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1 BACKGROUND 

Snow is a very important component in the hydrological cycle in Norway and crucial for 

determining reservoir operation during the spring flood to ensure full reservoir and as little 

flood spill as possible. The Statkraft Hydrological Forecasting Toolbox (SHyFT) is a newly 

developed hydrological toolbox that is used for forecasting inflow in the Statkraft system. This 

is a flexible system in which model can be custom designed for various purposes. The SHyFT 

toolbox currently have three different methods for simulating snow accumulation and storage, 

and these are not yet evaluated with snow data. The purpose of this master thesis is to 

evaluate the SHyFT snow routines against observed snow data from satellite images and snow 

measurements in the field. 

2 MAIN QUESTIONS FOR THE THESIS 

 The main questions for the thesis can be stated as follows: 

1. Prepare the data needed to calibrate the SHyFT model for the Nea-Nidelva catchment. 

This includes climatic data from observation sites in the catchment and other climatic 

data derived from other stations. Collect the data needed for evaluating the snow 

simulations, including both satellite and from measurement campaigns in the field. 

Decide on the periods that should be used for calibration and evaluation based on the 

available data. 
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2. Calibrate SHyFT for Nidelva for all three snow routines. Compare the calibrations and 

evaluate their goodness. Evaluation should be done on standard statistical parameters 

measuring runoff distribution and also parameters measuring runoff volume.  

3. Compare simulated snow from the three setups from 2) against each other and against 

observed snow data. Perform a statistical analysis to evaluate both the temporal and 

spatial accuracy of the simulated snow. Measures of goodness of fit both for temporal 

and spatial variation should be decided and used in this task. Discrepancies should be 

quantified and evaluations should be done to try to identify reasons for any 

differences between observed and simulated snow cover and water equivalent such as 

autumn snow start errors or errors in snow volume over the winter. 
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ABSTRACT 

Snow is a very important component in the hydrological cycle in Norway and crucial for 

determining reservoir operation during the spring flood to ensure full reservoir and as little 

flood spill as possible. The Statkraft Hydrological Forecasting Toolbox (SHyFT) is a newly 

developed hydrological toolbox that is used for forecasting inflow in the Statkraft system. This 

is a flexible system in which model can be custom designed for various purposes.  

This study calibrates, runs and evaluates the three snow routines implemented in SHyFT 

against field observed snow data provided by Statkraft. The three routines are Gamma Snow, 

HBV Snow and Skaugen Snow. 

Part of the study is based on the process of finding the closest and most representative cells of 

the grid in the catchment of the study area (the Nea-Nidelva river basin), in order to later 

make the comparison between observed and simulated snow data. To do that, the snow 

transects where Statkraft made the snow field measurements are analysed. 

Next, the calibration of the model and their validations are performed by simulating runoff and 

comparing them to the unregulated observed discharge data from Aune gauging station 

(SeNorge). The calibration period, where the calibration of the model takes place, is from 

01/09/2012 to 01/09/2014 and the validation, where the runoff is simulated without having 

calibrated the model for that period, is from 01/09/2014 to 01/09/2015. The calibration results 

showed a Nash-Shutcliffe efficiency criteria (R2) of 0.733 for Gamma Snow, 0.755 for HBV Snow 

and 0.784 for Skaugen Snow. However, the results show that Gamma Snow performs better 

simulations (or closer to the observed data) that HBV Snow and Skaugen Snow. 

Regarding the snow results, SHyFT codes are used to extract the SWE from the specific grid 

cells. All the models show both similarities and discrepancies between the observed SWE data 

and the simulated results. The comparison was carried out by observing the percentage of the 

difference between observed and simulated discharge per transect, and it is concluded that all 

of the three models present flaws and that the simulations were sometimes poor. Some other 

reasons why these simulations were not too good are commented, such as redistribution of 

the snow by wind, elevation, or orientation. 

The models behaved in a way in 2013 and 2015 that they presented close difference values of 

SWE, whereas in 2014, the results of each model differ significantly from each other. 

It can be said that the calibration of the model was successful and the R2 values were good, 

the runoff simulations were acceptable and the snow simulations were somehow poor. 
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1. INTRODUCTION 

1.1. Background 

Snow is an important and non-easy to handle element in hydrological modelling. In many high-

altitude regions of the Earth, snow is a fundamental parameter of the hydrological cycle; in 

Norway, approximately 30% of the annual precipitation falls as snow. Snow plays hence an 

essential role on reservoirs management and operational strategies. Furthermore, snow is not 

only relevant for water resources management (water supply, hydropower production, 

irrigation, transport…) but also for many aspects related to economy and society, such as 

outdoor activities, tourism, infrastructure or safety. 

It is then easy to realize that being able to access different snow data is highly interesting for 

hydrologists and hydropower companies (also for many other sectors, as previously said). 

Moreover, being able to predict future short term forecasts or long term predictions is one of 

the main goals, and hydrological modelling is the way to achieve it. 

The Statkraft Hydrological Forecasting Toolbox (SHyFT) is a newly developed hydrological 

toolbox that is used for forecasting inflow in the Statkraft system. This is a flexible system in 

which model setups (called stacks) can be developed and used for different simulation tasks. 

The model currently has three different methods for simulating snow accumulation and 

storage, and they are yet to be evaluated. 

Available snow data is usually obtained by satellite digital data and/or field measurements. 

The typical pursued data is Snow Covered Area, Snow depth and, as it is directly related, Snow 

Water Equivalent. 

1.2. Objective 

The main objective of this report is to evaluate the three different snow routines implemented 

in SHyFT (Statkraft’s Hydrological Forecasting Toolbox) against observed snow data such as 

satellite images or field measurements.  

1.3. Structure of the report 

The report is divided into 10 chapters: 

1. Introduction: short background of the topic, main objective of the thesis and 
presentation of the organization of the report. 

2. Literature review: information about the three different snow models in SHyFT. 
3. Study area: description of the region of interest. 
4. Data and work methodology: description of the working steps throughout the study. 
5. SHyFT: introduction to the Statkraft’s Hydrological Forecasting Toolbox. 
6. Model calibration and validation: results of the process of calibration and validation of 

the three models. 
7. Snow simulations: results of the snow data obtained from SHyFT. 
8. Results and discussion: anaylisis of the results and further comments. 
9. Conclusions. 
10. References: bibliography.  
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2. LITERATURE REVIEW 

This section describes the three snow routines implemented in SHyFT. 

2.1. Gamma snow model 

The Gamma –Snow routine is a snowmelt routine based on the gamma snow distribution. The 

gamma snow distribution simulates the evolution of snow storage within each cell of the grid 

in the model. It is an important aspect of the snow melt routines and describes the 

relationship between the Snow Covered Area (SCA) and the mass balance of the snowpack, 

represented by a Snow Depletion Curve (SDC). 

In numerical hydrological snow models, the SDC is often used as a tool to explain the spatial 

variability in the snowpack within the elements of the model. It describes how SCA reduces 

gradually through the melt season and, moreover, relates the SCA to its respective Snow 

Water Equivalent (SWE), which is a model derived response variable. 

The SDC can be understood as [1]: 

 The cumulative probability distribution characterizing the subgrid heterogeneity of 

point snow storage X at the start of the melt season (left axis in Figure 2.1). 

 The SCA as a function of accumulated snow melt depth 𝜆 (right axis in Figure 2.1). 

In Figure 2.1, the parameters 𝐴𝑜, 𝑚 and 𝑐𝑣 remain constant during the melt season. The 𝜆 

state also divides the initial snowpack into already melted and still remaining snow. Of these 

four, only 𝜆 changes throughout the melt season. Gamma is a shape-scale distribution in which 

𝜆 and 𝑚 occur only as a ratio; thus, any change in 𝑚 can be counterbalanced by a similar 

scaling of 𝜆(𝑡)for all 𝑡, without changing shape of the SDC. 

 

Figure 2.1. Snow Depletion Curve (SDC). 

The principle of the Snow Depletion Curve as it is applied in each grid cell individually can be 

stated as follows: 
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At the start of the melt season, the SDC represents the spatial heterogeneity of the point snow 

storage 𝑥 within the grid cell. It is parameterized by the average storage 𝑚, the coefficient of 

variation 𝑐𝑣, and the initial bare ground fraction 𝐴𝑜. During the snow melt season, these 

parameters are kept constant, and the SDC gives the fractional bare ground 𝑃(𝑥)as a function 

of the accumulated melt depth 𝜆, which is assumed constant over the grid cell. During this 

period, the mass balance components Q and SWE are also functions of 𝜆, and divide the initial 

snow pack 𝑚 into accumulated snowmelt runoff and remaining snow storage, respectively. 

The curve shown in Figure 2.1 is given a 3-parameter model: 2 of them refer quantitatively to 

the snowpack by a Gamma distribution and the third one quantifies the maximum SCA in the 

cell during the snowmelt process. 

The model for a single cell is described by the following equations: 

𝐴(𝑡) = 𝐴0 · {1 − 𝐹[𝜆(𝑡)]} 

𝐹[𝜆(𝑡)] = ∫ 𝑝(𝑥; 𝑚, 𝑐𝑣)𝑑𝑥 = 𝛾 (
1

𝑐𝑣2
,

1

𝑐𝑣2
·

1

𝑚
)

𝜆(𝑡)

0

 

Where, 

 𝑝 probability density function (PDF). 

𝐹( ) cumulative probability distribution function. The value of F equals the 

Incomplete Gamma Function, 𝛾, with shape and scale arguments. 

 𝐴(𝑡) Snow Covered Area of the cell at a time 𝑡. 

 𝑚 average Snow Water Equivalent. 

 𝑐𝑣 coefficient of variation at the beginning of the melt season. 

 𝐴0 Snow Covered Area at the beginning of the melt season. 

 𝜆(𝑡) accumulated melt depth since the beginning of the melt season. 
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2.2. HBV model 

2.2.1. General overview of the model 

HBV is an acronym formed from Hydrologiske Byrån avdeling för Vattenbalans at SMHI, 

Sweden. 

The HBV-model is a hydrological model widely used for making runoff/inflow forecasts to 

hydropower systems and for making streamflow records for hydrological analyses in Norway, 

Sweden, Finland and some other many countries in and outside Europe. 

Among the classifications of the different existing hydrological models, the HBV-model can be 

classified as: 

- Linear model. Most of the mathematical expressions used by the model are linear. 

There are few of them nonlinear though. 

- Lumped model. The catchment is handled as a homogeneous one unit, so the 

parameters of the model apply to the whole surface area and there is no consideration 

of spatial distribution. However, the first routine of the model (snow routine) runs as a 

distributed model, or better said, as a semi-distributed model. 

- Conceptual model. The HBV-model is a deterministic, conceptual model. The principal 

physical elements of the catchment are represented in the model (typically, internal 

storages), as well as the main hydrological processes and their interrelations in a 

simplified form. Also, the internal states of the model are represented in the model 

(same input may yield different output depending on initial states). The conceptual 

models can be seen as grey boxes and are specially needed when amount, timing and 

variation pattern are important. 

- Calibration is needed. 

The HBV-model can be used for many different tasks. Some of them are listed here: 

- Simulate catchment runoff, snow, soil moisture, etc. 

- Extend or fill gaps in incomplete runoff series. 

- Create “representative” runoff series in ungauged catchments. 

- Make short-time (0-10 days) forecasts for future runoff/floods. 

- Make long-time (1 week to 12 months) predictions for runoff, snow, soil moisture, etc. 

- Produce statistics like Qnormal, Qmax, Qmin, Qp75%, Qp25%,… for flow, snow, soil moisture, 

etc. based on the current wetness situation of the catchment. 
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Figure 2.2. Examples of tasks in HBV. 

2.2.2. Main components in the HBV model 

The main structure of the HBV-model is a sequence of submodels [2]. Although this study is 

focused only on the three snow stacks in SHyFT, a brief introduction to all of the routines in 

the HBV-model is here presented: 

 Snow routine: the model computes snow accumulation and melt in the catchment 
based on precipitation and air temperature input data. The main processes in this 
routine are Type of precipitation, Snow accumulation and Snowmelt. 

 Soil moisture routine: the model computes storage of water in upper soil, 
evaporation from soil and vegetation (evapotranspiration) and runoff generation. 

 Upper zone: the model computes the storage in surface water and in the active 
part of ground water. It transforms the runoff generation to a runoff hydrograph 
by accounting for transport delay and attenuation. Upper zone computes quick 
runoff. 

 Lower zone: the model computes storage in deep groundwater and lakes, along 
with runoff delay and attenuation. Lower zone computes slow runoff (“Base flow”) 
from groundwater reservoir and lakes. This flow will continue a long time after 
rainfall and/or snowmelt has stopped. 

The next figure sketches the components of the HBV-model introduced above: 
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Figure 2.3. HBV model. 

2.2.3. Meteorological input data in HBV 

One well worth mentioning aspect of the HBV model is the correction of the meteorological 

input data. 

The first input data that the model requires is Area precipitation and Area temperature, 

meaning the area of the catchment. However, in most gauged catchments, it is only available 

point observation data, both of precipitation and temperature. Therefore, these two input 

parameters must be adjusted and calculated from the point observed data. In order to do that, 

the following equations are used: 

𝑃𝑎𝑟𝑒𝑎 = 𝑃𝑜𝑏𝑠 × 𝑃𝐶𝑂𝑅𝑅 × 𝑆𝐶𝑂𝑅𝑅 × (1 + 𝑃𝐺𝑅𝐴𝐷 ×
𝐻𝑎𝑟𝑒𝑎 − 𝐻𝑜𝑏𝑠

100
) 

𝑇𝑎𝑟𝑒𝑎 = 𝑇𝑜𝑏𝑠 × 𝑇𝐶𝐺𝑅𝐴𝐷 × (
𝐻𝑎𝑟𝑒𝑎 − 𝐻𝑜𝑏𝑠

100
) , 𝑑𝑎𝑦𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

𝑇𝑎𝑟𝑒𝑎 = 𝑇𝑜𝑏𝑠 × 𝑇𝑃𝐺𝑅𝐴𝐷 × (
𝐻𝑎𝑟𝑒𝑎 − 𝐻𝑜𝑏𝑠

100
) , 𝑑𝑎𝑦𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

Where, 

 PCORR, SCORR : precipitation correction factors for rain, snow. 

 PGRAD : precipitation increase coefficient with elevation [%/100 meter]. 

TCGRAD : temperature rate with elevation on clear days [ºC/100 meter]. 

 TPGRAD : temperature lapse rate with elevation on cloudy days [ºC/100 meter]. 
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Figure 2.4. Air temperature lapse rate for three different meteorological conditions. 

 

Figure 2.5. Precipitation gradient. 

Experience says that precipitation increases some 3% - 8% every 100 meter, with an average of 

some 5% per 100 meter. However, there are variations between different climate regions. 

Compared to temperature, the precipitation gradient is more difficult to define by observation 

of different gauging stations. This is because precipitation has much greater temporal and 

spatial variation than temperature, and also because precipitation observations are more likely 

to present measurement errors than temperature, such as catch loss due to the wind, 

rain/snow evaporation loss, etc. 

 

 

 

 

Days with precipitation 

Days without precipitation 
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2.2.4. The snow routine of the HBV model 

 

Figure 2.6. The snow routine in the HBV model. 

The two main elements of the Snow routine are the dry snow and the free water in the 

snowpack. Regarding the processes in this routine, the main ones are:  

- Snow accumulation 

- Snow redistribution 

- Snow melt 

- Water accumulation in snow 

- Water refreezing in snow 

- Runoff from saturated snow. 

The input data is the precipitation and the air temperature. 
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Figure 2.7. Main elements of the snow routine. 

Approaches to compute snowmelt 

One approach in order to calculate the snowmelt is by means of the snow energy balance. The 

general equation of the energy balance for snow surface can be written as: 

𝐹𝑒 = 𝐾 + 𝐿 + 𝐻 + 𝐿𝐸 + 𝑅 + 𝐺 

Where, 

 Fe : Net energy flux entering the snowpack (change in storage). 

 K : Net short wave radiation.  

Knet = Kin – Kout = Kin * (1 – albedo) 

 L : Net long wave radiation. 

- Lnet = Lin – Lout 

- Lout = ɛ*σ*Tsurf4 , where ɛ is close to 1 and σ is the Stefan Boltzmann 

constant. 

- Lin = ɛ*σ*Tair4 , where ɛ is the atmospheric emissitivity. 

 H : Sensible Heat. 

- H = constant * Va* (Ta-Ts) , where Va is the wind velocity, Ta is the air 

temperature and Ts is the snow temperature. 

 LE : Latent Heat. 

- LE = constant * Va * (ρa – ρs) , where ro is the water vapour pressure. 

 R : Heat from the rain. 

 G : Heat from the ground. 

The next figure shows the fluxes of energy that take part in the energy balance: 
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Figure 2.8. Sketch of the snow melt energy balance. 

In the sketch, all fluxes are positive when directed into the snowpack. The sensible heat and 

the latent heat present typically negative values and that is why they are plotted exiting the 

snowpack. Also, the heat from the ground and the heat from the rain are often neglected from 

the balance. 

Once the net energy flux entering the snowpack (Fe) is known, the daily rate of snowmelt in 

millimetres per day can be obtained as follows: 

𝑀 [
𝑚𝑚

𝑑𝑎𝑦
] = 1000 ∗

𝐹𝑒 [
𝑘𝐽

(𝑚2 ∗ 𝑑𝑎𝑦)⁄ ]

ℎ𝑓 [
𝑘𝐽

𝑘𝑔⁄ ] ∗ 𝜌𝑤 [
𝑘𝑔

𝑚3⁄ ] ∗ 𝐵[−]

 

Where, 

 hf: latent heat of fusion. 

 ρw: density of water. 

 B: thermal quality of the snowpack i.e. fraction of ice in a unit mass of snow. 

However, the practical difficulty of this physical approach relies on its large input data 

requirements: precipitation, air temperature, air humidity, short and long wave radiation, 

albedo, cloud cover, wind, thermal quality of the snowpack… This approach is therefore 

rejected. So what is the HBV-model approach in the snow routine? 

Snowmelt has a strong correlation to air temperature: 

𝑆𝑁𝑊𝑀𝐿𝑇 = 𝐶𝑋 ∗ (𝑇𝑎 − 𝑇𝑠) 
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Figure 2.9. HBV model air temperature approach. 

This is the approach used by the HBV-model. 

 

Figure 2.10. Physical processes in the HBV snow routine. 

Where, 

 Ta: Air temperature (average for the period). 

Tx: Threshold temperature between rain and snow. 

Ts: Threshold temperature between snowmelt and snow refreezing. 

CX: Degree-day factor, [mm/(ºC . day)]. 

CFR: Degree-day factor for refreezing. 
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ST: Maximum capacity of snow water = SN * CPRO 

CPRO: Maximum ratio free water in the snowpack. 

The amount of water that will flow to the next routine (the soil moisture routine), INSOIL, will 

be positive when SW exceeds ST. The water balance in the routine can be then expressed as: 

∆(𝑆𝑁 + 𝑆𝑊) = 𝑃𝑟𝑒𝑐𝑖𝑝 − 𝐼𝑁𝑆𝑂𝐼𝐿 

However, there are still some shortcomings in this process: the correlation between snowmelt 

and air temperature is not identical in all catchments. Therefore, the Degree-day factor, CX, 

and the Threshold temperature, Ts, must be calibrated. 

The snow routine as a semi-distributed hydrological model 

There are some factors that make it convenient and necessary for the HBV-model snow 

routine to work as a distributed (semi-distributed) hydrological model. These are the 3 

different distributions that are considered in the routine: 

a. Elevation distribution: 

It is easy to understand that many meteorological and hydrological parameters such as snow 

accumulation, precipitation or air temperature vary significantly with elevation. Indeed, more 

snow accumulates at higher elevation due to higher precipitation and lower air temperature. 

Since air temperature is influenced by elevation, precipitation type (rain/snow) is therefore 

also affected by elevation, as well as the snow melt rate. 

Consequently, the catchment must be divided into a number of zones (typically 10 zones) from 

the lowest to highest levels, and compute snow accumulation and snowmelt separately in 

each zone. 

In order to do that, the Area-Elevation or Hypsographic curve is constructed for the catchment 

and pairs of Precipitation-Temperature are assigned for each interval zone: 

 

Figure 2.11. Distribution 1: elevation zones. 
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b. Forested areas and open areas: 

Another issue to take into account is whether the catchment is a forested area or a bare area. 

The following factors are directly affected by this matter: 

- Snow interception and snowpack redistribution is different for forested parts 

compared to bare areas. 

- Net incoming radiation to snow surface is different for forested parts 

compared to bare areas. 

- Wind over snow surface is different for forested parts compared to bare areas 

(turbulent energy transfer as well). 

Hence, having separate melt factor, melt threshold and snow distributions in forested parts 

compared to forest free areas is important and necessary for a successful output in the model. 

 

Figure 2.12. Distribution 2: forested and open areas. 

 Forested zone:  𝑆𝑁𝑊𝑀𝐿𝑇𝑁 = 𝐶𝑋𝑁 ∗ (𝑇𝑎 − 𝑇𝑆𝑁) 

 Forest free zones:  𝑆𝑁𝑊𝑀𝐿𝑇 = 𝐶𝑋 ∗ (𝑇𝑎 − 𝑇𝑆) 

 

c. Statistical distribution within each zone: 

This distribution is made because of the effect of wind on snow distribution across irregular 

terrain surface. 

- The zone area is partitioned into 5 different snow depth blocks. 

- Individual snow accumulation and snowmelt is calculated for each block. 
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2.3. Skaugen snow model 

The Skaugen snow model, by Thomas Skaugen and Onof in 2014 and later Skaugen and 

Mengistu in 2015, is a rainfall-runoff model written in the programming language R and runs 

operationally at daily and 3-hourly time steps at the Norwegian flood forecasting service at the 

Norwegian Water Resources and Energy Directorate (NVE) [3]. 

The Skaugen snow model, also called Distance Distribution Dynamics model (DDD), was 

developed with the objective of reducing as much as possible the need of calibration against 

runoff. A reduced number of parameters to be calibrated, while maintaining the accuracy and 

detail required by modern hydrological models, will reduce parameter and model structure 

uncertainty and improve model diagnostics [4]. The model has a majority of its parameters 

estimated directly from observed data such as maps and runoff characteristics. Input to the 

DDD model is precipitation and temperature. 

Regarding the name DDD, the model drives the dynamics of runoff from the distribution of 

distances from points in the catchments to the nearest stream. This distribution is unique for 

each catchment and is obtained from a geographical information system (GIS). 

The model is semi-distributed: 

 Rainfall, snowmelt and snow accumulation are performed for 10 different elevation 

zones of equal area. 

 Catchment average precipitation and temperature are distributed to the elevation 

zones using calibrated lapse rates. Average precipitation is corrected by multiplying 

with a constant in order to get a correct long-term water balance. 

Snowmelt is estimated using a degree-day model: the generated melted discharge is a linear 

function of the difference between air temperature and a calibrated threshold melting 

temperature. 

The current routine in DDD for spatial Probability Density Function (PDF) of Snow Water 

Equivalent (SWE) is the Snow Distribution Log-Normal. This routine, SD_LN, distributes SWE log 

normally in space with a fixed and calibrated coefficient of variation (CV). In this routine, the 

PDF is modelled as the sum of uniform and log-normally distributed snowfall events [5]. The 

distribution is constant up to a certain specified threshold of accumulated SWE. 

Every other snowfall event is log-normally distributed through a calibrated CV, 𝜃𝐶𝑉, and SWE is 

estimated for nine quantiles and added to previous quantile values. This approach gives every 

other snowfall event a spatial distribution of a fixed shape (through the calibrated CV, 𝜃𝐶𝑉), 

without taking into account the intensity of the event. 

Furthermore, this method assures a perfect spatial correlation: a new snowfall event is 

distributed in such a way that the quantile with the highest SWE always gets the most SWE so 

that the coefficient of correlation of the sum of the events remains constant. 

Let the next simple example show this: 
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Let 𝑍 be the accumulation of snow water equivalent of the sum of two different snowfall 

events, 𝑍 = 𝑦1 + 𝑦2, where 𝑦 is log-normally distributed with mean 𝜇𝑦 and variance 𝜎𝑦
2. 

This way, the mean of 𝑍 is 𝐸(𝑍) = 2𝜇𝑦 and the variance is 𝑉𝑎𝑟(𝑍) = 𝜎𝑦
2 + 𝜎𝑦

2 + 𝐶𝑂𝑉(𝑦1, 𝑦2). 

With perfect correlation the variance equals 𝑉𝑎𝑟(𝑍) = 𝜎𝑦
2 + 𝜎𝑦

2 + 2𝜎𝑦
2 and it is easily 

observed that the coefficient of correlation, CV, for 𝑍 equals that of 𝑦: 

𝐶𝑉𝑍 =
𝜎𝑍

𝜇𝑍
=

2𝜎𝑦

2𝜇𝑦
= 𝐶𝑉𝑦 

The spatial distribution of melt is constant and reduction in Snow Covered Area occurs when 

the Snow Water Equivalent associated with a quantile becomes 0 [3]. The fraction of snow-

free areas is thus the sum of quantiles with zero SWE. 

Among the relevant model parameters for snow accumulation and snowmelt, which are 

estimated by calibration against runoff, the following ones can be listed: 

- 𝜃𝐶𝑉 : describes the spatial distribution of SWE. 

- 𝜃𝐶𝑋 : degree-day factor. 

- 𝜃𝑊𝑠
 : maximum liquid water content in the snowpack. 

Some of the parameters of the DDD model are given values obtained through experience in 

calibrating DDD for gauged catchments in Norway. Some others, however, are assigned 

standard values as suggested in different literature. 
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3. STUDY AREA 

This section will focus on the location, climate conditions and hydro-meteorological 

characteristics of the catchment for this study. 

3.1. Background 

Norway is a Nordic country laying between 57° and 81° N in latitude and 4° and 32° E in 

longitude. It represents the western part of Scandinavia and it shares border line with Sweden, 

Finland and Russia, as it can be seen in Figure 3.1. 

 

Figure 3.1. Map of Norway. 
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Norway has abundant rivers and lakes that have been organised into 16 river basin districts, 

out of which 10 are international sharing water courses with Sweden and Finland to the east, 

and the remaining 6 are solely Norwegian [6]. 

 

Figure 3.2. River basin districts in Norway. 
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Each river basin district is subdivided into smaller catchments as can be seen in Figure 3.3 [7] 

 

Figure 3.3. Catchments in Norway. 

Among all the catchments in Norway, the area of study of this work is the Nea-Nidelva river 

basin. 

3.2. Nea-Nidelva River Basin 

3.2.1. Location and topography 

Nea-Nidelva River Basin is defined in the central part of Norway, in Sør-Trøndelag, between 

latitude 63° and 64° N, and longitude 10° and 12° E. 

The total area of the catchment is 3661 km2 and the lowest outlet lies in the fjord of 

Trondheim, end of the Nidelva river. Important rivers in the Nea-Nidelva river basin are the 

Nidelva, Nea, Rotla, Lødølja, and Tya. Amongst the biggest lakes are Sylsjön, Nesjøen, 

Stugusjøen, Finnkoisjøen, and Selbusjøen. 
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Figure 3.4. Nea-Nidelva River Basin in Norway [7]. 

The elevation difference of the catchment varies between 1 masl and 1789 masl. The next 

figures show the elevation distribution throughout the catchment and the corresponding 

hypsographic curve [8]. 

 

Figure 3.5. Elevation distribution of Nea-Nidelva. 
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Figure 3.6. Hypsographic curve of Nea-Nidelva. 

From the previous hypsographic curve, it can be said that about 90 percent of the total area of 

the catchment falls below the height of 976 masl. For the lower region, the elevation 

distribution is quiet uniform: the area under a certain height increases a 10 percent almost 

every 100 m. 

Note: since the snow data for the comparison later in this work was available for the south-

east side of the catchment, the following subsections regarding meteorological description will 

present time series diagrams from gauging stations within that region. 

 

Figure 3.7. Region of interest in the catchment. 
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3.2.2. Precipitation 

The normal annual precipitation of the catchment for the period between 1971 and 2000 can 

be illustrated as follows [9]. 

 

Figure 3.8. Normal annual precipitation (1971-2000). 

It can be seen that the normal annual precipitation for the different points in the catchment 

takes values between 750 and 2000 mm. 

Regarding the region of interest in the study, the normal annual precipitation for the same 

period takes a value of 909.5 mm and the variation in time can be plotted as [9]: 

 

Figure 3.9. Annual Precipitation Nea-Nidelva. 
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3.2.3. Temperature 

The normal annual temperature of the catchment for the period between 1971 and 2000 can 

be illustrated as follows [9]. 

 

Figure 3.10. Normal annual temperature (1971-2000). 

It can be seen that the normal annual temperature for the different points in the catchment in 

that period takes values approximately from -3ºC to 8ºC. 

Regarding the region of interest in the study, the normal annual temperature for the same 

period takes a value of -1.4ºC and the variation in time can be plotted as [9]: 

 

Figure 3.11. Annual Temperature Nea-Nidelva. 
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3.2.4. Snow 

The Snow Water Equivalent (SWE) represents the amount of liquid water that is contained in a 

certain volume of snow. It depends on the density of the snow in each case, which depends on 

the age or the type of the snow in consideration. It can be understood as the depth of liquid 

water that would theoretically result if the whole snow pack instantaneously melted [10]. 

It can be simply calculated as: 

𝑆𝑊𝐸 [𝑚𝑚] = 𝑠𝑛𝑜𝑤 𝑑𝑒𝑝𝑡ℎ [𝑚𝑚] ∗
𝑠𝑛𝑜𝑤 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑘𝑔 𝑚3⁄ ]

𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [𝑘𝑔 𝑚3⁄ ]
  

However, one can distinguish between SWE and Snow Depth. In fact, many institutions such as 

the Norwegian Water Resources and Energy Directorate analyse and map both of them 

separately. 

The normal annual maximum of snow amount in mm of water equivalent of the catchment for 

the period between 1971 and 2000 can be illustrated as follows [9]: 

 

Figure 3.12. Normal annual maximum of snow amount (1971-2000). 

It can be seen that the normal annual maximum of snow amount for the different points in the 

catchment in that period takes values approximately from 50 to 1000 mm of water equivalent. 

Regarding the region of interest in the study, the normal annual maximum of snow amount for 

the same period takes a value of 459.81 mm of water equivalent and the variation in time can 

be plotted as [9]: 
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Figure 3.13. Annual maximum of snow amount in mm of water equivalent. 

Regarding the snow depth in cm of snow cover or snowpack, the normal annual maximum of 

snow depth in cm of the catchment for the period between 1971 and 2000 can be illustrated 

as follows [9]: 

 

Figure 3.14. Normal annual maximum of snow depth (1971-2000). 

It can be seen that the normal annual maximum of snow depth for the different points in the 

catchment in that period takes values approximately from under 25 to 400 cm of snowpack. 

Regarding the region of interest in the study, the normal annual maximum of snow depth for 

the same period takes a value of 138.4 cm of snowpack and the variation in time can be 

plotted as [9]: 
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Figure 3.15. Annual maximum of snow depth in cm of snowpack. 

Now that both snow water equivalent and snow depth have been presented, it is interesting to 

see the type of snow for the same period, which relates to the snow density. The Norwegian 

Water Resources and Energy Directorate also provides data about number of days with dry 

snow per year. 

 

Figure 3.16. Normal number of days with dry snow per year (1971-2000). 

It can be said that the values along the catchment vary from 10 to around 200 days of dry 

snow per year. For the specific point of the study, that value lies around 50-100 days per year. 
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3.2.5. Land cover 

NEVINA is an interactive map tool which allows the user to calculate catchments, field 

parameters, climatic parameters and flow indexes for a freely chosen point along the 

Norwegian river system network [8]. 

Also, when defining a catchment, NEVINA calculates different parameters and allows the user 

to download a report as the outcome. The next figures show some sections of this report for 

the Nea-Nidelva catchment. 

 

Figure 3.17. Nea-Nidelva catchment surface with NEVINA. 

Amongst the different data that this map tool provides, it shows the different land cover as 

percentages of the total area: 

Type of land cover Percentage of total area 

Cropland 2.6 % 

Swamp 11.7 % 

Sea 6.8 % 

Forest 36.4 % 

Bare mountain 29.8 % 

Urban 1.2 % 

Others 11.5 % 

Table 3.1. Land cover distribution of Nea-Nidelva. 
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3.2.6. Gauging stations 

The Nea-Nidelva River Basin has multiple hydro-meteorological gauging stations throughout its 

surface.  

NVE Atlas is the main map tool of NVE on the Web. It contains most of the thematic geo-data 

from NVE. Examples: Catchments, lakes, rivers, annual runoff, embankments, areas prone to 

flood, hydro power plants, wind power plants, hydrological gauging stations and bathymetric 

maps for about 600 lakes [7]. 

 

Figure 3.18. Hydro-meteorological stations in Nea-Nidelva. 

Where, 

 
Water level, water supply 

 
Snow 

  
Meteo 

Table 3.2. Legend of types of gauging stations in Figure 1.18. 
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4. DATA AND WORK METHODOLOGY 

This section will summarize the step-wise procedure carried out by the author of the thesis 

during the data preparation period. 

Observed snow data 

The purpose of this master thesis is to evaluate the SHyFT snow routines against observed 

snow data from satellite images and snow measurements in the field. This data was obtained 

by Statkraft and handed to the student in excel format. 

The snow data was available from 2012 to 2016 and contained the measurements through the 

same 9 snow transects per year. The following information was given for each transect: 

 Date of recording. 
 Average depth [m]. 
 Signal velocity [m/ns]. 
 Average SWE [mm]. 
 Snow density Equation. 
 UTM Zone, Easting and Northing coordinates of every measurement along the 

transect. 
 Time, Altitude, Snow depth, SWE and Snow density of every measurement along the 

transect. 
 Radar information. 

Among all, one of the most important data was the geographical position of the 

measurements, i.e. the location of the snow transects, which in the case was given by Easting 

and Northing positioning in UTM Zone. 

The reason why this information was very important is that being able to compare simulated 

results in SHyFT against real snow data at the same points makes the discussion much more 

reasonable. Moreover, comparing the available snow data against, for instance, the simulated 

results for the whole catchment would not give any trustable conclusions. 

SHyFT is able to perform the simulations at different levels of action: one can run SHyFT and 

extract different variables such as Discharge, Snow Covered Area or Snow Water Equivalent for 

the whole catchment, for one particular subcatchment or even for one single cell of the grid if 

needed. 

Therefore, once the location of the snow transects were known, one of the first steps was to 

find which cells represented the closest points to the real location of the available snow data in 

the catchment. In order to do that, the next steps were followed: 

Note: the following map with the location of the average point of each transect was made with 

Google Maps [11] and the coordinates were transformed from UTM to (lat, long) with the free 

online software Zonum Solutions [12]. 

Note: the maps with all the measurements per snow transect can be found in Appendix 1. 
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i. First, the average Easting and Northing coordinates of the measurements per snow 

transect were calculated and converted into geographical latitude and longitude 

coordinates: 

Transect E (X) N (Y) UTM Zone H [m] Latitude, Longitude 

1 339326.60 6989695,99 33V 743,53 63.01, 11.83 

2 342280.30 6994911,28 32V 955,14 63.05, 11.88 

3 345338.88 7005640,31 32V 874,17 63.15, 11.93 

4 352837,21 6990820,77 33V 982,93 63.02, 12.09 

5 362407,87 6979930,88 33V 1065,9 62.92, 12.29 

6 365996,50 6970158,03 33V 987,62 62.84, 12.37 

7 360123,68 6966759,96 33V 1215,08 62.80, 12.26 

8 359276,13 6975010,07 33V 959,87 62.88, 12.23 

9 348807,54 6981941,38 33V 999,69 62.94, 12.02 

Table 4.1. Average coordinates of each snow transect 

These coordinates represent the next points in the map: 

 

Figure 4.1. Map of the average points of each snow transect. 

ii. In ShyFT, each cell of the grid has a geo-location (x, y, z), expressed in UTM Zone 33V 

coordinates. In order to find the closest cells to the average points of each snow-

transect, the geo-location of every cell was printed as: 
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[…] 

cells = simulator.region_model.get_cells() 

x = np.array([cell.geo.mid_point().x for cell in cells]) 

y = np.array([cell.geo.mid_point().y for cell in cells]) 

for i in range (0, 3661) 

  print(“X: “, x[i], “Y: “, y[i]) 

 

iii. The previous code showed the E (X) and N (Y) coordinate of every cell in the grid of the 

catchment. The result of plotting all those coordinates is the shape of the Nea-Nidelva 

catchment, as it should be. 

 

Figure 4.3. Plot of the 3662 cells contained in the grid of Nea-Nidelva catchment. 

Once the coordinates of every cell were printed out, the most representative ones 

were chosen by simple comparison: 

Transect E (X) N (Y) E (X) N (Y) cell # 

1 339326,6 6989695,99 339333 6990549 1003 

2 342280,3 6994911,28 342500 6994500 51 

3 345338,88 7005640,31 345500 6990500 148 

4 352837,21 6990820,77 352500 6991500 337 

5 362407,87 6979930,88 362500 6980500 857 

6 365996,5 6970158,03 366500 6969500 906 

7 360123,68 6966759,96 360500 6967500 800 

8 359276,13 6975010,07 359500 6974500 786 

9 348807,54 6981941,38 348502 6981502 211 

Table 4.2. Selection of the cells in SHyFT. 
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Figure 4.2. Code in SHyFT for printing the X and Y coordinates of the cells. 
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The following graphs and tables show the accuracy of the selection process and the 

error in value committed in each case: 

 

 

Figure 4.4. Comparison in Easting (X) coordinate between the snow transects and the 
respective chosen cells. 

 

325000

330000

335000

340000

345000

350000

355000

360000

365000

370000

1 2 3 4 5 6 7 8 9

Transect # 

Easting (X) 

transect

cell

R² = 0.9993 

335000

340000

345000

350000

355000

360000

365000

370000

335000 340000 345000 350000 355000 360000 365000 370000

Ea
st

in
g,

 c
el

ls
 

Easting, transects 

Comparison in Easting coordinates 



M.Sc. Thesis  Ullibarri Lombraña, Joseba 

32 
 

 

 

Figure 4.5. Comparison in Northing (Y) coordinate between the snow transects and the 
respective chosen cells. 

Both comparison plots give high values of R^2, which means that the selection of the cells has 

been successful. 

The next table shows numerically the difference of the Easting and Northing coordinates 

between the transects and their respective chosen cells: 
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ΔE(X) ΔN(Y) 

6,4 853,01 

219,7 411,28 

161,12 15140,31 

337,21 679,23 

92,13 569,12 

503,5 658,03 

376,32 740,04 

223,87 510,07 

305,54 439,38 

Table 4.3. Difference in value of the snow transect coordinates with their respective chosen 
cells. 

 

 

Figure 4.6. Difference between the snow transect coordinates with their respective chosen 
cells. 

Note: the value of “ΔNorthing (ΔY)” in the snow transect number 3 was not representative so it 

was decided to leave it out of the plot in order not to distort the graph. 

Looking at the previous results, it can be concluded that the error values are barely negligible 

compared to the values of the coordinates and that the selection of the cells was good enough 

to carry on with the study. 

The following graph shows in columns the average Snow Water Equivalent per transect and 

year collected by Statkraft and analysed by the student: 
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Figure 4.7. Average Snow Water Equivalent per transect and year (observed data by 
Statkraft). 

Finally, the numerical values, expressed in mm of water equivalent, of the average Snow 

Water Equivalent per transect and year provided by Statkraft can be read in the following 

table: 

  April 2012 April 2013 April 2014 April 2015 April 2016 

1 574,59 372,23 312,52 427,82 422,48 

2 1352,91 541,49 402,82 521,39 765,8 

3 771,6 483,14 290,91 411,47 478,35 

4 765,88 440,58 344,31 331,23 539,54 

5 1159,25 689,97 425,27 581,41 627,1 

6 475,22 522,06 335,07 390,43 455,46 

7 429,57 352,3 237,18 379,36 419,99 

8 613,33 541,55 383,12 478,08 484,48 

9 632,21 336 213,44 281,95 397,78 

Table 4.4. Average SWE per transect and year, expressed in mm of water equivalent. 

All the field measurements of snow were performed within the first 10 days of April each year. 

Hydro-meteorological data 

SHyFT is a distributed hydrological model, thus, climate variables along with physiographic 

data are needed as input. In the case of this study, all this data for the Nea-Nidelva catchment 

was provided by Statkraft from AROME met data instead of using the already implemented 

gauging stations situated throughout the catchment. This AROME data package contained 

registered meteo data from 01/09/2012 to 03/10/2015.  

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9

SW
E 

[m
m

] 

Snow transect 

Average SWE per transect 

April 2012

April 2013

April 2014

April 2015

April 2016



M.Sc. Thesis  Ullibarri Lombraña, Joseba 

35 
 

5. SHyFT 

This chapter will describe in detail the modelling tool that has been used during the work. 

5.1. Introduction 

The Statkraft Hydrologic Forecasting Toolbox (SHyFT) is an open source hydrological modelling 

toolbox developed by Statkraft. It has been optimized for highly efficient modelling of 

hydrological processes following the paradigm of distributed and lumped models, but recent 

developments have introduced more physically based and process-level methods. The code is 

based on an early initiative for distributed hydrological simulation, called ENKI funded by 

Statkraft and developed at Sintef [13].  

SHyFT is used for forecasting inflow in the Statkraft system. This is a flexible system in which 

model can be custom designed for various purposes. The SHyFT toolbox currently has three 

different methods for simulating snow accumulation and storage, and these are yet to be 

evaluated with snow data. 

The software provides a high level Python based interface to a modern C++ based underlying 

API [14]. 

5.2. Requirements and installation procedure 

All necessary requirements for a successful installation and run of SHyFT in Windows can be 

found in Appendix 2 (sections A and B). 

5.3. Model set up 

SHyFT is developed to work in an operational environment. It is made out of a subsequence of 

routines and built in a way that it is user-friendly from the beginning.  

The arrangement of the folders and subfolders of SHyFT is the one that can be seen in Figure 

4.1. Here it is also shown the location of the input files, program files and configuration files. 

Please note that the files shown in Figure 1 are the ones that have been used in this study. 
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Figure 5.1. SHyFT set up and folders arrangement 
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The folder C:\shyft\shyft contains the subfolders api, orchestration, repository and tests. A 

brief explanation of these four is given as follows: 

 api 

This subfolder contains the python wrappers for the shyft core, which contains basic 

data structure, cell-models, models and algorithms. 

 orchestration 

The orchestration folder contains the infrastructure to read the orchestration code. 

This code uses YAML configuration files to define a simulation run or a calibration. 

In order to successfully run a simulation in SHyFT, incoming observed data such as 

meteorological or hydrological data must be ingested. This process of data ingestion is 

called orchestration. Prior to it, there is usually a round of calibration to fill up the 

internal data structure of SHyFT. 

The core of SHyFT is written in C++. However, all the orchestration code is written in 

Python and allows the user to add any other own code. 

 repository 

The repository folder contains the python code that can read the data collected and 

feed it to the SHyFT core. 

 tests 

This folder makes the integral part of operation of SHyFT. It contains the information 

of all routines involved with their respective equations and methods. 

The subfolder netcdf contains all the YAML configuration files which are crucial for 

SHyFT operation. A list of these can be found in Table 5.1. 

 

The next table, Table 5.1, expands the list of Input Files, Program Files and Configuration Files 

that have been used in this study and were shown in Figure 4.1. 
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INPUT FILES 
arome_merged_Nea-

Nidelv_Buffer5km_Chunck64x64x32_Complevel4_TimeUnlimited.nc 

PROGRAM FILES 

    - Run_Shyft_Q.py 

    - Run_Shyft_SCA.py 

    - Run_Shyft_SWE.py 

    - Calib_Shyft.py 

CONFIGURATION 
FILES 

    - neanidelva_region.yaml 

    - neanidelva_datasets.yaml 

    - neanidelva_interpolation.yaml 

    - neanidelva_simulation.yaml 

Gamma 
Snow 

    - neanidelva_model.yaml 

    - neanidelva_calibration.yaml 

HBV snow 
    - neanidelva_model.yaml 

    - neanidelva_calibration.yaml 

Skaugen 
snow 

    - neanidelva_model.yaml 

    - neanidelva_calibration.yaml 

Table 5.1. Input Files, Program Files and Configuration Files in SHyFT 

Note: The codes of all Program Files and Configuration Files are given in Appendix 2 (sections C 

and D). 

5.3.1. Configuration files 

- neanidelva_region.yaml defines the area of study, in this case the Nea-Nidelva river 

basin, and connects it to the available physiographic data contained in shyft-data. 

- neanidelva_datasets.yaml is the calling for the input climate data: precipitation, 

temperature, wind speed, relative humidity and radiation. 

- neanidelva_interpolation.yaml returns the interpolation algorithm in the simulation 

YAML file during the simulation. 

- neanidelva_simulation.yaml calls the region, datasets and model YAML files, asks the 

user to define some parameters such as start time, run time step and number of steps, 

and executes de simulation. 

- neanidelva_model.yaml contains the parameter set obtained after each calibration. 

- neanidelva_calibration.yaml executes the calibration of the model against the input 

discharge netcdf file available in shyft-data. It uses the simulation YAML file as simulator. 

This last two YAML files (model and calibration) vary from one snow routine to another 

one. 
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5.3.2. Program files 

- Run_Shyft_Q.py executes de simulation by importing the simulation YAML file, plots the 

runoff for the indicated period and saves an excel sheet with the respective values. 

- Run_Shyft_SCA.py executes de simulation by importing the simulation YAML file, plots 

the SCA for the indicated period and saves an excel sheet with the respective values. 

- Run_Shyft_SWE.py executes de simulation by importing the simulation YAML file, plots 

the SWE for the indicated period and saves an excel sheet with the respective values. 

- Calib_Shyft.py executes the calibration of the model in question by importing the 

calibration YAML file. 

5.3.3. Input files 

SHyFT model set up requires its input data in netcdf format (Network Common Data 

Frame). As a distributed hydrological model, climate variables along with physiographic 

data are needed as input. In the case of this study, all the data for the Nea-Nidelva 

catchment was provided by Statkraft from AROME met data instead of using the 

different gauging stations situated throughout the catchment. 

5.4. Model structure 

SHyFT is a distributed hydrological model. It works from regional level to cell level by 

distributing the input parameters (climate and hydrological data) into the individual cells. 

Figure 4.2 shows a sketch of the model structure in SHyFT. A description of its elements is 

given afterwards. 
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Figure 5.2. SHyFT model structure 

 Region 

It is a geographic region with some data associated that describes the properties at cell or 

grid level of the region. Physiographic data is treated as static data whereas climate 

parameters as time dependent variables. 

 Model 

It is a computational model that, given input from the region such as static physiographic 

properties, variable climate parameters and initial state data, can compute results, runoff 

forecasts, snow reservoir, new set of state, optimized model parameters, etc. according to 

the method composition and parameters selected. 

 Cell-Model 

The cell model takes initial cell-state, calibration parameters and cell environment inputs 

(precipitation, temperature, etc.) and computes the response and a new cell-state for 

each time step used. 
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6. MODEL CALIBRATION AND VALIDATION 

6.1. Introduction 

Calibration is the process of adjusting the model parameters to the values that make the 

simulation be as close as possible to the observed data. In hydrological modeling, this process 

is vital and it is used to estimate the values of the free parameters. The free parameters are 

those that cannot be measured manually and must be found therefore through the process of 

calibration. 

Calibration can be approached either qualitatively or quantitatively. The former is based on 

visual comparison between observed and simulated plots, while the latter uses numerical 

criteria as a tool to determine the accuracy of the results. Calibration through visual analysis is 

highly subjective due to the lack of numerical foundation. 

On the other hand, the quantitative method defines and uses an objective function. This 

function is an error function that calculates the difference between observed and simulated 

values during the calibration process and represents the goodness of the model performance. 

One of the most widely used objective functions is the Nash-Shutcliffe efficiency criteria (R2): 

𝑅2 = 1 −
∑(𝑄𝑆 − 𝑄𝑜)2

∑(𝑄𝑜 − 𝑄𝑜𝑚
)

2 

Where, 

 Qo Observed runoff 

 Qs Simulated runoff 

 Qom Mean of observed runoff 

𝑅2 takes values from  -∞ to +1; the closer to 1, the better model performance. 

Since the input AROME data is only available for 3 years (from 01/09/2012 to 03/10/2015), 

first two years are used for calibration and the last year is utilized for validating the model. 

 

6.2. Calibration of the parameters 

For this study, the model was calibrated separately for each of the three snow routines 

(Gamma, HBV and Skaugen). 

In order to maximize the R2 coefficient, an automatic calibration was performed using SCE-UA 

and the default values as initial point. The calibration was run from 01/09/2012 to 01/09/2014 

The following tables present the parameters to be calibrated in each model, as well as their 

description, default original values, values after calibration and R2: 
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GAMMA SNOW 

Parameter Description 
Default 
value 

Calibrated 
value 

ae_scale_factor 
Actual evapotranspiration scale 
factor 

1.5 1.5 

fast_albedo_decay_rate 
Albedo decay rate during melt 
[days] 

6.753 6.001 

slow_albedo_decay_rate 
Albedo decay rate in cold 
conditions [days ] 

37.173 30.000 

glacier_albedo Glacier ice fixed albedo 0.4 0.4 

initial_bare_ground_fraction Initial bare ground fraction 0.04 0.04 

max_albedo Maximum albedo value 0.9 0.9 

min_albedo Minimum albedo value 0.6 0.25 

max_water Maximum liquid water content 0.1 0.1 

snow_cv 
Spatial coefficient of variation of 
fresh snowfall 

0.4 0.4 

tx 
Snow and rain threshold 
temperature [ºC] 

-0.575 -0.500 

snowfall_reset_depth 
Snowfall required to reset albedo 
[mm] 

5.0 5.0 

surface_magnitude Surface layer magnitude 30.0 30.0 

wind_const Intercept in turbulent wind function 1.0 3.500 

wind_scale 
Slope in turbulent wind function 
[m/s] 

1.896 0.772 

winter_end_day_of_year End of the winter season 100 100 

c1 First parameter in Kirchner model -3.336 -3.942 

c2 
Second parameter in Kirchner 
model 

0.334 0.549 

c3 Third parameter in Kirchner model -0.125 -1.181 

scale_factor Precipitation correction scale factor 1.0 0.7 

albedo Albedo in Priestley-Taylor stack 0.2 0.2 

alpha Alpha in Priestley-Taylor stack 1.26 1.26 

alpha routing.alpha - 0.9 

beta routing.beta - 3.0 

velocity routing.velocity - 0.0 

NASH (R2) Nash-Shutcliffe efficiency 0.733 

Table 6.1. Parameters to be calibrated in Gamma snow. 

The Gamma snow based model was calibrated three times until the parameters stabilized 

between their lowest and highest limit values. 

1st R2 = 0.726 

2nd R2 = 0.731 

3rd R2 = 0.733 
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HBV SNOW 

Parameter Description 
Default 
value 

Calibrated 
value 

ae_scale_factor 
Actual evapotranspiration scale 
factor 

0.05 0.05 

cfr 
Degree-day factor for snow 
refreezing 

0.005 0.0 

cx Degree-day factor for snow melt 0.5 0.431 

lw Liquid water 0.029 00.145 

ts 
Snow melt and snow refreezing 
threshold temperature [ºC] 

0.144 -0.356 

tx 
Snow and rain threshold 
temperature [ºC] 

0.197 -0.058 

c1 First parameter in Kirchner model -2.534 -4.092 

c2 
Second parameter in Kirchner 
model 

0.565 0.578 

c3 Third parameter in Kirchner model -0.066 -0.011 

scale_factor Precipitation correction scale factor 1.0 1.0 

dtf Glacier melt - 6.0 

albedo Albedo in Priestley-Taylor stack 0.2 0.2 

alpha Alpha in Priestley-Taylor stack 1.26 1.26 

alpha routing.alpha - 0.9 

beta routing.beta - 3.0 

velocity routing.velocity - 0.0 

NASH (R2) Nash-Shutcliffe efficiency 0.755 

Table 6.2. Parameters to be calibrated in HBV snow. 

The HBV snow based model was calibrated five times until the parameters stabilized between 

their lowest and highest limit values.  

1st R2 = 0.692 

2nd R2 = 0.726 

3rd R2 = 0.746 

4th R2 = 0.746 

5th R2 = 0.746 

6th R2 = 0.755 
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SKAUGEN SNOW 

Parameter Description 
Default 
value 

Calibrated 
value 

alpha_0 skaugen_snow.alpha_0 40.77 40.558 

cfr 
Degree-day factor for snow 
refreezing 

0.01 0.010 

cx Degree-day factor for snow melt 2.5 0.586 

d_range Skaugen_snow.d_range 113.0 110.718 

max_water_fraction Maximum water fraction value 0.1 0.345 

ts 
Snow melt and snow refreezing 
threshold temperature [ºC] 

0.16 0.138 

c1 First parameter in Kirchner model -3.336 -3.919 

c2 
Second parameter in Kirchner 
model 

0.334 0.529 

c3 Third parameter in Kirchner model -0.125 -0.020 

ae_scale_factor 
Actual evapotranspiration scale 
factor 

1.5 0.765 

dtf Glacier melt - 6.0 

albedo Albedo in Priestley-Taylor stack 0.2 0.2 

alpha Alpha in Priestley-Taylor stack 1.26 1.26 

alpha routing.alpha - 0.9 

beta routing.beta - 3.0 

velocity routing.velocity - 0.0 

NASH (R2) Nash-Shutcliffe efficiency 0.784 

Table 6.3. Parameters to be calibrated in Skaugen snow. 

The Skaugen snow based model was calibrated five times until the parameters stabilized 

between their lowest and highest limit values.  

1st R2 = 0.737 

2nd R2 = 0.768 

3rd R2 = 0.780 

4th R2 = 0.782 

5th R2 = 0.784 
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6.3. Calibrated simulation 

The three models were updated with the values of the calibrated parameters shown in the 

tables above, and new runoff simulations were run for each of the three snow models. 

The observed runoff data is available at the gauging station called Aune (123.21.0), next to 

Tydal, and it is provided by SeNorge. 

Note: although the river branch is regulated by the reservoir upstream, the observed data for 

the study was analysed and it was accepted to be non-regulated. That way, one is able to use it 

for the comparison with the simulated results obtained from SHyFT.  

 

Figure 6.1. Aune runoff gauging station. 

The same way as in Section 3: Data and Work Methodology, cell number 2745 was found to be 

the closest one to the gauging station coordinates. 

Results of the calibration period are shown in Figure 6.2., 6.3. and 6.4. 

6.4. Validation of the model 

Once the model was calibrated, a new simulation was run from 01/09/2014 to 01/09/2015 to 

validate the model. 

Results of the validation period are shown in Figure 6.5., 6.6. and 6.7. 
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Figure 6.2. Calibration period for Gamma snow. 
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Figure 6.3. Calibration period for HBV snow. 
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Figure 6.4. Calibration period for Skaugen snow. 
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Figure 6.5. Validation period for Gamma snow. 
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Figure 6.6. Validation period for HBV snow. 
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Figure 6.7. Validation period for Skaugen snow.
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7. SNOW SIMULATIONS 

In order to perform the comparison between observed snow data and simulated snow results 

from SHyFT, the three snow routines were run for a simulation period within 01/09/2012 and 

01/09/2015. 

The observed snow data was available as Snow Water Equivalent measurements along 9 

different transects in the south-east region of the Nea-Nidelva catchment (see Section 3: Data 

and Work Methodology). Therefore, the SHyFT code was accordingly modified to extract SWE 

values of the most representative grid cells for the same period. 

All the numerical results are presented in the following tables, where obs stands for Observed 

data and sim, for Simulated data in SHyFT: 

 
GAMMA SNOW SWE [mm] 

 
April 2013 April 2014 April 2015 

transect # obs sim obs sim obs sim 

1 372,23 314,300 312,52 286,6368 427,82 414,087 

2 541,49 362,892 402,82 401,3548 521,39 502,175 

3 483,14 324,072 290,91 290,7888 411,47 360,424 

4 440,58 318,168 344,31 348,5348 331,23 357,306 

5 689,97 306,291 425,27 421,0507 581,41 399,154 

6 522,06 222,501 335,07 337,0466 390,43 300,308 

7 352,3 331,456 237,18 346,9056 379,36 369,008 

8 541,55 251,464 383,12 292,9262 478,08 297,018 

9 336 338,334 213,44 371,9629 281,95 368,718 

Table 7.1. Snow Water Equivalent, Gamma snow routine. 

 

 
HBV SNOW SWE [mm] 

 
April 2013 April 2014 April 2015 

transect # obs sim obs sim obs sim 

1 372,23 315,099 312,52 335,445 427,82 411,074 

2 541,49 368,810 402,82 482,878 521,39 523,592 

3 483,14 272,225 290,91 372,094 411,47 397,738 

4 440,58 370,611 344,31 491,757 331,23 403,074 

5 689,97 361,476 425,27 447,450 581,41 464,083 

6 522,06 237,271 335,07 334,236 390,43 302,288 

7 352,3 427,566 237,18 499,553 379,36 401,926 

8 541,55 251,509 383,12 322,177 478,08 325,569 

9 336 316,517 213,44 397,792 281,95 327,656 

Table 7.2. Snow Water Equivalent, HBV snow routine. 
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SKAUGEN SNOW SWE [mm] 

 
April 2013 April 2014 April 2015 

transect # obs sim obs sim obs sim 

1 372,23 302,224 312,52 315,099 427,82 408,146 

2 541,49 367,359 402,82 482,878 521,39 523,592 

3 483,14 230,462 290,91 297,371 411,47 312,239 

4 440,58 304,805 344,31 364,279 331,23 334,542 

5 689,97 339,188 425,27 432,117 581,41 441,409 

6 522,06 232,321 335,07 339,188 390,43 297,371 

7 352,3 304,805 237,18 367,996 379,36 323,390 

8 541,55 250,906 383,12 311,310 478,08 325,249 

9 336 334,542 213,44 382,865 281,95 353,128 

Table 7.3. Snow Water Equivalent, Skaugen snow routine. 
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8. RESULTS AND DISCUSSION 

8.1. Calibration 

The three models are calibrated and good R^2 values are obtained: 0.733 for Gamma Snow, 

0.755 for HBV Snow and 0.784 for Skaugen Snow. 

Figure 6.2 shows the runoff comparison between observed and simulated discharge after the 

calibration from 01/09/2012 to 01/09/2014 of the Gamma snow model. It can be seen that 

both plots are very alike, except for the second half of year 2013. The double mass plot shows 

a high R2 value of 0.9769. The accumulative plots show a difference in discharge of almost 3 

m3/s.km^2 by the end of the period. 

In the case of the HBV snow model, Figure 6.3, the simulated runoff for the calibration period 

does not match the observed data at all times. However, the double mass curve presents a 

good R2 value of 0.9678. The accumulative comparison shows a difference of 2 m3/s.km^2 by 

the end of the calibration period. 

Regarding the Skaugen snow model, Figure 6.4, the observed and simulated runoffs present 

both similarities and discrepancies. It can be said that the simulated discharge follows the 

trend of the observed data, but the volume of water is not accurate. The double mass curve 

present a value of R2 of 0.9709 and the accumulative plots, a difference in discharge of 4 

m3/s.km^2 by the end of the calibration period. 

8.2. Validation 

Figure 6.5 shows the runoff comparison between observed and simulated discharge for the 

validation period from 01/09/2014 to 01/09/2015 of the Gamma snow model. It can be seen 

that both plots are very alike, except for the observed discharge peak of February 2015, which 

is delayed by the simulation to May 2015. The double mass plot shows a R2 value of 0.9569 

and the accumulative plots show a difference in discharge of approximately 1 m3/s.km^2 by 

the end of the period. 

In the case of the HBV snow model, Figure 6.6, the validation presents  good results of 

observed and simulated discharges after February 2015. The double mass curve gives a R2 

value of 0.9368 and the accumulative plots, a difference in discharge of around 1 m3/s.km^2 

by the end of the period. 

Figure 6.7 shows the simulation of the Skaugen snow model, which is similar to the one of the 

HBV model commented previously. The R2 value of the double mass curve is 0.9618 and the 

difference in discharge of the accumulative plots is approximately 1.5 m3/s.km^2 by the end of 

the validation period. 

8.3. Snow simulations 

First, it was decided to compare the SWE simulation results per year and see which of the 

three years showed the biggest difference between each of the three snow routines. This way, 
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it would be more intuitive to evaluate those discrepancies between them. Once this particular 

year had been selected, the analysis would be carried out focusing on the results of that year. 

The results per year are shown in the following figures, as percentage of difference in values 

between observed and simulated SWE over observed: 

% 𝑜𝑓 𝑑𝑖𝑓𝑓 =
|𝑜𝑏𝑠 − 𝑠𝑖𝑚|

𝑜𝑏𝑠
× 100 

 

Figure 8.1. Difference in SWE, 2013. 

 

Figure 8.2. Difference in SWE, 2014. 
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Figure 8.3. Difference in SWE, 2015. 

The biggest differences between the models along the transects can be found in 2014 and it 

shows how HBV snow lacks accuracy in a greater way than the other two. 

The following potential causes can be commented on: 

8.3.1. Elevation (masl) 

The quality of hydrological modelling depends on how well a model simulates the regional 

detail and topographic characteristics of the region, especially in mountainous regions. 

However, most mountainous regions exhibit higher errors in gridded datasets because they 

are usually based on an uneven number of stations that are mostly located at lower elevations 

[15]. 

That is why elevation was one of the first thoughts to comment on the inaccuracies and 

differences of the models. The snow transects are distributed in the following average 

elevations: 

transect # H [masl] 

1 743,53 

2 955,14 

3 874,17 

4 982,93 

5 1065,9 

6 987,62 

7 1215,08 

8 959,87 

9 999,69 

Table 8.1. Elevation distribution of the snow transects. 
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Reordering from lowest to highest elevation, the percentage of differences can be plotted as 

follows: 

 
Figure 8.4. Difference in SWE, 2014, ordered from lowest to highest elevation. 

This analysis, however, does not provide any too reasonable conclusions. It can be seen that 

none of the three snow routines follows a tendency of higher inaccuracy with elevation in 

masl. 

8.3.2. Forested and bare areas 

Another topic of interest is the location of the measurements and run simulations. In 

hydrological modelling, parameters that indicate and evaluate the fraction of bare ground or 

forested regions are not always included in the different models. 

In the case of this study, Gamma snow and HBV snow routines take into consideration this 

factor. Gamma snow includes in the model set up the initial_bare_ground_fraction parameter 

and HBV snow distinguishes between forested and clear areas. However, the Skaugen snow 

routine does not contemplate this factor. In this case, the points are zones not too forested: 

 

Figure 8.5. Average location points of the snow transects. 
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All the transects are located in zones with similar amount of low vegetation or bare ground. 

However, in the case of number 9, the transect goes from almost the lake up to the higher 

mountainous region next to it (see Appendix 1, Transect 9). This might have caused issues 

when simulating the snow for a single grid cell, approximating one of the cells to that transect, 

which combines different types of ground. It can be seen that transect number 9 presents high 

percentage of difference between observed and simulated snow data. 

8.3.3. Others 

 Redistribution of the snow 

The effect of wind in mountainous regions must not be neglected. Wind redistributes 

the snow cover, which is not contemplated by all hydrological models. The effect of 

wind is often more dependent on the elevation gradient than on the elevation itself; one 

surface might be more affected by the wind if it is part of a hill than another higher in 

elevation but flat one. 

In this study, transect number 9 presents high differences between observed and 

simulated snow data. This transect is located in a mountainous and open area which is 

probably hit by wind during most of the time. Same applies to transect number 7. 

Transects 5 and 6, even though they are located at high elevations, they are not that 

much part of inclined surfaces. 

 Orientation of the surface 

Another important aspect is the incident radiation. More specifically, the heat provided 

by the sun is not the same during all hours in a day. Whether a surface is facing the sun 

during the daylight or during the twilight or evening does make a difference in the snow 

energy balance. 

 Precission of time step 

The hydrological models used in this study have been run at a daily time step, but there 

is the possibility to reduce that step to hourly or even shorter, which would increase the 

accuracy of the simulations and results. 

  



M.Sc. Thesis  Ullibarri Lombraña, Joseba 

59 
 

9. CONCLUSIONS 

The study “Evaluation of snow simulations in SHyFT” calibrated and ran Statkraft’s Hydrological 

Forecasting Toolbox in order to simulate snow data and compare and evaluate it against real 

observed snow measurements from the field. 

This study was applied on the Nea-Nidelva catchment, in central Norway, and more 

specifically, on the south-east part where the observed snow data was available. 

First of all, and becoming the most time consuming task of the work, SHyFT needed to be 

installed and prepared to start running simulations on the personal computer of the author of 

the thesis. After many failures and unsuccessful trials, finally the software was ready to run. 

Due to the fact that the hydro-meteorological input data from AROME was only available from 

2012 to 2015, it was decided to run the calibration period from 2012 to 2014 and the 

validation period of the model from 2014 to 2015. 

The calibration results showed a Nash-Shutcliffe efficiency criteria (R2) of 0.733 for Gamma 

Snow, 0.755 for HBV Snow and 0.784 for Skaugen Snow. Once the three versions of the model 

were calibrated, runoff simulations for the calibration period were performed and compared 

to the available observed discharge data for the same period. The unregulated observed runoff 

data was obtained from SeNorge and was provided from the gauging station called Aune, next 

to Tydal. 

Even though the double mass analysis for the three models gave high values of R2, which 

means that the accuracy of the simulation is good, Gamma snow showed the best results. HBV 

and Skaugen had some discrepancies in both in volume and timing, compared to the observed 

values. However, during the validation period, HBV and Skaugen showed better-simulated 

runoffs than during their respective calibration periods. 

Before starting to simulate snow, the observed snow data was analysed. Measurements of 

Snow Water Equivalent along 9 different snow transects for five years were provided by 

Statkraft. First, the average values of those measurements per transects were obtained. Then, 

in SHyFT, the closest and most representative grid cells to the average points of each transect 

were found. 

In SHyFT, the SWE of those grid cells was extracted for April of the same years as the observed 

data. The comparison was carried out by observing the percentage of the difference between 

observed and simulated discharge per transect, and it was concluded that all of the three 

models present flaws and that the simulations were sometimes poor. 

The models behaved in a way in 2013 and 2015 that they presented close difference values of 

SWE, whereas in 2014, the results of each model differ significantly from each other. 

However, there are other sources of uncertainties not discussed here that may establish a 

range of possible impacts on hydrological simulations. For example, the hydrological model 

used in this study runs at a daily time step, which can be increased to hourly to refine the 

model performance.   
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Appendix 2 

SHyFT 

 

 

A. Requirements 

B. Installation procedure 

C. Configuration files 

a. neanidelva_region.yaml 
b. neanidelva_datasets.yaml 
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A. Requirements 

The following list of programs and packages were to be installed in order to use SHyFT in 

Windows: 

a. GIT Bash and GIT cmd. 

b. A Python3 (3.4 or higher) interpreter. 

c. The SWIG wrapping tool (3.0.5 or higher). 

d. NumPy 

e. netcdf4 

f. gdal 

g. matplotlib 

h. nose 

i. shapely 

j. pyproj 

B. Installation procedure 

The step-wise procedure to get SHyFT running successfully is the one that follows: 

a. Find and download the ShyFT package at: https://github.com/statkraft/shyft 

b. Install GIT from: https://git-scm.com 

c. In the GIT window, using the comand ”cd”, change the directory to where ShyFT will be 

unpacked. 

d. In order to copy the program files from ShyFT to the hard disk, type “git clone 

https://github.com/statkraft/shyft.git” in the GIT window. 

e. In order to copy the data files from ShyFT to the hard disk, type “git clone 

https://github.com/statkraft/shyft-data.git” in the GIT window. Keep the same 

directory as for ShyFT. 

f. Go to https://github.com/statkraft/shyft/releases and search for the latest release, 

which for this thesis was SK_2017_02_18. Download the zip files 

win_x64_common_bin and win_x64_shyft_shyft_api_np1104_py34.  

g. Install Anaconda 3.4, SWIG and PyCharm. 

h. Install the required packages such as NumPy, netcdf4, gdal, matplotlib, nose, shapely 

and pyproj. That can be done by typing in the commad line: conda install «name of the 

package». 

Additionally, in order to avoid some common errors that may make SHyFT not work properly 

or not work at all, the following is highly recommended: 

a. Open the command prompt. 

b. Update the conda package: type ”conda update conda”. 

c. Downgrade Python to version 3.4: type ”conda install python=3.4”. 

d. Update/Downgrade the following packages: type ”conda install netcdf4=1.2.4 

nose=1.3.7 matplotlib=2.0.0 pyproj=1.9.5.1” 

e. Install shapely 1.5.13: type ”conda install –c scitools shapely=1.5.13”. 

https://github.com/statkraft/shyft
https://git-scm.com/
https://github.com/statkraft/shyft.git
https://github.com/statkraft/shyft-data.git
https://github.com/statkraft/shyft/releases
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C. Configuration files 

a. neanidelva_region.yaml 

--- 

repository: 

  class: 

!!python/name:shyft.repository.netcdf.cf_region_model_repository

.CFRegionModelRepository 

  params: 

    data_file: netcdf/orchestration-testdata/cell_data.nc 

 

domain: 

  EPSG: 32633 

  nx: 109 

  ny: 80 

  step_x: 1000 

  step_y: 1000 

  lower_left_x: 266000 

  lower_left_y: 6960000 

 

catchment_indices: 

  - 1228 

  - 1308 

  - 1330 

  - 1394 

  - 1443 

  - 1726 

  - 1867 

  - 1966 

  - 1996 

  - 2041 

  - 2129 

  - 2195 

  - 2198 

  - 2277 

  - 2402 

  - 2446 

  - 2465 

  - 2545 

  - 2640 

  - 2718 

  - 2728 

  - 3002 

  - 3178 

  - 3536 

  - 3630 

  - 1000010 

  - 1000011  
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b. neanidelva_datasets.yaml 

--- 

sources: 

  - repository: 

!!python/name:shyft.repository.netcdf.arome_concat_data_reposito

ry.AromeConcatDataRepository 

    types: 

      - precipitation 

      - wind_speed 

      - temperature 

      - relative_humidity 

      - radiation 

    params: 

      filename: netcdf/orchestration-testdata/arome_merged_Nea-

Nidelv_Buffer5km_Chunck64x64x32_Complevel4_TimeUnlimited.nc 

      nb_fc_to_drop: 0 

      nb_fc_interval_to_concat: 1 

... 
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c. neanidelva_interpolation 

interpolation_parameters: 

  temperature: 

    # method: btk 

    # params: 

      # temperature_gradient: -0.6 

      # temperature_gradient_sd: 0.25 

      # nug: 0.5 

      # range: 200000.0 

      # sill: 25.0 

      # zscale: 20.0 

    method: idw 

    params: 

      max_distance: 3000.0 

      max_members: 5 

      distance_measure_factor: 1.0 

      default_temp_gradient: -0.005 # degC/m, so -0.5 degC/100m 

      gradient_by_equation: false 

  precipitation: 

    method: idw 

    params: 

      max_distance: 3000.0 

      max_members: 5 

      distance_measure_factor: 1 

      scale_factor: 1.02 

  radiation: 

    method: idw 

    params: 

      max_distance: 3000.0 

      max_members: 5 

      distance_measure_factor: 1.0 

  wind_speed: 

    method: idw 

    params: 

      max_distance: 3000.0 

      max_members: 5 

      distance_measure_factor: 1.0 

  relative_humidity: 

    method: idw 

    params: 

      max_distance: 3000.0 

      max_members: 5 

      distance_measure_factor: 1.0 
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d. neanidelva_simulation.yaml 

--- 

neanidelva: 

  region_config_file: neanidelva_region.yaml 

  model_config_file: neanidelva_model.yaml 

  datasets_config_file: neanidelva_datasets.yaml 

  interpolation_config_file: neanidelva_interpolation.yaml 

  start_datetime: 2012-09-01T00:00:00 

  run_time_step: 86400 # 1 day time step in seconds 

  number_of_steps: 1095   # 3 years in days 

  region_model_id: 'neanidelva-ptgsk' # Gamma/hbv/Skaugen 

  #interpolation_id: 2   # this is optional (default 0) 

  initial_state: 

    repository: 

      class: 

!!python/name:shyft.repository.generated_state_repository.Genera

tedStateRepository 

      params: 

        model: !!python/name:shyft.api.pt_gs_k.PTGSKModel # 

Gamma/hbv/Skaugen 

    tags: [] 

  references: 

  - repository: 

!!python/name:shyft.repository.netcdf.cf_ts_repository.CFTsRepos

itory 

    params: 

      file: netcdf/orchestration-testdata/discharge.nc 

      var_type: discharge 

    1D_timeseries: 

    - catch_id: [1308,1394,1867,2198,2402,2545] 

      type: discharge 

      uid: /TEV.-Tya...........-D9100A3B1060R123.999 

      run_time_step: 86400 # 3600 

    - catch_id: 

[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630] 

      type: discharge 

      uid: /TEV.-Selbu-lok.....-D9100A3B1070R123.020 

      run_time_step: 86400 # 3600 

    - catch_id: [1996,2446,2640,3536] 

      type: discharge 

      uid: /TEV.-Nea...........-D9100A3B1050R123.998 

      run_time_step: 86400 # 3600 

... 
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e. neanidelva_ptgsk 

f.i neanidelva_model.yaml 

# This file has been automatically generated after a calibration 

run 

model_parameters: 

  gamma_snow: 

    calculate_iso_pot_energy: false 

    fast_albedo_decay_rate: 6.0 

    glacier_albedo: 0.4 

    initial_bare_ground_fraction: 0.04 

    max_albedo: 0.9 

    max_water: 0.1 

    min_albedo: 0.25 

    slow_albedo_decay_rate: 30.0 

    snow_cv: 0.4 

    snow_cv_altitude_factor: 0.0 

    snow_cv_forest_factor: 0.0 

    snowfall_reset_depth: 5.0 

    surface_magnitude: 30.0 

    tx: -0.5 

    wind_const: 3.5 

    wind_scale: 0.7720234294504736 

    winter_end_day_of_year: 100 

  glacier_melt: 

    dtf: 6.0 

  hbv_actual_evapotranspiration: 

    ae_scale_factor: 1.5 

  kirchner: 

    c1: -3.9416530465560666 

    c2: 0.5492115556225241 

    c3: -1.181 

  precipitation_correction: 

    scale_factor: 0.7000039387570476 

  priestley_taylor: 

    albedo: 0.2 

    alpha: 1.26 

  routing: 

    alpha: 0.9 

    beta: 3.0 

    velocity: 0.0 

model_t: !!python/name:shyft.api.pt_gs_k._pt_gs_k.PTGSKModel 
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e. neanidelva_ptgsk 

f.ii neanidelva_calibration.yaml 

neanidelva: 

  model_config_file: neanidelva_simulation.yaml 

  calibrated_model_file: calibrated_model.yaml  # file where the 

calibrated params will go 

  optimization_method: 

    name: min_bobyqa # can be 'min_bobyqa', 'dream' or 'sceua' 

    params: 

      max_n_evaluations: 1500 

      tr_start: 0.1 

      tr_stop: 1.0e-5 

  target: 

  - repository: 

!!python/name:shyft.repository.netcdf.cf_ts_repository.CFTsRepos

itory 

    params: 

      file: netcdf/orchestration-testdata/discharge.nc 

      var_type: discharge 

    1D_timeseries: 

    - catch_id: [1308,1394,1867,2198,2402,2545] 

      uid: /TEV.-Tya...........-D9100A3B1060R123.999 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 365 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 

    - catch_id: 

[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630] 

      uid: /TEV.-Selbu-lok.....-D9100A3B1070R123.020 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 365 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 
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    - catch_id: [1996,2446,2640,3536] 

      uid: /TEV.-Nea...........-D9100A3B1050R123.998 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 365 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 

  overrides: 

    model: 

      model_t: !!python/name:shyft.api.pt_gs_k.PTGSKOptModel 

  calibration_parameters: 

    kirchner.c1: 

      min: -6.0 # -3.0 

      max: -2.0 # 2.0 

    kirchner.c2: 

      min: 0.1 # 0.8 

      max: 1.0 # 1.2 

    kirchner.c3: 

      min: -0.15 

      max: 0.15 

    ae.ae_scale_factor: 

      min: 1.5 

      max: 1.5 

    gs.tx: 

      min: -3.0 

      max: 2.0 

    gs.wind_scale: 

      min: 0.0 

      max: 2.0 

    gs.max_water: 

      min: 0.1 

      max: 0.1 

    gs.wind_const: 

      min: 1.0 

      max: 6.0 

    gs.fast_albedo_decay_rate: 

      min: 2.0 # 5.0 

      max: 10.0 # 15.0 

    gs.slow_albedo_decay_rate: 

      min: 20.0 # 20.0 

      max: 40.0 # 40.0 

    gs.surface_magnitude: 
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      min: 30.0 

      max: 30.0 

    gs.max_albedo: 

      min: 0.9 

      max: 0.9 

    gs.min_albedo: 

      min: 0.1 

      max: 0.4 

    gs.snowfall_reset_depth: 

      min: 5.0 

      max: 5.0 

    gs.snow_cv: 

      min: 0.4 

      max: 0.4 

    gs.snow_cv_forest_factor: 

      min: 0.0 

      max: 0.0 

    gs.snow_cv_altitude_factor: 

      min: 0.0 

      max: 0.0 

    gs.glacier_albedo: 

      min: 0.4 

      max: 0.4 

    p_corr.scale_factor: 

      min: 0.4 

      max: 1.0 

    pt.albedo: 

      min: 0.2 

      max: 0.2 

    pt.alpha: 

      min: 1.26 

      max: 1.26 

    gs.initial_bare_ground_fraction: 

      min: 0.04 

      max: 0.04 

    gs.winter_end_day_of_year: 

      min: 100 

      max: 100 

    gs.calculate_iso_pot_energy: 

      min: 0 

      max: 0 

    gm.dtf: 

      min: 6.0 

      max: 6.0 

    routing.velocity: 

      min: 0.0 

      max: 0.0 

    routing.alpha: 
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      min: 0.9 

      max: 0.9 

    routing.beta: 

      min: 3.0 

      max: 3.0 
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f. neanidelva_pthsk 

f.i neanidelva_model.yaml 

# This file has been automatically generated after a calibration 

run 

model_parameters: 

  glacier_melt: 

    dtf: 6.0 

  hbv_actual_evapotranspiration: 

    ae_scale_factor: 0.05 

  hbv_snow: 

    cfr: 0.0004277970782749167 

    cx: 0.4312917287934755 

    lw: 0. 14517552601229675 

    ts: -0.3561834730342437 

    tx: 0.05778703071180713 

  kirchner: 

    c1: -4.092099354524807 

    c2: 0.5784737327123776 

    c3: -0.011268379976200199 

  precipitation_correction: 

    scale_factor: 1.0 

  priestley_taylor: 

    albedo: 0.2 

    alpha: 1.26 

  routing: 

    alpha: 0.9 

    beta: 3.0 

    velocity: 0.0 

model_t: !!python/name:shyft.api.pt_hs_k._pt_hs_k.PTHSKModel 
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f. neanidelva_pthsk 

f.ii neanidelva_calibration.yaml 

neanidelva: 

  model_config_file: neanidelva_simulation.yaml 

  calibrated_model_file: calibrated_model.yaml  # file where the 

calibrated params will go 

  optimization_method: 

    name: min_bobyqa # can be 'min_bobyqa', 'dream' or 'sceua' 

    params: 

      max_n_evaluations: 1500 

      tr_start: 0.1 

      tr_stop: 1.0e-5 

  target: 

  - repository: 

!!python/name:shyft.repository.netcdf.cf_ts_repository.CFTsRepos

itory 

    params: 

      file: netcdf/orchestration-testdata/discharge.nc 

      var_type: discharge 

    1D_timeseries: 

    - catch_id: [1308,1394,1867,2198,2402,2545] 

      uid: /TEV.-Tya...........-D9100A3B1060R123.999 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 730 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 

    - catch_id: 

[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630] 

      uid: /TEV.-Selbu-lok.....-D9100A3B1070R123.020 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 730 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 
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    - catch_id: [1996,2446,2640,3536] 

      uid: /TEV.-Nea...........-D9100A3B1050R123.998 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 730 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 

  overrides: 

    model: 

      model_t: !!python/name:shyft.api.pt_hs_k.PTHSKOptModel 

  calibration_parameters: 

    kirchner.c1: 

      min: -6.0 

      max: -2.0 

    kirchner.c2: 

      min: 0.3 

      max: 1.2 

    kirchner.c3: 

      min: -0.1 

      max: 0.0 

    ae.ae_scale_factor: 

      min: 0.05 

      max: 0.05 

    hs.lw: 

      min: 0.10 

      max: 0.20 

    hs.tx: 

      min: -0.5 

      max: 0.8 

    hs.cx: 

      min: 0.0 

      max: 0.6 

    hs.ts: 

      min: -1.0 

      max: 0.5 

    hs.cfr: 

      min: 0.00005 

      max: 0.001 

    p_corr.scale_factor: 

      min: 1.0 

      max: 1.0 

    pt.albedo: 
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      min: 0.2 

      max: 0.2 

    pt.alpha: 

      min: 1.26 

      max: 1.26 

    gm.dtf: 

      min: 6.0 

      max: 6.0 

    routing.velocity: 

      min: 0.0 

      max: 0.0 

    routing.alpha: 

      min: 0.9 

      max: 0.9 

    routing.beta: 

      min: 3.0 

      max: 3.0 
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g. neanidelva_ptssk 

g.i. neanidelva_model.yaml 

# This file has been automatically generated after a calibration 

run 

model_parameters: 

  glacier_melt: 

    dtf: 6.0 

  hbv_actual_evapotranspiration: 

    ae_scale_factor: 1.5 

  kirchner: 

    c1: -3.9193472117560217 

    c2: 0.5287373657677946 

    c3: -0.019789614977839445 

  precipitation_correction: 

    scale_factor: 0.7652132602052532 

  priestley_taylor: 

    albedo: 0.2 

    alpha: 1.26 

  routing: 

    alpha: 0.9 

    beta: 3.0 

    velocity: 0.0 

  skaugen_snow: 

    alpha_0: 40.558490601603964 

    cfr: 0.009805303599122295 

    cx: 0.5857483219073707 

    d_range: 110.71827615528363 

    max_water_fraction: 0.34530499856862423 

    ts: 0.13775258235272983 

    tx: -0.004269554524006347 

    unit_size: 0.18585660728780456 

model_t: !!python/name:shyft.api.pt_ss_k._pt_ss_k.PTSSKModel 
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g. neanidelva_ptssk 

g.ii. neanidelva_calibration.yaml 

neanidelva: 

  model_config_file: neanidelva_simulation.yaml 

  calibrated_model_file: calibrated_model.yaml  # file where the 

calibrated params will go 

  optimization_method: 

    name: min_bobyqa # can be 'min_bobyqa', 'dream' or 'sceua' 

    params: 

      max_n_evaluations: 1500 

      tr_start: 0.1 

      tr_stop: 1.0e-5 

  target: 

  - repository: 

!!python/name:shyft.repository.netcdf.cf_ts_repository.CFTsRepos

itory 

    params: 

      file: netcdf/orchestration-testdata/discharge.nc 

      var_type: discharge 

    1D_timeseries: 

    - catch_id: [1308,1394,1867,2198,2402,2545] 

      uid: /TEV.-Tya...........-D9100A3B1060R123.999 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 730 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 

    - catch_id: 

[1228,1443,1726,2041,2129,2195,2277,2465,2718,3002,3630] 

      uid: /TEV.-Selbu-lok.....-D9100A3B1070R123.020 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 3600 

      number_of_steps: 730 # 26280 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 
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    - catch_id: [1996,2446,2640,3536] 

      uid: /TEV.-Nea...........-D9100A3B1050R123.998 

      start_datetime: 2013-09-01T00:00:00 

      run_time_step: 86400 # 86400 

      number_of_steps: 730 # 365 

      weight: 1.0 

      obj_func: 

        name: NSE # Nash–Sutcliffe efficiency (NSE) or Kling–

Gupta efficiency (KGE) 

        scaling_factors: 

          s_corr: 1.0 

          s_var: 1.0 

          s_bias: 1.0 

  overrides: 

    model: 

      model_t: !!python/name:shyft.api.pt_ss_k.PTSSKOptModel 

  calibration_parameters: 

    kirchner.c1: 

      min: -6.0 # -3.0 

      max: -2.0 # 2.0 

    kirchner.c2: 

      min: 0.1 # 0.8 

      max: 1.0 # 1.2 

    kirchner.c3: 

      min: -0.05 

      max: 0.0 

    ae.ae_scale_factor: 

      min: 1.5 

      max: 1.5 

    ss.alpha_0: 

      min: 25 

      max: 55 

    ss.d_range: 

      min: 95 

      max: 125 

    ss.unit_size: 

      min: 0.0 

      max: 1.0 

    ss.max_water_fraction: 

      min: 0.0 

      max: 1.0 

    ss.tx: 

      min: -0.5 

      max: 0.5 

    ss.cx: 

      min: -0.5 

      max: 2.0 

    ss.ts: 
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      min: -0.1 

      max: 0.6 

    ss.cfr: 

      min: 0.0 

      max: 0.3 

    p_corr.scale_factor: 

      min: 0.5 

      max: 1.0 

    pt.albedo: 

      min: 0.2 

      max: 0.2 

    pt.alpha: 

      min: 1.26 

      max: 1.26 

    gm.dtf: 

      min: 6.0 

      max: 6.0 

    routing.velocity: 

      min: 0.0 

      max: 0.0 

    routing.alpha: 

      min: 0.9 

      max: 0.9 

    routing.beta: 

      min: 3.0 

      max: 3.0 
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D. Program files 

a. Run_Shyft_Q.py 

# from os import path 

 

# from shyft import shyftdata_dir 

from shyft import api 

from shyft.repository.default_state_repository import 

DefaultStateRepository 

from shyft.orchestration.configuration import yaml_configs 

from shyft.orchestration.simulators.config_simulator import 

ConfigSimulator 

 

config_dir = 

'C:\\thesis\\shyft\\shyft\\tests\\netcdf\\neanidelva_ptssk\\nean

idelva_simulation.yaml'  # Type the config file 

cfg = yaml_configs.YAMLSimConfig(config_dir, "neanidelva") 

 

# get a simulator 

simulator = ConfigSimulator(cfg) 

 

n_cells = simulator.region_model.size() 

state_repos = 

DefaultStateRepository(simulator.region_model.__class__, 

n_cells) 

simulator.run(cfg.time_axis, state_repos.get_state(0)) 

 

# access a particular cell 

cells = simulator.region_model.cells 

cell = cells[330] 

 

# access the discharge of that cell as a time series 

ts_q = cell.rc.avg_discharge 

# get the values 

q = ts_q.v.to_numpy() 

 

# plotting 

from datetime import datetime 

times = [datetime.utcfromtimestamp(ts_q.time(i)) for i in 

range(ts_q.size())] 

import matplotlib.pyplot as plt 

fig,ax = plt.subplots() 

plt.ylabel("Simulated discharge [m$^3$/s]", fontsize=12) 

plt.suptitle("Discharge, cell#330") 

ax.plot(times,q) 

plt.show() 

 

#exporting swe values to excel 
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#import libraries 

import openpyxl 

# create workbook object 

workbook = openpyxl.Workbook() 

sheet = workbook.get_active_sheet() 

sheet.tittle = 'Sheet #' 

# loop to set the value of each cell 

for i in range(0, len(q)): 

    sheet.cell(row = i+1, column = 2).value = q[i] 

# save the file and give it a name # specify directory and name 

workbook.save('C:\\Users\\USUARIO\\Dropbox\\NTNU\\Project + MSc 

Thesis\\THESIS\\shyft 

prints\\ptssk\\runoff\\Q_values_cell#2745_1year.xlsx') 
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b. Run_Shyft_SCA.py 

# from os import path 

 

# from shyft import shyftdata_dir 

from shyft import api 

from shyft.repository.default_state_repository import 

DefaultStateRepository 

from shyft.orchestration.configuration import yaml_configs 

from shyft.orchestration.simulators.config_simulator import 

ConfigSimulator 

 

config_dir = 

'C:\\thesis\\shyft\\shyft\\tests\\netcdf\\neanidelva_ptgsk\\nean

idelva_simulation.yaml'  # Type the config file 

cfg = yaml_configs.YAMLSimConfig(config_dir, "neanidelva") 

 

# get a simulator 

simulator = ConfigSimulator(cfg) 

 

n_cells = simulator.region_model.size() 

state_repos = 

DefaultStateRepository(simulator.region_model.__class__, 

n_cells) 

simulator.run(cfg.time_axis, state_repos.get_state(0)) 

 

from matplotlib import pylab as plt 

 

# extract SCA 

import numpy as np 

# first, set a date: year, month, day, (hour of day if hourly 

time step) 

oslo = api.Calendar('Europe/Oslo')  # specifying input calendar 

in Oslo tz-id 

time_x = oslo.time(2014, 2, 1)  # the oslo calendar(incl dst) 

converts calendar coordinates Y,M,D.. to its utc-time 

 

# we need to get the index of the time_axis for the time 

try: 

    idx = simulator.region_model.time_axis.index_of(time_x)  # 

index of time x on time-axis 

except: 

    print("Date out of range, setting index to 0") 

    idx = 0 

 

# fetching SCA (the response variable is named "snow_sca") 

# You can use tab-completion to explore the `rc`, short 

# for "response collector" 
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# object of the cell, to see further response variables 

available. 

# specifying empty list [] indicates all catchments, otherwise 

pass catchment_id 

 

sca = simulator.region_model.gamma_snow_response.sca([], idx)  # 

specify snow routine and catch_ID 

 

# for attr in dir(simulator.region_model): 

#     if attr[0] is not '_': #ignore privates 

#         print(attr) 

# # and don't forget: 

# help(simulator.region_model.gamma_snow_state) 

 

cells = simulator.region_model.get_cells() 

 

# Once we have the cells, we can get their coordinate 

information 

# and fetch the x- and y-location of the cells 

x = np.array([cell.geo.mid_point().x for cell in cells]) 

y = np.array([cell.geo.mid_point().y for cell in cells]) 

 

# We can make a simple scatter plot again for quick 

visualization 

fig, ax = plt.subplots(figsize=(15, 5)) 

cm = plt.cm.get_cmap('winter') 

plot = ax.scatter(x, y, c=sca, 

                  vmin=0, vmax=1, 

                  marker='s', s=40, lw=0, 

                  cmap=cm) 

print("print SCA") 

plt.colorbar(plot) 

plt.title('Snow Covered Area of {0} on 

{1}'.format(cfg.region_model_id, oslo.to_string(time_x))) 

plt.show() 

 

# look at the catchment-wide average: 

nea_avg_sca = np.average(sca) 

print("Average SCA for Nea Nidelva: {0}".format(nea_avg_sca)) 

 

# And let's compute histogram of the snow covered area as well 

fig, ax = plt.subplots() 

ax.hist(sca, bins=20, range=(0, 1), color='y', alpha=0.5) 

ax.set_xlabel("SCA of grid cell") 

ax.set_ylabel("frequency") 

print("print histogram") 

plt.show() 

print("ok6")  
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c. Run_Shyft_SWE.py 

# from os import path 

 

# from shyft import shyftdata_dir 

from shyft import api 

from shyft.repository.default_state_repository import 

DefaultStateRepository 

from shyft.orchestration.configuration import yaml_configs 

from shyft.orchestration.simulators.config_simulator import 

ConfigSimulator 

 

config_dir = 

'C:\\thesis\\shyft\\shyft\\tests\\netcdf\\neanidelva_ptgsk\\neanidel

va_simulation.yaml'  # Type the config file 

cfg = yaml_configs.YAMLSimConfig(config_dir, "neanidelva") 

 

# ------------------------- cell level -------------------------- 

 

# get a simulator 

simulator = ConfigSimulator(cfg) 

 

# activate collection (saving) of ALL states since it is deactivated 

by default 

simulator.region_model.set_state_collection(-1, True) # -1 means for 

all catchments 

 

n_cells = simulator.region_model.size() 

state_repos = 

DefaultStateRepository(simulator.region_model.__class__, n_cells) 

simulator.run(cfg.time_axis, state_repos.get_state(0)) 

 

# access a particular cell 

cells = simulator.region_model.cells 

cell = cells[330] 

 

# access the swe of that cell as a time series 

ts_swe = cell.rc.snow_swe 

# get the values 

swe = ts_swe.v.to_numpy() 

 

# plotting 

from datetime import datetime 

times = [datetime.utcfromtimestamp(ts_swe.time(i)) for i in 

range(ts_swe.size())] 

import matplotlib.pyplot as plt 

fig,ax = plt.subplots() 

plt.ylabel("Snow Water Equivalent [mm]", fontsize=12) 

plt.suptitle("Snow Water Equivalent, cell#330") 
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ax.plot(times,swe) 

plt.show() 

 

#exporting swe values to excel 

 

#import libraries 

import openpyxl 

# create workbook object 

workbook = openpyxl.Workbook() 

sheet = workbook.get_active_sheet() 

sheet.tittle = 'Sheet #' 

# loop to set the value of each cell 

for i in range(0, len(swe)): 

    sheet.cell(row = i+1, column = 2).value = swe[i] 

# save the file and give it a name # specify directory and name 

workbook.save('C:\\Users\\USUARIO\\Dropbox\\NTNU\\Project + MSc 

Thesis\\THESIS\\shyft prints\\ptssk\\transect 

9\\SWE_values_cell#211.xlsx') 

 

# -------------------- subcatchment level ------------------ 

 

# # get a simulator 

# simulator = ConfigSimulator(cfg) 

# 

# # activate collection (saving) of swe and sca since it is 

deactivated by default 

# # This is usually used to activate calibration using snow data 

# # simulator.region_model.set_snow_sca_swe_collection(-1, True) # -

1 means for all catchments 

# # activate collection (saving) of ALL states since it is 

deactivated by default 

# simulator.region_model.set_state_collection(-1, True) # -1 means 

for all catchments 

# n_cells = simulator.region_model.size() 

# state_repos = 

DefaultStateRepository(simulator.region_model.__class__, n_cells) 

# simulator.run(cfg.time_axis, state_repos.get_state(0)) 

# 

# # SWE and SCA are responses in ptgsk 

# # to extract swe from ptgsk as a numpy array 

# # swe = 

simulator.region_model.gamma_snow_response.swe([]).v.to_numpy() 

# 

# # SWE and SCA are states in ptssk and pthsk 

# # to extract swe from ptssk as a numpy array 

# # swe = 

simulator.region_model.skaugen_snow_state.swe([]).v.to_numpy() 

# # to extract swe from pthsk as a numpy array 

# # swe = simulator.region_model.hbv_snow_state.swe([]).v.to_numpy() 

# 
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# ts_swe = simulator.region_model.skaugen_snow_state.swe([3536]) # 

specify snow routine and state/response !! and subcatchment 

# swe = ts_swe.v.to_numpy() 

# 

# # plotting 

# from datetime import datetime 

# times = [datetime.utcfromtimestamp(ts_swe.time(i)) for i in 

range(ts_swe.size())] 

# import matplotlib.pyplot as plt 

# fig,ax = plt.subplots() 

# plt.ylabel("Snow Water Equivalent [mm]", fontsize=12) 

# plt.suptitle("Snow Water Equivalent, catch_ID#1996") 

# ax.plot(times,swe)  
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d. Calib_Shyft.py 

# importing thrid-party python modules 

import sys 

import os 

# setting the path to the shyft build 

shyft_path = os.path.abspath("C:\\thesis\\shyft") 

sys.path.insert(0,shyft_path) 

 

# importing the shyft modules needed for running a calibration 

from shyft.repository.default_state_repository import 

DefaultStateRepository 

from shyft.orchestration.configuration.yaml_configs import 

YAMLCalibConfig 

from shyft.orchestration.simulators.config_simulator import 

ConfigCalibrator 

 

# set up configuration using *.yaml configuration files 

config_file_path = 

os.path.abspath("C:\\thesis\\shyft\\shyft\\tests\\netcdf\\neanid

elva_ptgsk\\neanidelva_calibration.yaml") # here is the *.yaml 

file 

cfg = YAMLCalibConfig(config_file_path, "neanidelva") 

# initialize an instance of the orchestration's 

ConfigCalcalibrator class, which has all the functionality 

needed 

# to run a calibration using the above initiated configuration 

calib = ConfigCalibrator(cfg) 

n_cells = calib.region_model.size() 

state_repos = 

DefaultStateRepository(calib.region_model.__class__, n_cells) 

#calib.init() 

# once the calibrator is set up, all you need to do is running 

the calibration... 

# the calibrated parameters are stored in a model.yaml. 

results = calib.calibrate(cfg.sim_config.time_axis, 

state_repos.get_state(0), 

                          cfg.optimization_method['name'], 

                          cfg.optimization_method['params']) 

# Get NSE of calibrated run: 

result_params = [] 

for i in range(results.size()): 

    result_params.append(results.get(i)) 

print("Final NSE =", 1-

calib.optimizer.calculate_goal_function(result_params)) 

# Check out the calibrated parameters. 

 

diff = 1.0E-3 

print("{0:30s} {1:10s}".format("PARAM-NAME", "CALIB-VALUE")) 
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for i in range(results.size()): 

    print("{0:30s} {1:10f}".format(results.get_name(i), 

results.get(i))) 

 

 


