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Abstract

In this master thesis we study Kingman’s subadditive ergodic the-
orem and its application. We prove Kingman’s theorem based on a
proof by Steel [1]. We also study two major applications of Kingman’s
theorem, convergence of products of random matrices and the asymp-
totic behaviour of the longest increasing subsequences of a random
permutation.
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Sammendrag

I denne masteroppgaven studerer vi Kingmans subadditiv ergodiske
teorem og dens applikasjoner. Vi beviser Kingmans teorem basert p̊a
et bevis av Steel [1]. Vi ser ogs̊a p̊a to viktige konsekvenser av King-
mans teorem, konvergens for produkter av tilfeldige matriser og asymp-
totisk oppførsel av den lengste stigende undersekvensen av en tilfeldig
permutasjon.
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1. Introduction

In this paper we will study Kingman’s subadditive ergodic theo-
rem and its applications. The theorem covers sequences of functions
defined on a measure space with a transformation satisfying certain
criteria. These spaces are known as measure-preserving dynamical
systems. Kingman’s theorem is often viewed as a generalization of
Birkhoff’s ergodic theorem, which is one of the cornerstones of ergodic
theory. One can also view Kingman’s theorem as a random variable
version of Fekete’s subadditive lemma. The theorem is named after
John Kingman, an English mathematician who proved the theorem in
1968 [2].

This paper is organized as follows. First we introduce subadditive
sequences and Fetekes lemma, as a comparison to Kingman’s theorem.
We also consider an interesting example which follows from Fetekes
lemma, i.e how to count the number of self-avoiding walks on a lattice.
Then we state and prove Kingman’s theorem. The proof presented
is based on a paper by Steele [1]. Afterwards, as an introduction
to Ligget’s version of Kingman’s theorem, we discuss stationary se-
quences. Stationary sequences are closely related to measure-preserving
dynamical systems, and are needed when studying Ligget’s version of
Kingman’s theorem and other applications. Subadditive stochastic pro-
cesses were originally invented by Hammersley and Welsh [3] in order to
deal with timedependent percolation processes: the study of connected
clusters in a random graph. It turned out that subaddtivity had several
more applications, and is viewed as one of the major achievements in
ergodic theory in the second half of the 20th century.

In the next chapter we discuss the first major application of King-
man’s theorem, products of random matrices. Given a set of non-
singular matrices {A1, A2, · · · , Am} and an associated probability vec-
tor (p1, p2, · · · , pm) consider products of the type

Πn = Ai1Ai2 · · ·Ain
where ik = j with a probability of pj. What can we say about Πn as n
approaches infinity? In 1960 Fustenberg and Kesten proved their well
known theorem stating that

lim
n→∞

1

n
log‖Πn‖ (1.1)

exists almost surely [4]. This was eight years prior to Kingman’s theo-
rem, and their proof was obviously independent of the subaddative the-
orem. It turns out however that Fustenberg-Kesten’s theorem follows
directly from Kingman’s theorem, which is proven in chapter three.
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Equation (1.1) is actually an example of a much studied concept in
mathematics called Lyapunov exponents. These exponents are a quan-
titative number that measures the dependence on initial conditions,
and will also be studied in chapter 3.

The last chapter is devoted to finding the asymptotic behaviour of
the longest increasing subsequences of a random permutation. Given a
permutation π : i→ π(i) of order n we define an increasing subsequence
of π as:

i1 < i2 < · · · < ik; π(i1) < π(i2) < · · · < π(ik).

We let L(π) be the longest such subsequence in a permutation π. In
chapter 4 will we study ln which is the average of L(π) over all permu-
tations of order n. It turns out that Kingman’s theorem is applicable
to find the limit of ln/

√
n. The problem was first studied by Hammer-

sley in the seventies [5]. By looking at each random transformation as
random points in the plane, Hammersley constructed a Poisson point
process of unit intensity and defined ls,t to be the longest increasing
subset inside the box [s, t) × [s, t). By formulating the problem this
way one is able to apply Kingman’s theorem and show that ln → c

√
n

for a finite constant c. Much research has been devoted to finding the
exact value of c, and it turns out that c = 2. This will not been shown
in this paper, but a few bounds for c using different methods will be
discussed.

This paper is based on previous work and already established theory.
The goal was to get a deeper understanding for Kingman’s subadditive
ergodic theorem by studying the theorem, proving it and looking at
several applications of it. Also a second goal was to make the text an
easy to read paper for someone new to measure and ergodic theory.
Much of the literature on the topic, especially on the longest increas-
ing subsequences of a random permutations are quite complicated and
requires much background in mathematics. Hopefully this paper can
be a manageable introduction for someone just starting measure the-
ory. Even though basically everything is done before, several examples
and a few propositions are proved in a new way. Also, in addition to
theorems and proofs, we have included a few reflections and thoughts
on what we are proving. Hopefully this makes the paper a more inter-
esting read, and can help the reader achieve a deeper understanding of
mathematics in general. Mathematics is not just about theorems and
proof, but a large part of it is reflections on what, why and how. Work-
ing on the longest increasing subsequence of a random permutation has
been especially interesting. It combines several branches of mathemat-
ics and its level of difficulty is surprisingly high for such an easy to
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understand-problem. This paper is the continuation of a shorter paper
on Birkhoff’s theorem, a project done the fall of 2016.

1.1. Preliminaries.

Definition 1.1. A measure-preserving dynamical system (MPDS) is a
quartet (X ,B, µ, T ) where (X ,B, µ) is a measure space and T : X → X
is such that

(1) T is measurable: E ∈ B ⇒ T−1E ∈ B
(2) µ is T-invariant: µ(T−1E) = µ(E) for all E ∈ B

A probability preserving transformation system (PPT) is a MPDS
where X is probability space.

Let (X ,B, µ, T ) be a MPDS.

Definition 1.2. A measurable set E ∈ B is called T -invariant, if
T−1E = E.

Definition 1.3. A MPDS (X , B, µ, T ) is called ergodic, if every invari-
ant set E satisfies µ(E) = 0 or µ(X \ E) = 0. We say µ is an ergodic
measure.

Definition 1.4. A measurable function f : X → R is called T-
invariant if f ◦ T = f a.e.

Definition 1.5. For all n ∈ N, T n+1 = T ◦ T n, with T 2 = T ◦ T are
called the iterates of T.

Proposition 1.1. Let (X ,B, µ, T ) be a PPT. The following are equiv-
alent

(1) (X ,B, µ, T ) is ergodic.
(2) For all A ∈ B with µ(A) > 0 we get µ(∪n≥1T−nA) = 1.
(3) For all E ∈ B such that µ(E∆T−1E) = 0 we have that µ(E) ∈
{0, 1}.

(4) For any measurable function f : X → R, if f is T-invariant,
then f = constant a.e.

For the proof of (1)⇔ (4) see [6], for the rest of the proof see [7].

Poisson distribution and Poisson point process. Ergodic theory and
probability theory are closely related, while studying one you often
encounter the other. We thus need some background in probability
theory, specifically the Poisson point process, which is a field in spa-
tial statistics that models random points on the plane. This process
originates from the Poisson distribution, for more details on that see
[8].
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Definition 1.6. A stochastic process {N(t), t ≥ 0} is said to be a
counting process if N(t) satisfies:

(1) N(t) ≥ 0.
(2) N(t) is integer valued.
(3) If s < t, then N(s) ≤ N(t).
(4) For s < t,N(t)−N(s) equals the number of events that occur

in the interval (s, t].

Definition 1.7. A function f is said to be o(h) is

lim
h→0

f(h)

h
= 0.

Definition 1.8. A counting process {N(t), t ≥ 0} is said to be a Pois-
son process with rate λ if the following holds:

(1) N(0) = 0.
(2) {N(t), t ≥ 0} has independent increments.
(3) P (N(t+ h)−N(t) = 1) = λh+ o(h).
(4) P (N(t+ h)−N(t) ≥ 2) = o(h).

The reason the process is called a Poisson process is because the
number of events that occurs in any interval of length t is Poisson
distributed with mean λt.

Theorem 1.1. If {N(t), t ≥ 0} is a Poisson process with rate λ > 0,
then for all s > 0, t > 0, N(t+ s)−N(s) is a Poisson random variable
with mean λt.

See theorem 5.1 in [9] for a proof.
Now let {N(t), t ≥ 0} be a Poisson process with rate λ > 0 and let

Sn be the arrival time of the nth event, that is

Sn = inf{t > 0, N(t) = n}.
For n > 1, let Tn be the elapsed time between the (n − 1)th and the
nth event, that is Tn = Sn − Sn−1. The sequence {Tn, n ∈ N} is called
the sequence of interarrival times.

Theorem 1.2. Tn, n = 1, 2, 3 · · · , are i.i.d exponential random vari-
ables with mean 1/λ.

See [9] for a proof.

Definition 1.9. A Poisson point process Π is a collection of points in
R2 with intensity λ that is characterized by two properties:

(1) The number of points of Π in any bounded set B follows a
Poisson distribution with mean λm(b) where m is the Lebesgue
measure in R2.
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(2) The numbers of points of Π in k disjoint sets form k independent
random variables, for arbitrary k.

The concept can be defined on an abstract space, but we only need
it for R2.
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2. Kingman’s subadditive ergodic theorem

Kingman’s subadditive ergodic theorem is one of the most impor-
tant theorems in ergodic theory. The theorem has much application in
other areas of mathematics, we will study a couple of them later. The
theorem is viewed as a generalization of Birkhoff’s ergodic theorem,
which is one the fundamental theorems in ergodic theory.

Theorem 2.1 (Birkhoff’s pointwise ergodic theorem). Let (X ,B, µ, T )
be a PPT and let f : X → R be measurable function. Then

lim
n→∞

1

n

n−1∑
i=1

f(T ix) = f ∗(x) a.e.

where f ∗(x) is an invariant function.

Unlike Birkhoff’s theorem, where only one measurable function is
considered, Kingman’s theorem looks at limit laws for a sequence of
functions. Specifically, we look at sequences of measurable functions
{fn}n∈N on a PPT (X ,B, µ, T ) that satisfies

fn+m(x) ≤ fn(x) + fm(T nx) for all n,m ≥ 1 a.e. (2.1)

Example 2.2. Let (X ,B, µ, T ) be MPDS and A : X → GLd be a
measurable function. Here GLd denotes the general linear group of
degree d, which is the set of d× d invertible matrices. Define

A(n)(x) = A(T n−1x) · · ·A(Tx)A(x).

Then the sequence φn(x) = log‖A(n)(x)‖ satisfies equation (2.1). In-
deed, first of

A(n+m) = A(n)(Tmx)A(m)(x).

Then since

‖B1B2‖ ≤ ‖B1‖‖B2‖ for all B1, B2 ∈ GL(d)

we get that
φn+m(x) ≤ φm(x) + φn(Tmx).

Since the functions we are studding are subadditive, we will look at
this concept for motivation.

2.1. Subadditivity. Subadditivity is an important concept not only
in measure theory, but in several fields of mathematics. There are
numerous examples of subadditive functions in various areas of math-
ematics, particularly norms and square roots.

Definition 2.1. A sequence {an}n∈N is called subadditive if for all m,n
we have that an+m ≤ am + an.
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To increase our understanding of Kingman’s theorem, let us look at
a similar result in R called Fekete’s subadditive lemma.

Lemma 2.1. For every subadditive sequence {a}∞i=0 the limit

lim
n→∞

an
n

exists and is equal to inf an
n

.

Proof. If an = −∞ for some n, then for all m > n, am = −∞ as well.
Then both sides of equality are equal to −∞, and the lemma holds.
Now assume that an > −∞ for all n, and let L = inf an

n
. Pick any

B > L and let k ≥ 1 be such that

ak
k
< B.

For any n > k apply the division algorithm, that is n = pnk + qn
for integers pn, qn where 0 ≤ qn < k. Now apply the subadditivity
repetitively to obtain

an = apnk+qn ≤ apnk + aqn ≤ pnak + aqn .

When dividing this by n we get

an
n
≤ pnk

n

ak
k

+
aqn
n
.

When n goes to infinity pnk
n

converges to 1 and aqn
n

converges to 0. So
we have for all B > L

L ≤ lim sup
n→∞

an
n
≤ ak

k
≤ B.

Hence we have that

L ≤ lim inf
n→∞

an
n
≤ lim sup

n→∞

an
n
≤ B.

Now let B go to L and we obtain

L = inf
n

an
n

= lim
n→∞

an
n
.

�

This famous lemma helps us understand Kingman’s theorem, as it
can be viewed as a non-random version of Kingman’s theorem.

As mentioned in the introduction, the theory of subadditivity arose
while studying random flows in lattice. We will consider such an ex-
ample now as an illustration of Fekete’s lemma.
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Example 2.3. A self-avoiding walk is a sequence on a lattice which
never intersect itself. See figure 1 for an example on the square grid
graph.

Figure 1. A self-avoiding walk of 18 steps.

We will try to count the number K(n) of all such self-avoiding walks
with n steps on the square grid graph. We have that K(1) = 4 and
K(2) = 12, see figure 2 and 3. We want to use Fekete’s subadditive
lemma to find the asymptotic behaviour of K(n). The sequence is not
subadditive, but we can show that K(m + n) ≤ K(n)K(m). Indeed,
we can consider all walks of length m + n as the concatenation of a
self-avoiding walk of length m followed by one of length n. By sticking
together all self-avoiding walks of length m with self-avoiding walks
of length n we get all non-intersecting paths of length m + n, plus
some intersecting ones. Now, since log is a strictly increasing function,
logK(n) is a subadditive sequence. Thus we have that

lim
n→∞

logK(n)

n
= A,

for some A. Put differently we get

lim
n→∞

K(n)
1
n = µ.

µ is known as the connective constant, since K(n) depends on the
particular lattice chosen for the walk so does µ. Let us try to give an
estimate for µ on the square grid graph. First note that 2 ≤ µ ≤ 3,
since there are always maximum three new directions a path can take
each step. µ is also bounded below by two since one can always choose
ether to go up or to the left on each step and never intersect the path
later. Similarly, paths that only goes up and right, down and right, or
down and left will never intersect each other. Thus, we can improve
our lower bound, K(n) ≥ 4 ·2n−4. Similarly, K(n) ≤ 4 ·3n−1, since the
first step can go in four directions and after that there are maximum
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Figure 2. All self-avoiding walks of 1 step.

Figure 3. All self-avoiding walks of 2 steps.

three options each step. The exact value of µ is only known for the
hexagonal lattice, where it is equal to√

2 +
√

2

which was first proven in 2010 by Duminil-Copin and Smirnov [10].
For the square grid lattice µ is believed to approximately 2.63815853,
a number taken from a paper by Jensen and Guttmann [11].

Example 2.4. Assume we have two sequences (ai)i≥0 and (bi)i≥0 taking
values in {0, 1, · · · , l − 1} for a l > 0. A typical problem is to find the
longest common subsequence of these two sequences up to an integer
n. Define Cn,l to be the longest common subsequence up to n. That is

Cn,l = max{K : aik = bjk for 1 ≤ k ≤ K, where

0 < i1 < i2 < · · · < iK ≤ n and 0 < j1 < j2 < · · · < jK ≤ n}.

Let cn,l be the expected value of Cn,l, then cn,l is superadditive on n.
That is

cn+m,l ≥ cn,l + cm,l.

This is because sequences of length n + m can be broken into subse-
quences of length n and m, and the longest common subsequences from
those sequences can be combined to from a common subsequence of the
whole string. We therefore get that −cn,l is a subadditive sequence and
by Fekete’s lemma we get that

λl = lim
n→∞

cn,l
n
.
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These constants are known as the Chvatal-Sankoff constants, which ex-
act values are not known today. In 2010 Lueker showed that 0.788071 ≤
λ2 ≤ 0.826280 [12]. Kiwi, Loebl and Matousekb showed in 2004 [13]
that the Chvatal-Sankoff constant grows inversely proportional to the
square root of l, that is

lim
l→∞

λl
√
l = 2.

The longest common subsequence problem is closely related to the
longest increasing subsequence problem: The longest increasing subse-
qunece of a permutation π is the same as the longest common subse-
quence between π and the numbers 1 to n in increasing order.

2.2. Kingman’s subadditive ergodic theorem. Before we state the
theorem we need a proposition.

Proposition 2.2. Let {fn}n∈N be a sequence of functions on a MPDS
(X ,B, µ, T ) which satisfies the following

fn+m(x) ≤ fn(x) + fm(T nx) a.e. for all n,m ≥ 1. (2.2)

Assume we have a disjoint partition of the interval [1, n)

[1, n) = [1, n1) ∪ [n1, n1 + l1) ∪ [n2, n2 + l2) ∪ · · · ∪ [nm, nm + lm)

where 1 ≤ ni, l1 ≤ n and ni + li = ni+1. Then we have that

fn(x) ≤ fn1(x) + fl1(T
n1x) + · · ·+ fli(T

nix) + · · ·+ flm(T nmx).

Proof. The proof is just repetitive use of (2.2). Let us do the first few
steps

fn(x) ≤ fn1(x) + fn−n1(T
n1x) ≤ fn1(x) + fl1(T

n1x) + fn−n2(T
n1+l1x)

≤ fn1(x) + fl1(T
n1x) + fl2(T

n2x) + fn−n3(T
n3x).

The proposition follows by induction on n. �

Theorem 2.5 (Kingman’s subadditive ergodic theorem). Let (X ,B, µ, T )
be a PPT. Let {fn}n∈N be a sequence of measurable functions fn : X →
R such that f1 ∈ L1(µ) and

fn+m(x) ≤ fn(x) + fm(T nx) for all n,m ≥ 1 a.e.

Then

lim
n→∞

fn(x)

n
= f(x) ≥ −∞ a.e.

where f(x) is an invariant function.
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Remark 2.1. Before we give a proof, note that Fekete’s subadditive
lemma follows directly from this theorem. To see this let {an} be a sub-
additive sequence. Then pick any ergodic PPT (X ,B, µ, T ). Now define
a sequence of constant functions {fn}n∈N on X , defined by fn(x) = an
for all x ∈ X . Then clearly fn+m(x) ≤ fn(x)+fm(T nx) for all n,m ≥
1 since an is a subadditive sequence. Also, since the space is a probabil-
ity space, each function fn is absolutely integrable. Thus, by theorem
2.5

lim
n→∞

an
n

= lim
n→∞

fn(x)

n
= inf

n

fn(x)

n
= inf

n

an
n

a.e.

On the other hand we can use Fekete’s lemma to show that

lim
n→∞

1

n

∫
X
fn(x) = inf

n

1

n

∫
X
fn(x).

Simply put an =
∫
fn(x) and apply the lemma.

Remark 2.2. We want to compare Kingman’s theorem to Birkhoff’s
theorem to see why this is an even stronger theorem. First let us
understand why Birkhoff’s theorem is a special case of Kingman’s the-
orem. Assume that we have a L1 function f : X → R where X is an
ergodic space. Birkhoff’s theorem says that

n−1∑
i=0

f(T ix)

n

converges almost surely. Now define

fn(x) =
n−1∑
i=0

f(T ix),

then clearly each fn is an absolutely integrable function and

fn+m(x) = fn(x) + fm(T nx).

That is, we do not only have the subadditive property, but the sequence
is also additive. Thus, from Kingman’s theorem, fn

n
converges almost

surely. The reason we are interested in the subadditive property in-
stead of the additive property is that there are far more interesting
applications that satisfies this property, a few of them will be studied
later. In our proof of Kingman’s theorem we used Birkhoff’s theorem.
It is possible to prove it without using it [14], so Birkhoff’s theorem
can be viewed as a direct consequence of Kingman’s theorem.

Proof. This proof is based on a paper by Steel from 1989 [1]. The main
part of the proof is under on the assumption that fm(x) ≤ 0 for all x.
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This is however not part of the assumption, so we need to define a new
function:

f ′m(x) = fm(x)−
m−1∑
i=0

f1(T
ix). (2.3)

These functions are less than zero for every x and it also satisfies the
subadditivity property. Indeed,

f ′n+m(x) = fn+m(x)−
n+m−1∑
i=0

f1(T
ix)

≤ fn(x) + fm(T nx)−
n−1∑
i=0

f1(T
ix)−

n+m−1∑
i=n

f1(T
ix)

≤ fn(x)−
n−1∑
i=0

f1(T
ix) + fm(T nx)−

m−1∑
i=0

f1(T
n+ix)

≤ f ′n(x) + f ′m(T nx).

We want to show almost surely convergence for

1

m
fm.

If we can show that both

1

m
f ′m and

1

m

m−1∑
i=1

f1(T
ix)

converges almost surely, we get by equation (2.3) that 1
m
fm converges

almost surely. The sum is a Birkhoff sum, so Birkhoff’s ergodic theorem
provides convergence for this term. We are therefore left to show almost
sure convergence for 1

m
f ′m(x). For simplicity we will write fm(x) and

assume that fm(x) ≤ 0.
Our goal is to show that

lim sup
n→∞

fn(x)

n
≤ lim inf

n→∞

fn(x)

n
. (2.4)

Now define

f(x) = lim inf
n→∞

fn(x)

n
and note that this function is T-invariant. Indeed, we have that

fn+1(x)

n
≤ f1(x)

n
+
fn(Tx)

n
,
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taking limit inferior we see that f(x) ≤ f(Tx). Thus, this tells us that
{x : f(x) > α} ⊂ T−1{x : f(x) > α}. T is a measure preserving
transformation, so the sets can differ by at most a set of measure zero.
That is, f(x) = f(Tx) almost surely.

Let ε > 0 and 0 < M <∞, and define

GM(x) = max{−M, f(x)}.

The goal of this proof is to try to bound lim sup fn by the func-
tion GM(x). Since GM(x) is itself bounded by f(x) we therefore get
equation (2.4) by showing this.

Pick a 0 < N <∞ and consider the set

B(N,M) = {x : fl(x) > l(GM(x) + ε) for all 1 ≤ l ≤ N}

and its compliment A(N,M) = B(N,M)c. Let x ∈ X and n ≥ N . We
want to decompose the integer set [1, n) into a union of three classes
of intervals. First let k = 1. Then each step take the least integer
k in [1, n) which is not in an interval already considered and look at
T kx. Remember that if T kx ∈ A(N,M), then there is an l ≤ N so
that fl(T

kz) ≤ l(GM(T kx)+ε) = l(GM(x)+ε). We have three different
cases

• If T kx ∈ A(N,M) and k + l ≤ n we use the interval [k, k + l).
• If T kx ∈ A(N,M) and k + l > n we use [k, k + 1).
• If T kx ∈ B(N,M) we also take [k, k + 1).

So for any x ∈ X we have a decomposition of [1, n) into a set of u
intervals on the form [τi, τi + li) where fli(T

τix) ≤ li(GM(x) + ε) with
1 ≤ li ≤ N , a set of v singletons [σi, σi + 1) where T σix ∈ B(N,M)
and another set of w singletons [ρi, ρi + 1) which are all in (n−N, n).
By proposition 2.2 we can bound fn(x)

fn(x) ≤
u∑
i=1

fli(T
τix) +

v∑
i=1

f1(T
σix) +

w∑
i=1

f1(T
ρix).

Remember that we assumed fm ≤ 0 so we can bound fn even further
by removing the last two sums,

fn(x) ≤
u∑
i=1

fli(T
τix).

We also know that fli(T
τix) ≤ li(GM(x) + ε) hence we get that

fn(x) ≤ (GM(x) + ε)
u∑
i=1

li ≤ GM(x)
u∑
i=1

li + nε.
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Thus, we get

lim sup
n

1

n
fn(x) ≤ lim sup

n

(
GM(x)

1

n

u∑
i=1

li

)
+ ε.

Remember that since GM(x) ≤ 0, the previous equation can be refor-
mulated to

lim sup
n

1

n
fn(x) ≤ GM(x) lim inf

n

1

n

u∑
i=1

li + ε.

We therefore want a lower bound on
∑u

i=1 li. By the construction of
the intervals we have

u∑
i=1

li ≥ n−
n∑
k=1

1B(N,M)(T
kx)−N.

Thus,

1

n

u∑
i=1

li ≥ 1− 1

n

n∑
k=1

1B(N,M)(T
kx)− N

n
.

Note that the sum is a Birkhoff sum, so we can apply Birkhoff’s theo-
rem:

lim inf
n→∞

1

n

u∑
i=1

li ≥ 1− µ(B(N,M) a.e.

Putting everything together we get

lim sup
n→∞

fn(x)

n
≤ GM(1− µ(B(N,M))) + ε a.e.

We claim that 1B(N,M) → 0 a.e. as N →∞. To see this let us rewrite
B(N,M)

B(N,M) = ∩Nl=1{x : fl(x) > l(GM(x) + ε)}.
Note that B(1,M) ⊃ B(2,M) ⊃ · · · ⊃ B(N,M) · · · so we want to
show that

∩N∈NB(N,M)) = ∅.
If f(x) > −M then x ∈ ∩N∈NB(N,M) would mean that

1

l
fl(x) > f(x) + ε for all l.
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and that would mean that f(x) > f(x) + ε which is clearly a contra-
diction. If f(x) < −M then x ∈ ∩N∈NB(N,M) would mean that

1

l
fl(x) > −M + ε for all l

which would mean that f(x) > −M + ε, also a contradiction.
We have shown that

lim sup
n→∞

fn(x)

n
≤ GM(1− µ(B(N,M)) + ε a.e.

Then for a fixed M and letting N →∞

lim sup
n→∞

fn(x)

n
≤ GM(x) + ε a.e.

This holds for all M ≥ 0 and ε > 0, we get that

lim sup
n→∞

fn(x)

n
≤ lim inf

n→∞

fn(x)

n
,

which is exactly what we wanted to show. �

2.3. Stationary sequences. The way we formulated Kingman’s the-
orem was a bit different from how Kingman himself did it originally
[2]. He based everything on stochastic processes and much of the ap-
plications of his theorem is therefore in this format.

Definition 2.2. Let {Xn} be a sequence of random variables defined
on a space X . The sequence is said to be a stationary sequence if for
every k and each m, (X0, · · · , Xm) and (Xk, · · · , Xk+m) have the same
distribution.

See chapter 4 in [15] for details on joint probability distribution.

Example 2.6. If X0, X1, · · · are i.i.d then the sequence is stationary.

Example 2.7. Let (X ,B, µ, T ) be a MPDS and let f : X → R be
a measurable function. Define Xn(x) = f(T nx), we claim that this
sequence is a stationary sequence. Let B ∈ Rn+1 and A = {x :
(X0(x), · · · , Xn(x)) ∈ B}. Then for a k

P ((Xk, · · · , Xk+n) ∈ B) = P (T kx ∈ A) = P (x ∈ A)

= P ((X0, · · · , Xn) ∈ B).

We will refer to the sequence in example 2.7 as the stationary se-
quence generated by T .
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Remark 2.3. It turns out that stationary sequences are closely related
to the study of measure-preserving dynamical systems. As we saw in
example 2.7, it is possible to construct a stationary sequence with a
MPDS and a random variable. Vica versa, if we begin with a stationary
sequence, this leads in a natural way to a MDPS. Let {Xn} be a random
process on X and let (Ω,B, µ) be the associated probability space,
where Ω = X N is the sample space. Note that Xn(ω) = ωn. Let
T : Ω→ Ω be the left shift operator:

T (ω1, ω2, ω3, · · · ) = (ω2, ω3, · · · ).
The process {Xn} is said to be stationary if T is invariant under µ:

µ(T−1A) = µ(A) for every A ∈ B.
This definition is equivalent to the standard definition of stationary
sequences. See Chapter 16 in [16] for more details.

Definition 2.3. We call the transformation discussed in remark 2.3
the associated transformation to the stationary sequence.

Since the study of stationary sequences and measure preserving dy-
namical systems coincides it is natural to reuse a definition.

Definition 2.4. A stationary sequence is said to be ergodic if its as-
sociated transformation T is an ergodic transformation.

Definition 2.5. Let {Xn} be a sequence of random variables. Define

τn = σ(Xn, Xn + 1, · · · ), τ = ∩nτn.
Then τ is a σ-algebra, known as the tail-algebra of {Xn}. If E ∈ τ
then E is called a tail event.

Proposition 2.3. Every shift-invariant set is a tail event.

For a proof see [17] page 31. For more details on stationary sequences
and their associated dynamical systems see [18].

Example 2.8. Let X1, X2, , · · · be i.i.d. Then the process is ergodic.
By proposition 2.3 we have that every shift-invariant set is a tail event.
Since X1, X2, · · · are all independent Kolmogorov’s zero-one-law states
that every tail event occur with a probability of either 0 or 1. Thus we
have that for every invariant set A, µ(A) = 0 or 1.

Till now, we have looked at stationary sequences index by one vari-
able. In some applications this is not general enough, which is why we
want to look at sequences index by two indices. Let us begin with an
example for motivation.
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Example 2.9. Example 2.4 can be viewed as a stationary sequence
index by two indices. Assume we have two ergodic stationary sequences
{Xn} and {Yn} taking values in {0, 1, · · · l−1} for a l > 0. Define Lm,n
to be the longest common subsequence between m and n. That is

Lm,n = max{K : Xik = Yjk for 1 ≤ k ≤ K, where

m < i1 < i2 < · · · < iK ≤ n and m < j1 < j2 < · · · < jK ≤ n}.
−Lm,n is actually a superadditive sequence. Indeed, we have that

L0,n ≥ L0,m + Lm,n.

2.4. Ligget’s version. Previously we proved Kingman’s theorem in a
form that resembles Birkhoff’s ergodic theorem. The original version of
Kingman’s theorem was in a different form however. Later we will see
an improved version of Kingman’s theorem known as Ligget’s version
which covers more applications and the longest common subsequence
problem in particular. Ligget’s version is a extension of the original
version, so we will state this now.

Theorem 2.10. Let (X ,B, µ, T ) be a PPT. If there exists a family of
random variables index by two parameters, {Xm,n, 0 ≤ m < n < ∞}
where each Xm,n is integrable with respect to µ and the family satisfy

• X0,n ≤ X0,m +Xm,n

• Xm+1,n+1 = Xn,m ◦ T
Then

lim
n→∞

X0,n

n
= Y a.e.

where Y ∈ [−∞,∞) is T -invariant and a constant if X is ergodic.

Remark 2.4. This is indeed the same version as seen earlier. First as-
sume theorem 2.5 and want to show theorem 2.10. We have a family of
random variables {Xm,n, 0 ≤ m < n <∞} that satisfies the conditions
in theorem 2.10. Then define

fm(x) = X0,m

fn−m(Tmx) = Xm,n.

Then we get that

fn(x) ≤ fm(x) + fn−m(Tmx)

is the same as
X0,n ≤ X0,m +Xm,n.

Thus we have by theorem 2.5 that

lim
n→∞

X0,n

n
= lim

n→∞

fn(x)

n
= inf

n

1

n

∫
X
fn(x) := Y a.e.
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Now we assume theorem 2.10 and we want to show theorem 2.5. Let
{fn}n∈N be a sequence of functions that satisfies the conditions in the-
orem 2.5. Then define

Xm,n = fn−m(Tmx).

Again we get that

fn(x) ≤ fm(x) + fn−m(Tmx)

is the same as
X0,n ≤ X0,m +Xm,n.

We also have that

Xm+1,n+1 = fn+1−(m+1)(T
m+1x) = fn−m(Tm+1x)

= (fn−m(Tm) ◦ T )(x) = Xn,m ◦ T.
Thus the conditions in theorem 2.10 are satisfied and we get that

lim
n→∞

fn(x)

n
= lim

n→∞

X0,n

n
= Y a.e.

As mentioned at the beginning of the section, some applications are
not covered by this theorem. In 1985 Ligget [19] discovered an improved
version, which we will need later when studying the longest increasing
subsequence problem.

Theorem 2.11. Suppose Xm,n is a collection of random variables in-
dexed by integers satisfying 0 ≤ m < n and assume:

(1) X0,n ≤ X0,m +Xm,n

(2) {Xnk,(n+1)k, n ≥ 1} is a stationary sequence for each k.
(3) The distribution of {Xm,m+k, k ≥ 1} does not depend on m,
(4) For each n, E

∣∣X0,1

∣∣ <∞ and EX0,n ≥ cn where c > −∞.

Then

(1) limn→∞
EX0,n

n
= infm

EX0,m

m
≡ γ

(2) limn→∞
X0,n

n
= X exists a.e. and in L1, so EX = γ.

(3) If all the stationary sequences in (2) are ergodic then X = γ a.e.

For a proof see Ligget’s own paper on the theorem [19].

Example 2.12 (First passage percolation). First passage perlocation
is a well-known problem in mathematics, and is the reason for sev-
eral tools in mathematics, including the subadditive ergodic theorem
[20]. Hammersley first studied percolation theory in 1957 [21], and it
was because of first passage percolation he introduced subadditive sto-
chastic processes a few years later [3]. Consider Zd for a d > 0 as a
graph with connecting edges e = (x, y) for x, y ∈ Zd if

∣∣x − y
∣∣ = 1.
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Add an independent non-negative random variable τ(e) for each edge
in the graph, which represent the required time it takes to travel in
either direction. The collection τ(e) is assumed to be independent,
identically distributed with common distribution F . If x, y ∈ Zd
then a path from x to y is a sequence x = x1, x2, · · · , xn = y such
that

∣∣xm − xm−1
∣∣ = 1. For a path we define the travel time to be

τ(x1, x2) + τ(x2, x3) + · · ·+ τ(xn−1, xn). For two vertices x, y we define
the passage time from x to y as

t(x, y) = inf{τ(e)|e is a path from x to y}.
Now define

Xm,n = t(mu, nu)

where u = (1, 0, · · · , 0). Durret [22] shows that Xm,n satisfies the
conditions of theorem 2.11 including the ergodic property. Therefore,
we know that

X0,n

n
→ γ(F )

for a constant γ(F ) depending on the distribution F . The value of
γ(F ) is not known today, but some results are proved. For example
under certain conditions γ(F ) varies continuously in F with respect to
weak convergence [23]. See the book 50 years of first passage perco-
lation by Antonio Auffinger, Michael Damron and Jack Hanson for a
comprehensive work on the topic [20].
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3. Products of random matrices

We will now look at the first major consequence of Kingman’s theo-
rem, products of random matrices. Given a set of non-singular matrices
{A1, A2, · · · , Am} and an associated probability vector (p1, p2, · · · , pm)
consider products of the type

Πn = Ai1Ai2 · · ·Ain
where ik = j with a probability of pj. What can we say about Πn as
n→∞?

Example 3.1. Consider the matrices

A0 =

(
σ 0
0 σ−1

)
A1 =

(
σ−1 0
0 σ

)
, where σ > 1.

with probability p0 and p1 respectively. We see that A0A1 = I = A1A0.
For a given n and Πn, say that m0 of the terms are A0 and m1 = n−m0

of the terms are A1. If m0 > m1, then all m1 A
′
1s would cancel with

m1 A0’s and we are left with m0 −m1 A0’s. Thus Πn becomes

Πn = Am0−m1
0 =

(
σm0−m1 0

0 σ−(m0−m1)

)
If m1 > m0 then the opposite happens and we are left with m1 −m0

A1’s and Πn becomes

Πn = Am1−m0
1 =

(
σ−(m1−m0) 0

0 σm1−m0

)
,

If m0 = m1 then Πn = I. Assume p0 > p1 then

Πn →
(
σn(p0−p1) 0

0 σn(p1−p0)

)
as n→∞.

In general Πn dose not always convergence, and it is hard to extract
any vital information. It is therefore interesting to consider

λ = lim
n→∞

1

n
log‖Πn‖ (3.1)

instead. This is actually an example of a general concept in mathemat-
ics called Lyapunov exponent. Fustenberg and Kesten proved in 1960
[4] that equation (3.1) exists. This was eight years prior to Kingman
presented his theorem. It turns out that their theorem is an easy con-
sequence of the subadditive ergodic theorem. The goal of this section
is to prove this, and we need a more formal setup in order to do this.
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3.1. The Lyapunov exponent. Say we have a space X and a time-
dependent transformation on it such as a differential equation

x′ = f(t, x).

Consider an initial value x0 and a point close x0 + ε for a small ε > 0.
Then f(t, x) and f(t, x+ ε) will have a separation depending on t, see
figure 4. We are interested in studying the asymptotic behaviour of the
separation when considering two initially close points. Specifically, we
are interested in studying the limit

lim
t→∞
ε→0

1

n
log

(
∆(f(t, x0), f(t, x0 + ε))

∆(x0, x0 + ε)

)
.

Figure 4. Separation of two initial close points using a
differential equation x′ = f(t, x).

Consider instead a discrete transformation T : X → X . For a point
x ∈ X , we say the orbit of x is the set {T nx}n≥0. If we consider two
points in this space, x0 and y0, each of them will generate an orbit in
X . Let us use one of the orbits as a reference orbit, then the separation
of the other orbits can also be viewed as a function of n. That is, for
a x0 ∈ X , consider the point x0 + δx for a small δx. Say ∆(x, y) is a
measure of distance between points in X . Then the initial distance is
∆(x0, x0 + δx), and the distance after n steps is ∆(T nx0, T

n(x0 + δx)).
We are interested in the quantity

lim
n→∞
δx→0

1

n
log

(
∆(T nx0, T

n(x0 + δx))

∆(x0, x0 + δx)

)
.

Lyapunov exponents are an important topic in the theory of differ-
ential equations. Say we have a differentiable function f : R→ R, look
at the iteration

xn+1 = f(xn).
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Pick two points x0 and y0 = x0 + ε so that y0 is close to x0, that is
∣∣ε∣∣

is small. The distance between the points initially, at n = 0, is
∣∣ε∣∣.For

the first iteration we get

x1 = f(x0) and y1 = f(y0) = f(x0 + ε).

The distance at n = 1 is ∣∣f(x0 + ε)− f(x0)
∣∣.

The increase in logarithm distance between 0 and 1 is therefore

log(
∣∣f(x0 + ε)− f(x0)

∣∣)− log(ε)

We want study the different for arbitrary close points, so letting ε
approach zero this distance becomes:

lim
ε→0

log(
∣∣f(x0 + ε)− f(x0)

∣∣)− log(
∣∣ε∣∣) = log

(
lim
ε→0

∣∣∣∣f(x0 + ε)− f(x0)

ε

∣∣∣∣)
= log(

∣∣f ′(x0)∣∣).
Then the next iteration we do it the same way:

x2 = f(x1) = f (2)(x0) and y2 = f (2)(x0 + ε).

Here is f (2) = f ◦ f . Now as ε approaches zero the logarithm distance
becomes

lim
ε→0

log(
∣∣f (2)(x0 + ε)− f (2)(x0)

∣∣)− log(
∣∣ε∣∣) = log(

∣∣f (2)′(x0)
∣∣).

Using induction we can show that the logarithm distance after n steps
is

log(
∣∣f (n)′(x0)

∣∣)
where f (n) is defined by f (n) = f (n−1) ◦ f . The Lyapunov exponent
is the limit of average logarithm distance of close points, so for this
system it becomes

λ(f, x0) = lim
n→∞

1

n
log(

∣∣f (n)′(x0)
∣∣).

Often the calculation of f (n)′(x0) is complicated, but using the chain
rule and induction this becomes

f (n)′(x0) = f ′(x0)f
′(x1) · · · f ′(xn−1).

Thus, the Lyapunov exponent can be written as

λ(f, x0) = lim
n→∞

1

n
log(Πn−1

i=0

∣∣f ′(xi)∣∣)
= lim

n→∞

1

n

n−1∑
i=0

log(
∣∣f ′(xi)∣∣).
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What information does the Lyapunov exponent give us about the sys-
tem? It is a quantitative number that measure the dependence on ini-
tial conditions. It measures the exponential rate at which error grows.
Note that the sum of log(

∣∣f ′(xi)∣∣) over an orbit can in many situations
be calculated by Birkhoff’s theorem. Indeed,

lim
n→∞

1

n

n−1∑
i=0

log(
∣∣f ′(xi)∣∣).

is a Birkhoff sum under the right conditions.

Example 3.2. Consider the logistic map given by

f(x) = 4x(1− x)

where f is limited to the unit interval, f : [0, 1] → [0, 1]. The Lya-
punov exponent for this map is log(2) [24], which can be calculated
using Birkhoff’s theorem. Indeed, the the logistic map is a measure-
preserving transformation under the measure with probability density

ρ(x) =
1

π
√
x(1− x)

.

see [25]. Thus,

lim
n→∞

1

n

n∑
i=0

log(
∣∣f ′(xi)∣∣) =

∫ 1

0

log(
∣∣4(1− 2x)

∣∣)
π
√
x(1− x)

= log(2).

That means that if the initial error is ε the error after n steps is 2nε.

As we saw by the previous example, Birkhoff’s theorem can be use-
ful to calculated the Lyapunov exponent when we are in R. In higher
dimensions however this theorem is often insufficient. Instead, King-
man’s theorem is useful. In higher dimension we have to consider the
Jacobian determinant matrix, and as we saw in example 2.2 matrices
can be viewed as a subadditive function.

Definition 3.1. The maximal Lyapunov exponent of a metric space
(X , d) with a continuous transformation T : X → X is

λ = lim
n→∞

1

n
lim sup
d(x,y)→0

log
d(T nx, T ny)

d(x, y)
.

Remark 3.1. Let us try to use Fekete’s Subadditive Lemma to show
that this limit exists. Let

αn = lim sup
d(x,y)→0

log
d(T nx, T ny)

d(x, y)
.
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We want to show that the sequence {αn} is a subadditive sequence.
Consider

an+m = lim sup
d(x,y)→0

log
d(T n+mx, T n+my)

d(x, y)

We can rewrite the argument of the log-function.

d(T n+mx, T n+my)

d(x, y)
=
d(T n+mx, T n+my)

d(T nx, T ny)

d(T nx, T ny)

d(x, y)
.

Thus,

an+m ≤ lim sup
d(x,y)→0

log
d(T n+mx, T n+my)

d(T nx, T ny)
+ lim sup

d(x,y)→0

log
d(T nx, T ny)

d(x, y)

≤ am + an.

For the first term we have used that T is a continuous function. That
is, letting x 7→ T nx and y 7→ T ny we get that d(x, y)→ 0 implies that
d(T nx, T ny) → 0 since T is continuous. We therefore get by Fekete’s
Subadditive Lemma that

λ = inf
n

αn
n
.

Example 3.3. Let us turn back to the classical example of the torus
translation to illustrate the latest definition. Here Tx = x+α mod (1),
thus T nx = x + nα mod (1) and we get that d(T nx, T ny) = d(x, y)
and the maximal Lyapunov exponent of the system is 0.

Example 3.4. Now let us look at a nontrivial example, the doubling
map. Here Tx = 2x mod (1), thus T nx ≤ 2nx mod (1) and we get
that d(T nx, T ny) ≤ 2nd(x, y). We want to show that d(T nx, T ny) =
2nd(x, y) mod (0.5). The metric here is defined by

d(x, y) =

{∣∣x− y∣∣ if
∣∣x− y∣∣ ≤ 0.5

1−
∣∣x− y∣∣ if

∣∣x− y∣∣ ≥ 0.5

This metric can also be written as d(x, y) = min{
∣∣x− y∣∣, 1− ∣∣x− y∣∣}.

Thus, we get d(2x, 2y) = min{2
∣∣x − y∣∣, 1 − 2

∣∣x − y∣∣} ≤ 2d(x, y). We
therefore have to find a pair x, y such that d(T nx, T ny) = 2nd(x, y) for
a given n. If we pick x, y such that x ≤ 1

2n
and y ≤ 1

2n
then we have

that d(T nx, T ny) = 2nd(x, y). Which gives a Lyapunov exponent equal
to log(2).
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3.2. Linear cocycles. Before we can move on, we need to define the
concept of linear cocycles. This is an example of a MPDS, which will
be useful for us when studying matrices over measure spaces.

Definition 3.2. GLd denotes the general linear group of degree d,
which is the set of d× d invertible matrices.

Definition 3.3. Given a pair (f, A) of measurable maps on a measure
space (X ,B, µ) such that f : X → X and A : X → GLd. The linear
cocycle defined by A over f is the transformation

F : X × Rd → X × Rd, (x, v)→ (f(x), A(x)v).

Note that

F n(x, v) = (fn(x), A(n)(x)v)

where

A(n)(x) = A(fn−1(x))A(fn−2(x)) · · ·A(f(x))A(x).

One way to view a cocycle is as a new dynamical system, the cross
product X × Rd with the map F .

Example 3.5. Linear cocycles is an easy way to represent products of
random matrices. Say we have a set of matrices {B1, B2, · · · , Bk} of
degree d with associated probability vector (p1, p2, · · · , pk). Let X =
{B1, B2, · · · , Bk} and define (X ,B, µ) to be the discrete measure space
such that µ(Bi) = pi for 1 ≤ i ≤ k. Let Y = X Z be the product space
over X . Define

f : Y → Y f(y1, y2, y3, · · · ) = (y2, y3, · · · )
A : Y → GLd A(y1, y2, · · · ) = y1

Then (f, A) is a linear cocycle over the product space Y . Thus, we get
that

Πn = Bi1Bi2 · · ·Bin = A(n)(y)

for some y ∈ Y .

Remark 3.2. Why do we study such systems? Consider the initial value
problem

g′′ + V g = 0 g(0) = a, g′(0) = b.

where g : [0,∞) → R and V (t) = V (t + 1) is a periodic function with
period 1. Assume g0 is the solution of the IVP with a = 1, b = 0 and
g1 is the solution of the IVP with a = 0, b = 1. Then

g(t) = ag0(t) + bg1(t)
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is a solution of the original IVP. We can write the solution on matrix
form [

g(1)
g′(1)

]
=

[
ag0(1) + bg1(1)
ag′0(1) + bg′1(1)

]
=

[
g0(1) g1(1)
g′0(1) g′1(1)

] [
a
b

]
and define the matrix

AV =

[
g0(1) g1(1)
g′0(1) g′1(1)

]
.

We call AV the solution matrix of the IVP. That is, we can view the
solution of the IVP as a matrix transformation:[

g(1)
g′(1)

]
= AV

[
a
b

]
.

After n steps the solution is therefore[
g(n)
g′(n)

]
= AnV

[
a
b

]
.

Also note that A is completely determined by the function V . We can
view this system as a cocycle. Indeed, this is a cocycle as in example
3.5 where X is the one point set containing the solution matrix AV .

Example 3.6. Let us consider an easy example to illustrate this. Say
that V = c2 for some c ∈ R. Then we have the solutions g0(t) = cos(ct)
and g1(t) = 1

c
sin(ct) and we get the solution matrix

AV =

[
cos(c) 1

c
sin(c)

−c sin(c) cos(c)

]
.

AV is diagonalizable. Indeed, the eigenvalues are

λ0,1 = cos(c)± i
∣∣sin(c)

∣∣.
This becomes

λ0,1 = e±ic.

The eigenvectors are

v0 =

[
1
ic

]
v1 =

[
1
−ic

]
.

The matrix Av can therefore be written as

AV = PDP−1

=
1

2

[
1 1
ic −ic

] [
eic 0
0 e−ic

] [
1 −i

c

1 i
c

]
.
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We can use this to calculate A(n) after n steps:

A
(n)
V = PDnP−1.

=
1

2

[
1 1
ic −ic

] [
enic 0
0 e−nic

] [
1 −i

c

1 i
c

]
=

[
cos(nc) 1

c
sin(nc)

−c sin(nc) cos(nc)

]
.

Remark 3.3. In physical applications of this equation, the function V (t)
is not periodic, but consists of several different periodic functions. That
is, we can have several different Vi based on a probably distribution.

V (t) =


V1(t) with probability p1
V2(t) with probability p1
...

Vn(t) with probability pn

where each Vi is a periodic function. It is important to note that V (t)
is restricted to one function Vi on each interval, that is

V (t)|[k,k+1] = Vi(t) for some i.

For example in quantum mechanics the potential can vary with time.
Since we have a probability distribution we can not exactly say what
happens after a certain time, so we try to figure out what happens on
average. We get the system[

f(0)
f ′(0)

]
→A0

[
f(1)
f ′(1)

]
→A1

[
f(2)
f ′(2)

]
→ · · ·

Where each Ai is the solution matrix for the corresponding Vi for that
IVP. The solution after N steps is

A(n)

[
a
b

]
= AN · · ·A1A0

[
a
b

]
.

So it is very natural to look at this as a cocycle similar to the one in
example 3.5. Let X the set of all the solution matrices corresponding to
all Vi’s. Let (X ,B, µ) be the discrete measure space such that µ(Ai) =
pi. Then as before let Y = X Z be the product space over X and define

f : Y → Y f(y1, y2, y3, · · · ) = (y2, y3, · · · )
A : Y → GLd A(y1, y2, · · · ) = y1

Then (f, A) is a cocycle over Y .
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Example 3.7. Let us expand our previous example a bit. Given two
functions V0 = c2 and V1 = −c2 for a c ∈ R with corresponding proba-
bilities p0 and p1. Then as before for V0 we get the matrix

AV0 =

[
cos(c) 1

c
sin(c)

−c sin(c) cos(c)

]
and for V1 we get the matrix

AV1 =

[
cosh(c) 1

c
sinh(c)

c sinh(c) cosh(c)

]
.

3.3. Lyapunov exponent for linear cocycles.

Definition 3.4. For a linear cocycle (f, A) on a dynamical system
(X ,B, µ) we define the Lyapunov exponent to be

λ(x) = lim
n→∞

1

n
log‖A(n)(x)‖.

Remark 3.4. Let us turn back to the IVP to see why we are interested
in this quantity. Remember that the Lyapunov exponent measures the
dependence on the initial conditions. Let

v0 =

[
f(0)
f ′(0)

]
=

[
a
b

]
and consider a small distribution from this

v0 + εz

for a ε > 0 and a vector z such that ‖z‖ = 1. Say we have a sequence
of functions {Vi} which corresponds to a point x ∈ X . Then the initial
distance is

‖v0 − (v0 + εz)‖ = ε‖z‖ = ε.

After n steps the distance becomes

‖A(n)(x)v0 − A(n)(x)(v0 + εz)‖ = ‖A(n)(x)εz‖
≤ ε‖A(n)(x)‖‖z‖ = ε‖A(n)(x)‖

Thus, we have that

‖A(n)(x)εz‖
ε‖z‖

≤ ‖A(n)(x)‖

Suprimum over all vectors with norm 1 leads to equality.

Example 3.8. Look at the matrix from example 3.6:

AV =

[
cos(c) 1

c
sin(c)

−c sin(c) cos(c)

]
.
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There we saw that

A
(n)
V =

[
cos(nc) 1

c
sin(nc)

−c sin(nc) cos(nc)

]
.

Thus, the norm is bounded below by 1 and above by
∣∣c∣∣ or

∣∣1
c

∣∣. There-
fore, the Lyapunov exponent is equal to 0.

Example 3.9. Consider the matrices from example 3.1

A0 =

(
σ 0
0 σ−1

)
A1 =

(
σ−1 0
0 σ

)
, where σ > 1.

with probability p0 and p1 respectively. By symmetry we get that

log‖A(n)‖ =

{∣∣m0 −m1

∣∣ log σ if m0 6= m1

0 if m0 = m1

Since

lim
n→∞

∣∣m0 −m1

∣∣
n

=
∣∣p0 − p1∣∣

the Lyapunov exponent of the system becomes

λ = lim
n→∞

1

n
log‖A(n)‖ =

∣∣p1 − p2∣∣ log
∣∣σ∣∣.

Example 3.10. Consider the matrices

A0 =

(
2 0
0 1

)
A1 =

(
0 1
1 0

)
,

with p0 = p1 = 1/2. Then

A(n) =

(
2k1 0
0 2k2

)
or A(n) =

(
0 2k1

2k2 0

)
for some numbers 0 ≤ k1, k2 ≤ n. We claim that

λ = lim
n→∞

1

n
log‖A(n)‖ =

log(2)

4
.

Proof. Denote

an = E(log(‖AnAn−1 · · ·A1‖).
We want to find

lim
n→∞

an
n
.

Let us try to find an − an−1, this can be written as

1

2
log 2 · P

(
A(n−1) =

(
2k 0
0 2l

)
or

(
0 2k

2l 0

)
and k ≥ l

)



30

since an increase in norm only happens if the n’th matrix is equal to
A0, A

(n−1) is on the given form and k ≥ l. We can split this equation
in two parts, one where k > l and one where k = l

=
1

4
log 2 +

1

2
log 2 · P

(
A(n−1) =

(
2k 0
0 2k

)
or

(
0 2k

2k 0

))
We have used that

P
(
A(n) =

(
2k 0
0 2l

)
or

(
0 2k

2l 0

)
and k > l

)
=

1

2

which can be shown by induction. Now let

pn = P
(
A(n) =

(
2k 0
0 2k

)
or

(
0 2k

2k 0

))
.

Thus,

an = an−1 +
1

4
log 2 +

1

2
log 2 · pn−1

which results in

an =
n

4
log 2 +

1

2
log 2 · p0 + · · · pn−1

n
.

By the last equation, if we can show that

pn → 0 as n→∞
we are done. We know that A(n) is on the form(

2k 0
0 2l

)
or

(
0 2k

2l 0

)
.

Now consider all 2n ways we can combine A0 and A0, and let d(i, n)
be the total number of resulting matrices after n steps with i = k − l.
We see that −n ≤ i ≤ n. Note that pn = 1

2n
d(0, n). At n = 1 we have

either (
2 0
0 1

)
or

(
0 1
1 0

)
.

Thus, d(−1, 1) = 0, d(0, 1) = 1 and d(1, 1) = 1. The next values for
d(i, n) are shown in the table below

i: -3 -2 -1 0 1 2 3 4

n = 1: 1 1

n = 2: 1 1 1 1

n = 3: 1 1 2 2 1 1

n = 4: 1 1 3 3 3 3 1 1
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Note that this is similar to Pascal’s triangle, just that every number is
repeated twice. Actually, this is true, d(i, n) follows the rule:

d(i, n) = d(i− 1, n− 1) + d(−1, n− 1)

and one can show by induction that d(i, n) is equal to the entries in
Pascal’s triangle. Thus,

pn =
1

2n
d(0, n) =

1

2n
·


(
n

n/2

)
if n is even(

n

(n+ 1)/2

)
if n is odd.

Say n is even for simplicity, we get that this is

pn =
1

2n

(
n

n/2

)
=

1

2n
n!

((n/2)!)2
.

By Stirling’s approximation we get

pn ≈
1

2n

√
2πn(n/e)n

(
√
πn(n/2e)

n
2 )2

=

√
2

n
→ 0

as n→∞. We have shown that

an
n
→ log 2

4
as n→∞

which proves our claim. �

3.4. Furstenberg and Kesten’s theorem. Furstenberg and Kesten
first discovered their theorem in 1960 [4], eight years prior to King-
man’s theorem. The theorem proves convergence for random product
of matrices. Birkhoff’s ergodic theorem is often viewed as a generaliza-
tion of the law of large numbers. Similarly, can one view Kingman’s
theorem as a generalization of Furstenberg-Kesten’s theorem.

Let F : X × Rd → X × Rd be given by F (x, v) = (f(x), A(x)v) for
a measurable function A : X → GLd. Let L1(µ) denote the space of
µ-integrable functions on X .

Theorem 3.11. If log‖A‖ ∈ L1(µ) then

λ(x) = lim
n→∞

1

n
log‖A(n)(x)‖

exists µ a.e.x ∈ X . Moreover, λ(x) is an invariant function and µ-
integrable.

Proof. This follows directly from Theorem 2.5. Define

φn(x) = log‖A(n)(x)‖.
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We showed in example 2.2 that this is a subadditive function satisfying
equation (2.1) and by the assumptions we know that φ1(x) ∈ L1(µ).
Thus the assumptions of Theorem 2.5 are satisfied and the conclusions
of the theorem follows. �

This theorem and example 3.5 shows that

λ = lim
n→∞

1

n
log‖Πn‖

exists almost surely.
The study of Lyapunov exponents originated in the late 19th century

from the fundamental work of the Russian mathematician Aleksandr
Lyapunov [26] on the stability of solutions of differential equations. As
discussed in the remarks throughout the chapter, one consider linear
equations of the type

v′(t) = B(t)v(t)

where B(t) is a bounded function from R to the set of d× d matrices.
In the 1960-80, work of several mathematicians such as Furstenberg,
Kesten and Kingman made the study of Lyapunov exponents in to a
very active research field, with strong ties to other areas of mathematics
and physics. As seen, even in basic systems computing Lyapunov expo-
nents can be quite complicated. As a result, several numerical methods
have emerged and has become a research field by its own [27].
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4. Longest increasing subequence of a permutation

We will now study a different application of Kingman’s theorem, the
concept of longest increasing subsequence of a random permutation.
Random permutation has been studied immensely in the last half cen-
tury, and spans several branches of mathematics. It is also a classical
computer science problem, where it is an example of a dynamical pro-
gramming problem and has applications in other areas such as physics,
random matrix theory and bioinformatics [28].

Let Sn be the group of permutations of order n. An increasing sub-
sequence of a permutation π : i→ π(i) is a subsequence such that

i1 < i2 < · · · < ik; π(i1) < π(i2) < · · · < π(ik).

Similarly, a decreasing subsequence is when

i1 < i2 < · · · < ik; π(i1) > π(i2) > · · · > π(ik).

Example 4.1. Look at the permutation π

2 6 8 4 1 5 7 3.

This permutation has several increasing subsequences, but only one of
length 4:

2 4 5 7.

We call this the longest increasing subsequence of π. Similarly we have
the longest decreasing subsequence of π, here we actually have three
decreasing subsequences of length 3;

8 5 3, 6 4 1 and 6 5 3.

We have a more precise definition.

Definition 4.1. Let π be a permutation of order n. Then we let L(π)
to be the maximum length of an increasing subsequence.

L(π) = max{1 ≤ k ≤ n : π has an increasing subsequence of length k}.
Similarly, we define D(π) to be the maximum length of a decreasing
subsequence.

D(π) = max{1 ≤ k ≤ n : π has a decreasing subsequence of length k}.

Example 4.2. Consider the permutation in example 4.1. We have
that L(π) = 4 and D(π) = 3.

Now define the sequence ln

ln =
1

n!

∑
π∈Sn

L(π).
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That is the average over L(π) of all permutation of order n. Similarly
define

dn =
1

n!

∑
π∈Sn

D(π).

By symmetry note that ln = dn. Our goal is to use Kingman’s theorem
to find the asymptotic behaviour of ln. It turns out that the expected
value of the longest increasing sub-sequence in a random permutation
is asymptotic to

√
n. The goal of this section will be to prove the

following theorem.

Theorem 4.3.

lim
m→∞

ln√
n
→ c.

For a constant c, where 0 < c <∞.

4.1. First bounds. Before we get to the details, let us try to get some
bounds on c.

Theorem 4.4 (Erdos-Szekeres theorem). If π ∈ Sn and n > rs for
some integers r, s ∈ N, then either L(π) > r or D(π) > s. Also,
L(π)D(π) ≥ n.

Proof. For each x in the permutation π defined the pair (i, j)x as fol-
lows: i is the length of the longest increasing sequence starting at x
and j is the length of the longest decreasing sequence ending at x. We
now have n pairs and we claim that they are all distinct. Indeed, as-
sume that (i, j)x = (k, l)y and without loss of generality that x comes
before y in the permutation. If x > y then there is a longer decreasing
sequence ending at y than l, namely the decreasing sequence of length
j ending at x with y added at the end. This sequence has length l+ 1.
Then if x < y, then there is a longer increasing sequence staring at x
than i, namely the increasing sequence of length k starting at y with x
added at the beginning. This sequence has length i+1. Hence, we have
n distinct pairs of numbers. Now we must have that either L(π) > r
or D(π) > s since if (i, j) are all in {1, 2, · · · , r} × {1, 2, · · · , s} then
we have a contradiction of what we just proved. That is, since n > rs
there are not enough pairs in {1, 2, · · · , r} × {1, 2, · · · , s} to make n
pairs distinct. In the same way we know that the pairs (i, j) are all in
{1, 2, · · · , L(π)} × {1, 2, · · · , D(π)}, thus since they are all distinct we
get that L(π)D(π) ≥ n. �

Example 4.5. Consider the special case when n = N2 for some N ∈ N.
Then there exists a permutation πn such that L(π) = D(π) = N .
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Proof. The permutation we are seeking is a block permutation with
N blocks of size N . The first block is the numbers from N2 − N + 1
to N2 in increasing order. Then the next block is the numbers from
N2 − 2N + 1 to N2 −N in increasing order. And so on until the last
block, which is the numbers 1 to N in increasing order, see figure 5.
Here are the permutations for N = 2, 3:

3 4 1 2

7 8 9 4 5 6 1 2 3

One can easy see that for both of these permutations both L(π) and
D(π) are equal to 2 and 3 respectively. This is true for any N . Let
us first see this for L. Any block would be an increasing subsequence
of length N . But one can not combine different blocks to create a
increasing subsequence since the blocks are decreasing. For D pick one
element for each block and this will create a decreasing subsequence of
length N . One can not have two or more elements from the same block
as this would not create a decreasing subsequence. Thus, both the
maximal increasing and decreasing subsequence are of length N . �

Figure 5. The block-permutation from example 4.5.
The permutation is of order N2 and has L(π) = D(π) =
N .

We will use Erdos-Szekere’s theorem to get a lower bound for ln.

Proposition 4.1. For all n ≥ 1 we have

ln ≥
√
n.

Proof. Remember that ln is defined as the average value of L(π) and
by symmetry it is also the average value of D(π). Thus, we get that

ln =
1

n

∑
π∈Sn

L(π) +D(π)

2
= E

(
L(π) +D(π)

2

)
. (4.1)

The inequality of arithmetic and geometric means states that

x+ y

2
≥ √xy x, y ≥ 0.
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Using this on equation (4.1) and the fact that L(π)D(π) ≥ n we get
that

E
(
L(π) +D(π)

2

)
≥ E(

√
L(π)D(π)) ≥ E(

√
n) ≥

√
n

Thus, we get that
ln ≥

√
n.

�

Note that this is not an asymptotic bound, but it is true for all n.
That is, the expected value of the longest increasing subsequence is
larger than

√
n for all n. From this can one asks what is a typical

value for L(π) and which values are rare to obtain. There is always
a possibility to get 1 or n, but this happens only once for each n.
Consider for example all permutations of order 5. Clearly we have one
permutation with L = 1 and one with L = 5. In table 2 we have
listed how many of them obtain each number from 1 to 5. This is also
shown in figure 6, here have we plotted the histogram for n = 7, 8, 9, 10.
We clearly see that the majority of permutations have similar L. This
indicates that the variance can not be that large. We also calculated
the exact value for ln for different n. These numbers are given in table
1 where also the reference value

√
n are listed. Those numbers suggest

that
√
n is a rather conservative lower bound, we will later see improved

lower bounds.

Table 1. Exact value of ln for 2 ≤ n ≤ 9. As compar-
ison

√
n and e

√
n are included to illustrate proposition

4.1 and proposition 4.2 respectively.
n ln

√
n e

√
n

2 1.5 1.41 3.64
3 2 1.73 4.71
4 2.42 2 5.44
5 2.79 2.23 6.08
6 3.14 2.45 6.66
7 3.47 2.65 7.29
8 3.77 2.83 7.69
9 4.06 3 8.15
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Table 2. Number of permutations with L(π) = i, 1 ≤
i ≤ n for n = 5

i #π
1 1
2 41
3 61
4 16
5 1

Figure 6. Histogram of L(π) for n = 7, 8, 9, 10.

We have a lower bound for c. Next we will see an upper bound.

Proposition 4.2.

lim sup
n→∞

ln√
n
≤ e

Proof. For 1 ≤ k ≤ n let Xk,n be the number of increasing subsequences
of length k in a random permutation of length n. We want to compute
the expected value of Xk,n. Note that this is the sum, over all (nk)
subsequences of length k, of the probability that the subseqeuence is
increasing. This probability is 1

k!
. Thus,

EXk,n =
1

k!

(
n

k

)
.
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We want to use this to bound the probability that L(π) is a least k.

P (L(π) ≥ k) = P (Xk,n ≥ 1) ≤ EXk,n =
1

k!

(
n

k

)
.

Now let us consider this number. First we can write it out:

1

k!

(
n

k

)
=

1

(k!)2
n!

(n− k)!
.

The last term can be bounded by nk:

n!

(n− k)!
≤ nk.

For the first term we need Sterling’s formula

n! ≥
(n
e

)n
.

Thus,
1

(k!)2
≤
( e
k

)2k
.

Combining this we get that

1

k!

(
n

k

)
≤ nk

( e
k

)2k
.

Now for a δ > 0 let k = d(1 + δ)e
√
ne. Here dxe denotes the ceil-

function, which is the least integer greater than or equal to x. Then
we get that

nk
( e
k

)2k
≤
(

1

1 + δ

)2k

≤
(

1

1 + δ

)2(1+δ)e
√
n

= e− log(1+δ)2(1+δ)e
√
n

Note that this bound converges to zero at exponential rate in
√
n as

n→∞. Thus,

P (L(π) ≥ k) ≤ e−cδ
√
n

for some positive constant cδ depending on δ. Since L(π) ≤ n, we will
now use that

ln = E(L(π)) ≤ P (L(π) < k)k + P (l(π) ≥ k)n.

So we get that

ln ≤ (1 + δ)e
√
n+ e−cδ

√
nn.

Taking limits we get that

lim sup
n→∞

ln√
n
≤ (1 + δ)e.

Since δ was arbitrary we are done. �
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Proposition 4.1 gave us a lower bound of ln for all n. To the contrary
proposition 4.2 is an asymptotic bound. Which means that for some
n ∈ N it is possible that ln ≥ e

√
n. Table 1 shows that this is not the

case up till n = 9. Although we can not say for certain what the upper
bound of ln is for a given n, the proof of the proposition gives us some
clues. If we look at the proof of the proposition we see that (1 + δ)e

√
n

is not just a bound for the average of L(σn) but also for the typical
value. Namely the value that is obtained with a probability close to 1
for large n. We will need this later, so we have a corollary from the
previous proposition.

Corollary 4.3. For any α > e we have that for all n that

P (L(π) > α
√
n) ≤ Ce−c

√
n

for some constants C, c > 0 that are depended on α but not on n.

4.2. Hammersley process. As mentioned at the beginning of the
section, we want to use Kingman’s theorem to prove the asymptotic
behaviour of ln. We actually need Ligget’s version since it is more
general and covers this specific application. In order to do this, we need
to reformulate our problem such that the theorem is indeed applicable.
The idea is to view the problem more in a geometric way. We want
to express a permutation as points on the plane and apply spatial
probability theory. Analyzing these points in the plane as a Poisson
point process is known as a Hammersley process, and was introduced
by the mathematician while studying this problem. We therefore need
a way to express a random permutation of order n by n points in
the plane and vise versa. We define a permutation based on the set of
points by: The point with the i’th smallest y-coordinate has the π(i)’th
smallest x-coordinate. Reverse, a permutation π results in the set of
points (i, π(i))ni=1.

Example 4.6. Let us go back to the permutation in example 4.1 and
consider π:

2 6 8 4 1 5 7 3.

See figure 7 for a plot of this permutation.

The following arguments are based on the proof of Theorem 1.6 in
[29]

We have a way to represent a permutation as a geometric object,
but how does our problem translate with this representation? We are
looking for an increasing subsequecne, that means we have an ordering
on the numbers in order to compare them to each other. We need this
in R2 as well. Let � be a partial order on R2 where (x1, y1) � (x2, y2)
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Figure 7. The permutation from example 4.6 repre-
sented as points in the plane.

if x1 ≤ x2 and y1 ≤ y2. Let A be a set of points in R2. An increasing
subset of A is a subset where every two points in A are comparable
with respect to �. Let L(A) be the length of the longest increasing
subset of A.

Since ln is the expected value of a random permutation, we need to
make sure that the points chosen and the permutations they represent
are uniformly distributed. Therefore an algorithm of generating this
points is needed to ensure that they are indeed equally distributed. Let
X1, · · · , Xn be a sequence of independent random variables distributed
on the uniform distribution U [0, 1]. We want to define a permutation
σn according to these random variables: define σn(j) for each 1 ≤
j ≤ n to be the number k such that Xj is the kth smallest among
X1, · · · , Xn. This is well defined since X1, · · · , Xn takes distinct values
with probability 1. Given a permutation we can easily go back to a set
of points by letting Xi = π(i) and Yi = i.

Example 4.7. Let n = 4 and pick four random numbers,

X1 = 0.5847, X2 = 0.9481, X3 = 0.0610, X4 = 0.5846.

Sorting them gives us

X3 < X4 < X1 < X2.

Then we have by construction that

σ(1) = 3

since X1 is the 3rd smallest number. And so forth we get that

σ(2) = 4, σ(3) = 1, σ(4) = 2.

Thus, the resulting permutation is therefor

3 4 1 2.
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Proposition 4.4. The permutation σn defined in the preceding para-
graph is uniformly distributed in Sn.

Proof. Let σn be a permutation, we want to show that the probability to
obtain this permutation by the described method is 1/n!. Let σn(1) =
k1, then we must find the probability that X1 is the k1th smallest
number among X1, · · · , Xn. That happens with a 1/n probability.
Then σn(2) = k2 6= k1, and the probability that X2 is the k2th smallest
number among X1, · · · , Xn given that X1 is the k1th smallest number
is 1/(n− 1). Thus, using induction we get that the probability to pick
this exact permutation is 1/n!. �

Now let An(s, t) denote a set of n random points chosen indepen-
dently and uniformly random from a rectangle [0, s]× [0, t] where s, t >
0. We want to show that the maximal increasing subset size L(An(s, t))
is a random variable with the same distribution as L(σn). If we rep-
resent the set as An(s, t) = {(Xk, Yk)}nk=1, where both X1, · · · , Xn and
Y1, · · · , Yn are independent random variables, with Xi distributed uni-
formly in [0, s] and with Yi distributed uniformly in [0, t]. Let πn and
νn be the resulting permutations from X1, · · · , Xn and Y1, · · · , Yn re-
spectively. Now let σn = πn ◦ ν−1n . This is also a uniformly random
permutation of order n.

Example 4.8. Continuing from example 4.7, let Xi be the random
numbers given there and π the resulting permutation. Pick four new
random numbers from [0, 1]:

Y1 = 0.2851, Y2 = 0.8277 Y3 = 0.1910 Y4 = 0.4425.

This results in a permutation ν

2 4 1 3.

Then we get that π ◦ ν−1 is

1 3 2 4

which has an increasing subsequence of length 3. The set

A = {(Xk, Yk)}4k=1

is plotted in figure 8. We see that the maximal increasing subset is
indeed of size three.

With this example in mind we have motivation for our next propo-
sition.

Proposition 4.5. L(An(s, t)) = L(σn).
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Figure 8. A plot of the random points from example 4.8.

Proof. First pick X1, X2, · · · , Xn and Y1, Y2, · · · , Y3 from the uniform
distribution U [0, 1] and form the permutations π, ν and σ = π ◦ ν−1 as
described. For each 1 ≤ j ≤ n there exists a 1 ≤ k ≤ n such that

ν−1n (k) = π−1n (j)

and
(Xπ−1

n (j), Yν−1
n (k))

forms a point in the coordinate system. So an increasing subset of size
l means that there are two increasing sequences of length l

j1 < j2 < · · · < jl, 1 ≤ ji ≤ n

k1 < k2 < · · · < kl, 1 ≤ ki ≤ n

such that
Xπ−1

n (j1)
< Xπ−1

n (j2)
< · · · < Xπ−1

n (jl)

and
Yπ−1

n (k1)
< Yπ−1

n (k2)
< · · · < Yπ−1

n (kl)

with the property that

ν−1n (ki) = π−1n (ji), 1 ≤ i ≤ l.

But this is the same as

ji = σn(ki), 1 ≤ i ≤ l.

But what do we have here, an increasing subsequence of length l. In-
deed, for

k1 < k2 < · · · < kl : σn(k1) < σn(k2) < · · · < σn(kl).

We have showed that an increasing subset results in an increasing sub-
sequence, so we have proved that L(An(s, t) ≤ L(σn). The reverse
is more obvious, a permutation σn generates n points on the form
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(σn(i), i) for 1 ≤ i ≤ n. Thus, if there is an increasing subsequence of
length l:

i1 < i2 < · · · < il : σn(i1) < σn(i2) < · · · < σn(il).

Thus, we have l points which forms an increasing subset:

(σn(i1), i1) � (σn(il), il) � · · · � (σn(il), il).

�

We have a way to represent our problem geometrically. The next
proposition states that the distribution of these points are the same
as a Poisson point process when conditioned on the number of points.
This allows us to use the properties of a Poisson point process trying
to find the asymptotic behaviour to ln.

Let Π be a Poisson point process in the plane with unit intensity.
Define N(s, t) =

∣∣Π ∩ ([0, s]× [0, t])
∣∣.

Proposition 4.6. Conditioned on the event N(s, t) = n, the distribu-
tion of the set Π∩ ([0, s]× [0, t]) is the same as the random set An(s, t).

For a proof see chapter 2 in [30]. Knowing this we now define a new
random variable:

Ys,t = L(Π ∩ ([s, t)× [s, t)))

We easily see that this is a superadditive sequence:

Y0,m + Ym,n ≤ Y0,n

since you can always find a increasing subsequence of length Y0,m+Ym,n
in the box [0, n)× [0, n) by combining the two increasing subsequences
in the box [0,m)× [0,m) and [m,n)× [m,n) with length Y0,m and Ym,n
respectively. This of course makes us think about Kingman’s theorem.

Proposition 4.7. The sequence (−Ym,n)m.n satisfies the conditions in
theorem 2.11, including the ergodic property.

Proof. We already saw that the sequence satisfies the subadditive prop-
erty. We must show the three other properties. First, for each k ≥ 0
the sequence

{Ynk,(n+1)k, n ≥ 1}
is i.i.d, thus by example 2.6 and 2.8 the sequence is both stationary and
ergodic. Condition number (3) is straight forward. Since the number
of points is equally distributed throughout the space,

{Ym,m+k, k ≥ 1}
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clearly does not depend on m. We also have that

Y0,1 ≤ N(s, t).

Thus,

E
∣∣Y0,1∣∣ ≤ E

∣∣N(s, t)
∣∣ = 1.

We are left to show that for each n

E− Y0,n > c0n

for some constant c0 > −∞. This is the same as showing

EY0,n < c0n.

We have

EY0,n =
∑
k

E(Y0,n|N(0, n) = k)P (N(0, n) = k)

=
∑
k

E(L(Ak(0, n)))P (N(0, n) = k)

=
∑
k

E(σk)P (N(0, n) = k)

We know from proposition 4.2 that lim supk→∞ E(σk) ≤ e
√
k. We

therefore know that for an ε > 0 there exist a M ∈ N such that
E(σk) ≤ (e + ε)

√
k for all k > M . We can rewrite the last expression

for EY0,n:

EY0,n =
∑
k

E(σk)P (N(0, n) = k)

=
∑
k≤M

E(σk)P (N(0, n) = k) +
∑
k>M

E(σk)P (N(0, n) = k)

≤
∑
k>M

(e+ ε)
√
kP (N(0, n) = k)

≤
∞∑
k=0

(e+ ε)
√
kP (N(0, n) = k) = (e+ ε)E

√
Zn

Here Zn denotes the random variable over how many points there are in
the box [0, n)×[0, n). Since ε was arbitrary we get that EY0,n ≤ eE

√
Zn.

Cauchy-Schwarz inequality says that E
√
Zn ≤

√
EZn, and since clearly

EZn = n2. we get that

EY0,n < c′n.

�



45

Now that we know that (−Ym,n)m.n satisfies Ligget’s version of King-
man’s theorem, we get that

Y0,n
n
→ γ as n→∞. (4.2)

Remember that we are interested in L(σn), we will now try to relate
this limit to get what we desire. Now for each n ≥ 1 define a random
variable Tn by

Tn = inf{t > 0 :
∣∣Π ∩ ([0, t]× [0, t])

∣∣ = n},
and consider the set

1

Tn+1

(Π ∩ ([0, Tn+1)× [0, Tn+1)).

This is a random set of points the lives inside the unit square [0, 1] ×
[0, 1]. By proposition 4.6 its joint distribution is that of n independent
uniformly random points in [0, 1]2. In particular the random variable

Y0,Tn+1 = L(Π ∩ ([0, Tn+1)× [0, Tn+1))

is equal in distribution to L(σn). We want to examine the asymptotic
behaviour of Tn. To do that define a new sequence of random variables
defined by

S0 = 0 and Sn = T 2
n for n ≥ 1.

Then we get that

Sn = inf{s > 0 :
∣∣Π ∩ ([0,

√
s]× [0,

√
s])
∣∣ = n}

= {s > 0 : M(s) = n},

where M(s) =
∣∣Π ∩ ([0,

√
s] × [0,

√
s])
∣∣. We get from the definition of

the Poisson point process that (M(s))s≥0 is a one-dimensional Poisson
process of unit intensity on [0,∞). From theorem 1.2 we have that
Wn = Sn − Sn−1 are i.i.d exponential random variables with mean 1.
Thus,

1

n
Sn =

1

n

n∑
k=1

Wk → 1 as n→∞

by the strong law of large numbers. This is equivalent to

1√
n
Tn → 1 almost surely as n→∞.

Combining this with equation (4.2) we get that

Y0,Tn+1√
n

=
Tn+1√
n
·
Y0,Tn+1

Tn+1

→ γ almost surely as n→∞.
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We know that Y0,Tn+1 has the same distribution as L(σn), and since
almost surly convergence implies convergence in probability we get that
L(σn)/

√
n converges to γ in probability. We discussed earlier what we

can expect of L(π), this limit gives us an indication of that. Not only
is the expected value of L(π), as we will see shortly, in the order of√
n, but as n grows larger we can almost be certain that L(π) is in the

order of
√
n. In fact, freak occurrences as L(π) being 1 or n will almost

certainly never happen, which is logical.
We have now showed asymptotic behaviour for L(σn),we can use this

to prove theorem 4.3.

Proof of theorem 4.3. Let δ > 0. We have that∣∣ ln√
n
− γ
∣∣ =

∣∣n−1/2EL(σn)− γ
∣∣ ≤ E

∣∣n−1/2L(σn)− γ
∣∣

= E
(∣∣n−1/2L(σn)− γ

∣∣1∣∣n−1/2L(σn)−γ
∣∣≤δ
)

+ E
(∣∣n−1/2L(σn)− γ

∣∣1∣∣n−1/2L(σn)−γ
∣∣>δ,L(σn)≤3√n

)
+ E

(∣∣n−1/2L(σn)− γ
∣∣1∣∣n−1/2L(σn)−γ

∣∣>δ,L(σn)>3
√
n

)

The first term is at most δ. The second one can be bounded by

(3 + γ)P
(∣∣n−1/2L(σn)− γ

∣∣ > δ
)
.

For the last term we have that

E
(∣∣n−1/2L(σn)− γ

∣∣1∣∣n−1/2L(σn)−γ
∣∣>δ,L(σn)>3

√
n

)
≤ C(

√
n+ γ)e−c

√
n

by corollary 4.3. Combining this we get that

lim sup
n→∞

∣∣ ln√
n
− γ
∣∣ ≤ δ.

This ends the proof since δ was arbitrary. �

4.3. Improved bounds and further research. We have successfully
showed that ln converges to c

√
n. We also showed that 1 ≤ c ≤ e.

Logan and Shepp (1977) [31] and Vershik and Kerov(1977) [32] showed
independently that c = 2. We will not do this, but give another lower
bound using Poisson point process.

Proposition 4.8. c ≥ (8/π)
1
2 > 1.59
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Proof. Let Π be the Poisson point process in R2 with unit intensity.
Choose a sequence (xi, yi) of points in Π as follows: (x1, y1) is the
point of Π which minimize the value x + y with x ≥ 0 and y ≥ 0.
Then inductively pick points (xi, yi) ∈ Π∩ (xi−1,∞)× (yi−1,∞) which
minimize the value x+y in (xi−1,∞)× (yi−1,∞). The sequence (xi, yi)
forms an increasing subset of Π. Let

t(n) = max(xn, yn)

then Y0,t(n) ≥ n. Consider the difference an = xn − xn−1, they are
independent and identically distributed. We want to calculate the mean
of a1. The probability that the first point of Π in the first quadrant
is in A′ is the probability that there are some points in A1 minus the
probability that there are some points in A0, see figure 9.

Figure 9. Calculation of the mean of a1 from the proof
of proposition 4.8. The probability that the first point
of Π in the first quadrant is in A′ is the probability that
there are some points in A1 minus the probability that
there are some points in A0.

Since we have a Poisson point process we can calculate the exact
probabilities:

P (N(A0) > 0) = 1− e
t2

2

P (N(A1) > 0) = 1− e
−(t+δ)2

2 .

Thus,

P ( first point of Π ∩R+ is in A′) = e−
t2

2 − e−
(t+δ)2

2 .
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We are interested in the probability density function:

fd = lim
δ→0

P ( first point of Π ∩R+ is in A′)

δ

= lim
δ→0

e
t2

2 − e
(t+δ)2

2

δ
= lim

δ→0

e
t2

2 (1− e−tδ−δ2/2)
δ

= lim
δ→0

e
t2

2 (tδ + (tδ)2/2 + · · · )
δ

→ te−
t2

2 .

Where we used the Taylor expansion of the exponential function. Thus,
the expected value of a1 is

Ea1 = Ex1 =
1

2
E(x1 + y1) =

1

2

∫ ∞
0

t(te−
t2

2 )dt =

√
π

2
√

2
.

We have that

xn =
n∑
i=1

ai,

thus we get by the strong law of large numbers [22]

lim
n→∞

xn
n

= lim
n→∞

1

n

n∑
i=1

ai =
(π

8

) 1
2
.

Similarly for yn we get

lim
n→∞

yn
n

=
(π

8

) 1
2
.

Thus,

lim
n→∞

t(n)

n
= lim

n→∞
max

(xn
n
,
yn
n

)
= max

(
lim
n→∞

(xn
n
,
yn
n

))
=
(π

8

) 1
2
.

Therefore

c = lim
n→∞

Y0,t(n)
t(n)

≥ lim
n→∞

n

t(n)
=

(
8

π

) 1
2

> 1.59.

�

They study of longest increasing subsequence involves surprisingly
many branches of mathematics. David Aldous and Persi Diaconis wrote
a great paper on patience sorting and its connections with the topic [28].
There they discuss several interesting results one get from studying
permutations. Patience sorting is a sorting algorithm that takes name
after the the card game patience, also known as solitaire. There they
show that the number of steps the algorithm uses to sort a deck of
cards is equal to the longest increasing subsequence of a permutation.

Another topic they discuss is that it is conjectured that
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ln = 2
√
n− µ∞n1/6 + o(n1/6), σ(Ln) = σ∞n

1/6 + o(n1/6)

where µ∞ and σ∞ are constants and σ(Ln) is the standard derivation.
This was proved by Baik, Deift and Johansson in 1998 [33], with nu-
merical values µ∞ = 1.7111 · · · and σ∞ = 0.902 · · · . In the same paper
they proved that L(σn) follows the Tracy-Widom distribution. More
precisely they proved that

P
(
L(σn)− 2

√
n

n1/6
≤ x

)
→ F2(x) as n→∞,

where F2(x) follows the Tracy-Widom distribution with parameter 2,
see figure 10. This is known as the Baik-Deift-Johansson theorem.

Figure 10. The density function f2(x) = F2(x) associ-
ated with the Tracy-Widom distribution

Aldous and Diaconis also gives a proof in another paper that c = 2
[34], which is much easier proof than the original proofs of Logan and
Shepp and Vershik and Kerov. Where both the original proofs are
using random Young tableaux, Aldous and Diaconis used an interacting
particle process.

Dan Romik wrote an excellent book on the subject, The surprising
mathematics of longest increasing subsequences [29]. There he discusses
all of this and much more. Sadly, the time constrains on this projects
has prevented me to dig deeper into all of this.
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