestimate the velocity [2]. The
velocity underestimation in this study might be
due to a similar flow separation downwind of the
ridge at 1300m.
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Fig. III.10: Velocity along the lidar beam normalized by
the upstream free flow velocity averaged for 14.06.2015
13:00-22:30 measured by the lidar and computed with

the DES model.

Fig. III.11 shows the turbulence intensity
along the lidar beam estimated by the lidar and
computed with the DES model averaged for the
same time period. The DES model overestimates
the turbulence intensity for most of the lidar
beam. However, the variations along the beam
are captured. The overestimate seems to be con-
nected to the wind speed deficit downwind of
the ridge.

Bechmann et al. concluded that the DES
model was able to predict the turbulence level on
the lee side of the Askervein Hill [2]. However,
the Askervein Hill is only moderately com-
plex and the surrounding terrain is flat. The
overestimation in this study might be due to
the complexity of the terrain causing a highly
complex wind flow and a higher computational
uncertainty.

A spectral analysis was performed at three
different distances from the lidar (a) 1000m,
b) 600m and c) 400m), and the results were
compared to the predicted Kaimal spectrum for
the longitudinal wind based on the measured
wind speed at 100m at the measurement mast.
The power density spectra for the lidar and the
DES model at the three locations are plotted in
Fig. III.12 together with the predicted Kaimal
spectrum.

The figure shows how the model manages to
predict the low-frequency part of the spectra for

Fig. III.11: Turbulence intensity along the lidar beam
averaged for 14.06.2015 13:00-22:30 estimated by the

lidar and computed with the DES model.

Fig. III.12: Power density spectra for the lidar and the
DES model at distances a) 1000m, b) 600m and c)

400m from the lidar, and the estimated Kaimal spectrum
during 14.06.2015 13:00-22:30.

all locations. For the very lowest frequencies (<
2x10−4), the lidar spectra are undefined due to
gaps in the time series. There is a significant
cut-off in the higher frequencies at ∼ 4x10−3

Hz due to uncertainty related to the complexity
of the terrain and insufficient mesh resolution to
capture the small-scale fluctuations.

For the lidar measurements, the spectrum for
location a) has a higher power density than for
location b) and c) for the highest frequencies,
suggesting that the turbulence level is higher
at location a). Considering the ridge at 1300m
from the lidar, this is an expected result. For
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the DES model on the other hand, a higher
power density is obtained for location c) than
locations a) and b) for the highest frequencies.
As location c) is closer to the ground where the
mesh resolution is finer, the model might be able
to capture the turbulent eddies to a greater degree
at this location. However, due to the uncertainties
related to the computational model in the high-
frequency region, the results here are not fully
reliable.

The predicted Kaimal spectrum underesti-
mates the power density for most frequencies
(< 10−1 Hz). The model is based on shear-
introduced turbulence [13], and these results
suggest that the model is not able to capture
the additional mechanically induced turbulence
due to the complexity of the terrain. For higher
frequencies, the model is a good fit for location
a) with a higher turbulence level. Nontheless, as
the model is based on the measured speed at
100m height, the model is not expected to be a
highly accurate fit.

Note that there is a difference in the azimuth
angle between 0.3◦ and 0.9◦ and elevation angle
of 1◦ between the measured and modeled results.
The resulting deviations in the horizontal and
vertical directions at the three locations along
the beam are presented in Table III.2

TABLE III.2: Horizontal and vertical deviations at the
three locations along the beam caused by the difference
in azimuth and elevation angle between the measured and
modeled results.

Location Horizontal deviation
(min, max) [m]

Vertical deviation
[m]

a) (5.24, 15.71) 17.45
b) (3.14, 9.42) 10.47
c) (2.09, 6.28) 6.98

Even though the error introduced is non-
negligible, it can be disregarded considering the
resolution of the mesh and the uncertainties
involved in predicting the wind regime in this
terrain.

IV. CONCLUSIONS

In this study, the performance of a hybrid
RANS/LES (DES) flow model for turbulence es-
timation has been evaluated by comparison with
lidar measurements in highly complex terrain.

First, the accuracy of turbulence estimates
with the lidar was evaluated by validation with
sonic anemometer data. The analysis proved
the lidar to be very accurate in prediction of
mean velocities, but a lower correlation was
observed for a sampling frequency of 1 Hz. As
expected, small fluctuations are not captured due
to the spatial averaging along the lidar beam.
The possibility of increasing the accuracy of the
lidar was investigated by changing the range gate
length. With a shorter range gate length, the
spatial averaging effect is smaller, but the relative
noise level is increased. A slight improvement
was observed by reducing the range gate length
to 9m with sufficient filtration of noisy data, but
the resulting reduction of data availability is a
disadvantage. As the uncertainties related to the
spatial averaging of the lidar are relatively small
compared to uncertainties in the computational
model, the accuracy of the lidar for validation
of flow model turbulence estimations might be
considered sufficient with all three range gate
lengths used.

The performance of the DES model for turbu-
lence estimation was tested by comparison with
lidar measurements along a beam aligned with
the mean flow, pointing towards a steep ridge.
The model was able to describe the variation of
velocity and turbulence along the beam. How-
ever, the model overestimated the mean turbu-
lence level, and failed to accurately describe the
acceleration upwind and deceleration downwind
of the ridge. The deviations are assumed to be
related to the mesh resolution and uncertainties
in the computational model for the high com-
plexity of the terrain.

For further work, the DES results may be ex-
tracted along the actual line-of-sight of the lidar
to eliminate the error induced from difference
in azimuth and elevation angles. Note that the
results may only be compared up to the point
where the DES model intersects with the surface.
Additionally, the applicability of the DES model
in different flow regimes and situations will be
useful to investigate.
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