
Fast Non-Rigid Registration Using
Polynomial Expansion with Diffeomorphic
Constraints Applied to Cardiac
Ultrasound Volumes

Marta Havåg Ranestad

Master of Science in Electronics

Supervisor: Ilangko Balasingham, IES
Co-supervisor: Gabriel Kiss, ISB

Department of Electronic Systems

Submission date: June 2017

Norwegian University of Science and Technology

1 | Abstract

This thesis attempted to develop a fast, non-rigid, diffeomorphic image registration
implementation and was written as a continuation of a project that was completed
during the fall of 2016 [1] which developed and implemented a rigid image regis-
tration code. Non-rigid diffeomorphic image registration is already used in many
diagnostic and research related medical situations, however due to the computational
demands it is only used as a post-processing tool. This thesis focused mostly on how
it could be used with 3D echocardiography to estimate a vector field representation
of the movement of the heart, preferably in real-time.

To find these vector fields, Farnebäck’s optical flow algorithm was used to decom-
pose the images and represent them as polynomials that could be used to compute
the local deformation for each voxel. Both a linear and a quadratic polynomial were
used simultaneously, but it was found that using only the quadratic polynomial
provided better results.

An iterative scheme was proposed to allow one deformation estimate to be used
as a priori information for the estimate in the following iteration, and three differ-
ent accumulation methods were implemented to make this iteration possible; ad-
ditive, composite and exponential composite. The additive method simply added
together the new estimate to the previously accumulated estimate while the compos-
ite method combined the new estimate and the accumulated estimate through linear
interpolation. The exponential composite method found a recursive accumulation
method by solving a linear differential with flow constraints. While it was found
that the exponential composite provided more accurate and diffeomorphic results,
it was almost twice as computationally expensive as the other two methods due to
its recursive implementation.

The image decomposition and the image registration required a large number of
matrix multiplications and inversions which made the algorithm a prime candidate
for parallel programming, so the implementation was completed entirely on the GPU
using OpenCL.

Theoretical diffeomorphic vector fields were created to test the code for accuracy
and computational expense and an optimal set-up was found that was tested on
real cases as well. The real cases showed deformation fields that were mostly diffeo-

i

morphic which indicated that the code had calculated realistic deformation fields.
A comparison between running the code on a laptop computer and a desktop com-
puter showed very different timing and indicated that real-time applicability of the
method developed in this thesis will be highly dependent on the hardware of the
device it is run on. However, both the real and theoretical cases indicated a high
level of accuracy even with large deformations, so it is therefore reasonable to as-
sume that in high frame rate cases, some frames in the 3D echocardiographic image
sets can be skipped to achieve accurate, real-time results.

ii

2 | Sammendrag

Denne oppgaven forsøkte å utvikle en rask, elastisk og diffeomorfisk bilderegistrerings-
implementasjon og ble skrevet som en fortsettelse av et prosjekt som ble gjen-
nomført i høsten, 2016 [1]. Dette prosjektet utviklet og implementerte en rigid
bilderegistreringskode. Elastisk, diffeomorfisk bilderegistrering har allerede blitt tatt
i bruk i mange diagnostiske og forskningsrelaterte medisinske situasjoner, men blir
brukt som et post-prosesseringsverktøy på grunn av den høye tidsbruken. Denne
masteroppgaven fokuserte mest på hvordan elastisk, diffeomorfisk bilderegistrering
kunne bli brukt med 3D ekkokardiografi for å estimere en vektorfeltrepresentasjon
av hjertebevegelse, helst i sanntid.

For å finne disse vektorfeltene, ble Farnebäcks optiske flytalgoritme brukt for
å dekomponere bildene og representere de som polynomer. Disse polynomene ble
brukt til å kalkulere den lokale deformasjonen for hver enkelt voksel. Både et lineært
og kvadratisk polynom ble testet i bruk samtidig og alene, men resultatene viste seg
å bli bedre når kun et kvadratisk polynom ble brukt.

For å bedre resultatene, ble deformasjonen estimert iterativt ved at et estimat
ble matet inn i neste iterasjon som a priori informasjon. Tre forskjellige akkumuler-
ingsmetoder gjorde iterering mulig; additive, ’composite’, og eksponensiell ’compos-
ite’. Den additive metoden la kun sammen det nye estimated med det akkumulerte
estimatet fra forrige iterasjon mens ’composite’ metoden kombinerte det nye og
det akkumulerte estimatet ved hjelp av lineær interpolering. Den eksponensielle
’composite’ metoden fant en rekursiv akkumuleringsmetode ved å løse en lineær dif-
ferensiallikning med initialbetingelser for flyt. Selv om resultatene antydet at den
eksponensielle ’composite’ metoden viste mer nøyaktige og diffeomorfiske resultater,
brukte den nesten dobbelt så lang tid som de to andre akkumuleringsmetodene på
grunn av den rekursive implementeringen.

Bildedekomponeringen og bilderegistreringen krevde mye matrisemultiplisering og
invertering. Dette gjorde algoritmen godt egnet til parallelprogrammering, så im-
plementasjonen ble skrevet fullstending på GPUen ved hjelp av OpenCL med gode
resultater for tidsbruk.

Teoretiske diffeomorfiske vektorfelt ble generert for å teste kodens nøyaktighet
og tidsbruk, og et optimalt oppsett ble funnet og brukt til testing av reelle 3D

iii

ekkokardiografiske bilder. De reelle bildene viste estimerte deformasjonsfelt som
var diffeomorfiske over nesten hele feltet, noe som indikerte at koden kalkulerte
realistiske deformasjonsfelt. Ved å sammenligne tidsbruken til koden når den ble
kjørt på en laptop og en stasjonær datamaskin, ble det klart at sanntidsapplikasjon
av denne metoden ville være veldig avhengig av hardwaren den ble kjørt på. Til
tross for dette, viste både de reelle og teoretiske testresultatene at nøyaktigheten var
høy selv for store deformasjoner. Det er derfor rimelig å anta at i situasjoner med
høy bilderate vil det være mulig å hoppe over noen bilder for å oppnå et nøyaktig
estimat i sanntid.

iv

3 | Acknowledgements

I would like to thank my advisor, Gabriel Kiss, without whose patience, enthusiasm
and knowledge this thesis never would have been completed.

v

Contents

1 Abstract i

2 Sammendrag iii

3 Acknowledgements v

4 Introduction 1

5 Materials and Method 4
5.1 Image Decomposition . 4

5.1.1 Gaussian Kernels . 4
5.2 Similarity Metric . 5

5.2.1 Combining a Quadratic and a Linear Polynomial 6
5.2.2 Non-rigid approach . 7
5.2.3 Thresholding . 8

5.3 Diffeomorphism and the Jacobian Determinant 8
5.4 Field Accumulation . 9

5.4.1 Additive . 9
5.4.2 Composite . 10
5.4.3 Exponential Composite . 10

5.5 Implementation on the GPU . 12
5.5.1 Image Decomposition . 13
5.5.2 Image Registration . 14
5.5.3 Field Accumulation . 14

6 Results 15
6.1 β . 16

6.1.1 Magnitude Error . 16
6.1.2 Jacobian Determinant . 16
6.1.3 Timing . 17

vii

6.2 Number of iterations . 20
6.2.1 Magnitude Error . 20
6.2.2 Jacobian Determinant . 20
6.2.3 Timing . 21

6.3 Maximum theoretical deformation . 28
6.3.1 Magnitude Error . 28
6.3.2 Jacobian Determinant . 28
6.3.3 Timing . 28

6.4 Size of neighbourhood . 33
6.4.1 Magnitude Error . 33
6.4.2 Jacobian Determinant . 33
6.4.3 Timing . 34

6.5 Threshold . 40
6.5.1 Magnitude Error . 40
6.5.2 Jacobian Determinant . 41
6.5.3 Timing . 41

6.6 Accumulation Methods . 45
6.6.1 Magnitude Error . 46
6.6.2 Jacobian Determinant . 46

6.7 Real cases . 51
6.7.1 Image set 1 . 51
6.7.2 Image set 2 . 51
6.7.3 Timing . 52

7 Discussion 70
7.1 β . 70
7.2 Number of iterations . 70
7.3 Maximum theoretical deformation . 71
7.4 Size of neighbourhood . 71
7.5 Threshold . 72
7.6 Accumulation methods . 72
7.7 Real cases . 73
7.8 Further work . 74

8 Conclusion 75

Bibliography 76

viii

4 | Introduction

Ultrasound imaging is the safest and least damaging medical imaging modality and
is therefore very useful in medical diagnostics and research. By using non-rigid
image registration in conjunction with ultrasound imaging one can develop multi-
modal imaging (e.g. fusion of ultrasound and magnetic resonance imaging (MRI)),
study organ development over time, study anatomical differences between patients,
diagnose patients and many other applications [2]. To properly diagnose and treat
a patient, real-time information about the movement of a certain organ can be
elemental and non-rigid image registration can achieve this. Treating liver lesions is
an example of this, where the movement of the liver due to the respiratory system
will affect the precision of the lesion targeting [3]. Non-rigid image registration can
also be used for strain imaging in the heart to determine the active and passive
movements of the heart muscles which, in turn, can be used to assess regional
function and to perform quantitative deformation measurements which relate to
muscle contractility [4]. While real-time implementation of image registration is
unneccessary if used in post-processing, it will widen the possible areas of use such
as diagnostics or treatment if it is fast as well as accurate.

In this thesis, the focus is finding a deformation field of the heart using 3D echocar-
diographic images. To find the movement of a region or point of interest, two images
of the same heart at different times of the heart cycle must be aligned and the vec-
tor field that describes this will represent the deformation between the two frames.
Rigid image registration can prove helpful before the non-rigid image registration
because it can estimate the large transformations between the images and it can be
used as a priori information for a non-rigid algorithm which can lead to a reduction
in computational expense. In the following both rigid and non-rigid registration
methods present in the literature are summarised.

Multiple rigid image registration solutions to finding a deformation field have been
proposed and one is the method in [5] which finds the alignment between two im-
ages using normalised cross correlation (NCC). This is a voxel based method that
is independent of contrast change between the images and finds the rotation and
translation between the two images that maximises the normalised cross correlation.
The method uses image pyramids to lower the computational expense by first com-

1

puting the NCC at higher pyramid levels and then passing the result on to lower
levels for refinement purposes. The aim of this method in this article is to expand
the field of view of 3D echocardiographic volumes, so it is applied to temporally
synchronised images along the heart cycle, but the method could also be used to
find the deformation between two images that are taken at different times in the
heart cycle.

Another rigid solution to expand the field of view of 3D echocardiographic im-
ages was proposed in [6] and [7], and this method used the Farnebäck optical flow
method to represent the images as a polynomial. Before the Farnebäck algorithm
was performed on the images, the images were thresholded in order to reduce the
influence of background noise, and Gaussian image pyramids were used to lower
computational expense as in [5]. A polynomial expansion was then found on all im-
age pyramid levels using the Farnebäck algorithm. The assumption was made that
one image of the heart was a rigid, affine transformation of another image of the
same heart, and this made it possible to find the displacement between images using
the coefficients of the polynomial expansions of the images. The displacement was
calculated by finding the local transformations in the overlapping parts of the two
images and then averaging them. The entire code was written in MATLAB. The
aim of the method in this article was also to expand the field of view by first finding
the deformation and then fusing the two images together. The method provided
accurate results, but its speed made it unsuitable for use in a real-time scenario.

I completed a project [1] during the fall of 2016 built on the method used in
[6] and [7] and attempted to make it faster. The project used two different image
pyramid types created on the CPU, a quadratic polynomial image decomposition
performed entirely on the GPU using OpenCL, and a linear and affine rigid image
registration performed mostly on the GPU using OpenCL. The results showed that
the pyramid scheme was essential to pick up large deformations as well as to reduce
computational expense, and while the affine registration provided more accurate
results than the linear registration the computational expense was much higher.
The project also determined that the graphics card used for implementation was
elemental in reaching the real-time goal of the code.

A solution for non-rigid image registration is presented in [8]. This method uses
the Farnebäck optical flow method like [6], [7] and [1] but with a linear polynomial
instead of quadratic. Its image registration method is also similar, but in this article,
the registration is non-rigid and thus requires a different accumulation method than
the previously mentioned methods. [8] presents three different accumulation meth-
ods; additive, composite and exponential composite. The additive method adds the
estimated deformation field to the previous estimation while the composite finds the
linear interpolation between the two. The exponential composite method finds a dif-
feomorphic vector field, which is a smooth and invertible field and will be described

2

in more detail in Section 5.3. This was achieved by using two flow constraints to
accumulate the field recursively. The study focused on the exponential composite
field accumulation and found that it led to mostly diffeomorphic fields at the cost
of high computational expense.

A well known method for strain estimation is speckle tracking. This method
searches for the best match of a template in a search window using a sum of squared
differences or normalised cross correlation. The downside to speckle tracking is
that it typically results in a very noisy raw deformation field that requires heavy
smoothing. Additionally, the maximum deformation it can pick up is limited by the
size of the search window which will explode in computational expense if it is very
large. Speckle tracking somtimes results in a negative Jacobian determinant and
therefore a non-diffeomorphic estimation of heart movement, which is not natural
because the mass of the myocardium should be constant [9].

Another non-rigid image registration method is completed in [10] based on speckle
tracking and the mutual information of voxel intensities. The mutual information
of two random variables is a statistical measure that quantifies to what degree one
variable can be defined by the information given by the other variable. In this case,
the mutual information is based on B-splines and is used as a type of smoothing to
determine whether the deformation found by speckle tracking can be trusted or not.

The demons algorithm is another algorithm that calculates non-rigid registration.
The demons algorithm works by defining the velocity of each pixel by the intensity
differences and gradients of its neighbourhood. The obtained velocity field is smoothed
by a Gaussian and then used to iteratively transform the moving image into the ref-
erence image. The algorithm works well for computed tomography (CT) and MRI,
but remains challenging for ultrasound imaging [11].

This thesis is a continuation of the project in [1]. The rigidity constraint is relaxed
and the local deformation between voxel pairs is computed by matching the poly-
nomial coefficients in the reference and moving volumes to determine a deformation
field. An iterative scheme is adopted using the three different accumulation methods
described in [8]. However, in contrast to prior work both the linear and quadratic
terms of the decomposition are considered in order to increase the accuracy of the
method. Image pyramids are not used and everything is performed on the GPU
using OpenCL to reduce the computational expense as much as possible. The code
is tested on simulated diffeomorphic deformation fields to determine its accuracy
and timing, and on several real cases as. The tests were all done on 3D images, but
would work just the same for 2D images as well.

3

5 | Materials and Method

Any non-rigid registration algorithm requires three components: a measure to com-
pare the similarity of two voxels (including their neighborhood), a method to find a
new voxel in the moving image that matches the voxel in the reference image and a
field accumulation method to update the local deformation after each iteration. In
this work the similarity measure was based on the Farnebäck coefficients, this simi-
larity measure was used to estimate a translation between two voxels, and the field
was accumulated using three different methods; an additive method, a composite
method and an exponential composite method.

5.1 Image Decomposition

The image was decomposed by the method of polynomial expansion which is based
on normalised convolution [12]. The idea behind polynomial expansion is to fit a
basis function to the neighborhood of each pixel and generate a first or second order
approximation that is optimal in a least squares sense. The following approximation
was chosen for each pixel location:

f(x) = xTAx + bTx + c (5.1)

where x is a position vector, x = (x, y, z), A is a matrix, b is a vector and c is a
constant [13].

All of the coefficients in equation 5.1 were estimated based on two predetermined
parameters called the applicability and the certainty. The applicability is used to
decide how neighbouring pixels will be weighted in the polynomial expansion, while
the certainty denotes how accurate a measured value is [14]. As the certainty of
each voxel was not known in the images used for this experiment, all voxels had the
same certainty and the code was simplified significantly.

5.1.1 Gaussian Kernels

Gaussian kernels were used while creating the image decomposition to smooth out
the image. This was necessary so that the extracted information in the decompo-

4

sition was based on the relevant features and less susceptible to the speckle noise
that is typical to ultrasound acquisitions. The Gaussian kernels were also related to
the applicability of the decomposition so that a larger kernel would ensure a larger
neighbourhood around a voxel was included in the decomposition. The width, n, of
the kernel determined the highest translation that the image registration would be
able to pick up, and σ determined the standard deviation of the kernel.

5.2 Similarity Metric

To estimate the displacement between a reference image and a moving image, both
images needed to be represented by polynomials as follows

fr(x) = xTArx + bT
r x + cr (5.2)

fm(x) = xTAmx + bT
mx + cm (5.3)

where the subscripts on the functions and the coefficients denote whether the poly-
nomials represent the moving or the reference image. fm(x) can be represented as
a function of fr(x)

fm(x) = fr(x− d)

= x− dTAr(x− d) + bT
r (x− d) + cr

= xTArx + (br − 2Ard)Tx + dTArd− bT
r d + cr

= xTAmx + bT
mx + cm

(5.4)

This leads to
Am = Ar (5.5)

bm = br − 2Ard (5.6)

which can be used to find an expression for the displacement, d

d =
1

2
A−1

r (br − bm) (5.7)

While equation 5.7 assumes we have a global polynomial for the entire image, we
have a polynomial representation for each voxel in the image. Thus, each coefficient
is a function of x; A(x), b(x) and c(x). Equation 5.5 assumes Am = Ar, but this
assumption is unlikely to hold when fm(x) and fr(x) are sets of polynomials for each
voxel instead of a single polynomial for the entire image. Therefore, new variables
are introduced

A(x) =
Am(x) + Ar(x)

2
(5.8)

5

∆b(x) =
1

2
(br(x)− bm(x)) (5.9)

which leads to the following constraint

A(x)d = ∆b (5.10)

A minimal squared error approach is proposed

ε2 =
∑
x

||A(x)d−∆b(x)||2 (5.11)

which results in a least squares solution

d =
(∑

A(x)TA(x)
)−1∑

A(x)T∆b(x) (5.12)

This displacement estimation method can be extended to include a priori knowl-
edge which allows the estimation to be done iteratively as well. If a priori knowledge
is included, equations 5.8 and 5.9 must be modified with a new x for the moving
image

x̃ = x + d̃(x) (5.13)

where d̃(x) is the rounded a priori estimate.
Thus, equations 5.8 and 5.9 become

A(x) =
Am(x) + Ar(x̃)

2
(5.14)

∆b(x) =
1

2
(br(x)− bm(x̃)) + A(x)d̃(x) (5.15)

and equations 5.11 and 5.12 still hold.

5.2.1 Combining a Quadratic and a Linear Polynomial

The constraint in equation 5.10 loses accuracy with large translations and an attempt
is therefore made to weight it to reduce the effect of this inaccuracy as follows

A(x) = λ2
Am(x) + Ar(x̃)

2
(5.16)

∆b(x) = λ2

(
1

2
(br(x)− bm(x̃)) + A(x)d̃(x)

)
(5.17)

In addition to this weighting, a linear polynomial expansion is proposed in addition
to the quadratic polynomial expansion to reduce the errors further. The linear model
represents the reference and moving images as follows

fr(x) = bT
r x + cr (5.18)

6

fm(x) = fr(x− d)

= bT
r x + cr − bT

r d

= bT
mx + cm

(5.19)

Similarly to the quadratic model, this leads to

bm = br (5.20)

cm = cr − bT
r d (5.21)

and
b(x) = λ1

bm(x) + br(x̃)

2
(5.22)

∆c(x) = λ1(cr(x)− cm(x) + b(x)T d̃(x)) (5.23)

The linear and quadratic parts are added together to create a minimal squared
error approach

ε2 =
∑
x

β1(b(x)Td−∆c(x))2 + β2||A(x)d−∆b(x)||2 (5.24)

where β1 and β2 are the weights for the linear and quadratic parts respectively. This
results in the following least squares solution [12]

G =
∑

xβ1b(x)Tb(x) + β2A(x)TA(x) (5.25)

h =
∑

xβ1b(x)∆c(x) + β2A(x)T∆b(x) (5.26)

d = G−1h (5.27)

5.2.2 Non-rigid approach

To change equations 5.25, 5.26 and 5.27 into a non-rigid approach where the dis-
placement of each voxel is found, the following equations are proposed

Gavg(x) = (G ∗ w)(x) (5.28)

havg(x) = (h ∗ w)(x) (5.29)

davg(x) = Gavg(x)−1havg(x) (5.30)

where equations 5.25, 5.26 and 5.27 are calculated for a neighbourhood around a
voxel. w(x) is a weighting function for the elements in the neighborhood and in our
case a Gaussian kernel was used . The size of this neighbourhood is chosen by the
user; a bigger neighborhood will yield smoother results, however if the size of the
neighborhood is too big local deformations might be lost [8].

7

5.2.3 Thresholding

To reduce the interference of noise on the image registration algorithms, a thresh-
olding variable was introduced. In our case, the main focus was the alignment of
the wall of the left ventricle. In order to reduce the influence of signal coming from
the blood pool inside the ventricle, a threshold was applied to the ultrasound vol-
umes. This variable prevented voxels of a lower value than the threshold from being
included in the calculations of equations 5.28, 5.29 and 5.30. This also lead to a
reduction in computational expense.

5.3 Diffeomorphism and the Jacobian Determinant

Before presenting the different field accumulation methods, diffeomorphism must
be discussed. A vector field is diffeomorphic if it is invertible, and the field and
its inverse are differentiable. The Jacobian determinant can be used to determine
diffeomorphism as follows

det(J) < 0 the voxel has been given a negative volume and "inverted" and
is not diffeomorphic

det(J) = 0 the voxel has disappeared, so it is not invertible and therefore
not diffeomorphic

0 < det(J) < 1 the voxel has decreased in volume by a factor equal to det(J)

det(J) = 1 the voxel has the same volume as before it was deformed

det(J) > 1 the voxel has increased in volume by a factor equal to det(J)

It is therefore clear that as long as the Jacobian determinant is positive, the vector
field is diffeomorphic [15].

When discussing the vector field that represents the movement of the heart, it
is necessary to consider whether such a field is diffeomorphic or not because an
accurate representation of the deformation of the heart must be diffeomorphic. This
is because the heart muscles are incapable of "inverting" as a voxel with a negative
Jacobian determinant does and muscle cells of the heart never disappear like a voxel
with a zero Jacobian determinant would; the heart is only physically capable of
moving in a manner that a diffeomorphic vector field can represent.

8

5.4 Field Accumulation

To create an iterative scheme for each point in the image, a field accumulation
method must be used. Three different methods were implemented and tested; ad-
ditive, composite and exponential composite. A visual explanation of the different
methods is presented using the fields and the reference image in Figure 5.1 [15].

(a) Vector field 1 (b) Vector field 2 (c) Reference image

Figure 5.1: Vector fields and reference image for visual explanation [15]

The field accumulation methods could also be used to include a priori information.

5.4.1 Additive

The simplest field accumulation method, the additive method was created by adding
the new estimated displacement vector, d = (xd, yd, zd), to the previously estimated
accumulated displacement vector, vn = (xvn , yvn , zvn) as follows

vn+1 = vn + d (5.31)

With the vector fields and reference image presented in Figure 5.1, the additive
field for vector field 1 and 2 is presented in Figure 5.2 where the blue vector arrows
represent vector field 1 and the grey arrows represent vector field 2. The effect
of using this additive field to deform the reference image is also presented in the
estimated moving image in Figure 5.2

9

(a) Additive vector field (b) Estimated moving image

Figure 5.2: Effect of additive vector field on reference image [15]

Figure 5.2 shows that in addition to being skewed, the reference image has been
flipped. Thus it is clear that an additive method for vector field accumulation does
not guarantee diffeomorphism.

5.4.2 Composite

The composite field accumulation method is achieved by first deforming the accu-
mulated deformation, vn, by the new estimated deformation, d, and then adding the
deformed accumulated deformation to the new estimated deformation [8] as follows

vn+1 = vn♦d + d (5.32)

where vn♦d means vn is linearly interpolated with d [8].
The reference image and vector fields in Figure 5.1 are again used to visually

represent the composite field accumulation method. Figure 5.3 shows the composite
field for vector field 1 and 2, where the blue vector arrows represent field 1 and the
grey arrows represent field 2, and the effect of this composite field on the reference
image is also shown in the moving image in the same figure.

With this method, the composite vector field will be diffeomorphic if both the
original fields are diffeomorphic [8]

5.4.3 Exponential Composite

In the exponential composite method, it has been found that if u(t) = Φd(x, t) is
the solution of the linear differential equation

d

dt
u(t) = d(u) (5.33)

10

(a) Composite vector field (b) Estimated moving image

Figure 5.3: Effect of composite vector field on reference image [15]

u(0) = x (5.34)

where d is a smooth vector field and x is a point, Φd(x, t) represents diffeomorphic
flow. This can be used to find the diffeomorphic displacement field because the flow
of d at time t = 1 is the exponential of d. This can be approximated as follows

exp(d) = exp(2−kd)2
k

(5.35)

and implemented in three steps.

1. a factor 2−k must be chosen such that max(2−kd) < 0.5.

2. the composite method from Equation 5.32 is used where d is replaced with
d · 2−k

3. multiplying the exponential by itself 2k times as shown in Equation 5.35 is
done by performing k recursive composite field accumulations of the flow as
shown in Step 2

After these three steps are performed, the resulting vector field must be composed
in the same manner as the estimated deformation field in Section 5.4.2 [8].

Figure 5.4 shows a theoretical comparison between the exponential composite field
accumulation method and the additive field accumulation method.

In Figure 5.4, the arrow labeled ∆(x) represents the additive accumulation method
while the arrows labeled exp(D)(x) represent the exponential composite accumula-
tion method. The diffeomorphic field is represented by the arrows labeled ΦD(x, t).
It can be seen in Figure 5.4 and it has been shown in [15] that the exponential
composite accumulation method more clearly approximates this diffeomorphic field
than the additive method.

11

Figure 5.4: Comparison between additive and exponential composite field accumu-
lation methods [15]

5.5 Implementation on the GPU

The computation of the image decomposition and registration requires the calculation
of many matrix multiplications and inversions. This type of code lends itself well
to parallel programming, so to reduce computational expense, the image decompo-
sition, image registration and the field accumulation were all implemented on the
GPU using OpenCL.

Before explaining the OpenCL implementation, some words should be defined:

kernel A function on the GPU in OpenCL

work-items The individual neighbourhoods on which the kernels are exe-
cuted, in this case that is each voxel of the image

work-groups The groupings of work-items that are executed in parallel. The
GPU executes work-groups in sizes that are a multiple of 2 (typ-
ically 16, 32 or 64), therefore the number of work-groups should
be a multiple of 2 to fill up the executable work-group slots on
the GPU [16]

Figure 5.5 shows the typical architecture of a GPU processor when used for parallel
computing. The green squares are work-items, and the boxes around the green
squares (labeled SMX) are work-groups which are executed in parallel.

12

Figure 5.5: Figure representing GPU architecture when used for parallel program-
ming [17]

5.5.1 Image Decomposition

The image decomposition code represents each voxel by a quadratic polynomial
like Equation 5.1, so A, b and c are found for each voxel, and saved in a buffer
on the GPU to be used later in the image registration. To complete the image
decomposition, multiple things need to be calculated and their dependence on each
other makes it impossible to set up just one parallel programming scheme for the
entire polynomial expansion method.

First, the Gaussian filter kernels used for image smoothing are created and copied
to buffers. Their inverses are also copied to buffers.

Secondly, the polynomial expansion algorithm must be set up on the CPU side
before being passed onto the GPU and OpenCL. In this case, the work-groups were
divided such that there were 16 work-groups in the x-direction, 4 in the y-direction
and 4 in the z-direction. This resulted in 16 ∗ 4 ∗ 4 = 256 work-groups in total. The

13

Gaussian filter kernel is separable, so each voxel could be filtered one plane at a time
(x-, y- or z-plane) instead of by three nested for-loops. The number of operations
necessary to filter the voxels one plane at a time would be W ∗H ∗D ∗ (R+C +L)
where W , H and D are the width, height and depth of the image, respectively, and
R, C and L are the number of rows, columns and layers of the Gaussian filter kernel.
If the image was filtered with nested for-loops, the number of operations could be
represented byW ∗H ∗D∗ (R∗C ∗L), which would be a significantly higher number
of operations for large images and large filter kernels. Therefore, the smoothing was
done in three separate passes on the GPU instead of one. As a fourth pass, the
polynomial decomposition was calculated of the smoothed image.

5.5.2 Image Registration

For the image registration the OpenCL code was divided into 8 work-groups in the
x-, y- and z-direction. In the z-direction, however, each work-item represented more
than one voxel so that in the OpenCL kernel, the registration was completed on
only one voxel in the x- and y-dimension, but multiple voxels in the z-dimension.
Because of this, a for-loop had to be used in the kernel to ensure all the voxels in the
z-direction were registered and therefore the computational expense suffered. This
had to be done because the laptop used to find the results could not handle the
number of parallel threads required to allow each voxel to be a separate work-item.
With a more powerful graphics card, it might be possible to represent each voxel by
a separate work-item.

5.5.3 Field Accumulation

The field accumulation methods were integrated as kernels into the image registra-
tion code. The work-group set-up was therefore determined by the image registration
and the methods were written as simple kernels on the GPU-side following the meth-
ods explained in Sections 5.4.1, 5.4.2 and 5.4.3. While most of the implementations
of these methods was relatively straight forward, the implementation of the linear
interpolation could be done in two different ways; using buffers or using built-in
functions in the OpenCL texture memory. For simplicity, buffers were used, but
using the built-in functions in OpenCL would likely have been less computation-
ally expensive. Using the OpenCL function would have required changing vectors
containing the vector field values to three images, one for each vector dimension,
and then the OpenCL texture memory could have been used to complete the linear
interpolation easily. It is reasonable to assume that this would be faster than the
buffer method because the texture memory has been developed for gaming and has
therefore been optimised when it comes to computational expense [18].

14

6 | Results

To determine the optimal set-up for high accuracy and low timing, different pa-
rameters were varied and the results on simulated deformations with known ground
truth were gathered and compared. After an optimal set of parameters was found
the remaining results were gathered with the same parameters and unless otherwise
specified, the β values were set to β1 = β2 = 1.0, the number of iterations was 5,
the maximum theoretical deformation was 3 voxels, the size of the neighbourhood
included in the image registration for each voxel was n = 1 and the threshold was
set to 0.5. The Gaussian kernel used for smoothing the image before image decom-
position had a size of n = 9. In all the images, the voxel size was 0.7mm. It was also
observed that k in Equation 5.35 in Section 5.4.3, which represented the number of
recursive composite accumulations completed in the exponential composite method
was never higher than 5.
All the results were gathered on a MacBook Pro with an Intel HD Graphics

4000 graphics card with 1536MB of memory. The MacBook could compute a work-
group size of maximum 512 work-groups and it had 16 parallel compute units. The
OpenCL version that was used was OpenCL 1.2.
The echocardiographic datasets were acquired using the GE Vivid E9 system (GE

Vingmed, Horten, Norway) and a 2.5MHz matrix array transducer (GE Vingmed,
Horten, Norway), with the subjects in the left lateral decubitus position. Scans were
taken from the apical window, in harmonic mode, from 4 up to 6 QRS triggered
sub-volumes, during an end-expiratory breath-hold. The depth and angle of the
ultrasound sector were adjusted such that the entire LV was visualized. Resulting
3D data sets contained 24 to 32 frames per cardiac cycle and were stored digitally
for further processing.
Box plots are used throughout this section to show estimation trends. The lower

edge of the box is the first quartile (the maximum of the lowest 25% of the data), the
line in the middle of the box is the median and the upper edge is the third quartile
(the maximum of the lowest 75% of the data). The red plus signs are outliers in the
data.

15

6.1 β

The β values refer to Equations 5.25, 5.26 and 5.27. Varying the relationship be-
tween the β1 and β2 varies how heavily the quadratic polynomial of the image
decomposition is weighted against the linear polynomial.

6.1.1 Magnitude Error

First the effect of varying the β levels on the magnitude error between the theoretical
deformation and the computed deformation was calculated and the results are shown
in a box plot in Figure 6.1. The statistical values of the box plot are shown in Table
6.1.

Accumulation method β1andβ2relationship Quartile 1 Median Quartile 3
Additive β1 = 0.0, β2 = 1.0 0.1335 0.1844 0.2815

β1 = 0.5, β2 = 1.0 0.1339 0.1852 0.2899
β1 = 1.0, β2 = 1.0 0.1339 0.1853 0.2917
β1 = 1.0, β2 = 0.5 0.1340 0.1855 0.2935
β1 = 1.0, β2 = 0.0 0.1333 0.1842 0.2851

Composite β1 = 0.0, β2 = 1.0 0.1350 0.1874 0.3066
β1 = 0.5, β2 = 1.0 0.1354 0.1883 0.3237
β1 = 1.0, β2 = 1.0 0.1354 0.1884 0.3280
β1 = 1.0, β2 = 0.5 0.1355 0.1886 0.3321
β1 = 1.0, β2 = 0.0 0.1346 0.1868 0.3125

Exponential Composite β1 = 0.0, β2 = 1.0 0.1350 0.1873 0.3052
β1 = 0.5, β2 = 1.0 0.1352 0.1880 0.3185
β1 = 1.0, β2 = 1.0 0.1353 0.1881 0.3220
β1 = 1.0, β2 = 0.5 0.1353 0.1882 0.3248
β1 = 1.0, β2 = 0.0 0.1341 0.1858 0.2951

Table 6.1: Table showing the statistical values for the box plot of the magnitude
error with varying β1 and β2 values

6.1.2 Jacobian Determinant

The effect of the beta relationship on the Jacobian determinant, and therefore the
diffeomorphism of the image, is shown in Figure 6.2. For all these box plots, quartile
1, the median and quartile 3 are equal to 1.

16

6.1.3 Timing

The timing was also estimated for varying beta relationships and the results are
shown in Figure 6.2.

β1 and β2 relationship Additive
method[ms]

Composite
method[ms]

Exponential
Composite
method[ms]

β1 = 0.0, β2 = 1.0 3911.5 4131.1 6472.1
β1 = 0.5, β2 = 1.0 3993.9 4173.5 6559.8
β1 = 1.0, β2 = 1.0 3916.4 4213.1 6668.9
β1 = 1.0, β2 = 0.5 3910.9 4176.1 6608.5
β1 = 1.0, β2 = 0.0 3856.2 4141.7 4099.8

Table 6.2: Table showing the timing of the different cumulative methods with vary-
ing β1 and β2 values

17

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.1: Box plot showing the magnitude of error with varying β1 and β2 values

18

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.2: Box plot showing the Jacobian determinant with varying β1 and β2 values

19

6.2 Number of iterations

The number of iterations the image registration is performed over can affect the
maximum deformation the image registration algorithm is able to pick up, so the
effect of the number of iterations on accuracy and timing was found. These effects
were found for both a threshold equal to 0.5 and 0.

6.2.1 Magnitude Error

First, the magnitude error between a theoretical and the estimated deformation
field was found when the threshold was equal to 0.5 and the results were gathered
in Figure 6.3 with the statistical values in Table 6.3

Accumulation method Number of iterations Quartile 1 Median Quartile 3
Additive 1 0.1311 0.1796 0.2573

2 0.1320 0.1813 0.2650
3 0.1327 0.1829 0.2747
4 0.1334 0.1841 0.2819
5 0.1339 0.1853 0.2917

Composite 1 0.1311 0.1796 0.2573
2 0.1334 0.1843 0.2822
3 0.1342 0.1860 0.2989
4 0.1348 0.1872 0.3083
5 0.1354 0.1884 0.3280

Exponential Composite 1 0.1325 0.1824 0.2705
2 0.1333 0.1841 0.2807
3 0.1341 0.1858 0.2959
4 0.1347 0.1869 0.3041
5 0.1353 0.1881 0.3220

Table 6.3: Table showing the statistical values for the box plot of the magnitude
error with varying number of iterations

With threshold equal to zero, the results became what is shown in Figure 6.4 and
Table 6.4.

6.2.2 Jacobian Determinant

The Jacobian determinant was also found for a varying number of iterations and the
results for the threshold equal to 0.5 are shown in Figure 6.5. In this case, quartile

20

Accumulation method Number of iterations Quartile 1 Median Quartile 3
Additive 1 0.1551 0.2604 1.2062

2 0.1560 0.2657 1.1112
3 0.1571 0.2770 1.2410
4 0.1578 0.2819 1.2078
5 0.1586 0.2940 1.2796

Composite 1 0.1551 0.2604 1.2062
2 0.1629 0.3673 1.1477
3 0.1642 0.4265 1.3221
4 0.1650 0.4267 1.2602
5 0.1660 0.4762 1.3971

Exponential Composite 1 0.1620 0.3588 1.1974
2 0.1630 0.3650 1.1085
3 0.1642 0.4271 1.2919
4 0.1649 0.4138 1.1941
5 0.1658 0.4677 1.3497

Table 6.4: Table showing the statistical values for the box plot of the magnitude
error with varying number of iterations and threshold equal to zero

1, the median and quartile 3 were all equal to 1. The results with threshold equal
to zero shown in Figure 6.6 and Table 6.5.

6.2.3 Timing

Varying the number of iterations was assumed to affect the timing, but results were
gathererd to see how much and they are shown in Figure 6.7 for threshold equal to
0.5 and in Figure 6.8 for threshold equal to 0.

21

Accumulation method Number of iterations Quartile 1 Median Quartile 3
Additive 1 0.9491 1.0000 1.0000

2 0.9433 1.0000 1.0002
3 0.9319 1.0000 1.0011
4 0.9287 1.0000 1.0024
5 0.9210 1.0000 1.0037

Composite 1 0.9491 1.0000 1.0000
2 0.9052 1.0000 1.0075
3 0.8845 1.0000 1.0084
4 0.8779 1.0000 1.0089
5 0.8640 1.0000 1.0105

Exponential Composite 1 0.9169 1.0000 1.0038
2 0.9111 1.0000 1.0062
3 0.8938 1.0000 1.0078
4 0.8941 1.0000 1.0093
5 0.8807 1.0000 1.0109

Table 6.5: Table showing the statistical values for the box plot of the Jacobian de-
terminant with varying number of iterations and threshold equal to zero

22

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.3: Box plot showing the magnitude of error with varying number of itera-
tions

23

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.4: Box plot showing the magnitude of error with varying number of itera-
tions and threshold equal to zero

24

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.5: Box plot showing the Jacobian determinant with varying number of it-
erations

25

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.6: Box plot showing the Jacobian determinant with varying number of it-
erations and threshold equal to zero

26

Figure 6.7: Figure showing the timing of the three accumulation methods with vary-
ing number of iterations

Figure 6.8: Figure showing the timing of the three accumulation methods with vary-
ing number of iterations and threshold equal to zero

27

6.3 Maximum theoretical deformation

A theoretical diffeomorphic vector field was created to test the accuracy of the
image registration code and the different accumulation methods’ effect on accuracy
and timing. For most of the results in this chapter the maximum deformation
of this field was set to three voxels, meaning that the deformations in the vector
field were randomly distributed up to three voxels. In this section, the maximum
theoretical deformation is varied from 1 to 10 to ascertain the image registration
code’s robustness to large deformations.

6.3.1 Magnitude Error

The magnitude error with different levels of maximum deformation is shown in
Figure 6.9 and Table 6.6.

6.3.2 Jacobian Determinant

The Jacobian determinant was also found for all the estimated vector deformation
fields and the results are shown in Figure 6.10. While the outliers differed, the other
statistical values were the same for all the box plot with quartile 1, the median and
quartile 3 equal to 1.

6.3.3 Timing

The timing was found for varying maximum deformations as well and the results
can be found in Figure 6.11.

28

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.9: Box plot showing the magnitude of error with varying level of maximum
theoretical deformation

29

Accumulation method Maximum theoreti-
cal deformation

Quartile 1 Median Quartile 3

Additive 1 0.0653 0.0914 0.2336
2 0.1028 0.1429 0.2499
3 0.1339 0.1853 0.2917
4 0.1615 0.2227 0.3351
5 0.1867 0.2568 0.3759
8 0.2531 0.3459 0.4841
10 0.2923 0.3982 0.5475
15 0.3792 0.5134 0.6870
20 0.4557 0.6142 0.8090

Composite 1 0.0661 0.0931 0.3067
2 0.1040 0.1454 0.3125
3 0.1354 0.1884 0.3280
4 0.1632 0.2263 0.3607
5 0.1887 0.2607 0.3974
8 0.2556 0.3507 0.5014
10 0.2950 0.4034 0.5638
15 0.3825 0.5194 0.7022
20 0.4593 0.6206 0.8235

Exponential Composite 1 0.0661 0.0930 0.2975
2 0.1039 0.1452 0.3039
3 0.1353 0.1881 0.3220
4 0.1631 0.2260 0.3567
5 0.1885 0.2603 0.3939
8 0.2553 0.3501 0.4983
10 0.2947 0.4027 0.5606
15 0.3820 0.5184 0.6986
20 0.4587 0.6194 0.8194

Table 6.6: Table showing the statistical values for the box plot of the magnitude
error with varying level of maximum theoretical deformation

30

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.10: Box plot showing the Jacobian determinant with varying level of max-
imum theoretical deformation

31

Figure 6.11: Figure showing the timing of the three accumulation methods with
varying level of maximum theoretical deformation

32

6.4 Size of neighbourhood

In this case, what is meant by the size of the neighbourhood is the number of voxels
in each direction around a voxel that are included in the image registration of that
voxel. This means that if the size of the neighbourhood is equal to n, (2n + 1)3

voxels are included in the image registration estimation of that voxel. This can also
be viewed as a representation of the size of w(x) in equations 5.28, 5.29 and 5.30.

6.4.1 Magnitude Error

The effect of the size of the neighbourhood on the magnitude error was found for
the threshold equal to 0.5 and is shown in Figure 6.12 and Table 6.7.

Accumulation method Size of neighbourhood (n) Quartile 1 Median Quartile 3
Additive 0 0.1302 0.1776 0.2464

1 0.1339 0.1853 0.2917
2 0.1364 0.1908 0.3962

Composite 0 0.1312 0.1795 0.2530
1 0.1354 0.1884 0.3280
2 0.1382 0.1948 0.4848

Exponential Composite 0 0.1311 0.1792 0.2518
1 0.1353 0.1881 0.3220
2 0.1381 0.1945 0.4730

Table 6.7: Table showing the statistical values for the box plot of the magnitude
error with varying size of neighbourhood

The magnitude error was found with the threshold equal to zero as well, but only
for n equal to 0 and 1 because the code crashed with a higher n. The results can be
seen in Figure 6.13 and Table 6.8.

6.4.2 Jacobian Determinant

The effect of a larger neighbourhood on the diffeomorphism of the estimated image
was found by looking at the Jacobian determinant and the results for the threshold
equal to 0.5 can be seen in Figure 6.14. All the box plots in Figure 6.14 had a first
quartile, median and third quartile equal to 1.
The Jacobian determinant was found for varying sizes of neighbourhoods with the

threshold equal to zero as well and the results can be seen in Figure 6.15 and Table
6.9.

33

Accumulation method Size of neighbourhood (n) Quartile 1 Median Quartile 3
Additive 0 0.1592 0.3241 1.5565

1 0.1586 0.2940 1.2796
Composite 0 0.1664 0.5842 1.6040

1 0.1660 0.4762 1.3971
Exponential Composite 0 0.1664 0.5842 1.6040

1 0.1660 0.4762 1.3971

Table 6.8: Table showing the statistical values for the box plot of the magnitude
error with varying size of neighbourhood and threshold equal to zero

Accumulation method Size of neighbourhood (n) Quartile 1 Median Quartile 3
Additive 0 0.8510 1.0000 1.0019

1 0.9210 1.0000 1.0037
Composite 0 0.7806 1.0000 1.0098

1 0.8640 1.0000 1.0105
Exonential Composite 0 0.8500 1.0000 1.0060

1 0.8807 1.0000 1.0109

Table 6.9: Table showing the statistical values for the box plot of the Jacobian de-
terminant with varying size of neighbourhood and threshold equal to zero

6.4.3 Timing

The effect of a varying size of neighbourhood on timing was found and the results
are shown in Figure 6.16 with the threshold equal to 0.5 and in Figure 6.17 with
threshold equal to zero.

34

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.12: Box plot showing the magnitude of error with varying size of neigh-
bourhood

35

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.13: Box plot showing the magnitude of error with varying size of neigh-
bourhood and threshold equal to zero

36

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.14: Box plot showing the Jacobian determinant with varying size of neigh-
bourhood

37

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.15: Box plot showing the Jacobian determinant with varying size of neigh-
bourhood and threshold equal to zero

38

Figure 6.16: Figure showing the timing of the three accumulation methods with
varying size of neighbourhood

Figure 6.17: Figure showing the timing of the three accumulation methods with
varying size of neighbourhood and threshold equal to zero

39

6.5 Threshold

Varying the threshold can limit the number of voxels whose deformations are es-
timated. Because this was likely to affect both accuracy and timing, results were
gathered to determine how pronounced this effect would be. The threshold values
range from 0 to 255, but have been normalised to 1. The thresholding is set up in
such a way that the threshold value is included in the image registration, therefore,
when the threshold is set to 1 only the values equal to 255 are included in the image
registration.

6.5.1 Magnitude Error

The magnitude error for varying the threshold is shown in Figure 6.18 and Table
6.10.

Accumulation method Threshold Quartile 1 Median Quartile 3
Additive 0 0.1586 0.2940 1.2796

0.2 0.1530 0.2464 1.2166
0.4 0.1396 0.1981 0.5561
0.6 0.1298 0.1769 0.2450
0.8 0.1231 0.1648 0.2123
1 0.1192 0.1582 0.1992

Composite 0 0.1660 0.4762 1.3971
0.2 0.1580 0.2809 1.2972
0.4 0.1417 0.2033 0.6422
0.6 0.1307 0.1786 0.2512
0.8 0.1236 0.1657 0.2142
1 0.1192 0.1583 0.1993

Exponential Composite 0 0.1658 0.4677 1.3497
0.2 0.1580 0.2799 1.2573
0.4 0.1416 0.2030 0.6270
0.6 0.1306 0.1784 0.2502
0.8 0.1236 0.1656 0.2140
1 0.1192 0.1583 0.1993

Table 6.10: Table showing the statistical values for the box plot of the magnitude
error with varying threshold

40

6.5.2 Jacobian Determinant

The effect of varying the threshold on the diffeomorphism of the estimated vector
deformation field is shown in Figure 6.19 and Table 6.11.

Accumulation method Threshold Quartile 1 Median Quartile 3
Additive 0 0.9210 1.0000 1.0037

0.2 0.9665 1.0000 1.0001
> 0.4 1.0000 1.0000 1.0000

Composite 0 0.8640 1.0000 1.0105
0.2 0.9235 1.0000 1.0004
> 0.4 1.0000 1.0000 1.0000

Exponential Composite 0 0.8807 1.0000 1.0109
0.2 0.9318 1.0000 1.0005
> 0.4 1.0000 1.0000 1.0000

Table 6.11: Table showing the statistical values for the box plot of the Jacobian
determinant with varying threshold

6.5.3 Timing

The timing was also likely to be affected by the threshold level, so its effects were
found and the results can be seen in Figure 6.20.

41

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.18: Box plot showing the magnitude of error with varying threshold

42

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.19: Box plot showing the Jacobian determinant with varying threshold

43

Figure 6.20: Figure showing the timing of the three accumulation methods with
varying threshold

44

6.6 Accumulation Methods

To set up an iterative scheme, three different accumulation methods were tested;
additive, composite and exponential composite. After testing the effects of many
different parameters on the timing and accuracy, a more visual representation of the
results for the three accumulation methods was generated. These representations
were shown on both the short axis and one of the long axes. The short axis slice of
the reference image can be seen in Figure 6.21 and the long axis slice of the reference
image is in Figure 6.22.

Figure 6.21: Short axis slice of 3D echocardiographic image

Figure 6.22: Long axis slice of 3D echocardiographic image

45

6.6.1 Magnitude Error

In Figures 6.23 and 6.24 the theoretical generated vector field is shown alongside
the magnitude error for each pixel along that slice for each accumulation method.

Figure 6.23: Short axis slice magnitude error of each voxel. Top left: deforma-
tion field, top right: magnitude error of additive method, bottom left:
magnitude error of composite method, bottom right: magnitude error
exponential composite method

6.6.2 Jacobian Determinant

Figures 6.25 and 6.26 show the Jacobian determinant of each pixel along the slice
for each accumulation method. The colorbars on the sides of Figures 6.25 and
6.26 are normalised to the absolute maximum Jacobian determinant that was found
for all three accumulation methods in that particular slice. The negative Jacobian

46

determinant values are represented by red colour tones while the positive Jacobian
determinant values are represented by green colour tones.

47

Figure 6.24: Long axis slice magnitude error of each voxel. Top left: deformation
field, top right: magnitude error of additive method, bottom left: mag-
nitude error of composite method, bottom right: magnitude error ex-
ponential composite method

48

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.25: Short axis slice for the Jacobian determinant of each voxel

49

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.26: Long axis slice for the Jacobian determinant of each voxel

50

6.7 Real cases

To check if the code would work in a real scenario, two different 3D echocardio-
graphic images were tested. Both image sets were tested between two pairs of
frames to check whether the resulting vector field was diffeomorphic or not. In one
pair, the volume difference between the frames was the minimum volume for that 3D
echocardiographic image set and in the other it was the maximum volume for that
image set. In all the Figures where the Jacobian determinant is represented by im-
ages with red and green colours, the red represents a negative Jacobian determinant
and the green represents a positive Jacobian determinant.

6.7.1 Image set 1

The first 3D echocardiographic image set had dimensions (x, y, z) = (192, 171, 193),
minimum volume difference between frames equal to 2.77207ml and maximum vol-
ume difference equal to 70.34682ml.

Minimum volume difference

The minimum volume difference for the first image was 2.77207ml and was between
two frames in diastole. The moving and reference images along a slice of the short
axis are shown in Figure 6.27. Figure 6.28 shows the Jacobian determinant for all
the pixels along the same slice on the short axis. Figure 6.29 shows the moving and
reference images of one long axis for the small volume difference while Figure 6.30
shows the Jacobian determinant along one slice on a long axis. Figure 6.31 shows a
box plot of all the Jacobian determinants of the entire 3D image.

Maximum volume difference

For the maximum volume difference of 70.34682ml of the first image one of the frames
was in systole while the other was in diastole. Figure 6.32 shows the short axis of
the reference and moving image while Figure 6.33 shows the same slice on the short
axis of the Jacobian determinant for each pixel of the three different accumulation
methods. The same is shown for the long axis in Figures 6.34 and 6.33. A box plot
of the Jacobian determinants over the entire 3D image for all three accumulation
methods can be seen in Figure 6.36.

6.7.2 Image set 2

The second image set had dimensions (x, y, z) = (211, 171, 214) with the minimum
volume difference between frames equal to 1.85355ml and the maximum volume
difference equal to 111.80095ml.

51

(a) Reference image (b) Moving image

Figure 6.27: Short axis slice for the reference and moving image with a volume dif-
ference of 2.77207ml

Minimum volume difference

For the second image, the minimum volume difference was 1.85355ml and the moving
and reference images were taken during systole. The short axis slice of the reference
and moving image is shown in Figure 6.37 while the Jacobian determinant of each
pixel along this slice for all three accumulation methods is in Figure 6.38. The same
images for the long axis are shown in Figures 6.39 and 6.40. A box plot of the
Jacobian determinant for all the voxels in the image is in Figure 6.41.

Maximum volume difference

For the final real case the second image set was used as well with a large volume
difference of 111.80895ml between the reference and moving image taken during
systole and diastole. For the short axis, the slices of the reference and moving image
can be seen in Figure 6.42 and the Jacobian determinants of the separate pixels in
the same slice can be seen in Figure 6.43. The same information about the long axis
slice can be seen in Figures 6.44 and 6.45. The box plots of the Jacobian determinant
for all voxels in the entire 3D image can be seen in Figure 6.46.

6.7.3 Timing

A comparison of the computational expense for the different accumulation methods
and the two 3D echocardiographic image sets can be seen in Table 6.12.

The timing of a desktop computer on the same image sets was computed to show
the effect of a more powerful graphics card on the computational expense. Table

52

Volume
difference
(ml)

Image
dimensions
(x, y, z)

Additive
accumulation
method (ms)

Composite
accumulation
method (ms)

Exponential
composite
accumulation
method (ms)

2.77207 (192, 171, 193) 3435.5 3691.1 7386.1
70.34682 (192, 171, 193) 3349.8 3700.4 7605.2
1.85355 (211, 171, 214) 4240.3 4780.9 10262
111.80895 (211, 171, 214) 4348.3 4833.6 10687

Table 6.12: Table showing the timing of the four real cases for the three accumulation
methods

6.13 shows the timing for the two image sets on a desktop computer with a GeForce
GTX 690 graphics card that could handle a maximum work-group size of 1024 and
had 8 parallel compute units. The desktop used the same version of OpenCL as the
laptop; OpenCL 1.2.

Image
dimensions
(x, y, z)

Additive
accumulation
method (ms)

Composite
accumulation
method (ms)

Exponential
composite
accumulation
method (ms)

(192, 171, 193) 744.9832 812.6449 1529.0
(211, 171, 214) 834.8487 924.9172 1791.6

Table 6.13: Table showing the timing of the two image sets for the three accumula-
tion methods with a desktop computer

53

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.28: Short axis slice for the Jacobian determinant of each voxel with a vol-
ume difference of 2.77207ml between the reference and moving image

54

(a) Reference image (b) Moving image

Figure 6.29: Long axis slice for the reference and moving image with a volume dif-
ference of 2.77207 ml

55

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.30: Long axis slice for the Jacobian determinant of each voxel with a volume
difference of 2.77207ml between the reference and moving image

56

Figure 6.31: Box plot of Jacobian determinant of the images with a volume difference
of 2.77207ml between the reference and moving image

(a) Reference image (b) Moving image

Figure 6.32: Short axis slice for the reference and moving image with a volume dif-
ference of 70.34682ml

57

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.33: Short axis slice for the Jacobian determinant of each voxel with a vol-
ume difference of 70.34682ml between the reference and moving image

58

(a) Reference image (b) Moving image

Figure 6.34: Long axis slice for the reference and moving image with a volume dif-
ference of 70.34682ml

59

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.35: Long axis slice for the Jacobian determinant of each voxel with a volume
difference of 70.34682ml between the reference and moving image

60

Figure 6.36: Box plot of Jacobian determinant of the images with a volume difference
of 70.34682ml between the reference and moving image

(a) Reference image (b) Moving image

Figure 6.37: Short axis slice for the reference and moving image with a volume dif-
ference of 1.85355ml

61

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.38: Short axis slice for the Jacobian determinant of each voxel with a vol-
ume difference of 1.85355ml between the reference and moving image

62

(a) Reference image (b) Moving image

Figure 6.39: Long axis slice for the reference and moving image with a volume dif-
ference of 1.85355ml

63

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.40: Long axis slice for the Jacobian determinant of each voxel with a volume
difference of 1.85355ml between the reference and moving image

64

Figure 6.41: Box plot of Jacobian determinant of the images with a volume difference
of 1.85355ml between the reference and moving image

(a) Reference image (b) Moving image

Figure 6.42: Short axis slice for the reference and moving image with a volume dif-
ference of 111.80895ml

65

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.43: Short axis slice for the Jacobian determinant of each voxel with a vol-
ume difference of 111.80895ml between the reference and moving image

66

(a) Reference image (b) Moving image

Figure 6.44: Long axis slice for the reference and moving image with a volume dif-
ference of 111.80895ml

67

(a) Additive method

(b) Composite method

(c) Exponential composite method

Figure 6.45: Long axis slice for the Jacobian determinant of each voxel with a volume
difference of 111.80895ml between the reference and moving image

68

Figure 6.46: Box plot of Jacobian determinant of the images with a volume difference
of 111.80895ml between the reference and moving image

69

7 | Discussion

To determine the optimal set-up for low computational expense and high accuracy,
multiple parameters were tested for all three accumulation methods. When gener-
ating the results, some outer limits of deformation were tested to ensure that the
maximum possible deformation of the heart could be picked up. This deformation
is along the long axis where the base of the heart comes up towards the apex and
can be up to around 12 − 15mm for a normal adult. The aim was to complete the
registration in real time as well.

7.1 β

The β relationship was tested to see what the effect of using primarily the quadratic
polynomial or the linear polynomial image decomposition was on the timing and
accuracy. The outliers in Figures 6.1 and 6.2 show that the linear image decom-
position causes a much larger spreading of the outliers than the quadratic image
decomposition. It is also clear that using only the quadratic polynomial is prefer-
able to using a combination of a quadratic polynomial and a linear polynomial. It is
possible that the reason the linear polynomial decomposition worked so poorly was
because the linear component in the image was destroyed by speckles and therefore
couldn’t be picked up by the linear decomposition. Table 6.2 shows that within each
accumulation method, the β relationship has little to no effect on the timing. This
is because no matter what the beta relationship is, the same number of calculations
are performed for the image registration.

7.2 Number of iterations

The effect of the number of iterations on the accuracy and timing was tested at two
different thresholds; 0 and 0.5. Figures 6.3, 6.5, 6.4 and 6.6, and Tables 6.3, 6.4
and 6.5 all show that a higher number of iterations leads to outliers that are more
spread out. This is probably because with more iterations, an erroneous estimation
can spread even further away from where it is supposed to be. More iterations

70

is, however, necessary when registering large deformations because the image regis-
tration is incapable of registering very large deformations in one iteration, but the
iterative scheme allows for a previous deformation estimation to be used as a pri-
ori information that the image registration algorithm can work off of. Figures 6.7
and 6.8 show that the number of iterations greatly affect the timing of the code.
More iterations require the entire deformation field to be recalculated multiple times
based on new a priori values, so this definitely causes the computational expense to
increase.

7.3 Maximum theoretical deformation

The maximum theoretical deformation was varied between 1 and 20 voxels, meaning
0.7 and 14mm to check the accuracy and timing. Figures 6.9 and 6.10 show very
little difference in the spread of the outliers with the higher maximum deformation.
However, it can be seen in Table 6.6 that the interquartile range is larger the larger
the maximum deformation is. Therefore, the error is, unsurprisingly, larger the
bigger the maximum deformation is, but not very much larger. It is possible that
this is because the size of the Gaussian kernel used to smooth the image before the
image decomposition had an n = 9 and this would limit the maximum deformation
the algorithm was able to pick up. While the estimated deformation is more accurate
for small deformations, the results are still good for large deformations. This can
be very helpful when trying to achieve a real-time implementation because in an
imaging situation with a high framerate, multiple frames could be skipped and the
deformation estimate would still be accurate even with larger deformations. Figure
6.11 shows that the timing was almost unaffected by the maximum deformation
level. As the decomposition and registration are done in the same way regardless of
the size of the deformation, this result is not surprising.

7.4 Size of neighbourhood

The size, n, of the neighbourhood was tested for two different thresholds as well; 0
and 0.5. Figures 6.12, 6.14, 6.13 and 6.15, and Tables 6.7, 6.8 and 6.9 show a trend
where the accuracy goes up as the size, n, of the neighbourhood goes up. This is
because with a larger neighbourhood, each voxel is identified by more information
and is easier to register between the reference and moving images, and a large n
smooths the image more so that noise does not affect the registration as much. The
fact that the program crashed due to OpenCL’s inbuilt timeout functionality when
it was run on large neighbourhood with threshold equal to zero makes it clear that
the computational expense suffers greatly with a larger neighbourhood. This can

71

also be seen in the plots shown in Figures 6.16 and 6.17. This is because a larger
neighbourhood includes more voxels in the image registration algorithm, and will,
therefore, also increase the computational expense.

7.5 Threshold

While two different thresholds were tested with many of the parameters that were
examined, a separate set of results were found where only the threshold differed and
the other parameters remained constant to see its effect on timing and accuracy. It
is clear in Figures 6.18 and 6.19 as well as Tables 6.10 and 6.11 that the threshold
affects the accuracy greatly. The outliers are much further spread out at lower
thresholds because the lower voxel values that are included in the image registration
resemble noise and are difficult to register between the fixed and the moving image.
While the lowest number of outliers are present at the highest threshold, there is very
little information in the remaining voxels in the image registration. It is therefore
recommended to use a threshold around 0.5 − 0.6 because, as seen in Figure 6.18,
the interquartile range of the magnitude error box plot is similarly low between
0.6−1.0 and the lowest possible threshold will give the most amount of information
for accurate image registration. The challenge with a low threshold, however, is seen
in Figure 6.20, where the lower the threshold, the higher the computational expense
because more voxels are included in the image registration code.

7.6 Accumulation methods

Three different accumulation methods were compared for accuracy and timing. The
box plots and tables in Chapter 6 all show that the exponential method has a
significantly smaller spread in outliers than the composite and additive methods
for both the magnitude error and the Jacobian determinant. This is likely because
the flow constraints of the exponential composite method restrict the estimate from
moving too far in the wrong direction in each recursion, so it can correct itself
if it moves too far in the wrong direction within one iteration. The plots of the
computational expense in Chapter 6 show that the accuracy of the exponential
composite method comes at the expense of the timing which, in some cases, is almost
twice as long due to its recursive estimation. The difference between the composite
and additive methods is not as large, with a slightly more accurate and diffeomorphic
result with the composite method but a slightly larger computational expense. The
observations about the magnitude error are further strengthened by Figures 6.23 and
6.24 where the larger magnitude errors represented by the lighter colours can be seen
more extensively in the additive and composite accumulation methods. In Figure

72

6.24 the bottom of the images for both the composite and exponential composite
method appear to have some dragging errors which are likely due to edge effects in
the image registration algorithm where the reference image went from containing
valid data to no data. This occurred in the composite and exponential composite
methods because they both use linear interpolation to accumulate the images and
this can cause the dragging of the edge effects. Figures 6.23 and 6.24 show that the
area of the image that contained valid data resulted in more erroneous estimations
while the areas with no data had almost identical errors. These errors line up well
with the theoretical vector field and are likely the exact same because when all the
voxels in the area have a zero value, the estimated vector displacement becomes zero
as well, as no other voxel in the immediate neighbourhood is a better match for the
estimate than the original voxel in the reference image. The greater errors in the
area with valid data are likely due to speckle noise. Figures 6.25 and 6.26 show a
clear difference between the different accumulation methods when it comes to the
Jacobian determinant which was represented by red colour tones when negative and
green when positive. The additive method has bright red spots while the red spots
in the composite method are less clear but still present and the exponential method
does not have any visible red spots. This is in line with the Jacobian determinant
box plots in Chapter 6.

7.7 Real cases

Real cases were tested for accuracy with two 3D echocardiography image sets where
the deformation field was estimated for the maximum and minimum heart volume
differences. In the coloured images representing the Jacobian determinant in Figures
6.28, 6.30, 6.33, 6.35, 6.38, 6.40, 6.43 and 6.45, the red spots are slightly more preva-
lent in the additive method than the composite method and both these methods are
much more red than the exponential composite method indicating that they won’t
estimate as diffeomorphic a vector field as the exponential composite method in a
real situation. This is also clear from the box plots of the Jacobian determinants
in each voxel in the entire 3D image in Figures 6.31, 6.36, 6.41 and 6.46, where
the exponential composite method has much less spread out outliers than both the
additive and composite methods. Even in the cases where the Jacobian determinant
was observed for the largest volume differences of 70.34684ml in Figures 6.32 and
6.34 or 111.80895ml in Figures 6.42 and 6.44, it was mostly positive for the expo-
nential composite method and less positive for the additive and composite methods.
From Table 6.12 it can be seen that the size of the image affects the speed of the
computation greatly and that the exponential composite method, while accurate, is
very computationally expensive compared to the other two. As the largest volume
differences led to a mostly diffeomorphic vector field, it is reasonable to believe that

73

some 3D echocardiographic frames could be skipped while maintaining accuracy, to
achieve a real-time implementation. The timing can also be improved by using a
more powerful graphics card, which is seen when comparing Tables 6.12 and 6.13
where it is clear that the timing of the laptop is up to five times slower than the
timing on the desktop computer.

7.8 Further work

While the code implemented and tested in this thesis is a step in the right direction,
many things can be improved. The first is implementing a pyramid scheme such
as the one used in [1]. In [1] it was shown that a pyramid scheme could both
reduce the computational expense and increase the accuracy of the results as well
as making the image registration more robust against large deformations. While the
image registration in [1] was rigid, the timing and accuracy trends found there are
likely to occur in non-rigid image registration as well. The challenge with a pyramid
scheme is that with non-rigid image registration, it is difficult to test the accuracy
of the pyramid scheme at each pyramid level and not just at level 0 (the original
image). Another image registration method that was implemented in [1] was an
affine transformation. In [1], the affine transformation was more accurate than the
linear transformation at the expense of timing, so it is reasonable to believe that
this would improve a non-rigid scheme as well at the cost of computational expense.
One of the challenges with affine image registration is that the inverse of a 12× 12
matrix is required and openCL does not have a built in inverse matrix calculation.
Therefore, the built-in matrix inverse calculation in the ViennaCL library could be
used or the SVD (singular value decomposition) could be found of the matrix whose
inverse was required. Using the ViennaCL library requires slightly complex set-ups
on the CPU side, but is easy to implement once that is done, while the SVD can be
set up simply in existing kernels, but the actual algorithm is more complex.

74

8 | Conclusion

While the non-rigid diffeomorphic image registration code that was developed in
this thesis could be used in many different situations, the testing was done only on
3D echocardiographic images to determine diffeomorphic vector fields that repre-
sented the movement of the heart. The Farnebäck algorithm was used for image
decomposition and a non-rigid direct translation image registration was tested with
three different accumulation methods. It was found that of the three methods, the
exponential composite method, while computationally expensive, delivered a more
accurate and diffeomorphic result. As the heart is only capable of moving in ways
that can be described by a diffeomorphic vector field, the exponential composite
method is the preferred method. In addition to the accumulation methods, multiple
parameters within the code were tested for their effect on the timing and accuracy,
and very good results were achieved with the right set-up. The optimal set-up was
used to test some real cases and the estimated vector fields were mostly diffeo-
morphic. Writing the code with parallel programming on the GPU using OpenCL
provided good results regarding timing, but comparing the timing on two differ-
ent computers made it clear that the graphics card influenced the computational
expense of the estimation greatly. It is clear, then, that a powerful device will be
necessary to ensure a real time result of this method. The fact that we can pick
up large deformations, however, can make real-time implementation easier as the
image registration will be able to skip some frames and still be able to estimate the
deformation field accurately.

75

Bibliography

[1] M. Ranestad. Fast registration and fusion of echocardiographic images. 2016.

[2] A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image regis-
tration: A survey. IEEE: Transactions on Medical Imaging, 32(7), 7 2013.

[3] H. Zhang, F. Banovac, and K. Cleary. Increasing registration precision for liver
movement with respiration using electromagnetic tracking. In International
Congress Series, pages 571–576. Elsevier B. V., 2015.

[4] M. Dandel, H. Lehmkuhl, C. Knosalla, N. Suramelashvili, and R. Hetzer. Strain
and strain rate imaging by echocardiography – basic concepts and clinical ap-
plicability. Current Cardiology Reviews, 5(2), 5 2009.

[5] C. Szmigielski, K. Rajpoot, V. Grau, S.G. Myerson, C. Holloway, J.A. Noble,
R. Kerber, and H. Becher. Real-time 3d fusion echocardiography. JACC:
Cardiovascular Imaging, 3(7), 2010.

[6] A. Danudibruto, O. Gerard, M. Alessandrini, O. Mirea, J. D’hooge, and E. Sam-
set. 3d farnebäck optic flow for extended field of view of echocardiography. In
Functional Imaging and Modeling of the Heart, pages 129–136. Springer, 2015.

[7] A. Danudibruto, J. Bersvendsen, O. Gerard, O. Mirea, J. D’hooge, and E. Sam-
set. Spatiotemporal registration of multiple three-dimensional echocardio-
graphic recordings for enhanced field of view imaging. Journal of Medical
Imaging, 3(3), 2016.

[8] D. Forsberg, M. Andersson, and H. Knutsson. Extending image registration
using polynomial expansion to diffeomorphic deformations. 2013.

[9] H. Blessberger and T. Binder. Two dimensional speckle tracking echocardiog-
raphy: basic principles. Education in Heart, 96(9), 5 2010.

[10] A. Elen, H.F. Choi, D. Loeckx, H. Gao, P. Claus, P. Suetens, F. Maes, and
J. D’hooge. Three-dimensional cardiac strain estimation using spatio–temporal

76

elastic registration of ultrasound images: A feasibility study. IEEE: Transac-
tions on Medical Imaging, 27(11), 11 2008.

[11] X. Pennec, P. Cachier, and N. Ayache. Understanding the "demon’s algorithm":
3d non-rigid registration by gradient descent. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI’99, pages 597–605, 1999.

[12] G. Farnebäck and C-F. Westin. Affine and deformable registration based on
polynomial expansion. Medical Image Computing and Computer-Assisted In-
tervention, 9(1):857–864, 2006.

[13] G. Farnebäck. Two-frame motion estimation based on polynomial expansion.
In SCIA’03 Proceedings of the 13th Scandinavian conference on Image analysis,
pages 363–370, 2003.

[14] G. Farnebäck. Polynomial Expansion for Orientation and Motion Estimation.
PhD thesis, Linköpings Universitet, Department of Electrical Engineering Linko
pings universitet, SE-581 83 Linko ping, Sweden, 11 2002.

[15] G. Janssens, L. Jacques, J. Orban de Xivry, X. Geets, and B. Macq. Diffeomor-
phic registration of images with variable contrast enhancement. International
Journal of Biomedical Imaging, 2010.

[16] C. Woolley. Introduction to opencl. http://www.cc.gatech.edu/ vetter/keeneland/tutorial-
2011-04-14/06-intro_to_opencl.pdf, 2010.

[17]

[18] D. Coimbra de Andrade. Opencl/opengl interoperation with textures.
http://www.cmsoft.com.br/opencl-tutorial/openclopengl-interoperation-
textures/, 2010.

77

