
Verification of a Cartesian grid method
for compressible flow over moving
structures

Morten Lyssand Lekven

Master of Energy and Environmental Engineering

Supervisor: Bernhard Müller, EPT

Department of Energy and Process Engineering

Submission date: June 2017

Norwegian University of Science and Technology

Verification of a Cartesian grid method for
compressible flow over moving structures

Morten Lekven

June 2017

4

Abstract

A simplified, low order finite volume Cartesian grid method for inviscid compressible flow
over rigid, moving structures is developed and tested in two spatial dimensions to assess
the treatment of the moving boundary and the potential of the Cartesian grid method for
solving problems with complex boundaries. The method is second order accurate when
the local Lax-Friecrichs method with MUSCL and minmod-limiter is used, and first order
accurate without MUSCL. The boundary conditions are imposed via ghost points located
inside the structure. The values of the ghost points G1 are set based on the corresponding
fluid points F1, the fluid points closest to the ghost points, shifted either in the x- or
y-direction or diagonally from the ghost point. Symmetry-like boundary conditions are
imposed.

The density and pressure of the ghost point G1 are set equal to the density and pressure
of the corresponding fluid point F1. The velocity of the ghost point is set such that the
normal velocity component at the boundary, when determined by linear interpolation
using the ghost point and a mirror point M1, is equal to the normal velocity component
of the boundary. The mirror point M1 is located in the fluid domain, the same distance
from the boundary as the ghost point, along a line passing through the ghost point G1 and
the fluid point F1. The velocity at the fluid point M1 is determined by linear interpolation
or extrapolation, depending on the position relative to the fluid point F1, using the fluid
point F1 and the fluid point one step further into the fluid domain, F2.

Emerging fluid points are points that, due to the moving boundary, were ghost points
in the solid domain at the previous time level, and are fluid points at the current time level.
The density and pressure of such points are kept as they were at the previous time level.
The normal velocity component of the emerging fluid point is set equal to the normal
velocity component of the boundary, and the tangential velocity component is set equal
to the tangential velocity component that the point itself had at the previous time level.
Other methods for ghost and emerging fluid point treatment have been implemented,
tested and found less accurate.

The method is implemented and tested for two subsonic examples in two dimensions, a
moving piston and a moving cylinder. The resulting rates of convergence are as expected,
two for the method with MUSCL and one for the method without MUSCL. However, as
the moving boundary treatment is shown to be a limitation of the method, the accuracy
of the method is expected to increase if a more sophisticated ghost point treatment is
implemented. The fact that the computational effort required by boundary treatment is
only a small part of the total computational effort further implies that implementing a
more sophisticated method might be beneficial, yielding higher accuracy per computa-
tional effort. The computational effort required for the internal solver with MUSCL is
substantially larger than without MUSCL, but as the increased accuracy is even more
substantial, it is beneficial to use MUSCL.

5

6

Sammendrag

En forenklet, Kartesisk grid metode for ikke-viskøs, kompressibel strømning rundt beveg-
elige strukturer av lav orden har blitt utviklet og testet for todimensjonale problem for å
evaluere behandlingen av den bevegelige grensen og metodens potensial for å løse problem
med komplekse grenser. Metoden er av andre orden n̊ar den lokale Lax-Friedrichs metode
med MUSCL og minmod-begrenser brukes, og første orden uten. Grensebetingelsene in-
troduseres ved hjelp av spøkelsespunkter lokalisert i strukturen. Verdiene til spøkelses-
punktene er basert p̊a de korresponderende fluidpunktene, fluidpunktene nærmest
spøkelsespunktene, forskjøvet enten i x- eller y-retning, eller diagonalt fra spøkelsespunktet.
Symmetrilignende grensebetingelser brukes.

Densiteten og trykket ved spøkelsespunktet G1 settes lik densiteten og trykket ved
det korresponderende fluidpunktet F1. Farten ved spøkelsespunktet settes slik at normal-
hastighetskomponenten ved grensen, n̊ar den interpoleres lineært mellom spøkelsespunktet
og et speilpunkt, M1, er lik normalhastighetskomponenten til grensen. Speilpunktet M1 er
i fluiddomenet, samme avstand fra grensen som spøkelsespunktet, p̊a linjen som g̊ar gjen-
nom spøkelsespunktet G1 og det korresponderende fluidpunktet F1. Farten ved speilpunk-
tet M1 finnes ved interpolering eller ekstrapolering, alt etter punktets posisjon i forhold
til F1, av F1 og punktet et steg lenger inn i fluiddomenet, F2.

Nye fluidpunkter er punkt som, p̊a grunn av grensen i bevegelse, var spøkelsespunkter
i den solide strukturen ved forrige tidsniv̊a, og er fluidpunkter p̊a n̊aværende tidspunkt.
Densiteten og trykket ved slike punkter holdes som de var ved forrige tidsniv̊a. Normal-
hastighetskomponenten til det nye punktet settes lik normalhastighetskomponenten til
grensen, og tangentialhastighetskomponenten settes som tangentialhastighetskomponen-
ten ved punktet var p̊a forrige tidsniv̊a. Andre metoder for å behandle spøkelsespunkter
og nye fluidpunkter har blitt implementert, testet og funnet mindre nøyaktige.

Metoden er implementert og testet for to subsoniske eksempler i to dimensjoner, et
stempel og en sylinder i bevegelse. De resulterende konvergensratene er som forventet, to
med MUSCL og en uten MUSCL. Da behandlingen av den bevegelige grensen har vist seg
å begrensningen til metoden, forventes det at nøyaktigheten til metoden øker dersom en
mer sofistikert metode for å beregne verdiene til spøkelsespunktene blir implementert. Det
faktum at beregningene som behandlingen av grensen trenger bare er en liten del av bereg-
ningene som behøves totalt impliserer at implementering av en mer sofistikert metode kan
være fordelaktig, og resultere i bedre nøyaktighet i forhold til mengden beregninger som
behøves. Mengden beregning som trengs av metoden med MUSCL er betydelig større enn
uten MUSCL, men da forskjellen i nøyaktighet er enda større, er det fordelaktig å bruke
metoden med MUSCL.

7

Contents

1 Introduction 17
1.1 Motivation . 17
1.2 Literature review . 18

1.2.1 Cartesian grid method for stationary boundaries 19
1.2.2 Cartesian grid method for moving boundaries 23

1.3 Scope . 23
1.4 Overview of content . 24

2 Governing equations 25
2.1 Euler equations . 25
2.2 Boundary conditions . 27

3 Numerical method 29
3.1 Node-centered FVM . 29
3.2 Local Lax-Friedrichs method . 29
3.3 MUSCL with minmod limiter . 30
3.4 Numerical treatment of the boundary conditions 30
3.5 Time discretization . 31

4 The simplified Cartesian grid method 33
4.1 The moving cylinder . 36

5 Ghost point and emerging fluid point values 39
5.1 Ghost point values . 39

5.1.1 Velocity . 39
5.1.2 Density and pressure . 41

5.2 Emerging fluid point values . 42
5.2.1 Density and pressure . 42
5.2.2 Velocity . 43

6 Numerical examples 47
6.1 Retracted piston . 47

6.1.1 Entropy error . 53
6.1.2 Mass conservation error . 59
6.1.3 Computational time . 64

6.2 Moving cylinder . 66
6.2.1 Entropy error . 71
6.2.2 Mass conservation error . 75
6.2.3 Lift and drag . 80
6.2.4 Computational time . 82

8

CONTENTS 9

7 Conclusions 85

8 Future work 87

9 Acknowledgements 89

Appendices A

A Derivation of various equations C
A.1 Velocity of the ghost points, method a . C

A.1.1 Velocity of ghost points, method b D
A.1.2 Velocity of ghost points, method c D
A.1.3 Density and pressure of emerging fluid points, method 3 E
A.1.4 Velocity of emerging fluid points, method A E
A.1.5 Velocity of ghost points, method in section 8 F

A.2 Risk assessment form . G

10 CONTENTS

Nomenclature

∆x Grid spacing in x-direction

∆y Grid spacing in y-direction

γ Ratio of specific heats

R Residual

U Conservative flow variables vector

V Primitive flow variables vector

∇ Nabla operator

ρ Density

u Velocity vector

cp Specific heat at constant pressure

cv Specific heat at constant volume

E Specific total energy

e Specific internal energy

h Specific enthalpy

if1 Index of fluid point closest to the boundary

ni Number of cells in x-direction

nj Number of cells in y-direction

R Specific gas constant

RU Universal gas constant

T Temperature

t Time

u Velocity in x-direction

v Velocity in y-direction

FVM Finite volume method

11

12 CONTENTS

IBM Immersed boundary method

OSAS Obstructive sleep apnea syndrome

TVD RK3 3rd order total variation diminishing Runge-Kutta method

List of Figures

1.1 Ghost point treatment developed by Sjögreen and Petersson [1]. 19
1.2 Fluid point selection developed by Farooq, demonstrated on a cylinder [2]. 20
1.3 Boundary and nearby fluid points, ghost point and constructed mirror point

[3]. 21
1.4 Fluid point selection developed by Skøien, demonstrated on a cylinder [4]. 22
1.5 Boundary and nearby fluid points, ghost points and lengths a and b [4]. . . 22

2.1 Characteristics in subsonic flow [3]. 27

3.1 An example of a cell, the numerical fluxes indicated by arrows, and the
domain of dependence of the cell, indicated by circles for the local Lax-
Friedrichs method with MUSCL, and filled circles for the method without
MUSCL. 29

4.1 Fluid point selection developed by Skøien, demonstrated on the first quad-
rant of a cylinder [4]. The filled black circles are fluid points, F1, providing
information for the ghost points G1, the small, blue circles. Their posi-
tion relative to each other is determined based on the angle of the normal
vectors at the surface, angle limits illustrated by the black lines, further
specified in equation (4.0.1). 33

4.2 Example of the second layer of ghost points for a curved surface, the first
quadrant of a cylinder. The green circles represent the second layer ghost
points, G2, the blue circles represent the first layer ghost points, G1, and
the blue square represents a hole. 34

4.3 Example of the second and third layer of selected fluid points for a curved
surface. The red circles mark the second layer fluid points, F2, and the
cyan circles mark the third layer fluid points, F3. 35

4.4 Example of the first layer of ghost points for a slender body, near the trailing
edge of an airfoil. The blue circles are the ghost points representing the
upper surface, and the red circles are the ghost points representing the lower
surface. The stippled lines represent the boundaries of the two smaller,
temporary computational domains. 35

4.5 The surface of the first quadrant of the circle in red, the x-values of the
base coordinates, represented by small, blue circles and the y-values of the
base coordinates, represented by green circles. The coordinates of the circle
in cyan is in both base coordinate arrays. Here, t = 0.25 and nj = 40, cf.
section 6.2. 36

4.6 The positions of the surface points are given by the interceptions of the
coloured lines and the red circle. 37

4.7 The positions of the first layer ghost points, represented by the blue circles,
located in the middle of the ghost cells. 38

13

14 LIST OF FIGURES

5.1 Mirror point location demonstrated on a curved surface with two layers of
ghost points, with the surface in red, the ghost points as blue circles, the
fluid points as black dots and the mirror points as red dots. 40

5.2 Illustration of the concept of emerging fluid points, showing the boundary
B at two different times, n−1 and n, three data points and their respective
notations at the times n− 1 and n. 42

5.3 Illustration of the concept of emerging fluid points, showing the boundary
B at two different times, n−1 and n, three data points and their respective
notations at the different times, as well as the point FB, which is in the
fluid domain, infinitely close to the boundary. 44

6.1 Sketch showing the piston and the gas filled compartment. 47

6.2 Initial pressure p for all fluid points with nj = 640, as given by equation
(6.1.4). 48

6.3 Initial velocity v for all fluid points with nj = 640,as given by equation
(6.1.3). 49

6.4 Density ρ for all fluid points at time t = 0.5 with nj = 640, obtained using
the combination of methods with MUSCL. 50

6.5 Velocity u for all fluid points at time t = 0.5 with nj = 640, obtained using
the combination of methods with MUSCL. 50

6.6 Velocity v for all fluid points at time t = 0.5 with nj = 640. 51

6.7 Pressure p for all fluid points at time t = 0.5 with nj = 640. 51

6.8 Entropy error ||s′ − s′0||2, as given by equation (6.1.8), with MUSCL and
nj = 40. 54

6.9 Illustration of the concept of the area error. The exact area of cell F1 is
smaller than that assumed by equations (6.1.8), (6.1.9) and (6.1.14). The
grey area represents the deviation. 54

6.10 Illustration of the concept of the area error where the exact area of cell F1

is larger than that assumed by equations (6.1.8), (6.1.9) and (6.1.14). The
grey area represents the deviation. 55

6.11 The post-processed entropy error ||s′− s′0||2, as given by equation (6.1.11),
with MUSCL and nj = 40 . 55

6.12 The entropy error s′ − s′0 for all the fluid cells at the time t = 0.5 for
nj = 320 and CFL = 1.2 using the method with MUSCL as given by
Table 6.1. 57

6.13 The post-processed entropy error ||s′−s′0||2, determined at the time t = 0.5
using two different combinations of methods, for different grid spacings ∆x
and ∆y. 58

6.14 The post-processed entropy error ||s′ − s′0||2 for different CFL-numbers,
determined at the time t = 0.5 for nj = 40. 58

6.15 Mass conservation error (m−m0)/m0, as given by equation (6.1.14), with
MUSCL and nj = 40. 59

6.16 The post-processed mass conservation error (m−m0)/m0 as given by equa-
tion (6.1.15) with MUSCL and nj = 40. 60

6.17 The post-processed mass conservation error (m−m0)/m0 as given by equa-
tion (6.1.14) with the mirror point ghost point velocity method, c, with
MUSCL and nj = 40. 61

LIST OF FIGURES 15

6.18 The post-processed mass conservation error (m −m0)/m0, determined at
the time t = 0.5 using two different combinations of methods, as given in
Table 6.1, for different grid spacings. 61

6.19 The post-processed mass conservation error (m−m0)/m0 for different CFL-
numbers, determined at the time t = 0.5 for nj = 40. 62

6.20 The post-processed mass conservation error (m−m0)/m0 for CFL = 0.95
at time t = [0 0.4] for nj = 60. The magnitude of the error is varying a
lot, and by coincidence, the end time error is very small. 62

6.21 The maximum post-processed mass conservation error (m − m0)/m0 for
different CFL-numbers, for nj = 40. 63

6.22 Illustration of the moving cylinder. 66
6.23 Initial velocity component u for all fluid points with nj = 640. 67
6.24 Initial velocity component v for all fluid points with nj = 640. 67
6.25 Density contours from Tan and Shu [5] on the left, and the simplified

method with MUSCL on the right, ∆x = ∆y = 1/40, t = 0.4. 68
6.26 Velocity component u for all fluid points with nj = 640 at time t = 0.4,

obtained using the combination of methods with MUSCL. 69
6.27 Velocity component v for all fluid points with nj = 640 at time t = 0.4,

obtained using the combination of methods with MUSCL. 69
6.28 Pressure p for all fluid points with nj = 640 at time t = 0.4, obtained using

the combination of methods with MUSCL. 70
6.29 The entropy error s′ − s′0 for all the fluid cells at the time t = 0.4 for

nj = 320 and CFL = 1.0 using the method with MUSCL, as given by
Table 6.1. 72

6.30 The entropy error ||s′ − s′0||2, determined at the time t = 0.4, for different
numbers of grid points in each direction, nj. 73

6.31 The entropy error ||s′−s′0||2 for different CFL-numbers using the two meth-
ods specified in Table 6.6, for nj = 60. Other grid spacings yield similar
results. 73

6.32 Mass conservation error and area error for nj = 80, wo/MUSCL. 75
6.33 Illustration of the area error for a part of the moving boundary. The white

area is the area of the fluid cells, and the exact area of the fluid domain is
the area outside the red boundary. The difference between the total grey
area outside the red line and the total white area inside the red line is the
area error in this area. 76

6.34 Maximum relative area error |A − A0|/A0 for different numbers of grid
points in each direction nj. 77

6.35 The post-processed mass conservation error (m−m0)/m0, where m is given
by equation (6.2.8), determined at the time t = 0.4, for different grid
spacings ∆x. 77

6.36 The post-processed mass conservation error (m−m0)/m0 for different CFL-
numbers using the two methods specified in Table 6.6, for nj = 60. Other
grid spacings yield similar results. 78

6.37 The post-processed mass conservation error (m−m0)/m0 for CFL = 0.95
for time t = [0 0.4] for nj = 60. The magnitude of the error is varying a
lot, and by coincidence, the end time error is very small. 79

6.38 Lift and drag force exerted on the cylinder at the time t = [0, 0.4]. 80

List of Tables

6.1 The combination of methods using MUSCL that performs the best in terms
of entropy and mass conservation error and rate of convergence, and the
best combination not using MUSCL. 49

6.2 Stable CFL-numbers of the combinations of spatial schemes and time step-
ping methods. 52

6.3 Post-processed entropy errors ||s′ − s′0||1 and corresponding convergence
rates given by equations (6.1.12) and (6.1.13), respectively, for the simpli-
fied methods with and without the MUSCL and for Tan and Shu’s third
order method [5], for comparison. 56

6.4 Post-processed entropy errors ||s′ − s′0||∞ and corresponding convergence
rates given by equations (6.1.10) and (6.1.13) for the simplified methods
with and without the MUSCL and for Tan and Shu’s third order method
[5], for comparison. 56

6.5 CPU time required for the different combinations of methods, measured
using the tic-toc functionality in MATLAB. Note that, as the methods
w/MUSCL and wo/MUSCL use different time stepping methods, another
method, wo/MUSCL, but with TVD RK3, not inluded in Table 6.1, has
been included here. 64

6.6 The combination of methods using MUSCL that performs the best in terms
of entropy and mass conservation error and rate of convergence, and the
best combination not using MUSCL. 68

6.7 The entropy error ||s′−s′0||1 at time t = 0.4 and corresponding convergence
rates given by equations (6.1.9) and (6.1.13) for the simplified methods with
and without the MUSCL, and for Tan and Shu’s third order method [5] for
comparison. 71

6.8 The entropy error ||s′−s′0||∞ and corresponding convergence rates given by
equations (6.1.10) and (6.1.13) for the simplified methods with and without
the MUSCL and for Tan and Shu’s third order method [5] for comparison. 71

6.9 CPU time required for the different combinations of methods measured
using the tic-toc functionality in MATLAB. Note that, as the methods
w/MUSCL and wo/MUSCL given in Table 6.6 use different time stepping
methods, another method, wo/MUSCL, but with TVD RK3, not inluded
in Table 6.6, has been included here. 82

6.10 Relative amount of computational effort required by the boundary treat-
ment for the two combinations of methods given in Table 6.6. 82

16

Chapter 1

Introduction

In this section the motivation behind the development of the method is given, before the
literature review gives an outline of the Cartesian grid methods for flow over stationary
and moving boundaries. This section is taken from the project thesis [6].

1.1 Motivation

Compressible flow has been an active area of research within fluid dynamics for decades,
covering the behaviour of fluids having variable density. Naturally, this covers all fluids,
but in many cases the effects of this variability are negligible, thus modelling them as
incompressible, having constant density, is acceptable [7]. The effects of variable density
increase with the Mach number, the ratio of the velocity to the speed of sound, so the
most relevant areas of application are those involving high-velocity flows, such as aircraft,
rockets, gas pipelines, wind and gas turbines etc.

In recent years, as computational capacity has been increasing, computational fluid
dynamics has become a very popular alternative to traditional experiments. For structures
in motion, such as aircraft, the motion through the stagnant air is simply modelled in
a reference frame attached to the aircraft by giving the air entering the computational
domain at the inflow boundary a uniform velocity. By that very simple technique, rigid
structures in motion are modelled with ease.

However, if the structure is not rigid, or consists of several parts in motion relative
to each other, modelling is not as trivial. In such cases, for the body-fitted grid method,
the grid needs to be altered for each time step, which requires some computational work,
depending on how complex the geometries are and how much they change. Commercial
applications include modelling of internal combustion engines, oscillations of wind turbine
blades and biomechanical flow.

Modelling of obstructive sleep apnea syndrome (OSAS) by fluid-structure interaction
in the upper airways is an ongoing research project investigating the effect of an opera-
tional procedure in the nose, and striving to develop a method to predict the individual
patient’s effect of the procedure on OSAS.

As an important part of this project, a fluid-structure interaction is to be modelled
where the structure in question is the soft palate and the surrounding airways, and the
fluid is air. An efficient method of modelling fluid flow around moving structures is
necessary, which is the motivation behind investigating the performance of a simplified
Cartesian grid method. The fact that body-fitted grid methods have to regrid after each
time step because the structures have moved causes the method to require quite a lot

17

18 CHAPTER 1. INTRODUCTION

of computational work that can be avoided with the Cartesian grid method, especially
for complex boundaries. Further, as the body-fitted grid method is unable to handle
collisions, and struggles more for extensively deformed grids, and the soft palate deforms
quite a lot and collides with the surrounding tissue, the advantages of the Cartesian grid
method are substantial here. On the other hand, the body-fitted grid method is very well
known, implemented on many different platforms in commercially available software, and
is thus readily available.

The Cartesian grid method, in general, has small memory requirements, and the equa-
tions are uniform in the computational domain, making it more easily implementable and
parallelizable on high-performance parallel computers.

1.2 Literature review

The Immersed Boundary Method (IBM) was first introduced in 1972 by Charles Peskin,
when used to simulate blood flow around the heart valves [8]. It was carried out on a
Cartesian grid, and the effect of the presence of the boundary was introduced via a forcing
term. Since then, the method has been further developed and adjusted in numerous
ways [9]. When applied to incompressible flow, it is normally named the IBM , while
for compressible flow, it is called the Cartesian grid method or the embedded boundary
method [1]. When the term “Cartesian grid method” first appeared, it was simulating
steady, inviscid flows with complex, embedded boundaries, but has since been extended
to simulate unsteady viscous flows [9].

The Cartesian grid method is a method for numerical modelling where the computa-
tional domain is discretized on a Cartesian grid, and the boundary of the fluid domain
intersects the grid arbitrarily. For stationary boundaries, the most significant advantages,
compared to the more conventional body-fitted grid method, are the simplified grid gen-
eration, or meshing, and the efficient numerical methods, resulting from the fact that the
grid is both orthogonal and equidistant, not requiring any calculation originating from
grid transformation [10]. When it comes to moving boundaries, another advantage arises,
as the grid does not require any regridding as the body-fitted grid method does. The
body-fitted grid methods also require some additional information about the surface area
of the interfaces between the nodes, and, for the unstructured grids, how the nodes are
connected.

Another advantage of the Cartesian grid methods, according to Forrer and Jeltsch,
is that it can take full advantage of fast computer architectures like vector or parallel
computers [11]. On the other hand, the method is not designed to, nor able to strictly
conserve mass [9].

The cut-cell method lets the boundary arbitrarily intersect cells on a stationary, Carte-
sian background grid. It divides the cells it intersects into two smaller cells, one on the
inside of the fluid domain, a so-called cut-cell, and one on the outside, in the solid structure
domain.

The cut-cell method has some of the advantages of the Cartesian grid method and
the body-fitted grid method. It requires grid regeneration only in the close vicinity of the
moving boundary. The boundary conditions can be trivially enforced at the boundaries,
and a finite volume version of the method ensures strict global and local conservation, e.g.
of mass [9]. On the other hand, the cut-cells can get very small, which can cause both
numerical instabilities and oscillations [12] [13]. These can be controlled, for example by
merging the small cut-cells. Further, the method is not trivial to implement, and the com-

1.2. LITERATURE REVIEW 19

plexity increases with the number of spatial dimensions considered. If extended beyond
the inviscid assumption, due to the complex polyhedral cells emerging, the discretization
of the full Navier-Stokes equations is also complicated. However, it has been successfully
implemented for three-dimensional problems with moving boundaries and seems to be a
relevant method for flow over moving structures [13] [9].

To avoid the problems induced by the cut-cell method, a new boundary treatment was
developed, using ghost points. A ghost point is an additional grid point, located outside
the fluid domain, yet the values of the ghost points are taken into account when solving
the equations, thus affecting the solution in the fluid domain. When Dirichlet boundary
conditions are given, the ghost point values are set in such a way that the values in
question at the boundaries get the desired value. If von Neumann boundary conditions
are to be set, the values of the ghost points are set such that the approximation of the
spatial derivatives of the variables in question gets the desired value.

As the simplified Cartesian grid method for moving boundaries was developed, a num-
ber of different ghost point treatments for embedded boundaries given in the literature,
as well as combinations of these were used as inspiration for the proposed boundary treat-
ments implemented and tested. The most important of these are therefore described, in
short, here.

1.2.1 Cartesian grid method for stationary boundaries

Figure 1.1: Ghost point treatment developed by Sjögreen and Petersson [1].

Björn Sjögreen and Anders Petersson [1] have developed a boundary treatment using
interpolation and extrapolation to set the values at the ghost points. The method is here
described for two-dimensional application.

20 CHAPTER 1. INTRODUCTION

Each ghost point has a known normal vector, a vector normal to the surface, on
which the ghost point is located, as shown by Fig. 1.1. For physical, Dirichlet boundary
conditions, the value ub is known at the surface, and the ghost point value, ug, is set
by extrapolating ub using a minmod-limited slope approximated from values at the three
intersections between the grid lines in the x-direction and the normal vector, uI , uII and
uIII . These are calculated by interpolation of the values from the closest grid points to
the left and to the right of the intersection points, denoted by crosses in Fig. 1.1.

For the numerical boundary conditions, the interpolated value from the first intersec-
tion, uI , is simply extrapolated along the normal vector, using a minmod-limited slope,
with the slopes between the intersection points, (uI−uII)/∆ and (uII−uIII)/∆, as input.
When resulting in unphysical, negative values, such as density or pressure, at the ghost
point, the interpolated value at the first intersection point, uI , is simply copied.

As proposed by Sjögreen and Petersson, adding slope limiters to obtain zero flux
boundary conditions to avoid unphysical oscillations near discontinuities, such as shocks,
is necessary to achieve accurate solutions.

Figure 1.2: Fluid point selection developed by Farooq, demonstrated on a cylinder [2].

Asif Farooq developed, as part of his doctoral thesis, a simplified ghost point treatment
for embedded boundaries in two spatial dimensions. The idea is that, as in the method
of Sjögreen and Petersson, the vector normal to the surface on which the ghost point G is
located, is known. Further, depending on the direction of the normal vector, a fluid point
F is chosen. As demonstrated by Fig. 1.2, if the angle φ of the normal vector, relative to
the negative x-direction, is between -45◦and 45◦, the fluid point to the left of the ghost
point is chosen, if the angle is between 45◦and 135◦, the upper point is chosen, and so
on. Further, as an approximation, it is assumed that the boundary is located exactly the
same distance from both of these points. The boundary is set to be impermeable, such
that

(u · n)G = −(u · n)F , (1.2.1)

where u is the velocity vector and n is the unit normal vector at the surface. For the
Euler equations the flow is inviscid, hence the slip-condition, given as

(u · t)G = (u · t)F , (1.2.2)

where t is the unit tangential vector at the surface, is implemented. Further, the density
and pressure are approximated as symmetric with respect to the solid boundary, thus

1.2. LITERATURE REVIEW 21

resulting in a zero gradient at the boundary, given as

ρG = ρF (1.2.3)

and
pG = pF . (1.2.4)

As the relation between the pressure, velocity and energy density is given as

p = (γ − 1)(ρE − 1

2
ρ||u||2), (1.2.5)

and the absolute value of the velocity is equal in the fluid point and the ghost point , the
energy densities are also equal,

(ρE)G = (ρE)F . (1.2.6)

From equation (1.2.1) and (1.2.2), it follows that

uG = uF − 2
[
nxuF + nyvF]nx (1.2.7)

vG = vF − 2
[
nxuF + nyvF]ny (1.2.8)

where u and v are the velocities, and nx and ny are the normal vector components, in x-
and y-direction, respectively.

Figure 1.3: Boundary and nearby fluid points, ghost point and constructed mirror point
[3].

Farooq also developed a slightly more complicated ghost point treatment for embedded
boundaries in one spatial dimension, where a mirror point, located the same distance from
the boundary as the ghost point, δ, is constructed. The values of the mirror point are
approximated from the neighbouring points, the two or three points in the fluid domain
closest to the boundary. If the mirror point is closer to the boundary than the closest
fluid point, this is done by extrapolation, otherwise, it is done by interpolation. Either
way, the same relation is used to determine the value, given as

Um = UF2 +
UF1 −UF2

∆x
(xm − xF2) (1.2.9)

for two points. U is the vector of conservative flow variables, ∆x is the grid spacing, and
the subscripts represent the locations of the points relative to the boundary, as shown by
Fig. 1.3.

22 CHAPTER 1. INTRODUCTION

Figure 1.4: Fluid point selection developed by Skøien, demonstrated on a cylinder [4].

Are Skøien [4] improved upon Farooq’s simplified treatment in his master’s thesis,
developing the so-called simplified ghost point treatment for embedded boundaries in two
spatial dimensions. The method is based on the idea that the selected fluid point F is
shifted diagonally from the ghost point G when the angle of the normal vector is closer
to 45◦ than 90◦, as shown by Fig. 1.4. The values are then transferred to the ghost point
in a similar fashion to Farooq’s two-dimensional method, as shown by equations (1.2.3),
(1.2.4), (1.2.7) and (1.2.8).

Figure 1.5: Boundary and nearby fluid points, ghost points and lengths a and b [4].

Further, Skøien developed the weighted ghost point method, adding weights based
on the distance to the surface when setting the velocity of the ghost point. This is
implemented as

1.3. SCOPE 23

ug1 = −a
b
uf1

vg1 = −a
b
vf1,

(1.2.10)

where a and b are lengths defined in Fig. 1.5. As in equations (1.2.3) and (1.2.4), the
density and pressure is still set such that the gradient is zero at the surface.

1.2.2 Cartesian grid method for moving boundaries

Hans Forrer and Marsha Berger [14] developed a method using so-called mirror flow, a
smooth extrapolation of the flow variables, to set the values of the ghost points, such
that the flow is symmetric about the boundary. For moving boundaries, this can only be
achieved very locally, due to the pressure and density gradients close to the wall, resulting
from the movement of the boundary.

Sirui Tan and Chi-Wang Shu [5] developed a high order moving boundary treatment
for inviscid, compressible flow. It is based on an extension of the inverse Lax-Wendroff
procedure described in [15]. As the solution algorithm for the internal domain is of a
high order, using a seven-point stencil, three layers of ghost points need be constructed.
To simplify the implementation, by enabling the possibility of treating newly emerging
fluid points the same way as ghost points, another, fourth layer of ghost points is con-
structed. The method is based on extrapolation of the characteristic variables of the
Euler equations, Lagrangian type extrapolation for smooth solutions, and weighted es-
sentially non-oscillatory (WENO) type extrapolation for discontinuous solutions. The
derivatives of the characteristic variables are approximated by Taylor expansion, and the
inverse Lax-Wendroff method, using material derivatives to insert spatial derivatives for
temporal derivatives, is used.

The results are accurate, achieving third order accuracy at the boundary. The algebra
becomes heavy for fourth order accuracy, and was only implemented for one-dimensional
problems. The method was not tested for complex geometries, which is where the Carte-
sian method has a promising advantage compared to the body fitted grid method due to
the fact that the body fitted grid must be regenerated, at least to a certain degree, with
every movement of the boundaries [10].

1.3 Scope

A simplified Cartesian method for inviscid, compressible flow is developed, tested and
verified for problems in two spatial dimensions. The boundary conditions are imposed
by ghost points, and several methods of setting the values of the flow variables at the
ghost points and the emerging fluid points are implemented and tested to identify which
combinations yield the most accurate results. To verify that the method is solving the
equations correctly, the entropy error and the mass conservation error of isentropic flow
problems found in literature are analysed, thus determining the order of convergence
of the method. The lift and drag forces on a body are qualitatively analysed for further
assurance. The errors mentioned are analysed to point out the strengths and weaknesses of
the method. Two residual solvers and two time stepping methods are to be implemented,
tested and compared in terms of accuracy and computational time.

24 CHAPTER 1. INTRODUCTION

1.4 Overview of content

In section 2, the governing equations will be introduced, namely, the Euler equations and
the boundary conditions are briefly discussed. An outline of the chosen numerical method,
the node-centred finite volume method (FVM), as well as the numerical treatment of the
boundary conditions and the time discretization, is given in section 3. As this theoretical
background is the same as what was relevant for the preceding project thesis, sections
2 and 3 are taken directly from the project thesis [6]. Section 4 describes the ghost
point treatment, and section 5 gives an in-depth description and discussion of the various
methods developed for setting the values of the flow variables of the ghost points and
the emerging fluid points. Section 6 covers the numerical examples, the results, and
discussions of the results. In section 7, the conclusions are given, before suggestions of
future work are presented in section 8, which are quite similar to the future work suggested
in the project thesis [6].

Chapter 2

Governing equations

2.1 Euler equations

The motion of the inviscid fluid with no body forces is governed by three fundamental
conservation laws:

– the continuity equation, describing the conservation of mass

∂ρ

∂t
+∇ · (ρu) = 0 (2.1.1)

where ρ is the density, t is the time, ∇ is the nabla operator, and u is the velocity
vector.

– the momentum equation, describing Newton’s second law of motion

∂

∂t
(ρu) +∇ · ρuu +∇p = 0 (2.1.2)

where ρu is the momentum, and p is the pressure.

– the energy equation, describing the first law of thermodynamics

∂(ρE)

∂t
+∇ · (ρE + p)u = 0 (2.1.3)

where ρE is the energy density.

We assume perfect gas properties, and the following equations of state apply:

p = ρRT (2.1.4)

R = cp − cv (2.1.5)

γ =
cp
cv

(2.1.6)

e = cvT (2.1.7)

25

26 CHAPTER 2. GOVERNING EQUATIONS

where R is the specific gas constant, T is the temperature, γ is the ratio of the specific
heats, 1.4 for air at ordinary temperatures, e is the specific internal energy, and cp and cv
are the specific heat at constant pressure and volume, respectively.

Combining equations (2.1.4), (2.1.5), (2.1.6) and (2.1.7), we obtain a useful relation-
ship for the pressure p:

p = (γ − 1)(ρE − 1

2
ρ|u|2) (2.1.8)

where |u| is the Euclidean norm of the velocity u.
Combining (2.1.8) with the conservation laws (2.1.1) (2.1.2) and (2.1.3), we obtain the

two-dimensional Euler equations in conservative form:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (2.1.9)

where

U =

ρ
ρu
ρv
ρE

 ,F =

ρu

ρu2 + p
ρuv

(ρE + p)u

 ,G =

ρv
ρuv

ρv2 + p
(ρE + p)v

 (2.1.10)

By rearranging equation (2.1.9), we obtain an expression for the time derivative of the
conservative flow variables, the residual R:

∂U

∂t
= −

[∂F

∂x
+
∂G

∂y

]
= R(U) (2.1.11)

The Euler equations can be written in terms of the primitive variables, density, velocity
and pressure, as shown in equation (2.1.12) for ∂/∂y = 0.

∂V

∂t
+B

∂V

∂x
= 0 (2.1.12)

where V = (ρ, u, v, p)T and Bi,j = ∂Fi/∂Vj.
Further, the system can be written in characteristic form

∂W

∂t
+ Λ

∂W

∂x
= 0 (2.1.13)

where Λ = diag(u− c, u, u, u + c), a diagonal matrix containing the eigenvalues of the
matrix B. The eigenvalues represent the propagation velocities of the four waves on which
information is transmitted, the entropy and vorticity waves as well as the two acoustic
waves. For each of the three eigenvalues, λl, a characteristic exists, where dxl/dt = λl,
such that dwl

dt
= 0, so that the characteristic variable wl is constant. The characteristic

variables are defined as

∂W = T−1∂V (2.1.14)

where T is the right eigenvector matrix of B, and V is the vector of primitive flow
variables.

Fig. 2.1 shows the characteristics for subsonic flow with positive velocity in the x-
direction, where C+ and C− are the acoustic waves, propagating with velocities u+ c and

2.2. BOUNDARY CONDITIONS 27

u − c, respectively. C0 is the characteristic of the entropy and vorticity waves, on which
the entropy and vorticity remains constant, propagating with the velocity u.

Figure 2.1: Characteristics in subsonic flow [3].

Compressible flow is grouped according by the Mach number, defined as

Ma =
u

c
, (2.1.15)

where the speed of sound c is given as

c =

√
pγ

ρ
, (2.1.16)

u is the velocity of the fluid, p is the absolute pressure, γ is the ratio of the specific heats,
and ρ is the density. When Ma < 1, the flow is classified as subsonic in the x-direction,
and when Ma > 1, it is supersonic in the x-direction. This affects the propagation
direction of the characteristic C−, shown in Fig. 2.1, which again affects the number of
physical and numerical boundary conditions that need to be prescribed.

2.2 Boundary conditions

To achieve stable and accurate solutions, the problem must be well-posed, and requires
the correct amount of specified boundary conditions. For hyperbolic systems, the number
of boundary conditions that must be specified is closely related to the characteristic
equations mentioned in the previous section. The information is transmitted on the
characteristics, and only information originating outside of the domain can be specified
at the boundary as boundary conditions.

For subsonic flow at an outflow boundary, one physical and three numerical bound-
ary conditions must be given for two dimensional problems, while for three dimensional
problems, four numerical boundary conditions must be given. For supersonic flow at
an outflow boundary, no characteristics are propagating into the fluid domain from the
exterior, thus no physical boundary conditions must be given.

For subsonic flow at an inflow boundary, i.e., −1 < (u · n)/c < 0, where n is the
outer normal unit vector, only one characteristic is propagating from the interior of the
fluid domain to the exterior. Therefore, only one numerical boundary condition must be
given, and three and four physical boundary conditions for two- and three dimensional
problems, respectively.

Only the impermeability boundary condition at walls has been implemented here, but
others, like periodic or non-reflecting boundary conditions, can also be implemented.

28 CHAPTER 2. GOVERNING EQUATIONS

Chapter 3

Numerical method

3.1 Node-centered FVM

The node-centred finite volume method (FVM) divides the computational domain into
cells. The values at the points, conveniently placed at the centre of the cells, represent
the averages of the values in the cell, given by

UP =
1

VP

∫∫∫
VP

UdV (3.1.1)

where VP is the volume of the cell P .
The numerical fluxes are defined at the cell faces, indicated by half-indices. The

spatial-discretization of equation (2.1.11) yields:

∂Ui,j

∂t
= −

[Fi+1/2,j − Fi−1/2,j

∆x
+

Gi,j+1/2 −Gi,j−1/2

∆y

]
(3.1.2)

3.2 Local Lax-Friedrichs method

Figure 3.1: An example of a cell, the numerical fluxes indicated by arrows, and the domain
of dependence of the cell, indicated by circles for the local Lax-Friedrichs method with
MUSCL, and filled circles for the method without MUSCL.

29

30 CHAPTER 3. NUMERICAL METHOD

To determine the numerical fluxes at the cell faces, shown by Fig. 3.1, the local Lax-
Friedrichs or Rusanov method is used. It is easily implemented, being first order, and
easily expanded to higher order of accuracy if necessary. In two dimensions, the fluxes
are approximated by equations (3.2.1) and (3.2.2):

FlLF
i+1/2,j =

1

2
[F(Ui,j) + F(Ui+1,j)−

max(|ui,j|+ ci,j, |ui+1,j|+ ci+1,j)(Ui+1,j −Ui,j)]
(3.2.1)

GlLF
i,j+1/2 =

1

2
[G(Ui,j) + G(Ui,j+1)−

max(|vi,j|+ ci,j), |vi,j+1|+ ci,j+1)(Ui,j+1 −Ui,j)]
(3.2.2)

3.3 MUSCL with minmod limiter

To increase the accuracy of the method above, a Monotone Upwind-centered Scheme for
Conservation Laws (MUSCL) with minmod limiter has been implemented. This yields
second order accuracy for smooth flow except for at extrema, where the accuracy is still
first order [16]. The variables Ui,j and Ui+1,j in equation 3.2.1 are replaced by

UL
i+ 1

2
,j

=Ui,j +
1

2
minmod(Ui,j −Ui−1,j,Ui+1,j −Ui,j) (3.3.1)

UR
i+ 1

2
,j

=Ui+1,j −
1

2
minmod(Ui+2,j −Ui+1,j,Ui+1,j −Ui,j), (3.3.2)

respectively, where the minmod limiter is defined as

minmod(a, b) =

a, if |a| ≤ |b| and ab > 0

b, if |b| < |a| and ab > 0

0, if |ab| ≤ 0

minmod(a, b) = sign(a) max(0, min(|a|, sign(a)b)),

(3.3.3)

thus choosing the least steep slope if the slopes are of the same sign, otherwise zero.

3.4 Numerical treatment of the boundary conditions

As stated in section 2.2, three numerical, and one physical, boundary conditions must
be specified for subsonic, two-dimensional problems at an outflow boundary. As wall
boundaries are modelled as impermeable, the normal velocity at the surface, relative to
the surface, must be zero. As the surface itself might be in motion, the normal velocity
of the fluid at the boundary is set equal to the normal velocity of the boundary, as a
Dirichlet boundary condition:

(u · n)f = (u · n)b, (3.4.1)

where u is the velocity vector, n is the unit normal vector at the surface, and the subscripts
f and b represent the fluid domain and the boundary, respectively.

3.5. TIME DISCRETIZATION 31

The three remaining, numerical boundary conditions are set as Neumann boundary
conditions, so the gradient at the surface is given. One possible approach is to set the
gradient of the density and the pressure at the boundary to zero. Further, as boundary
layers do not exist for inviscid fluid flow, thus no no-slip condition, but rather a slip
condition, the tangential velocity at the surface has a zero normal gradient.

∂ρf
∂n

= 0

∂pf
∂n

= 0

∂uf · t
∂n

= 0

(3.4.2)

where

∂ρ

∂n
= nx

∂ρ

∂x
+ ny

∂ρ

∂y
,

n =

[
nx
ny

]
,

(3.4.3)

and t is the unit tangential vector at the surface of the wall.

Another possible technique is to impose the numerical boundary conditions using
the characteristic variables, w1, w2 and w3, as discussed in section 2.1, by setting their
gradients at the boundary to zero, as shown by

∂wf,l
∂n

= 0, l = 1, 2, 3. (3.4.4)

Yet another possible approach is to let the normal derivative of the characteristics
remain constant near the boundary, thus letting the second normal derivative be zero:

∂2wf,l
∂n2

= 0, l = 1, 2, 3. (3.4.5)

The ghost points are to be constructed with values such that the internal solver,
without any special consideration at or near the boundaries, when solving for the flow
variables in the next time step, or next stage in the TVD RK3, cf. section 3.5, achieves
the desired effect of the boundary conditions.

3.5 Time discretization

By discretizing the residual function in space, (2.1.11), according to equation (3.1.2), a
semi-discrete system of ordinary differential equations is obtained, that can be solved by
time-stepping methods, either implicit or explicit, given an initial condition. The system
is solved by two simple, explicit methods, the third order total variation diminishing
Runge-Kutta method (TVD RK3) and the explicit Euler method.

The TVD RK3 algorithm is given as

32 CHAPTER 3. NUMERICAL METHOD

U(1) =Un + ∆tR(Un) (3.5.1)

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tR(U(1)) (3.5.2)

U(n+1) =
1

3
Un +

2

3
U(2) +

2

3
∆tR(U(2)). (3.5.3)

In terms of memory requirement, the TVD RK3 requires two memory slots the size of
the vector of the flow variables U. It is third order accurate in time, and it has a large
stability region, including the intervals [−2.5, 0] on the real axis and [−1.732, 1.732]
on the imaginary axis [16], making it more robust, and opens up for the possibility of
larger time steps. However, when it comes to computational time required, it requires the
residual to be determined three times per time step, as can be seen from equation (3.5.1),
(3.5.2) and (3.5.3).

The explicit Euler method is given as

Un+1 −Un

∆t
= R(Un). (3.5.4)

In terms of memory requirements, the explicit Euler method is very lean, as it needs to
store the vector of flow variables U in only one location, which is updated at every time
step. When it comes to computational effort, it requires the residual to be determined
only once per time step. However, as it has a smaller stability region than TVD RK3,
including no parts of the imaginary axis, the size of the time step is limited. Smaller
time steps yield more time steps, increasing the computational time required. In terms
of accuracy, it is only first order accurate.

For the method to converge, it needs to be stable, thus satisfying the Courant-
Friedrichs-Lewy (CFL) condition, which is a limitation of the Courant number. For the
explicit Euler method the limitation is Cmax = 1, while for TVD RK3, it is Cmax ≈ 1.5,
for the spatial scheme without MUSCL. With MUSCL, the limitation is Cmax ≈ 1 for
TVD RK3. The CFL condition is given as

Cx + Cy ≤ Cmax (3.5.5)

where

Cx =
(u+ | c |)∆t

∆x
(3.5.6)

and

Cy =
(v+ | c |)∆t

∆y
. (3.5.7)

Chapter 4

The simplified Cartesian grid
method

The treatment of the moving boundaries, represented by the ghost points, is the most
characteristic feature of the simplified Cartesian grid method for flow over moving struc-
tures. For the ghost points to have the desired effect on the solution of the internal solver,
the ghost points must be identified, and the values of their flow variables must be updated
periodically. The ghost points are, as mentioned in section 3.4, points located outside the
fluid domain, but in the domain of dependence of the fluid points in the close vicinity of
the boundary. The order of accuracy of the boundary treatment is limited by the number
of ghost points considered, which is here one or two.

To simulate the presence of a solid structure boundary, ghost points in the vicinity
of the boundary, inside the structure, are set in a specific way in order to mimic the
effect of the boundary. The values of the ghost points are updated before the residual
is determined and after the last stage of the time stepping method employed, as some
methods determining the flow variables of the emerging fluid points depend on their values
from the previous time step. The emerging fluid points are identified, and their initial
conditions are set before the first stage of the time stepping method.

Figure 4.1: Fluid point selection developed by Skøien, demonstrated on the first quadrant
of a cylinder [4]. The filled black circles are fluid points, F1, providing information for the
ghost points G1, the small, blue circles. Their position relative to each other is determined
based on the angle of the normal vectors at the surface, angle limits illustrated by the
black lines, further specified in equation (4.0.1).

33

34 CHAPTER 4. THE SIMPLIFIED CARTESIAN GRID METHOD

Identifying the ghost points is not trivial. Therefore the technique used to identify the
ghost points and the fluid points is described in detail here. For an arbitrary point on the
surface, the cell closest to the surface, having its centre in the solid domain, is flagged as
a ghost point G1. The ghost points are recorded in an array, creating a coherent barrier
between the fluid domain and the solid domain, called the first layer of ghost points.
However, as information is not transferred diagonally by the residual solvers, the points
fitting the description above having a neighbouring ghost point in both x- and y-direction
are redundant, therefore excluded from the array.

The corresponding fluid point F1, the source of information for the ghost point G1 is
selected in the same way as in Skøiens method [4], described in section 1.2, and shown in
Fig. 4.1. In some regions the selected fluid point F1 is shifted diagonally from the ghost
point G1, in other regions it is shifted in the x- or y- direction, depending on the direction
of the normal vector at the surface. For a ghost point with indices i, j, the indices of the
selected fluid point F1 are given as

(i, j)F1 =

(i+ 1, j), if − 22.5◦ < φ ≤ 22.5◦

(i+ 1, j + 1), if 22.5 < φ ≤ 67.5◦

(i, j + 1), if 67.5 < φ ≤ 112.5◦

(i− 1, j + 1), if 112.5 < φ ≤ 157.5◦

(i− 1, j), if 157.5 < φ ≤ 202.5◦

(i− 1, j − 1), if 202.5 < φ ≤ 247.5◦

(i, j − 1), if 247.5 < φ ≤ 292.5◦

(i+ 1, j − 1), if 292.5 < φ ≤ 337.5◦

(4.0.1)

where φ is the angle of the vector normal to the surface. The fluid point F2, required for
some the methods setting the ghost point values based on mirror points, cf. section 5, is
located along the same line as F1, one step further into the fluid domain from F1.

Figure 4.2: Example of the second layer of ghost points for a curved surface, the first
quadrant of a cylinder. The green circles represent the second layer ghost points, G2, the
blue circles represent the first layer ghost points, G1, and the blue square represents a
hole.

When the internal solver with MUSCL, described in section 3.3, is utilized, two layers
of ghost points are required. One more ghost point is created one step further into the

35

solid domain from each ghost point in the first layer, as shown in Fig. 4.2. This step can
be in x- or y-direction, or both, depending on the direction of the normal vector at the
surface. This induces a few holes that need special treatment and some redundant ghost
points that do not require any attention, but cause some unnecessary computation. The
holes occur where the redundant cells mentioned above are excluded in the regions where
the ghost points and the corresponding fluid points are shifted diagonally, as illustrated
by a blue square in Fig. 4.2. These are simply identified, recorded, and treated like first
layer ghost points. The second layer ghost point below the hole, the blue square, in Fig.
4.2 is only within the domain of influence of the fluid point two steps to the right, and
is treated as a second layer ghost point originating from the point to the right, not the
ghost point shifted diagonally.

Figure 4.3: Example of the second and third layer of selected fluid points for a curved
surface. The red circles mark the second layer fluid points, F2, and the cyan circles mark
the third layer fluid points, F3.

When another layer of ghost points is constructed, which is necessary when the internal
solver with MUSCL is utilized, and a mirror point method, cf. section 5, is used, another
fluid point, F3, is required. It is identified in the same manner as F2, one step further
into the fluid domain, as shown in Fig. 4.3.

Figure 4.4: Example of the first layer of ghost points for a slender body, near the trailing
edge of an airfoil. The blue circles are the ghost points representing the upper surface,
and the red circles are the ghost points representing the lower surface. The stippled lines
represent the boundaries of the two smaller, temporary computational domains.

For slender bodies, such as the surface of an airfoil near the trailing edge, some of
the ghost points are in the fluid domain, as demonstrated by Fig. 4.4, causing issues as

36 CHAPTER 4. THE SIMPLIFIED CARTESIAN GRID METHOD

these points in the data structure are occupied by the flow variables of the fluid points.
The solution here is to divide the computational domain along the stippled lines, yielding
two smaller, temporary domains with some overlap, ensuring that the domain of influence
of every fluid cell is conserved. The upper computational domain is limited by the blue
and purple lines, and the lower domain is limited by the red and purple lines. When the
residuals of the fluid cells have been determined for the two smaller computational domains
independently, they are combined, yielding a data structure containing the residuals of
all the fluid cells. The domain of influence includes only one neighbouring cell in each
direction in this example. The method will readily handle larger domains of influence,
but requires a bigger overlap.

4.1 The moving cylinder

An example covered in detail in section 6.2 is a 2D simplification of a moving rigid
cylinder moving in the x-direction. Developing an algorithm generating the first layer of
ghost points proved not to be trivial, and is therefore covered in detail here. This is done
once for every time step, and the resulting ghost point locations are compared to those
of the previous time step to identify emerging fluid points.

The algorithm is based on symmetry about the x-axis, as the cylinder moves only
in the x-direction, and the fact that the x-axis is located at the interface between two
layers of cells in the computational domain, as shown by Fig. 4.5. Here, also the y-axis
is located at the interface between two layers of cells. If that is not the case, equation
(4.1.5) does not apply.

Figure 4.5: The surface of the first quadrant of the circle in red, the x-values of the
base coordinates, represented by small, blue circles and the y-values of the base coordi-
nates, represented by green circles. The coordinates of the circle in cyan is in both base
coordinate arrays. Here, t = 0.25 and nj = 40, cf. section 6.2.

For the first quadrant of the circle, an array containing the x-values of the centre of
all the cells whose centre is within the first quadrant of the circle is constructed. An
equivalent array is constructed for the y-values. These are called base coordinates, and
are marked with blue and green circles in Fig. 4.5, respectively. Here, only the x-position

4.1. THE MOVING CYLINDER 37

of the blue circles and the y-position of the green circles are important, as their position
in y- and x-direction, respectively, is arbitrary.

Next, the corresponding surface coordinates for each base coordinate are determined
according to

R2 = (x− x0)2 + (y − y0)2, (4.1.1)

where x0 and y0 are the coordinates of the centre of the cylinder, and R is the radius of
the circle. Every pair consisting of a base coordinate and a surface coordinate is now a
point on the surface of the circle, marked by the blue and green lines intercepting the
circle in Fig 4.6. The points marked by the green lines have surface coordinates in the
x-direction and base coordinates in the y-direction. The opposite is true for the points
marked by the blue lines.

Figure 4.6: The positions of the surface points are given by the interceptions of the
coloured lines and the red circle.

Next, the indices of the data points, which are located at the centre of the cells, are
determined as

i =

{
round(x

dx
+ i0 − 0.5), if φ ≤ 67.5◦

round(x
dx

+ i0), if φ > 67.5◦
(4.1.2)

and

j =

{
round(y

dy
+ j0), if φ ≤ 22.5◦

round(y
dy

+ j0 − 0.5), if φ > 22.5◦
(4.1.3)

where φ is the angle of the vector normal to the surface, and i0 and j0 are the pseudoindices
of origo given as

i0 =(ix=dx + ix=−dx)/2 (4.1.4)

and

j0 =(jy=dy + jy=−dy)/2, (4.1.5)

38 CHAPTER 4. THE SIMPLIFIED CARTESIAN GRID METHOD

where dx and dy are given by the number of grid cells in x- and y-direction, ni and nj,
respectively, and the size of the computational domain.

Figure 4.7: The positions of the first layer ghost points, represented by the blue circles,
located in the middle of the ghost cells.

This yields a list of potential ghost point indices including some double points, where
a point is included twice, and some redundant points, having neighbouring points in both
x- and y-direction. These are removed, and the remaining points are sorted according to
the angle of their surface vector, determining in which direction their corresponding fluid
points F are located, thus determining their indices as

iF =

{
iG + 1, if φ ≤ 67.5◦

iG, if φ > 67.5◦
(4.1.6)

and

jF =

{
jG, if φ ≤ 22.5◦

jG + 1, if φ > 22.5◦.
(4.1.7)

The resulting points are marked by small, blue circles in Fig. 4.7
The process is analogous for the second quadrant, and the ghost point and correspond-

ing fluid point indices for the third and fourth quadrant are determined by mirroring about
the x-axis. For this example, it is not necessary to store the coordinates of the surface
points, as these are easily determined from the indices of the ghost points, but for other,
more complex surfaces, that might be necessary. Only an ordered array of indices and
the number of ghost points having their corresponding fluid points in each direction of
the eight possible directions, as well as the number of layers of ghost points, are stored.
That is enough information to identify all ghost and fluid points.

Chapter 5

Ghost point and emerging fluid
point values

The various methods used to set the flow variables of the ghost points and the emerging
fluid points are described in detail here. Two specific problems are addressed, how the
flow variables of the ghost points are set, and how they are set for the newly emerging fluid
points. To investigate the performance of the various methods, the following approaches
have been implemented and tested. Results are given in section 6.

5.1 Ghost point values

When the local Lax-Friedrichs method without MUSCL is applied, the stencil of the
method at a fluid point includes only one neighbouring point in each direction, thus only
one layer of ghost points is required. When MUSCL is applied, the stencil of the method
includes two neighbouring points in each direction, and two layers of ghost points must be
constructed. The methods setting the flow variables of the ghost points do not distinguish
between the layers of ghost points, except for which fluid points are taken into account.
A first layer ghost point G1 is influenced by fluid points F1 and in some cases F2, while a
second layer ghost point G2 is influenced by fluid points F2 and in some cases F3.

As discussed in section 2.2, for subsonic flow problems in two dimensions, three nu-
merical and one physical boundary conditions must be given at an outflow boundary.
Separating the numerical and physical boundary conditions is not as trivial as in one
dimension, as the velocity component normal to the boundary is the physical boundary
condition, and the velocity component parallel with the boundary is a numerical boundary
condition.

Three different approximations of the velocity of the ghost points, and two different
ways to set the density and pressure of the ghost points have been implemented and
tested.

5.1.1 Velocity

a: The first method, named the very simple method, is primarily used to show that the
method functions as planned, and as a basis for comparing the other methods. Assuming
that the ghost point is located at the boundary, the normal velocity component (u ·n)G1 is
set equal to the normal velocity component of the boundary, (u ·n)B, while the tangential

39

40 CHAPTER 5. GHOST POINT AND EMERGING FLUID POINT VALUES

velocity component (u · t)G1 is set equal to the tangential velocity component of the
fluid point, (u · t)F1 . These conditions lead to a linear system of equations, yielding the
conditions

uG1 = nx[nxuB + nyvB] + ny[nyuF1 − nxvF1]

vG1 = ny[nxuB + nyvB] + nx[nxvF1 − nyuF1],
(5.1.1)

where nx and ny are the x- and y-components of the normal vector at the surface, u and
v are the x- and y-components of the velocity, and the subscripts B, G1 and F1 represent
the boundary, the first layer ghost point and the corresponding fluid point, respectively,
as shown in Fig. 5.1. The derivation of equation (5.1.1) is given in appendix A.

b: The second method, called the simple method, is based on the boundary treatment
Asif Farooq et al. developed [2], as described in section 1.2.1. Assuming the boundary
is located the same distance from the ghost point, G1, and the fluid point selected, F1,
the velocity is set according to the boundary conditions, given by equations (3.4.1) and
(3.4.2). By requiring

1

2
((u · n)F1 + (u · n)G1) = (u · n)B (5.1.2)

and

(u · t)G1 = (u · t)F1 (5.1.3)

the conditions yield

uG =uF1 − 2
[
nxuF1 + nyvF1

]
nx + 2

[
nxuB + nyvB

]
nx

vG =vF1 − 2
[
nxuF1 + nyvF1

]
ny + 2

[
nxuB + nyvB

]
ny

(5.1.4)

where u and v are the x- and y-components of the velocity, and nx and ny are the unit
normal vector components, in x- and y-direction, respectively. The derivation of equation
(5.1.4) is given in appendix A.

Figure 5.1: Mirror point location demonstrated on a curved surface with two layers of
ghost points, with the surface in red, the ghost points as blue circles, the fluid points as
black dots and the mirror points as red dots.

c: For the mirror point method, a mirror point M1, located on the line passing through
the ghost point G1 and the fluid points F1 and F2, is constructed. It is positioned the

5.1. GHOST POINT VALUES 41

same distance from the boundary as the ghost point G1, as shown by Fig. 5.1. The
primitive flow variables are interpolated or extrapolated, depending on the position of the
boundary relative to the selected fluid points, to approximate the flow variables at the
mirror point, as given by

VM1 = VF1 +
VF2 −VF1

∆x
δF1,M1 , (5.1.5)

where δF1,M1 is the distance between the mirror point and the fluid point F1. By the same
reasoning as for the simple method, b, using the mirror point M1 where the fluid point
F1 was used, the velocity components are set as

uG1 = uM1 − 2
[
nxuM1 + nyvM1

]
nx + 2

[
nxuB + nyvB

]
nx

vG1 = vM1 − 2
[
nxuM1 + nyvM1

]
ny + 2

[
nxuB + nyvB

]
ny.

(5.1.6)

The derivation of equation (5.1.6) is given in appendix A.

5.1.2 Density and pressure

I: The first method is named the simple method. The boundary is assumed to be located
the same distance from the ghost point G1 and the fluid point F1. Further, it is assumed
that the normal surface vector is parallel to the line passing through the ghost point G1

and the fluid point F1, such that equation (3.4.2) can be approximated by setting the
density ρG1 and pressure pG1 according to

ρG1 =ρF1

pG1 =pF1 .
(5.1.7)

By applying the pressure relation (2.1.8), the following relation for the total energy density
(ρE)G is obtained:

(ρE)G1 = (ρE)F1 +
1

2
ρF1(|uG1|2 − |uF1 |2), (5.1.8)

where |u| =
√
u2 + v2 is the Euclidean norms of the velocity vector.

II: The primitive variables at the mirror point M given by equation (5.1.5) are used. The
density ρ and pressure p of the ghost point are set equal to the values at the mirror point,
given as

ρG1 = ρM1

pG = pM1 .
(5.1.9)

By applying the pressure relation (2.1.8), the total energy density relation

(ρE)G1 = (ρE)M1 +
1

2
ρM1(|uG1|2 − |uM1|2) (5.1.10)

is obtained.

42 CHAPTER 5. GHOST POINT AND EMERGING FLUID POINT VALUES

5.2 Emerging fluid point values

Emerging fluid points are fluid points that were ghost points at the previous time step, and
have emerged as fluid points at the current time step as the boundary of the structure
moved past the centre of the ghost cell. These emerging fluid points require a set of
physical initial conditions, preferably close to the values of the exact solution. The initial
conditions are set after the boundary has moved past the centre of the cell, but before
the residual is determined for the first stage of the time stepping method . For simplicity,
the notation in this section is non-conventional, as superscript n normally refers to the
resulting value after all stages of the time stepping method, but here the values with
superscript n are used as input in first stage of the time stepping method. The values
with superscript n−1 have the conventional notation, resulting from the final stage of the
time stepping method at time level n− 1. Three different methods have been developed
to set the density ρ and pressure p, and four methods to set the velocity u of the emerging
fluid points.

Figure 5.2: Illustration of the concept of emerging fluid points, showing the boundary B
at two different times, n − 1 and n, three data points and their respective notations at
the times n− 1 and n.

5.2.1 Density and pressure

1: The first method is called the simple method with current values. The values are
simply kept at their current values as the ghost point is transformed into a fluid point,

[
ρ
p

]n
F1

=

[
ρ
p

]n−1

G1

, (5.2.1)

implying that the method chosen to set the density and pressure of the ghost points
at the previous stage of the time stepping method has direct impact on the accuracy

5.2. EMERGING FLUID POINT VALUES 43

of this approximation. When this method is used, the ghost point values are updated
after the last stage, or only stage, of the time stepping method, marginally increasing the
computational effort required, but increasing the accuracy. Note that the cell G1

n−1 is
the same cell as F1

n, cf. Fig. 5.2.

2: For this method, the simple method with neighbouring values, the current values of
the neighbouring fluid point F2, as shown in Fig. 5.2, are used. These were last updated
as the internal solver solved the internal flow field for the last time step, n− 1.

V =

[
ρ
p

]n
F1

=

[
ρ
p

]n−1

F1

(5.2.2)

Note that the cell F1
n is not the same cell as F1

n−1, cf. Fig. 5.2.

3: As discussed in section 3.4, one way of setting the numerical boundary conditions is
to let the gradients of the characteristics normal to the boundary be zero, as in equation
(3.4.4). In this method, the characteristic method for emerging fluid point density and
pressure, gradients of the characteristics w1 and w2, given as

∂w1 =∂p− ρc∂(u · n) (5.2.3)

∂w2 =∂s, (5.2.4)

are set to zero. Here, s is the entropy, given as

s = cv ∗ ln
(p
ργ

)
, (5.2.5)

where γ is the ratio of the specific heats cp and cv, where cp and cv are the specific heats
at constant pressure and volume, respectively [7]. Equations (5.2.3) and (5.2.4) yield the
conditions

pnF1
=pn−1

F2
+ (nx(u

n
1 − un2) + ny(v

n
1 − vn2))

√
(γpn−1

F2
ρn−1
F2

) (5.2.6)

ρnF1
=ρn−1

F2
(pnF1

/pn−1
F2

)1/γ, (5.2.7)

for the emerging fluid point density and pressure. pnF1
, determined by equation (5.2.6),

is used in equation (5.2.7). The derivations of equations (5.2.6) and (5.2.7) are given in
appendix A.

5.2.2 Velocity

The velocity components u and v are set by one of the following methods:

44 CHAPTER 5. GHOST POINT AND EMERGING FLUID POINT VALUES

Figure 5.3: Illustration of the concept of emerging fluid points, showing the boundary B
at two different times, n − 1 and n, three data points and their respective notations at
the different times, as well as the point FB, which is in the fluid domain, infinitely close
to the boundary.

A: The first method, the simple method based on current velocity, assumes that the
emerging fluid point is positioned infinitely close to the moving boundary, at point FB,
as shown by Fig. 5.3. The normal velocity component (u ·n)F1 is set equal to the normal
velocity component of the boundary (u · n)B, while the tangential velocity component
(u · t)F1 is set equal to the preliminary tangential velocity component, thus neglecting the
velocity change over the distance of which the wall has surpassed the newly emerged fluid
point, as shown in Fig. 5.2. The preliminary velocity, u′ = [u′, v′]T , is set as

[
u′

v′

]n
F1

=

[
u
v

]n−1

G1

, (5.2.8)

using the existing velocities of the point in question, set by the ghost point treatment
after the last stage, or the only stage, of the time stepping method.

These conditions lead to a linear system of equations, yielding the conditions

uF1 =
[
nyu

′
F1
− nxv′F1

]
ny +

[
nxuB + nyvB

]
nx

vF1 =
[
− nyu′F1

+ nxv
′
F1

]
nx +

[
nxuB + nyvB

]
ny

(5.2.9)

for the velocity components u and v of the emerging fluid point. The derivation of equation
(5.2.9) is given in appendix A.

B: The second method, the simple method based on the neighbouring velocity, also as-
sumes that the emerging fluid point is positioned infinitely close to the moving boundary,
at point FB, as shown by Fig. 5.3. The velocity is set as in A, by equation (5.2.9), but in
this case the preliminary velocity is set as

5.2. EMERGING FLUID POINT VALUES 45

[
u′

v′

]n
F1

=

[
u
v

]n−1

F1

, (5.2.10)

using the existing velocity components of the neighbouring point, resulting from the so-
lution from the internal solver in the previous time step.

C: The third method, the interpolating method based on current velocity, takes the ve-
locity change over the distance by which the wall has surpassed the emerging fluid point
into account. The velocity is set by linearly interpolating between the adjacent fluid point
F2 and a point in the fluid domain infinitely close to the boundary, FB, yielding a more
accurate approximation.

First, the preliminary velocity u′ is set based on the current values at the point, as
in equation (5.2.8). Next, the velocity components of the fluid infinitely close to the
boundary, uFB

and vFB
, are determined as

uFB
=
[
nyu

′
F1
− nxv′F1

]
ny +

[
nxuB + nyvB

]
nx

vFB
=
[
− nyu′F1

+ nxv
′
F1

]
ny +

[
nxuB + nyvB

]
ny

(5.2.11)

The velocity of the emerging fluid point is then determined as

uF1 = uFB
+ (uF2 − uFB

)
δB,F1

δB,F2

, (5.2.12)

where δB,F1 is the distance between the boundary and the emerging fluid point F1, and
δB,F2 is the distance between the boundary and the neighbouring fluid point, F2.

D: The fourth method, the interpolating method based on neighbouring velocity, also
takes the velocity change over the distance by which the wall has surpassed the emerging
fluid point into account. The velocity is determined in the same way as above, in method
C, but the preliminary velocity is set as in method B, thus combining the equations
(5.2.10), (5.2.11) and (5.2.12).

46 CHAPTER 5. GHOST POINT AND EMERGING FLUID POINT VALUES

Chapter 6

Numerical examples

To verify that the method is solving the correct equations, and show that the method is
convergent, two examples are given here. The performance of the method is evaluated in
terms of accuracy and computation time required.

6.1 Retracted piston

The first two-dimensional example presented by Tan and Shu [5] to demonstrate their
method is a two-dimensional simplification of a piston being retracted to the left in a
tube of uniform cross-sectional area, as illustrated by Fig. 6.1, with a fixed wall at x = 1.
The volume of the closed space between the left moving piston and the right wall increases,
decreasing the density of the confined gas. The piston starts at x = 0.5 at t = 0, and
moves with velocity uB = −0.5 cos(t). The ratio of the specific heats of the gas, γ, is set
to 1.4.

Figure 6.1: Sketch showing the piston and the gas filled compartment.

The domain x = [0, 1] is divided into ni×nj cells, such that the grid spacings ∆x and
∆y are given by ∆x = 1/ni and ∆y = 1/nj, respectively. Here, ni = nj. This example
does not involve any complex boundaries, and the arbitrary way the boundary intercepts
the Cartesian grid does not pose any major problems, as the normal surface vector of the
moving boundary is always [1 0]T .

47

48 CHAPTER 6. NUMERICAL EXAMPLES

The initial conditions are defined as

ρ(x, y, 0) = 1 + 0.2 cos(2π(x− 0.5)) + 0.1 cos(2π(y − 0.5)), (6.1.1)

u(x, y, 0) = x− 1, (6.1.2)

v(x, y, 0) = y(y − 1) cos(πx), (6.1.3)

p(x, y, 0) = ρ(x, y, 0)γ, (6.1.4)

thus introducing some non-uniformity in the y-direction. All quantities are assumed to
be dimensionless.

Figure 6.2: Initial pressure p for all fluid points with nj = 640, as given by equation
(6.1.4).

The CFL-number, as defined by equations (3.5.5), (3.5.6) and (3.5.7), is set to 0.6,
so that the results are comparable to the results of Tan and Shu [5], unless otherwise
specified.

All combinations of time marching methods, internal solvers, and ghost point and
emerging fluid point methods have been tested to determine which ones were the most
promising, and two combinations, one using the MUSCL, and one not using the MUSCL,
have been thoroughly analysed. The combinations are given in Table 6.6. The simpler
approximations yield the best results, except for ghost point velocity, which is surprising,
but in line with the results obtained for one dimensional examples in the project work
[6]. The choice of method setting the ghost point velocity has the biggest impact on the
errors analysed.

6.1. RETRACTED PISTON 49

Figure 6.3: Initial velocity v for all fluid points with nj = 640,as given by equation (6.1.3).

Spatial scheme w/MUSCL wo/MUSCL
Time stepping method TVD RK3 Explicit Euler
ρ and p of ghost points I I
Velocity of ghost points b c

ρ and p of emerging fluid points 2 1
Velocity of emerging fluid points A A

Table 6.1: The combination of methods using MUSCL that performs the best in terms of
entropy and mass conservation error and rate of convergence, and the best combination
not using MUSCL.

The resulting primitive variables, the density ρ, the velocity components u and v, and
the pressure p, of all the fluid points, at time t = 0.5 are shown by Figs. 6.4, 6.5, 6.6 and
6.7, respectively. The x-component of the velocity u is equal to the velocity of the piston
near the piston and zero close to the stationary wall, in line with the boundary condition,
as given by equation (3.4.1). The initial velocity component in y-direction v is negative
everywhere, as shown by equation (6.1.3) and Fig. 6.6, but with a higher magnitude near
the stationary wall on the right, driving a clockwise rotation. This rotation is counteracted
in the area near the lower left corner by the local maximum of the initial pressure p close
to the piston, shown by Fig. 6.2. The same maximum drives the clockwise rotation
near the upper left corner, causing pressure rise, which again causes some local positive
u values around time t = 0.25. The velocity component u is non-uniform in y-direction
due to this rotation. The density ρ and pressure p is also higher in the lower right corner
due to this initial v. Further, the denisty ρ and the pressure p is lower on the left side,
close to the piston, because the piston is moving to the left, increasing the volume of the
fluid domain.

50 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.4: Density ρ for all fluid points at time t = 0.5 with nj = 640, obtained using
the combination of methods with MUSCL.

Figure 6.5: Velocity u for all fluid points at time t = 0.5 with nj = 640, obtained using
the combination of methods with MUSCL.

6.1. RETRACTED PISTON 51

Figure 6.6: Velocity v for all fluid points at time t = 0.5 with nj = 640.

Figure 6.7: Pressure p for all fluid points at time t = 0.5 with nj = 640.

The minimum speed of sound, as given by equation (2.1.16), in this example is c =
1.05, remarkably larger than the maximum absolute velocity encountered, u = 0.6, thus
confirming that the subsonic flow assumption is valid.

52 CHAPTER 6. NUMERICAL EXAMPLES

The highest stable CFL-numbers of the different combinations of methods are given in
Table 6.2. As expected, the TVD RK3 time stepping method is stable for slightly bigger
time steps than the explicit Euler method, and the spatial scheme not using MUSCL is
stable for slightly bigger time steps than the method employing it.

Spatial scheme Temporal scheme Highest stable CFL-number
wo/MUSCL TVD RK3 1.4

Explicit Euler 1.1
w/MUSCL TVD RK3 1.3

Explicit Euler 1.0

Table 6.2: Stable CFL-numbers of the combinations of spatial schemes and time stepping
methods.

6.1. RETRACTED PISTON 53

6.1.1 Entropy error

The entropy is expected to stay constant as the flow is inviscid, and no shocks occur. An
entropy-related term, s′, is also, for the exact solution of the problem, staying constant.
The initial conditions are chosen such that the initial magnitude of the entropy-related
term is one, such that the relative entropy error is equal to the absolute entropy error.
The deviation is, as in [5], monitored to measure the convergence of the method. The
entropy s is given as

s = cv ∗ ln
(p
ργ

)
, (6.1.5)

where cv is the specific heat at constant volume [7]. The entropy-related term s′ is given
as

s′ =
p

ργ
, (6.1.6)

and their relation is given by

s′ = e
s
cv . (6.1.7)

The error is determined as the norm of a vector containing the entropy-related error of
all points in the fluid domain, given as

||s′ − s′0||2 =

√√√√∆x∆y

nj∑
j=1

ni∑
i=iF1

(pi,j
ργi,j
− 1
)2

. (6.1.8)

However, as the error is given by Tan and Shu [5] as the 1-norm, given as

||s′ − s′0||1 = ∆x∆y

nj∑
j=1

ni∑
i=iF1

∣∣∣pi,j
ργi,j
− 1
∣∣∣, (6.1.9)

and the infinity norm, given as

||s′ − s′0||∞ = maxi∈[F1 ni],j∈[1 nj]

(∣∣∣pi,j
ργi,j
− 1
∣∣∣), (6.1.10)

these are also determined.

54 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.8: Entropy error ||s′ − s′0||2, as given by equation (6.1.8), with MUSCL and
nj = 40.

Due to the errors given by equations (6.1.8) and (6.1.9) being area dependent, they
seem to increase substantially when a new column of fluid points emerge, as shown by
Fig. 6.11. This is due to an area error, as the total area of the fluid cells is different from
the exact area of the fluid domain. The area of fluid cells closest to the boundary AF1

varies between 0.5AF2 and 1.5AF2 , as illustrated by Figs. 6.9 and 6.10.

Figure 6.9: Illustration of the concept of the area error. The exact area of cell F1 is smaller
than that assumed by equations (6.1.8), (6.1.9) and (6.1.14). The grey area represents
the deviation.

As this area error itself is not of particular interest here, correcting for it to reveal
the remaining sources of entropy error is favourable. As determining the exact area of
these cells is trivial, utilizing the exact area when determining the post-processed errors
is possible. The post-processed errors ||s′ − s′0||2,p and ||s′ − s′0||1,p are given as

6.1. RETRACTED PISTON 55

Figure 6.10: Illustration of the concept of the area error where the exact area of cell
F1 is larger than that assumed by equations (6.1.8), (6.1.9) and (6.1.14). The grey area
represents the deviation.

||s′ − s′0||2 =

√√√√∆y

nj∑
j=1

(
∆x

ni∑
i=iF2

(pi,j
ργi,j
− 1
)2

+
(∆x

2
+ xF1 − xB

)(pF1,j

ργF1,j

− 1
)2)

,

(6.1.11)
and

||s′ − s′0||1 = ∆y
ni∑
i=1

(
∆x

nj∑
j=jF2

∣∣∣pi,j
ργi,j
− 1
∣∣∣+
(∆x

2
+ xF1 − xB

)∣∣∣pi,j
ργi,j
− 1
∣∣∣), (6.1.12)

respectively.

Figure 6.11: The post-processed entropy error ||s′ − s′0||2, as given by equation (6.1.11),
with MUSCL and nj = 40 .

56 CHAPTER 6. NUMERICAL EXAMPLES

As Fig. 6.11 shows, the post-processed entropy error ||s′ − s′0||2,p increases smoothly
with time. The sources of error include error due to the simplified approximation of the
values at the ghost point points, truncation error resulting from the discretization in space
and time, including numerical diffusion.

The order of convergence given in Tables 6.3 and 6.4 is given as

P =

(
err(∆x)

err
(

∆x
n

))
ln(n)

, (6.1.13)

where P is the order of convergence, err is the error with a given grid spacing, and 1/n
is the factor by which the grid spacing changes from one grid to the next, for which the
order of convergence is determined.

Third order [5] wo/MUSCL w/MUSCL
nj ||s′ − s′0||1 P ||s′ − s′0||1 P ||s′ − s′0||1 P
80 2.50E-08 1.82E-03 9.02E-05
160 1.10E-09 4.50 9.40E-04 0.95 2.42E-05 1.90
320 9.70E-11 3.50 4.80E-04 0.97 6.60E-06 1.87
640 9.87E-12 3.30 2.42E-04 0.99 1.73E-06 1.93

Table 6.3: Post-processed entropy errors ||s′ − s′0||1 and corresponding convergence rates
given by equations (6.1.12) and (6.1.13), respectively, for the simplified methods with and
without the MUSCL and for Tan and Shu’s third order method [5], for comparison.

The post-processed entropy error ||s′ − s′0||1 is lower for the results with MUSCL
than without, but higher than for the results obtained by Tan and Shu [5], as expected.
Further, the convergence rates are very close to the expected limits of two and one, with
and without MUSCL, respectively, as shown in Table 6.3.

Third order [5] wo/MUSCL w/MUSCL
nj ||s′ − s′0||∞ P ||s′ − s′0||∞ P ||s′ − s′0||∞ P
80 3.28E-07 5.42E-03 9.35E-04
160 3.06E-08 3.42 3.16E-03 0.78 4.38E-04 1.09
320 6.17E-09 2.31 1.44E-03 1.13 1.65E-04 1.41
640 7.06E-10 3.13 8.96E-04 0.69 8.42E-05 0.97

Table 6.4: Post-processed entropy errors ||s′− s′0||∞ and corresponding convergence rates
given by equations (6.1.10) and (6.1.13) for the simplified methods with and without the
MUSCL and for Tan and Shu’s third order method [5], for comparison.

The maximum entropy error, as given by equation (6.1.10), is located in the internal
part of the fluid domain in initial part of the simulation. For t > 0.15, it is located in
the newly emerged fluid point in the upper left corner, probably due to large gradients in
that area around t = 0.15. As this is still true at the time tend = 0.5, as shown by Fig.
6.12, the error can be analyzed to determine the accuracy of the boundary treatment.

As Table 6.4 shows, the convergence rate of the error is not as high as expected. The
lower than expected convergence rate may be due to the errors embedded in the approx-
imations of the ghost point values, thus a limitation of the method , assuming that the

6.1. RETRACTED PISTON 57

most accurate ghost and emerging fluid point treatments possible within the constraints
of the method are used here, which is probably not really the case, but not very far from
it. Changing the method, by introducing a more sophisticated ghost point treatment more
similar to the method developed by Sjögreen and Petersson [1], as discussed in section
1.2, might increase the order of accuracy of the boundary treatment.

Figure 6.12: The entropy error s′−s′0 for all the fluid cells at the time t = 0.5 for nj = 320
and CFL = 1.2 using the method with MUSCL as given by Table 6.1.

As Fig. 6.13 shows, the post-processed entropy error tends towards zero as the grid
spacings ∆x and ∆y tend towards zero, showing that the method is consistent in terms
of entropy error.

58 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.13: The post-processed entropy error ||s′ − s′0||2, determined at the time t = 0.5
using two different combinations of methods, for different grid spacings ∆x and ∆y.

Figure 6.14: The post-processed entropy error ||s′ − s′0||2 for different CFL-numbers,
determined at the time t = 0.5 for nj = 40.

The simulations performed to identify the combinations of methods yielding the small-
est errors were performed with CFL = 0.6. However, as Fig. 6.14 shows, the effect of
changing the CFL-number on the entropy error is insignificant, thus setting the CFL-
number higher is beneficial, as the number of time steps is lower for higher CFL-numbers.
Further, this implies that the numerical error in the spatial discretizarion is dominant, as
changing the size of the time steps show little impact.

6.1. RETRACTED PISTON 59

6.1.2 Mass conservation error

As the boundaries are modelled as impermeable and the mass flux across them is zero,
the mass of the system is constant. However, as mentioned in section 1.2, the Cartesian
grid method is known not to conserve mass. The mass is determined as

m = ∆y∆x

nj∑
j=1

ni∑
i=iF1

ρi,j, (6.1.14)

and relative mass conservation error is given as (m−m0)/m0 where m0 = 0.5 is the initial
mass of the system. As Fig. 6.15 shows, the error is oscillatory, primarily due to the area of
fluid cells adjacent to the boundary having a variable area that is assumed to be constant,
as discussed in section 6.1.1. By introducing a post-processed mass conservation error,
taking the exact area of the fluid cells into account, given as (m −m0)/m0, where m is
given as

Figure 6.15: Mass conservation error (m −m0)/m0, as given by equation (6.1.14), with
MUSCL and nj = 40.

60 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.16: The post-processed mass conservation error (m−m0)/m0 as given by equation
(6.1.15) with MUSCL and nj = 40.

m = ∆y

nj∑
j=1

(
∆x

ni∑
i=iF2

ρi,j +
(∆x

2
+ xF1 − xB

)
ρF1,j

)
, (6.1.15)

the error is reduced by one order of magnitude, as shown by Figs. 6.15 and 6.16. The
post-processed mass conservation error has a characteristic, periodic shape, shown by Fig.
6.16. The mass of the system, as given by equation (6.1.15), is largest when the area of
the fluid cell adjacent to the moving boundary is equal to the area of the other fluid
cells. The mass increases when the area is smaller, and decreases when the area is larger,
and the rate of change appears to be proportional to the deviation in area. The total
mass is a result of the density and the area of the fluid cells, and the density results from
the numerical flux terms ρu and ρv, as equations (2.1.9) and (2.1.10) shows. The flux
terms at the boundary results from the density and the velocity of the cells adjacent to
the boundary, the ghost cells and the fluid cells. The ghost point velocity method used,
specified in Table 6.1, assumes the boundary to be located the same distance from the
ghost point and the adjacent fluid point, as given by equation (5.1.4), which is true when
the area of the fluid cell adjacent to the boundary is equal to the area of the other fluid
cells. When the area is very small, in the beginning of every cycle, right after the boundary
has overstepped a ghost point, making it a newly emerged fluid point, the velocity of the
ghost point is set too high, as the velocity of the boundary is negative. The flux term
ρu at the left boundary of the fluid cell adjacent to the boundary, which should be zero,
is larger than zero, making the mass increase. When the area is too large, at the end of
the cycle, the velocity is set too low, causing a negative flux term, which again causes a
decrease in the mass.

6.1. RETRACTED PISTON 61

Figure 6.17: The post-processed mass conservation error (m−m0)/m0 as given by equation
(6.1.14) with the mirror point ghost point velocity method, c, with MUSCL and nj = 40.

Figure 6.18: The post-processed mass conservation error (m − m0)/m0, determined at
the time t = 0.5 using two different combinations of methods, as given in Table 6.1, for
different grid spacings.

As Fig. 6.18 shows, the post-processed mass conservation error is significantly smaller
without MUSCL than with MUSCL, while the convergence rate is higher with MUSCL.
This is unexpected, implying that the method without MUSCL is more accurate than the
one with MUSCL.

When employing a different method of setting the velocity of the ghost points, method
c, based on the mirror points, as given by equations (5.1.5) and (5.1.6), the mass con-
servation error is slightly larger. However, the characteristic shape has disappeared, as
shown in Fig. 6.17, as expected.

As Fig. 6.18 shows, the post-processed mass conservation error tends towards zero as
the grid spacings ∆x and ∆y tend towards zero, implying that the method is consistent

62 CHAPTER 6. NUMERICAL EXAMPLES

also in terms of the mass conservation error.

Figure 6.19: The post-processed mass conservation error (m−m0)/m0 for different CFL-
numbers, determined at the time t = 0.5 for nj = 40.

As Fig. 6.35 shows, the change in post-processed mass conservation error (m−m0)/m0

when increasing the CFL-number seems significant for the method using MUSCL. How-
ever, as Fig. 6.20 shows, the interesting data point is coincidental, and does not imply
that the result is close to the exact solution. This compromises the results given in Fig.
6.35, as the resulting mass conservation errors are all coincidental.

Figure 6.20: The post-processed mass conservation error (m −m0)/m0 for CFL = 0.95
at time t = [0 0.4] for nj = 60. The magnitude of the error is varying a lot, and by
coincidence, the end time error is very small.

However, by recording the maximum mass conservation error obtained, more infor-

6.1. RETRACTED PISTON 63

mative and reliable results may be obtained, shown in Fig. 6.21. This shows that the
CFL-number has a low impact on the post-processed mass conservation error, thus the
error resulting from the spatial discretization is dominant, in line with the entropy error.
As the entropy error and mass conservation error are indicators of how close the result is
to the exact solution, the fact that they behave similarly in terms of grid refinement and
changes in the CFL-number is promising.

Figure 6.21: The maximum post-processed mass conservation error (m − m0)/m0 for
different CFL-numbers, for nj = 40.

64 CHAPTER 6. NUMERICAL EXAMPLES

6.1.3 Computational time

The simulations are performed using MATLAB 2016a on an Apple MacBook Pro ”Core
i5” 2.7 13” produced early in 2015, which, as the name suggests, has a 2.7 GHz dual-core
processor.

For a constant CFL-number, the time step, as given by equations (3.5.5), (3.5.6) and
(3.5.7), is inversely proportional to the number of grid points in each direction, ∆t ∝ 1/nj.
Thus, the number of time steps required to reach a certain time tend is proportional to
the number of grid points in each direction nj. Further, the number of operation required
per time step is linearly dependent of the number of grid points, nj2. The complexity
of the method is therefore O(n3), where n = nj. The computational time is given as
wO(n3), where w is a constant resulting from the number of floating point operations of
the method per grid point and the computational power of the computer. If the method
is improved by increasing the order of accuracy of the boundary treatment and/or the
internal solver, w increases. This is beneficial when more accurate solutions are required,
as smaller grids will be sufficient, but not when less accurate solutions are sufficient. For
two methods of the same complexity, one with a larger w and a larger convergence rate
than the other, there will be a ”break-even” point in terms of grid size. For larger grids
the former yields better accuracy per computational effort, and for smaller grids, the
latter will be advantageous.

ni x nj 80x80 160x160 320x320 640x640
wo/MUSCL 2.73 15.97 87.27 573.18
w/MUSCL 12.53 63.35 571.78 5288.65

wo/MUSCL w/TVD RK3 8.80 28.42 159.41 1462.73

Table 6.5: CPU time required for the different combinations of methods, measured us-
ing the tic-toc functionality in MATLAB. Note that, as the methods w/MUSCL and
wo/MUSCL use different time stepping methods, another method, wo/MUSCL, but with
TVD RK3, not inluded in Table 6.1, has been included here.

The computational time required is expected to increase by a factor of 8 when the
number of grid points in each direction is doubled, for every step to the right in Table 6.5.
That does not match very well with the resulting computational times given in Table 6.5.
The trend is that the increase is smaller for the smaller grid sizes, and slightly larger for
the last step. This discrepancy can be explained by the computational times of the smaller
grids being dominated by operations that require the same amount of computational time
independently of the grid size, such as function calls. Further, the method using TVD
RK3 requires between two and three times as much computational time as the one using
the explicit Euler method, which is expected, since it involves three stages, cf. section
3.5.

The method with MUSCL and TVD RK3 requires substantially more computational
time for the larger grids than the method without MUSCL with TVD RK3, about three
times as much for the larger grids. As the computational time of the method with MUSCL
and TVD RK3 is eight times higher than for the method without MUSCL with the explicit
Euler method, comparing the results from the method with MUSCL with the results from
the method without MUSCL using a grid with twice as many grid points in each direction
can be justified.

As the goal of any numerical method is to achieve a result as accurately as possible per

6.1. RETRACTED PISTON 65

computational effort and memory required, comparing the methods under the constraint
of equal computational time, when optimal CFL-numbers are used, is beneficial. As Table.
6.5 shows, the computational time of the method without MUSCL, with the explicit Euler
method, for nj = 640 is equal to the one for the method with MUSCL, for nj = 320. As
Tables 6.3 and 6.4 and Figs. 6.13 and 6.18 shows, the method with MUSCL yields far
better accuracy.

With optimal CFL-number, as given in Table 6.2, similar results are obtained. The
size of the time steps increase proportionally to the CFL-numbers, decreasing the com-
putational times, and the magnitude of the 2-norm of the entropy error and the mass
conservation error do not change significantly.

By analyzing the method using the profile timing functionality in MATLAB, it is
revealed that less than 10 % of the computational time is spent on the boundary treatment.
For the method performing the best in terms of accuracy per computational time, less
than 3 % of the computational time is spent on the boundary treatment, and the relative
amount decreases for increasing grid size. Further, as the convergence rates of the infinity
norm, as given in Table. 6.4, are below the limitations of two and one, for the method
with MUSCL and without MUSCL, respectively, it is likely that the boundary treatment
is the limitation of the method.

It is obvious from thorough testing that some combinations of ghost point treatments
yield far better results, thus implementing ghost point treatments that yield more accurate
values at the ghost points should be beneficial for the accuracy of the method. Therefore,
it would probably be advantageous for the performance of the method to utilize a more
sophisticated ghost point treatment.

66 CHAPTER 6. NUMERICAL EXAMPLES

6.2 Moving cylinder

The next example presented by Tan and Shu [5] is a two dimensional simplification of
a rigid cylinder, a circle, moving in an enclosed square with rigid walls, as illustrated
by Fig. 6.22. The circle has a radius R = 1, and the walls at the boundaries of the
computational domain are positioned at x = ±4 and y = ±4. The domain is divided
into ni × nj cells, such that the grid spacings ∆x and ∆y are given by ∆x = 8/ni and
∆y = 8/nj, respectively. Here, ni = nj for all calculations. This example is expected to
be more challenging for the method, as the boundary intercepts the Cartesian grid in an
arbitrary way.

Figure 6.22: Illustration of the moving cylinder.

The cylinder moves horizontally with variant velocity, as the position of the centre of
the cylinder is given as xc(t) = (−0.5 sin t, 0). The ratio of the specific heats of the gas,
γ, is set to 1.4. The initial conditions are given as

ρ(x, y, 0) = 1,

u(x, y, 0) = −0.5ũ(x, y),

v(x, y, 0) = 0.5ṽ(x, y),

p(x, y, 0) = 1,

(6.2.1)

where

ũ(x, y) = λ1(x, y)u1(x, y) + λ2(x, y)2, (6.2.2)

6.2. MOVING CYLINDER 67

Figure 6.23: Initial velocity component u for all fluid points with nj = 640.

Figure 6.24: Initial velocity component v for all fluid points with nj = 640.

where

λ1(x, y) =

(
4
√

2− 1
)(√

x2 + y2 − 1
)(√

16 + y2 − 1
)(√

16 + x2 − 1
) ,

λ2(x, y) =

√
x2 + y2

(
x2 − 16

)(
y2 − 16

)(
x2

x2+y2 − 16
)(

y2

x2+y2 − 16
) ,

u1(x, y) = sin
(π

4
x
)

sin2
(π

4
y
)
,

(6.2.3)

68 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.25: Density contours from Tan and Shu [5] on the left, and the simplified method
with MUSCL on the right, ∆x = ∆y = 1/40, t = 0.4.

and

ṽ1(x, y) = λ1(x, y)v1(x, y) + λ2(x, y)v2(x, y), (6.2.4)

where

v1(x, y) = sin2
(π

4
x
)

sin
(π

4
y
)
,

v2(x, y) =
1

16
(x2 + y2 − 1) sin

(π
4
x
) (6.2.5)

which is consistent with the boundary conditions given in equation (3.4.1). Also here all
quantities are assumed to be dimensionless.

All combinations of time marching methods, internal solvers, and ghost point and
emerging fluid point methods have been tested to determine which ones were the most
promising, and two combinations, one using the MUSCL, and one not using the MUSCL,
have been thoroughly analysed. The combinations are given in Table 6.6. The CFL-
number is set to 0.6 for the results to be comparable with those presented by Tan and
Shu [5], unless otherwise specified.

Spatial scheme w/MUSCL wo/MUSCL
Time stepping method TVDRK3 Explicit Euler
ρ and p of ghost points I I
Velocity of ghost points c c

ρ and p of emerging fluid points 3 1
Velocity of emerging fluid points A C

Table 6.6: The combination of methods using MUSCL that performs the best in terms of
entropy and mass conservation error and rate of convergence, and the best combination
not using MUSCL.

It is evident from Fig. 6.25 that the result determined by the simplified method is
visually identical to the result presented by Tan and Shu [5], indicating that the simplified
method is solving the correct set of equations.

6.2. MOVING CYLINDER 69

Figure 6.26: Velocity component u for all fluid points with nj = 640 at time t = 0.4,
obtained using the combination of methods with MUSCL.

Figure 6.27: Velocity component v for all fluid points with nj = 640 at time t = 0.4,
obtained using the combination of methods with MUSCL.

70 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.28: Pressure p for all fluid points with nj = 640 at time t = 0.4, obtained using
the combination of methods with MUSCL.

The remaining primitive variables, the velocity components u and v, and the pressure
p, of all the fluid points at time t = 0.4 are shown by Figs. 6.26, 6.27 and 6.28, respectively.

By intuition, the resulting pressure and density contours do not look correct at first,
especially in the close vicinity of the cylinder. However, by studying the initial velocity,
shown by Figs. 6.23 and 6.24, it can be explained. The initial velocity component u very
close to the surface of the cylinder is equal to its initial velocity. Further, the velocity
component u is all negative. The x-component of the velocity of the cylinder is given
as −0.5 cos t, which means that it slows down, making the gas behind it, to the right,
catch up with it, causing a rise in density and pressure on the right side. The initial
value of the y-component of the velocity, v, is positive near the upper right corner, and
negative near the lower left corner. As these get closer and closer to the wall, the density
and pressure increase in front of them, retarding them slightly. The two minima of the
velocity component u are simply transported to the left by advection, affected only slightly
by the presence of the cylinder. The initial velocity component u is also negative on the
left side of the cylinder. This part of the gas is slowed down by the rigid wall, resulting in
an increase in pressure and density which causes a shock later on, at t > 0.4. The initial
density and pressure is uniform, thus not interesting.

When it comes to robustness in terms of stable CFL-numbers, very similar results to
the ones given in table 6.2 are obtained for this example. The minimum speed of sound,
as given by equation (2.1.16), in this example is c = 1.08, smaller than the maximum
absolute velocity, as shown by Fig. 6.23. However, this does not cause any trouble, as
it is not on the boundary of the computational domain. Further, this shows that the
method is robust enough to handle supersonic flow.

6.2. MOVING CYLINDER 71

6.2.1 Entropy error

The initial conditions are also here chosen such that initially, the entropy related term s′ =
1. The deviation of the entropy is utilized to measure the relative error developing over
time. The area-correction of the entropy error done as post-processing for the previous
example is not done here, as the exact area of the fluid cells close to the boundary is more
complicated to determine, and because it is not necessary to show the consistency of the
method. Therefore, the entropy errors ||s′ − s′0||2, ||s′ − s′0||1 and ||s′ − s′0||∞, as given by
equations (6.1.8), (6.1.9) and (6.1.10), respectively, are used.

Third order [5] wo/MUSCL w/MUSCL
nj ||s′ − s′0||1 P ||s′ − s′0||1 P ||s′ − s′0||1 P
40 2.81E-02 9.87E-01 1.70E-01
80 2.80E-03 3.33 5.28E-01 0.90 4.23E-02 2.01
160 1.39E-04 4.33 2.74E-01 0.95 1.05E-02 2.02
320 3.79E-06 5.20 1.40E-01 0.97 2.60E-03 2.01
640 1.95E-07 4.28 7.06E-02 0.99 6.50E-04 2.00

Table 6.7: The entropy error ||s′ − s′0||1 at time t = 0.4 and corresponding convergence
rates given by equations (6.1.9) and (6.1.13) for the simplified methods with and without
the MUSCL, and for Tan and Shu’s third order method [5] for comparison.

The entropy error ||s′ − s′0||1 is lower for the results with MUSCL than without,
but higher than for the results obtained by Tan and Shu [5], as expected. Further, the
convergence rates are very close to the expected limits of two and one, with and without
MUSCL, respectively, as shown in Table 6.7.

Third order [5] wo/MUSCL w/MUSCL
nj ||s′ − s′0||∞ P ||s′ − s′0||∞ P ||s′ − s′0||∞ P
40 7.71E-03 5.21E-02 1.42E-02
80 1.21E-03 2.67 3.20E-02 0.70 4.34E-03 1.71
160 1.08E-04 3.49 1.81E-02 0.82 1.92E-03 1.17
320 8.49E-06 3.67 9.69E-03 0.90 8.37E-04 1.20
640 1.48E-06 2.52 5.03E-03 0.95 4.08E-04 1.04

Table 6.8: The entropy error ||s′ − s′0||∞ and corresponding convergence rates given by
equations (6.1.10) and (6.1.13) for the simplified methods with and without the MUSCL
and for Tan and Shu’s third order method [5] for comparison.

As for the previous example, the maximum entropy error at time t = tend = 0.4 is
located in the close vicinity of the moving boundary, as shown by Fig. 6.29. Therefore,
the infinity norm of the entropy error, ||s′−s′0||∞, can be analyzed to determine the order
of the boundary treatment. As Table 6.8 shows, the convergence rate of the boundary
treatment is not as high as expected. Therefore, as discussed in more detail in the previous
example, the method might benefit from a more sophisticated ghost point treatment.

72 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.29: The entropy error s′−s′0 for all the fluid cells at the time t = 0.4 for nj = 320
and CFL = 1.0 using the method with MUSCL, as given by Table 6.1.

6.2. MOVING CYLINDER 73

Figure 6.30: The entropy error ||s′ − s′0||2, determined at the time t = 0.4, for different
numbers of grid points in each direction, nj.

As for the previous example, the resulting entropy error trend shown in Fig. 6.30 is as
expected, showing that the method is consistent for both the method with and without
MUSCL. As Fig. 6.30 and Tables 6.7 and 6.8 show, the method with MUSCL yields
a higher accuracy and a higher order of convergence in terms of the entropy error, as
expected.

Figure 6.31: The entropy error ||s′−s′0||2 for different CFL-numbers using the two methods
specified in Table 6.6, for nj = 60. Other grid spacings yield similar results.

74 CHAPTER 6. NUMERICAL EXAMPLES

As Fig. 6.31 shows, the change in entropy error ||s′ − s′0||2 when increasing the CFL-
number is insignificant. Thus setting the CFL-number as high as possible, as long as it
is still stable, will contribute to achieving a solution as close to the exact solution per
computational effort as possible.

6.2. MOVING CYLINDER 75

6.2.2 Mass conservation error

As for the previous example, the mass does not remain constant, yielding a mass conser-
vation error. The mass of the system is determined as

m = ∆x∆y
∑

i,j∈Fluid points

ρi,j, (6.2.6)

and the relative mass conservation error is given as

(m−m0)/m0, (6.2.7)

where m0 = 82 − π is the initial mass of the system.

Figure 6.32: Mass conservation error and area error for nj = 80, wo/MUSCL.

As Fig. 6.32 shows, the mass conservation error varies a lot. However, it is closely
correlated with the area error, the difference between the exact area of the fluid domain
and the total area of all the fluid cells. The area error, given as (A−A0)/A0, where A is
the total area of all the fluid cells, and A0 = 82−π is the exact area of the computational
domain, is illustrated by Fig. 6.33.

76 CHAPTER 6. NUMERICAL EXAMPLES

Figure 6.33: Illustration of the area error for a part of the moving boundary. The white
area is the area of the fluid cells, and the exact area of the fluid domain is the area outside
the red boundary. The difference between the total grey area outside the red line and the
total white area inside the red line is the area error in this area.

The number of fluid cells is arbitrary, as the number of ghost cells turning into fluid
cells and fluid cells turning into ghost cells is arbitrary, making the area error vary quite
a bit, but yielding only discrete values, multiples of ∆x∆y. The correlation between the
area error and the mass conservation error, shown by Fig. 6.32, implies that the area error
is the main source of mass conservation error. To remove the part of the error caused by
the area error, a simple post-processing is introduced, given as

m = ∆x∆y
∑

i,j∈Fluid points

ρi,j + ρG1(AF0 − AF), (6.2.8)

where ρG1 is the average density of the first layer ghost points, AF0 is the exact area of
the fluid domain, and AF is the current area of the fluid domain. The average density of
the first layer of ghost points is approximately equal to the average density of the fluid
points adjacent to the surface of the cylinder.

6.2. MOVING CYLINDER 77

Figure 6.34: Maximum relative area error |A−A0|/A0 for different numbers of grid points
in each direction nj.

The area error is embedded in the method, and as Fig. 6.34 shows, it tends to zero,
but slowly. The area error shows that the possible resolution of the boundary is limited.
However, the resolution close to the boundary is not critical when solving inviscid flow
problems, but will cause significant problems if viscosity is taken into account. For viscous
flow, the resolution of the boundary layer is important to accurately determine the shear
force acting between the fluid and the structure, and due to large gradients close to the
boundaries.

Figure 6.35: The post-processed mass conservation error (m−m0)/m0, where m is given
by equation (6.2.8), determined at the time t = 0.4, for different grid spacings ∆x.

As Fig. 6.35 shows, the post-processed mass conservation error tends to zero as the
grid spacings ∆x and ∆y tend to zero, thus showing that the method is consistent in terms

78 CHAPTER 6. NUMERICAL EXAMPLES

of the mass conservation error, also for this example. Further, the method using MUSCL
yields slightly more accurate mass conservation than the method without MUSCL. The
data points do not fit very well on a straight line, as they do for the entropy error.
This is probably do to the primitive post-processing. As Fig. 6.37 shows, the mass
conservation error has the same characteristic, chaotic features as the mass conservation
error without post-processing, as shown by Fig. 6.32, implying that the post-processing
is unable to properly remove the error caused by the area error. That makes sense, as the
post-processing is very simple.

Figure 6.36: The post-processed mass conservation error (m−m0)/m0 for different CFL-
numbers using the two methods specified in Table 6.6, for nj = 60. Other grid spacings
yield similar results.

As Fig. 6.36 shows, the change in post-processed mass conservation error (m−m0)/m0

when increasing the CFL-number seems significant for the method using MUSCL, as the
error is very low when CFL = 0.95. However, as Fig. 6.37 shows, the data point is
coincidental, and does not imply that the result is close to the exact solution.

6.2. MOVING CYLINDER 79

Figure 6.37: The post-processed mass conservation error (m −m0)/m0 for CFL = 0.95
for time t = [0 0.4] for nj = 60. The magnitude of the error is varying a lot, and by
coincidence, the end time error is very small.

The method is empirically shown to be stable and consistent for stable CFL-numbers,
as both the entropy error and mass conservation error tends towards zero as the grid
spacings, and thus the time step, due to constant CFL numbers, tends towards zero.
Therefore, by Lax’ equivalence theorem, it is convergent. If necessary, a more accurate
post-processing could be introduced, but it is not necessary here.

80 CHAPTER 6. NUMERICAL EXAMPLES

6.2.3 Lift and drag

For invisid flow, the only forces acting from the fluid on the solid structure are pressure
forces. As the cylinder is moving in the negative x-direction, the lift and drag forces are
defined as

F =

[
Fx
Fy

]
= −

∑
i∈{Ghost points}

pi

[
nx
ny

]
i

∆Ai, (6.2.9)

where Fx and Fy is the drag and lift forces, respectively. The pressure of the ghost point
is a valid approximation of the pressure at the surface, as the normal derivative of the
pressure at the surface is set to zero, as given equation (3.4.2), approximated by the ghost
point treatment methods. The area, given as A = Rdφ, is approximated as

A = R
∑

i∈Ghost points

(φni+1
− φni

), (6.2.10)

where φn is the angle of the surface normal vector. Further, both the pressure and the
normal surface vector is approximated by the arithmetic mean, yielding

F =

[
Fx
Fy

]
= −R

4

∑
i∈{Ghost points}

(pi+1 + pi)

([
nx
ny

]
i+1

+

[
nx
ny

]
i

)
(φni+1

− φni
), (6.2.11)

Figure 6.38: Lift and drag force exerted on the cylinder at the time t = [0, 0.4].

As Fig. 6.38 shows, the drag is negative, thus the flow field is exerting a positive force
in the negative x-direction, in the same direction as the cylinder is moving. Initially, this
seems counter intuitive. However, this is due to the initial conditions of the problem, as
the initial velocity of the cylinder is u = −0.5, and the surrounding velocity field is such
that the boundary condition given by equation (3.4.1) is satisfied, making the relative
velocity zero at all boundaries. Further, as Fig. 6.23 shows, the velocity field shows all

6.2. MOVING CYLINDER 81

negative velocities in the x-direction. The negative u-velocity values to the right of the
cylinder will catch up with the cylinder, moving by advection, as time goes by and the
cylinder slows down. The density and pressure builds up behind the cylinder as a result of
the cylinder slowing down and the boundary condition, the velocity component normal to
the boundary being zero. As more gas catches up to the cylinder, the pressure builds up
further, making the negative drag force increase further. On the left side of the cylinder,
the opposite happens. When the cylinder slows down, the velocity of the gas in front
of it gets higher, more negative, relative to the velocity of the cylinder. This results in
rarefaction, and the density and pressure decreases.

The time interval analysed is quite small considering the length scale of the example
and the magnitude of the velocity, as can easily be noticed by looking at how short the
initial extrema of the velocity component u are transported. Only the initial velocity field
close to the cylinder has a major impact on the drag force. As Fig. 6.23 shows, the initial
velocity component u gets more negative as the radius increases, the magnitude of the
x-component of the velocity is proportional to the radius in this area. This is easily seen
from the even spacing of the contour lines. As time goes by, more and more energetic
fluid is stagnated by the boundary condition, making the pressure rise further, explaining
why the drag force keeps increasing.

As Figs. 6.24, 6.28 and 6.25 show, the initial velocity in the y-direction includes two
extrema, a maximum in the upper right corner and a minimum in the lower left corner.
These two extrema cause two local spikes in density and pressure. As the cylinder moves
towards the left, it moves closer to the extremum on the left, and further away from the
extremum on the right, causing a small pressure difference between the upper and lower
side of the cylinder, causing a small lift force, as shown by Fig. 6.38.

82 CHAPTER 6. NUMERICAL EXAMPLES

6.2.4 Computational time

The simulations are performed on the same computer as the previous example, specified
in section 6.1.3.

ni x nj 40x40 80x80 160x160 320x320 640x640
wo/MUSCL 0.36 0.71 2.41 10.32 97.36
w/MUSCL 1.15 2.95 18.06 85.69 796.72

wo/MUSCL w/TVD RK3 0.81 1.66 4.62 25.00 245.93

Table 6.9: CPU time required for the different combinations of methods measured us-
ing the tic-toc functionality in MATLAB. Note that, as the methods w/MUSCL and
wo/MUSCL given in Table 6.6 use different time stepping methods, another method,
wo/MUSCL, but with TVD RK3, not inluded in Table 6.6, has been included here.

As for the previous example, the computational time is expected to increase by a
factor of 8 when the number of grid points is doubled. The same trend is present here
as was observed for the computational time of the previous example, the increase in
computational time per step to the right is smaller for smaller grid sizes, and larger for
the larger grid sizes.

Relative amount of computation in boundary treatment
nj w/MUSCL wo/MUSCL
40 .55 .52
80 .45 .46
160 .24 .24
320 .077 .22
640 .053 .18

Table 6.10: Relative amount of computational effort required by the boundary treatment
for the two combinations of methods given in Table 6.6.

Here, the relative amount of the computational effort required for the boundary treat-
ment is significantly larger than for the previous example, as given by Table 6.10. Further,
as can be seen in Table 6.10, a trend is obvious. The relative amount of computational
effort required for the boundary treatment is declining with increasing grid size. As the
boundaries have a fixed length, the number of ghost points is proportional to the number
of grid points in each direction, nj. The fluid domain, however, is of a fixed area, so
the number of fluid cells is proportional to nj2. As the computational effort required per
ghost cell and per fluid cell per time step is fixed, this trend is logical. However, as the
grid gets very large, the trend seems to stagnate.

As discussed in section 6.1.3, increasing the accuracy of a method is not always ben-
eficial in terms of accuracy per computational effort. Here, the discussion is not about
increasing the order of the method or the boundary treatment, but to increase the ghost
point treatment. The increase in computational effort required if a more sophisticated
ghost point treatment is utilised will be more significant for smaller grids than larger
grids, relatively speaking. How large the increase is, depends on how sophisticated the
new ghost point treatment is. A ghost point treatment more similar to the method devel-
oped by Sjögreen and Petersson [1], as discussed in section 1.2, would probably increase

6.2. MOVING CYLINDER 83

the computational effort required for the ghost point treatment significantly. However,
the increased accuracy might be significant enough to increase the amount of accuracy per
computational effort for the method, at least for the larger grids. Implementing a more
accurate boundary treatment, similar to that of Tan and Shu [5], would greatly increase
the accuracy of the boundary treatment, but would not be advantageous, as the accuracy
of the internal solver would be limiting the accuracy of the method.

84 CHAPTER 6. NUMERICAL EXAMPLES

Chapter 7

Conclusions

The simplified Cartesian grid method for flow over moving structures is shown to be
convergent for problems with smooth solutions, as the entropy error and the mass con-
servation error tend towards zero as the grid is refined. Further, by comparing the results
with examples found in literature, it is verified that the method is solving the Euler
equations correctly. The simple methods for setting ghost point and emerging fluid point
density and pressure, as well as the emerging fluid point velocity, have proven most ac-
curate. For the ghost point velocity, the mirror point method yields the most accurate
results in most cases, and the simple method in some cases. Further, the method with
MUSCL yields more accurate results than the method without MUSCL.

The method with MUSCL also yields the most accurate results per computational
time, both at optimal CFL-conditions and otherwise. The highest stable CFL-numbers
are most beneficial, as the magnitude of the errors remain relatively constant for different
CFL-numbers, while the decrease in computational time is substantial.

The resulting rates of convergence are close to the expected ones, i.e. one and two
for the 2-norm without and with MUSCL, respectively. However, for the infinity norm
of the entropy error, the convergence rate is only 0.8 and 1.2 without and with MUSCL,
respectively. The maximum error has been shown to be located in the close vicinity of the
moving boundary. The lower than expected convergence rate of the infinity norm seems
to be a limitation of the method, resulting from the simplified approximation of ghost
point values.

The ghost point treatment represents a small portion of the computational effort. As
the moving boundary treatment is shown to be a limitation of the accuracy of the method,
implementing a more sophisticated ghost point treatment might increase the accuracy of
the method per computational effort.

85

86 CHAPTER 7. CONCLUSIONS

Chapter 8

Future work

Further testing of ghost point treatment methods might yield some better methods, as
the convergence rate of the infinity norm of the entropy error shows that there is room
for improvement of the boundary treatment.

A ghost point velocity method that might yield better accuracy is based on the simple
method, b, given here. Instead of assuming that the boundary is located the same distance
from the ghost point G and the fluid point F , the actual position of the boundary is taken
into account. The normal velocity component (u · n)G is set as

(u · n)G1 =
(u · n)B − δGB

δGF
(u · n)F1

1− δGB

δGF

, (8.0.1)

where δGF is the distance between the ghost point and the fluid point, and δGF is the
distance between the ghost point and the boundary.

When the mirror point method is used for the ghost point velocity, a lot of information
that can be utilized to set the emerging fluid point velocity is available. As the exact
position of the boundary at the previous time level is known, so is the exact position
of the mirror point. For the examples given here, the velocity of the boundary is low
compared to the time step, which means that such a method would yield the velocity of
a point very close to the emerging fluid point in space, but at the previous time level.

When the location of the mirror point M2 is between the fluid points F1 and F2, the
fluid points F1 and F2 should be used to set the values of the mirror point, not the fluid
points F2 and F3, as was done here. This will change the calculation of the flow variables
from an extrapolation to an interpolation.

Here, the method used to set the values at the ghost points are the same for the first
and second layer. Using different methods for the first and second layer ghost points
might yield better results.

More sophisticated methods of setting the ghost point values, such as interpolation
with more input values, similar to Sjøgren and Petterson’s method, cf. section 1.2, would
almost certainly yield more accurate results, but would require longer computational time.
However, as the computational time required for the boundary treatment is small com-
pared to the total computational time, increasing the level of complexity of the boundary
treatment is advantageous.

Other possible methods of increasing the complexity of the boundary treatment is
by utilizing bilinear interpolation or least squares interpolation, both with a significantly
larger domain of influence for the ghost point values.

87

88 CHAPTER 8. FUTURE WORK

The next step of investigating the potential of the simplified Cartesian grid method
is implementing and testing the method for more complicated two-dimensional problems,
for example in supersonic or transonic conditions.

The next step would be adding viscous terms, as the range of fluid dynamic problems
where the inviscid approximation is useful is quite limited. As turbulent flow is compli-
cated, to say the least, investigating the performance of the method simulating laminar
flow is beneficial.

As most industrial applications of CFD for flow over complex geometries are in three
dimensions of space, the method should be tested in 3D, in case unexpected problems
should arise. But, as this includes considerable effort implementing the method, the
above-mentioned investigations should be done before this

Extending the method to include local grid refinement for areas of particular interest
should be possible, using a quadtree data structure. As these areas move, as the structure
moves, the area having a finer grid should also move, but it does not have to move with
every time step. Calculating, or at least estimating, the optimal frequency of which the
grid, or at least parts of the grid, should be redefined with new areas of finer and coarser
grids to achieve the highest accuracy should be possible.

If the results show that the method has potential of competing with the body-fitted
grid methods, an automated grid generator must be developed, for example taking .stl
files at different time levels as input, and interpolating between the time levels to find
the exact positions of the boundaries. The ray-tracing algorithm of Bibs and Kamath,
would probably be useful to determine the exact location of the boundary in [17]. For
mechanical systems, where the effect of the boundary on the flow is interesting, such as for
an internal combustion engine, that would work. For an autonomous system, such as the
fluid-structure interaction of the soft palate and the surrounding airflow, a multiphysics
coupling is required.

Chapter 9

Acknowledgements

Thanks are given to Bernhard Müller for all his input and guidance, Martin Larsson
for thorough feedback on the project work, Martin Galta and Tone Lauglo for their
contributions as latex gurus, and Simen Haave for spell checking assistance.

This thesis is a continuation of the project work in [6]. It is basis for 30 SP. MATLAB
is used for implementation and testing.

89

90 CHAPTER 9. ACKNOWLEDGEMENTS

Bibliography

[1] Sjögreen, B. and Petersson, N.A. A Cartesian embedded boundary method for hyper-
bolic conservation laws. Communications in Computational Physics, 2(6):1199–1219,
2007.

[2] Farooq, M.A., Skøien, A.A., and Müller, B. Cartesian grid method for the compress-
ible Euler equations using simplified ghost point treatments at embedded boundaries.
Computers & Fluids, 82:50–62, 2013.

[3] Farooq, M.A. Cartesian grid method for compressible flow simulation, PhD Thesis,
NTNU. 2012.

[4] Skøien, A.A. Cartesian grid method for the compressible Navier-Stokes equations,
Master’s Thesis, NTNU, 2012.

[5] Tan, S. and Shu, E.W. A high order moving boundary treatment for compressible
inviscid flows. Journal of Computational Physics, 230(15):6023–6036, 2011.

[6] Lekven, M. Cartesian grid method for compressible flow over moving structures,
project work, NTNU, 2016.

[7] White, F.M. Fluid Mechanics. McGraw-Hill, 6th edition, 2009.

[8] Peskin, C.S. Flow patterns around heart valves: a numerical method. Journal of
Computational Physics, 10(2):252–271, 1972.

[9] Mittal, R. and Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech.,
37:239–261, 2005.

[10] Pletcher, R.H., Tannehill, J.C. and Anderson, D. Computational fluid mechanics and
heat transfer. CRC Press, 3rd edition, 2013.

[11] Forrer, H. and Jeltsch, R. A higher-order boundary treatment for Cartesian-grid
methods. Journal of Computational Physics, 140(2):259–277, 1998.

[12] Schneiders, L., Hartmann, D., Meinke, M. and Schröder, W. An accurate mov-
ing boundary formulation in cut-cell methods. Journal of Computational Physics,
235:786–809, 2013.

[13] Yang, G., Causon, D.M. and Ingram, D.M. Calculation of compressible flows about
complex moving geometries using a three-dimensional Cartesian cut cell method.
International Journal for Numerical Methods in Fluids, 33(8):1121–1151, 2000.

91

92 BIBLIOGRAPHY

[14] Forrer, H. and Berger, M. Flow simulations on Cartesian grids involving complex
moving geometries. In Hyperbolic problems: theory, numerics, applications, pages
315–324. Springer, 1999.

[15] Tan, S. and Shu, E.W. Inverse Lax-Wendroff procedure for numerical boundary
conditions of conservation laws. Journal of Computational Physics, 229(21):8144–
8166, 2010.

[16] Müller, B. Introduction to computational fluid dynamics, Lecture notes, NTNU,
2015.

[17] Bihs, H. and Kamath, A. A combined level set/ghost cell immersed boundary repre-
sentation for floating body simulations. International Journal for Numerical Methods
in Fluids, 2016.

Appendices

A

Appendix A

Derivation of various equations

A.1 Velocity of the ghost points, method a

(u · n)G1 =(u · n)B (A.1.1)

(u · t)G1 =(u · t)F1 (A.1.2)

n =[nx ny] (A.1.3)

t =[ny − nx] (A.1.4)

Using equations (A.1.3) and (A.1.4) in (A.1.1) and (A.1.2) to get

uG1nx + vG1ny = uBnx + vBny (A.1.5)

uG1ny − vG1nx = uF1ny − vF1nx, (A.1.6)

which combines to form

[
ny − nx
nx ny

] [
uG1

vG1

]
=

[
uF1ny − vF1nx
uBnx + vBny

]
. (A.1.7)

By multiplying from the left by

[
ny − nx
nx ny

]−1

=

[
ny nx
−nx ny

]
(A.1.8)

such that [
uG1

vG1

]
=

[
ny nx
−nx ny

] [
uF1ny − vF1nx
uBnx + vBny

]
, (A.1.9)[

uG1

vG1

]
=

[
nx(nxuB + nyvB) + ny(nyuF1 − nxvF1)
ny(nxuB + nyvB) + nx(nxvF1 − nyuF1)

]
(A.1.10)

is obtained.

C

D APPENDIX A. DERIVATION OF VARIOUS EQUATIONS

A.1.1 Velocity of ghost points, method b

1

2
((u · n)F1 + (u · n)G1) =(u · n)B (A.1.11)

(u · t)G1 =(u · t)F1 (A.1.12)

(A.1.11) yields

(u · n)G1 = 2(u · n)B − (u · n)F1 (A.1.13)

Using equations (A.1.3) and (A.1.4) such that[
ny − nx
nx ny

] [
uG1

vG1

]
=

[
uF1ny − vF1nx

−uF1nx − vF1ny + 2uBnx + 2vBny

]
(A.1.14)

is obtained. Then, multiplying from the left by

[
ny − nx
nx ny

]−1

=

[
ny nx
−nx ny

]
(A.1.15)

such that

[
uG1

vG1

]
=

[
ny nx
−nx ny

] [
uF1ny − vF1nx

−uF1nx − vF1ny + 2uBnx + 2vBny

]
, (A.1.16)[

uG1

vG1

]
=

[
uF1 − 2

(
nxuF1 + nyvF1

)
nx + 2

(
nxuB + nyvB

)
nx

vF1 − 2
(
nxuF1 + nyvF1

)
ny + 2

(
nxuB + nyvB

)
ny

]
(A.1.17)

is obtained.

A.1.2 Velocity of ghost points, method c

1

2
((u · n)M1 + (u · n)G1) =(u · n)B (A.1.18)

(u · t)G1 =(u · t)M1 (A.1.19)

(A.1.18) yields

(u · n)G1 = 2(u · n)B − (u · n)M1 (A.1.20)

Using equations (A.1.3) and (A.1.4) such that[
ny − nx
nx ny

] [
uG1

vG1

]
=

[
uM1ny − vM1nx

−uM1nx − vM1ny + 2uBnx + 2vBny

]
(A.1.21)

is obtained. Then, multiplying from the left by

[
ny − nx
nx ny

]−1

=

[
ny nx
−nx ny

]
(A.1.22)

A.1. VELOCITY OF THE GHOST POINTS, METHOD A E

such that

[
uG1

vG1

]
=

[
ny nx
−nx ny

] [
uM1ny − vM1nx

−uM1nx − vM1ny + 2uBnx + 2vBny

]
, (A.1.23)[

uG1

vG1

]
=

[
uF1 − 2

(
nxuM1 + nyvM1

)
nx + 2

(
nxuB + nyvB

)
nx

vF1 − 2
(
nxuM1 + nyvM1

)
ny + 2

(
nxuB + nyvB

)
ny

]
(A.1.24)

is obtained.

A.1.3 Density and pressure of emerging fluid points, method 3

∂p− ρc∂(u · n) =0 (A.1.25)

∂s =0 (A.1.26)

0 =pF1 − pF2 − (ρc)F2((u · n)F1 − (u · n)F2) (A.1.27)

pF1 =pF2 + (nx(u1 − u2) + ny(v1 − v2))(ρc)F2 (A.1.28)

pF1 =pF2 + (nx(u1 − u2) + ny(v1 − v2))
√

(γpF2ρF2) (A.1.29)

as

(ρc) =

√
γp

ρ
ρ (A.1.30)

(ρc) =
√
γpρ (A.1.31)

∂s =sF1 − sF2 (A.1.32)
pF2

ργF2

=
pF1

ργF1

(A.1.33)

ρF1/ρ0

ρF2/ρ0

γ

=
pF1/p0

pF2/p0

(A.1.34)

ρF1/ρ0

ρF2/ρ0

=
pF1/p0

pF2/p0

1/γ

(A.1.35)

ρF1 =ρF2

pF1

pF2

1/γ

(A.1.36)

A.1.4 Velocity of emerging fluid points, method A

(u · n)F1 =(u · n)B (A.1.37)

(u · t)F1 =(u′ · t)F1 (A.1.38)

n =[nx ny] (A.1.39)

t =[ny − nx] (A.1.40)

Using equations (A.1.39) and (A.1.40) in (A.1.37) and (A.1.38) to get

F APPENDIX A. DERIVATION OF VARIOUS EQUATIONS

uF1nx + vF1ny = uBnx + vBny (A.1.41)

uF1ny − vF1nx = u′F1
ny − v′F1

nx, (A.1.42)

which combines to form

[
ny − nx
nx ny

] [
uF1

vF1

]
=

[
u′F1

ny − v′F1
nx

uBnx + vBny

]
. (A.1.43)

By multiplying from the left by

[
ny − nx
nx ny

]−1

=

[
ny nx
−nx ny

]
(A.1.44)

such that [
uF1

vF1

]
=

[
ny nx
−nx ny

] [
u′F1

ny − v′F1
nx

uBnx + vBny

]
, (A.1.45)[

uF1

vF1

]
=

[
ny(nyu

′
F1 − nxv′F1) + nx(nxuB + nyvB)

nx(nxv
′
F1 − nyu′F1) + ny(nxuB + nyvB)

]
(A.1.46)

is obtained.

A.1.5 Velocity of ghost points, method in section 8

The normal component of the velocity at the ghost point G1 is set such that interpolating
the normal component of the velocity at the ghost point G1 and the fluid point F1 yields
the normal component of the velocity at the boundary B.

(u · n)B = (u · n)G1 +
(
(u · n)B = (u · n)F1 − (u · n)B = (u · n)G1

)δGB
δGF

, (A.1.47)

where δGB is the distance between the ghost point and the boundary, and δGF is the
distance between the ghost point G1 and the fluid point F1. Solving for (u · n)G1 yields

(u · n)G1 =
(u · n)B − δGB

δGF
(u · n)F1

1− δGB

δGF

. (A.1.48)

A.2. RISK ASSESSMENT FORM G

A.2 Risk assessment form

