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Sammendrag

Innholdet i denne teksten møter utfordringen med todimensjonal FE-basert matematisk
modellering av kabel og trinser. Teksten er hovedsakelig en forberedende studie for en
kommende PhD-kandidat, hvor hoveddelen av fokus er isolert mot identifisering av teori
basert på elementmetoden for å beskrive systemer som består av kabel og trinser. Arbeidet
dreier seg om de iboende dynamikk- og friksjonseffekter som forekommer i slike systemer,
og som forårsaker ute av fase svingninger i offshore tauverk. I løpet av studien har den
mest hensiktsmessige matematiske formuleringen av modellering av kabel-trinse interak-
sjon blitt identifisert. Dermed er det et teoretisk grunnlag for den kommende forskningen
ved SFI som dreier seg rundt dette og lignende temaer. Prinsipper for den foreslåtte mod-
ellen blir diskutert og forklart i detalj, med intensjonen for den følgende forskeren å enkelt
overta arbeidet er utføret her.
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Summary

The content of this text meets the challenge of two-dimensional FE-based mathematical
modelling of cable and pulleys. The text is mainly a preparatory study for an upcoming
PhD candidate, where the bulk of focus is isolated on identifying proper finite element
theory for describing systems that consists of cable an pulleys. The work revolves around
the inherent dynamics and friction effects between cable and pulleys, causing out of phase
tension oscillations in an offshore crane. During the research, the most proper mathemat-
ical formulation of modelling cable-pulley interaction has been identified. Thus, provides
a theoretical foundation for the upcoming research at SFI regarding cable-pulley systems.
Principals of the proposed model are discussed and explained in detail, with the intent for
the following researcher to easily adapt the work performed here.

i



Preface

This Master’s thesis is a culmination of five years of study in the field of Mechanical
Engineering, and was carried out during the spring of 2017.

The content originates from the request from the Centre of Research-Based Innovation
(SFI), for accurate mathematical modelling of cable and pulleys. And also, the authors fas-
cination of finite element modelling and simulation techniques during the studies. When
introduced to the concept of digital twins, and its combination with the finite element
method, it was considered an unique opportunity to get insight in an entirely new science
domain.

The author would like to thank the supervisor, Professor Terje Rølvåg for the intro-
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Abstract

Within the last two decades, physical sensors has taken significant technological advances,
becoming extremely accurate and at a low-cost thanks to the smartphone industry. Also,
Internet and telecommunication are doing rapid technological advances. A result of these
technological strides, several industrial revolutions has occurred, such as Industry 4.0,
and the Internet of Things. However, due to the recent technological changing industry,
the combination of smart algorithms, fast computers, accurate sensors, and an increasing
reliability of Internet and telecommunication, enables for a new era of so-called digital
twins.

The matter of modelling multibody systems assembled with cable and pulleys has for a
long time been simplified, hence the focus on elements representing cable and pulleys has
been in arrears. Thus, the Centre for Research-based Innovation (SFI) has addressed math-
ematical modelling of such systems as one of the most critical research and development
tasks. An objective desired for the future is to accurately portray the inherent dynamics
occurring, that significantly affects the behaviour of cable-pulley systems.

The work performed in this text documents state-of-the-art FE-based cable and pulley
modelling. Further, it examines the effects that occur in a cable-pulley interaction such
as inertial effects, cable dynamics, frictional impact etc. Based on the findings, a math-
ematical FE-based formulation of a two-dimensional model that may be used for further
investigation of the topic is suggested.

By utilising ever-expanding computing power, this model can be implemented in soft-
ware for helping engineers solve increasingly complex challenges related to cable and
pulley systems. The model may also be implemented and applied in a script that includes
a post-processor of sensor data instead of applying fictive loads, a digital twin. Thus, a
long-term goal is to verify and optimise the FE-model for digital twin purposes, emulating
real behaviour of physical systems in real-time. If this is achieved the long-term objective
of this work is to obtain control synthesis for cable-pulley systems in the future. The model
might be applied to control systems as a stabilisation algorithm for out of phase tensions
and oscillations that occur.
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Chapter 1
Introduction

”Begin at the beginning”, the King said
gravely, ”and go on till you come to the
end: then stop.”

— Lewis Carroll, Alice in Wonderland

1.1 Background and motivation
Due to the rapid development of computer hardware and intelligent software has allowed
scientists to conduct advanced calculations within the second half of the 20th century. The
methods of multibody system dynamics have simultaneously been undergoing extensive
development. This has resulted in a vast amount of different software tools specialised in
the field of multibody dynamics, which is often applied in engineering during research and
development. The finite element method is widely used within disciplines of engineering
to perform advanced simulations, and to predict integrity of products and structures. The
method is known to be computational expensive, particularly when detailed simulations
include nonlinear effects i.e. plasticity in materials, nonlinear boundary conditions such as
contact, and large motions due to complex dynamic systems. Thus, the focus on elements
representing cable and pulleys has been in arrears, often simplified to be represented by
few elements for the sake of computational time consume. This is an effective and agree-
able approach in the construction industry, but does not emulate the actual behaviour of
more complex dynamic systems. Thus, the Centre for Research-based Innovation (SFI)
has identified mathematical modelling of the inherent dynamics in cable-pulley systems
as one of the most critical research and development tasks. Numerous machines contain
mechanisms composed of cables as driving elements, thus, it is necessary to obtain proper
and effective modelling of cable and pulley systems for the interest of dynamic analyses,
but also control synthesis. Control systems of such mechanical systems may be affected
by various forms of undesired oscillations in elements such as flexible cables. Therefore,
precise modelling of such systems is an applicable problem in nonlinear dynamics.
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Chapter 1. Introduction

1.2 Limitations
The master thesis is independent from the specialisation project carried out during the fall
semester and was therefore started from scratch in January. Thus, the original problem for-
mulation was under uncertain conditions, and was targeted against digital twins. During
the first period of the project, the bulk of focus was aimed on making a virtual crane mod-
elled in FEDEM, interact with a physical crane through sensor instrumentation. However,
during regular meetings with the supervisor, it became clear that creating a digital twin is
not of interest, at such an early stage of the SFI project. The development of digital twins
is undergoing extensive development within SAP Fedem, and is something that already
has been done, hence do not contribute to innovation. Also, the physical crane was not
finished in time, and documentation of FEDEM’s communication with external software
was inadequate for an external individual to apply these features. Therefore, it was agreed
upon to isolate the focus on an FE-based element formulation of cable interaction with
pulleys, that also is considered to be the most important task to investigate.

1.3 Problem formulation and objectives
The SFI Offshore Mechatronics project has identified mathematical modelling of cable
and pulleys as the most critical research and development task. Cable and pulleys are crit-
ical elements when simulating offshore draw works and crane operations. The inherent
dynamics and friction effects between cable and pulleys, may cause out of phase tension
oscillations in the cables that cause control system instabilities. An objective is to iden-
tify a suitable formulation for describing such dynamics. Thus, this master thesis will
contribute to the development of basic mathematical elements that are able to accurately
portray these dynamics, deliberately computational efficient enough for a digital twin ap-
plication. The main objectives of the research is following:

• Investigate and document state of the art FE-based formulation.

• Study and examine the inherent dynamic effects that occurs in a cable-pulley system.

• Present existing finite element formulations, and evaluate their pros and cons.

• Propose a FE-based mathematical formulation with adequate physical proximity,
that are applicable for digital twins.

1.4 Report organisation and main contribution
The thesis is presented in the deliberate intent of a PhD candidate to work further with this
topic. It is therefore assumed that the reader has significant scientific experience including
mechanical and theoretical understanding. The first half of the text introduces the reader
to the scope of the assignment, i.e. state of the art modelling, examination of physical
effects that occurs in a cable-pulley system. It then presents a model that is, in the author’s
opinion, the most suitable formulations for simulating such systems. To get a fundamental
understanding of the model proposed in this thesis, it is recommended for the reader to

2
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have previous knowledge and experience of linear algebra and the finite element method
before reading this text. The content of this text is structured as follows:

Chapter 2, presents the author’s philosophy and approach for dealing with the problem
formulation, and discusses some of the methodologies applied for achieving the objec-
tives.

Chapter 3 discusses the concepts of a digital twin, presents its potential for future in-
dustry, and current limitations regarding the issues of cable and pulley simulations.

Chapter 4, explores the previous work performed by other researchers related to this
problem. This chapter documents state-of-the-art on cable pulley modelling and simula-
tion, and provides the reader an overview of different possible approaches which may be
further applied for this purpose.

Chapter 5, covers the dynamic effects occurring in a cable-pulley system that needs
to be taken into account, and introduces the reader to the theoretical framework for the
further development of a finite element based model.

Chapter 6, consider some of the elements that have been investigated during the re-
search, the elements ability to cope with the physical effects presented are compared, and
a conclusion is obtained.

Chapter 7, provides a full presentation of the chosen element identified to be most
suitable for the model. It also covers how to model a pulley compliant with the element
formulation.

Chapter 8, covers how to describe contact kinematics, contact forces such as normal-
and frictional forces, and at last, the kinematic constraints between a cable and pulley are
defined.

Chapter 9, discusses simulation techniques, how they are performed and the introduc-
tion of stabilisation techniques. It also discusses algorithms suitable for real time simula-
tions.

Chapter 10, brings back the content of the text, discusses the discoveries and lessons
learned during research, with the intent for further work.

Happy reading
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Chapter 2
Research Methodology

In the kingdom of the blind, the
one-eyed man is king.

— Desiderius Erasmus Roterodamus

Figure 2.1: The inevitable emotional journey of creating anything great.
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Chapter 2. Research Methodology

2.1 Identification
As discussed in Chapter 1, a challenge has been addressed, however, its extent has to be
identified in order to frame the problem and further establish the scope of research. This
will be discussed in Chapter 3 in order to validate the need for this research and develop-
ment. Further, in order to deal with the challenge, scientific methods must accommodate
the basis for research, and knowledge for development. The aspects of the methods that
are applied is will need to be addressed in order to ensure the credibility and verify the
author’s procedure. In any sort of development, verification and validation of the project
requires evaluation, Kerzner [1] summarized these terms in the following way:

• Validation: ”Are you building the right thing?”

• Verification: ”Are you building the thing right?”

2.2 Exploration and theoretical framework
Within the field of engineering, March and Smith [2] argues that the associated research
methodology is to examine already existing developments and artefacts, rather than study-
ing the natural world. However, in order to improve current systems, a proper understand-
ing of the natural world is essential for obtaining achievements. Eisenhardt [3] states that
the development of theories based on observations in other literature, common sense, and
experience is a traditional methodology. She also emphasises that validation afterwards
the developed theories against experimental results, establishes a good quality of research.
In order to express the inherent dynamics of a cable-pulley system mathematically, knowl-
edge is the backbone, such as any challenge in engineering. An exploration process should
start with a broad focus, yet focus in on the specific problem. In this work, the exploration
methodology is simply to investigate previous works, explore strengths and weaknesses
of other state-of-the-art models, and study its demand of further development, in order for
improving their potential and integrity.

2.3 Development
In any concept development, first one analyses the challenge and all aspects around it,
secondly, one analyses possible solutions to the challenge, referred to as concept explo-
ration. Furthermore, the solutions are carefully considered against the challenges in order
to identify the most suitable solution method. Three stages consisting of three subordinate
phases is illustrated in figure 2.2 and provides a graphical overview a development process,
adopted from the field of Systems Engineering [4].

The Need Analysis Phase examines if there is a valid need for new development, and
investigates if there are any practical approaches that satisfies the need (Chapter 3).

The Concept Exploration Phase examines potential approaches that exist and is able
to cope with the challenge (Chapter 4). It also studies the required performance for a new
development to meet the perceived need (Chapter 5). It then investigates if there is at least
one feasible approach that satisfies the performance (Chapter 6). The output of this phase

6



2.3 Development

Figure 2.2: System life cycle model [4]

provides a first ”official” set of requirements, commonly known as performance require-
ments.

The Concept Definition Phase selects the preferred approach for solving the problem,
based on the key characteristics of a concept that would achieve most beneficial balance
between capability, operational life, and cost (Chapter 6).

Kossiakoff [4] summarized the principal objectives of the concept development stage
as follows:

• to establish that there is a valid need for a new system that is technically and eco-
nomically feasible;

• to explore potential system concepts and formulate and validate a set of system
performance requirements;

• to select the most attractive system concept, define its functional characteristics, and
develop a detailed plan for the subsequent stages of engineering, production, and
operational deployment of the system;

• to develop any new technology called for by the selected system concept and to
validate its capability to meet requirements.

This work is considered, thus treated to be at the stage of concept development. Thus
will adopt and execute the presented methodologies in order to identify a mathematical
simulation technique suitable for covering an ”official” set of requirements.

7



Chapter 2. Research Methodology

Figure 2.3: Concepts involved in the construction of a mathematical model [5]

The Advanced Development Phase (Chapter 7, 8, 9 ) is critically dependent on the
foundation established in the stage of Concept Development. However, the conceptual
effort is of a broad analytic nature and often carried out with limited resources. Thus,
significant unknowns remain to be fully defined and resolved, it is therefore essential that
these ”unknown unknowns” are exposed at an early stage.

2.4 Discussion and conclusion
During discussion, the content and context of the research should be brought back again
[6]. It exposes the lessons learned, and through discussion, they should be put in a broader
perspective. Thus, the discussion enables for new researches and further work. The con-
clusion brings back the context by reviewing the development objectives and evaluates the
satisfaction of these. In engineering, a conclusion is often associated with physical testing
and comparison in order to verify a new development.

8



Chapter 3
The concept of a digital twin

Digital twins are becoming a business
imperative, covering the entire
life-cycle of an asset or process and
forming the foundation for connected
products and services. Companies that
fail to respond will be left behind.

— Thomas Kaiser, SAP Senior Vice
President of IoT

A digital twin is simply a bridge between the physical and digital world. The idea is to
utilise data from sensors and actuators installed on a physical object to represent their
near real-time status, working condition, and position of a product, process or service.
A physical object has to be instrumented with sensors that gather real-time data, the re-
ceived monitored data is transmitted to a software or a cloud-based service that processes
the input, and analyses it against other contextual data. The future vision of digital twin
is diverse and applicable in a large range of different disciplines and industries, and is a
relatively new idea which has barley been exploited up to this point of time. SAP Fedem
applies the monitoring approach which aims at providing an integrated overview of the
structural integrity of a construction or mechanism at any time. The software that analyzes
the processed sensor data is known as FEDEM, based on the finite element method, which
enables the use of so-called virtual sensors, decreasing the need of an unnecessarily large
amount of physical sensors. It also applies model reduction that reduces the system of
equations to a minimum, making it remarkably suitable for real-time simulations of dig-
ital twins. However, there are some challenges from time to time when a digital model
demand element formulations that exceeds the characteristics of embedded elements, in
order to adequately represent a physical model. In this chapter, a digital twin prepared for
actuation is presented, however, the underlying theory of sensor technology, data filtering,
and actuation will not be presented.

9



Chapter 3. The concept of a digital twin

3.1 FEDEM
FEDEM is the acronym for Finite Element Dynamics of Elastic Mechanisms and is tra-
ditionally a simulation tool for more complex mechanical assemblies. FEDEM consists
of a rather intuitive GUI, illustrated in figure 3.1. The software can be categorised as
a Multi Discipline Simulation tool, combining Multibody Simulation (MBS) which has
traditionally treated an assembly consisting of rigid bodies, the Finite Element Methods
(FEM) that accounts for deflection in components, and Control Engineering. Simulations
in conventional FE-software is normally time-consuming procedures, due to large sets of
differential equations that needs to be solved. However, FEDEM is applying a method-
ology for eliminating the simulation time drastically due to an algorithm that reduces the
system of equations through CMS model reduction.

Figure 3.1: Graphical user interface of FEDEM

3.1.1 Model Reduction
A simulation model based on finite elements in a conventional simulation software, do
have a large amount of differential equations that needs to be solved for every time step in
a dynamic simulation. Every node in a FE model contains a set of up to six DOFs, depen-
dent on the chosen elements for the model. A FE-modelled system may contain several
thousand DOFs, making the system of equations extensively large. FEDEM introduces a
Component Mode Synthesis (CMS) model reduction in order to cope with this issue [7, 8].
In order to decrease the equation, the nodes are categorised as internal and external nodes,
and divided into sub-matrices. The external nodes, also referred to as supernodes or triads
are defined as external DOFs when an interaction is manually assigned to the body, further
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3.2 Finite element model of the crane

the physical properties of the external nodes are defined through the internal DOFs. The
internal DOFs are eliminated from the system and replaced by a limited amount of the
lowest vibration modes of the substructure. The fundamental assumption is that the lowest
natural frequencies are the important ones, also the higher frequency modes are less accu-
rate in numerical models [7]. The full derivation of the CMS transformation can be found
in several literature’s, e.g. Sivertsen (2001) [8]. The model reduction results in a total
elastic behaviour of the components. However, normally in the field of mechanical engi-
neering, if a component exceeds the yields stress and ends up in the plasticity region of the
material, it is usually not designed properly, making this simplification reasonable. The
overall behaviour of the assembly is considered highly nonlinear due to the large motions
of the dynamic models simulated.

3.2 Finite element model of the crane

Figure 3.2: CAD model of a scaled lab crane.

A detailed CAD model of a scaled crane was provided by PhD candidate Andrej Cibicic,
the model was mainly intended for production and had to be idealised for meshing. The
idealisation process was performed carefully in order to maintain the structural integrity
of the model. The idealisation and meshing process were performed with Siemens NX,
before it was exported as Nastran files for FEDEM to read. Figure 3.3 illustrates the final
model of a digital twin in FEDEM.
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Chapter 3. The concept of a digital twin

Figure 3.3: Assembly FE-model in Fedem.

3.2.1 Element selection
For an accurate digital twin, it is essential to obtain a certain accuracy, simultaneously as it
is computationally efficient. FEDEM does not support certain elements that are common in
conventional FE-software, which is necessary to have in mind when meshing the parts in a
third party FE-program. The parts have mainly been meshed with 4-node C0 quadrilateral
elements in Siemens NX, before it was exported over to FEDEM. The properties of these
elements have some limitations, i.e. it is confined to describe mechanical behaviour in its
own defined plane, but provides adequate structural integrity if the element size is chosen
with care. For instance, the element size illustrated in figure 3.3 is believed to be of too fine
fore a digital twin, and needs to be coarsened. However, these elements are advantageous
in applications for digital twin purposes, due to its decreased amount of DOFs, which
advances the computational efficiency when solving for stresses and strains in the post-
processors.

3.2.2 Control system
FEDEM has a built-in control system which closely resembles basic control theory, and is
similar to Simulink. The control system provides very powerful tools for the simulation
of multibody systems, making it very handy for a user during the setup of a simulation.
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3.3 Actuation of a digital twin

Its graphical representation consists of control blocks of different functions, connected in
series for obtaining the desired simulation of the behaviour of a system.

3.3 Actuation of a digital twin

(a) Real system (b) Digital twin

Figure 3.4: Illustration of the

The digital twin illustrated in figure 3.4b is represented as a numerical model with the
exact physical dimensions, material data, constraint conditions etc. to mimic a physical
system illustrated by figure 3.4a. In order to actuate the digital twin, instead of fictitious
load conditions, one applies physical sensor data that monitors the dynamic responses,
material deformations, state conditions etc. of the physical system. However, the sensors
can also be of a virtual kind that is placed in arbitrary positions of interests on the digital
twin. Thus, by combining numerical models with physical sensors, one can observe real-
time mechanical conditions of an entire structure or machinery during operation. If one
succeeds with the challenge of modelling an accurately adequate cable-pulley system, one
can further combine the model with sensors and actuators for obtaining digital twins of
such systems.

3.4 Modelling cables and wire ropes as linear springs

A commonly known property to structural elements such as cables is their ability to with-
stand large axial loads in comparison to bending, compression, and torsional loads. A
well-known approach for modelling cables is by simplifying them into linear or bi-linear
springs [9, 10, 11], considering the stiffness to be dependent on the length and neglecting
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Chapter 3. The concept of a digital twin

the mass and inertial forces. Hence, the approach results in very efficient simulations, and
its accuracy is adequate for common engineering applications [12].

Figure 3.5: Cable-pulley interaction in FEDEM

Figure 3.5 illustrates how the cable pulley interaction has been modelled in FEDEM.
The cable is modelled as bi-linear springs, the stiffness depends on its extension, and is
connected to a triad on a pulley with a rotational degree of freedom. The pulley is attached
to its supporting structure i.e. the crane, through a revolute joint. This is a rather simplified
approach and does not represent a real system. However, it can provide indications of some
dynamic effects occurring (Section 5.5.4), and was therefore used instead of attaching the
cable directly to the pulley fixing point on the crane. As mentioned, the simplification of
the cables neglects bending stiffness, thus does not consider the lateral vibrations of the
cable, the friction acting between the cable and pulley is neither included in this simplifica-
tions. If a system for modelling drawworks, belt-drives, elevators, cable-driven robots and
control systems for autonomous vehicles, just to mention a few, this method is inadequate.
Therefore, SFI has addressed the importance of research and development of FE-based
mathematical models to cope with these challenges.
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Chapter 4
Literature Review - Previous Work

If I have seen further, it is by standing
on the shoulders of giants.

— Sir Isaac Newton

This chapter provides a rapid review of state-of-the-art cable pulley modelling of modern
times. The literature reviewed will not be discussed in detail, and is intended for the reader
to get an overview of some of the existing approaches and methods. Thus, if some of the
literature is of special interest, it is intended for the reader to go directly to the source for
details. Some of the most conventional elements used for modelling cable and pulleys will
be revealed, although the discussion of potential elements will be carried out in Chapter 6.
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4.1 Ju and Choo (2004 / 2005)
Ju and Choo [13] developed a super element approach for describing the overall impact
of a large multiple-pulley cable system on its supporting structure. The authors addressed
other approaches which modelled the cables as linear springs, fixed beams, or modelling
multiple-pulley cable system by neglecting friction when passing through pulleys as inade-
quate methods which provided inaccurate results. This was handled by imposing frictional
relations between the cable tensions at the two sides of the pulleys. However, a year after,
the same authors performed a dynamic analysis of a tower crane [14] by applying the super
element approach, yet neglecting the frictional loss over the pulley without any argumen-
tation for the simplification. Dynamic responses and modal properties of the crane were
examined, and cases of sudden accelerations of the payload were studied. However, it is
stated in their articles that the chosen methods used for modelling cable-pulley passages,
has significant effects on the behaviour of a structure as a whole.

4.2 Kerkkänen et al. (2006)
Kerkkänen et al. [15] developed a model for simulating belt-drives. The author addressed
the lack of realistic models for describing such systems, and its requirement for exact
modelling by including sheaves to the system, ability to describe nonlinear deformations
and realistic contact. The tensions of a belt during operation is going through transitions
from large to small tension and vice versa. Thus, the belt is subjected to fatigue and the
tensions of the belt-drive are critical for determining its lifetime, another factor is the creep
between the belt and pulley causing sliding wear. The need for a sophisticated method of
surveying all the forces appearing in such systems was needed for predicting all aspects of
the long-term design integrity. An ANCF element capable of modelling highly nonlinear
deformations, proposed by Dufva et al. [16], were applied for modelling the belt. The
element was chosen due to its high-order (C2) formulation, enabling for accurate contact
description, yet with a low amount of elements required. However, since the pulley is
considered as the systems driving element, only its geometry and angular velocity were
taken into account. By this approach, all the above mentioned requirements were obtained,
providing adequate numerical results for the modelling and simulations of belt drives.

4.3 Imanishi et al. (2009)
Imanishi et al. [17] developed a dynamic simulation model for wire ropes subjected to
rapid winch accelerations. The cable was modelled as a variable-length truss element
i.e. similar to a bi-linear spring, revolved around a winch drum. Its configuration was
described through nodes representing pulleys mounted on a crane structure. The con-
tact between the winch drum and the cable were modelled by additional variable-length
truss elements, connected between the winch drum centre point, and the nodes of the ca-
ble. These contact elements were programmed to contain zero stiffness unless their length
occurred below a prescribed radius of the drum. And if so, the element would become
excessively stiff in the direction of compression, and the cable were obtained in a con-
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4.4 Sun et al. (2011)

strained position around the drum. Yet, there was zero stiffness in the direction of tension,
which allowed the cable to ”jump off” if the winch drum was subjected to sudden surges
and accelerations, enabling for nonlinear analysis of the tensions in the cable, yet unable to
describe friction. The motion of the winch drum was described by a mathematical model
of a hydraulic system, and dynamic simulations were performed in order to examine the
rope looseness occurring during rapid winch operations.

4.4 Sun et al. (2011)
Sun et al. [18] formulated a nodal position finite element (NPFEM) motivated by the
need of an alternative robust formulation as means to analyse the dynamic behaviour of
cables experiencing large rigid body rotation, combined with small elastic deformations
over a long time of period. This formulation calculates the position of a cable directly
instead of its displacements as conventional beam elements. The element properties were
chosen to absorb elastic strain, but only in the longitudinal direction. The element was
implemented in a simulation program with moving boundary conditions, representing a
submerged rigid body and its associated dynamics, towed by a moving vessel. Simulating
the nonlinear dynamics in the cable of the towed body system were preformed and com-
pared with physical trials. The element proved to be accurate and robust in comparison
with experimental results.

4.5 Lugrı́s et al. (2011)
Lugris et al. [12] addressed in their article the need of an improved model of cable and
pulleys due to the energetically inconsistency, generating spurious terms in the system
equations of existing simulation methods, that applies linear or bi-linear springs for the
modelling of cables. At first, an elevator system modelled with wire ropes simplified
to bi-linear springs, motion dependent on the angular velocity of the motor, driving the
system. This model demonstrated the inconsistency of energy conservation. Subsequently,
a numerical model based on the ANCF proposed by Shabana [19], were developed. In
contrast to Kerkkänen et al, the pulley were considered as a driving element, but included
inertia. The ANCF were chosen due to its capability of capturing detailed interaction
with a pulley and its nonlinear behaviour. The developed cable-pulley system proved
conformance in the energy balance.

4.6 Wang et al. (2014 - )
Wang, Tian, and Hu [20] proposed in 2014 a method for describing frictional contact
between two spatial thin beams with a circular cross-section, that is subjected to large
deformations, i.e. spatial models of ropes interfering with each other. Their method was
based on contact detection between ANCF beams by applying the minimal distance cri-
terion, then applying a master-slave approach, that determines which one of the beams to
dominate the contact. Furthermore, the penalty method was used for defining the normal
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and frictional contact forces between the objects. Their research concluded that by apply-
ing this element proved to be promising and was followed up by an improved formulation
including multi-zone friction in 2016 [21, 22].

4.7 Arena et al. (2015)
An investigation carried out by Arena et al. [11] looks at improving the efficiency of
container cranes for handling cargo. The research team addressed the need for optimisa-
tion due to inherent dynamic behaviour caused by the structure and its hoisting system,
influencing the productivity of an overall terminal. Their approach included a full-scale,
three-dimensional container crane. The hoisting cables were both modelled as straight
taut cables or straight rigid rods for comparison. Physical tests were performed for sev-
eral crane configurations in order to determine parameters for the system, and experiments
were carried out for obtaining sensor data, and in order to verify the model. The pro-
posed model enabled parameterisation of the dynamic responses of the heave for different
manoeuvres and wind disturbances.

4.8 Myhre (2016)
Dr. Myhre [23] performed recently a research at NTNU regarding robots interacting with
humans. The purpose of his study was to investigate how a human can interact with a robot
for increasing efficiency in industries by sharing the load, specifically handling long and
slender beams in stacking operations. The goal was to let a human lead the robot through a
trajectory by motion. By obtaining this goal, the motion of the flexible beams were tracked
by the help of artificial vision, while the beams were formulated by applying the ANCF
for compute its spatial position and deflection, making the motion tracking more robust.
The experiments were successfully performed by this approach, and proves its efficiency
and performance for applying to real-time simulations.

4.9 Bulı́n et al. (2016 - )
Bulı́n et al. [24] acknowledges in their paper that the ANCF is an effective element for
simulating systems consisting of cable and pulleys. However, the authors address the lack
of experimental comparisons in order to fully validate the method. Their approach was to
develop an in-house simulation tool, and the cable they used was modelled as a flexible
ANCF-based beam. To describe its interaction with a pulley, the normal and friction forces
were obtained by defining contact forces based on the Hertz theory of contact. In contrast
to Lugrı́s- and Kerkkänen et al. the considered driving element was modelled external
motor imposing movement on the cable. Thus, the pulley movement were purely caused
by the cable interaction. A mechanical system composed of a driven weight and joined
with a motor, led over a pulley was then investigated and compared. The results combined
with the numerical model shows sufficient agreement and demonstrated a good capability
of simulating the highly nonlinear behaviour of a cable. This investigation proved that the
ANCF model is suitable for dynamic analyses and simulations of such systems.
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Chapter 5
Physical analysis and theoretical
framework

Research is creating new knowledge

— Neil Armstrong

Work performed by other authors have been presented, and a full understanding of the
characteristics of a cable-pulley system needs to be examined. An understanding of the
effects is crucial before moving on to more complex mathematical formulations of the
problem. This chapter gives an introduction of the various dynamics that have been con-
sidered for this project.
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5.1 Fishbone diagram

Figure 5.1: Fishbone diagram for effect survey.

A fishbone diagram used to facilitate root cause analysis of system dynamics is illustrated
in figure 5.1. This is a helpful tool for analysing any challenges regardless the level of
complexity. The overall system dynamics is a product of many different effects that has
a variety of impacts on the overall system. One has to determine which of these effects
is the most critical for the overall behaviour, then investigate them in order to establish
the building blocks for the development and mathematical modelling. The bulk of focus
should be to examine and understand the more dominating effects in the system to obtain a
mathematical foundation which can be customised for its purpose. It is therefore required
to better understand the individual phenomenons, some of them occurring at a micro me-
chanical level, in order to better understand the behaviour of a full-scale system. Thus, the
focus will isolate on the inherent effects that are independent from external influence.

5.2 Cable Dynamics

Systems involving components such as ropes and cables often exhibits unwanted fre-
quency vibrations, due to its mass stiffness proportional relation that needs to be con-
sidered. In many cases involving cable and pulleys with large lifting ranges, will most
likely pass through a resonant vibration stage at some point of its travel. Whatever the
subordinate cause of the vibrations, it will normally excite the associated oscillations of
the cable structure [25]. The heave may also have some slight pendulous movements that
cause fluctuating cable tensions. Considering that the oscillations are independent from
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5.2 Cable Dynamics

the configuration and direction of the cable, at any stage of the systema, yields the natural
frequencies and its mode shapes.

(a) (b)

Figure 5.2: Illustration of lateral oscillation, mode 1 and 2.

From Newtons second law, the sum of all the forces acting in a system yields

mü+ cu̇+ ku = f(t) (5.1)

wherem, c and k is the total suspended mass-, damping- and stiffness of the cable, respec-
tively. u, u̇ and ü is the displacement from any reference position of the load, velocity, and
acceleration respectively, with respect to time. Using this equation, one can calculate the
natural frequencies (see Section 5.6) by neglecting the damping of the system in equation
5.1, putting the external loads to zero. Thus, the basic expression for the natural frequency
in its longitudinal direction of the cable yields

ωaxial =

√
k

m
rad/s (5.2)

in addition, one can expect lateral oscillations will occur on the cable [25], expressed in
an analytic form

ωlateral =
nπ

L

√
Cable Tension

Cable Mass
=
nπ

L

√
Mgn
ncmc

rad/s, n = 1, 2, 3.... (5.3)

where n denotes the different modes and L is the length of the cable. In the case of
multiple suspension cables i.e. if the system contains multiple sheaves mounted in parallel
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e.g. a crane block, nc denotes the quantity of parallel cables, and ρc is the cable density.
Considering a cable pulley system with large travels of the heave, the length and mass
of the cable is considered as variables with respect to time, L(t) and M(t) respectively.
Thus, the mean tension of a cable is expressed

Tmean = M(t)gn +
L(t)

2
nsrmsrgn (5.4)

substituting into 5.3 yields

ω̄lateral =
nπ

L(t)

√
M(t)gn
ncmc

+
L(t)gn

2
rad/s, n = 1, 2, 3.... (5.5)

It is worth noting that when oscillations occur in a cable, it becomes dynamically de-
formed. During deformation, it stores potential energy due to its elastic properties. Worst
case scenario, the elastic behaviour of a cable may contribute to amplifying its own oscilla-
tion amplitudes if a resonant vibration stage is kept stationary in a period of time, whatever
the underlying reason.

5.3 Cable configuration and bending stiffness
The main purpose of a cable is the transfer of forces in its axial direction, thus the cables are
taut in general. It is common sense arguing that cables are unable to withstand bending and
compression. For instance, Gerstmayr and Shabana [26], argue that the effect of bending
stiffness can be neglected in high tension cable problems, but the effect of bending stiffness
becomes more important in cases of low tension. However, this is only true in a global
sense, and the effects of bending can arise in some or several segments of the length of a
cable. As noted, some authors [9, 14, 10, 11] neglect the bending stiffness of an element,
while others [20, 15, 24, 12] have incorporated stiffness and damping properties based on
estimates and approximations to their models. This helps tune the properties and emulate
cable dynamics. When neglecting bending stiffness in an element, its rotational degrees of
freedom in the nodes disappear, and the lateral behaviour of a cable is eliminated from the
system equations.

Figure 5.3: Anatomy of a cable [27].
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5.3 Cable configuration and bending stiffness

(a) Inter-layer friction zone. (b) Cross section of a strand.

(c) Helix shape [28].

Figure 5.4: A single-helical rope configuration.

For describing configurations of a cable, the designation is m× n, where m denotes the
number of strands, and n the number of wires in each strand. The cross section illustrated
in figure 5.3, shows a ×  stranded cable [27].

A cable may have various configurations, different coating, as well as wire rope of
naked steel. In offshore applications these cables often contain grease in the core and
inter-layers of wires for increased corrosion resistance and a smoother behaviour. In any
conventional FE- formulation, the elements are derived as homogeneous cylindrical bar or
beams, which is not the case for a cable that is neither isotropic, nor homogeneous. As
means to accurately portray the dynamic responses in a cable, the mechanical parameters
which are incorporated in beam formulations have to be modified for this purpose. A well
known expression for bending in beam elements, and a well known approximation for the
modelling of cables [29] has the form

M = EIκ (5.6)

Where M denotes the bending moment, EI the bending stiffness and κ the curvature of
the beam. The beam model provides useful dynamic response data which incorporates
tension, internal damping, and connection points [27]. However, applying conventional
equations for calculating the stiffness based on a circular cross section provides unrealistic
stiffness to a cable. This has been addressed in other articles [12, 24] working with cables,
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scaling down the bending stiffness drastically to obtain more realistic behaviour. Thus,
scaling the second moment of area I by a factor of 25 by approximation for obtaining
more realistic beam characteristics, proves adequate conformance with experimental re-
sults provided by Bulı́n et al. However, in when bending increases in a cable, the internal
friction acting between the wires is not equivalent for preventing a relative slip between the
wires and the cores. Relative slip occurs when a wire crosses the neutral axis of a cables
cross section [29]. Papailiou [29] was the first to propose an analytic model for conductors
accounting for the inter-layer stick-slip friction, resulting in a variable bending stiffness.
The model was implemented as a planar beam in a simple FE-code as a nonlinear quasi-
static analysis, proving promising conformance with quasi-static experimental tests. His
research proved that bending stiffness is altered when subjected to bending displacement
and tension. Spak et al. [27] proposed a method for determining the effective homoge-
neous beam parameters for the purpose of modelling a stranded cable, and pointed out that
damping properties caused by friction and viscoelastic shear effect should be incorporated
when modelling wire ropes. The parameters were used in beam models for predicting
natural frequencies of cables mounted in space crafts, studying its influence on the entire
structure. Foti et al. [30] recently proposed a new refined model describing the mechanical
behaviour metallic stranded cables subjected to tension, torsion, and bending. The model
fully accounts for the composite nature of multi-stranded wire ropes, subjected to hystere-
sis bending behaviour. By summarising the stiffness contribution from each wire yields an
overall bending stiffness of a cable. The relationship between minimum stiffness proper-
ties and the geometrical configuration, contributed by the sum of slip friction between the
inter-layer wires in a cable subjected to bending, yields

EImin =

m∑
j=0

nj
2

cosαjEIw,j

[
1 + cosα2 +

sinα

1 + νj

]
(5.7)

and the maximum bending stiffness contributed by the sum of stick- and slip friction be-
tween the inter-layer wires.

EImax = EImin +

m∑
j=1

nj
2

cosαj
3EAw,jr

2
j (5.8)

With the following input parameters (see figure 5.4)



nj number of wires in the jth layer
αj = tan−1

(
2πR
P

)
describes the helix shape of a wire, illustrated by figure 5.4c

rj length from centre of the core wire,
to the centre of a wire in the jth layer

P helical pitch of the lay length
Ej Young’s modulus, denoted j if composite configuration
νj Possion’s ratio of a wire
Iw,j = πδ4

64 denotes the second moment of area of a wire
Aw,j = πδ2

4 denotes the cross sectional area of a wire
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5.4 Pulley

(a) Hysteresis loop during bending. (b) Stiffness curvature relation.

Figure 5.5: Stiffness-curvature relation of a cable subjected to bending.

As expressed by equation 5.8, the sum of inter-layer stick- and slip friction yields the
maximum resistance to bending. Subsequently, whenever the sticking force is exceeded,
a slip occurs and the resistance to bending decreases, this is illustrated in figure 5.5. The
transition from stick to slip of the cable is smooth due to the inter-layer stick-slip effect
of the wires, occurring at slightly different curvatures. However, one can assume that the
bending stiffness of the cable always has its lowest possible value, given by the sum of its
containing wires [27]. By applying these equations, one should obtain accurate estimates
for the dynamic responses of a cable during simulations.

5.4 Pulley
A basic overview of the main forces occurring in a pulley is illustrated in figure 5.6, and
expressed in order to describe its main contributions to the dynamic behaviour of a cable-
pulley system. The inertia in a cable-pulley system becomes important when considering
the dynamic behaviour as a whole. The rotation of the sheaves is purely caused due to
frictional forces in a cable-pulley interaction. In cases of sudden surges, accelerations,
and movement direction, e.g. wave compensation during offshore lifts or cable driven
robotics. Several nonlinear effects may occur in the system, such as sliding, friction in-
duced vibrations causing oscillations in cables, etc. In order to examine what may cause
sliding between the contacting surfaces, one has to investigate both the static and dynamic
characteristics. Considering the pulley illustrated in figure 5.6 as fixed (no rotation), the
deviation of tensions on the verge of slipping is obtained by the Euler’s equation [13, 31]

F1 = F2e
µθ (5.9)

The force deviation over the pulley is purely due to friction effects that occurs, thus the
frictional slipping force may be written in the form

∆F = Fslip = F1 − F2 ⇒ Fslip = F1(eµθ − 1) (5.10)
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Figure 5.6: Analytic overview of a pulley.

Considering a pulley with a rotational mass with the moment of inertia J , a viscous damper
constant B, angular displacement α, radius R, and the interaction cable-pulley friction
force Ff , an equilibrium equation for the pulley yields [32]

J
d2α

dt2
+B

dα

dt
− FfR = 0 (5.11)

The frictional force is dependent on the contact force acting normal to the surface Fn,
which can be simplified from a distributed to a concentrated load. The relation between
the cable tension and frictional force Ff can be found through simple geometric analysis,
and yields the angular relationship

Fn = F1 sinβ1 + F2 sinβ2 (5.12)

with geometrical relations β = β, β + β = θ, and assuming F = F, the relation can
be rewritten as

Fn = F1 sin θ ⇒ Ff = µF2 sin θ (5.13)

It is also worth noting that θ is the cables angular change of direction, as well as describing
the arc over the pulley. If one is to consider when slipping occurs in dynamic situation,
such that Ff > Fslip, by substituting equation 5.10 into 5.11, the relation is expressed as
following

J
d2α

dt2
+B

dα

dt
> FslipR ⇒ 1

R

(
J
d2α

dt2
+B

dα

dt

)
> F1(eµθ − 1) (5.14)

According to this equation, the limit between static and sliding friction are determined,
and will further in this text be referred to as a frictional saturation force. If the saturation
value is exceeded, i.e. when the inertial forces of the pulley exceeds static friction, slip
occurs and the surfaces slide against each other.

26



5.5 Tribology

5.5 Tribology
In general, virtually all mechanical systems involve some sort of interaction effects such
as friction, heating, wear, etc. This well-known phenomenon which could affect the me-
chanical behaviour in one way or another. These effects are essential to study and evaluate
in order to determine its level of impact on the overall performance, and possibly establish
proper mathematical descriptions for improving the formulations of contact. However,
some of these phenomenons exceed the framework of this study, but their importance will
be touched upon. The topic of tribology in this text, confines to the dominating phenomena
influencing the system behaviour, that is friction, referred to as the stick-slip effect.

5.5.1 Stick-slip friction
Contact forces involving friction in a cable-pulley interaction have been discussed. From
now on static friction is referred to as sticking friction, and sliding will be called the slip-
ping friction. This friction is considered to be a force that resists the relative movement
between contacting surfaces, it is reasonable to argue that in an interaction between a cable
and pulley, belt-drives etc. preventing relative movement νsl is a matter of interest.

Figure 5.7: Conventional stick-slip curve.

The modes of stick and slip are described by static and dynamic coefficients of friction, µst
and µsl respectively. And determines the force of saturation for sliding between objects.

5.5.2 Thermal effects
Friction-induced thermal effects is an existing phenomenon, which may affect the friction
coefficients in certain scenarios. For instance, Peng et al. [33, 34] and Ma et al. [35]
both addresses in recent articles the importance of studying the thermal effects due to the
contacting pressure between a friction lining and wire ropes. Frictional heating causes
the temperature between a wire and the groove to rise. This results in a reduction of
the friction coefficient between the contacting pair of surfaces, illustrated by figure 5.7.
If a load exceeds the friction, the velocity of sliding increases, which may cause fatal
consequences in cases of emergency stops of cable-pulley systems, such as elevators, etc.
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5.5.3 Friction induced vibrations

Friction is the primary source of vibrations in many mechanical systems, which may trig-
ger unstable behaviour of system components [36], these oscillations are often associated
with irregular dynamics [37]. If the friction coefficient is dependent on sliding velocity,
and has a negative slope with respect to its velocity as shown if figure 5.7, it gives rise
to negative damping. In this case, the friction may develop a so-called stick-slip motion
which is governed by static and kinetic friction forces. Thus, contact forces between slid-
ing surfaces may lead to strongly nonlinear, discontinuous and nonsmooth mathematical
models [38].

5.5.4 Other frictional effects

(a) Frictionless case (b) Frictional case

Figure 5.8: Comparison of displacements with and without stick-slip friction.

At the end of Section 5.2, effects caused by elastic storage of potential energy in a cable
were mentioned, causing dynamic deformations of the cable. Another plausible scenario
worth discussing, is how an oscillatory motion of the cable may affect the motion of the
pulleys. As one can see in figure 5.8a, a harmonic load was applied to a system consisting
of four pulleys. ”Pulley 1” is attached at the tip of the crane boom, and ”Pulley 4” at the
innermost part of the boom. This data was obtained from a crane model in FEDEM, pre-
sented in Chapter 3. The elastic energy storage of the cables, combined with the variations
of the oscillating pivot amplitudes of the sheaves, may trigger unstable behaviour of the
system.
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5.6 Structural dynamics
The dynamic behaviour of a supporting structure where a cable-pulley system is mounted,
e.g. a crane. The dynamics are vital to study and evaluate, for instance, the stiffness
properties of a crane may vary with respect to its position. Structural properties such
as different mode shapes and its associated frequencies also need to be surveyed. The
mounting structure itself is critical for how the dynamics of a cable-pulley system evolves
during an operation. When preforming simulations and analyses of dynamic systems,
it is normal to determine the natural frequencies and mode shapes as a first step. The
obtained results are important for describing the basic dynamic behaviour of a structure
and provides an indication of its responses to dynamic loading. There are several reasons
for computing natural frequencies and its associated mode shape, an interest in a case such
as this one is to assess the dynamic influence between a pulley and its supporting structure.
A second order expression of equations for an arbitrary structure can be written

Mr̈ + Cṙ + Kr = Q(t) (5.15)

In order to evaluate the natural frequencies, the damper matrix C and external loads Q(t)
is neglected. Thus, the remaining equation expressed by mass M, acceleration r̈, stiffness
K and displacement r, yields

Mr̈ + Kr = 0 (5.16)

with the assumption of oscillating behaviour is of simple harmonic sinusoidal character

r = φφφφ sinωt ⇒ r̈ = −ω2φφφφ sinωt (5.17)

Substituting equation 5.17 into 5.16 one obtains the dynamic properties of the system

(K− ω2M)φφφφ sinωt = 0 ⇒ (K− ω2M) = 0 ⇒ ωn =

√
k

m
(5.18)

where ω denotes the natural frequency and φφφφ its corresponding mode shape. If it is cho-
sen to implement the cable-pulley in an in custom designed program, it is essential to
implement the dynamics of its supporting structure.

5.7 An accumulation of dynamic effects
Considering an accumulative scenario of extremes, where all the presented effects con-
tribute to an amplification of out of phase tension in a cable-pulley system. Thus, all the
presented effects contributes to an amplification of out of phase tension in a cable-pulley
system. As of noted in Section 5.2, if unwanted frequency vibrations exhibit in a system,
the cables will deform dynamically, storing energy like a spring. Considering a scenario
where friction-, damper- and inertia effects of the sheaves become significant, in a reso-
nant stage, the pulleys may be subjected to oscillations that are in counter-phase, causing
a cable to jump off. Thus, the importance of including these effects will be a foundation
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when evaluating different elements in the following chapter. As demonstrated in Chapter
4, the approaches for describing these effects are diverse, and their integrity varies.
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Investigated elements

simple is better than cσmρlεx.
cσmρlεx is better than c0mp1

∣∣c@ted .

— Tim Peters, The Zen of Python

A vast amount of finite elements has been developed over the years, often for specific
objectives and purposes. Problems involving simulations of flexible multibody systems
e.g. cable and pulleys, possibly mounted on another dynamic support structure such as
a crane, is extremely nonlinear in its nature. Systems like these are often referred to in
the FEM world as multibody systems, further discussed in the following chapters. Such
systems often tend to become large and complex, mainly consisting of mathematical mod-
els containing large sets of nonlinear differential equations, thus, the computational cost
increases, making it time consuming.

In order to identify a suitable element, further for a digital twin application, computa-
tional cost becomes critical. Exact rigid body motion of an element is also essential when
working with flexible objects in multibody dynamics that are undergoing large reference
displacements.

This chapter provides a rapid review of elements which may be used for this purpose,
a comparison will be carried out in order to identify their strengths and weaknesses, and
for obtaining a conclusion.
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6.1 A finite element of cable passing through a pulley (FECP)

Figure 6.1: Cable-pulley element.

A finite element of a cable passing through a pulley of great conceptual simplicity was
suggested by Aufaure [39]. The element was intended for investigating the deformation of
electric cables passing through pulleys as figure 6.1 illustrates. The derivation was based
on the assumptions of a perfectly elastic cable, the supporting pulley is able to roll along
the cable, but must not reach the endpoints. Another simplification was to consider equal
tensions in the cable segments ab and cb, neglecting friction. The two segments of the
cable ac and cb remain rectilinear during the simulation, like a two-node first-order cable
element.

6.2 Slipring connector (SRC)

Figure 6.2: Slipring connector.

Abaqus is using an element called the Slipring connector , inter alia for describing pulley
and taut cable systems [40]. Instead of constraining any components of relative motion,
the elements of the system are defined to be at rest. Instead a so-called material flow
Ψ degree of freedom is introduced and mimicks how a cable passes through the system.
The radii of the pulley is neglected in this formulation, and the friction force between the
cable and pulley is defined by the angle and a friction coefficient. If a cable element is
to be modelled between node a and b, the material flow is introduced as Ψa and Ψb. The
material flow can pass rigidly through the element without stretching, stretching can occur
with no flow, and both cases can occur simultaneously.
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6.3 The bar finite element for cable (BFEC)

The bar finite element [41] is based on a common approach for modelling a rope and ca-
bles. The principle is to split it into bar elements which are considered as perfectly straight,
homogeneous with elastic properties, and neglecting the rotational DOFs. However, in this
formulation, bending stiffness is included, although it is not defined by the element proper-
ties, but through a couple between consecutive bar elements. These leads to forces on the
extremities of these two elements when a curvature occurs on the modelled cable. In order
to obtain an exact representation of a cable, a large amount of elements are necessary.

6.4 Super element approach (SEA)

Ju and Choo [13] proposed an approach for modelling how a cable passes through a set of
pulleys by means of super elements for large cable-pulley systems. The authors addressed
in this work that friction-free and fixed models provides unrealistic and incorrect results
of how the tensions dissipate in cables through a system. Thus further induce inaccurate
behaviour when simulating its supporting structure. The super element was established
and expressed by sub-elements, modelled as a cable passing through a pulley, the pulley
is considered as a node, neglecting its physical behaviour. The cables were considered
as linear tensile elements, where the alteration of tension over the pulleys are described
by the Euler’s friction law. This is expressed by the angle of change in direction and its
friction coefficient, or empirical relations as a ”loss-coefficient”. When working with large
systems that contain a continuous cable which loops around and passes through multiple
pulleys. Such systems are used in heavy lifts, in such cases the pulleys directly attached to
a structure were considered supernodes. This element has the ability to distribute forces in
a cable over long distances of complex geometric paths, providing a good representation
of its structural impact.

6.5 Floating frame of reference (FFR)

The floating frame of reference formulation is a widely used methodology in flexible multi-
body dynamics [42, 43, 44, 45]. In problems involving three-dimensional beam deforma-
tion, one needs to carefully consider its motion. The classical Euler-Bernoulli beam as-
sumptions is inadequate for completely describing the displacement of its centerline. For
instance, a vector describing the position of a centerline during rigid rotational displace-
ment of a beam will remain constant during its motion [46]. To deal with this problem the
configuration of the FFR uses two sets of coordinate systems; the first set describes the po-
sition and orientation of the body, while the second set describes deformations of the body
with respect to it. These two coordinate systems are referred to as the reference or global
coordinate system and the elastic or local coordinate systems [42, 47]. Thus, leading to
an exact representation of rigid body motion, satisfying the criterion of zero strain in the
element during an arbitrary rigid body motion.
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6.6 Nodal position formulation (NPFEM)

The element properties of the nodal position formulation derived by Sun et al. [18] is sim-
ilar to a conventional two-node bar element. The main difference is that the components
of longitudinal stiffness has a scaling factor L

L
yielding EAL

L
. The stiffness matrix of

the cable in the global coordinate is defined K = QTK0Q, where K0 denotes the local
stiffness matrix and Q is the coordinate transformation matrix from local to the global
coordinate system. In addition, the NPFEM yields an extra equivalent nodal elastic force
vector which does not exist in other element formulations, Fk = EALQTBT

0 , where B0

denotes the strain matrix. This is not an external force but a result of the transformation
from state variables of nodal displacements to nodal positions, and is a function of the
element rigidityEA and the orientation. Since the coordinate transformation matrix of the
cable element Q varies with time, K and Fk are highly nonlinear and time dependent.

6.7 Geometrical nonlinear beam formulation (GNBF)

Jonker and Meijaard [48] derived a finite element beam, designed for simulating flexi-
ble multibody systems that undergo large deflections. The beam is described as a shear
deformable element that is expressed through a discrete deformation mode formulation.
The modes are characterised by deformation coordinates also known as generalised defor-
mations related to conventional small-deflection beam theory. The formulation is based
on the well-known Timoshenko beam theory, but includes geometric non-linearity that
account for large deformations, buckling, and post-buckling, by introducing additional
second-order terms in the expression of deformation modes.

6.8 The absolute nodal coordinate formulation (ANCF)

This formulation is based on Euler-Bernoulli beam theory, and was first proposed by Sha-
bana [42] with the intent for an element that can be used in analyses of flexible bodies
undergoing arbitrary displacements involving large rotational deformations. This formu-
lation expresses the degrees of freedom as the absolute nodal positions and slopes, for
interpolation of the position field of the beam element, instead of infinitesimal or finite
rotations of the nodes. Thus, an arbitrary point at the centerline of a two-node element is
expressed r(ξ) = S(ξ)e, where S(ξ) is an interpolation matrix containing the shape func-
tions expressed by the classical cubic Hermite polynomials, and e the global positions and
slopes. The formulation is based on a continuum mechanics approach that describes the
displacement field when deriving its elastic forces. This element allows large deformations
and has an exact description of rigid body displacements. One of the most important fea-
tures the element inherits is the constancy of its mass matrix, which makes it efficient when
solving for accelerations, but on the expense of centrifugal and Coriolis forces. However,
it has been reported by several authors that the formulation suffers from locking effects.
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Locking effects demonstrated

A shear deformable Timoshenko beam element has the stiffness matrix [49]:

K =
EI

αL


k11 k12 · · · kij

k21
. . .

...
. . .

kji kjj

 , where α =
12κEI

GAL2
= 2

(
h

L

)2

If
h

L
→ 0 then α→ 0 and K→∞

(6.1)

Here, α is a dimensionless shear parameter. L is the length of a beam, and h its thickness.
When the length-thickness ratio decreases, the shear effects will dominate the stiffness
more and more. If the length-thickness ratio approaches zero, the stiffness matrix tends to
blow up [49].

6.9 Modifications of the ANCF
As mentioned, the reported locking problems have been addressed in the literature which
have mobilised multiple scientists [16, 50, 51, 52] for handling these phenomenons. In
these articles, the proposed formulations has resulted in several modifications of the ANCF
beam. In order to eliminate the locking effects, the beam formulations are enhanced by
a term accounting for the thickness. Thus the formulation treats the element as a volume
instead of a beam. By doing so, a second interpolation variable was introduced, extending
the interpolation terms. Thus, an arbitrary material point in the beam is expressed as
r(ξ, η) = S(ξ, η)e. There are some differences between these formulations:

• Dufva et al. (ANCF - Du) Dufva et al. [16] were the first to propose an element
that uses the original shape functions for interpolating the bending curvature, while
introducing a linear interpolation function for the describing shear deformation.

• Garcı́a-Vallejo et al. (ANCF - GV) Gracı́a-Vallejo et al. [51] suggested an aug-
mented formulation of the ANCF beam by means of introducing a third node in the
element with modified polynomial expansions. This, alone did not eliminate the
shear locking problems, and a reduced integration procedure was introduced.

• Nachbagauer et al. (ANCF - Na) Nachbagauer et al. [52] had a similar approach
to Dufva et al. but suggested two formulations of the element. In the first formu-
lation, linear interpolation functions were applied. Thus, the second formulation
applied quadratic interpolation functions to describe bending, and linear functions
for describing shear.

• Von Dombrowski (ANCF - VD) Von Dombrowski [50] introduced an element
based on the ANCF in order to cope with the absence of centrifugal and Coriolis
forces on the expense of the constant mass matrix.
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6.10 Comparison and discussion
In order to determine the most suitable formulation, a full consensus prioritization matrix
normally applied during product development, is used for comparing the elements against
each other. Certain criteria was created to help compare the elements to each other, this is
shown in the following:

• Decency: Ability to portray the physical effects discussed in Chapter 5.

• CPU cost: Computationally cost efficient for a digital twin application.

• Verification: Experimentally verified with physical tests.

• Recognition: Establishment and acknowledgement in other literatures.

• Complexity: The mathematical complexity of the beam formulation.

The methodology is carried out in two steps, first, prioritise the criteria and determine
the total weight if priority, this is illustrated in figure 6.3a. Second, evaluate the different
elements ability to cope alone with the given criteria. The total integrity of the elements
are illustrated in figure 6.3b.

(a) Weight of priority (b) Summary

Figure 6.3: Graphical illustration of element criteria and objective outcome

Element Decency Complexity Recognition CPU cost Verification
FECO Poor Excellent Fair Excellent Poor
SRC Fair Excellent Excellent Excellent Good
BFEC Poor Good Fair Fair Fair
SEA Fair Good Poor Excellent Fair
NPFEM Fair Good Poor Excellent Good
FFR Good Good Excellent Poor Excellent
GNBF Good Poor Poor — Poor
ANCF Excellent Good Excellent Good Excellent
ANCF - VD Good Good Good Fair Good
ANCF - Du Excellent Good Good Excellent Good
ANCF - GV Excellent Good Good Fair Good
ANCF -Na Good Good Fair Excellent Fair
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In order to determine which element to use, one needs to consider it for the purpose. In
structural or more quasi-static problems, the slipring or the super element approach, is
an agreeable simplification for large construction problems where the dynamics of cable-
pulleys itself is not a direct area of interest, but rather their impact on the overall behaviour
of a support structure. However, if the inherent dynamics of a cable pulley system it-
self is the field of interest, these simplifications is not satisfactory for capturing the exact
behaviour of a system, thus are disqualified for the purpose of this research.

Also, the NPFEM and BFEC formulation for describing a cable is inadequate for the
purpose of this development, due to the incapability for describing bending.

The FFR formulation is maybe one of the most commonly used elements for describing
flexible objects in multibody systems. However, FFR is very confined to small deforma-
tions, resulting in a very large amount needed in comparison to those who use absolute
coordinates. Also, the coupling between the reference motion and its elastic deforma-
tion leads to a highly nonlinear mass matrix. Thus, it is not applicable for modelling and
simulation of objects subjected to large deformations, inter alia cable elements.

The GNBF element was recently introduced and has not yet been recognised in other
literature. Its formulation is also found to be complicated but seems to provide adequate
performance, yet, the author does not mention anything about its computational expenses.

The ANCF has been recurring during the review of different literature concerning ca-
bles, ropes and slender beam like objects. In all literature that apply the ANCF, the element
are subjected to large deformations, and has been proving good results [12, 20, 23, 24]. It
is also referred to as a good option in literature’s of researchers that uses other formula-
tions [18]. However, problems regarding locking effects have been mentioned by several
authors. This mobilised scientists to develop elements that cope with such problems, re-
sulting in modified ANCF formulations.

Next to the original formulations, the modified ANCF elements are considered to be
strong candidates, the authors argues for their elements to be more suited for tasks involv-
ing highly nonlinear deformations.

Nachbagauer et al. emphasises in their literature that the proposed element is compu-
tationally more efficient because it requires less integration points. This is due to the fact
that it has lower order formulations, compared with the original element. It is also pointed
out that its convergence is faster in the iteration process. However, this element applies
linear and quadratic shape functions, that implies the need of a larger amount of elements
to obtain an equal representation of contact forces as the original one.

By introducing a third node, as Garcı́a-Vallejo et al. suggested the DOFs are increased
by fifty percent, but applies a reduced integration scheme that reduces the computational
expenses. However, by the introduction of reduced integration, other complications occur
that needs to be taken into account, such as so-called hour-glass effect.

The element introduced by Dufva et al. is the one considered as the strongest candi-
date to the original ANCF. Unfortunately, only a two-dimensional version of this element
formulation was found.

However, the effects of locking are reported to occur in stiff beams [53], and has
proven to provide adequate simulations for rope-like objects in recent literature [20, 21,
22, 24], and often chosen for its simplicity of derivation. Also, the author considered the
modified ANCF elements as immature due to the lack of experimental verification through
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physical comparison and recognition in literature provided by other scientists, and has,
therefore, put these on hold. The original ACNF was also chosen due to the successful
results that Bulı́n et al.[24] provided in their recent work. It has also been subject to
extensive development during the last two decades and has started gaining recognition
and integrity in the field of flexible multibody dynamics, hence there is more literature
supporting this formulation for the application of cable-pulley systems, i.e. rigid-flexible
multibody dynamics.
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Mathematical modelling of a cable
and a pulley

Who understands geometry
understands anything in this world.

— Galileo Galilei

Multibody systems generally include two collections of bodies, one consists of compact
and bulky bodies, while the other includes typical structural components such as rods,
beams, plates, and shells. Rigid bodies have a finite number of DOFs, a planar rigid body
has three, two translational and one rotational. On the other hand, structural components
have an infinite number of DOFs that describe the displacements of an arbitrary point on
the components that are obtained through interpolation [54].

39



Chapter 7. Mathematical modelling of a cable and a pulley

7.1 The absolute nodal coordinate formulation
The absolute nodal coordination formulation (ANCF) is a relatively new approach, and
was first proposed by Shabana [19]. Among other things, the ANCF elements have mainly
been developed for the simulation of flexible multibody dynamics in particular [42, 47, 55],
and is a non-incremental finite element procedure [56]. The element is consistent with the
nonlinear theory of continuum mechanics, and easy to implement. It has been widely used
for more than a decade in research topics investigating the dynamics of flexible bodies that
is subjected to large rotations and deformations [53]. Several researches that has inves-
tigated challenges related to the issue of cable-pulley dynamics, some more than others,
has applied this formulation in their research with a conform opinion of promising results
[12, 15, 20, 22, 24, 53]. The basic concept for the ANCF methodology is to use abso-
lute positions for the nodes (reference vectors) and slopes (reference vector derivatives)
as a set of nodal coordinates. Thus, it utilises global slopes and absolute displacements,
instead of infinite small or finite rotations to define the element coordinates. The deforma-
tions and locations of the material points in the element are therefore defined in the global
coordinate system through nodal coordinates, and an interpolation matrix containing the
element shape functions. In order to distinguish, these are called global shape functions,
and are not equal to the local shape functions used in more conventional elements such as
the FFR. Due to this formulation, the position of an arbitrary material point in the element
is described by means of interpolations based on the Cartesian absolute coordinates of the
nodal points, and the positions gradient with respect to material coordinates containing a
reference configuration [42].

There are some important fundamental differences between the ANCF and the classi-
cal FFR formulation. Due to its usage of global positions and slopes, it results in a large
amount of DOFs, if a spatial beam is considered, it contains 24 nodal DOFs, instead of 12
for a conventional two-node beam element. Another difference is the formulation of its
stiffness matrix that is highly nonlinear in the case of ANCF, even in the case of simple
linear elastic models. The nature of the coordinates used in the ANCF does not include in-
finitesimal or finite rotations. Also, the coordinate transformation in order to determine the
element mass matrix is not needed , the mass matrix also remains constant which makes it
computationally more efficient compared with other nonlinear formulations. Thus, atten-
tion must be paid when defining the generalised forces associated with the global slopes
of the element [47].

7.1.1 Two-dimensional formulation of an ANCF beam element
The ANCF planar beam was first introduced by A.A Shabana in 1997 [19], and was
adapted to a spatial formulation in 2001 [46]. For simplicity, the planar formulation is
presented in this section. A three-dimensional element is completely equivalent with the
two-dimensional formulation, it only requires implementation of the z-coordinate in the
cross-section of the beam, and the absolute nodal coordinates [19].

The FE-model of the cable is modelled as a planar ANCF beam, as illustrated in figure
7.1, and consists of two nodes, and with the length l. An arbitrary point on the neutral
axis of the beam can be expressed in global coordinates r = [rx, ry]T in the following
formulation:
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Figure 7.1: A planar ANCF beam element [47].

r = Se , e = [e1 e2 · · · e8]T (7.1)

The global positions r can be calculated my means of interpolation matrix S and the vector
of nodal variables e. Matrix S and vector e is also known as the matrix of global shape
functions and the vector of nodal coordinates respectively. In the vector of nodal coordi-
nates e, the translation coordinates of the node at O is given by e and e, likewise, e and
e describes translation of node A. The curvature of the element is given by e and e that
describes the slope at O, along with e and e at A. Thus, the absolute coordinates are
expressed as follows

e1 = rx(x = 0) e2 = ry(x = 0)

e3 =
∂rx(x = 0)

∂x
e4 =

∂ry(x = 0)

∂x
e5 = rx(x = l), e6 = ry(x = l)

e7 =
∂rx(x = l)

∂x
, e8 =

∂ry(x = l)

∂x

(7.2)

The shape function matrix S contains a complete set of rigid body modes which describes
arbitrary translational and rotational displacement patterns of the element. These modes
corresponds with the associated displacements of the nodes, e1, e2 with s1 ,, e3, e4 with
s2, and so on. The shape functions are defined by the cubic Hermite polynomials as

s1 = 1− 3ξ2 + 2ξ3, s2 = l(ξ − 2ξ2 + ξ3),

s3 = 3ξ2 − 2ξ3, s4 = l(ξ3 − ξ2),
(7.3)

Where ξ = x
l .
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Figure 7.2: Cubic Herimite polynomials.

S(ξ) =
[
s1I s2I s3I s4I

]
, I =

[
1 0
0 1

]
(7.4)

The global shape functions S(ξ) are independent of time, and the nodal coordinates
e independent of ξ, while dependent on time in dynamic simulations.

r(ξ, t) = S(ξ)e(t) (7.5)

Thus, the time derivatives are

ṙ(ξ, t) = S(ξ)ė(t) (7.6)

r̈(ξ, t) = S(ξ)ë(t) (7.7)

The cross-section of the element is assumed to remain plane and perpendicular to the
neutral axis during deformation. The longitudinal strain ε is described by the Green-
Lagrange longitudinal Strain Tensor

ε =
1

2
(r′

T
r′ − 1), (7.8)

And the curvature of the beam κ derived from the Euler-Bernoulli beam theory

κ =

∣∣∣∣d2rds2

∣∣∣∣ =

∣∣r′′ × r′
∣∣∣∣r′3∣∣ , ds =

√
r′T r′dξ (7.9)

where r′ and r′′ is the derivative with respect to x. In order to obtain a mathematical model
that describes the characteristics of the ANCF beam element, the principle of virtual work
is applied i.e. Lagrange’s equation. Thus, the strain energy of longitudinal deformation
Et, and the strain energy contributed by bending Eb are expressed as follows
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Ep = Et + Eb =
1

2

l∫
0

(
EAε2 + EIκ2

)
ds (7.10)

As of noted in Section 5.3, the author suggests to incorporate the minimum bending stiff-
ness obtained from equation 5.7. This will obtain realistic bending characteristics of a
cable. Also, scaling the modulus of elasticity E by a factor of 0.9 to obtain more realis-
tic elastic responses in the longitudinal direction of a cable is reasonable [57]. Thus, the
modified expression of strain energy of an element with sub-index n has the form

Ep = Et + Eb =
1

2

l∫
0

(
0.9EAε2 + EIminκ

2
)
ds =

1

2
eT
nKnen (7.11)

where Kn denotes the stiffness matrix of an element. By introducing these parameters,
the element becomes capable of presenting a high stiffness in axial direction, yet opposing
a small resistance to bending, as a typical cable. Furthermore, accounting for the kinetic
energy of the element with material density ρ, has the following expression

Ek =
1

2

∫
V

ρAṙT ṙdV =
1

2
ėT
∫
V

ρASTSdV ė =
1

2
ėT
nMnėn (7.12)

yielding the mass matrix of the element Mn. The results obtained in equation 7.12 and
7.10 are introduced to Newtons second law. Thus, the equation of motion of an element
are obtained in a matrix form as follows

Mnë + Knen = Qn (7.13)

where Qn is a vector containing a set of generalised nodal forces. Due to the nonlinear
characteristics of stiffness matrix Kn, and constancy of mass matrix Mn, it is beneficial
to consider Kn as a part of the external forces i.e. the elastic forces. Thus, equation 7.13
can be written in the term [58]

Mnën = Qn −Knen (7.14)

The vector containing all the absolute nodal coordinates describes the entire configuration
of the beam, are expressed as

e(t) =
[
e0(t)T e′0(t)T e1(t)T e′1(t)T · · · en(t)T e′n(t)T

]T
(7.15)

And the vector that describes an arbitrary point along the centerline of a beam configura-
tion, expressed as

r(t) =
[
r0(t)T r′0(t)T r1(t)T r′1(t)T · · · rn(t)T r′n(t)T

]T
(7.16)

i.e. the position of the beam elements and their gradient is specified at the nodes. A beam
with n elements contain n+  nodes.
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By introducing the matrix C, which contains damper properties of the system, a beam
assembled by n elements can therefore be expanded to the following expression.

Mf ë = Q−Cq̇−Ke (7.17)

C denotes a mass stiffness proportional damping matrix, with the mass- and stiffness
proportional coefficients α and β which is often referred to as Rayleigh damping, and
has the form C = αM + βK. Finally, all the contributions from external-, damping- and
elastic forces can be written as a unified matrix of external forces, and has the following
form

Mf ë = Q(e, ė, t) (7.18)

As of noted, this formulation includes constancy in the mass matrix, at the same time it
accounts for rotary inertia, shear, and torsion for spatial configurations, yet results in an
absence of centrifugal and Coriolis forces. Mass constancy is an important feature, since
most existing element formulations for nonlinear simulations that covers large rotations,
includes incremental procedures and requires large vectors of rotation. Thus, the con-
stant mass matrix enables efficient properties when solving for accelerations, if objects are
modelled by the ANCF.

The formulation also leads to an isoparametric element which is beneficial in analyses
of curved bodies. It does not require interpolation of finite rotation coordinates, instead,
one can simply describe the same configuration through different sequences of orientation
coordinates [46]. Thus, yielding the advantage of simplicity for detecting contact with
other objects [15]. Simulation experiments have shown that displacement-based finite ele-
ments that do not employ rotations such as Euler angles, do not have numerical instabilities
compared with those who have [55].

Also, a minimal set of nonlinear constraint equations are required when assembling
beams of this formulation into a system containing rigid bodies defined by natural coor-
dinates, and the equations of motion can be preserved [56]. It is also worth noting that if
one assumes linear deformation in the moving frame, it allows for coordinate reduction by
applying the CMS algorithm (see Section 3.1.1) [58].

Although, the ANCF element is able to describe the shear and cross-sectional defor-
mations of a beam element, it suffers from locking problems, as discussed in Chapter 6.
However, these effects deteriorate especially in problems where the beam inhere signifi-
cant bending stiffness [53], that is not our case.

7.2 Defining a pulley by natural coordinates
For the modelling of systems that consist of both flexible and rigid links, fully-Cartesian
coordinates, also known as natural coordinates, is a method compatible with the ANCF
that can be used for building the system [56]. Natural coordinates are fully composed by
Cartesian variables of certain unit vectors for describing the motion of a body, it does not
include angular coordinates. It is therefore easy to define constraint equations, and easy to
program [59, 60]. It is reasonable to consider a pulley as rigid in comparison with a cable.
Defining a rigid body, r, with natural coordinates includes global position vectors
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7.2 Defining a pulley by natural coordinates

Figure 7.3: A rigid-flexible multibody system.

(r
C
, r
D

) of minimum two basic points (C,D), and global unit vectors (u,v). The basic
points relate to mass and stiffness properties, thus preferred to define an amount that are
adequate for describing the inertia of a pulley. For two dimensional motion of a rigid body,
a vector of coordinates that contain position vectors of its basic points, are described as
follows:

dr =
[
r
C

r
D

]T
(7.19)

The rigid body must fulfil the constant distance constraint, as the basic points are depen-
dent on each other [60].

Φ = dT Îd− l2, Î =

[
I2 −I2
−I2 I2

]
(7.20)

Defining its local coordinate system containing the unit vectors u and v composed of
Cartesian coordinates

u =
1

l
(rC − rD), v =

1

l
Ĩ2(rC − rD) (7.21)

where Ĩ2 is a skew symmetric matrix.

Ĩ2 =

[
0 −1
1 0

]
(7.22)

For defining the natural coordinate system, the unit vectors are assembled into a rotation
matrix A, the motion described by these coordinates is a linear function.

A =
[
u v

]
(7.23)

In order for the rigid body to mimic the behaviour of a pulley, mass needs to be added to
the basic points, and the equation of motion for a pulley r yields
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Chapter 7. Mathematical modelling of a cable and a pulley

Mrd̈ + ΦT
dλλλλr = −Qc , Φ(d, t) = 0 (7.24)

Here, Φd denotes the Jacobian matrix for the constant distance constraints, containing all
the partial derivatives with respect to the body coordinates. λλλλr is a vector of Lagrange
multipliers, further explained in Chapter 9. The external forces, is in this particular case
expressed as contact forces Qc, established in Chapter 8. The external forces might also
be expressed as an applied torque, emulating an external power source.

It is reasonable to consider the pulley(s) as rigid, however, its supporting structure is
most likely not, and may be subjected to deflections and large motions. Instead of imple-
menting this formulation to an existing software, an alternative is to extract the mechanical
characteristics of the structure from a FE-program for a given point, i.e. where a pulley is
mounted. In order to do so, one can adapt the idea of supernodes, hence there is no ”inter-
nal DOFs” to eliminate (see Section 3.1.1 or Sivertsen (2001) [8]). Denoting stiffness and
eigenvectors to a pulley fixation r

C
, the structural characteristics obtained in Section 5.6

are applied.

r
C

= φφφφ sinωt (7.25)

This introduces additional DOFs to the system, together with its corresponding stiffness
matrix Ks, obtained from its support structure. Also, a matrix Br may be introduced for
including viscous damper characteristics that obstructs rotation, mentioned in Section 5.4.
An extended equation of motion for a pulley yields

Mrd̈ + Crḋ + KsrC + ΦT
dλλλλr = −Qc (7.26)

Thus far, the dynamic characteristics of a pulley defined as a rigid body in the Cartesian
coordinate system has been defined, yet, the interaction of the cable and pulley remains.
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Chapter 8
Dynamic contact forces and
kinematic constraints

Geometrical ideas correspond to more
or less exact objects in nature, and
these last are undoubtedly the exclusive
cause of the genesis of those ideas.

— Albert Einstein

A well known challenge within FEA, is modelling contact and friction, its importance and
ubiquity has led to extensive attention over the last decades due to its scientific challenge.
In order to describe the impact, and contact phenomenons that occur in a cable and pul-
ley system, intelligent algorithms for detecting interaction and its frictional behaviour are
essential to obtain a reliable behaviour in simulations.

When establishing a relation between interacting bodies, one need to considerate the
most appropriate contact formulation for the task. The contact forces are necessary for
obtaining a realistic behaviour that portrays the dynamics of a system, thus, relates to the
system dynamics. The necessary forces for constraining its motion are called forces of
constraints. Constraints are restrictions that limit the motion of particles and objects in a
system, thus, relates to the system kinematics.

Several literature has been reviewed on the matter of describing contact within the
field of flexible multibody dynamics. It has been discovered significant progress within
this field during the last two decades. This chapter provides a description of how to model
the contact between a cable and a pulley properly, based on methodologies from recent
works.
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Chapter 8. Dynamic contact forces and kinematic constraints

8.1 Normal contact force
Friction forces are directly dependent on the normal forces of contact between interacting
bodies, is it critical to determine accurate contact forces in order to obtain an accurate rep-
resentation of friction. In the field of multibody dynamics, this can be a challenge. Contact
forces are usually determined by the means of imaginary penetration between objects, or
determined by integration of weak form differential equations through the principle of
virtual work.

Formulations based on the classical Hertzian model of contact, are often applied in
FEM applications due to its simplicity, physical interpretation, and ability for physical
verification. Thus, makes it manageable to deal with in numerical formulations, and the
foundation of almost all available contact force models [61]. According to the theory,
the contact pressure depends on penetration between two contacting surfaces and the ge-
ometries of the bodies. However, due to its lack of portraying energy dissipation during
impact, the Hertzian contact theory is inadequate for describing these problems by itself
[62]. Thus, this model cannot be used for describing the exact behaviour that occurs dur-
ing the compression and restitution phases of contact. This issue has lead to extensive
research, in order for enhancing the Hertzian model to accommodate energy dissipation in
the form of internal damping.

Two examples which have been extensively used to model and simulate multibody sys-
tems that involve contact, is the formulations proposed by Lankarani & Nikravesh [63],
and Hunt & Crossley [64]. However, Machado et al. [61] recently performed a detailed re-
view on the enhanced Hertz formulations. It is emphasised that more recent developments
such as Gonthier et al. [65] among others, provide more exact solutions for an impact
between objects in the dynamic equations of motion.

Thus, in order to describe a multibody system subjected to impact between two bodies,
appropriate contact force models must be adopted. The Gontier et al. normal force model
can be written as follows

fn = Kδn
[
1 +

1− c2r
cr

δ̇

δ̇(−)

]
(8.1)

in which δ is the relative penetration between the surfaces, δ̇ the relative velocity of pen-
etration, and δ̇(−) the initial impact velocity. The model degenerates to the original Hertz
theory, if the coefficient of restitution cr = 1 which describes perfect elastic contact, and
purely inelastic contact if cr = 0 [61]. In order to describe different interaction scenarios,
is n a positive exponent that reflects the shape of the contacting surfaces. The contact stiff-
ness K between the contacting surfaces is described by material properties and geometry
of the bodies i.e. sphere to sphere, sphere to surface etc.

A challenge is to determine the contact parameters K and n, due to complex geometry
of a stranded wire-rope which often consists of single-, double- and multi-helical rope
configurations [35]. The contact characteristics between the cable and pulley varies with
the configuration of the cable. Figure 8.1a illustrates a single stranded cable, one can
assume the interaction areas of contact consists of lines or rectangular shapes, generated
between i.e. cylinders. For double- and multi-helical configurations, one may assume
circular or ellipsoidal contact areas as figure 8.1b illustrates. For simplicity, the case of a
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8.1 Normal contact force

(a) Single stranded (b) Double stranded

Figure 8.1: Contact areas for single- and double-helical cable configurations.

single stranded wire rope is further discussed. The elliptic case of contact is rather complex
in comparison, but fully manageable after referencing literature [35, 66] that has dealt with
similar issues.

Cylinder to surface contact

(a) Arc length of interaction (b) Single-stranded cable in groove

Figure 8.2: Contact domain.

Considering a scenario of single-helical rope configuration, the parameters should be con-
sidered cylinder to surface. Unfortunately, the stiffness and geometry parameters are not
easily obtained. Pereira et al. [67] suggested the following empirical formulation:

Kcyl =
(a∆r + b)LE∗

∆r
(8.2)
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Chapter 8. Dynamic contact forces and kinematic constraints

In this scenario, L denotes the helical arc length of interaction along the pulley, illustrated
in figure 8.2a. This relates to the geometrical relation of the stranded rope, and the pulley.
The material properties of the contacting surfaces are assumed to be of similar character,
thus the composite modulus is expressed as

E∗ =
E

2(1− ν2)
(8.3)

Here, since the cable rests in the groove of a pulley, the contact is considered internal.
Thus ∆r = ri − rj , where ri is the radius of the groove, and rj the radius of a wire,
illustrated in figure 8.2b.

For internal contact


a = 0.965

b = 0.0965

n = Y∆r−0.005

Y =

{
1.51[ln(1000∆r)]−0.151 if ∆r ∈ [0.005, 0.34954]mm
0.0151∆r + 1.151 if ∆r ∈ [0.34954, 10.0]mm

If one studies Y , one can observe its valid range is quite limited. In the real world, a
groove can have a much larger radii than the wire i.e. ri � ri → ∆r � 10mm. Hunt
[64] suggested a value between 1 and 1.5 is adequate for describing cylindrical conditions.
Empirical investigations carried out by Brändlein [61, 68] suggests a value of n = 1.08 to
be adequate for this kind of contact.

8.2 Cable-pulley friction

Figure 8.3: Stick slip friction model [69]

An interaction of this kind can be described by different models of friction. The classical
ones are typically Coulomb friction, viscous friction and the Stribeck effect [70]. In this
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8.2 Cable-pulley friction

case, the surfaces are considered to be dry, and the Coulomb friction combined with the
Stribeck effect are considered. Thus, the states of stick and slip are described by static
and dynamic coefficients of friction µst and µsl respectively, which directly relates to the
normal and tangential forces[65].

If one studies the stick-slip model in figure 8.3 one can notice the friction is a function
of the relative velocity between the two surfaces. This raises an issue because it is contrary
to considerations discussed in Section 5.4 of preventing sliding between the surfaces.

Figure 8.4: Brush bristle friction model

In order to cope with this challenge, the stick-slip model can be considered as a displace-
ment function between the interacting objects [69]. There are several ways of doing so,
one of the recurring approaches during this research, is to model the contact as an imag-
inary brush bristle [12, 65, 71]. As of noted in Section 5.4, a saturation value must be
exceeded in order for the surfaces to slide. In the brush bristle approach, the key idea is to
define the stiction force by denoting a stiffness-damper function to the bristle, describing
the limit of saturation.

fnµst = (kbs+ cbṡ) (8.4)

Here, kb is the bending stiffness of the bristles, cb denotes the viscous damper coefficient,
s and ṡ describes relative displacement and velocity, respectively. A saturation value is
determined by the static friction at the tip of the bristle, for a given value of the static
friction coefficient µst. The friction force fnµst should never exceed the saturation value
(kbs + cbṡ). The displacement between the contact- and stiction point during sticking, is
determined by its elastic displacement (fnµst)/kb. Thus, whenever the value of (kbs+cbṡ)
exceeds the saturation value, slip occurs.
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Chapter 8. Dynamic contact forces and kinematic constraints

8.3 Contact forces and kinematic constraints
A simple, yet clever approach for defining the cable-pulley interaction has been adopted
[12, 24, 15] and is a widely used methodology, introducing few variables for describing
the contact force. The normal forces acting on an ANCF beam are calculated using the
contact model from Section 8.1, which allows penetration. Thus, the contact forces of the
system are expressed as follows:

Figure 8.5: Interaction model.

δ = R−
∣∣ri − r

C

∣∣ (8.5)

Here, δ denotes the radial penetration, r
C

the absolute position of the pulley centre, ri is
the position of a cable-pulley interaction point, and R its radius. Since higher-order beam
elements are applied, the contact forces can be distributed along the elements, instead of
applying a large amount of elements where the loads are concentrated at the nodes. In order
to distribute the contact along the arc-length of the elements, a number of contact points
i (integration points) that corresponds with Gauss-Legendre quadrature, are introduced
on each element. When one of these points coincides with the pulley for the first time, a
stiction point ist is introduced to the system. The contact forces are evaluated out from
these points in every time step, through Gauss-Legendre integration, obtaining a vector
of generalised contact forces. As time integration goes on, these two points might not
coincide since the stiction points are rigidly attached to the pulley, whereas the contact
point moves along with the cable.

s = R(αi − αi,st) (8.6)

The normal vector n, and tangent vector t, on the pulley surface at its contact point ist, is
a pair of orthonormal vectors determined by the radial position

n =
ri − r

C∣∣ri − r
C

∣∣ and t =
r′i∣∣r′i∣∣ (8.7)

The normal and tangential velocity of the penetration are described respectively

δ̇ = −ṙTi n and ṡ = −ṙTi t− (R− δ)ω (8.8)
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8.3 Contact forces and kinematic constraints

Figure 8.6: Penetration between cable and pulley.

From Section 8.1, the normal contact force are obtained through the model proposed by
Gonthier et al. and are expressed in a vector from as follows

f in = Kδn
[
1 +

1− c2r
cr

δ̇

δ̇(−)

]
ni (8.9)

Stating that a normal contact force can be represented as a nonlinear spring-damper pair,
expressed as a nonlinear power function due surface stiffness. Furthermore, the tangential
friction force can be modelled with stick-slip characteristics, the stiction force is modelled
as the fictitious brush bristle, presented in Section 8.2. The deflection is of the bristle
is modelled as a linear spring-damper in the range of lower velocities, expressing the
saturation value for the stick-slip limit.

fst = −(kbs+ cbṡ)t (8.10)

where the bending stiffness of the brush bristle is denoted kb, and cb the viscous damper
coefficient. As emphasised in Section 8.2, the saturation value should never be exceeded.
Thus, whenever the value of (kbs+cbṡ) exceeds the saturation value fnµst, slip occurs and
the stiction angle between the cable and pulley needs to be updated. The new tangential
force and the angle is obtained as follows

fst = −sgn(s)µstfnt (8.11)

αst = α− sgn(s)ηst
µstfn
kbR

(8.12)

where sgn(s) is a function who returns 1 if s > 0, and returns−1 otherwise. ηst represents
the amount of bristle deflection in the saturation state, and is a factor for improving the
numerical behaviour.

However, if the saturation point is exceeded, and sliding occurs, the tangential force is
calculated by means of pure Coulomb sliding friction, using a dynamic friction coefficient
µsl, which is lower than the static friction.

fsl = −sgn(ṡ)µcfnt (8.13)
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Chapter 8. Dynamic contact forces and kinematic constraints

Thus far, the models of stick and slip friction has been established, the expression of the
tangential forces can be assembled into a formulation that describes transition between the
two friction modes.

ft

{
fst ṡ 6 νst sticktion force
fsl ṡ > νst slipping force

Here, νst represents the relative velocity between the cable and pulley, whenever it exceeds
ṡ, a transition between the modes of stick- and slip friction occurs. A smoothing function
ϑ is introduced for making the transition between stick and slip more numerically friendly.

ϑ = e−(
ṡ
νst

)2 (8.14)

The final expression for the tangential force yields the following formulation

ft = ϑfst + (1− ϑ)fsl (8.15)

The contact forces distributed over the arc-length of contact in any given element is sum-
marised into the following vector

fc,i = f in + f it (8.16)

Which describes the generalised contact forces as the sum of the interaction forces of
each point i in an element subjected to contact. As means to define the generalised forces
distributed over the contacting arc-length, Gauss-Legendre quadrature is applied instead
of symbolic evaluation of the integral, since the symbolic integration of this integral would
require the forces to be expressed as a function of the material coordinate ξ. Instead, it is
evaluated in certain points along the interacting arc.

Qc = l

∫ l

0

fc(x)TS(x)T dx = l

∫ 1

0

fc(ξi)
TS(ξi)

T dξ

≈ l

2

k∑
i=1

wifc,i(ξi)
TS(ξi)

T , ξi =
xi + 1

2
, i = 1, 2, 3..., k.

(8.17)

This is an approximate value instead of an exact integration. S denotes the global shape
function matrix in given in equation 7.3, ξi is the integration points along the arc-length,
described by xi in the global frame, and wi Gaussian weight numbers. The penetration
in the contact points is defined by the position of the cable, when points of the cable
penetrate the pulley, the normal contact force will arise. The matrix Qc accounts for the
contact forces, and are included in the matrix of generalised external forces, Q(e, ė, t).
An advantage of using the ANCF in this kind of contact formulation, is that it is easy
to detect interaction before the calculation procedure of contact. In the global positions
of the cable that is not nearby a pulley, there is no reason for checking the forces in the
integration points of that domain, neither any need to determine the limits of the contacting
area, since the forces are checked when evaluating the integral in equation 8.17.
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8.3 Contact forces and kinematic constraints

Figure 8.7: Illustration of constraint forces.

Hitherto, only the contact forces of the cable interacting with the pulley has been estab-
lished, this is not enough for modelling the behaviour of a complete system of cable and
pulleys.

Kinematic constraints has to be introduced for obtaining a complete simulation. The
absolute position of a node at on an ANCF element, n, can be kinematic constrained with
respect to the contact penetration, as follows

ΦΦΦΦ(e, t) =



Φ1 = (en1 (t)− rx)2 + (en2 (t)− ry)2 − (R− δ)2 > 0

Φ2 = (en5 (t)− rx)2 + (en6 (t)− ry)2 − (R− δ)2 > 0

·
·
·
Φr

Summarising this constraint for all nodes yields the constraint matrix Φ, containing all the
constrained relation of the cable with respect to a pulley.

Due to this contribution of representing contact forces and kinematic constraints, there
is no need for an unnecessarily large amount of elements for obtaining a realistic be-
haviour [15]. In other words, by the introduction of contact points, one reduces the re-
quired amount of elements in a conventional approach for obtaining an equally adequate
representation of contact forces.

Since the cable and pulley are already defined in a global Cartesian coordinate system,
it can be combined with other rigid and flexible bodies also defined in this system [56].
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Chapter 8. Dynamic contact forces and kinematic constraints

8.4 Rigid-flexible multibody systems
Thus far, only the cable and its interaction with a pulley has been described, the two
dimensional system may contain an arbitrary set of Nr rigid- and Nf flexible bodies,
assembled by different sorts of joints. Both the flexible- and rigid bodies are defined in
the global frame, and leads to a mixed formulation in which all system coordinates are
defined with respect to the global coordinate system. If one assumes these bodies to be
interconnected through rigid-, revolute- or sliding joints, the system should be treated as a
single body [51]. A vector that collects all the coordinates of the system yields

p =
[
dT eT

]T
(8.18)

Here, e represents the nodal coordinates of all flexible bodies in the system, while d con-
tains all the rigid body coordinates. If one assumes these bodies to be interconnected
through linear kinematic constraints, one can reduce the sets of coordinates.

d =
[
dT · · · dTk · · · dTNr

]T
, e =

[
eT · · · eTk · · · eTNf

]T (8.19)

The vector for the reduced nodal coordinates of the flexible body with linear kinematic
constraints are given as

e = Tf ẽ (8.20)

Where ẽ is a new vector of nodal coordinates And the linear kinematic constraints between
rigid and flexible bodies is given as follows

ẽ =
[
Trf Tff

] [d
ê

]
(8.21)

The vector of rigid body coordinates is reduced as following

d = Trd̂ (8.22)

The final vector containing all the reduced coordinates of the system has the expression

q =
[
d̂T êT

]T
(8.23)

Where d̂ and ê are the new reduced vectors of rigid and flexible nodal coordinates respec-
tively. Using this method of coordinate reduction, the final vector relation of the system
yields

p = Tq (8.24)

where T are a transformation matrix between the rigid and flexible bodies of the system,
and q yields the new reduced vector of system coordinates.

T =

[
Tr 0

TfTrfTr TrTff

]
(8.25)

A full description and derivation of this matrix is performed in the literature of Garcı́a-
Vallejo et al. [51], where the methodology is explained in detail.
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Chapter 9
Dynamic simulation and
stabilisation techniques

Geometry is founded on mechanical
practice and is nothing other than that
part of universal mechanics which
reduces the art of measuring to exact
propositions and demonstrations.

— Sir Isaac Newton

The reaction forces and the constraints has been defined for the cable and pulley, and
methods for assembling the model into a more complex system was discussed, the methods
for solving the system is however another challenge.

Dealing with multibody systems involves two phases, the first is development of math-
ematical models of the system, secondly, implementation of computational procedures to
perform the simulation, analysis and optimisation of the global motion.
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Chapter 9. Dynamic simulation and stabilisation techniques

9.1 Constraints and solver methods
Simulating this kind of problem can be challenging due to sudden surges in acceleration
values during the time evolution of the system [53]. Considering a multibody system
based the presented formulations, the most commonly used method for formulating the
motion equations for more complex constrained multibody systems, applies Lagrange’s
equations, expressed as follows [72, 73]

d

dt

(
∂Ek
∂q̇

)
− ∂Ek

∂q
= Qq −

∂Ep
∂q
− ∂R

∂q̇
+ ΦTλλλλ (9.1)

where R denotes the Raylegh’s dissipation function, the rest of the terms are presented
through Chapter 7 and 8. In dynamic multibody systems, the constraints are often depen-
dent on the relations between the position variables, these are referred to as holonomic
constraints. If the time variable appears explicitly in the relations of the constraint, it is
referred to as rheonomic constraints. These constraint formulations enables the descrip-
tion of motion without paying any explicit attention to the forces of constraint. For a
constrained multibody system, the contact can be described typically by a set of nonlinear
holonomic rheonomous algebraic equations

Φ(q, t) =

[
Φ(d, t)
Φ(e, t)

]
= 0 (9.2)

which assembles all the constraints of the system. This term needs to be differentiated into
a Jacobian matrix in order to apply the constraint to the equation of motion [73].

Φq =

(
∂Φ

∂q

)
=

[
∂Φr
∂qj

]
r = 1, 2, 3, ...., p,

j = 1, 2, 3, ...., n,

(9.3)

Here, r denotes the number of constraints equations (geometric and kinematic), and j
represents a set of unknown depended generalised coordinates. The number of dynamic
degrees of freedom in the system becomes f = j − r [60]. Differentiating equation 9.2
with respect to time yields the velocity constraint equations, after double differentiating
the constraint matrix with respect to time, vector γγγγ(q, q̇, t) contains the remaining terms
of the differentiated constraints, and the acceleration constraints are obtained as follows

Φqq̈ = γγγγ(q, q̇, t) (9.4)

There are several methods available for enforcing the contact constraints, the most promi-
nent ones for solving contact is known as the penalty method, the Lagrange multiplier
method, and the augmented Lagrange method [74], which are normally applied in compu-
tational problems like these [75, 53]. The mentioned methods have all pros and cons, and
in order to choose one most suitable for the task, they have to be discussed for its purpose.
It is therefore intended for discussion of possible methods for the solution of motion in
multibody systems.
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9.1 Constraints and solver methods

9.1.1 The Penalty Method

The penalty method has been widely used to model contact forces due to its straightfor-
ward computer implementation, there are no introduction to additional equations and the
method is easy to understand from a physical point of view. The physical interpretation
of the penalty method is to consider a very stiff spring between nodes involved in the pre-
scribed constraint, this is referred to as a penalty element, and its stiffness a penalty weight
α. However, this method only satisfy the constraint conditions approximately, when intro-
ducing a finite penalty weight to an arbitrary constraint between two nodes e.g. u1 = u2,
a gap error occurs

∣∣eg∣∣ = u1−u2, that violates the constraint. In order for reducing the vi-
olation, eg → 0 , one may increase the weight number α→∞, however, this procures an
ill-conditioned stiffness matrix due to inversion. In other words, we obtain two effects that
odds with each other. As means for obtaining convergence to an exact solution by increas-
ing the weight number, one inflicts numerical instability and the solution error is increased
[20, 49, 76]. Yet, this method is efficient for describing problems concerning friction con-
tact as a result of the penetration, i.e. gap error. Introducing the constraint equations to the
system by terms of the penalty method, the equation of motion is expressed as follows:

Mqq̈ + ΦT
q αΦ = Q(q, q̇, t) (9.5)

However, this method is automatically disqualified in order for obtaining the constant
distance constraints that defines the pulley as rigid, due to the gap error.

9.1.2 The Lagrange multiplier method

Lagrange multipliers has long been used in mathematical optimisation techniques as a
strategy for finding the maxima and minima of functions subjected to constraints, e.g. if a
function f(x, y) is constrained by another function g(x, y), one can determine its maxima
and minima when the criterion of parallel gradients is fulfilled

∇f = λ∇g (9.6)

A physical interpretation of the Lagrange multiplier is to consider it as a reaction force,
i.e. a constraint force imposing displacement restrictions [49, 76]. The Lagrange multiplier
has proven to work as an efficient variable for enforcing the constraint conditions, instead
of enforcing the system with very large penalty weights, introduces a set of Lagrange
multipliers at each constraint which represents a reaction force, however the multipliers
are unknowns, leading the method to suffer from so-called drift-off problems, violating
the constraint conditions. Dealing with this problem one need to introduce additional
stabilisation techniques for avoiding unwanted motions in the system [73].

Mq̈−ΦT
q λλλλ = Q(q, q̇, t) (9.7)

The Lagrange multipliers relates to the constraint conditions Φ = 0, and acts in the direc-
tion of the constraint, illustrated by figure 8.7. Also, the multipliers do not alter the energy
of a system.
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9.1.3 Augmented Lagrangian method
Along with the most conventional techniques discussed above, the augmented Lagrangian
method is often chosen to cope with the contact equality constraints [76]. The method
was first introduced by Hestenes [77] and has afterwards been diversely used in fields
dealing with mathematical optimisation of some sort. What this method practically do, is
to combine the penalty- and Lagrange method. The contact is determined by an augmented
procedure for enforcing the constraints, first, it determines the contact forces from the gap
error and the penalty weight, i.e. as a spring force. When the contact forces is revealed, the
magnitude of the Lagrange multipliers are determined, correcting the ”gap error” and the
solution becomes exact. By applying this method, the equations of motion for the whole
multibody system has the form [78]

Mq̈ + ΦT
q αΦ + ΦT

q λλλλ
∗ = Q(q, q̇, t) (9.8)

where the multipliers are obtained by the following iteration process given by sub-index k

λλλλ∗k+1 = λλλλ∗k + αΦk+1 (9.9)

This method is known to be the most numerically stable one, which combines the best from
two worlds, and maybe the most successful method for simulating problems of contact.
However, its iteration process is significantly larger in comparison, as illustrated by its
equations.

9.2 Dynamic simulation and stabilisation techniques
For this purpose, the Lagrange multiplier method is chosen to cope with the constrained
multibody system. The method is able to handle complex constraint equations, e.g slave
nodes can depend on other slaves as well as masters [49]. However, the method increases
the number of unknowns, but in contrast to the penalty method, the Lagrange multiplier
method has the advantage of being exact. As of noted, it is not as numerically stable as the
augmented Lagrangian method, yet, more computationally cost efficient.

Introducing a vector of Lagrange multipliers λλλλ to the particular expression, containing
a multiplier for each constraint. Substituting it into the generalised forces of motion, and
equation 9.7 is obtained.

Assembling the motions of the systems from equation 7.18 and 7.26, along with the
contact forces obtained form 8.17 and the constraints 9.2, yields the complete system of
equations. This is often referred to as a monolithic system, which fully describe the cable
and pulley as a system of flexible and rigid bodies

Mf 0 Φe
T

0 Mr Φd

Φe Φd 0

 ë

d̈
−λλλλ

 =

Q(e, ė, t)

Q(d, ḋ, t)
γγγγ(q, q̇, t)

 =

Qe + Qc −Bf ė−Ke

−Qc −Brḋ−KsrC
γγγγ(q, q̇, t)

 (9.10)
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Written in a compact form

[
M Φq

T

Φq 0

] [
q̈
−λλλλ

]
=

[
Q(q, q̇, t)
γγγγ(q, q̇, t)

]
(9.11)

The presented equation model is an effective way of solving for the motion in a system,
containing good representation of the kinematic constraints. However, this method does
not explicitly use the constraint equations for position and velocity, allowing for a drift
in the system constraints due to numerical approximations, round-off errors etc. These
are often referred to as drift-off effects. In order to deal with this issue, the well known
Baumgarte stabilisation technique can be applied to keep the constraint violation during
numerical time integration under control [73, 61]. Thus, the constraint equations can be
modified as follows

Φ̈ + 2αΦ̇ + β2Φ = 0 (9.12)

Which yields a modified vector of the acceleration constraints.

γ̄̄γ̄γ̄γ(q, q̇, t) = γγγγ(q, q̇, t)− 2αΦ̇− β2Φ (9.13)

Thus, a stabilised version of equation 9.4, and the new accelerations of the system are
obtained from

Φqq̈ = γ̄̄γ̄γ̄γ(q, q̇, t) (9.14)

Here, α and β are positive constants representing feedback control parameters for the
velocities and constraint violations. A disadvantage with this procedure is that any general
method for decent selection of these, does not exist. More details how to determine α and
β are discussed by Hajžman et al. [73].

[
M Φq

T

Φq 0

] [
q̈
−λλλλ

]
=

[
Q(q, q̇, t)
γ̄̄γ̄γ̄γ(q, q̇, t)

]
(9.15)

In order to solve the system numerically, equation 9.7 is rearranged for describing the
motion

q̈ = M−1(Q + ΦT
q λλλλ) (9.16)

substituting equation 9.16 into 9.14, followed by rearranging yields

γ̄̄γ̄γ̄γ(q, q̇, t) = ΦqM−1(Q + ΦT
q λλλλ) (9.17)

λλλλ = (ΦqM−ΦT
q )−1(γ̄̄γ̄γ̄γ −ΦqM−1Q) (9.18)

Substituting equation 9.18 into 9.16, vector λλλλ can be eliminated, and thus, the final equa-
tion of motion for the system yields

q̈ = M−1ΦT
q (ΦqM−1ΦT

q )−1(γ̄̄γ̄γ̄γ −ΦqM−1Q) + M−1Q (9.19)
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9.3 Considering real-time simulation
The simulation of a digital twin, that is happening in in real-time, requires an analysis
time smaller than the physical time used by the actual motion of the physical system. In
other words, the computational time needs to be smaller than the time step selected. Thus,
choosing a suitable method used for the integration of motion is critical. It is therefore
required that the time integrator performs well during the simulation.

Explicit multistep methods is known to be inexpensive and accurate if small enough
time steps are chosen, however it do not provide sufficient stability conditions. The meth-
ods chosen for real time simulation should therefore be implicit, simple step, with good sta-
bility properties, sufficiently accurate and computational efficient in terms of CPU power
required. It is therefore convenient to apply implicit single step integration formula with
fixed time steps and order, requiring the same computational cost of each integration step
and capable at adjusting to system discontinuities.

According to these requirements the Newmark β-integration [79] family is a suit-
able choice [60]. Further, the WTZ-α method [80], HHT-α method [81] and implicit
Runge-Kutta method [82] are all suitable choices for time integration of the equations
of motion [60, 83]. However, the WTZ- and HHT-α method seems to be more prefer-
able than the more computational expensive implicit Runge-Kutta method [60]. Newmark
β−integration with HHT-α stability has already been demonstrated in digital twin applica-
tions carried out by SAP Fedem [7], thus a natural choice. If equation 9.19 is to be solved
by the Newmark β−integration which was originally obtained from the Taylor series ex-
pansion about time, the numerical time integration is carried out as follows [8]:

q̇k+1 = q̇k + (1− γ)∆tq̈k + γ∆tq̈k+1 (9.20)

qk+1 = qk + ∆tq̇k +

(
1

2
− β

)
∆t2q̈k + β∆t2q̈k+1 (9.21)

Here, the sub-index k denotes the increment, and ∆t the chosen time step, β and γ are
integration parameters, acting as numerical dampers to preserve numerical stability during
the simulation. The commonly used values of the Newmark method is (γ > 0.5) and
(β > 0.25(γ + 0.5)2) and provides unconditional stability [8].

Yet, it results in numerical oscillations (e.g. observed in fig. 5.8a), the phenomenon is
a result of ”overshooting” of displacements obtained from the time integration, resulting
in residual oscillations, i.e. numerical oscillations. By introducing numerical dissipation,
these spurious oscillations are damped on the expense of second order accuracy, and are
too disruptive in the lower-frequency domain. Further, the HHT-α and WBZ-α achieves
damping for high frequencies, without affecting lower modes and loosing second order
accuracy [84]. Also, introducing high frequency dissipation is found to improve the con-
vergence during iteration solving of highly nonlinear problems [85].

However, a method that has shown to have even better dissipation characteristics,
which is an enhancement of the Newmark-algorithm that combines the HHT-α and WBZ-
αmethod. Its main advantage is that the method enables for user-controlled high frequency
dissipation level, while minimising its impact on the low frequencies. The method is re-
ferred to as the Generalized-α method [85] in the literature. This method has identical
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displacement and velocity updates as the Newmark algorithm. Yet, with a force balance
equation (9.15) containing modified displacement unknowns, expressed as follows

qk+1−αf = (1− αf )q̇k+1 + αf q̇k (9.22)

q̇k+1−αf = (1− αf )q̇k+1 + αf q̇k (9.23)

q̈k+1−αm = (1− αm)q̈k+1 + αmq̈ (9.24)

and modified time incrimination

tk+1−αf = (1− αf )tk+1 + αf tk (9.25)

According to this formulation, the Generalized-α degenerates to HHT-α if αm = 0, and
WBZ-α if αf = 0. Furthermore, if αm, αf = 0 one obtains the original Newmark formu-
lation. Thus, the Generalized-α is a combination of these three. The algorithm is critically
controlled by these parameters, which are determined from the value of its spectral radius
at infinity ρ∞, that is, a user specified value. Thus, one can determine the dissipation
parameters, providing an optimal relation between the ρ∞- dependent dissipation param-
eters. The spectral radius at infinity may be varied between a value of zero and one, in
the case of ρ∞ = 1 there are no dissipation, the smaller the spectral radius, the greater
numerical dissipation. The dissipation parameters are obtained as follows

αm =
2ρ∞ − 1

ρ∞ + 1
and αf =

ρ∞
ρ∞ + 1

(9.26)

Where the following relations needs to fulfill the following criteria for absolute stability

αm 6 αf 6
1

2
, β >

1

4
+

1

2
(αf − αm), γ =

1

2
− αm + αf (9.27)

The Generalized-α time integration algorithm is unconditionally stable, second order ac-
curate, and possesses an optimal combination of high- and low frequency dissipation [85].
By applying the Generalized-α, one enables for controlling the high frequency dissipation,
and CPU cost. Thus, this algorithm is recommended by the author.

9.4 Brief synopsis of dynamic simulation
According to the method presented, the dynamic responses involves evaluation of vector
Q and γ̄̄γ̄γ̄γ for each time step, solving for q̈. Integrating and double integrating q̈ with
respect to time, and one obtains the velocity q̇ and position vector q at the given time step
respectively. Furthermore, accelerations are together with the velocities time integrated in
order to obtain the new velocities and positions for the next time step, which is repeated
until the complete motion of the system is solved.
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Chapter 10
Closure

Science is about knowing, engineering
is about doing

— Henry Petroski
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10.1 Summary and discussion
The content of this thesis has proven the topic regarding inherent dynamics of cable and
pulleys to be a large and complex field of study. An overview in Chapter 4 of the latest
researches was presented that relates to, or directly approaches systems that consist of ca-
ble and pulleys for simulation tasks. As presented through Chapters 4 and 6, investigating
state of the art FE-based modelling of cable and pulleys, revealed that there are several ap-
proaches for modelling these kind of systems. There is no right or wrong formulation, and
one has to consider the element formulations for its purpose. It was discovered through
this research that modelling and simulations of such systems do not have any best practice.
Thus, different methods are applied for different investigation purposes.

The basis for the model suggested in this work, has been focused on including physical
effects that were presented in Chapter 5. The gathered material for the development is
based on physical verified theory obtained from experiments, and has been assembled into
a mathematical model.

However, it might be applicable to apply more conventional elements for simulations
that involves large and complex constructions, where the dynamics of cable-pulley systems
are not of direct interest, but rather, its impact on a structure as a whole. For this task,
elements such as the slipring connector [40], the super element approach [13, 14], or even
denoting massless springs [9, 11] are considered as reasonable and efficient approaches.

Yet, through the objectives of this work, it was concluded that the ANCF element
proved to be the most suitable candidate for describing behaviour of cables, despite its
suffering of Possion- and shear locking. The author determined these problems to be
negligible due to its occurrence particularly in cases where the element properties is to
be considered stiff, but has addressed other more recent ANCF-based formulations that
handles these issues.

Thus, it has to be emphasised that modified versions of the ANCF should be taken
into consideration, since some of them are recognised as strong candidates to the origi-
nal element. In cases involving high velocities, an element that includes centrifugal and
Coriolis forces [50] should be considered. Also, elements [16, 51, 52] that are poten-
tially more computational efficient needs to be reconsidered for the purpose. In addition,
these elements enables for surface distribution of contact forces, which is not obtained in
a beam-element, since it is only represented by its centerline. They also introduces ad-
ditional degrees of freedom that might be important in future studies of spatial dynamic
phenomenons.

All the ANCF formulations are based on the Euler-Bernoulli beam theory. This theory
is based on the assumption of that any cross section of a beam, must remain plain to its
centerline. This assumption are valid, but not accurate during large deformation problems.
Thus, another importance is to consider formulations based on the Timoshenko beam the-
ory. This family of elements are capable of portraying more accurate deformations due to
shear in the beam.

However, in the author’s opinion, the discussed model is capable of capturing complex
dynamic effects, and provides a strong foundation for further investigations that are going
to be carried out at SFI. It has been demonstrated that the ANCF formulation is able to
handle complex motions [12, 20, 21, 24, 86] that conform with physical experiments [24],
requiring low CPU cost enabling for real-time simulations [23].
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Yet, researchers who have applied the ANCF-formulation has included physical char-
acteristics of cables by guessing and approximation, which might be a source of error.
Thus, the author has suggested more accurate methods for obtaining realistic parameters
for the derivation of an element. This is a rather complex task to perform but, is proven to
be possible [29, 27, 30], if the configuration of a cable is known. By the knowledge of the
author, this has not yet been applied when deriving cable elements for multibody dynamic
problems. Based on these works, the mathematical models could be programmed working
as a ”black-box” for describing the characteristics of bending stiffness, maybe as a vari-
able of a cable curvature. Further, to be included as modified parameters for the derivation
of stiffness and damper properties of a cable.

Due to the highly flexible nature of cables, modelling of pulleys as rigid bodies is
found to be a reasonable simplification, which also reduces the computational time con-
sume drastically. A rigid body formulation where the physical effects such as inertial- and
damper effects included, are suggested. Also, in contrast to other works where pulleys are
considered fixed to a point. It is worth emphasising the possibility of denoting movement,
elastic properties, and eigenvalues to the pulley fixations, obtained from analyses of a sup-
port structure. These properties is conceivable to tabulate or parameterise, dependent on
positions of the supporting structure that alters these characteristics.

The interaction forces between the contacting bodies has been suggested to be mod-
elled by means of penetration, based on the Hertz theory. As of noted, this method is
inadequate due to its inconsistency of energy dissipation. Other authors [15, 12, 24] which
have been dealing with similar problems, have applied the Hunt-Crossley model for de-
scribing normal contact. However, through this work it was discovered that other models
for normal contact proved to be more exact in comparison with experimental results [61].
Thus, the author suggested a more adequate model for describing the normal contact forces
that was first proposed by Gonthier et al. [65] but emphasises the existence of other equiv-
alent force models, that are compared in the literature of Machado et al [61].

Realistic models of contact are essential for obtaining an accurate representation of the
frictional characteristics. The tribology of the system is also a very challenging field of
study which demands extensive attention in the further work. Thus, the proposed model of
contact and friction has been chosen such one easily can substitute these formulations with
other more suitable ones to the model. Thermal effects can easily be included, enabling
for thermal dependent friction coefficients, also, phenomenons such as friction induced
vibrations might be included to the model of friction. If the friction model proves to
conform with future physical experiments, the saturation value that describes the sticking
limit could for instance work as a stabilisation parameter in a control system, regulating
velocities in order to prevent slip.

The chosen method for solving the constrained system, was the conventional Lagrange
multiplier method, which is an uncertainty. It was chosen as a mean between the penalty-
and the augmented Lagrange method. In the authors opinion, this method seems to be the
most suitable one when considering the challenges of computational costs, potentially for
the application to a digital twin. It does not require any ”black-box” input of constants
as the penalty method does, but introduces more equations to the system, yet has the
advantage of being exact. Introducing stabilisation techniques for handling drift-offs in
the Lagrange multiplier method dealing with the numerical stability provides an exact
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solution with less iterations, combined with the Generalized-α algorithm is considered
suitable for this purpose.

However, the augmented Lagrange method might be about equally as effective as the
conventional Lagrange method, computational wise. Indeed, it has more iterations, but
these are to be considered as ”iterations within the iterations”. Due to the numerical sta-
bility which this method provides, one avoids stabilisation techniques required in the con-
ventional Lagrange method. Thus, this is an uncertainty that needs to be reconsidered by
following researchers of this topic.

An obvious limitation this model suffers, is its two-dimensional formulation. One
needs to verify the integrity of this model in order for further developing it to a three-
dimensional model. If this is achieved, implementation in a software such as FEDEM are
possible. The literature of Konyukhov and Schweizerhof [87] provides detailed descrip-
tions of mathematical methods of how to prescribe contact of three-dimensional ANCF
elements to rigid (or flexible) surfaces.

As a closure to the discussion, the author would like to address other ongoing research
related to this topic. The author has been in contact with Bulı́n et al. at the University
of West Bohemia who is very enthusiastic about this study. Their research is motivated
on an successfully implementation of the absolute nodal coordinate formulation, together
with contact modelling, the research is also motivated by the investigation of dynamics of
parallel cable manipulators with active structures.

10.2 Conclusion
The ANCF finite elements are designed for large deformations in multibody dynamic prob-
lems. In contradiction to other more conventional systems, the proposed model include all
components of the system. The dynamic effects are mathematically described explicit,
thus, the proposed model is considered the most prominent for it to function as a mathe-
matical foundation. The formulation has the deliberate intent, constructed such that one
easily can manipulate and extend it. In this model, other beam elements can be used, dif-
ferent models of contact, other models for friction, functions describing thermal effects
can be included enabling for thermal dependent friction etc.

In the author’s opinion, the formulation of cable and pulley through the approach of
rigid-flexible multibody dynamics has potential of reaching a high degree of maturity, if
relationships between different formulations of objects and their interactions are estab-
lished. Defining coordinate transformations that relates various formulations as discussed
in Section 8.4. Thus, it is believed that the absolute nodal coordinate formulation can ef-
fectively be used to achieve the important goal of adequate simulations of cable and pulley
systems.

Some of the phenomena that occur at a small scale, influences an entire system that
involves contact, friction and inter-layer sliding of wires in a cable has been discussed.
Despite its long and profitable history, multibody systems of such character is still an active
and challenging research domain. As stated by Schiehlen [88], ”more work is required
to better understand the micromechanical phenomena influencing the macro mechanical
multibody motion with contact” .

By utilising the ever-expanding computing power, this model can be implemented in
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software for helping engineers solve increasingly complex challenges related to cable and
pulleys, band-drives etc. The model might be implemented in a script that includes a post-
processor of sensor data instead of fictive loads as in conventional FE-programs. Further
to be used in e.g. control systems for offshore cranes, draw works etc. as a stabilisation
algorithm for improved performance.

10.3 Further work - research proposals

We can only see a short distance ahead,
but we can see plenty there that needs
to be done

— Alan Turing, Computing machinery
and intelligence

The state of the art FE-based modelling of cable-pulley systems has been documented,
and based on the obtained knowledge through the research, a full derivation of a two
dimensional cable-pulley system has been proposed. However, the model has to be exper-
imentally tested in order to fully verify it.

• The proposed model should be investigated by the upcoming PhD candidate, of
whom is assigned to work further on this topic at the SFI project, and should be
implemented in a custom designed program.

• A physical test rig of a system consisting of cable of pulleys, capable of provoking
instabilities of the system should be built at the lab.

• Furthermore, it should be verified against physical tests experimentally, in order to
accurately portray and render the dynamic behaviour, subsequently implementing
sensor data rather than fictive loads. Thus, the model could be applied in control
systems for stabilising the provoked out of phase tensions occurring.

• The work by Dr. Myhre [23] presented, states the in-house experience at NTNU
with the ANCF-element, and demonstrates it capability of real-time simulations. A
full derivation of the ANCF element formulated in Python is to be found at GitHub,
developed by Dr. Myhre for his experiments described in Chapter 6, and is ready for
deploying this purpose. Thus, Dr. Myhre could potentially function as a resource in
on field of study. The work Dr. Myhre performed is very relevant when the cable-
pulley model comes of maturity for combination with sensors, maybe vision based
tracking on swinging heaves.
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[40] Dassault Systèmes S.A. Abaqus Analysis User’s Guide, 2017.

73



[41] Daniel Priour. The Bar Finite Element for Cable 5.2 Tension on Bars. A Finite
Element Method for Netting, Application to Fish Cages and Fishing, 2013.

[42] Ahmed A Shabana. Flexible Multibody Dynamics: Review of Past and Recent De-
velopments. Multibody System Dynamics, 1(2):189–222, 1997.

[43] H. ASHLEY. Observations on the dynamic behavior of large flexible bodies in orbit.
AIAA Journal, 5(3):460–469, 3 1967.

[44] J.R. Canavin and P.W. Likins. Floating Reference Frames for Flexible Spacecraft.
Journal of Spacecraft and Rockets, 14(12):724–732, 12 1977.

[45] B Fraeijs and De Veubeke. The Dynamics of Flexible Bodies. J. Engng, 52(14):895–
913, 1976.

[46] Ahmed A. Shabana and Refaat Y. Yakoub. Three Dimensional Absolute Nodal Co-
ordinate Formulation for Beam Elements: Theory. Journal of Mechanical Design,
123(4):606, 2001.

[47] J L Escalona, H A Hussien, and A A Shabana. Application of the absolute nodal co-
ordinate formulation to multibody system dynamics. Journal of Sound and Vibration,
214(sv981563):833–851, 1998.

[48] J B Jonker and J P Meijaard. A geometrically non-linear formulation of a three-
dimensional beam element for solving large deflection multibody system problems.
International Journal of Non-Linear Mechanics, 53:63–74, 2013.

[49] Kolbein Bell. Engineering approach to finite element analysis of linear structural
mechanics problems. Fagbokforlaget, 2013.

[50] Stefan Von Dombrowski. Analysis of Large Flexible Body Deformation in Multi-
body Systems Using Absolute Coordinates. Multibody System Dynamics, 8:409–432,
2002.

[51] Daniel Garcı́a-Vallejo, Aki M Mikkola, and Jos Luis Escalona. A new locking-
free shear deformable finite element based on absolute nodal coordinates. Nonlinear
Dynamics, 50(1):249–264, 2007.

[52] Karin Nachbagauer, Astrid S Pechstein, Hans Irschik, Johannes Gerstmayr, K Nach-
bagauer, A S Pechstein, H Irschik, H Irschik, and J Gerstmayr. A new locking-free
formulation for planar, shear deformable, linear and quadratic beam finite elements
based on the absolute nodal coordinate formulation. Multibody Syst Dyn, 26:245–
263, 2011.

[53] Naresh Khude, Ilinca Stanciulescu, Daniel Melanz, and Dan Negrut. Efficient Paral-
lel Simulation of Large Flexible Body Systems With Multiple Contacts. Journal of
Computational and Nonlinear Dynamics, 8(4):041003, 3 2013.

[54] Ahmed A. Shabana. Floating Frame of Reference Formulation. In Ahmed A Sha-
bana, editor, Dynamics of Multibody Systems, pages 185–262. Cambridge University
Press, Cambridge, 4 edition, 2013.

74



[55] Peter Betsch and SpringerLink. Structure-preserving Integrators in Nonlinear Struc-
tural Dynamics and Flexible Multibody Dynamics, volume 565. Springer Interna-
tional Publishing : Imprint: Springer, 2016.

[56] D Garcı́a-Vallejo, J L Escalona, J Mayo, and J Domı́nguez. Describing Rigid-
Flexible Multibody Systems Using Absolute Coordinates. Nonlinear Dynamics,
34:75–94, 2003.

[57] Kaitlin Spak, Gregory Agnes, and Daniel Inman. Cable Parameters for Homogenous
Cable-Beam Models for Space Structures. pages 7–18. Springer, Cham, 2014.

[58] Ahmed A. Shabana. The Large Deformation Problem. In Ahmed A Shabana, ed-
itor, Dynamics of Multibody Systems, pages 304–338. Cambridge University Press,
Cambridge, 4 edition, 2013.

[59] J Garcia De Jalgn, J Unda, and A Avello. Natural coordinates for the computer
analysis of multibody systems. Elsevier Science Publishers B.V (North-Holland),
1986.

[60] Javier Garcı́a de Jalón and Eduardo Bayo. Kinematic and Dynamic Simulation of
Multibody Systems. Mechanical Engineering Series. Springer New York, New York,
NY, 1994.

[61] Margarida Machado, Pedro Moreira, Paulo Flores, and Hamid M Lankarani. Com-
pliant contact force models in multibody dynamics: Evolution of the Hertz contact
theory. MAMT, 53:99–121, 2012.

[62] P Flores, J Ambrósio, J C P Claro, and H M Lankarani. Influence of the contactim-
pact force model on the dynamic response of multi-body systems. Proceedings of
the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,
220(1):21–34, 1 2006.

[63] H M Lankarani and P E Nikravesh. A Contact Force Model With Hysteresis Damping
for Impact Analysis of Multibody Systems. Journal of Mechanical Design, 112,
1990.

[64] Kenneth Hunt and Erskine Crossley. Coefficient of restitution interpreted as damping
in vibroimpact. Journal of Applied Mechanics, American Society of Mechanical
Engineers, 1975.

[65] Yves Gonthier, John Mcphee, Christian Lange, and Jean-Claude Piedboeuf. A Regu-
larized Contact Model with Asymmetric Damping and Dwell-Time Dependent Fric-
tion. Multibody System Dynamics, 11:209–233, 2004.

[66] Jung Ching Chung. Elasticplastic contact analysis of an ellipsoid and a rigid flat.
Tribiology International, 43:491–502, 2009.

[67] C Pereira, A Ramalho, J Ambrosio, B J Ambrosio, Jorge Ambrosio@tecnico Ulis-
boa Pt, Candida@isec Pt, and A Ramalho. An enhanced cylindrical contact force
model. Multibody Syst Dyn, 35:277–298, 2015.

75



[68] Johannes. Brandlein. Die Walzlagerpraxis : Handbuch fur die Berechnung und
Gestaltung von Lagerungen. Vereinigte Fachverl, 3rd edition, 1998.

[69] Ho-Young Cha, Juhwan Choi, Han Sik Ryu, and Jin Hwan Choi. Stick-slip algorithm
in a tangential contact force model for multi-body system dynamics. Journal of
Mechanical Science and Technology, 25(7):1687, 2011.

[70] Brian Armstrong-Hélouvry. Control of Machines with Friction. Springer US, Boston,
MA, 1991.

[71] C. Canudas de Wit, H. Olsson, K.J. Astrom, and P. Lischinsky. A new model for con-
trol of systems with friction. IEEE Transactions on Automatic Control, 40(3):419–
425, 3 1995.

[72] Ahmed A. Shabana. Analytical Techniques. In Ahmed A Shabana, editor, Dynamics
of Multibody Systems, pages 83–156. Cambridge University Press, Cambridge, 4
edition, 2013.
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Appendix B
Spatial contact kinematics between
cable and pulley

In order to define constraints to a multibody system containing components subjected to
large displacements and deflections, an algorithm for determining contact between the
objects is vital. A natural measure of contact interaction has become the CPP procedure,
also known as the minimal distance criterion, which most important operation for data
transfer between contacting bodies [20, 87]. In this case, one seeks the projection between
an arbitrary contact point on a curve, and a surface representing the pulley. It is well known
within FEM theory, an object dominating the contact conditions is considered the so called
”master” element, where the dependent object is known as a ”slave” element. Since the
pulley can be considered as rigid in comparison with a cable, the surface becomes the
master object. The discussed contact formulation in this section, is manly inspired by the
works performed by Bulı́n et al. [24], and the works performed in an ongoing research by
Wang et al.[20, 22, 21] who applies a so called Closest Point Projection (CPP) procedure in
order to detect contact before applying the master-slave technique for defining constraint
conditions. The contact formulation is mainly based on theory provided by the literature
of Konyukhov and Schweizerhof[87].
In figure B.1, the kinematics of a curve to a rigid surface is illustrated, the curve is defined
in a Serret-Frenet coordinate system, and the surface in a Gaussian system. A surface
representing the boundary of a three dimensional solid can be parameterized by local co-
ordinates ξ and ξ. The vector ρρρρ(ξ, ξ) describes an arbitrary point on the surface [87],
and is expressed

ρρρρ(ξ1, ξ2) =
∑
k

Nk(ξ1, ξ2)xk k = 1, 2, 3, ..., n (B.1)

Nk(ξ, ξ) and xk represents the shape functions (if any) of the surface and the nodal
coordinates respectively. A spatial coordinate system describing the geometrical properties
of the surface is introduced, constructed by surface tangents and normal vector which
yields
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Figure B.1: Curve to surface

ρρρρ1 =
∂ρρρρ

∂ξ1
, ρρρρ2 =

∂ρρρρ

∂ξ2
, n =

ρρρρ1 × ρρρρ2∣∣ρρρρ1 × ρρρρ2
∣∣ (B.2)

The CPP projection allows to define a new coordinate system related to the surface coor-
dinate system as follows

r(ξ1, ξ2, ξ3) = ρρρρ(ξ1, ξ2) + nξ3 (B.3)

where vector r(ξ1, ξ1, ξ1) describes the ”slave” point. Considering a beam formulated by
ANCF is illustrated in figure B.1, a new Serret-Frenet (Appendix C) coordinate system
τ, ν, β, known from differential geometry, are introduced to be defined at any point of
the curve [87]. The axial local body coordinate system of the assembled cable ζ [20], is
defined as

ζ = ζ̄ + ζ̂ (B.4)

where ζ ∈ [0 1] is denoting the decimal part of ζ, and ζ̂ ∈ [0 n] where n represents
the number of elements used for meshing the beams. It is also worth noting ζ̄ from equals
ξ from equation 7.3 according to its definition. Introducing contact points on the curve ηi
where r(η) denotes its position in the global coordinate system.

r(η) = ρρρρ(ξ1, ξ2) + nξ3 (B.5)

Introducing the measure of a contact point on the surface of a cable with respect to its
radius yields

ξ3 = (r(η)− ρρρρ(ξ1, ξ2))n−R (B.6)
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where the shortest distance ξ is considered penetration. In order to determine contact
conditions, the CPP is applied, normally solved by Newtons method.{

ξ > 0⇒ no contact
ξ 6 0⇒ contact

Contact is obtained when a slave point penetrates into the master surface, however, for
exact representations such as Lagrangian contact.When contact is detected, the kinematic
relations of the contacting bodies in the considered point as means for applying the prin-
ciple of virtual work for establishing the forces occurring during contact.

The relative kinematics of cable-pulley

During interaction, the slave point shares the coordinates of the master surface and its local
coordinates, ξ, ξ, ξ, with the assumption of a moving surface makes ρρρρ(t, ξ1, ξ2, ξ3) and
n(t, ξ1, ξ2, ξ3) time dependent. The translational velocity of point Q on the surface has
the velocity

v
Q

=
∂ρρρρ

∂t
(B.7)

The velocity of point P relative to Q is expressed by the time derivative describing its
motion

v
P

=
d

dt
r
P

(t, ξ1, ξ2, ξ3) =
d

dt
ρρρρ +

d

dt
(nξ3)

=
∂ρρρρ

∂t
+
∂ρρρρ

∂ξj
ξ̇j +

∂n

∂t
ξ3 + nξ̇3 +

∂n

∂ξj
ξ3ξ̇j , j = 1, 2.

(B.8)
equation B.8 can be rewritten according to the Weingarten formula to the following form

v
P

= v
Q

+ ξ3
∂n

∂t
+ nξ̇3 + (ρρρρ − ξ3hijρρρρi), i, j = 1, 2. (B.9)

The difference of these two velocities yields a relative velocity, vr, between the contacting
bodies. Considering the relative velocities between the contacting bodies, starting with the
cables tangential motion relative to the surface

v
P
− v

Q
= ξ̇3n + ξ̇jρρρρi, i, j = 1, 2. (B.10)

and the surface motion relative to the cable. Opposite, operating from the from a fixed
point on the cable in the Serret-Frenet C system, the motion of the pulley relative to the
cable is expressed

v
Q
− v

P
= ντ ττττ + νee + νgg (B.11)
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e =
ρρρρ − r

P∣∣∣∣ρρρρ − r
P

∣∣∣∣ = −n (B.12)

By summarizing equation B.10 and B.11 the following expression is obtained

ξ̇3n + ξ̇jρρρρi + ντ ττττ + νee + νgg = 0 (B.13)

The variation of the relative normal displacement

δue = δξ3 = (δρρρρ − δr
P

) · e (B.14)

The pulling velocity, i.e. relative to the axis of the cable

δuτ = −(ρρρρi · τ)ξ̇j (B.15)

The dragging velocity, i.e. relative to the axis of the cable

δug = −(ρρρρi · g)ξ̇j (B.16)

Now all the expressions for the relative displacements between the cable and pulley is
derived, summarizing them into one equation we obtain its expression in weak form

δρρρρ − δr
P

= δuτ ττττ + δuee + δugg (B.17)

Integrating it we obtain the motion for a time step in a weak form∫
(δρρρρ − δr

P
) (B.18)

in which one obtain contact forces from, in all three directions of the cable moving along
a surface.
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Appendix C
Serret-Frenet coordinate system

Figure C.1: Serret-Frenet coordinate system on a spatial curve

Considering an arbitrary curve in a tree dimensional Cartesian coordinate system, de-
scribed by a parameter ξ. Assuming a continuously differentiable (C1) expression with
respect to ξ, the vector can be written in parametrc from

ρρρρ = ρρρρ(ξ) =

x(ξ)x(ξ)
x(ξ)

 (C.1)

A differential of the arc-length s of the curve in the natural coordinate system is

ds = ds(ξ) =
√
ρρρρξ · ρρρρξdξ = Jdξ (C.2)

where J is the Jacobian of the transformation between s and ξ. A Serret-Frenet corrdinate
system is defined by three unit-vectors which is attached along a smooth continuous curve.
A unit tangent vector τ , a unit normal vector ν pointing to the curvature centre, and the
cross product β forming a bi-normal vector.
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ββββ = ττττ × νννν (C.3)

These unit vectors relates to the global coordinate system via the derivative of the curve ρρρρ
with respect to the arc lenght s, and are commonly referred to in differential geometry as
the Serret-Frenet formulas: 

dττττ
ds = κνννν
dνννν
ds = −κττττ + χββββ
dββββ
ds = −χνννν

(C.4)

Where κ denotes a curvature and χ the torsion of a spatial curve, the curvature and the
torsion can be computed as follows

κββββ =
ρρρρξ × ρρρρξξ∣∣ρρρρξ∣∣3 → κ =

ρρρρξ × ρρρρξξ∣∣ρρρρξ∣∣3 (C.5)

χ =
det(ρρρρξ, ρρρρξξ,

∂3ρρρρ
∂ξ3 )∣∣ρρρρξ × ρρρρξξ∣∣ =

(ρρρρξ × ρρρρξξ) · ∂
3ρρρρ
∂ξ3∣∣ρρρρξ × ρρρρξξ∣∣ (C.6)
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Appendix D
Classic equations for cable and
pulleys

Some general equations mathematical formulations of cable and pulleys can is illustrated
in this section. The formulations is to be found in Irgens [31]

Cable

Figure D.1: Asymmetric planar cable

Shape:

y(x) =
q

2S0
(x2 − Lx) +

hx

L
(D.1)

S0 =
qL2

8f
(D.2)

f =
qL2

8S0
=
h

4
− y0

2
+

1

2

√
y20 − y0h (D.3)
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Axial tension:

S =

√
S2
0 +

[
q
x− L

2
+ S0

h

l

]2
(D.4)

Smax = S0

√
1 +

[
ql

2S0
+
h

L

]2
(D.5)

Pulley

Figure D.2: Simple pulley friction

S1 = S0e
−µα (D.6)

Ellipsoidal to surface contact

Kelip =
4

3(σi + σj)

√
Ri, σl =

1− ν2l
El

, l = i, j (D.7)

In cases of Parabolic distribution of contact stresses, n = 1.5
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