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CHAPTER 1  
 

 
STRUCTURAL ANALYSIS 

 
 
 
 
 
 
 
 
 
 
 

Jan Arve Øverli  
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1.1 General 
 
Structural analysis is performed to establish the response of a structure. The responses are typical 
forces, moments, stresses, strains, curvatures, rotations and displacements. Design of concrete 
structures is based on verification of the resistance of the cross sections. In design codes the 
resistance is normally given based on forces and moments. Thus, the result of the structural 
analysis must also be forces and moments. 
 
The first task in a structural analysis is to decide the structural model. Depending on the geometry 
of the structure, this can be straightforward or sometimes an engineering judgement must be 
employed. The structural model can cover the whole or a part of the structure. Figure 1.1.1 
illustrates how a braced frame can be analysed as a whole structure or by partition the structure 
into components. For unbraced structures involving lateral forces the whole structure must 
normally be considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.1.1 Different structural models for a braced frame 
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The frame in Figure 1.1.1 is a global 2-dimensional model of a structure. Additional local 
analyses must be performed in areas where the assumption of linear strain distribution is not valid. 
Typical areas are: 

• Close to supports 
• Around concentrated loads 
• Beam-column intersections 
• Changes in cross-sections 

With today’s computer facilities it is possible to model the complete structure with a 3D finite 
element model. Figure 1.1.2 is an example of such a model including slabs, beams, columns, 
shear walls, basement and foundations. It is also possible to extend the model by including the soil 
to find the interaction between soil pressures and foundations and basements walls.  
 
 

 
 

Figure 1.1.2 3D finite element model of a building 
 
It is always necessary to assess complexity against simplicity when making a structural model. 
The structural response is normally best described with a 3D model, but making the model can be 
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very time consuming with respect to both geometry and load combinations. In addition there is an 
enormous amount of results from a 3D analysis. The interpretation of results to find for example 
the governing load combinations in different limit states is not necessary straightforward. 
Computer programs for design do this automatically. Still the structural engineer must validate the 
results to ensure that the most unfavourable load combination is taken into account. Even the most 
sophisticated software cannot include all structural effects in the analysis. Geometrical 
imperfections are as an example not easy to take into account in a consistent manner even in a 3D 
model. 
 
Simple structural models together with engineering judgement can sometimes be the best and 
fastest solution.  
 
In the analysis both the geometry and the behaviour of the structure must be idealised. The 
behaviour of the structure can be idealised using: 
 

• Linear elastic analysis 
• Linear elastic analysis with limited redistribution 
• Plastic analysis 
• Non-linear analysis 

 
Figure 1.1.3 shows the different analysis methods for a simple beam, clamped at one support and 
with a distributed load. In design of structures linear elastic analysis, assuming un-cracked cross 
sections, are normally performed to calculate forces and moments. In a concrete structure this is 
not true since the stiffness varies along the beam axis due different reinforcement amounts and 
degree of cracking. However, it is very convenient since the reinforcement does not need to be 
known before the structural analysis and the principle of superposition is valid. Hence, results 
from different load cases can be added. 

 

  

a) Linear analysis b) Linear analysis with redistribution 

Moment 
distribution 

Moment 
distribution 
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c) Plastic analysis d) Non-linear analysis 

 
Figure 1.1.3 Different analyses methods 
 
Linear elastic analysis with limited redistribution will be described later in this chapter. 
 
Both the upper and the lower bound theorem of plasticity can be used to analyse concrete 
structures. An upper bound method is the yield line theory for slabs, see chapter 3.2. Lower 
bounds methods are the strip method for slabs, see chapter 3.3, and strut and tie models for 
discontinue regions, see chapter 2.1. 
 
Non-linear finite element analysis takes into account the non-linear material properties in concrete 
and reinforcement, like cracking and yielding, and the influence of changing geometry on the 
response. Hence it is the most accurate prediction of the response in a structure. However, in 
practical design of concrete structures it is impractical to use non-linear analysis. The analysis are 
very complex and too time consuming. In addition the results are valid only for one load 
combination. Separate analysis must be performed for every design load combination. 
 
  

Plastic hinges 
Cracking 
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1.2 Geometric imperfections 
 
No structure is perfect. Geometric imperfection describes the deviation of the exact geometry 
from the drawings that occur during construction. Construction can only be executed to certain 
tolerances. Load bearing elements may be out of plumb and loads may be applied eccentric. 
Figure 1.2.1 shows typical examples of imperfections for vertical members in a building. 

 

  
 

a) Inclination b) Curvature c) Deviation between 
centres 

Figure 1.2.1 Examples of deviations for walls and columns 
 
In design of structures there are different types of geometrical imperfections and uncertainties. 
How they are taken into account in design depends on the type of structural material. For concrete 
structures and steel structures the requirements are given in Eurocode 2 (EC2) /1.1/ and Eurocode 
3 /1.2/ respectively.  
 
In concrete structures the tolerances in cross-section dimensions are accounted for in the material 
factors. For design of cross-sections in compression, a minimum eccentricity according to EC2 
6.2(4), e0=h/30 or not less than 20mm, is required. This eccentricity is not part of the structural 
analysis.  
 
Unfavourable effects of possible deviations, like the inclination in Figure 1.2.1a, must be 
considered in the analysis of members and structures. Only Ultimate Limit State (ULS) needs to 
take into account the imperfections. In a structural analysis the uncertainties in geometry and 
position of axial loads are defined as an additional first order effect. 
 
The effect of imperfections has two important consequences in the analysis of structures with 
vertical loading: 

• Additional moments in axial loaded members due to eccentricity. 
• Horizontal component of the vertical loads. 

 
In EC2, the building structures are considered to have an arbitrary vertical inclination defined by a 
rotation θi in radians as: 
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(1.2.1) 

 
 
 
 
where αh and αm are reduction factors for length and numbers of elements respectively. The 
factors l and m depends on the effect considered, and recognizes that imperfections are unlikely to 
be the same in all members: 

• On isolated members (e.g. one column), l is the actual length and m=1. 
• On bracing system (e.g. shear wall), l is the building height and m is the number of vertical 

members contributing to the horizontal force on the bracing system. 
• On floors distributing horizontal loads, l is the storey height and m is the number of 

vertical members contributing to the horizontal force on the floor. 

An isolated member is defined as a geometric stand alone member or members in a structure 
which in design can be treated as being isolated. A bracing system contributes to the overall 
horizontal stability of the structure. 
 
The geometric imperfections in the structural analysis must be linked to tolerances during 
construction of the building. The numeric values in Eq. (1.2.1) are related to normal executions 
deviations according to Class 1 in NS-EN 13670 Execution of concrete structures /1.3/. With use 
of other deviations, the values must be adjusted accordingly. 
 
The effect of imperfection can in an analysis either be applied directly or replaced by horizontal 
forces. For a braced member in a structure a global inclination is the worst case scenario.  Figure 
1.2.2 illustrates the effect from a frame braced to a shear wall. On each floor level the shear wall 
is loaded with a transverse force Hi given by: 
 

(1.2.2) 
 
where Nb and Na are the columns loads above and below the level being considered. This 
horizontal action must be added to other horizontal actions, such as wind loads. 

 

 
Figure 1.2.2 Geometrical imperfection on a braced structure 
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For members transferring forces to bracing systems, like floor and roof diaphragms, a local 
inclination at the diaphragm level gives the largest horizontal forces, see Figure 1.2.3.  By using 
static equilibrium the transverse forces can be calculated to: 
 

(1.2.3) 
 

 
 
These forces must be taken into account when designing the diaphragms, but not in the design of 
the bracing element. 

 
Figure 1.2.3 Effect of geometric imperfection on floor and roof diaphragms 
 
For isolated members the effect of imperfection can either be modelled directly in the structural 
system with eccentricities or by replacing them with equivalent forces. Figure 1.2.4 illustrates the 
effect with eccentric axial force or lateral force on a pin-ended column and a cantilever. Lateral 
forces can be useful since the same model can be employed to model different eccentricities. 
 
 

 
 
 

Figure 1.2.4 Effect of geometric imperfection on unbraced and braced isolated members 
/1.5/ 
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Imperfection defined as an eccentricity is given as: 
 

(1.2.4) 

where l0 is the effective (buckling) length and θi  defined according to Eq. (1.2.1). As a 
simplification ei = l0/400 can be used for walls and isolated columns in braced systems.  In a 
braced system the columns do not contribute to the overall stability of the structure. 
 
Applying the imperfection as a transverse force is defined by: 
 

(1.2.5) 
 

 
where N is the axial load. The force must be placed in the position that gives maximum moment. 
The forces Hi can be substituted by some other equivalent transverse load. The numeric values of 
the eccentricity and the lateral forces in Eqs. (1.2.4) and (1.2.5), gives the same first order 
maximum moment. However, the distribution of th moment can be different.  
 
The geometric imperfection is particular important in slender columns where the response is 
sensitive to second-order effects. However, imperfections are defined as a first-order property and 
must therefore always be included. 
 
 

1.3 Idealisation of the structure 
 
In design of structures it is useful to classify the components of a structure by considering their 
function and nature. Typically they are defined as beams, columns, slabs, membranes, shells, 
arches etc.  
 
In EC2 the following provisions are applicable for buildings: 
 

• A beam is a member for which the span is not less than 3 times the overall section depth. 
Otherwise is must be considered as a deep beam. 

• A slab is a member for which the dimension is not less than 5 times the overall slab 
thickness. 

• A slab subjected to dominantly distributed loads is considered to be a one-way slab if 
either 

− It possesses two unsupported and sensibly parallel edges 
− A rectangular slab supported on four edges with a ratio of the longer to shorter 

span greater than 2. 
• A column is a member for which the section depth does not exceed 4 times its width and 

the height is at least 3 times the section depth. Otherwise it must be considered as a wall. 

 
The definitions are useful in defining the detailing and analysis requirements for the components. 
For example distinction between a beam and a deep beam is necessary in determining appropriate 
verification model. A beam assumes linear strain distribution, and designed for moment, shear and 
torsion. In design of a deep beam strut and tie models are employed. Regarding detailing rules, 

0 / 2  i ie lθ= ⋅

       for unbraced members
2      for braced members

i i

i i

H N
H N

θ
θ

= ⋅
= ⋅
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like minimum reinforcement and placement of reinforcement, it can be appropriate to treat a 
beam, such as the web in a box girder, as a wall or a column. 
 
In verification models for beams and slabs, the effective (theoretical) spans are often the same as 
the distance between system lines. For wide supports this is rather conservative since the moment 
gradients over supports are large. Hence, in EC2 when considering a beam or a slab as a member 
analysis, the effective span, leff, is defined as: 
 

(1.3.1) 

 
where ln is the clear distance between the faces of the support and ai is defined as the minimum of 
half the thickness of the beam/slab and half the width of the support, as illustrated in Figure 1.3.1. 
In this way the centre of reaction is kept in a realistic position for wide supports. For beams on 
bearings, Figure 1.3.1(e), the effective length is measured between centres of bearings.  The 
effective length in Eq. (1.3.1) is not necessarily appropriate if the beams are modelled as a part of 
a frame analysis. 
 
Continuous beams and slabs are normally analysed on the assumptions that the supports provide 
no rotational restraints. 
 
In cases where a slab or beam is monolithic with its supports, e.g. the beam-column connection in 
Figure 1.3.1(c) or the cantilever slab in Figure 1.3.1(e), the design moment at the support can be 
taken at the face of the support. In Figure 1.3.2 this is section A. However, in EC2 the moment at 
the face of the support must not be less than 65% of the fully fixed end moment.  

1 2eff nl l a a= + +
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Figure 1.3.1 Effective span for different supports /1.1/  
 
Where a beam or slab is continuous over a support and the support provides no restraint to the 
rotation, the support moments at the centreline of the support can be reduced, section B in Figure 
1.3.2. The reduction is due to the distributed pressure from the support reaction. Assuming the 
design support reaction, FEd,sup, is uniformly distributed, q, over the breadth of the support, t, the 
reduction can be calculated as: 
 

(1.3.2) 

 
 
This reduction of the support moment is only valid if the effective spans are based on the system 
lines of the structure, and the analysis assumes point support. Eq. (1.3.2) is for a rectangular 
supported area. For a circular support with diameter D, the reduced moment should be calculated 
based on the centroid of half of a circular area.  
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(1.3.3) 

 
 

 
 
 

 
 
 

Figure 1.3.2 Design section and reduced design moment at centreline of the support 
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Example 
 
 

 
Figure 1.3.3 Reduction of bending moments in a two-span beam  
 
The two-span beam in Figure 1.3.3 is used as an example of the reduction of the design support 
moment when taking into account the width of the support. Assuming the beam and support are 
monolithic, the support moment and the moment at the face of the support is given as: 
 

 
 
 
 
 
 
 
 

 
The reduction of the design moment is approximately 12%. Consequently the required 
longitudinal reinforcement will also be reduced in ultimate limit state. 
 
Assuming the support provides no restraint to the rotation, the reduced support moment can be 
calculated according to Eq. (1.3.2) for a rectangular support. 
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Hence, the design moment is reduced with 6% by applying one simple equation. 
 
 

1.4 Linear elastic analysis with limited redistribution 
 
Elastic analyses, based on un-cracked cross-sections, are normally used to calculate forces and 
moments in concrete structures. When the load approaches ultimate capacity, sections will behave 
plastic. Figure 1.4.1 gives the elastic bending moment distribution for a fixed beam, and the 
distribution assuming plastic hinges at the supports and in the middle of the span. If the beam has 
a constant ultimate bending strength (Mu), which is typical for steel beams, the load can increase 
before reaching the capacity of the beam. For a fixed beam the increase is q/3. Hence, the beam 
has an inherent safety if the design is based on the elastic distribution of the moments.  
 
By comparing the elastic and plastic moments in Figure 1.4.1, the support moments have been 
reduced (redistributed) from (1/12)⋅q⋅L2 to (1/16) ⋅q⋅L2, which is 25%. The span moment is 
increased by 50%. The point of contra-flexure (zero bending moment) also changes, which will 
influence the reinforcement layout in a concrete beam. 
 

Figure 1.4.1 Moment redistribution for a fixed beam 
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In a concrete beam the bending strength is different at the support and in the span due to different 
reinforcement amounts. If the bending strengths are designed by using elastic moments, there is 
no increased capacity with a plastic analysis for a one-span beam since the plastic hinges at the 
support and in the span forms at the same load level. Still the concept with plastic hinges is useful 
in design of concrete structures. At supports the elastic bending moments are locally very high. 
By allowing plastic hinges to form at the support at a load level lower than the corresponding 
elastic distribution of moments, the support moment can be reduced. The reduced support moment 
requires an increased span moment to maintain static equilibrium of the structure. This is called 
redistribution of moments. In order to achieve redistribution, the cross-section must be designed 
so that plastic hinges can form, which require the reinforcement to yield. Thus, the design must be 
based on what is called under-reinforced.  Figure 1.4.2 shows the typical moment-curvature 
diagram for an under-reinforced cross-section. After yielding of the reinforcement, the response is 
plastic until the concrete fails in compression. The result is a ductile structure which has a gradual 
failure in ultimate limit state. Thus, it is the rotation capacity of the hinge which governs the 
capacity. A long plateau after Mu is reached implies a large rotation capacity. 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 1.4.2 Typical moment-curvature diagram for reinforced concrete 
 
In practice it can be possible to reduce supports moment in continuous beams without increasing 
the span moments due to the load combinations, as seen in Figure 1.4.3. This depends on the ratio 
between permanent and live loads. Maximum support moment arises from live load in both spans 
adjacent to the support, and maximum span moment arises from live load in one span only. 
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Figure 1.4.3 Moment distribution with redistribution for a two span beam 
 
In EC2 there is a simplified approach where redistribution of bending moments can be carried out 
without explicit check of the rotation capacity for continuous beams and slabs. Provided that the 
structure is predominately subjected to flexure and the ratio of the lengths of adjacent spans are 
between 0,5 and 2, the redistribution can be calculated for fck≤ 50 MPa and Class B and Class C 
reinforcement as: 

 
 

(1.4.1) 
 
 
 
 
 
 

 
where xu is the depth of the compression zone at the ultimate limit state after redistribution, and 
εcu2 the ultimate compressive strain. k1, k2 and k5 are Nationally Dependent Parameters in EC2 
and taken from the Norwegian Annex. From Eq. (1.4.1) it can be seen that at most 30% of a 
bending moment can be redistributed without check of the rotation capacity. The limitation on the 
compressive zone ensures sufficient ductility to be able to redistribute moments. In addition it 
helps the performance in serviceability limit state where the response may be close to un-cracked 
elastic analysis. For different compression zones the maximum allowable redistribution is given in 
Figure 1.4.4.  For maximum redistribution of 30% the limit of xu/d=0,21, while xu/d=0,44 permits 
no redistribution. 
 
 
 
 
 
 
 
 

( )1 2 2

5

0,44 1,25 0,6 0,0014 /

0,7

redistributed moment
elastic moment

u u
cu

x xk k
d d

k

δ ε

δ

δ

≥ + ⋅ = + + ⋅

≥ =

=

self weight 

live load 

Live load in both spans 

Live load in one span 
 Redistributed moment 

16 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4.4 Limitations on compression zone when employing redistribution 
 
The simplified approach is a design method for bending moments in ULS for continuous beams 
and slabs. The design of columns must be carried out based on the elastic moments from frame 
actions without any redistribution. For SLS verifications of beams and slabs the moments must 
not be redistributed.  
 
Redistribution of support moments does not necessary reduce the total amount of flexural 
reinforcement. Due to restriction on the depth of the compression zone, additional compression 
steel may be required to maintain sufficient bending strength. The main advantages of employing 
redistribution are: 

• Lower cross-section depths because the bending moments are smaller. 
• With less flexural steel it is easier to fulfil requirements for bar spacing such that concrete 

can be properly compacted. 

Drawbacks that may restrict the use of redistributing moments are: 
• Reduced shear resistance due to less longitudinal reinforcement and lower cross-sections. 

This also requires more shear reinforcement. 
• In SLS the deflections and cracking may increase in the span as the continuity at the 

internal supports is less effective. 
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Example 
 
The cross section in Figure 1.4.5 is subjected to a bending moment at the support of a continuous 
beam of MEd = 288 kNm. Assuming 20% redistribution, it is possible to employ the simplified 
approach, Eq. (1.4.1), to calculate moment resistance and required longitudinal reinforcement. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.4.5 Design example with moment redistribution 
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Compression reinforcement together with redistribution of moments is often a good solution to 
reduce cross-section heights. Support moments are very local and should not dictate the 
dimension of cross-section for the entire length of a beam. However, if compression steel is not 
applicable it is possible to use Eq. (1.4.1) to find how much of the moment can be redistributed 
without requiring compression steel. In Figure 1.4.6 the obtained design moment and resistance 
moment for different distribution factors are plotted. As seen approximately 8% of the bending 
moment can be redistributed in this example without utilizing compression reinforcement.  
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Figure 1.4.6 Design and resistance moment for different redistribution 
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2.1 Analysis and design of wall beams based on strut-and-tie models 

2.1.1 Discontinuity regions  

 

Strut-and-tie models can be used for analysis and design of so-called discontinuity regions, or 

”D-regions”. 

 

Deep beams or wall beams are examples of such D-regions, where Bernoulli’s hypothesis that 

plane sections remain plane and perpendicular to the beam axis in bending, and that 

elementary beam theory with linear bending stress distribution according to Navier’s formula 

are not valid. 

 

This is shown in Figure 2.1.1 for a simply supported wall beam with span equal the wall depth 

and uniformly distributed load q at the top.  The figure shows results from an analysis using 

two-dimensional theory of elasticity – bending stress distribution (x) at midspan and 

principal stress trajectories (compression and tension). 

The figure also shows how the load in principle can be carried by a simple strut and tie model 

with compression struts (dashed line) in concrete and a tension tie in the reinforcement, 

following the principal compression and tension trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.1 Strut-and-tie model for simply supported wall beam 
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In Eurocode 2 (EC2)  /2.1.1/ strut-and-tie models are described in clauses 5.6.4 and 6.5. 

 

EC2, 5.6.4: 

(1) Strut-and-tie models may be used for design in ULS of continuity regions (cracked state of 

beams and slabs, see 6.1 – 6.4), and for the design in ULS and detailing of discontinuity 

regions (see 6.5).  In general these extend up to a distance h (section depth of member) from 

the discontinuity.  Figure 2.1.2 shows examples of D-regions. 

 

(2) Verifications in SLS may also be carried out using strut-and-tie models, e.g. verification of 

steel stresses and crack width control, if approximate compatibility for strut and tie models is 

ensured (in particular the position and direction of important struts should be oriented 

according to linear elastic theory). 

 

(3) Strut-and-tie models consist of struts representing compressive stress fields, of ties 

representing the reinforcement, and of connecting nodes.  The forces in the elements of a 

strut-and-tie model should be determined by maintaining the equilibrium with the applied 

loads in ULS.  The elements of strut-and-tie models should be dimensioned according to rules 

given in 6.5. 

 

(4) The ties og a strut-and-tie model should coincide in position and direction with the 

corresponding reinforcement. 

 

(5) Possible means for developing suitable strut-and-tie models include the adoption of stress 

trajectories and distributions from linear elastic theory or the load path method.   

All strut-and-tie models may be optimised by energy criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.2   D-region examples  
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h = L/4 

L 

h = L/2 

q 
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q 

L 

h = L 

q 

L 

h > L 

xu = 0,5h 
xu = 0,4h 

xu = 0,28h xu = 0,28L S = 0,2qL 

T T 

T 
T 

S = 0,2qL 

S = 0,38qL 
S = 0,75qL 

x = 12,0q/b 
x = 4,5q/b 

x = 1,6q/b x = 1,6q/b 

z = 0,67h 

z = 0,62h z = 0,62h 

 

2.1.2 Simply supported wall beams 

 

Here, only wall beams will be considered since other D-regions, e.g. nodes in precast 

structures, are covered in the course Concrete structures 2. 

 

Figure 2.1.3 shows stress distributions, stress resultants and internal lever arms at midspan for 

simply supported wall beams loaded at the upper edge, for various span/depth-ratios 

L/h = 4, 2, 1 and < 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.3 Stresses, forces and internal lever arm at midspan of simply supported                       

wall beams. Uniformly distributed load at upper edge. 

 

If the load is acting at the lower edge, stress distribution, forces and lever arms are similar to 

the results in Figure 2.1.3, but the principal stress distributions are different for the two load 

situations. 

 

This is illustrated by results from FEM-analyses using the program DIANA /2.1.2/ in 

Figure 2.1.4. 
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Figure 2.1.4  Simply supported wall beams loaded at upper and lower edge. 

                       Principal stresses and stress distribution at midspan. 

 

 

For both load cases the horizontal tension resultants (S) are equal. Hence, the required 

reinforcement is equal.   

 

The strut-and tie models for the two cases will be different.  For load at upper edge the actual 

strut-and –tie model is shown in Figure 2.1.1, while for load at lower edge the load has to be 

transferred to a compression arc by vertical tension ties, requiring vertical reinforcement from 

the lower edge. 

 

Both strut-and-tie models are shown in Figure 2.1.5.  Calculated results for the two models 

can be superposed. 

Principal compressive stress Principal tensile stress 

 

Principal compressive stress 

 

Principal tensile stress 

 

Stresses at midspan 

Stresses at midspan 

 

S=0,2qL 

S=0,2qL 

z = 0,62h 

z = 0,62h 

T 

T 
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Figure 2.1.5  Strut-and tie models for different load cases 

 

 

Rules for dimensioning by strut-and tie models are given in EC2, 6.5. 

 

Struts : 

The design strength for a concrete strut in a region with transverse compressive stress or no 

transverse stress is, according to EC2, 6.5.2(1): 

 

                                                                                                (2.1.1) 

 

For concrete struts in cracked compression fields a reduced design strength according to 

EC2, 6.5.2(2) may be used: 

 

                                                                                       (2.1.2) 

 

where 

 

                                                                                          (2.1.3) 

 

 

Ties : 

Force in horizontal reinforcement may be determined as 

 

                                                                                                        (2.1.4) 

 

where MEd is the maximum moment in the span and z is the internal lever arm. 

Load at lower edge 

ck' 1 f 250  

Rd,max cd0,6 'f  

Rd,max cdf 

Ed
h

M
S

z

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For a quadratic wall beam (h = L) is 

 

                                                                                         (2.1.5) 

 

 

which corresponds to the result shown in Figure 2.1.3. 

 

The required cross section area of the horizontal reinforcement is  

 

                                                                                                        (2.1.6) 

 

 

The centre of gravity of the reinforcement should be located in the lower third of the tension 

zone according to elasticity theory. 

 

For load at lower edge the total force in the vertical reinforcement is 

 

                                                                                                            (2.1.7) 

 

The required cross section area of the vertical reinforcement is  

 

                                                                                                         (2.1.8) 

 

This vertical reinforcement is distributed along the entire span. 

 

 

Nodes : 

EC2, 6.5.4(2)P :   

The forces acting at nodes shall be in equilibrium (of course).  Transverse tensile forces 

perpendicular to an in-plane node shall be considered. 

 

EC2, NA.6.5.4(4) : 

Design strength at nodes is  

 

a) In compression nodes where no ties are anchored at the node 

 

                                                                                     (2.1.9) 

 

 

b) In compression-tension nodes with anchored ties in one direction 

 

                                                                                    (2.1.10) 

 

 

c) In compression-tension nodes with anchored ties in more than one direction 

 

                                                                                          (2.1.11) 

 

2

h

qL 8
S 0,2qL

0,62L
 

h
sh

yd

S
A

f


vS qL

v
sv

yd

S
A

f


Rd,max cd' f  

Rd,max cd0,85 'f  

Rd,max cd0,75 'f  
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2.1.3 Example - Design of simply supported wall beam 

 
Given a wall beam with uniformly distributed load in ULS at upper and lower edge, 

qEd = 150 kN/m.   

The actual strut-and-tie model is a combination of the models in Figure 2.1.3.  

The wall thickness is 250 mm, and the support length is 300mm. 

 

Materials:    Concrete B30 ;                        2
cd

0,85
f 30 17N/ mm

1,5
      

                    Reinforcement B500NC;        2
yd

500
f 434N / mm

1,15
   

 
Distribution of horizontal reinforcement is chosen over 400mm from the lower edge, and the 

internal lever arm is z = 0,62h = 3100mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inclination angle of struts T3 is:          
3100

arctan( ) 68
1250

    

 

Concentrated loads at upper edge:      Ed totalq L 150 5,3
397,5kN

2 2


   

 

 

Concentrated loads at lower edge:      Edq (L 0,3) 150 4,7
352,5kN

2 2

 
   

 

L = 5000 

h = 5000 

z = 3100 

200 

300 

1250 1250 



T1 

T3 

T2 

T1 

T3 

S1 

S2 S2 

352,5 kN 352,5 kN 

397,5 kN 397,5 kN 

2 

1 

4 

3 

R 
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400 

300 

68 

T3 

c1 

c2 

t3 = 428 

R 

S1 

Strut and tie forced determined by equilibrium conditions: 

 
Node 3: 

 

Support reaction :   total2qL
R 150 5,3 795kN

2
     

Strut 3 :             3

R 795
T 857,4kN

sin sin68
  


 

 

Tie 1    :             1 3S T cos 857,4 cos68 321,2kN        

                          ( total0,2 2q L 318kN   , according to Figure 2.1.3 ) 

 

Node 4 : 

 

Tie 2    :             2

q(L 0,3) 150 4,7
S 352,5kN

2 2

 
    

 

Further is          1T 397,5kN    and   2 1T S 321,2kN   

 

 

 

Required reinforcement: 

 

Horizontally: 21
sh

yd

S 321200
A 740mm

f 434
   .  Choose 4ø16  Ash = 804mm

2 

 

Vertically: 22
sv

yd

2S 2 352500
A 1624mm

f 434


   .  ø12s325 along 4,7m  Asv=1636mm

2 

 

Control of node 3 at the support: 
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Width of strut T3 : 

 

1
1

t
sin68 t 278,2mm

300
    

 

2
2

t
cos68 t 149,8mm

400
    

 

1 2t t t 428mm    

 

Reduced design strength of concrete, reinforcement anchored in one direction, according to 

Eq. (2.1.10) : 

 

2
Rd,max

30
0,85 (1 ) 17 12,7N / mm

250
       

 

Concrete compressive stresses: 

 

Strut T3 : 
23

c2 Rd,max

T 857400
8,0N / mm

bt 250 428
     


     OK! 

 

Support: 2
c1 Rd,max

R 795000
10,6N / mm

b 300 250 300
     

 
   OK! 

 

The results of the strut-and-tie calculations are shown in the figure: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Horizontal reinforcement, 

bottom 

416  Ash = 804 mm
2
 

 

Vertical reinf., distributed 

c325  Asv = 348 mm
2
/m 

 

Max compressive stress in 

concrete 

 c,max = 10,6 N/mm
2 
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Further, a nonlinear FEM-analysis with DIANA is carried out to check the capacity of the 

wall beam. 

Figure 2.1.6 shows the finite element model with pinned support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.6  Finite element model for analysis of wall beam 

 

 

The horizontal reinforcement is defined by ”reinforcement bar” as shown in the figure, while 

the vertical reinforcement is define by ”reinforcement grid” vertically in the entire wall. 

 

Material data: 

 

Reinforcement elastic-ideal plastic with Es = 200000 N/mm
2
 and yield strength 434 N/mm

2
. 

 

The assumed stress-strain behaviour of concrete is shown in Figure 2.1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.7   Stress-strain curve for concrete in the DIANA-analysis 

-17 

fctd = 1,13 

MPa



20000 

0,0005 
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The reference load qEd = 150 kN/m is applied at upper and lower edge. 

The analysis is performed using rotating crack model for concrete, successive load 

incrementation and a numerical solution technique with arc length control.   

 

Figure 2.1.8 shows the load-deflection curve at midspan at the lower edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.8  Load-deflection at midspan from DIANA-analysis 

 

 

The ordinate axis ”load” gives a load factor, where 1,0 corresponds to the reference load  

(150 kN/m).  The results indicate a load capacity of the wall beam approximately as 0,97qEd, 

or ca 145 kN/m, hence closed to the design load used in the strut-and-tie calculations.   

 

By studying the DIANA results for the first peak of the load-deflection curve (load step 11), 

it is obvious that the reinforcement stresses are well below the design strength, while 

maximum compressive stress at the supports is 10,2 N/mm
2
, i.e. approximately the same as 

calculated in the strut-and-tie model.  The concrete design strength is 17 N/mm
2
, hence 

neither reinforcement nor concrete stresses should cause capacity limitation shown in the 

computed load-deflection diagram. 

 

A possible reason for failure may be formation of shear cracks. 

Figure 2.1.9 shows strains perpendicular to cracks at load steps 16 and 24 (see Figure 2.1.8), 

and illustrates clearly how skew shear cracks develop.  At both these load steps the stress in 

the vertical reinforcement has reached the design strength in the cracks.  

MIDSPAN  DEFLECTION 

Lod step 11 Load step 16 Load step 24 
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Load step 16 Load step 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.9  Strains perpendicular to cracks showing localised shear cracking 

 

 

Minimum reinforcement in walls 
 

This kind of unintended failure in wall beams can be avoided by reinforcement grids that 

satisfy minimum requirements for vertical and horizontal reinforcement. 

 

Rules for this are given in EC2, 9.6 and NA. 

 

EC2, NA.9.6.2 specifies minimum required vertical reinforcement:   As,vmin = 0,002Ac , 

and from EC2, NA.9.6.3 minimum horizontal reinforcement as 

As,hmin = max{0,25Asv ;  0,3Acfctm/fyk}. 

 

This means for the example: 

 

                  2
s,v minA 0,002 250 1000 500mm / m     

 

                    2
s,hminA max 0,25 500;0,3 250000 2,9 /500 435mm / m      

 

With ”reinforcement grid” in the DIANA-example with these reinforcement cross sections, 

the computed load-deflection curve is shown in Figure 2.1.10. 

The load capacity is found at load step 13 with a load factor 1,13, i.e. a load approximately 

170 kN/m. 

 

The load-deflection curve can be followed up to load step 30 with a load factor ca 1,28  

(q = 190), but his is fictitious, since the convergence criteria are not satisfied beyond load step 

13.   Hence, the correct load capacity is 170 kN/m, and design by the strut-and-tie model is to 

the safe side with the minimum reinforcement grid. 
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MIDSPAN  DEFLECTION 

Load step  13 
Load step 30 

L = 5m L = 5m 

h = 5m Wall thickness 

t = 100 mm 

q = 100 kN/m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.10 Load-deflection at midspan from DIANA-analysis with minimum wall 

reinforcement according to EC2 

 

 

2.1.4 Continuous wall beams 

 

In order to illustrate the behaviour of continuous wall beams, consider the two-span wall 

beam in Figure 2.1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.11 Two-span wall beam loaded at upper edge 
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a) Principal 

    tensile stresses 

b) Principal 

    compressive 

    stresses 

c) Stress at mid-support d) Stress at midspan 

Tfield 

Tsupport 

Ssupport 

Sfield 

 

Figure 2.1.12 shows results from a linear DIANA-analysis for the two-span wall beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.12 Results from  linear DIANA-analysis 
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qL/2 qL/2 qL/2 qL/2 

Strut  

 

Tie 

Based on the principal stress distribution and the stress resultants in Figure 2.1.12, a possible 

simplified strut-and-tie model is shown in Figure 2.1.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.13   Simplified strut-and-tie model for continuous wall beam 

 

 

Strut and tie forces are determined by equilibrium conditions as in example 2.1.1, and 

concrete compressive stress is controlled at the nodes. 

In addition minimum wall reinforcement grid according to EC2 has to be included. 

 

The practical reinforcement layout will be half of the reinforcement at each wall surface, 

i.e. double reinforcement layer. 

 

Figure 2.1.14 shows an example of reinforcement layout in a two-span wall beam.   

The figure is taken from refs. /2.1.3/ and /2.1.4/.  In these references one may find more about  

strut-and-tie models for wall beams, and references to other literature on the subject. 
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Figure 2.1.14 Example of reinforcement layout in a two-span wall beam from refs. 

/2.1.3/ and /2.1.4/ 
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2.2 Analysis and design of deep beams based on compression field theory 

2.2.1 Fundamentals 

 

By linear elastic finite element analyses of deep beams (wall beams), the in-plane orthogonal 

stresses x , y , xy are determined.  The stress resultants (in-plane forces)  Nx , Ny og Nxy  are 

obtained by multiplying with the beam thickness  t . 

 

Actual  problems in the Ultimate Limit State (ULS): 

 

1) Determine required beam thickness and reinforcement for given Nx , Ny og Nxy  . 

2) Check capacity of a reinforced deep beam for given Nx , Ny og Nxy  . 

 

Theoretically, it is possible that the reinforcement layout mirrors the principal force 

trajectories N1 and N2, and hence all the reinforcement is fully utilized when the concrete 

cracks.  However, generally the principal forces vary in both magnitude and direction in the 

beam, which makes a principal force trajectories reinforcement layout impossible. 

 

Here, only orthogonal reinforcement meshes will be considered. 

 

In ULS design it has to be decided whether or not the tensile strength of the concrete should 

be included.   The tensile strength may be reduced due to several causes: 

 

1) Tensile stresses due to restraining of temperature and/or shrinkage strains may result 

in cracking. 

2) The tensile strength is reduced due to permanent and repeated loads. 

3) Beam tests indicate no significant influence to the failure load from the concrete in 

tension. 

  

 

The tensile strength is therefore assumed to be zero in the ULS design. 

This assumption will, as will be shown later, result in a simple design procedure with closed 

solutions for the unknown quantities. 

  

 

Based on this assumption design methods proposed by Baumann /2.1.1/ and Hagberg /2.1.2/ 

and /2.1.3/ will be presented in the following. 
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Reinforcement 

2.2.2 Forces in concrete and reinforcement 

 

Equilibrium equations for a cracked, reinforced element give relations between external 

forces in ULS  Nx , Ny , Nxy   and internal forces in reinforcement and concrete  Fsx , Fsy og Fc. 

Figure 2.2.1 shows external forces from an elasticity theory analysis (normally from a finite 

element analysis) and internal forces in a cracked element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.1  External and internal forces in a cracked element 

 

  

With wall thickness t and reinforcement per unit length in  x- and y-directions respectively, 

 Asx , Asy , the internal forces can be expressed by the stresses in concrete and reinforcement 

as: 

 

 

Force in the concrete compression field:    Fc = σc∙t                      (positive in compression) 

 

Forces in reinforcement:                             Fsx = σsx∙Asx 

                                                                                                         (positive in tension)          

                                                                     Fsy = σsy∙Asy 

 

 

The angle between cracks and the y-axis is φ as shown in the figure, and the concrete between 

the cracks represents the so-called compression field. 
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Figure 2.2.2 shows a section parallel to the y- and x-axes at a crack 

 

 

 

 

 

 

 

 

 

 

 

 

 

          (a)    Section || y-axis                                                     (b)   Section || x-axis 

 

Figure 2.2.2   External and internal forces in sections parallel to the axes 

 

 

 

Equilibrium in y-direction in (a) or x-direction in (b) gives 

 

             Nxy = Fc∙sinφcosφ 

or 

Fc =  Nxy / sinφcosφ                                                                                             (2.2.1) 

 

 

               Fsx = Nx + Fc∙sin
2
φ 

 

With Fc from Eq.(2.2.1)  

 

Fsx = Nx + Nxy∙tanφ                                                                                             (2.2.2) 

 

 

Equilibrium in y-direction in (b) gives 

 

               Fsy = Ny + Fc∙cos
2
φ 

or 

  Fsy = Ny + Nxy∙cotφ                                                                                              (2.2.3) 

 

 

 

 

Eqs. (2.2.1) - (2.2.3) give the internal forces in concrete and reinforcement expressed by the 

external actions (in-plane forces) and the crack angle φ. 

 

As soon as the crack angle is found, the equations can be used to calculate required 

reinforcement in both directions, and to check the stress in the compression field compared to 

the design compressive strength of the concrete.  
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2.2.3 Crack angle 

 

The crack angle φ can be found in different ways: 

 

Alternative1: 

 

The principal tension direction is calculated based on homogeneous, isotropic and linear 

elastic material.  Cracks are assumed to develop perpendicular to this direction.   

 

The maximum principal tensile force is 

 

                        
 

2

x yx y 2
1 xy

N NN N
N N

2 4


     

 

The crack angle is found from 

 

                         
xy

1 y

N
tan

N N
 


 

 

This method results in equal reinforcement forces in x- and y-direction 

 

                          sx sy 1F F N   

 

Therefore, the method requires equal reinforcement amounts in the two directions, and 

represents a conservative approach. 

 

Laboratory tests show that the first cracks correspond well with the crack angle in this 

approach, and represent the transition between an uncracked (State I) and a cracked state 

(State II).  By further loading, or repeated loading, new cracks develop in different directions 

than the first, and these close.  This is due to the stiffness change when the cracks occur, and 

is particularly pronounced with significant difference between reinforcement and principal 

tension directions. 

 

 

 

Alternative 2: 

 

A better alternative is to calculate the crack angle corresponding to yielding of reinforcement 

in both directions.  This implies full utilization of the reinforcement, and hence an economical 

approach. 

With design strength in reinforcement in ULS fyd , the internal forces in the reinforcement are 

expressed as: 

 

                          Fsx = Asx∙fyd       og      Fsy = Asy∙fyd 

Therefore 

                          fyd =  Fsx / Asx  =  Fsy / Asy 
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principal tension 

crack 

Nxy 

positive 

φ positive 

x 

y 

deformed  

element 

With Fsx and  Fsy  from Eqs.(2.2.1) and (2.2.3): 

 

                           











tan

1
NN

A

1
tanNN

A

1
xyy

sy
xyx

sx

  

 

 

Multiplying this equation with Asxtanφ /Nxy results in a simple 2
nd

 degree equation in tanφ.  

 

 

                                                          (2.2.4) 

 

 

Eq. (2.2.4) has two roots for tanφ and the crack angle φ (one positive and one negative).  The 

correct root is illustrated in Figure 2.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.3 Choice of correct root for the crack angle 

 

The figure shows that the crack angle is chosen with the same sign as the in-plane shear force, 

positive Nxy corresponds to positive φ ,  negative Nxy corresponds to negative φ . 

 

 

 

Alternative 3: 

 

A third alternative approach is based on the assumption of linear elastic reinforcement and 

concrete in compression, and no tensile strength of concrete, i.e. a typical ”State II – 

situation”. 

 

For a linear elastic material the work done per unit volume of the material is: 

 

                        i

2
1

dA dV
2

dV
2E

  


 

 

2tan tan 0
yx sx sx

xy xy sy sy

NN A A

N N A A
 

 
       
 
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The internal work in reinforcement in x- and y-direction of a reinforced element with volume 

t·1·1, is: 

 

                       

22
sx sx sx

isx isx
s sx sV V

1 F A
A dA dV

2E 2 A E

 
    

 
   

and 

                       

22
sy sy sy

isy isy
s sy sV V

F A1
A dA dV

2E 2 A E

 
    

 
 

   

 

It can be shown that the internal work in the concrete is small compared to the reinforcement. 

The total internal work is therefore approximated as: 

 

                        
   

2 2

x xy y xy
i isx isy

s sx sy

N N tan N N cot1
A A A

2E A A

    
    
 
 

 

 

A crack will develop in the direction corresponding to minimum internal work, hence: 

  

                         idA
0

d



 

 

By carrying out the differentiation a 4
th

 degree equation in tanφ is obtained: 

 

                                              (2.2.5) 

 

 

Design according to Eq. (2.2.5) corresponds to initial yielding in one reinforcement direction. 

This implies that this approach ensures a certain control of deformations and crack widths.  In 

the Serviceability Limit State (SLS), this approach should be used. 

 

 

2.2.4 Control of concrete stress in the compression field 

 

According to EC2, 6.5.2(2), a reduced design compressive strength for concrete in the 

compression field has to be used: 

 

                                                                                             (2.2.6) 

 

where             ck' 1 f / 250    

 

 

 

4 3tan tan tan 0
yx sx sx

xy xy sy sy

NN A A

N N A A
        

Rd,max cd0,6 'f  
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2.2.5 Example - Design based on compression field theory 

 
From a linear FE analysis of a deep beam with thickness t = 100mm, the state of stress in an 

element is: 

 

    x = 5,0 N/mm
2
  (tension) ;   y = - 2,0 N/mm

2
  (compression)  ;  xy = 2,5 N/mm

2
   

 

Hence, in-plane forces are:    Nx = 500 N/mm ;  Ny = - 200 N/mm  ;  Nxy = 250 N/mm 

 

Materials: 

Concrete C30  fcd = 17 N/mm
2
 ; Reinforcement B500NCfyd = 434 N/mm

2
 

 

 

Calculate required reinforcement and check the concrete stress in the compression field for all 

three alternative crack angle approaches. 

 
 
 
Alt.1: Crack angle based on homogeneous, isotropic and linear elastic material 

 

Max principal force :      
 

2
2

1

500 200500 200
N 250 580N / mm

2 4


     

Crack angle :   
250

tan 0,3205
580 ( 200)

  
 

         17,8   

 

Forces in reinf.:   Fsx = Fsy = N1 = 580 N/mm 

 

 

Required reinf.:  Asx = Asy = 580000/434 = 1336 mm
2
/m 

 

Compressive force in concrete :  c

250
F 859N / mm

sin17,8 cos17,8
 


 

 

Compressive concrete stress :  2c
c

F 859
8,59N / mm

t 100
     

 

Reduced concrete strength :  2
Rd,max

30
0,6 1 17 8,98N / mm

250

 
      

 
 

 

Hence  c Rd,max       OK 
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Alt.2: Crack angle based on yielding of reinforcement in both directions 
 

 

When Ny is compressive, it is reasonable to assume more reinforcement in x-direction than in 

y-direction. 

Eurocode 2 requires both vertical and horizontal wall reinforcement. 

 

Assume Asx/Asy = 3 

 

 

Eq.  (2.2.4):  

 

     2 500 200
tan 3 tan 3 0

250 250

 
       

 
 

     2tan 4,4 tan 3 0         Solution  tan 0,6       31   

 

 

 

Reinforcement forces: 

 

     sxF 500 250 0,6 650N / mm       ;    sy

1
F 200 250 217N / mm

0,6
      

 

Required reinforcement:   2sx
sx

yd

F 650000
A 1500mm / m

f 434
    

                                          
sy 2

sy
yd

F 217000
A 500mm / m

f 434
    

 

(The reinforcement ratio equals 3 as presumed) 

 

 

 

Compressive force in concrete:  c

250
F 566N / mm

sin31 cos31
 


 

 

Compressive concrete stress:  2c
c

F 566
5,66N / mm

t 100
     

 

Hence  c Rd,max       OK 
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f() 

 
20 30 

40 

-1 

-2 

1 

Solution    37 

Alt.3: Crack angle based on linear elastic reinforcement 
 

 

Assume the same reinforcement ratio as Alt.2:  Asx/Asy = 3 

 

Eq. (2.2.5):  

 

              4 3500 200
tan tan 3 tan 3 0

250 250


          

 

or       4 3f ( ) tan 2 tan 2,4 tan 3 0         

 

This equation may be solved using an advanced calculator, but not with the calculators 

allowed for exams at NTNU. Therefore it has to be solved by iteration or trial and error. 

 

A simple graphical method: 

 

Choose values for  and calculate f().  Solution when f() changes sign: 

 

 = 20 :    f() = 0,0175 + 0,0964 + 0,8735 – 3 = -2,01 

 

 = 30 :    f() = 0,111 + 0,3849 + 1,3856 – 3  =  -1,12 

 

 = 40 :    f() = 0,496 + 01,180 + 2,014 – 3  =  0,69 

 

 

Plot result: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control by inserting  = 37 : 

 

     f() = 0,322 + 0,856 + 1,810 – 3  =  - 0,01 ;   dvs   0    OK 

 

     tan 37 = 0,75 
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Reinforcement forces: 

 

     sxF 500 250 0,75 688N / mm       ;    sy

1
F 200 250 133N / mm

0,75
      

 

Required reinforcement:   2sx
sx

yd

F 688000
A 1585mm / m

f 434
    

                                          
sy 2

sy
yd

F 133000
A 306mm / m

f 434
    

 

Here Asy <  Asx/3 ,as was presumed. 

 

Hence, required y-reinforcement:      2sx
sy

A 1585
A 528mm / m

3 3
    

 

This means that reinforcement in  y-direction is not fully utilized. 

 

The stress is    
sy 2

sy
yd

F 133000
306N / mm

f 434
     

 

This approach is based on linear elastic reinforcement. Here the x-direction reinforcement 

reaches initial yield, while strains are smaller in y-direction. 

This means that one has some control of the strains, in contradiction to Alt.2, where the 

strains are unlimited.  SLS requirements for crack widths are therefore more likely to be 

satisfied when design is based on Alt.3. 

 

 Compressive force in concrete:  c

250
F 520N / mm

sin37 cos37
 


 

 

Compressive concrete stress:     2c
c

F 520
5,2N / mm

t 100
     

 

Hence  c Rd,max       OK 

 

Comparing total reinforcement amount ( As,tot = Asx + Asy ) :  

 

Alt.1 :   As,tot = 2·1336 = 2672 mm
2
/m 

 

Alt.2 :   As,tot = 1500 + 500 = 2000 mm
2
/m 

 

Alt.3 :   As,tot = 1585 + 528 = 2113 mm
2
/m 

 

This shows that design based on Alt.1 requires 26% and 33% more reinforcement than Alt.3 

and Alt.2, respectively. 
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1,7m 

1,0m 

2.2.6 Practical design/capacity control using compression field theory 

 

The example in chapter 2.2.5 shows how a single point in a deep beam can be designed by 

compression field theory.  It is obviously not suited for a complete design of the entire beam, 

and definitively not by hand calculations. 

 

Most consulting companies have their own post-processing programs with interface to some 

FE program.  The stress resultants from a linear FE analysis are treated in the post-processor 

as in the example in chapter 2.2.5, and results in varying reinforcement all over the deep 

beam. Reinforcement layout is chosen based on these results.  The post-processor is then used 

to check the capacity in all elements with the chosen reinforcement.  The results are presented 

as utilization ratios for reinforcement and concrete.   

 

 

 

 

2.2.7 Example - Capacity control for specified reinforcement 

 
A linear analysis of the deep beam designed in the example in chapter 2.1.3 is carried out.   

The figure shows a chosen point with the following stresses: 

 

          x = 0,14 N/mm
2
  ;  y = 0,49 N/mm

2
  ;  xy = - 0,265 N/mm

2
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In-plane forces when the wall thickness is t = 250 mm: 

 

          Nx = 35 N/mm   ;   Ny = 123 N/mm   ;   Nxy = - 66 N/mm    

 

Minimum reinforcement according to EC2 was chosen as an orthogonal mesh with 

 

          Asx = 435 mm
2
/m    og    Asy = 500 mm

2
/m      Asx/Asy = 0,87 

 

It is reasonable to believe that the reinforcement stresses are smaller than the design strength, 

i.e. in the linear elastic region.  Therefore, Alt.3 is chosen to calculate the crack angle.  
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The following 4
th

 degree equation has to be solved: 

  

                 4 335 123
tan tan 0,87 tan 0,87 0

66 66
        

 
 

 

or             4 3tan 0,53 tan 1,62 0,87 tan 0,87 0        

 

Solution:   tan = -1,171    and    = - 49,5 

 

Forces in reinforcement: 

 

                    sxF 35 66 1,171 112N / mm       

 

                 sy

66
F 123 179N / mm

1,171


  


 

 

Reinforcement stresses and utilization ratios: 

 

                 2
sx

112000
257N / mm

435
       sx

sx
yd

257
0,59

f 434


     

 

                 2
sy

179000
358N / mm

500
        

sy
sy

yd

358
0,82

f 434


     

 

The nonlinear DIANA-analysis in the Example in section 2.1.3  resulted in a load capacity of  

170 kN/m, while the deep beam was designed for a load of 150 kN/m. 

Hence, the utilization ratio at the reference load was 150/170 = 0,88.   

Since the point considered here not necessarily is the most stressed, one may conclude that it 

is good correspondence in utilization ratios from the DIANA analysis and according to the 

compression field theory. 

 

2.2.8 References 

 

/2.1.1/ Baumann: ”Tragwirkung orthogonaler Bewehrungsnetze beliebiger Richtung in 

Flächentragwerken”, Deutscher Ausschuss für Stahlbeton, Heft 217, 1972,  (in 

German) 

 

/2.1.2/ Hagberg: ”Dimensjonering for skjærkrefter utenom bøyningsplan”, 
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3.1 Two-way slabs – analysis and design base on theory of elasticity 

3.1.1 Introduction 

 

In two-way slabs the loads (usually self-weight and live load) are carried in two directions, 

resulting in bending moments in two directions, Mx and My , and also torsion moment  Mxy. 

 

How much load that is carried in the two directions depends on the span ratio. 

Figure 3.1.1 shows a quadratic slab with span ratio Ly/Lx = 1,0 , and a rectangular slab with 

span ratio Ly/Lx = 2,0 .  The slabs are simply supported along all four edges. 

 

The figure shows deflection lines in x- and y-direction.  Because the deflection in the middle 

of the slab is equal for both directions it is obvious that the curvature and the bending moment 

in the shortest span direction (x-direction) are largest. 

This means that the major share of the load is carried in the shortest span direction.  For the 

quadratic slab the two directions are identical, and half the load is carried in each direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 Deflection lines for slabs with different span ratios 
 

 

Common practice is that a slab with span ratio Ly/Lx > 2,0 is considered as a one-way slab 

where all load is carried in the x-direction, i.e. the shortest span direction. 

 

In this case x-direction is reinforced for the bending moment MEd = qEdLx
2
/8 (moment per unit 

length in y-direction), while minimum reinforcement according to EC2, NA.9.2.1.1(1) is 

required in y-direction. 
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The torsion effect is visualized in Figure 3.1.2.  The deflection lines at a section close to the 

support edge (1-1) and at midspan (2-2) are shown in the same figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.2 Visualization of the torsion effect in a two-way slab 
 

 

 

The figure shows that the strip ABC is rotated at B but not at A.  This results in the torsion 

moment Mxy. 

 

A popular simplification for analysis of two-way slabs is to neglect the torsion effects, and the 

loads are carried by pure bending of strips in x- and y-direction.  In this approach the bending 

moments will be larger than if the torsion stiffness is included.  Hence, the method results in 

reinforcement quantities to the safe side.  The method is called “Strip method”, and is 

described in detail in Chapter 3.3. 

 

A complete solution including both bending and torsion moments requires analysis according 

to the theory of elasticity. 

For rectangular slabs with distributed loads and ideal boundary conditions, a large number of 

handbooks with tabulated moments and deflections are available. 

For general slab geometries, loads and boundary conditions, analysis by finite element 

programs, e.g. DIANA /3.2.1/, is appropriate. 

 

Here, only rectangular two-way slabs will be considered. 

 

 

 

Section 2-2 

Section 1-1 
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3.1.2 Theory of elasticity for plates 

 

The classical theory of elasticity for plates loaded perpendicular to the plate plane was derived 

early 1800. 

Figure 3.1.3 shows an infinitesimal plate element in xy-plane, with bending moments Mx and 

My , torsion moments Mxy and Myx and shear forces Vx og Vy . 

The plate is subjected to a distributed load in z-direction, q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.3  Infinitesimal plate element 
 

 

 

Equilibrium conditions result in the equilibrium equation of the plate: 

 

 

                                                                         (3.1.1) 

 

 

 

Here Mxy = Myx  due to shear stresses occur in pairs,  i.e. xy = yx . 

 

Eq. (3.1.1) is a pure equilibrium equation, independent if the material is elastic or plastic, and 

independent of Poisson’s effect and if the plate is isotropic or anisotropic. 

 

 

 

 

2 22
xy yx

2 2

M MM
2 q

x yx y

 
    

  
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Further assumptions: 

 

1 The material is linear elastic and isotropic, hence, Hooke’s law is valid. 

2 Deflections are small compared to the thickness of the plate. 

3 Kirchhoff’s hypothesis is valid (similar to Navier/Bernoulli for beams). 

4 Plane stress state in xy-plane. 

 

Using these assumptions as basis for strain compatibility results in the following expressions 

for bending and torsion moments : 

 

 

                                                                             (3.1.2) 

 

 

 

                                                                             (3.1.3) 

 

 

 

                                                                               (3.1.4) 

 

 

Here : 

                w = deflection of the plate (positive in positive z-direction) 

                  = Poisson’s ratio 

 

                
 

3

2

Eh
D

12 1


 
 = plate flexural stiffness  

Eqs. (3.1.2)-(3.1.4) into Eq.(3.1.1) results in a fourth order partial differential equation for 

elastic bending of isotropic plates.  The equation is called the Lagrange-equation:  

 

 

                                                                        (3.1.5) 

 

 

Eq. (3.1.5) is valid for ”medium thick plates”.  In practice these are plates sufficiently thin so 

the shear deformations can be neglected, but also sufficiently thick so that the effects of 

membrane forces can be neglected.  This is normally satisfied if  h  Lx/8 and  w  h/2. 

 

Reinforced concrete slabs will normally be within these limits for slab thickness.  

 

Eq. (3.1.5) can be solved analytically for rectangular plates with ideal boundary conditions. 

Detailed derivation of the theory, and solutions for a number of cases for rectangular plates 

can be found in the book ”Theory of Plates and Shells” by Timoshenko and Woinowsky-

Krieger /3.2.2/. 

 

 

2 2

x 2 2

w w
M D

x y

  
       

2 2

y 2 2

w w
M D

y x

  
       

 
2

xy

w
M D 1

x y


     

 

4 4 4

4 2 2 4

w w w q
2

Dx x y y

  
   

   
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Deflection Bending moment 

Tables for moments and deflections for various support conditions and span ratios can be 

found in the German handbook ”Betonkalender” /3.2.3/ and in the Swedish handbook ”Bygg” 

/3.2.4/. 

Ref. /3.2.3/ gives results for Poisson’s ratio  = 0, while ref. /3.2.4/ gives results for  = 0 and  

 = 0,3. 

 

Table 3.1.1 shows bending moments and deflections at midspan in a simply supported, 

rectangular plate subjected to uniformly distributed load, q, for span ratios  Lx/Ly ranging 

from 1,0 to ∞.  Poisson’s ratio  = 0. 

Mx is the moment in the shortest span direction (x-direction). 

 

Table 3.1.1  Bending moments and deflections of simply supported rectangular plate,  

 =0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An average value of Poisson’s ratio for concrete is  = 0,2.  In design of reinforced concrete 

slabs, bending moments for  = 0 directly from the table are often used.  The reason for this is 

that a concrete slab will always crack.  Tensile stresses then have to be carried by 

reinforcement in two directions.  Reinforcement stresses in one direction can only influence 

the reinforcement stresses in the other direction transferred by the concrete between cracks.  

This transfer is not much effective in cracked concrete.  The compressive stresses in the 

concrete will to a certain extent be influenced by the lateral contraction, but as most concrete 

slabs are under-reinforced with partly utilized concrete in the compression zone, this will not 

influence the moment distribution significantly. 

 

If the bending moments for e.g.  = 0,2 are wanted, these can be found as : 

 

         Mx,  = 0,2 = Mx + My   ;         Mx and My  from Table 3.1.1. 
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The table shows that for a span ratio of 3,0 the moment in x-direction is  

 

                  
2

2x
x x

qL
M 0,118qL

8,5
   

 

For a one-way slab the moment is 

 

                  
2

2x
x x

qL
M 0,125qL

8
   

 

This means that considering the slab as a one-way slab implies that the moment in the 

principal direction is approx. 6% larger than according to the theory of elasticity. 

 

 

Deflection from Table 3.1.1 for the same plate is 

 

                  
4
x
3

qL
w 0,147

Eh
   

 

For one-way slab the deflection of a simply supported strip with unit width is 

 

                  
4 4 4
x x x

3 3

5 qL 5 qL qL
w 0,156

384 EI 384 1 h Eh
E

12

     


 

 

Hence, the one-way assumption will over-estimate the deflection with approx. 6%. 

 

Comparing the two-way and one-way assumption for Ly/Lx = 2,0 results in over-estimation of 

the moment approx. 30% and the deflection approx. 28% by considering the slab as one-way. 

 

This implies that the common practice, assuming that a slab may be considered as a one-way 

slab if the span ratio is larger than 2,0, is rather conservative for span ratios between 2,0 and 

3,0. 

For Ly/Lx = 2,5 both moment and deflection will still be approx.15% larger for one-way 

assumption than according to the theory of elasticity.. 

 

It should also be mentioned that in ref. /3.2.2/, Timoshenko and Woinowsky-Krieger conclude 

that one-way assumption is relevant for span ratios larger than 3,0. 

 

 

Conclusion:   

 

It is recommended to calculate a slab as two-way if  Ly/Lx < 3,0, even if  EC2, 5.3.1(5) says 

that with Ly/Lx > 2,0 , it can be considered to be a one-way slab. 
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Torsion Shear forces Support pressure 

a) Moments b) Shear forces and support pressure 

Table 3.1.2 gives values for maximum torsion moment Mxy (at slab corners), maximum shear 

forces Vx and Vy (at the middle of edges) and maximum support pressure Vx* and Vy* (at the 

middle of edges).  The table is valid for  = 0. 

 

Table 3.1.2 Torsion moments, shear forces and support pressure for simply supported 

rectangular plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.4 shows bending moments, torsion moments, shear forces and support pressure for 

a plate with span ratio  Lx/Ly = 1,5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.4 Section forces for simply supported plate with Ly/Lx = 1,5 
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The plate in Figure 3.1.4 is seen from top, i.e. in positive z- and q-direction referred to 

Figure 3.1.3. 

 

Positive and negative directions of the torsion moments are shown by action symbols in 

Figure 3.1.4a.  Considering the lower right corner of the plate in Figure 3.1.4a, the torsion 

moments may be visualized as shown in Figure 3.1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.5 Effect of torsion at plate corner 
 

 

Figure 3.1.5a shows torsion moments for lengths dx and dy along the x- and y-axis 

respectively (Mxy in the table is moment per unit length). 

In Figure 3.1.5b these torsion moments are replaced by equivalent force couples.  The 

equivalent forces counteract each other in the section borders along the entire plate edge.   

In the corner an upwards force remains. The magnitude of the force is Mxy from both edges. 

 

The internal stresses and curvatures in the plate results in an uplift force, R, in the corner: 

 

    R = 2·Mxy                                                                                                  (3.1.6) 

 

If the plate is not anchored in the support for this force, the corners will lift. 

Note that if the corners are free to lift, the section forces in the plate will change because these 

are determined based on boundary condition w = 0 along the entire length of all the support 

edges. 

 

a) Torsional moments near plate corner 

b) Equivalent couples replacing the torsional moments 
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In Figure 3.1.4b, dashed lines show shear forces while solid lines represent the support 

pressure. 

 

The reason for the difference between support forces and shear forces is that while the total 

shear forces are in equilibrium with the resultant of the plate load, q·Lx·Ly , the support forces 

in addition have to balance the four anchoring forces at the corners. 

 

For rectangular plates rotationally fixed along all four edges, or simply supported along two 

parallel edges and fixed along the two other, see tables in refs. /3.2.3/ and /3.2.4/.   

 

Tables for hydrostatic load (triangular load) can also be found in these handbooks. 

 

 

 

 

3.1.3 Design of reinforced concrete two-way slabs 

 

 

General requirements for slabs are given in Eurocode2. 

 

EC2, 5.4 : 

 

(1) Linear analysis of elements based on the theory of elasticity may be used for both the 

serviceability and ultimate limit states. 

(2) For the determination of the action effects, linear analysis may be carried out 

assuming: 

(i) uncraccked cross sections 

(ii) linear stress-strain relationships and 

(iii) mean value of the modulus of elasticity. 

 

For two-way slabs, in practice this means theory of elasticity as described in Chapter 3.1.2. 

 

 

 

EC2, 9.3 : 

 

(1) This section applies to one-way and two-way solid slabs for which b and Leff are not 

less than 5h (see 5.3.1)  

 

 

This section specifies requirements for principal reinforcement in the slab wit respect to 

minimum reinforcement, spacing, reinforcement close to supports, corner reinforcement and 

reinforcement at free edges. 

 

In particular, 9.3.1.3(1) says that if the detailing arrangements at a support are such that lifting 

of the slab at a corner is restrained, suitable reinforcement should be provided. 
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Figure 3.1.6 shows the deflection of the diagonal in a quadratic slab with anchored corners. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.6 Deflection of diagonal in slab with anchored corners. 
 

 

 

The figure shows tension at top surface at the corner regions.  Distribution of cracks due to 

this tension is acceptable with top reinforcement according to EC2, 9.3.1.2(2). 

 

Swedish handbooks recommend top reinforcement at the corners for a bending moment in the 

diagonal direction 

 

 

                                                                                     (3.1.7) 

 

 

 

 

Ultimate limit state 
 

Dimensioning in ULS should be carried out separately for x- and y-direction 

 

Reinforcement in x-direction (shortest span direction) should be given the largest effective 

depth dx. 

 

Reinforcement in y-direction will then have an effective depth dy = dx – 0,5x - 0,5y , where  

x  and y are reinforcement diameters in x- and y-direction, respectively. 

 

 

Corner 

anchored 

Corner 

anchored 

Corner 

anchored 

Corner 

anchored 

Deflection line 

Simply supported 

Simply supported 

x x yq L L L
M

40

  

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Serviceability limit state 
 

Calculating deflections by the theory of elasticity requires that the material is homogenous 

and isotropic.  None of these requirements are satisfied for a reinforced concrete slab which is 

cracked in SLS.  

 

Therefore, some approximations have to be made in order to calculate deflections of a 

reinforced concrete slab by the theory of elasticity. 

 

Figure 3.1.7 shows a typical crack pattern in ULS for a simply supported two-way slab (seen 

from bottom face). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.7 Typical crack pattern in simply supported two-way slab 
 

 

Cracking in the middle of the slab starts perpendicular to the principal load-carrying direction.  

It is therefore reasonable to assume that the plate stiffness, D, is dominated by one-way acting 

plate strips in this direction (x-direction). 

 

Reinforcement ratio in x-direction (Asx in mm
2
/m, dx in mm): 

 

                                                                                                       (3.1.8) 

 

 

Elasticity modulus relation (Es = 2·10
5
 N/mm

2
 ,  Ec,mean = mean E-modulus of concrete) : 

 

                                                                                                       (3.1.9) 

 

 

 

 

sx
x 3

x

A

10 d
 



s

c,mean

E

E
 
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Compression zone depth factor in x-direction: 

 

                                                                             (3.1.10) 

 

 

Second moment of area of 1 meter wide plate strip in x-direction (mm
4
 for dx in mm): 

 

                                                                            (3.1.11) 

 

 

An effective thickness of a cracked plate strip is now obtained as: 

 

                                                                                                     (3.1.12) 

 

 

 

(in mm)                                                                                 (3.1.13) 

 

 

Deflection at midspan from Table 3.1.1 for the actual span ratio: 

 

                     

4
x

3
c,mean eff

qL
w

E h

 



                                                                          (3.1.14) 

 

 

 

 

3.1.4 Example - Design of two-way slab 

 
Dimensioning of a simply supported two-way slab in ULS.  Furthermore, calculation of the 

deflection at midspan. 

 

GIVEN DATA: 

Spans :  Lx = 5,0m ;  Ly = 9,0m    Ly/Lx = 1,8 

Concrete :  B35      Reinforcement :  B500NC 

Live load (characteristic) :  p = 5,0 kN/m
2
 

Mean E-modulus of concrete : Ec,mean = 10000 N/mm
2
   (chosen) 

Exposure class :  XC2 

Slab thickness :  h = 200mm 

 

Self-weight :  g = 0,2·25 = 5,0 kN/m
2
 

 

Design load in ULS :    

 

qEd = 1,2g + 1,5p = 13,5 kN/m
2
 

 

 
2

x x x x2     

2 3 3x
cx x x

1
I 1 10 d

2 3

 
      

 

3 3
eff

cx

10 h
I

12




cx3
eff 3

12 I
h

10



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Design bending moments according to Table 3.1.1 for Ly/Lx = 1,8 : 

 

        
2 2

Ed x
Edx

q L 13,5 5
M 29,9kNm / m

11,3 11,3


    

 

 

        
2 2

Ed x
Edy

q L 13,5 5
M 8,8kNm / m

38,5 38,5


    

 

Concrete cover required according to EC2, 4.4.1.1(1)P:   cnom = cmin + cdev = 35mm 

 

With reinforcement diameter 10mm: 

 

Effective depth in x-direction:  dx = h – cnom - ø/2 = 200 – 35 – 5 = 160mm 

 

Effective depth in y-direction:  dy = dx - ø = 160 – 10 = 150mm 

 

Concrete design strength:   2
cd ck

0,85
f f 0,567 35 19,8N / mm

1,5
      

Reinforcement design strength:   
yk 2

yd

f 500
f 434N / mm

1,15 1,15
    

 

 

Moment capacity of compression zone in x-direction (”normal reinforced”): 

 

       2 3 2 6
Rdx cd xM 0,275f bd 0,275 19,8 10 160 10 139,4kNm/ m        

 

Moment capacity of compression zone in y-direction (”normal reinforced”) : 

 

       2 3 2 6
Rdy cd yM 0,275f bd 0,275 19,8 10 150 10 122,5kNm/ m        

 

Hence, MRd > MEd in both directions, and the compression zone is partly utilized. 

 

 

Internal lever arms can be approximated as: 

 

       Edx
x x x x

Rdx

M 29,9
z 1 0,17 d 1 0,17 d 0,96d

M 139,4

   
         

  
 

 

       
Edy

y y y x
Rdy

M 8,8
z 1 0,17 d 1 0,17 d 0,98d

M 122,5

   
             

 

 

Do not allow z > 0,95d, therefore:  xz 0,95 160 152mm   ;  yz 0,95 150 142mm    
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Required reinforcement: 

 

x-direction:   
6

2Edx
sx

x yd

M 29,9 10
A 453mm / m

z f 152 434


  


 

y-direction:   
6

Edy 2
sy

y yd

M 8,8 10
A 143mm / m

z f 142 434


  


 

 

Minimum reinforcement according to EC2, NA.9.2.1.1(1) : 

 

         ctm
s,min t t

yk

f
A 0,26 b d 0,0013 b d

f
      

 

For B35 , fctm = 3,2 N/mm
2
  : 

 

         3 2
sx,min

3,2
A 0,26 .10 152 253mm / m

500
     

         3 2
sy,min

3,2
A 0,26 .10 142 236mm / m

500
     

 

Reinforcement choice : 

 

x-direction :   ø10s170    Asx = 462 mm
2
/m 

y-direction :   ø10s330    Asy = 238 mm
2
/m  

 

(Asy satisfies requirement of smax,slab in EC2, NA.9.3.1.1(3) ) 

 

Shear capacities are much larger than design shear forces.  Therefore these controls are not 

carried out here. 

 

Corner anchoring: 

 

Anchoring force at each corner:  REd = 2MEdxy 

 

Torsion moments from Table 3.1.2: 

 

         
2 2

Ed x
Edxy

q L 13,5 5
M 21,9

15,4 15,4


    kNm/m ( or kN ) 

 

         REd = 2·21,9 = 43,8 kN 

 

Required cross section area of anchoring reinforcement:  

 

 3 2
anchoring Ed ydA R f 43,8 10 / 434 101mm     

 

Choose anchoring bars 1ø12 in each corner, i.e. Aanchoring = 113,1 mm
2
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Deflection in SLS 

 

Total load in SLS   q = g + p = 5 + 5 = 10 kN/m
2
 

 

sx
x 3

x

A 462
0,003

bd 10 152
   


 ;   s

c,middel

E 200000
20

E 10000
    ;  x 0,06   

 

2
x 0,06 2 0,06 0,06 0,292       

 

2 3 3 8 4
cx

1 0,292
I 0,292 1 10 152 1,35 10 mm

2 3

 
        

 
 

 

Effective depth from Eq. (3.1.13): 

 

    
8

cx 33
eff 3 3

12 I 12 1,35 10
h 117,4mm

10 10

  
    

 

Deflection at midspan from Eq. (3.1.14) with γ from Table 3.1.1: 

 

    
4 3 4
x

3 3
c,middel eff

q L 0,112 10 10 5000
w 43mm

E h 10000 117,4

     
  

 
 

 

Compare with deflection for a one-way plate strip, width 1m: 

 

   
4 4
x

enveis 8
c,middel cx

5 qL 5 10 5000
w 60mm

384 E I 384 10000 1,35 10

 
   

   
 

 

This results in approx. 40% larger deflection, and clearly demonstrates the advantage of 

applying the theory of elasticity for plates. 

 

3.1.5 References 
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/3.2.2/ Timoshenko, S og Woinowsky-Krieger, S : ”Theory of Plates and Shells”, 2
nd

 edition, 

McGraw-Hill, 1959 
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3.2  Yield line theory for slabs 

3.2.1 Introduction 

 

The yield line theory for reinforced concrete slabs initiated by Ingerslev in 1923 was extended 

and advanced by K.W.Johansen /3.2.1/. 

The method represents an upper bound approach with respect to load carrying capacity of 

slabs. 

 

The load capacity is determined by assuming a collapse mechanism that is compatible with 

the boundary conditions.  The moments at the plastic hinge lines are the ultimate moments of 

resistance of the sections, and the ultimate load is determined by the principle of virtual work 

or the equations of equilibrium.  Being an upper bound approach the method gives an ultimate 

load for a given slab that is either correct or too high. 

 

The regions of the slab between lines of plastic hinges are not examined to ensure that the 

moments there do not exceed the ultimate moments of resistance of the sections, because 

these will be exceeded only if an incorrect collapse mechanism is used. Thus, all the possible 

collapse mechanisms of the slab must be examined to ensure that the load-carrying capacity 

of the slab is not overestimated.  The correct collapse mechanisms in nearly all common cases 

are well known, however, and therefore the designer is not often faced with the uncertainty of 

whether further alternatives exist. 

 

It should be noted that yield line theory assumes a flexural collapse mode, that is, that the slab 

has sufficient shear strength to prevent a shear failure. 

 

Deformation and stiffness requirements will often be decisive in SLS.  This has to be 

examined separately, or accounted for e.g. by required span/thickness ratios. 

 

Slabs are normally under-reinforced, and the reinforcement yields before the final failure load 

is reached.  After the initial yielding of the reinforcing steel, the compressive resultant moves 

towards the compressed part of the section until final compressive failure occurs at a moment 

that is larger than at initial yielding ( normally 5 – 10% ).  The additional rotation of the cross 

section is relatively large. 

 

Redistribution of moments from the elastic state is necessary for the collapse mechanism to 

develop.  The section has to be sufficiently ductile to allow the required plastic rotation when 

yield lines are developing in the entire slab until the assumed collapse mechanism is formed.   

This capability of the section is termed ”rotation capacity”. 
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3.2.2 Yield line theory and Eurocode2 

 

 

EC2, 5.6  gives rules and requirements for use of plastic methods of analysis : 

 

EC2, 5.6.1 General : 

 

(1)P  Methods based on plastic analysis shall only be used for the check in ULS. 

 

(2)P  The ductility of the critical sections shall be sufficient for the envisaged mechanism to 

be formed.  

 

(3)P  The plastic analysis should be based either on the lower bound (static) method or  on 

the upper bound (kinematic) method.  

 

Further, the effects of previous applications of loading (load history) may generally be 

ignored, and a monotonic increase of the intensity of the actions may be assumed. 

 

With respect to clause (3)P, yield line theory is a kinematic method. 

 

The next clause is important as it opens for use of yield line theory without checking the 

rotation capacity. 

 

 

EC2, 5.6.2  Plastic analysis for beams, frames and slabs 
 

(1)P  Plastic analysis (here yield line theory) without any direct check of rotation capacity 

may be used for ULS if the conditions of 5.6.1(2)P are met. 

 

(2)   The required ductility may be deemed to be satisfied without explicit verification if all the 

following are fulfilled  (hence, 5.6.1(2)P is satisfied) : 

 

i) The area of tensile reinforcement is limited such that, at any section : 

Compression zone at failure  0,25d for concrete strength classes  B50 

Compression zone at failure  0,15d for concrete strength classes   B55 

 

ii) Reinforcing steel is either class B or C 

 

A third requirement is appropriate for e.g. continuous beams, and is not relevant here. 

 

 

 

If the requirements in 5.6.2(2) are not satisfied, rotation capacity has to be verified according 

to EC2, 5.6.3.   This is not considered necessary here. 
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3.2.3 Kinematic mechanisms 

 

 

The yield line approach is based on development of collapse mechanisms in slabs with 

concentrated plastic hinges as straight lines (yield lines).  The plastic deformations along the 

yield lines are much greater than the elastic deformations of the slab segments between the 

yield lines, and hence in the theory it is reasonable to assume that the segments between yield 

lines are plane. This means that once a mechanism has formed, all additional deformations 

occur as if each segment were a plane. 

 

 

 

Examination of the geometry of the deformations gives basic rules for the determination of 

the yield line patterns: 

 

 

 

1. To act as plastic hinges of a collapse mechanism made up of plane segments, yield lines       

must be straight lines forming axes of rotation for the movement of the segments 

 

2. The supports of the slab will act as axes of rotation.   If an edge is fixed, a yield line may      

form along the support.  An axis of rotation will pass over a column. 

 

3. For compatibility of deformations, a yield line must pass through the intersection of       

the axes of rotation of the adjacent slab segments. 

 

 

 

 

Figure 3.2.1 shows some examples of yield line patterns for uniformly loaded slabs of various 

shapes and boundary conditions.  Note that for each slab there may be more than one family 

of possible yield line patterns (e.g. the column supported slab), any of which may be the 

critical pattern. 

 

 

 

The ultimate load may be found from the yield line patterns using either the principle of 

virtual work or the equations of equilibrium.  In general, the virtual work method is easier in 

principle than the equilibrium method. Therefore only the virtual work method will be 

considered here. 
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 
 

 
 

 
 

Symbols : 

 

Free edge                                           Axis of rotation  

                                                           (along supports) 

Support edge                                     Relative axis of rotation 

                                                          (between two adjacent segments) 

Yield line    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1 Examples of yield line patterns for uniformly loaded slabs 
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l = Lcos 

 
L 

w 
t 

 

 

w 
 

a = tcos 

md·Lcos 

md·Lsin 

md·L 

 

3.2.4 Virtual work method 

 

External virtual work per unit area 

 

                                                                                                         (3.2.1) 

 

 

where    q = load intensity, i.e. force per unit area 

              w = virtual deflection 

 

The total external work is 

 

                                                                                                (3.2.2) 

 

 

For uniform load, i.e. q = constant : 

 

                                                                                       (3.2.3) 

 

 

where    V =  ”deflection volume”  or  ”deformation volume”. 

 

Internal virtual work is found as the product of the moment capacity md and the rotation  

along all the yield lines. 

 

Figure 3.2.2 shows a yield line that is skew with respect to a support edge (axis of rotation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2 Skew yield line with regard to support axis of rotation 

y

A

A q wdA 

y

A

A q wdA q V  

ya q w 
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The internal work along the yield line is 

 

              (3.2.4) 

 

Note that here,    is the slab segment’s rotation about the support axis. 

 

Eq. (3.2.4) shows that the internal work in a skew yield line is : 

 

           Product between the projection of the failure moment on the support axis and the slab 

           segment’s rotation about the same axis. 

 

The principle of virtual work requires that external work equals internal work, i.e.: 

 

                                                                                                                   (3.2.5) 

 

 

 

3.2.5 Example - Simply supported quadratic slab with uniform load  

 
 
 
 
 
 
 
 
 
 
 
A kinematic possible yield line pattern with virtual deflection w in the middle of the slab is 

shown in the figure. 

 

The deflection volume is a pyramid with square base L
2
 and height w: 

                      
2L w

V
3


  

External work :  
2

y

qL
A q V w

3
      

With failure moment along the skew yield lines md , the internal work is : 

                      i d d

w
A 4 m L 8 m w

L 2
        

External work = internal work gives the moment capacity (if this is the critical yield pattern) : 

                      
2

d

qL
m

24
  

Required reinforcement in x- and y-direction is:    d
sx sy

yd

m
A A

z f
 


 

L 

L w 

x 

y 

i d d d d dA m L m L w t m w t cos m w a m                

y iA A
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primary reinf. 

secondary reinf. 1 cos 

sin 

 

mdpsin mdscos 

m·1 

t·1 

mdpsin
2
 

mdscos
2
 

3.2.6 Failure moments  

 

In general, concrete slabs have different reinforcement in two directions.  Here, only 

orthotropic reinforcement is considered, that is, different reinforcement in two perpendicular 

directions. 

 

The largest reinforcement quantity is called ”primary reinforcement”, in the primary load- 

carrying direction, while the smaller reinforcement quantity is called  ”secondary 

reinforcement”. 

 

Failure moments (moment capacities) in the two directions: 

 

Primary direction:  dp sp yd pm A f z    

                                                                                                                                  (3.2.6) 

Secondary direction: ds ss yd sm A f z    

 

where         Asp ,  Ass  =  reinforcement in primary  and secondary direction 

                   zp  ,  zs     =  internal lever arms for the two directions 

                   fyd            =  design strength of reinforcement steel 

 

 

Define the relation: 

 

                                                                                                            (3.2.7) 

 

 

Generally, yield lines develop skew related to the reinforcement directions. 

Figure 3.2.3 shows an element of a slab at a skew yield line.  Equilibrium equations for this 

element can be used to determine the failure moment by rotation about the yield line, m . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.3 Element at skew yield line 
 

 

  

ds

dp

m
1

m
  
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Equilibrium about the yield line with unit length gives 

 

 

              

or 

                                                                         (3.2.8) 

 

 

 

 

A torsion moment is acting perpendicularly to the yield line. 

Equilibrium gives: 

 

 

             

or 

                                                                               (3.2.9) 

 

 

 

 

 

For the special case with equal reinforcement in both directions (isotropic reinforcement): 

 

 dp dsm m                                                                                                                  (3.2.10) 

 

 

Consequence: 

 

                                                         (3.2.11) 

 

          

   Hence, equal failure moment in all directions 

 

 

 

   Further is  (1-) = 0,  and   

    

             t = 0                                                                                                      (3.2.12) 

 

 

 

 

 

 

 

 

 

 

2 2
dpm m (sin cos )      

2 2
dp dsm 1 m sin m cos      

2 2
dp dp dsm m (sin cos ) m m      

1 

 dpt m 1 sin cos      

dp dst 1 m sin cos m sin cos        
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A 

B C 

D 

2a 

a 

a a (1-)2a 

3.2.7 Example -  Rectangular slab, mdp = mds  

 
The figure shows a simply supported slab with equal reinforcement in both directions. The 

span ratio is 2.  The slab is subjected to uniform load q. 

 

The figure also shows a possible yield line pattern which satisfies the rules for kinematic 

collapse mechanisms. 

A constant virtual deflection w is assumed along yield line BC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The deflection volume is: 

 

            21 1
V 2 a a w a w 1 2a 1 a w

3 2 3

 
               

 
 

 

External work:      2
yA q V q 1 a w

3

 
      

 
 

 

Internal work: 

 

Along BC:    BC
i d d

w
A 2 m 1 2a 8 m 1 w

0,5a
              

 

Along AB: AB
i d d d

w w 0,5
A m a m 0,5a m 2 w

0,5a a

 
           

  
 

 

Total:  BC AB
i i i d

1
A A 4 A m 2 4 w

 
        

 
 

 

 

 

External work = Internal work:      d
2

2m 4 1
q

1 3a

 
 

 
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The value of  that gives minimum q is determined by: 

 

         
       

 

2

d
2 2

1 1 3 4 1 1 3dq 2m
0

d a 1 3

         
  

  
 

 

or  

 

         2 2 3 4 0                 with root    0,65   

 

 

  = 0,65 in the expression for q gives : 

 

 

           d d
min 2 2

2m 4 1 0,65 m
q 14,1

1 0.65 3a a


   


 

 

 

The value of qmin represents the failure load or load-carrying capacity for the chosen yield line 

pattern. 

 

The sensibility of the solution for various  can be examined by varying the value of  in the 

expression for q: 

 

 = 0,5 :             d
2

m
q 14,4

a
        (deviation of 2,1% from the load capacity) 

 

 = 1,0 :             d
2

m
q 15,0

a
        (deviation of 7,1% from the load capacity) 

 

 

This shows that the calculated load capacity is not significantly influenced by small variations 

in  . Satisfactory accurate solutions can for many cases be obtained simply by choosing a 

reasonable value of   .  This may be actual with yield line patterns that imply more 

complicated mathematical equations for exact calculation of qmin. 

 

Trial and error techniques to determine an approximate value of qmin are also often used. 
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A 

B C 

D 

2a 

a 

a a (1-)2a 

mdp mds=0,5mdp 

 
 

3.2.8  Example - Rectangular slab, mds = 0,5mdp  

 
The figure shows the same slab geometry as the example in chapter 3.2.7, but in this case the 

primary reinforcement is double of the secondary reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same external work as in the example in chapter 3.2.7:  

 

                            2
yA q 1 a w

3

 
    

 
 

 

Length of skew yield lines: 

 

                         
2 2 2AB a a 2 a 1 4       

 

Therefore:            
2 2

a
sin

a 1 4 1 4

 
  

   
     and      

2
2

2
sin

1 4


 

 
 

 

                             
2 2

a 2 1
cos

a 1 4 2 1 4
  

   
   and     

2

2

1
cos

4( 1 4)
 

 
 

 

 

 

The failure moment in skew yield lines is found from Eq. (3.2.11): 

 
 

                         
2

2 2
dp dp 2

8 1
m m sin 0,5cos m

8 2


 
      

 
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Internal work: 

 

Along BC :            BC
i dp dp

w
A 2 m 1 2a m 8 1 w

0,5a
             

 

Along AB :         AB
i

w w 1
A m a m 0,5a m 2 w

0,5a a 2
  

 
           

  
 

 

                                   
2 2

dp dp2

8 1 1 8 1
m 2 w m w

2 48 2

    
         

    
 

 

 

Total internal work:      BC AB
i i i dp

8 1
A A 4A m w


    


 

 

 

 

External work = Internal work gives:           

 
dp

2

m 8 1
q

a 1
3

 
 


  

 

 

 

Minimum value of q found by  
dq

0
d




 : 

 

                  2 3 0
4 8


      with root    =  0,5 

 

 

The load-carrying capacity is:      
dp

min 2

m
q 12,0

a
   

 

 

 

 

Checking the sensibility of the solution for variation of   : 

 

For  = 0,4  ,  0,6  and  1,0 ,  the deviations from exact solution are 0,9%, 0,7% and 12,5%, 

respectively.   Again it is clear that small variations of  do not influence the solution 

significantly. 
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w 

r 

r 

P 

m 

m’ 

2r/n 
Yield lines: 

 

Tension at bottom  

Tension at top 

 

3.2.9 Special yield line patterns 

 

Circular yield line pattern 

 

A concentrated load on a slab may produce a conical-shaped yield line pattern as shown in 

Figure 3.2.4, by development of n radial yield lines (tension in bottom of slab with failure 

moment m.  At a distance r from the concentrated load, a circular yield line develops (tension 

in top of slab) with failure moment m’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.4 Circular yield line pattern in slab 
 

 

With a virtual deflection w at the concentrated load, the external work is: 

 

                                                                                                          (3.2.13) 

 

Internal work : 

 

Rotation about circular yield line :    w r   

 

Internal work of a slab segment (sector of circle, between dashed lines in figure 2.2.4), ai, 

determined by Eq. (3.2.4). 

 

Along radial yield line:         i1

2 r w 2 m
a m w

n r n

 
      

 

Along circular yield line:     i2

2 r w 2 m'
a m' w

n r n

 
      

 

 

yA P w 

80 



a 

a 

P 

m’ 

m 

Hence, for the sector of circle:     i i1 i2a a a   

 

For all n slab segments: 

 

                                                                             (3.2.14) 

 

 

External work = Internal work gives the failure load: 

 

                                                                                         (3.2.15) 

 

 

The failure load expression does neither tell how many radial yield lines that form, nor the 

length of the radius in the yield line pattern. 

 

 

3.2.10 Quadratic slab with concentrated load  

 
The slab is fixed along all four edges, and subjected to a concentrated load at the midpoint.  

The figure shows a possible yield line pattern. 

 

Failure moment for bottom tension is m, and for top tension m’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With a virtual deflection w at the concentrated load, the external work is : 

 

                  yA P w   

 

Internal work is determined by Eq. (3.2.4) 

 

                  iA 4 2 m 0,5a w /0,5a       (skew yield lines) 

                        4 m' a w/0,5a             (support yield lines) 

 

                       8mw 8m' w 8 m m' w       

 failureP 2 m m'  

 i iA n a 2 m m' w     
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Corner lifts m’ = 0  (cracks in top of slab) 

a.  Corners not anchored b.  Corners anchored 

 
External work  =  Internal work gives : 

 

                 failureP 8 m m'    

 

By comparing this failure load to the failure load for the circular yield line pattern, 

Eq. (3.2.15), it appears that the circular failure load occurs at a 20% lower load than for this 

yield line pattern.  This patter does therefore not represent the critical, and the slab will fail 

with a local circular collapse mechanism. 

 
 

Special corner effects 
 

So far it has been assumed that a yield line forming in the corner of a slab enters directly into 

the corner.  However, it is evident from the elastic theory for slabs that there are strong torsion 

moments in the corner regions and that if a corner of a simply supported slab is not held 

down, it will tend to lift off the support.  

 

If the corners of the slab are not anchored in the support, they will lift when the slab is loaded  

(cf. Chapter 3.1 for elastic two-way slabs).  This causes the yield line to split, and form a Y-

shaped pattern in the corner, as shown in Figure 3.2.5a. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.5 Y-shaped yield lines at corner of rectangular slab 
 

 

If the corners are anchored, but without top reinforcement in the slab, similar Y-shaped yield 

lines may form.  In this case cracks will develop as shown in Figure 3.2.5b.  Separate 

reinforcement for the moment which causes tension in top of the slab will change the 

resistance, and will most likely result in yield lines directly to the corners instead of the Y-

shaped yield lines in Figure 3.2.5. 
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L = 6m 

L = 6m 
                                        
  

 

 

q = 15 kN/m
2 d = 150 

Cross section 

Asx = Asy 

h
 =

 2
0
0

 

   m
m

 

3.2.11 Comparison of methods of analysis 

 

Figure 3.2.6 shows a simply supported quadratic two-way slab with thickness h = 200mm and 

average effective depth d = 150mm. 

The slab is subjected to a uniform load in ULS, qEd = 15 kN/m
2
. 

 

Materials:     Concrete B30  fcd = 17 MPa ;   Reinforcement  B500NC   fyd = 434 MPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.6 Simply supported slab with uniform load 

 

 

Theory of elasticity 

 

Required reinforcement is calculated for moments from Table 3.1.1: 

Poisson’s ratio for concrete is assumed as  = 0,2. 

 

From the table (with  = 0) :    
2 2

Ed
x y

q L 15 6
m m 19,85kNm / m

27,2 27,2


     

 

The design moments in both directions are: 

 

               Ed,x Ed,ym m 19,85 0,2 19,85 23,8kNm/ m      

 

Moment capacity, normal reinforced:  mRd = 0,275·17·10
3
·150

2
·10

-6
 = 150 kNm/m 

 

mRd >> mEd     Choose  z = 0,95d = 142 mm 

 

Required reinforcement:       
6

2Ed
sx sy

yd

m 23,8 10
A A 386mm / m

zf 142 434


   


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c 

εc 

-10,2 

-17,0 

-0,0035 -0,002 

s 

εs 

434 

0,00217 

Concrete Reinforcement 

Yield line theory 
 

From the example in chapter 3.2.5:   
2

d

qL
m

24
  

 

With reinforcement according to elastic theory :  md = 23,8 kNm/m 

 

Failure load    brudd d2

24 24
q m 23,8 15,9kN / m

36L
      

 

That is:  The load-carrying capacity from yield line theory is approximately 6% higher than 

the design load, 15 kN/m.  This represents an upper limit. 

 

 

 

 

FEM-analysis 
 

The FEM-program DIANA /3.2.2/  is used for a non-linear analysis of the slab. 

 

Material models for concrete and reinforcement are shown in Figure 3.2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.7 Material models in the DIANA-analysis 
 

Due to double symmetry, one quart of the slab is modelled by 15x15 elements Q20SH with 

corner nodes with three translational and two rotational degrees of freedom. 

 

The analysis is carried out for a reference load q = 10 kN/m
2
, using arc length control in the 

incremental/iterative numerical solution process. 
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MIDPOINT DEFLECTION 

Yield line theory 

1,59 
1,5 

Design load in  

elastic theory 

Load –deflection of the midpoint in the slab is shown in Figure 3.2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.8 Load-deflection curve from DIANA-analysis 
 

 

 

The non-linear DIANA-analysis which simulates the real behaviour of the slab, shows good 

correspondence to the yield line theory with a load carrying capacity 16,3 kN/m. 

 

 

3.2.12 References 

 

 

/3.2.1/ Johansen, K. W.:  ”Brudlinieteorier” Gjellerups Forlag, København, 1943, (in Danish) 

 

/3.2.2/ DIANA FEM Program, TNO Delft 
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3.3 Strip method for slabs 

3.3.1 Basis of the simple strip method 

 

A lower bound design method for reinforced concrete two-way slabs was suggested by 

Hillerborg i 1956 /3.3.1/. 

 

The equilibrium equation for a plate element was given in Chapter 3.1, Eq. (3.1.1): 

 

 

                                                                         (3.3.1) 

 

 

Here, mx og my are bending moments in x- and y-direction, respectively, mxy is torsion 

moment and q is uniformly distributed load. 

 

According to the lower bound theory, any combination of mx , my and mxy that satisfies  

Eq. (3.3.1) at all points in the slab and the boundary conditions when the ultimate load is 

applied is a valid design solution provided that reinforcement can be placed to carry these 

moments.   

Thus, the external load q can be apportioned arbitrarily between the terms 2 2
xm x  ,  

2
xy2 m x y    and  2 2

ym y  . 

 

Hillerborg chooses a solution where mxy = 0, and carries the load entirely by the 
2 2

xm x  and 2 2
ym y   terms.  This means that the load is carried entirely by bending in 

the x- and y-directions, and hence that the slab can be visualized as being composed of two 

systems of strips running in the x- an y- directions.  The method is termed ”Strip method”. 

 

Without the coupling term of Eq. (3.3.1), the equation can be replaced by two equations that 

represent twistless strip action:  

 

 

                                                                                                           (3.3.2) 

 

and 

 

                                                                                                  (3.3.3) 

 

 

where γ is a factor chosen by the designer,  0  γ  1,0 . 

The value of γ may vary throughout the slab without affecting its validity.  Note that if γ = 1, 

all the load is carried by bending of the x-direction strips, and if γ = 0, all the load is carried 

by the y-direction strips.  

 

The use of Eqs. (3.3.2) and (3.3.3) to find possible design moment fields will be illustrated for 

the case of a square, simply supported slab carrying a uniformly distributed ultimate load per 

unit area, q. 

 

2 22
xy yx

2 2

m mm
2 q

x yx y

 
    

  

 
2

y

2

m
1 q

y


   



2
x

2

m
q

x


 


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2ql

16
 

q/2 

x 

y 

a a 

L 

L 

q/2 

q/2 

2ql

16
 

qL/4 

Distribution of 

max mx 

Distribution of support 

reaction on y-direction edge 

Loading on x-direction 

strip 

Moment mx 

for strip a-a 

 

Case 1 

 

Choose γ = 0,5 over the entire area of the slab. The results are shown in Figure 3.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 Quadratic slab – Case 1 , γ = 0,5 over the entire slab 
 

 

In this case half the load is allocated uniformly to the strips in each direction, as indicated by 

the dispersion arrows in the figure. 

The resulting x-direction moments, obtained by simple statics for uniform load per unit area 

q/2 on the strips, are shown in the figure.  The distribution of y-direction moments is similar 

to the x-direction moments. Thus, the maximum moment per unit width in each direction is 

qL
2
/16 and has a constant value at the midspan sections of the slab. 

The distribution of the loading acting on the edge support of the slab is also shown.  This 

loading is simply the end reactions of the strips and acts on the supporting beam or wall. 
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q/2 

x 

y 

a a 

L/2 

L/2 q/2 

q/2 

Distribution of 

max mx 

Distribution of support 

reaction on y-direction edge 

 

Load on 

strip a-a 

Moment mx 

for strip a-a 

L/4 L/4 

L/4 

L/4 b b 
q/2 

q/2 

q/2 q/2 

q 

q 

q 

q 
5qL

2
/64 

qL
2
/64 

q q 

5qL
2
/64 

3qL/8 

qL/8 

q/2 q/2 

qL
2
/64 

Load on  

strip b-b 

Moment mx 

for strip b-b 

Case 2 

 

This case, which is shown in Figure 3.3.2, is obtained by giving γ values that depend on the 

region of the slab.  The slab is divided into three regions, corresponding to the slab corners, 

middle edges and centre region of the slab.  The load is allocated to the strips in each direction 

within the regions in the manner indicated by the load-dispersion arrows.  Two basic types of 

strip loading exist, shown as strips a-a and b-b.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2 Quadratic slab -  Case 2,  γ = 1,0 and 0,5  
 

The resulting x-direction moments can be obtained by simple statics.  The maximum x-

direction moments for x-direction strips a-a and b-b are different. 

 

The distribution of y-direction moments is similar to the x-direction moments.  Thus, the 

maximum moment per unit width in each direction is 5qL
2
/64, constant across the middle half 

of the slab, with a moment per unit width of qL
2
/64 in the edge strips. 

 

The distribution of the loading action on the edge supports of the slab is also shown. 
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Distribution of support 

reaction on y-direction edge 

 q 

x 

y 

a a 

L 

L 
q 

q 

qL/2 

Distribution of 

max mx 

Load on 

strip a-a 

Moment mx 

for strip a-a 

q 

q 

qL
2
/8 

qy
2
/2 

q 

y 

 

Case 3 

 

This case, which is shown in Figure 3.3.3, is obtained by giving γ values of either 0 or 1, 

depending on the region of the slab.  The slab is divided into triangular regions by diagonal 

lines, and the load on the triangles is transferred to the nearest support, as indicated by the 

load-dispersion arrows. 

Each strip therefore carries a uniform load per unit area, q , over the end regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.3 Quadratic slab – Case 3,  γ = 1 or 0  
 

 

 

 

The resulting x-direction moments can be obtained by simple statics.   The maximum x-

direction moment is a function of y and rises sharply to a peak at the slab centre. 

 

The distribution of y-direction moments is similar to the x-direction moments. 

The maximum moment per unit width is qL
2
/8.   

 

The distribution of the loading acting on the edge support is also shown.  The triangular shape 

of the edge load is similar to that assumed by many designers. 
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The three cases illustrate two features of the strip method.   

 

The first is the ease with which the moments in the slab and the loads on the supporting 

system can be obtained by the use of simple statics. 

The second is the variety of moment and load distributions possible depending on the 

assumed manner of load dispersion. 

 

For many years designers have used strip action intuitively to approximate the moments in 

slabs of awkward shape or boundary conditions.  It is of interest to note that such an approach 

has the full formal backing of lower bound limit design. 

It is of interest to look at the relative economy, from the point of view of the reinforcing steel 

requirements, of the three cases.  The area of steel per unit width is proportional to the 

moment per unit width.  Suppose that all the slab bars run the full length L of the slabs, and 

that all bars have the same effective depth.  Then the value of steel in the slab is proportional 

to the area of the diagram showing the distribution of maximum mx. 

 

For cases 1, 2 and 3, these areas are in the ratio 1,00 : 0,75 : 0,67, respectively, indicating the 

relative economies.  Case 3 is seen to be the most economical, but note that for case 3 the 

maximum moment varies continuously over the slab width, which implies that in order to 

obtain the ideal value of 0,67, the spacing of reinforcement bars has to vary continuously.  

This is obviously impracticable.  Thus, in practice for case 3 the bars would need to be placed 

in several uniform bands to cope with the distribution of moments, and the ratio will increase 

towards the value for case 2.  

 

The lines on the slabs that indicate the region of different load dispersion will be referred to as 

”discontinuity lines”. 

Case 1 uses the simplest possible load dispersion assumption.  Case 2 and 3 offer alternatives 

of discontinuity lines originating from either the slab corners or the slab sides.  These two 

possibilities are discussed further in the following. 

 

 

 

 

3.3.2 Discontinuity lines originating from slab corners 

 

Assuming that the load is carried by the nearest support edge, the discontinuity lines enter the 

slab corners.  Strictly, the discontinuity lines can enter a slab corner at any angle, but angles 

are best selected on the basis of the moments giving economy of reinforcing steel and 

reasonable accordance with the elastic moment distribution.  

 

The following rules for right-angle corners were suggested by Hillerborg: 

 

 Where two simply supported or two fixed edges meet, the discontinuity line should 

make 45 with the edges (bisecting the corner angle). 

 Where a simply supported and a fixed edge meet, the discontinuity line should make 

an angle with the fixed edge about  1,5 – 2 times the angle with the simply supported 

edge. 

 

These rules can also be used as guidelines for discontinuity lines in skew slabs. 
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a 

45 45 1 = 1,52 - 22 

2  

Two simply 

supported edges 

Two fixed 

edges 

One simply supported and 

one fixed edge 

b 

b 

a a 

Rectangular slab with various 

support conditions 

b 

b 

a 

Skew slab 

 

 

Figure 3.3.4 shows examples of discontinuity lines following these principles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.4 Discontinuity lines originating from slab corners 
 

 

 

A problem that arises when reinforcement is being designed for the bending moments 

obtained from the strip method with discontinuity lines originating from the corners, is that 

over a large part of rectangular slabs and throughout non-rectangular slabs, the bending 

moments can change rapidly and theoretically require continuously variable bar spacing. 

Reinforcement to follow such a distribution of moments is obviously impracticable. 

 

In such cases the reinforcement can be placed in bands with constant bar spacing, 

dimensioned for the average maximum moment in the band.  Design on the basis of such 

bands is strictly not in accordance with lower bound theory because at the ultimate load the 

theoretical moments will exceed the ultimate moments of resistance over a part of each band.  

However, once yielding occurs, it is reasonable to expect the moments to redistribute 

themselves.  Also, the total available ultimate moment resistance across a band is equal to the 

required value. 
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Discontinuity lines and load 

dispersion 

y-direction bands 

x 

y 

x-direction bands 

Loaded areas of slab are 

shown shaded 

3.3.3 Discontinuity lines originating from slab sides 

 

There is no reason why the discontinuity lines should originate from the corners or be straight. 

Wood and Armer /3.3.2/ have pointed out that rather than complicating the calculations by 

using triangular and trapezoidal shapes for the loaded regions of bands, the discontinuity lines 

could be drawn to cross each band at right angles and thus allow direct determination of the 

maximum design moment in the bands without any averaging.  In addition to simplifying the 

calculations, the solution is now exact and in accordance with strict lower bound theory. 

Such a procedure is illustrated in Figure 3.3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.5 Discontinuity lines originating from slab sides 

 

 

 

All the bands (strips) in Figure 3.3.5 can now be analysed by simple statics as simply 

supported beams with different loading. 

 

Required reinforcement for maximum moment in each strip makes the design exact according 

to lower bound theory. 
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Simply supported slab with 

opening.  Uniform load 

Strong band 

Opening 

Strong bands along 

free edges 

Slabs with re-entrant corners – with and without supports 

3.3.4 Slabs with free edges and large openings 

 

The simple strip method cannot deal with slabs with openings, re-entrant corners, free edges 

and beamless slabs with column supports. 

 

To cope with this, Wood and Armer /3.3.2/ suggested an approach with so-called “strong 

bands”.  A strong band is a strip of slab of reasonable width that contains a concentration of 

reinforcement and hence acts as a beam within the slab. 

 

Figure 3.3.6 shows examples of strong bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.6 Slabs with strong bands 
 

 

The longitudinal strong band reinforcement, acting as “beam reinforcement”, has to be 

enclosed by minimum shear links according to Eurocode2. 

 

 

Simply 

supported 
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3.3.5 Example - Design of slab with unsupported re-entrant corner  

 
The slab in the figure will be dimensioned in ULS 

 

GIVEN DATA: 

Load per unit area in ULS (self-weight and live load) :  qEd = 15 kN/m
2
 

Slab thickness:  h = 250mm 

Concrete:  B35   Reinforcement: B500NC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows four slab sections and two strong bands that have to be analysed to obtain 

the design bending moments.  The assumed load dispersion is also shown. 

The width of the strong bands is chosen as b = 500mm. 

 

 

Static analyses : 

 

Slab strip 1-1: 

 

 

 

 

 

 

 

 

 

Span is 5,75m to middle of strong band b-b. 

Support reaction:   7,5·5,75/2 = 21,6 kN/m 

Maximum moment:  7,5·5,75
2
/8 = 31,0 kNm/m 

 

5,75m 

7,5 kN/m 

21,6 kN/m 
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3,25m 

qa-a 

16,75 kN 

 
Slab strip 2-2 og 3-3: 

 

 

 

 

 

 

 

 

Span is 2,75m to middle of strong bands b-b and a-a. 

Support reaction:       7,5·2,75/2 = 10,3 kN/m 

Maximum moment:  7,5·2,75
2
/8 = 7,1 kNm/m 

 

 

Slab strip 4-4: 

 

 

 

 

 

 

 

 

Span 6m. 

Support reaction:   7,5·6/2 = 22,5 kN/m 

Maximum moment:  7,5·6
2
/8 = 33,75 kNm/m 

 

 

Strong band a-a: 

 

 

 

 

 

 

 

 

 

 

 

Load:   qa-a = 10,3 + 0,25·7,5 = 12,18 kN/m 

 

(10,3 is support reaction of slab strip 3-3, while 0,25·7,5 is load outside centre line in  a-a) 

 

Support reaction:  12,18·3,25/2 = 19,2 kN 

 

Maximum moment:  MEd,a-a = 12,18·3,25
2
/8 = 16,1 kNm 

 

 

2,75m 

7,5 kN/m 

10,3 kN/m 

6m 

7,5 kN/m 

22,5 kN/m 
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B A 

3,25m 2,75m 

19,2 (from a-a) 

0,25·7,5 = 1,88 

Strong band b-b: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moment equilibrium about left end gives support reaction B = 98,7 kN 

Vertical equilibrium gives support reaction A = 84,5 kN 

 

Maximum moment:  MEd,b-b = 84,5·3,25 – (21,6+1,88)·3,25
2
/2 = 150,6 kNm 

 

 

 

 

Dimensioning: 

 

 

Slab strip 4-4 

 

Choose reinforcement diameter 10mm and cover 35mm   d4-4 = 210mm 

 

Moment capacity:  MRd,4-4 = 0,275fcdd4-4
2
 = 0,275·19,8·10

3
·210

2
·10

-6
 = 240 kNm/m 

 

 

MEd,4-4 = 33,75 << MRd,4-4     z4-4 = 0,95d4-4 = 199mm 

 

Required reinforcement:   
6

Ed,4 4 2
s,4 4

4 4 yd

M 33,75 10
A 391mm / m

z f 199 434







  

 
 

 

 

Slab strip 1-1: 

 

d1-1 = d4-4 – 10 = 200mm 

 

MEd,1-1 = 31,0 kNm/m << MRd,1-1    z1-1 = 0,95d1-1 = 190mm 

 

Required reinforcement:   
6

Ed,1 1 2
s,1 1

1 1 yd

M 31,0 10
A 376mm / m

z f 190 434







  

 
 

 

 

 

10,3 (fra 2-2) 

21,6 (fra 1-1) 
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Slab strip 2-2 and 3-3: 

 

MEd,2-2 = MEd,3-3 = 7,1 kNm/m  << MRd    z  190mm 

 

Required reinforcemen :    
6

Ed,2 2 2
s,2 2 s,3 3

yd

M 7,1 10
A A 86mm / m

z f 190 434


 


   

 
 

 

Minimum slab reinforcement according to EC2: 

 

    3 2ctm
s,min

yk

f 3,2
A 0,26 bd 0,26 10 210 350mm / m

f 500
         

 

Choose equal slab reinforcement in both directions in entire slab: 

 

     ø10s200    As = 392 mm
2
/m 

 

 

 

 

Strong band a-a: 

 

Try reinforcement diameter 12mm because design moment is small. 

 

Effective depth:  da-a = 209mm 

 

Moment capacity :   MRd,a-a = 0,275fcdbda-a
2
 = 0,275·19,8·500·209

2
·10

-6
 = 120 kNm 

 

MEd,a-a = 16,1 kNm    a a a a a a

16,1
z 1 0,17 d 0,98d

120
  

 
    
 

  z = 0,95da-a = 199mm 

Required reinforcement :  
6

2
s,a a

16,1 10
A 186mm

199 434



 


   2ø12 = 226,2mm

2
 

 

 

 

 

Strong band b-b: 

 

Try reinforcement diameter 20mm because design moment is large. 

 

Effective depth :    db-b =  205mm 

 

Moment capacity :   MRd,b-b = 0,275fcdbdb-b
2
 = 0,275·19,8·500·205

2
·10

-6
 = 114 kNm 

 

MEd,b-b = 150,6 kNm > MRd,b-b     Compression reinforcement for  MEd = 36,6 kNm 
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Required reinforcement: 

 
6

Rd,b b 2
s1

b b yd

M 114 10
A 1544mm

0,83d f 0,83 205 434






  

  
 

 
6

2Ed
s2

yd

M 36,6 10
A 527mm

h ' f 160 434

 
  

 
 

 

 

Bottom reinforcement    As,b-b = As1 + As2 = 2057 mm
2
    7ø20 = 2198 mm

2
 

 

Top reinforcement      :    As,b-b’ = As2 = 527 mm
2
               2ø20 = 628 mm

2
   

 

 

The longitudinal reinforcement has to be enclosed by minimum shear links according to EC2, 

NA.9.2.2(5): 

 

          2sw
w,min

A 35
b 0,1 500 0,592mm / mm

s 500
        

 

With stirrups ø8 (double section)  is  Asw = 100,5 mm
2
 

 

Spacing:   s  100,5/0,592 = 170 mm 

 

 

Choose stirrups ø8s170 

 
 

 

 

3.3.6 References 

 

/3.3.1/ Hillerborg, A : ”Jamviktsteori for armerade betongplattor”, Betong, Vol.41, nr.4, 

1956. (In Swedish) 

 

/3.3.2/ Wood, R.H  and Armer, G.S.T : ”The theory of the Strip method for Design 

of Slabs”,  Proceedings Institute of Civil Engineering, Vol.41, Oct. 1968 

 

/3.3.3/ Hillerborg, A : ”Strimlemetoden for plattor på pelare, vinkelplattor m.m”, 

Utgiven av Svenska Riksbyggen, 1959.  (In Swedish) 
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Ly 

Ly 

PLAN VIEW : 

1 1 

SECTION 1-1 : 

3.4 Flat slabs 

3.4.1 Definitions 

 

A flat slab is a plate which is supported directly on columns, without beams between the 

columns.  The columns are normally arranged in a rectangular pattern. 

 

Figure 3.4.1 shows a flat slab with a direct connection between the column cross section and 

the slab.  This is often termed “flat plate”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1 Flat slab with direct column/slab connection (flat plate) 
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SECTION 1-1 : 

Drop panel Capital 

Local shear at the columns is often critical for flat slabs.  If the shear capacity is too low, a 

local punching failure may happen.  This will require shear reinforcement or alternatively 

increased support area. 

 

This can be done as shown in Figure 3.4.2, with capitals and drop panels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.2 Flat slab with capitals and drop panels 
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0,6q 

0,6q 

beams 

SECTION 1-1 : 

beams 

3.4.2 Static behaviour 

 

Figure 3.4.3 shows a traditional plate/beam – slab, where the plate regions act as two-way 

slabs, and the load in each region is carried by the four supporting beams. 

The figure shows example of load dispersion according to the strip method. Based on the 

actual span ratio – i.e. the primary direction is the y-direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3.4.3 Plate/beam – slab with load dispersion according to the strip method 
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Lx Lx 

Ly 

Ly 

q 

q q 

q 

The static behaviour of a flat slab can be compared to a plate/beam slab, as shown in Figure 

3.4.3.   

Imagine that the beam depths are decreased to the thickness of the plate.  The result is a flat 

slab.  The slab can still be considered as a system with very wide crossing beams, and where 

parallel beams are touching each other as shown in Figure 3.4.4. 

 

The width of the strip is the span length in the transverse direction. 

 

The flat slab strip has to carry the entire load on the strip in its span direction (x-direction in 

Figure 3.4.4).  The total load also has to be carried by the y-direction strips. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.4 Load on flat slab strip in one direction 
 

 

 

 

 

3.4.3 Flat slabs in Eurocode 2 

 

EC2, Annex I gives the following recommendations for analysis of flat slabs: 

 

EC2, I.1.1 General 

 

(1) Flat slabs may be of uniform thickness or they may incorporate drops (capitals or 

drop panels over columns). 

 

(2) Flat slabs should be analysed using a proven method of analysis, such as grillage, 

finite element, yield line or equivalent frame.  Appropriate geometric and material 

properties should be employed. 
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Equivalent frame analysis is the most common method of analysis for determination of load 

actions in the plate and columns in a flat slab, and will therefore be used here. 

 

Eurocode 2 also gives recommendations for idealizing the three-dimensional column/plate 

structure as plane frames: 

 

 

 

 

 

EC2, I.1.2  Equivalent frame analysis 

 

 

 

(1) The structure should be divided longitudinally and transversely into frames consisting 

of columns and sections of slabs contained between the centre lines of adjacent panels 

(area bounded by four adjacent supports).  The stiffness off members may be 

calculated from their gross cross-sections.  For vertical loading the stiffness may be 

based on the full width of the panels.  For horizontal loading 40% of this value should 

be used to reflect the increased flexibility of the column/slab joints in flat slab 

structures compared to that of column/beam joints. 

Total load on the panel should be used for the analysis in each direction (i.e. as 

pointed out in chapter 3.4.2). 

 

 

(2) The total bending moments obtained from analysis should be distributed across the 

width of the slab.   In elastic analysis negative moments (tension in top) tend to 

concentrate towards the centre lines of the columns. 

 

 

(3) The panels should be assumed to be divided into column and middle strips (see Figure 

3.4.5), and the bending moments should be apportioned as given in Table 3.4.1. 

 

 

(4) Where the width of the column strip is different from 0,5Lx , as shown in Figure 3.4.5,             

the middle strip width should be adjusted accordingly. 

             (This is different from common practice in Norway, where the same relation between 

              widths of column and middle strips are used in both directions). 

  

 

(5) Unless there are perimeter beams, which are adequately designed for torsion,   

moments transferred to edge or corner columns should be limited to the moment of 

resistance of a rectangular section equal to 0,17fckbed
2
 (0,275fcdbed

2
 ). 

     The width be is defined in EC2, 9.4.2.  

     The positive moment in the end span should be adjusted accordingly.  

        

  

103 



Ly 

Lx > Ly 

Ly/4 Ly/4 

Ly/4 

Ly/4 

= Ly/2 

= Ly/2 

B 

A 

B = Lx – Ly/2 

A - column strip 

B - middle strip 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.5 Division of panels in flat slabs in column and middle strips 

 

 

 

Table 3.4.1 Simplified apportionment of bending moments for a flat slab 

 

 Negative moments Positive moments 

 

Column strip 

 

 

60 – 80 % 

 

 

50 – 70 % 

 

 

Middle strip 

 

 

40 – 20 % 

 

 

50 – 30 % 

 

NOTE:   Total negative and positive moments to be resisted by the 

column and the middle strip together should always add up to 100 % 

 

 

 

EC2, 9.4 gives structural rules for flat slabs: 

 

EC2, 9.4.1(1): 

The arrangement of reinforcement in flat slab construction should reflect the behaviour under 

working conditions.  In general this will result in a concentration of reinforcement over the 

columns. 
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cz 

y 
cy 

be = cz + y 

Slab edge 

Note :  y can be > cy 

 

a) Edge column 

cz 

cy 

Slab edge 

Slab edge 

y 

z 

be = z + y/2 

NOTE :  y can be > cy 

             and z can be > cz 

b) Corner column 

EC2, 9.4.1(2): 

At internal columns, unless rigorous serviceability calculations are carried out, top 

reinforcement of area 0,5At should be placed in a width equal to the sum of 0,125 times the 

panel width on either side of the column.  At represents the area of reinforcement required to 

resist the full negative moment from the sum of the two half panels at each side of the 

column. 

 

EC2, 9.4.1(3): 

Bottom reinforcement ( 2 bars) in each orthogonal direction should be provided at internal 

columns and the reinforcement should pass through the column. 

 

EC2, 9.4.2(1): 

Reinforcement perpendicular to a free edge required to transmit bending moments from slab 

to an edge or corner column should be placed within the effective width be shown in Figure 

3.4.6. 

This is the effective width in the moment capacity formula in EC2, I.1.2 (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.6 Effective width, be , of a flat slab 
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3.4.4 Flat slab analysis by equivalent frame method 

 

The flat slab in Figure 3.4.7 is modelled by plane frames in both directions. The slab width is 

chosen as the transverse span length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.7 Equivalent frames  
 

 

 

For a multi-storey building it is sufficient to analyse one floor slab for vertical load, as shown 

in the figure. 

For horizontal loads the entire frame should be analysed, unless the horizontal forces are 

taken by stiffening panels.  
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Mxs,inner 

Mxf,inner 

Mxs,outer 

Mxf,outer 

Lx 

In order to determine maximum negative and positive moments in the slab at the columns and 

mid-span, respectively, the live load has to be placed unfavourably with respect to each load 

action. 

 

Earlier, this was rather time consuming, and several approximate methods were often used. 

One alternative was to analyse the slab as a continuous beam (simply supported on columns), 

with successive approximations for the column moments (beam method). 

Another alternative was an approximation of the beam method, based on moment coefficients 

for outer and inner spans.  This method is valid provided certain ratio between neighbouring 

spans. 

With today’s availability of computer programs for plane frames, there should be no reason 

for focusing on the approximation methods.   

Therefore, static analyses of the frames should be carried out by using some available 

computer program for plane frames. 

 

 

The results from the analyses for the slab moments in an equivalent three-span frame will in 

principle look like shown in Figure 3.4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.8 Design total moments in flat slab strip with width Ly 
 

 

 

 

The slab moments uniformly distributed across the width of the strip is: 

 

 Over columns:    xs
xs

y

M
m

L
            In spans :  xf

xf
y

M
m

L
  
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0,25Ly 

0,25Ly 

0,125Ly 

0,125Ly 

0,125Ly 

0,125Ly 

Lx 

Outer column strips 

Middle strips Inner column strip 

1,8mxs 

1,2mxs 

1,2mxs 

0,5mxs 

0,5mxs 

0,8mxf 

0,8mxf 

1,2mxf 

Distribution of 

moment in span 

Distribution of moment 

at columns 

According to EC2, I.1.2 (2), the negative moments at the columns should be concentrated to 

the centre lines of the columns. 

 

Further, EC2, 9.4.1(2) says that at internal columns, unless rigorous serviceability calculations 

are carried out, top reinforcement of area 0,5At should be placed in a width equal to the sum 

of 0,125 times the panel width on either side of the column.  At represents the area of 

reinforcement required to resist the full negative moment from the sum of the two half panels 

at each side of the column. 

This means that 50% of Ms,inner should be distributed across a width 0,25Ly . 

 

In Norwegian Concrete Society’s Publication no. 33 /3.4.1/, the flat slab strip is divided into 

inner and outer column strips and middle strips, as shown in Figure 3.4.9. 

The figure also shows the assumed transverse moment distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.9 Transverse distribution of moments according to NB Publikasjon no. 33 

 

This distribution results in the following part of the moment concentrated in 0,25Ly over the 

columns : 

 

                 y xs xs y xs0,25L 1,8m 0,45m L 0,45M    

 

This means that 0,45At is concentrated over the columns, instead of 0,5At according to 

EC2, 9.4.1(2). 

In order to satisfy this recommendation in EC2, the factor for the inner column strip has to be 

2,0 instead of 1,8 according to NB Publikasjon nr. 33.  However, the recommendations in 

Table 3.4.1 are satisfied. 
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3.4.5 Comparison to theory of elasticity 

 

Figure 3.4.10 shows a finite element model in DIANA of ¼ of  a flat slab with 3·3 panels 

(16 columns). 

The column supports are pinned in each column corner. 

The symmetry edge BC is restrained for x-displacement and rotation about the y-axis, while 

CD is restrained for y-displacement and rotation about the x-axis.  The slab thickness is 

250mm the span lengths are shown in the figure.  The slab is subjected to a uniformly 

distributed load q = 10 kN/m
2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.10 Finite element model of flat slab 

 

 

Moment distributions at inner column support, section 1-1, and in the span, section 2-2, are 

shown in Figure 3.4.11. 
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a)  mxs at section 1-1 

a)  mxf at section 2-2 
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Figure 3.4.11 Transverse moment distribution from DIANA-analysis and NB Publ.33 
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The transverse moment distribution from NB Publ. 33 in Figure 3.4.11 is based on the 

following slab moments : 

According to moment coefficient methods, the moment at inner column support may be 

approximated as qLx
2
/12 (i.e. assumed fixed), while the moment in the span may be 

approximated as qLx
2
/16. 

This results in the following according to NB Publ. 33; 

 

Over the column support : 

 
2 2

y x
xs

qL L 10 6 8
M 320kNm / m

12 12

 
      xs

xs
y

M 320
m 53,3kNm / m

L 6
    

 

Inner column strip    :   1,8·53,3 = 96 kNm/m 

Outer column strips  :   1,2·53,3 = 54 kNm/m 

Middle strips            :   0,5·53,3 = 26,7 kNm/m 

 

In the span  : 
2 2

y x
xf

qL L 10 6 8
M 240kNm / m

16 16

 
     xf

xf
y

M 240
m 40kNm / m

L 6
    

Column strip :    1,2·40 = 48 kNm/m 

Middle strip  :       0,8·40 = 32 kNm/m 

 

Figure 3.4.12 shows that the assumed transverse distribution of the column support moments 

are close to the results obtained by theory of elasticity (finite element solution). 

 

The moments in the span, however, are over-estimated compared to elastic theory.   

However, approximate moment coefficients are used for calculation of the total span moment.  

A complete frame analysis would probably give better correspondence between elastic theory 

and NB Publ. 33. 

Also, the differences are not as large as it seems in Figure 3.4.13, because of the difference in 

scale of the moment axes at column support and in the span. 

 

In order to satisfy the recommendation in EC2, 9.4.1(2), to concentrate 50% of the total 

moment to the inner column strip, the factor has to be increased from 1,8 to 2,0. 

Further, the factor for the outer column strips has to be reduced from 1,2 to 1,0 to give a total 

moment  Mxs .  This moment distribution is shown in Figure 3.4.12. 

 

A transverse moment distribution with a Ly/2 wide column strip and constant moment 1,33mxs 

, middle strips with 0,67mxs should also be mentioned..  This distribution was recommended 

in the Norwegian design rules NS427A /3.4.2/ from 1963, and replaced by NS3473, 1
st
 

edition /3.4.3/ in 1973.  The distribution is shown with a dashed line in  

Figure 3.4.12. 

Prior to the release of NB Publikasjon nr. 33 in 2004, most flat slabs in Norway were 

designed based on this distribution, and as can be seen from Figure 3.4.14, this is a significant 

under-estimation of the moment concentration at the columns.  However, for flat slabs with 

capitals and drop panels over the columns (commonly used earlier), this distribution is 

reasonable. 
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Figure 3.4.12 Transverse moment distribution from DIANA-analysis, modified NB Publ. 

33 and NS427A. 
 

 

 

 

 

3.4.6 Common design of flat slabs 

 

When designing flat slabs, one has to choose if the plate is supported directly on the columns, 

or if the column top area should be increased by capitals and/or drop panels. 

The choice will influence eventual need of local shear reinforcement in the slab at the 

columns, and slab thickness to satisfy deflection requirement. 

 

The slab edges may include perimeter beams in order to increase the slab stiffness and reduce 

moments that are transferred to the columns.  Including perimeter beams makes the practical 

reinforcement detailing in joints between slab and columns near the slab edge easier.  

Appropriate reinforcement detailing is easiest to achieve if the columns are not too close to 

(or at) the slab edge.   

In recent years several flat slabs have been designed with spans up to 7,2m.  In some cases the 

deflections have become too large and have resulted in problems with respect to 

serviceability.  It is therefore urgent to choose slab thickness and reinforcement based on 

deflection calculations.  The slab thickness has the major influence on the deflections. 
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The former Norwegian design rules required minimum slab thickness h  L/30.   Experience 

has shown that this minimum thickness requires large reinforcement quantities in order to 

limit the deflections to acceptable sizes. 

It is therefore recommended to choose slab thickness larger than the minimum requirement, 

e.g. in the order of magnitude L/25, for normal live loads and span lengths   7,2m.  If the live 

load is close to the self-weight, still larger slab thicknesses should be considered. 

For smaler spans, e.g.  5m, the minimum thickness is probably sufficient. 

 

 

 

 

3.4.7 Deflection calculation in SLS 

 

According to EC2, 7.4.1(4), the slab deflection for quasi-permanent load should not exceed 

1/250 of the span.  Quasi-permanent load is self-weight plus a permanent part of the live load 

(often 40% – 50%). 

 

Since transverse distribution of moments in the equivalent frame analysis is based on elastic 

theory solutions, the same distribution assumptions can be used in SLS. 

Further, the actual load case for control according to EC2, 7.4.1(1) is permanent load in all 

spans, because EC2 does not specify any limit for maximum deflection when short term loads 

are included. 

 

Figure 3.4.13 shows in principle how the deflection of a slab panel can be calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.13 Principle for deflection calculation in slab panel 
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Analysis procedure: 

 

1) Total moments in flat slab strip in x-direction with width Ly are determined by frame 

analysis for permanent load in all spans in SLS.  For actual span : 

 

 

 

 

 

 

 

 

Moments per unit width in column strip according to NB Publikasjon 33: 

 

 

 

 

 

 

 

 

Here :      s1x
ss1

y

M
m 1,8

L
    ;      s2x

ss2
y

M
m 1,8

L
    ;     fx

sf
y

M
m 1,2

L
   

 

 

2) Total moments in flat slab strip in y-direction with width Lx are determined by frame 

analysis for permanent load in all spans in SLS.  For actual span : 

 

 

 

 

 

 

 

 

Moments per unit width in middle strip according to NB Publikasjon 33: 

 

 

 

 

 

 

 

 

 

Her er :      
s1y

fs1
x

M
m 0,5

L
    ;      

s2y
fs2

x

M
m 0,5

L
    ;     

fy
ff

x

M
m 0,8

L
   
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3) The required reinforcement in each section is determined in ULS. 

 

 

For each section, calculate flexural stiffness for cracked state (State II):  

  s
3

A

10 d
 


   ;    s

c,mean

E

E
     

Ec,mean  is determined from long term E-moduli for self-weight and permanent part of 

live load. 

 

   
2

2       ;   2 3 3
ce

1
I 1 10 d

2 3

 
    

 
 ;         EI = Ec,mean·Ice 

 

4) Calculate a quasi-average flexural stiffness for the regions with tension in top and 

bottom for the strips in x- and y-direction : 

 

Column strip in x-direction:    
2

sf

1,2qa
m

8
      sf8m

a
1,2q

     u
x

a

L
   

 

                                         x,average u x,bottom u x,topEI EI (1 )EI    

 

Middle strip in y-direction:    
2

ff

0,8qb
m

8
      ff8m

b
0,8q

     u
y

b

L
   

 

                                         y,average u y,bottom u y,topEI EI (1 )EI      

 

5) Deflections xs and yf in Figure 3.4.13 are calculated from the moment distributions 

in 1) and 2) for x- and y-strips based on virtual work method with average flexural 

stiffness from 4). 

 

Further, the deflection is   total 1 xs yf        

 

 

Ideally, deflection determined by analyses of column strip in y-direction and middle strip in x-

direction should be the same, i.e. total 2 ys xf       . 

 

 

Most probably, 1 2    , hence, the deflection can be determined as an average value for the 

two directions  :       

                               1 2
total

2

  
    

 

Acceptable deflection according to EC2 is L/250, where    L = min{ Lx ;  Ly } 
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x 

y 

L
y
 =

 6
,0

 m
 

Lx = 7,2 m 

3.4.8 Example - Design and deflection calculation 

 

 

Figure 3.4.14 shows a 3·3-span flat slab with span lengths Lx = 7,2m og Ly = 6,0m. 

The slab thickness is chosen as h = 300mm, which is slightly over Lx/25. 

The columns are quadratic with 300·300.  The column lengths are 3,0m. 

 

Loads:    Self-weight :   g = 0,3·25 = 7,5 kN/m
2
  ;    

                Live load    :  p = 5,0 kN/m
2
  ,   40% assumed permanent. 

 

                Design load in ULS :  qEd = 1,2g + 1,5p = 16,5 kN/m
2
 

 

                Permanent load in SLS :   q = g + 0,4p = 9,5 kN/m
2
 

 

Materials:    B30  fcd = 17 N/mm
2
      B500NC   fyd = 434 N/mm

2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.14 Flat slab- plan view and frames in both directions 
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421 

401 

506 

380 

136 

251 

391 

gEd + pEd = 99 kN/m 

gEd + pEd = 99 kN/m 
gEd = 54 kN/m 

gEd + pEd = 99 kN/m 
gEd = 54 kN/m 

Due to double symmetry, half the frames in x- and y-direction are modelled and analysed by 

DIANA for actual load cases that give maximum design support and span moments in ULS. 

Diagrams for total moment for the entire flat slab strip in the x- and y-direction frames, 

respectively, are shown in Figure 3.4.15 and Figure 3.4.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.15 Moments in x-direction frame [ kNm ]   
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417 

325 

322 

213 

360 

329 

gEd + pEd = 118.8 

kN/m 

gEd + pEd = 118.8 kN/m 
gEd = 64.8 kN/m 

gEd + pEd = 118.8 kN/m 
gEd = 64.8 kN/m 
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Figure 3.4.16 Moments in y-direction frame   [ kNm ] 
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1,8mxs = 151,8 

1,2mxs = 101,2 

0,5mxs = 42,2 

0,75m 1,5m 1,5m 1,5m 0,75m 

101,2 

42,2 

 

Determination of required reinforcement: 
 

Flat slab strip in x-direction 

 

The transverse moment distribution at inner column is shown in Figure 3.4.17.  

The uniform moment intensity is:  mxs = 506/6 = 84,33 kNm/m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.17 Moment distribution at inner column in x-direction strip 
 

 

 

Assume an average effective depth for all sections:   d = 250mm 

 

Moment capacity:   2 3 2 6
Rd cdm 0,275f bd 0,275 17 10 250 10 304kNm/ m        

 

 

Inner column strip:   
151,8

z 1 0,17 d 0,915 250 229mm
304

 
      
 

 

                                
6

2
sx,s1

151,8 10
A 1527mm / m

229 434


 


      16s130  gives 1546 mm

2
/m 

 

Outer column strip:     
101,2

z 1 0,17 d 0,94 250 235mm
304

 
      
 

 

                                
6

2
sx,s2

101,2 10
A 992mm / m

235 434


 


      16s200  gives 1005 mm

2
/m 

 

Middle strip:                z  0,95d = 237mm 

 

                                
6

2
sx,f

42,2 10
A 410mm / m

237 434


 


      12s270  gives 419 mm

2
/m 

 

This is all top reinforcement ! 
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1,8mys = 104,2 

1,2mys = 69,5 

0,5mys = 29 

0,9m 1,8m 1,8m 1,8m 0,9m 

69,5 

29 

 

The transverse moment distribution at inner span is shown in Figure 3.4.18.  

The uniform moment intensity is :  mxf = 251/6 =  41,83 kNm/m. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.18 Moment distribution at inner span in x-direction strip 
 

 

Column strip :     Small moments, hence  z = 0,95d = 237 mm 

 

                         
6

2
sx,fs

50,2 10
A 488mm / m

237 434


 


      12s230  gir 492 mm

2
/m 

 

Middle strip :       
6

2
sx,ff

33,5 10
A 326mm / m

237 434


 


  

 

     Minimum reinforcement according to EC2 :   3 2
s,min

2,9
A 0,26 10 250 377mm / m

500
      

 

     Choose  12s300 which gives 377 mm
2
/m 

 

 

Flat slab strip in y-direction 

 

The transverse moment distribution at inner column is shown in Figure 3.4.19.  

The uniform moment intensity is :  mys = 417/7,2 = 57,9 kNm/m 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.19 Moment distribution at inner column in y-direction strip 
 

1,5m 1,5m 3,0m 

1,2mxf = 50,2 
0,8mxf = 33,5 33,5 
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The transverse moment distribution at inner span is shown in Figure 3.4.20.  

The uniform moment intensity is :  myf = 213/7,2 =  29,6 kNm/m. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.20 Moment distribution at inner span in y-direction strip 
 

 

 

Reinforcement at all sections can be calculated similarly as for the x-direction strip 

 

Deflection calculation only requires the reinforcement in the middle strip, where the 

magnitude of the moments results in minimum reinforcement, i.e.: 

 

           Asy,f = Asy,ff = 377 mm
2
/m          12s300  

 

 

 

Deflection calculation at inner span : 

 

Moments in ULS are scaled to SLS by the factor 

 

                           
Ed

q 9,5
0,576

q 16,5
    

 

Moments in column strip in x-direction are determined from Figure 3.4.17 and Figure 3.4.18, 

and are shown in Figure 3.4.21. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.21 Moments in inner span in column strip in x-direction 

 

1,8m 1,8m 3,6m 

1,2myf = 35,5 
0,8myf = 23,7 23,7 

a 

0,576·151,8 

            =  87,4 

0,576·50,2 = 28,9 

87,4 

Lx = 7,2m 
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Length with bottom tension, a: 

 

   
21,2qa

28,9
8

        
28,9 8

a 4,5m
1,2 9,5


 


     u

x

a 4,5
0,625

L 7,2
     

 

 

 

Flexural stiffness at column: 

 

    
sx,s1

sx 3 3

A 1546
0,00618

10 d 10 250
   

 
  

 

Assume creep coefficient φ = 2,2 , resulting in  Ec,eff = 10000 N/mm
2
 

 

    s

c,eff

E 200000
20

E 10000
         sx 0,124   

 

    2
sx 0,124 2 0,124 0,124 0,39       

 

     2 3 3 8
csx

1 0,39
I 0,39 1 10 250 10,34 10

2 3

 
       

 
 mm

4
     12

sxEI 10,34 10   Nmm
2
 

 

 

 

 

Flexural stiffness in span: 

 

      
sx,f

fx 3 3

A 492
0,00197

10 d 10 250
   

 
     fx 0,0394   

 

      2
fx 0,0394 2 0,0394 0,0394 0,244       

 

      2 3 3 8
csx

1 0,244
I 0,244 1 10 250 4,27 10

2 3

 
       

 
 mm

4
     12

fxEI 4,27 10   Nmm
2
 

 

 

 

Average flexural stiffness: 

 

   12 12 12
xm u fx u sxEI EI 1 EI 0,625 4,27 10 0,375 10,34 10 6,55 10            Nmm

2
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mf 

ms 

mvirt 

Pvirt =1 

116,3 

- 87,4 

1·Lx/4 

 

Split the moment diagram in Figure 3.4.21, and calculate deflection using principle of virtual 

work: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x
xs f x s x

xm

5 L 1 L 1
m L m L

12 4 2 4 EI

 
          

 
 

 

       
2 6 2 6

6

12

5 7,2 10 1 7,2 10 1
116,3 10 87,4 9,4mm

12 4 2 4 6,55 10

  
             

 

 

 

 

 

Moments in middle strip in y-direction are determined from Figure 3.4.19 and Figure 3.4.20, 

and are shown in Figure 3.4.22. 

  

 

 

 

 

 

 

 

 

Figure 3.4.22 Moments in inner span for middle strip in y-direction 

 

 

Here it is minimum reinforcement both in top and bottom, hence the flexural stiffness is 

constant throughout the span. 

 

 

0,576·29 = 16,7 16,7 

0,576·23,7 = 13,7 
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mf 

ms 

mvirt 

Pvirt =1 

30,4 

- 16,7 

1·Ly/4 

 

  
s,min

fy 3

A 377
0,00151

b d 10 250
   

 
    fy 0,03   

 

  2
fy 0,03 2 0,03 0,03 0,217         

 

  2 3 3 8
csx

1 0,217
I 0,217 1 10 250 3,41 10

2 3

 
       

 
mm

4
     12

yEI 3,41 10  Nmm
2
 

 

 

Split the moment diagram in Figure 3.4.22, and calculate deflection using principle of virtual 

work: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 6 2 6

6
yf 12

5 6 10 1 6 10 1
30,4 10 16,7 11,4mm

12 4 2 4 3,41 10

  
              

 

 

 

The total deflection at inner span is :   total xs yf 9,4 11,4 20,8mm         

 

Acceptable deflection according to EC2 :   
yL 6000

24mm
250 250

   

 

 

Additional deflection due to shrinkage is not accounted for.  Tension stiffening, which 

counteracts the shrinkage is neither included.  Therefore, the calculated deflection may be 

assumed to represent the reality with reasonable degree of accuracy. 
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a)   Real tendon profile 

b)   Idealised tendon profile 

 

3.4.9 Pre-stressed flat slabs 

 

Post-tensioned, unbonded pre-stressing is an effective way of reducing deflections in flat 

slabs, and thereby allowing larger spans.  

 

Pre-stressing tendons are placed in greased tendon ducts, which protect against corrosion and 

reduce friction.  Hence, the pre-stressing force can be assumed as constant along the tendon.  

 

Commonly used parabolic shaped tendon profile with positive and negative curvature and 

resulting equivalent forces is shown in Figure 3.4.23a. 

 

The simplified tendon profile in Figure 3.4.23b is often used as an approximation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.23 Pre-stressing tendon profile with equivalent forces 

 

 

The uniformly distributed equivalent load in the span counteracts self-weight and live load 

(so-called load balancing), and is included in the equivalent frame analysis.  Creep, shrinkage 

and relaxation will influence the pre-stress force, and hence the equivalent uniform load. 

Such pre-stress losses are described in ref. /3.4.4/. 

 

125 



a) Tendons only in  

column strips 

b) Tendons which is most 

effective related to 

elasticity theory 

c) Tendons in the span   

     only in largest span 

     direction 

d) Tendons in column 

    and middle strips in  

    separate directions 

The tendons may be placed in various patterns.  Some examples from ref. /3.4.1/ are shown in  

Figure 3.4.24.  Here, a) is the simplest, b) is difficult to produce due to crossing tendons in the 

span, while c) and d) are the most commonly used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.24 Various tendon patterns 
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CHAPTER 4  
 

 
PUNCHING OF CONCRETE 

SLABS 
 
 
 
 
 
 
 
 
 
 
 

Jan Arve Øverli  
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4.1 Introduction 
 
In design of concrete slabs, shear is generally not critical when slabs carry distributed loads and 
are supported by beams or walls. However, in slabs with concentrated loads the maximum shear 
force per unit length can be relatively high close to the loaded area, as illustrated in Figure 4.1.1. 
The effect of concentrated loading on slabs is referred to as punching shear. Punching shear can 
result from a concentrated load or reaction forces acting on å relatively small area. In civil 
engineering structures punching shear must typically be considered in: 
 

• Slab-column connections in flat slabs floors 
• Column-footing connection in a foundation 
• External loads such as wheel loads 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.1.1 Large shear stresses close to a column 
 
If punching shear is critical and governs the design, this can influence the geometry of the 
structure. An easy way of reducing shear stresses is to increase the size of the column or the slab 
thickness. To maintain storey heights in a flat slab the shear resistance around the column can be 
increased by employing a drop panel or a column head, as illustrated in Figure 4.1.2. A drop panel 
is easy to execute with regard to formwork and reinforcement. Of architectural or durability 
considerations a column head with either a pyramid or a cone shape can be used. Another 
advantage of using a column head or a drop panel is that the moments and deflections are reduced 
since the effective span is reduced. 
 
 

External load 

Reaction force/ 
Column load  

Shear stresses 
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Figure 4.1.2 Flat slab with a) Drop panel; b) Column head, /4.4/ 
 

4.2 Punching shear failure 
 
Punching shear is a local shear failure around a concentrated load on a slab. Figure 4.2.1 shows a 
typical punching shear failure observed in a flat slab. The failure occurs along a truncated cone 
caused by diagonal tensile cracks, see Figure 4.2.2. The cracks form a failure surface around the 
loaded area. Hence, punching shear is a three-dimensional problem. In beams there are specified 
critical sections to do the shear design. For punching shear the critical section is defined as a 
failure perimeter some distance from the loaded area. In design this perimeter is defined as the 
basic control perimeter. 
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Figure 4.2.1 Punching shear failure in a flat slab 
 
Punching shear is one of the most difficult problems in design of concrete structures. Much 
experimental and theoretical work has been carried out to develop mechanical models, analyses 
methods and code regulations to find the shear resistance for punching /4.2/. Among the factors 
which in general influence shear resistance in concrete are concrete quality, amount of 
longitudinal reinforcement and size. In addition the size of the loaded area and definition of the 
control perimeter influence in punching shear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.2 Typical punching shear failure a) Truncated cone; b) failure cracks /4.5/ 

Failure crack 

Bending cracks 
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4.3 Basic control perimeter 
 
In design for punching shear, the critical perimeter must be defined, both the shape and the 
distance from the loaded area. Compared to a beam with a critical section, definition of the critical 
perimeter is more important for punching shear. As the perimeter gets closer to the loader area, 
the perimeter rapidly gets shorter and the shear force rapidly gets higher. 
 
Different codes have adopted different perimeters. According to NS-EN 1992-1-1 Eurocode 2 
[EC2] /4.1/, the basic control perimeter u1 may normally be taken to be at a distance 2,0d from the 
loaded area and should be constructed so as to minimise the length, see Figure 4.3.1. The effective 
depth of the slab can normally be taken as a mean value: 

 

(4.3.1) 

 
where dy and dz are the effective depths of the reinforcement in two orthogonal directions. For a 
circular loaded area with diameter D, and a rectangular loaded area with dimension c1·c2, the 
length of the control perimeter becomes respectively:  

(4.3.2) 

(4.3.3) 

 
In reality the choice of shape and u1 is not too important. The treatment of shear in EC2 is 
empirical, i.e. it is based on experimental work. Hence, the same strength can be obtained with a 
short perimeter and large shear strength or with a longer perimeter and lower shear strength. By 
employing the distance 2,0d from the loaded area, the same formula in EC2 for shear resistance 
can be used for both punching shear and shear in beams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.1 Typical basic control perimeters around loaded areas /4.1/ 
 
The choice of a minimised length to define the shape of the control perimeter in EC2, is realistic 
and in agreement with experiments, as seen in Figure 4.2.2. However, it is not necessary practical. 
If shear reinforcement is needed, this must be provided within the perimeter. With a minimised 
perimeter this is difficult with a rectangular reinforcement grid.  
 

2
zy

eff

dd
d

+
=

)4(u circular
1 dD +⋅= π

21
rrectangula

1 224u ccd ⋅+⋅+⋅= π
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With the control perimeter located 2,0d from the loaded area, the appropriate verification model 
for checking punching shear failure in ultimate limit state in EC2 is given in Figure 4.3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.2 Model for punching shear at the ultimate limit state /4.1/ 
 
For loaded areas situated near an opening, corner or edge, the control perimeter must be reduced 
compared to Figure 4.3.1. The effect of the free edges must be taken into account. In EC2 the 
basic control perimeters for loaded areas close to an edge or corner are given as shown in Figure 
4.3.3. The perimeter continues to the free edge must be smaller than that obtained from Figure 
4.3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.3 Basic control perimeters around loaded areas close to or at edge or corner 
/4.1/ 
 
Openings in a slab reduce the punching shear capacity. Depending on the distance between 
openings and loaded area, the length of the control perimeter must be reduced. When the distance 
between the perimeter of the loaded area and the edge of opening is less than 6d, EC2 employs a 
simplified approach. The part of the control perimeter contained between two tangents drawn to 
the outline of the opening from the centre to the loaded area is considered to be ineffective,  
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Figure 4.3.4 Control perimeter near an opening /4.1/ 
 
In flat slabs where drop panels or column heads are provided, control sections must in general be 
checked both within the head and in the slab. Detailed specifications are given in EC2. With basis 
in Figure 4.3.7, distinction must be made between cases where lH < 2.0hH and lH > 2.0hH, where 
 
 lH = distance from the column face to the edge of the column face 
 hH = height of head below soffit of slab 
 
 
 
 
 
 

 
 
 
 

Figure 4.3.5 Location of control perimeter with enlarged column head, lH < 2.0hH, /4.1/ 
 
When lH < 2.0hH a circular control perimeter is assumed with a radius rcont outside the enlarged 
column head. Even for a rectangular column head, EC2 specify a circular perimeter. The radiuses 
are given in EC2 as:   
 

(4.3.4) 

 

(4.3.5) 

 
 
where l1 and l2 are the overall dimensions of the rectangular head, and l1≤ l2. To validate the 
length of the control perimeter by using the radius in Eq. (4.3.5) for a rectangular head, the length 
is also calculated a distance 2,0d outside the column head employing the minimised length 
according to Figure 4.3.1. Figure 4.3.6 gives the difference for different l1/ l2 ratios relative to 

headcolumn circular for    5,02rcont cld H ++=

1 2
cont

1

2 0,56r min    for a reactangular column with a reactangular column head
2 0,69
d l l

d l
 += 

+
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effective height d in the slab. As seen in the figure, the difference for a quadratic head is small. 
For an elongated head with l1=0,5·l2 the difference is much larger. However, in a flat slab, the 
drop panel or column head are normally quadratic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.6 Difference in perimeter length according to EC2 and minimised length 
 
When lH > 2.0hH control sections within and outside the enlarged column heads must be defined, 
as seen in Figure 4.3.7. For circular columns EC2 specifies the distances from the centroid of the 
column to the control sections as:  

(4.3.6) 

(4.3.7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.7 Location of control perimeter with enlarged column head, lH > 2.0hH, /4.1/  
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l1= 0,5·l2, EC2, Eq. (4.3.5) 
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4.4 Design procedure and design shear force 
 
Design for punching shear is based on verification of applied shear stresses, vEd, along defined 
control perimeters around the loaded area. The shear force acts over an area u·deff, where u is the 
length of the perimeter and deff is the effective depth of the slab according to Eq. (4.3.1). For an 
external load or a slab-column connection with no moment transfer between the slab and the 
column, a uniform shear stress distribution can be assumed, see Figure 4.1.1. 

 

(4.4.1) 

 
 
The following design shear stresses (MPa) along the control sections are defined in EC2: 
  

 vRd,c  – design value for punching shear stress resistance of a slab without punching shear 
reinforcement. 

  
 vRd,cs  – design value for punching shear stress resistance of a slab with punching shear 

reinforcement. 
  

 vRd,max – design value for maximum punching shear stress resistance. 
 

The following checks must be carried out to fulfil the design for punching shear in a slab: 
 

a) At the column perimeter, or the perimeter of the loaded area, ensure that the maximum 
punching shear stress is not exceeded, vEd < vRd,max. Otherwise, the practical solution is to 
resize the slab. 

 
b) At the control perimeters considered, determine if punching shear reinforcement is 

required,  vEd > vRd,c. 
 

c) If vEd > vRd,c, provide necessary punching shear reinforcement so that vEd < vRd,cs. 
 
Because of unsymmetrical loading, unequal spans or boundary conditions, moment transfer is 
practically always present from slab to column in a flat slab. This influence the shear stresses in 
the slab around the column. Experimental work shows that punching shear strength is reduced 
when moment transfer occurs. The strength is usual most critical at corner or edge columns, 
because the critical perimeter for punching does not extend all around the column and, hence, is 
weaker than at interior columns. 
 
Design codes normally take into account the unbalanced moment from columns by using a 
multiplier to the uniform shear stress distribution in Eq. (4.4.1). In EC2 the increased stress is 
given as: 

 

(4.4.2) 

 
where β is the multiplication factor.  
 
 
 

eff
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Ed du

V
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Figure 4.4.1 Transfer of moment from column to slab 
 
Some distance from the column edge, an unbalanced moment MEd in the column is balanced by a 
distributed bending moment mx, torsional moment mxy, and partly by shear forces vx and vy 
around the considered perimeter, see Figure 4.4.4. Thus, the β factor in Eq. (4.4.2) accounts for 
the increased distributed shear forces due to the unbalanced column moment. The factor is a 
function of the geometry of the critical perimeter, column size and the moment transferred and 
EC2 defines it as: 
 

 

(4.4.3) 

 
 

(4.4.4) 

 
where k is a value defining the proportion of the unbalanced moment transmitted by uneven shear, 
on one hand, and by bending and torsion on the other. Values of k in EC2 are given in Table 4.1, 
depending on the aspect ratio of the column size, c1and c2, for rectangular loaded areas. For round 
columns c1/c2=1,0, so k=0,6.  
 

Table 4.1 Values of k for rectangular loaded areas 
 

c1/c2 ≤0,5 1,0 2,0 ≥3,0 
k 0,45 0,60 0,70 0,80 
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W1 in Eq. (4.4.4) depends on the distribution of shear stresses around the control perimeter due to 
an unbalanced moment MEd. On the basis of elastic analyses /4.7/, the distribution of shear 
stresses in a slab in the vicinity of a column can be calculated, and they approach the distribution 
given in Figure 4.4.2. In Eq. (4.4.4), dl is a length increment of the perimeter and e is the distance 
of dl from the axis of which the moment MEd acts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.2 Shear distribution due to an unbalanced moment at a slab internal column 
connection /4.8/ 

 
EC2 assumes the shear distribution in Figure 4.4.2. The moment transferred between column and 
slab must equal the moment produced by the shear distributed around the perimeter. This can be 
written as: 
 

 

(4.4.5) 

 
 
 
 
 
 
 
 
 
 

 
The shear vM due to an unbalanced column moment and the definition of W1 in Eq. (4.4.5) for an 
internal column corresponds to the equations given in EC2. Figure 4.4.3 gives the total assumed 
shear distribution around a rectangular loaded area. 
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Figure 4.4.3 Total assumed shear distribution around the control perimeter 
 
The punching shear enhancement factor β, is also given in EC2 for other configurations of 
columns, such as corner and edge columns and biaxial unbalanced moments in the column. 
 
Following EC2, the calculation of the β factors can be rather complicated. Therefore EC2 offers 
simplified values for β. For structures where the lateral stability does not depend on the frame 
action between the slabs and columns, and where the adjacent spans do not differ in length by 
more than 25%, approximate values given in Figure 4.4.4 can be used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.4 Recommended values for β 
 
 

MEd c1 
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4.5 Punching shear resistance without shear reinforcement 
 
The basic control section u1 must be checked to determine whether punching shear reinforcement 
is required. The design shear stress resistance vRd,c is in EC2 given as: 
 

 
(4.5.1) 

 
where  

 
 
The expression in Eq. (4.5.1) is almost similar to the shear resistance for a beam unreinforced in 
shear. Compared to a beam, average values of reinforcement ratio ρl and normal concrete stresses 
σcp must be used in Eq. (4.5.1). σcp must be calculated based on the longitudinal forces across the 
full bay for internal columns, and across the control section for edge columns. In addition the 
factor k1 applied to the effect of axial stresses, is reduced from 0,15 to 0,1 compared to a beam. 
 
 

4.6 Design of reinforcement for punching shear 
 
Where the applied shear stress vEd at the basic control perimeter u1 exceeds vRd,c, shear 
reinforcement must be provided to achieve necessary resistance. EC2 uses the following 
relationship for punching shear resistance with shear reinforcement: 

 
 

(4.6.1) 
 

where Asw is the area of shear reinforcement in one perimeter around the column, sr is the radial 
spacing of perimeters of shear reinforcement, and fywd,ef is effective design strength of punching 
shear reinforcement given as: 
 

(4.6.2) 
 

 
The summation principle of concrete contribution and punching reinforcement component is 
employed in Eq. (4.6.1). This in difference to shear reinforcement design of beams which is based 
on a truss model with no concrete contribution. However, the concrete contribution is reduced to 
75% for punching shear. The factor 1,5 for the shear reinforcement contribution would correspond 
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to an angle of cotθ for the strut in a truss model. However, the use of 1.5 does not imply a steeper 
failure plane, but reflects observations from test results that shear reinforcement at the ends of the 
shear planes are less effective. Punching shear in EC2 are based on a model with a failure plane 
cotθ=2,0 (radial distance 2,0d). Always keep in mind that formulas for punching shear resistance 
given in EC2 are calibrated against test results 
 
The introduction of effective design strength of the shear reinforcement can partly be explained by 
anchoring efficiency. It is argued that it is hard to find adequately anchored punching shear 
reinforcement at both sides of a critical crack. 
 
By restructuring Eq. (4.6.1) , the required vertical shear reinforcement per perimeter can be 
written as: 

 
(4.6.3) 

 
To maintain the designed amount of reinforcement, Asw, around a circle loaded area, the number 
of links must be kept constant around each perimeter, see Figure 4.6.1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.6.1 Shear reinforcement  
 
In practice it can be inconvenient to keep control of the required shear reinforcement per 
perimeter according to Eq. (4.6.3), especially in a rectangular reinforcement grid. The 
contribution of shear reinforcement to the total shear resistance in Eq. (4.6.1), is assumed to be 
take part over a radial distance of 1.5d. To verify the required amount of shear reinforcement it is 
sometimes easier to find the total area of reinforcement in a radial band around the loaded area, as 
illustrated in Figure 4.6.2. Within the band with radial distance of 1.5d the required shear 
reinforcement area is given as:  

 
(4.6.4) 

 
The total punching shear reinforcement in the radial band must be controlled in successive 
perimeters from the loaded area to ensure that the reinforcement in each zone satisfies Eq. (4.6.4). 
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Figure 4.6.2 Contributory zone of shear reinforcement /4.9/ 
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4.7 Punching shear resistance adjacent to loaded area 
 
The punching shear stress must be checked at the loaded area perimeter, u0, normally the column 
perimeter, to ensure that 
 

 
(4.7.1) 

 
 
where  

 
 
 
 
 

The check in Eq. (4.7.1) is to avoid a compression failure in the concrete. It is applicable to 
sections with or without shear reinforcement, but is unlikely to be critical for slabs without shear 
reinforcement. The value for maximum punching shear stress resistance, vRd,max, is in EC2 given 
as: 
 

 
(4.7.2) 

 
where 

 
(4.7.3) 

 
Even by employing Eq. (4.7.2), experimental work on punching resistance of slabs with shear 
reinforcement has shown that the addition formula in Eq. (4.6.1) can give too high resistances. 
Hence, in the National Annex for Norway in EC2, a limitation is defined for maximum punching 
shear stress resistance, to reduce the influence of high ratios of shear reinforcement. The limit is 
defined as: 
 

 
(4.7.4) 

 
 
In Eq. (4.7.4), vRd,c is calculated according to Eq. (4.5.1), but with no contribution from normal 
stresses (i.e. k1·σp=0). If required punching shear reinforcement is calculated according to Eq. 
(4.6.1) with no concrete contribution (i.e. 0,75·vRd,c=0),  vRd,max = 0,4·v·fcd, can be employed with 
no upper limitation. 
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4.8 Detailing shear reinforcement 
 
In design of slabs, the main problem is often the punching shear resistance. To increase the 
resistance it is possible to: 

• Increase column diameter → often rejected by the architect. 
• Use a drop panel or enlarged column head → can be in conflict with utilisation of the 

structure 
• Larger slab depth → increased dead load and cost of footings and columns. 
• More flexural reinforcement → not so effective 
• Increase concrete compressive strength→ expensive and not so effective 
• Shear reinforcement 

 
Providing effective shear reinforcement is often the most economic solution to increase the 
punching resistance in a slab. There are many different shear systems to increase the shear 
resistance. Figure 4.8.1 shows some of the most popular systems. 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8.1 Different systems for punching shear reinforcement /4.2/ 

a) Conventional stirrup b) Closed links 

c) Bent up bars 
d) Hooks 

e) Stud-rails f) Concentrated stud-rails 
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Conventional shear links and stirrups are cheap, but they are difficult and time-consuming to set 
out and fix. Normally they are placed in rectangular grid around the column. Stud-rails are a 
prefabricated system where the studs are welded to flat base rails. They can be placed radial, in a 
rectangular grid or concentrated along the column axes. It is also possible to use double headed 
studs with no rails. 
 
Design of punching shear reinforcement is governed by the shape of control perimeter around the 
loaded area. The required area of shear reinforcement in EC2, given in Eq. (4.6.3), must be 
provided in each perimeter with a radial distance of sr. Orthogonal rectangular reinforcement 
grids, see Figure 4.8.2, are often employed since they can coincide with horizontal reinforcement 
arrangements. Such arrangements lead to an increase in area of shear reinforcement per perimeter 
on successive perimeters away from the loaded area. It can also be difficult to find and fit the 
exact number of shear links in a rectangular grid around the perimeter, as illustrated in Figure 
4.8.2. The difficulty is to estimate the effect of shear reinforcement not lying exact on the 
minimised perimeter around the rectangular loaded area. Use of shear reinforcement in a radial 
arrangement, e.g. stud rails, would simplify the shear reinforcement requirements. Another option 
is to employ the approach in section 4.6, where the total area of shear reinforcement, within an 
area of 1.5d inside the control perimeter under consideration, is calculated according to Eq. 
(4.6.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4.8.2 Shear links in an orthogonal rectangular grid 
 
Having found the required shear reinforcement at the basic control perimeter u1, and outer 
perimeter, at which shear reinforcement is not required must be decided. An outer control 
perimeter can be calculated according to EC2 as: 

 
(4.8.1) 

 
 

Knowing the perimeter uout,ef, the distance from the loaded area can be found. According to EC2, 
the outermost perimeter of shear reinforcement must be placed at a distance no greater than the 
effective depth 1,5d (1,0d in national annex in Norway), within the perimeter where reinforcement 
is not required. This is illustrated in Figure 4.8.2 for a rectangular grid and in Figure 4.8.3 for 
radial reinforcement and cruciform shape of concentrated reinforcement. The limitation of the 
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distance inside uout,ef is to ensure that an inclined punching shear plane cannot develop within this 
perimeter without passing through a set of shear reinforcement legs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8.3 Outer control perimeter at internal columns 
 
Shear reinforcement too close to the loaded area is unlikely to be effective to resist shear. Thus, 
the detailing rules in EC2 claim the first perimeter with reinforcement must not be closer than 
0,3d from the edge of the loaded area, as seen in Figure 4.8.4. To avoid critical shear cracks to 
form between perimeters of reinforcement, the radial spacing of reinforcement must not be larger 
than 0,75d, and the first perimeter with reinforcement not more than 0,5d from the face of the 
loaded area. Shear reinforcement must be provided in at least two perimeters. The spacing of link 
legs around a perimeter, st, must not exceed 1,5d within the first control perimeter (2d from 
loaded area) or 2d for perimeters outside the first control perimeter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4.8.4 Spacing of shear reinforcement links /4.8/ 
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Where shear reinforcement is required, the minimum area of a single leg of link is given as: 
 

 
(4.8.2) 

 
 

where 
 α =  angle between main reinforcement and shear reinforcement;  
   for vertical reinforcement sinα =1,0 
 sr =  is the spacing of shear links in the radial direction  
 st =  is the spacing of shear links in the tangential direction 
 
 
Detailing shear reinforcement around a column is sometimes a trial and error procedure. The 
result is a compromise between costs, work on site and to satisfy requirements for the 
reinforcement. The minimum total shear reinforcement is achieved by a short radial distance 
between perimeters, but is time consuming on site. Choice of bar diameter and spacing of links 
also depends on the layout of bending reinforcement. Using the same arrangement of 
reinforcement for so many columns as possible can for instance avoid confusion in detailing or on 
site. 
 
The required amount of shear reinforcement will often be defined by the circumferential and 
radial spacing rules rather than the required strength. In particular, the radial maximum spacing of 
0,75d ensures that in many situations, three perimeters of reinforcement within the failure zone. 
 

4.9 Example: Internal slab-column connection 
 
Design a slab for punching shear around an internal column according to EC2. The 
column supports a slab 225 mm thick and the column size is 300x300 mm.  
 
Material properties: 
    Reinforcement B500NC:  fyk = 500 N/mm2 

     
    Concrete B30: fcd =αcc· fck / γc = 0,85·30 / 1,5 = 17,0 N/mm2  
 
 
Nominal concrete cover cnom = 25 mm 
 
Assuming 12 mm diameter bars give the average effective depth 
 
  deff =  (dy+dz)/2 = 225 – 25 - 12 = 188 mm 
 
 
Design shear force (column reaction force) VEd = 600 kN 
Bending moment transferred between column and slab, about one axis only,  
MEd = 40 kNm 

 

 
2.4.2.4(1) 

3.1.6(1) 

4.4.1.1(2) 

 
 
Eq. 6.32 
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The design for flexure gave tension reinforcement  on top surface of the slab of 
ø12c80 in y-direction and ø12c120 in z-direction 
  ρly = Asy/(b·d) = 1413/(1000·188) = 0,0075 
  ρlz = Asz/(b·d) = 942/(1000·188) = 0,0050 
 
 
 
Basic control perimeter 
   
u1 = 2(c1+c2) + 2π· 2d = 4·300+2π·2·188 = 3562 mm 
 
 
Shear stress at control perimeter u1 (2d from face of load) 
   
vEd = β·VEd/(u1·d)  
   
    β = 1+k·(MEd /VEd)·(u1/W1 ) 
 
     k = 0,6 for c1/c2 =1,0 
 
  W1 = c1

2/2+ c1·c2 +4c2d+16d2+2π·d·c1 

            = 3002/2+3002+4·300·188+16·1882+2π·188·300 = 1,28·106 mm2 

 
    β = 1+0,6·(40·103 /600)·(3562/1,28·106 ) = 1,11 
 
  vEd = 1,11·600·103 /(3562·188) = 1,01 N/mm2 
 
A value of β=1,11 is only a small reduction compared to approximate value of 
1,15 given in EC2 for an internal column. To avoid shear reinforcement it may 
still be economic in some situations to do a calculation of β where the shear 
resistance is close to the design shear force. 
 
 
Shear stress resistance without shear reinforcement 
 
vRd,c =0,18/γc · k·(100ρl ·fck)1/3

  ≥ vmin 
 
   k = 1+(200/d)0,5 = 1+(200/188)0,5 =2,03 ≤ 2,0 → k = 2,0 
 
   ρl = (ρly ·ρlz )0,5 =  (0,0075 · 0,0050 )0,5 = 0,006 
 
  vmin = 0,035·k1,5·(fck)0,5 = 0.035·2,01,5·300,5 = 0,54 N/mm2 
 
 vRd,c =0,18/1,5 ·2,0·(100·0,006 ·30)1/3

 = 0,63 N/mm2
 ≥ vmin 

 
vEd > vRd,c meaning punching shear reinforcement is required 
 

 

 

 

 
6.4.2(1) 

 

 
Eq. 6.38 
 
Eq. 6.39 
 
Tab. 6.1 

 
Eq. 6.41 

 

 
 
6.4.3(6) 
 

 

 
Eq. 6.47 
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Shear stress at perimeter of column u0 
   
vEd = β·VEd/(u0·d) ≤ vRd,max 
 
u0 = 2(c1+c2) = 4·300=1200 mm 
 
vEd = 1,11·600·103 /(1200·188) = 2,95 N/mm2  
 
 
vRd,max = 0,4·v·fcd < 1,6·vRd,c·u1/(β·u0) 
 
v = 0,6(1-fck/250) = 0,6(1-30/250) = 0,528 
 
vRd,max = 0,4·0,528·17,0 < 1,6·0,63·3562/(1,11·1200) 
           = 3,59 < 2,69 
 
vEd = 2,95 > vRd,max=2,69 N/mm2 
 
The maximum punching shear resistance is too low. A possible solution could be 
to increase the slab thickness or the amount of bending reinforcement, or use a 
drop panel or enlarged column head. However, in EC2 +NA the lower limit of 
vRd,max can be used if the concrete contribution, vRd,c, is not taken account when 
calculating required shear reinforcement. This will be done in this example since it 
is already clear that shear reinforcement is required. In practise this should also be 
compared to the minimum shear reinforcement. 
 
vEd = 2,95 < vRd,max=3,59 N/mm2 
 
Perimeter at which shear reinforcement is not required 
   
uout = β·VEd/(vRd,c·d) = 1,11·600·103 /(0,63·188) = 5623 mm  
 
Distance from face of column to uout, is (5623-4·300)/2π = 704 mm = 3,74d 
 
Perimeters of shear reinforcement may stop a distance 704-d = 704-188 = 516 mm 
from the face of column. 
  
 
Required shear reinforcement  
   
Shear reinforcement are placed in a rectangular arrangement of links. 
 
Maximum spacing of reinforcement: 
 
sr,max = 0,75·d = 0,75·188 = 141 mm, say 140 mm 
 
Inside 2d control perimeter, st,max = 1,5·d = 1,5·188 = 288 mm, say 280 mm 
Outside 2d control perimeter, st,max = 2,0·d = 2,0·188 = 376 mm, say 370 mm 
 

 
6.4.5(3) 
 
Eq. 6.53 

 

 
NA.6.4.5(3) 

 
Eq. NA.6.6N 

 

 
NA.6.4.5(3) 

 

 

 

 
 
 
Eq. 6.54 

 
NA.6.5.4(4) 

 

 

 
9.4.3(1) 
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Required shear reinforcement at perimeter u1 assuming vertical links: 
 
Asw = (vEd-0,75·vRd,c) · sr·u1/(1,5·fywd,ef) 
 
fywd,ef = (250+0,25d) = 250+0,25·188 = 297 N/mm2   
 
0,75·vRd,c = 0, due to definition of vRd,max 
 
Asw = (1,01-0)·140·3562/(1,5·297) = 1130 mm2 pr perimeter  
 
Minimum reinforcement of one link leg: 
 
Asw,min ≥ 0,08·fck

0,5
 · sr·st/(1,5·fyk) = 0,08·300,5

 · 140·370/(1,5·500) = 30 mm2 
 
→ ø8 legs of links = 50 mm2 
 
With ø8 links the maximum tangential spacing at perimeter u1 : 
 
st = 50·u1/Asw = 50·3562/1130 = 158 mm, say 140 mm  
 

 
6.4.5.1(1) 
 
Eq. 6.52 

 

 
 
9.4.3(2) 
 
Eq. 9.11 

 
It is difficult to find the optimal reinforcement arrangement because the required reinforcement is 
per perimeter with the same shape as the critical perimeter. The first perimeter with reinforcement 
must be >0,3d but <0,5d from the face of the column. Here 60mm (0,32d) is used. Then a regular 
square arrangement of links, sr = st = 140 mm, is possible, which simplifies the work at the 
building site. Figure 4.9.1 shows a possible layout using a regular square grid arrangement. 
Requirements for maximum distance in radial direction makes it difficult to get the outmost 
perimeter of reinforcement exact on the perimeter where punching reinforcement is no longer 
required. With 5 perimeters of reinforcement, a total of 136ø8 = 6836 mm2 is required. As seen in 
Figure 4.9.1, double links must be employed in the first perimeter and partly in the second 
perimeter from the column face.  
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Figure 4.9.1 Regular square arrangement of shear links 
 
To ensure that Asw > 1130 mm2 pr perimeter, it is necessary to check the number of links in close 
vicinity to each perimeter of reinforcement. By inspection of Figure 4.9.1, the number of links can 
be counted and are presented in Table 4.2 . However, by using a square arrangement of links, 
there will always be a discussion if links not lying exact on a perimeter can be taken into account. 
 

Table 4.2 Area of reinforcement in perimeters 
 

Distance from face 
of column Number of links As [mm2] 

0,32d = 60 mm 2x12ø8=24ø8 1200 

1,06d = 200mm 8ø8+2x8ø8=24ø8 1200 

1,81d = 340 mm 24ø8 1200 

2,55d = 480mm 28ø8 1400 

3,30d = 620 mm 32ø8 1600 
 
 

Perimeter where punching 
reinforcement no longer required 

140 140 140 140 140 140 140 140 140 140 140 

14
0 

14
0 

14
0 

14
0 

14
0 

14
0 

14
0 

14
0 

14
0 

14
0 

14
0 
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A rectangular grid 140x240 of ø10 would have been possible. However, then the grid need to 
change orientation around the column, and it is considered better to use a regular square grid 
arrangement to avoid confusion in detailing or on site.  
 
Using stud rails as shear reinforcement, would simplify the reinforcement requirements. In  
Figure 4.9.2  a combination of radial and square arrangement of shear links is illustrated. By using 
16ø10 links around each perimeter, the total reinforcement required for 5 perimeters is 80ø10 = 
6283 mm2. This is almost a 10% reduction compared to the regular square arrangement of links in 
Figure 4.9.1. In addition, using stud rails makes it easier to fit the radial spacing of reinforcement, 
and have a perimeter exact where shear reinforcement no longer is required. The number of 
perimeters with shear reinforcement can for instance be reduced to 4, giving a total amount of 
5026 mm2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.9.2 Optimised arrangement with ø10 shear links 
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4.10 Punching resistance of column bases 
 
In general in Eurocode 2, the punching shear resistance for a slab must be assessed at the basic 
control perimeter 2d from the loaded area. However, for column bases the punching resistance 
must be verified at control perimeters closer than 2d from the face of the column, as seen in 
Figure 4.10.1. This is because of the punching cone may be steeper in bases due to the favourable 
reaction from the soil. In pad foundations of variable depth, the effective depth can be taken to be 
the depth at the perimeter of the loaded area, since the shear plane must pass through the full 
depth. 
 
 
 

 
 

Figure 4.10.1 Model for punching shear of column bases 
 
I practice several perimeters inside 2d from the column face must be checked. The perimeter 
giving the lowest value of the punching shear resistance must be taken. Due to the reliving soil 
pressure, a reduced concentrated load can be applied in the design, defined as: 
 

 

(4.10.1) 

where VEd is the applied shear force (column load) and ∆VEd is the net upward force within the 
control perimeter considered, i.e. upward pressure from soil minus self weight of the base. A 
check of the punching shear resistance at the basic perimeter 2d from the column face, ignoring 
the reliving pressure from the soil is conservative. 
 
In absence of a moment transfer between the column and the base, the design shear stress is: 
 

 
 

(4.10.2) 

where u relates to the actual perimeter being checked. If the column axial load is accompanied by 
a bending moment, the design shear stress is given as: 
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(4.10.3) 

 
 
In Eq. (4.10.3) u and W are calculated for the perimeter under consideration. Compared to the 
general expression of the design shear stress for punching shear in Eq. (4.4.3), the reduced shear 
force is introduced. In reality also the unbalanced moment MEd can be replaced with a reduced 
value due to the soil pressure. However, Eurocode 2 does not take this into account, which is 
conservative. 
 
The design shear stress resistance vRd,c for bases is in EC2 given as: 
 

 
(4.10.4) 

 
where a is the distance from the periphery of the column to the control perimeter considered. In 
perimeters closer than 2d from the column face, the shear resistance is enhanced. This is in 
contradiction to shear design of beams, where the shear force itself is reduced.  
 
For bases, required shear reinforcement and control of maximum shear stress, are calculated as for 
punching shear in slabs, given in sections 4.6 and 4.7 respectively.  
 
 

4.11 Example: Punching resistance of a pad footing 
 
 

 
 
 

Figure 4.11.1 Reinforced concrete pad footing 
 
The punching resistance of the pad footing in Figure 4.11.1 is investigated /4.10/. 

a 800 

800 

4000 

4000 

775 

u1 
NEd=3000 kNm 

MEd=1200 kNm 

1/3
, , min

2(100 ) 2 /Rd c Rd c ck
dv C k f d a v aρ= ⋅ ⋅ ⋅ ≥ ⋅

,

,

1Ed red Ed
Ed

Ed red

V M uv k
ud V W

 
= + ⋅ ⋅ 

 

153 



 

 
Material properties: 

Reinforcement B500NC:  fyk = 500 N/mm2 

     
Concrete B35: fck = 35 N/mm2  

 
Nominal concrete cover: cnom = 50 mm 
 
Assuming 25 mm diameter bars give the average effective depth: 
 
  deff =  (dy+dz)/2 = 775 – 50 - 25 = 700 mm 
 
The average base pressure excluding the pad self-weight is p = 187,5 kN/m2. 
 
The punching resistance must be checked at perimeters, ui, closer than 2d from the edge of the 
column. The distance from the periphery of the column to the control perimeter considered is 
denoted a. To find the reduced concentric loading, VEd,red, the area Ai within the perimeter ui must 
be calculated to take into account the reliving pressure from soil. 
  

ui  = 2· (c1+c2) + 2π· a 
Ai = c1·c2 + 2·c1·a + 2·c2·a+π·a2 
VEd,red = VEd - ∆VEd = VEd - Ai⋅p 

 
 
Shear stress at control perimeter ui 
   

vEd = β·VEd,red/(ui·d)  
   

β = 1 + k·(MEd /VEd,red)·(ui/Wi ) 
 

k = 0,6 for c1/c2 =1,0 
 

Wi = c1
2/2 + c1·c2 + 2c2·a + 4·a2 + a·π·c1 

 
   
Shear stress resistance at critical control perimeter u1 
 

vRd,c =0,18/γc · k·(100ρl ·fck)1/3
  ≥ vmin 

 
k = 1 + (200/d)0,5 = 1 + (200/700)0,5 =1,534 ≤ 2,0 → k = 1,534 

 
ρl = 0,35% (assumed) 

 
vmin = 0,035·k1,5·(fck)0,5 = 0.035·1,5341,5·350,5 = 0,393 N/mm2 

 
vRd,c =0,18/1,5 ·2,0·(100·0,0035 ·35)1/3

 = 0,424 N/mm2
  ≥ vmin 

 
 
Shear stress resistance at control perimeter ui 
 

vRd,c =0,18/γc · k·(100ρl ·fck)1/3
 · 2d/a = 0,424· 2·700/ a = 594· a 
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Table 4.3 presents the results from the calculation of the necessary parameters to find the design 
shear stress and the shear stress resistance for different perimeters. The utilisation with respect to 
punching shear is also given as the ratio vRd,c/vEd. A ratio below 1,0 implies that the punching 
shear capacity must be increased, e.g. with shear reinforcement, increased depth of the footing or 
more longitudinal reinforcement.  
 

Table 4.3 Punching shear utilisation for different distances from the column 

Distance 
from column 

ui 
[mm] 

Ai 
[mm2] 

VEd,red 
[kN] 

Wi 
[m2] β 

vEd 
[N/mm2] 

vRd,c 
[N/mm2] vRd,c/ vEd 

2d 11996 11,28 886 14,6 1,67 0,176 0,424 2,41 

1,5d 9797 7,46 1601 9,7 1,45 0,340 0,565 1,66 

1,0d 7598 4,42 2171 5,8 1,43 0,586 0,848 1,45 

0,5d 5399 2,14 2598 2,9 1,52 1,043 1,696 1,63 

 
 
In Figure 4.11.2 the variation of the utilisation ratios are plotted for different distances from the 
column edge. The lowest ratio, 1,44,  is obtained for a distance of 0.9d from the column. As seen 
in the figure it is important to consider several control perimeters inside 2d to find the one giving 
lowest punching shear capacity. 
 
 

 
 

Figure 4.11.2 Relative shear resistance for different control perimeters 
 
A conservative approach is to ignore the reliving soil pressure and control the punching resistance 
at the critical perimeter u1, 2d from the loaded area. By employing this approach in the example, 
the results are: 
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vRd,c  = 0,424 N/mm2  
β = 1,20 
vEd  = 0,428 N/mm2 
 
vRd,c/ vEd = 0,99 
 

There is a considerable reduction in the punching shear resistance using the conservative 
approach.  In this example shear reinforcement is required since the utilisation ratio is below 1,0.  
 
For small foundations the critical perimeter 2d from the column will sometimes be located outside 
the foundation area. Hence, for small basements the punching must controlled at perimeter closer 
than 2d.  
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5.1 Introduction 

 

Structural elements can be classified according their geometry and loading. Elements subjected to 

pure membrane action are denoted membranes, like shear walls and webs in beams. Elements 

subjected to pure bending 1are normally called plates or slabs. By these definitions, membrane 

and slabs are mainly plane structures, as seen in Figure 5.1.1. Shells are defined as elements 

subjected to both membrane and bending forces. They can be part of plane or curved structures. 

Typical curved structures are shell roofs and storage tanks. Examples of plane structures exposed 

to both membrane and bending actions are prestressed cantilever bridges and post-tensioned flat 

slabs. 

 

 
 

 

Figure 5.1.1 Structural elements. a) Membrane; b) Plate/slab; c) Shell 

 

Most concrete shells structures are thin shells. A thin shell is a curved slab where the thickness h 

is small compared to its other dimensions and compared to the radius of curvature R of the 

geometry. The surface that bisects the shell is called the middle surface or the middle plane, as 

illustrated in Figure 5.1.2. 

 

 

 

Figure 5.1.2 Middle plane, radius of curvature and thickness of a thin shell 

h 

R 

middle plane 

a) b) c) 
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In classical thin shell theory, Love-Kirchoff theory, the following assumptions applies: 

 

 The shell thickness is negligibly small in comparison to the curvature of the shell middle 

surface. 

 Strains and stresses are small 

 Straight lines that are normal to the middle surface prior to deformation remain straight 

during deformation. 

 Stresses normal to the shell middle surface is negligible. 

 

 

5.2 Shell forces 

 

Figure 5.2.1 shows the stress resultants acting along the boundaries of a shell element. The 

resultants are two bending moments, mx and my, torsional moment mxy, two transverse shear 

forces, vx og vy, and three membrane forces nx, ny and nxy. Hence, in design of concrete shell 

sections, 8 stress resultants must be taken into account. All forces and moments have units per 

length. 

 

 

 

Figure 5.2.1 Stress resultants in a plane shell element 

 

In a general shell the curvature of the geometry will affect the definition of the stress resultants so 

that mxy ≠ myx and nxy ≠ nyx. Typical civil engineering concrete shell structures are thin shells. 

Hence, assuming mxy = myx and nxy = nyx is a good approximation. 

 

Figure 5.2.2  defines the governing stresses along the shell thickness.  
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Figure 5.2.2 Stresses in a shell element at level z 

 

The stress resultants are obtained by integrating the stresses along the boundaries of a shell 

element. 

 

 

(5.2.1) 

 

           

                            

(5.2.2)          

 

 

       

                             

(5.2.3) 

 

 

 

 

 

5.3 Analysis of shells with the finite element method 

 

Structural analyses of shell structures are normally carried out by means of the finite element 

method (FEM). FEM is a powerful numerical method which can analyse almost any type of 

geometry and loading. The main goal of the analysis is to find the distribution of the stress 

resultants defined in Figure 5.2.1. In a design process a linear stress analysis is performed as a 

basis for the design of the reinforcement.  

 

Shell finite elements can in general have a 3-dimensional curved geometry, but they do not have a 

physical thickness. Figure 5.3.1 shows two examples of different geometrical shaped shell 

elements. The outputs are directly the stress resultants. Transverse shear forces are important in 

design of concrete shells. Thus, transverse shear deformation must be included in the finite 

element formulation, e.g. according to the Mindlin-Reissner theory, which assumes that normals 

remain straight, but not necessarily normal to the middle plane of the shell. 
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Figure 5.3.1 Shell elements. a) quadrilateral with 8 nodes: b) triangle with 6 nodes 

 

 

Figure 5.3.2 shows a finite element mesh with shell elements of a cantilever bridge. Any type of 

structures where the thickness of the cross-section is small compared to dimensions of structure 

can be modelled with shell elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.2 FEM model of a cantilever bridge with shell elements 

 

It is also possible to model shell structure with solid elements. Solid elements are 3-dimensional 

elements as seen in Figure 5.3.3. They only have translation degrees of freedom. Hence, the 

outputs from the analysis are stresses and not stress resultants. 

 

 

 

 

 

 

a) b) 
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Figure 5.3.3 Solid elements. a) brick with 8 nodes; b) wedge with 6 nodes 

 

Figure 5.3.4 illustrates the difference in the finite element mesh for a simple cylinder modelled 

with both shell elements and solid elements. Since stresses are the outcome employing solid 

elements, Eqs. (5.2.1)-(5.2.3) must be used to obtain the stress resultants which are the basis for 

the design.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.4 Finite element mesh of a cylinder with a) shell elements; b) solid elements 
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The major advantage of solid elements compared to shell elements is the correct modelling of the 

stiffness in structures. The joint in Figure 5.3.5 is properly described with solid elements. Shell 

elements, which are defined by middle planes, do not have correct stiffness in the joint due to 

overlap of cross section areas. Defining design sections are also more realistic using solid 

elements, because they can be placed at the edge of the shell surfaces and not at the middle planes. 

Shells with geometrical discontinuities, like the change in shell thickness from t1 to t2 in Figure 

5.3.5, can easily be modelled with solid elements. Shell elements must apply linear constraints to 

capture the eccentricity of the middle planes in the shell. 

 

 

 

 

Figure 5.3.5 Finite element mesh of a joint. a) shell elements; b) solid elements 
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5.4 Cylindrical shells with axisymmetric loads 

5.4.1 Introduction 

 

Container structures in reinforced concrete are often a combination of different types of 

axisymmetric shells, as seen in Figure 5.4.1. Geometrically they can be cylinders, spheres, cones 

and circular plates. Often also the loading is symmetrical, like gas and water pressures and silo 

loads. 

 

 

 
 

Figure 5.4.1 Shells of revolution 

 

As long as both the geometry and the loads are axisymmetric, it is possible to solve the 

differential equation for the structure to find the distributions of shell forces. However, for 

combined structures, e.g. a cylinder with a spherical dome at the top, or non-symmetrical loading 

like wind are waves, the calculations gets rather complicated. Analyses of concrete shell 

structures are normally performed with the FEM method. Nevertheless, the results from an FEM 

analysis need to be verified. Comparison with simplified shells of revolution can be a useful tool 

for the verification. In this chapter calculation of a cylindrical shell with axisymmetric loading 

will be presented. For other geometrical shapes and non-symmetrical loading, the shell forces can 

be found in many textbooks, e.g. /5.5/,/5.6/.  

 

5.4.2 Differential equation 

 

Figure 5.4.2 shows part of a cylindrical shell, with cylindrical coordinates x, r and . The shell has 

constant thickness h. The applied loads are also symmetric with respect to angle , but can vary in 

the x-direction. Hence, the governing forces in the cylindrical shell are the bending moments, mx 

and m, membrane forces nx and n and the shear force vx. Due to the axisymmteric condition, 

the membrane shear force nx the torsional moment mx and the shear force v are zero. 
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Figure 5.4.2 Forces in a cylindrical shell 

 

By summation of forces and moments, the following equations of equilibrium are obtained:  

 

 

(5.4.1) 

 

 

(5.4.2) 

 

 

(5.4.3) 

 

 

Eq.  (5.4.3) is not coupled to Eq. (5.4.1) and (5.4.2). To simplify the derivation of forces in a 

cylindrical shell, nx is assumed to be zero. By substituting vx from Eq. (5.4.2) into Eq. (5.4.1), the 

differential equation for a cylinder is given by 

 

 

(5.4.4) 

 

 

Mx and N are unknowns and functions of the radial deflection w, illustrated in Figure 5.4.3 . The 

relationship between longitudinal strains, x, and circumferential (hoop) strains, in the 

cylinder, is given by Hooke’s law in the plane stress situation. With the assumption of Nx = 0 

(x=0), the strains becomes 
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(5.4.5) 

 

 

 

where x and  are normal stresses in longitudinal and hoop direction of the cylinder 

respectively, and  is Poisson’ ratio. The hoop strain is obtained from Figure 5.4.3 as 

 

 

 

(5.4.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.3 Radial deflection of cylinder 

 

From the theory for plate structures, the relationship between moment and curvatures is known as 

 

(5.4.7) 

 

 

 

 

 

 

 

 

 

 

 

By combining Eq. (5.4.1), (5.4.3) and (5.4.4), the differential equation for a cylindrical shell as a 

function of radial displacement can be expressed as 
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(5.4.8) 

 

 

In general, solution of a differential equation can be split into a homogenous and a particular part. 

The particular solution, wp, represents a membrane action, like the uniform radial displacement in 

Figure 5.4.3.  The homogenous solution, wh, represents effect of boundary constraints, see Figure 

5.4.4. Constraints can be supports or forces. The general solution of Eq. (5.4.8) can be found in 

many textbooks, /5.5/, /5.6/. 

 

 

 

Figure 5.4.4 Infinite long cylinder with shear and moment applied at edge 

 

The solution of the differential equation, w = wp + wh, for an infinite long cylinder with boundary 

constraints M0 and V0 at one edge, is given as  

 

 

 

 

(5.4.9) 
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(5.4.10) 

 

 

 

 

where le is named the elastic length and is defined as 

 

 

(5.4.11) 

 

5.4.3 Bending of a long cylindrical shell with internal pressure 

 

Cylinders are often used as storage tanks. As an example of how Eqs. (5.4.9) and (5.4.10)  can be 

employed to find shell forces, a tank with constant internal pressure p is calculated. The cylinder 

is assumed to be infinite long and clamped at one edge as seen in Figure 5.4.5. 

 

 

 

Figure 5.4.5 Infinite long cylinder with internal pressure 

 

The particular solution from Eq. (5.4.10) is a constant radial displacement independent of .  
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The clamped boundary condition introduces the following restraints: 

 

 

 

 

 

 

Since wp is constant it does not contribute to the rotation, and the equations to find M0 and V0 can 

be derived. 

 

 

 

 

 

 

 

 

 

 

 

Hence, the distribution of shell forces in the longitudinal direction of the cylinder becomes 

 

 

 

 

 

 

 

 

 

 

 

The distributions of forces are plotted in Figure 5.4.6. The clamped boundary condition at =0, 

influences the result only close to the boundary. Away from the boundary bending moment Mx 

and shear force Vx approaches zero, and the hoop force approaches the value for membrane action 

(particular solution), N = p·r. This is typical for shell structures.  

 

The distributions of forces in a shell structure are governed by the g-functions in Eq. (5.4.9). As 

illustrated in Figure 5.4.7, the functions are reduced to low numbers when  is in order of 3-4. A 

damping length Lc is defined corresponding to  = . 

 

(5.4.12) 

Lc is useful when assessing the influence of boundary constraints. In a distance Lc from the 

constraint, only the membrane action needs to be taken into account for a cylinder with 

axisymmetric loading. Storage tanks have a finite length. Lc can then be employed to see if the 

two edges of the cylinder influence each other. 
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Figure 5.4.6 Distribution of shell forces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.7 Shape of g-functions 
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5.5 Design of concrete shells 

 

The main difficulty designing concrete shells are how to detail the 8 stress resultants into layers of 

longitudinal reinforcement at the top and bottom surface, and shear reinforcement. The principal 

moment and principal membrane force directions do not in general coincidence. Hence, 

establishing interaction diagrams between moments and membrane forces, which are commonly 

used for columns, is impossible. It is possible to align the longitudinal reinforcement in direction 

of the principal stresses at the surfaces. However, this requires a lot of complex work on the 

building site. In addition, with several different load cases the principal stress direction changes, 

making the method impractical. In concrete shells orthogonal reinforcement is normally provided. 

Methods for designing concrete shells with orthogonal reinforcement will be presented here. 

 

5.6 Two layered approach - Membrane method  

 

A simple method to design a concrete shell is referred to as the membrane method. In this method 

the shell element with 8 stress resultants presented in Figure 5.2.1, is replaced by one top and one 

bottom membrane (layer), as seen in Figure 5.6.1. The intermediate layer between the two 

membranes is not taken into account in this method. Hence, the method could also be named a 

two layered approach. Based on the six moments and membrane forces in the shell, both 

membranes are loaded with equivalent membrane forces.  

 

 

Figure 5.6.1  Equivalent membrane forces  

 

In general the top and bottom membrane have different thickness, t1 og t2 respectively. The level 

arm is given as 

 

                             (5.6.1) 

where h is the shell thickness. 

 

Based on the stress resultants and the level arm, the equivalent membrane forces can be calculated 

as: 
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 (5.6.2) 

 

           

(5.6.3) 

 

 

The factors k1 og k2 depends on the membrane thicknesses t1 and t2. They are calculated using 

equilibrium and Figure 5.6.2. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.2 Equilibrium of membrane forces 

 

(5.6.4) 

 

 

 

 

The factors k1 og k2 is then given as: 

 

(5.6.5) 

 

 

The thickness of an uncracked membrane is assumed to be t=0,5h. If the membrane is cracked 

t=2c, where c is the distance from the surface to the reinforcement gravity centre of the two 

reinforcement directions. 

 

To decide the membrane thicknesses t1 and t2, and to calculate the equivalent membrane forces, it 

is possible to adopt the following step by step procedure: 

 

1) Start with  t1 = t2 = h/2   →  k1 = k2 = 0,5 and z=h/2 

 

2) Calculate membrane forces according to Eqs. (5.6.2) and (5.6.3) 

 

3) Calculate the largest principal membrane force for both membranes assuming a isotropic 

linear elastic material 
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If n
i
11>0 the membrane is cracked 

 

4) There are 3 possible configurations of the membrane thicknesses 

 Both membranes are uncracked 

t1= t2= 0,5h 

 Both membranes are cracked 

t1= t2= 2c → k1= k2=0,5 and z=h-2c 

 One membrane is cracked and one is uncracked 

t1= 2c and t2= h/2 (or vice versa) →  

 

 

 

 

5) If membranes are cracked, calculate new equivalent membrane forces according to Eqs. 

(5.6.2) and (5.6.3) 

Knowing the equivalent membrane forces, the two membranes are designed separately using 

compression field theory. 

 

It must be emphasised that the membrane method is a simplified method with several 

shortcomings and assumptions. There is no strain compatibility, meaning the membranes have 

constant strains giving constant stresses. Cracking is checked in the middle plane of the 

membranes and not at the surfaces. Design for transverse shear force is not part of this method. 

However, even with the simplifications the method can be a useful tool in a preliminary design. 

The reinforcement amount found with this method can also be used as input to more advanced 

methods which will be described later.  

 

The choice of thicknesses for the top and bottom layers, influence the result in the two layered 

approach. To illustrate the effect the simple beam section in Figure 5.6.3 is designed using 

material properties from Eurocode 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.3 Beam section to be designed with the membrane method 

 

In a traditional beam design the moment resistance is given by /5.10/: 

 

1 2 1
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By using the membrane method and the thicknesses in Figure 5.6.3, the moment resistance and 

the concrete compressive stresses are given as: 

 

 

 

 

 

The method underestimates the moment resistance with approximately 20%, and the compressive 

stresses in the top membrane are low. By decreasing the thickness of the compressive membrane, 

the resistance will increase. By assuming both membranes having the same thickness 2c, the result 

is: 

 

 

 

 

 

 

The moment resistance is now slightly overestimated, but the compressive stresses are too high. It 

is possible to extend the membrane method with an iteration procedure to find the optimum 

membrane thickness.  

 

5.6.1 Example – Design with the two-layered approach 

 

Figure 5.6.4 shows part of a box girder bridge in reinforced concrete. Material properties and 

sectional forces taken from a FEM analyse at one point in the top slab is also given in the figure. 

The design is performed according to EC2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.4 Top slab in a box girder bridge 
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Assuming membrane thicknesses: 

 

t1 = t2 = h/2  →   k1 = k2 = 0,5   and  z = h/2 = 0,175m 

 

Eqs. (5.6.2) and (5.6.3): 

 

nx1 = 0,5∙4127 + (-38)/0,175  = 1846 kN/m        

ny1 = 0,5∙250 + 70/0,175        =  525 kN/m        

nxy1 = 0,5∙(-464) + 3/0,175    = - 215 kN/m       

 

nx2 = 0,5∙4127 - (-38)/0,175 = 2280 kN/m 

ny2 = 0,5∙250 - 70/0,175        = - 275 kN/m 

nxy2 = 0,5∙(-464) - 3/0,175    = - 249 kN/m 

 

 

Largest principal membrane forces: 

 

Membrane 1:  
2 2

11

1846 525 1846 525
( ) 215 1881 0

2 2
n

 
       →  t1 = 2c = 150mm 

Membrane 2:  
2 2

11

2280 275 2280 275
( ) 249 2304 0

2 2
n

 
      →  t2 = 2c = 150mm 

   k1 = k2 = 0,5 and z = h-2c = 0,2m 

 

Equivalent membrane forces: 

 

nx1  = 0,5∙4127 + (-38)/0,2 = 1874 kN/m       nx2  = 0,5∙4127 - (-38)/0,2 = 2254 kN/m 

ny1   = 0,5∙250 + 70/0,2       = 475 kN/m         ny2  = 0,5∙250 - 70/0,2       = - 225 kN/m 

nxy1 = 0,5∙(-464) + 3/0,2     = - 217 kN/m      nxy2 = 0,5∙(-464) - 3/0,2     =  - 247 kN/m 

 

The design is based on compression field theory as described in Chapter 1.2. 

 

Crack angle based on yielding of reinforcement: 

 

 

 

 

Assuming reinforcement ratio in both membranes: Asx/Asy = 4,32 

 

Membrane 1: 032,4tan32,4
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
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
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Membrane 2: 032,4tan32,4
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2254
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

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








  → tanφ = - 0,323 → φ = -17,9º 

 

Internal forces in reinforcement and compression field: 

 

Fc =  nxy / sinφcosφ                                                                 

Fsx = nx + nxy∙tanφ                   

Fsy = ny + nxy∙cotφ                                                                    
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Membrane 1:  Fsx = 1874 - 217∙(-2,529) = 2423 kN/m  ;    

Fsy = 475 - 217/(-2,529) = 561 kN/m 

                  Fc = -217/(-0,93∙0,368) = 634 kN/m 

 

Membrane 2:  Fsx = 2254 -247∙(-0,323) = 2334 kN/m 

Fsy = - 225 - 247/(-0,323) = 540 kN/m 

Fc = -247/(-0,307∙0,952) = 845 kN/m 

 

 

Required reinforcement:  Asx=Fsx/fyd , Asy=Fsy/fyd  

 

Membrane 1:   Asx = 2423∙10
3
/435 = 5570 mm

2
/m    Asy = 561∙10

3
/435 = 1289 mm

2
/m 

 

Membrane 2:   Asx = 2334∙10
3
/435 = 5365 mm

2
/m    Asy = 540∙10

3
/435 = 1241 mm

2
/m 

 

 

Control of concrete stresses in compression field: 

 

Concrete grade B65 →  fcd = 0,8565/1,5 = 36,8 N/mm
2 

 

vRd,max= 0,6∙v’∙fcd = 0,6∙ (1-65/250) ∙36,8 =16,4 N/mm
2
 

 

Membrane 1:   σc = Fc1/t1 = 634/150 = 4,2 N/mm
2
  <  vRd,max  →   OK ! 

Membrane 2:   σc = Fc2/t2 = 845/150 = 5,6 N/mm
2
  <  vRd,max  →   OK ! 
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5.7 Three layered approach - Sandwich model  

 

The sandwich model is an extension of the membrane method from the previous section. The 

model was originally presented by Marti /5.11/. Later it has been modified to adapt it to limit state 

design /5.4/. The model is also a presented in Annex LL of Eurocode 2 part 2: Bridges /5.2/. The 

sandwich model will be described as outlined in EC2. Therefore the 8 shell forces with notations 

and indexes from EC2 are defined in Figure 5.7.1. 

 

 

 

 

Figure 5.7.1 Shell forces with indexes according to Eurocode 2 

 

The basic concept of the sandwich model is to divide the shell element in three layers. The two 

outer layers resist membrane actions arising from nEdx, nEdy, nEdxy, mEdx, mEdy and mEdxy. This is 

similar to the two layered approach. The inner layer carries the transverse shear forces vEdx and 

vEdy.  

 

Figure 5.7.2 illustrates the forces in the different layers, and definition of thicknesses and level 

arms. The thicknesses of the upper and lower layer are denoted ts and ti, respectively. In general 

they can be different. The internal level arm z, and the distances ys and yi are evaluated to the 

middle planes of the reinforcement in x and y directions. 
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Figure 5.7.2 Definition of forces in different layers 

 

 

5.7.1 Design of the inner layer 

 

Figure 5.7.3 illustrates the transformation of shear forces from the x-y coordinate system by 

rotating the z-axis. By imposing the equilibrium equations, the governing transformation 

equations are given as: 

 

(5.7.1) 

 

(5.7.2) 
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                                             b)     c) 

 

Figure 5.7.3 Transverse shear components. a) Definitions; b) and c) Free body diagram 

 

The sum of squares in Eqs. (5.7.1) and (5.7.2) is independent with respect to φ, since cos
2
φ + 

sin
2
φ = 1. 

 

(5.7.3) 

 

where v0 can be denoted principal transversal shear force. The principal shear direction is defined 

by the angle φ0 to the x-axis: 

 

(5.7.4) 

 

 

Perpendicular to the principal shear direction, the shear force is zero (vt = 0). Hence, the shell 

behaves like a beam running in 0 direction. The sandwich core can then be designed as a beam 

only loaded with the principal shear force v0. Following the design rules in EC2, it is necessary to 

distinguish between members requiring shear reinforcement and not. According to EC2 shear 

reinforcement is not required if: 

 

(5.7.5) 

 

where vRd,c  is the design shear stress resistance per unit of length and defined as: 

 

(5.7.6) 

 

The reinforcement ratio l must be assessed in the principal shear direction. By inspection of  

Figure 5.7.4, the effective longitudinal reinforcement can be determined as: 

 

(5.7.7)
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Figure 5.7.4 Reinforcement ratio in principal shear direction 

If the inner layer requires shear reinforcement, the resisting mechanism is governed by the 

variable strut inclination method /5.1/. Assuming vertical stirrups are used as shear reinforcement, 

the following verification equations are necessary: 

 

(5.7.8) 

 

 

(5.7.9) 

 

 

where vRd,max  is the resistance of the compressive strut, and vRd,s the tensile force in the shear 

reinforcement. The inclination angle  is limited in EC2 to 1 ≤ cot≤ 2,5.  

 

The resisting mechanism of the variable strut method introduces an additional axial force in the 

principal shear direction. The compressive strut and the principal shear force are balanced by a 

longitudinal force of v0 cot, as seen in Figure 5.7.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.5 Principal shear force in inner layer /5.7/ 
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In design of the sandwich covers, the additional force must be projected to the reference directions 

x and y of the outer layers. By considering the prism in  

Figure 5.7.6, and ensure equilibrium, the additional membrane forces in y-direction, nEdyc and 

nEdxyc , can be found as: 

 

 

 (5.7.10) 

   

 

 

 

 

 

 

 

 

(5.7.11) 

 

 

 

 

 

 

 

 

By employing vo
2
 = vx

2 
+ vy

2
 for the principal shear force, the expressions are reduced to: 

 

   

(5.7.12) 

 

   

(5.7.13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.6 Axial forces in y-direction due to principal shear /5.7/ 

 

2
2

2

2

22

2 2 2

2

tan
cot sin cot

1 tan

cot cot

1

o
Edyc Edo o Edo

o

Edy

EdyEdx
Edo Edo

Edy Edx Edy

Edx

n v v

v

vv
v v

v v v

v


  



 

 



  


   






2

2 2 2

2

tan
cot sin cos cot

1 tan

cot cot

1

o
Edxyc Edo o o Edo

o

Edy

Edx EdyEdx
Edo Edo

Edy Edx Edy

Edx

n v v

v

v vv
v v

v v v

v


   



 

  


   










 

2

cot
Edy

Edyc

Edo

v
n

v
 

cot
Edx Edy

Edxyc

Edo

v v
n

v





183 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.7 Axial forces in x-direction due to principal shear /5.7/ 

 

By imposing the equilibrium condition on the prism in Figure 5.7.7, the additional membrane 

forces in x-direction, nEdxc and nEdyxc , can be found as: 

 

   

(5.7.14) 

 

 

(5.7.15) 

 

 

The additional forces nEdxc , nEdyc and nEdxyc are global contributions and must be distributed to the 

upper and lower layer. Normally they are equally distributed to the outer layers. 

 

 

5.7.2 Design of the outer layers 

 

The outer layers are designed as membrane elements according to compression field theory. 

 

The distribution of the membrane forces nEdx , nEdy and nEdxy, to the outer layers depends on their 

relative thickness. As long as the upper and lower layer thicknesses are equal, the distribution 

factor (z-ys(i))/z = 0.5.  The upper and lower layers are subjected to the following membrane 

forces: 
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Upper layer: 

 
  

(5.7.16) 

 

 

 

 

 

 

 

 

Bottom layer: 

  

 

(5.7.17) 

 

 

 

 

 

 

 

In Eqs. (5.7.16) and (5.7.17) the terms in brackets must be summed if shear reinforcement is 

required, that is if Eq. (5.7.5) is not satisfied. 

 

The thickness of the layers is an important parameter in the sandwich model. They influence both 

the distribution of shell forces to each layer and the detail design of each layer. The thickness of 

the different layers is established by means of an iterative procedure. The initial thickness of the 

outer layers should not be less than twice the concrete cover evaluated at the centroid of the 

reinforcement /5.4/.  Provision of shear reinforcement is time consuming. It is advisable to try to 

choose thicknesses such that no shear reinforcement is required. However, in areas close to 

support or zones with concentrated loading this is not always possible. 

 

If the concrete compressive strength requirement is not satisfied, the thickness of the outer layer 

should be increased. An alternative solution is to take into account the longitudinal reinforcement 

in the compression resistance. When increasing the thickness there are two options:  

 

 Increase the concrete cover and move the reinforcement position so it still is in the middle 

plane of the layer, see Figure 5.7.8b. This will reduce the internal level arm z, and increase 

the required longitudinal reinforcement. However, in practice it is not economic to 

maintain large covers in a complete shell structure, and confusing to work with different 

covers in parts of the structure. 

 

 Increase the concrete cover and leave the reinforcement position unchanged, see Figure 

5.7.8c. The reinforcement is then eccentric in to the layer.  To restore equilibrium, the 

amount of reinforcement must change. This influences the internal forces in the entire 

sandwich since internal bending moments arises. The model in Figure 5.7.9 can be used to 

assess the new forces in the outer layers. 
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Figure 5.7.8 Thickness of outer layers. a) Initial thickness; b) Reinforcement position 

unchanged; c) Eccentric reinforcement 

 

 

 

 

 

Figure 5.7.9 New forces in reinforcement due to eccentric position of reinforcement 

 

 

By imposing equilibrium, the new internal forces in the reinforcement become:  
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(5.7.19) 

 

where b`i,s is the distance from the external surface of the layer to the axis of the reinforcement 

within the layer. 

  

5.7.3 Example – Design with the sandwich model 

 

Figure 5.7.10 shows a cross section in a reinforced concrete shell. Material properties and 

sectional forces taken from a FEM analyse at one point in the structure are also given in the 

figure. The sign definitions of the stress resultants are according to Figure 5.7.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.10 Shell section to be designed with the sandwich model 

 

Assuming layer thicknesses: 

 

ti = ts = 2c=140 mm  →   yi = ys =680 mm  and  z =1360 mm 

 

 

Design of inner layer: 
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Shear resistance: 
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Design of outer layers: 

 

Top layer: 
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Check the compression capacity by employing compression field theory, to control the assumed 

layer thicknesses. 
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Before calculating required reinforcement in the top layer, check the compression capacity in the 

bottom layer. 
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Forces in the reinforcement: 
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There is no tension in the reinforcement. Hence, the compression capacity needs to be verified in 

the principal compression direction. 
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A new thickness of 435 mm is assumed for the bottom layer, see Figure 5.7.11. Consequently the 

membrane forces in the outer layers must be recalculated due to new level arms. 
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Figure 5.7.11 New layer thickness and level arms 
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Bottom layer: 
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Verify bottom layer for compression failure: 
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Reinforcement in top layer: 
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5.8 Resistance of concrete shells – iteration method 

5.8.1 Introduction 

 

In its basic form, the iteration method is employed to control the capacity for thin shell structures, 

where geometry and amount of reinforcement is given. The results are utilisation ratios for the 

concrete and the reinforcement. On basis of stress resultants from a FEM analysis, the method 

finds the strain distribution which ensures equilibrium between external and internal forces. With 

appropriate non-linear material models, equilibrium is achieved by an iteration process. The 

method as presented here is in accordance with /5.8/ and /5.9/. Figure 5.8.1 shows the volume of a 

shell section with the stress resultants per length. Out of plane shear forces, Vx and Vy, are not 

considered in the equilibrium iterations. Design for shear forces are handled separately and will be 

described later. 

 

 

 
 

 

Figure 5.8.1 Shell section with volume a∙a∙h 

 

In brief, the iteration method employs a displacement formulation to establish the relationship 

between the external and internal forces. Orthotropic material models in directions of the principal 

stresses are used to find the internal forces. Iterations by changing the strain distribution are 

necessary to ensure equilibrium. Within each iteration the material stiffness matrix is updated. 

The iteration stops when the deviation between external and internal forces is within an acceptable 

value. Details of the method will be described hereafter. 

 

It is possible to use the iteration method as a design tool for shells, i.e. automatically calculate the 

required amount of longitudinal reinforcement. However, this is not straightforward and will not 

be considered here. It is difficult to find the total optimal reinforcement amount, because it is not 

obvious in which direction reinforcement should be added to increase the capacity of the shell 

section. A more practical way is first to find required reinforcement with a layered approach as 

described in section 5.5. Secondly, the iteration method can be employed to check the capacity of 

shell with the given reinforcement amounts.  

 

 

 

 

z

y

x

a

a

h
Nxy

Mx

Nxy

My

Ny Mxy

Nx

Mxy

Vy

Vx

192 



 

5.8.2 Design for in-plane stresses 

 

The design for in-plane stresses is based on Kirchoff’s hypothesis of linear strain distribution over 

the thickness of the shell. Equal to classical beam and plate theory, out of plane normal stresses 

are assumed to be zero. Hence, the shell can be analysed as a 2-dimensional problem. This 

assumption and limitation implies that the iteration method for shells cannot be used to analyse 

complex joints and disturbed regions. 

 

 

5.8.3 Displacement formulation 

 

The fundamental approach in the iteration method is to decide the state of strain distribution 

which satisfies equilibrium between external and internal forces:  

 

(5.8.1) 

 

 

where R is the external load vector, S is the internal stress resultant vector and εt is the generalised 

strain vector. They are defined as: 
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where εm  and are the strains and curvatures of the middle plane of the shell element 

respectively. The assumption of linear strain distribution over the thickness, see Figure 5.8.2, 

gives the following in-plane strains in a distance z from the middle plane of the shell: 

 

 ( )t rR S ε
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Figure 5.8.2 Strain distribution in a shell section 

 

Eq. (5.8.1) is a nonlinear problem. In order to take into account the inelastic material properties of 

concrete and reinforcement, including cracking and yielding, a displacement formulation of the 

equation is defined as 

  

  (5.8.5) 

 

where K(εt,r) is the secant stiffness matrix for concrete and reinforcement in iteration number r. 

The nonlinear relationship is illustrated in Figure 5.8.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.3 The nonlinear stiffness relationship 
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5.8.4 Stiffness matrix and virtual work 

 

The material stiffness matrix K can be established by means of the principle of virtual work. The 

generalised displacement and rotations can be expressed by the displacement vector r: 
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where a is the dimension of the shell element, see Figure 5.8.1. 

 

Virtual displacement vector:  

 

                                    (5.8.7) 

 

External virtual work: 
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Internal virtual work: 

            

 

  T

i

V

A dV   ε σ   (5.8.9) 

  

External work = Internal work: 

 

             

 

 T T

V

a dV     r R ε σ   (5.8.10) 

 

where V is the volume of the shell element, and a·R the total external load. At the moment, the 

material model is defined in a general form, which for the in–plane stresses is given as: 
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where C is the material matrix including contributions from both concrete and reinforcement. 
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Hence, the governing equilibrium equation for the shell element is:     
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where the stiffness matrix K can be expressed by the integral: 
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By a congruence multiplication of the integrand, the stiffness matrix becomes:  
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With an appropriate material matrix C, the strains and curvatures at the middle plane of the shell 

can be found from the equilibrium equation. 
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The stiffness matrix is a general function of the distance z from the middle plane of the shell. The 

integral is solved numerically by dividing the cross section into layers. With n layers, each layer 

has thickness Δh = h/n, where h is the shell thickness, as illustrated in Figure 5.8.4. The layers of 

reinforcement are defined with separate layers, with given distances z from the middle plane. The 

material matrix C is constant within each layer. 

 

   

 

    

  

 

 

 

Figure 5.8.4 Shell element divided in concrete layers 

 

The total stiffness matrix is a summation of concrete stiffness Kc and reinforcement stiffness Ks. 

Assuming reinforcement only in x- and y-direction, the stiffness’s becomes:  
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c s K K K                      (5.8.18) 

 

5.8.5 Internal stress resultants 

 

The internal stress resultants can be collected in a stress vector S: 

 

 

 

x

y

xyN

xM

y

xy

N

N

N

M

M

M

 
 
 
  

    
  
 
 
  

S
S

S
  (5.8.19) 

 

 

Both concrete and reinforcement contribute to the stress vector. The internal stress resultants can 

be expressed as the integrals: 

 
/2

 

/2

h

N

h

dz


 S σ   (5.8.20) 

 
/2

  

/2

h

M

h

z dz


   S σ   (5.8.21) 

 

As for the stiffness matrix, the integral are solved numerically, giving the following equations as a 

summation of concrete and reinforcement layers: 
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where ci are concrete stresses in layer i, and sxj and syj are stresses in reinforcement layer j. 
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5.8.6 Material model 

 

For an isotropic linear elastic material, Hooks law in plane stress situations is given as: 

 

2

1 0
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 

σ C ε C     (5.8.24) 

   

where ν is Poisson ratio.  

 

For non-linear materials like concrete, Hooks law is not valid. As seen in Figure 5.8.5, anisotropic 

behaviour is induced from stresses. 

 

 

x y x yσ σ   E E   

 
  

Figure 5.8.5 Anisotropic behaviour 

 

 

Concrete 

 

Cracking of concrete in tension and non-linear behaviour in compression can be taken into 

account by using an orthotropic material model in directions of the principal stress. 

 

 

  

 

(5.8.25) 

 

 

 

 

where σp are stresses in principal directions and 

 

Ex

x

x

Ey

y

y

198 



 

11 22
12

2

E E
E


   (5.8.26) 

  

The modulus’s of elasticity E11 og E22 are secant modulus’s in the principal directions. Hence, it is 

a linearization of the problem. For non-linear materials they are taken from a defined stress-strain 

relationship and given as: 

 

   for i=1,2i
ii

i

E



    (5.8.27) 

 

The orthotropic material model presented in Eq. (5.8.25) is a simple model. Assuming Poisson’s 

ratio =0 in ultimate limit state, the two principal stress directions are uncoupled. Hence, the 

failure criterion is as shown in Figure 5.8.6, assuming the tensile strength is zero. 

 

 

 

Figure 5.8.6 Biaxial failure criterion for concrete 

 

It is possible to employ more sophisticated material models which takes into account increased 

compressive strength and ductility for biaxial compression and reduced strength in a compression-

tension state of stress. 

  

Using the iteration method, strains, stresses and stiffness matrixes must be transformed between 

the global xy-axes and the principal stress/strain directions. The global xy-axes are in this context 

coincident with the definition of axes for external stress resultants in Figure 5.8.1. 

Transformations of strains from global axes to principal directions are defined by: 

 

( )p  ε T ε   (5.8.28) 

 

where εp are principal strains, θ the angle for principal strain direction and T(θ) the transformation 

matrix.  
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Assuming coaxility between principal strains and principal stresses, the principal stresses and the 

material stiffness matrix are transformed to global xy-axes as: 

 

( )T T T

c p p p p                σ T σ T C ε T C T ε  (5.8.31) 

 

    
T

p C T C T           (5.8.32) 

Reinforcement 

 

Assuming the reinforcement directions are in the global x- and y-directions, the stress-strain 

relationship for one layer of reinforcement is defined as: 

 

s s σ C ε   (5.8.33) 

 

   

(5.8.34) 

 

 

 

 

where Esx and Esy are secant modulus’s for the reinforcement in the global directions. Eq. (5.8.34) 

represents two one-dimensional stress-strain relationships.  

 

If the longitudinal reinforcement is not in direction of the global axes, the material matrix for 

reinforcement must be transformed to the xy-direction.   

 

( ) ( )xy T

s s   C T C T   (5.8.35) 

 

where α is the angle between the reinforcement and the global x-direction.  

 

 

5.8.7 Solving the equilibrium equation with iterations 

 

The iteration method is numerical solution of the equilibrium equation between external (R) and 

internal (S) load resultants, R=S. The equation is solved by iterations on the strain distribution. 

Since it is a numerical solution, a convergence criterion must be defined when acceptable 

equilibrium is reached. A simple and robust criterion is to use the relative difference between each 

of the six external and internal stress resultant components. The iteration is stopped when the 

deviation is within an acceptable value . 

 

 

(5.8.36) 
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 is typically in order of magnitude 0,01. As long as the reinforcement amount is not 

automatically increased during the iteration procedure, divergence in the solution must be 

prevented by a limitation on the number of iteration steps. 

 

The following step by step procedure can describe the iteration method: 

 

1. Decide the external load vector R, normally from a FEM analysis, and the reinforcement 

amount from a preliminary design. 

 

2. Calculate initial stiffness matrix K0 , assuming isotropic linear elastic behaviour for 

concrete and linear elastic behaviour for reinforcement: 

 

Concrete:  

 

0 0

0 0 2

1 1 0 0
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z
h h
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Reinforcement: 

  

0 0 0 0

2 20

0 0 0 01

( )
m

sxj j sxj syj j syj

s sxj syj

j sxj j sxj j syj j syjj

z z
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    
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K

C C C C
   

 

0 0 0c s K K K                        

 

3. Find strains and curvatures in the middle plane of the shell: 

 
1

0 0t

 ε K R                        

 

4. Find in-plane strains in each concrete and reinforcement layer:  

 

0 0i i t ε A ε           

 

5. Find principal strains and principal directions in the concrete layers: 

             0 0( )p i i i i  ε T ε    

 

where Tεi is the transformation matrix from global axes to the local principal direction. 

Angle θi is found from:    

             11
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2

i
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x y


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 


 

   
  

   

 

6. Calculate principal concrete stresses in each concrete layer. The principal stresses σp0i 

depends on the stress-strain relationship. This is where the non-linear effects in concrete 

are taken into account. 
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7. Transform principal stresses in each concrete layer to the global xy-coordinate system: 

             
0 0( )T

c i i i p i  σ T σ         

 
1TT T 

  due to orthogonally. 

 

8. Find reinforcement stresses in each reinforcement layer: 

             0 0 0s j s j j σ C ε    

 

 

9. Calculate internal force vector as a summation of concrete and reinforcement contribution:  
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10. Find the maximum relative deviation between components of external and internal stress 

resultants: 

 

             0Maxdiff ;  k=1,2,…,6k k

k

R S

R


    

 

11. Check convergence according to a chosen tolerance, for example β = 0,01. 

 

 If Maxdiff ≤  β, equilibrium is achieved and the calculation can be terminated. 

 

 If Maxdiff > β, there is no convergence, and the calculation must proceed with a new  

 

 

12. Find new secant modulus’s for all concrete and reinforcement layers 

 

13. Calculate new material matrix for concrete based on the secant modulus’s: 1  ;i=1,….,np iC  

 

 

14. Transform local material matrixes to global xy-axes: 

 

p0i

p0i
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1 1

T

i i p i i  C T C T           

 

Repeat step 2-12 with the new material matrix until the convergence criteria is reached.  

 

 

Figure 5.8.7 visualises the iteration process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.7 Visualisation of the iteration process 

5.8.8 Definition of utilisation ratios 

 

From the converged solution in the iteration method, the obtained strain distribution can be used 

to assess the utilisation of the shell section, and to verify that the design loads do not exceed the 

design resistance. The utilisation of a structural member is expressed by utilisation ratios (UR). In 

ultimate limit state the ratios are related to strain limits in the concrete and reinforcement. 100% 

utilisation indicates that the limit is reached. For concrete the utilisation ratio is defined as: 

  

100%c
c

cu

UR



    (5.8.37) 

 

where c is the maximum compressive principal strain and cu the ultimate compressive strain. The 

utilisation ratio for the reinforcement is defined as: 

  

100%s
s

ud

UR



    (5.8.38) 

 

where s is the strain in the reinforcement, and ud is the strain limit for the reinforcement. 
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5.8.9 Design for transverse shear 

When establishing equilibrium for in-plane forces in section 5.8.2, the transverse shear forces Vx 

and Vy shown in Figure 5.4.6, were ignored. Consequently a separate control of the shear 

resistance is necessary. A simplified approach is to consider the shell element as an equivalent 

beam strip in a general direction α Є [0º, 180º], as seen in Figure 5.8.8. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.8 Equivalent beam strip 

 

The shear design is performed as for a beam with sectional forces Vα, Nα and Mα, see Figure 

5.8.9. Forces perpendicular to the beam direction is not taken into consideration. 

 

 

                                       
            a)                            b) 

 

Figure 5.8.9 Design forces in α -direction 

 

Transformation of shell forces to the equivalent beam direction : 

 

cos sinx yV V V     (5.8.39) 

 
2 2cos sin 2 sin cosx y xyN N N N         (5.8.40) 

 
2 2cos sin 2 sin cosx y xyM M M M         (5.8.41) 

 
2 2cos sins sx syA A A     (5.8.42) 

 

where Asα is the effective cross area of the longitudinal reinforcement in α-direction. 
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In order to determine the shear resistance and the maximum required amount of shear 

reinforcement, the equivalent beam must be designed in directions by varying  from 0° to 180° 

in steps. Steps of 5° are normally sufficient. The shear resistance is defined in the specified design 

code. 

 

The utilisation ratios for transverse shear are based on the relationship between the design shear 

force and the shear resistance. Using Eurocode 2 as the design code, the utilisation for members 

not requiring shear reinforcement is given by: 

 

,

100%c

Rd c

V
UR

V

    (5.8.43) 

 

For members requiring shear reinforcement the utilisation ratio is defined as: 

 

,

100%s

Rd s

V
UR

V

    (5.8.44) 

 

 

5.8.10 Example – Capacity control with iteration method 

 

Figure 5.8.10 shows the same example as calculated in section 5.6.1. The iteration method 

requires the longitudinal reinforcement as input. Hence, the amount of reinforcement according to 

the two-layered approach is also given in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.10 Top slab in a box girder bridge 

 

The iteration procedure described in section 5.8.7 is implemented in a computer program /5.12/. 

The uniaxial stress-strain relationships from EC2 are used for concrete and reinforcement in the 

program. Multiaxial effects on the uniaxial stress-strain relationship are not taken into account. 

 

Table 5.8.1 gives the result from the analysis. Equilibrium was reached after 365 iterations, 

employing a convergence criterion =0,001 according to Eq.(5.8.36). When investigating the 

response of a shell section, the reinforcement strains are often used to evaluate the utilisation of 

h=350 

c = 75 

c = 75 

Asx2 

Asx1 

Asy1 

Asy2 

 

Stress resultants: 

nx  = 4127 kN/m     mx  = - 38 kNm/m 

ny  =   250 kN/m     my  =   70 kNm/m 

nxy = - 464 kN/m    mxy =     3 kNm/m 
y 

z 

Concrete: B65    

Reinforcement: B500NC 

 

Asx1 = 5570 mm
2
/m 

Asy1 = 1289 mm
2
/m 

Asx2 = 5365 mm
2
/m 

Asy2 = 1241 mm
2
/m 
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the cross section. Compared to the yield strain in EC2, yd=2,17 ‰, the reinforcement in two 

directions yield. The maximum principal compressive stress and strain are 1= 12 MPa and 1=0,4 

‰, respectively. Thus, the utilisation in compression is low, which is not surprising since all the 

reinforcement at the top and the bottom in both directions are in tension.  

 

 Table 5.8.1 Stress and strain in reinforcement with initial amount of reinforcement  

 

Reinforcement 

[mm
2
/m] 

Stress 

[MPa] 

Strain 

[‰] 

Asx1 5570 401 2,0 

Asy1 1289 435 3,1  

Asx2 5365 435 4,1  

Asy2 1241 262 1,3  

 

Based on the results of the analysis, the cross section cannot be considered fully utilized. It should 

be possible to reduce the amount of reinforcement. However, to optimize the total reinforcement 

is not straightforward in the iteration method. In general, reduction of the reinforcement area in 

one layer in one direction also influences the response in the unchanged reinforcement bars and 

the concrete. In practical design of shell structure is even more complicated. First, different load 

combinations results in different utilisation in different directions. Second, requirements in both 

ultimate and serviceability limit state must be satisfied, which not necessarily are for the same 

load combination. 

 

As an example the bottom reinforcement in y-direction is reduced to 500 mm
2
/m. The results in  

Still the maximum principal compressive stress and strain are relatively low, 1= 18 MPa and 

1=0,7 ‰, respectively. 

 

Table 5.8.2 are obtained after 349 equilibrium iterations. As expected, the utilisation of the 

reinforcement is then higher. However, the reinforcement strains are also much higher. Especially 

the top reinforcement in x direction where the strain is 9,2 ‰, indicates there will be problems 

fulfilling requirements in serviceability limit state for crack widths. Still the maximum principal 

compressive stress and strain are relatively low, 1= 18 MPa and 1=0,7 ‰, respectively. 

 

Table 5.8.2 Stress and strain in reinforcement with reduced amount of reinforcement  

 

Reinforcement 

[mm
2
/m] 

Stress 

[MPa] 

Strain 

[‰] 

Asx1 5570 423 2,1 

Asy1 1289 435 2,2  

Asx2 5365 435 9,2  

Asy2 500 435 3,7  
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6.1 FOUNDATION TYPES 
 
The structural system and the actual ground properties are decisive for the choice of 
foundation type. 
In ”direct foundation”, the loads are transferred from the structure directly to the ground as a 
distributed pressure from the foundation.   
Figure 6.1.1 shows actual types of direct foundations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1.1 Direct foundation types 
 

a) Wall foundation b) Column foundation 

c) Plate foundation 

Wall 

Wall footing 
Column 

Column footing 

Columns 

Plate 
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Wall and column foundations as shown in Figure 6.1.1a,b are the most commonly used 
foundation types when the ground properties are satisfactory. 
 
Plate foundations are used in cases with bad ground properties and/or large loads. 
Pile foundations are used in cases with very bad ground properties and/or very large loads. 
 
Here, only direct foundations as wall and column foundations will be considered. 
 
 

6.2 GROUND PRESSURE – REQUIRED SIZE OF FOOTING 
 
The carrying capacity of the ground is expressed by a acceptable design ground pressure, σgd , 
in ULS. 
 
The design ground pressure, σgd , depends on several factors, like soil type, depth to footing 
and size of footing.  In general this has to be determined in each case by a geotechnical 
consultant. 
 
The order of magnitude of σgd for soils may be approximated as follows (kN/m2): 
 
Gravel, stone………………………………..400  
Coarse compressed sand……………………300    
Fine compressed sand………………………200 
Fine uncompressed sand……………………100 
Wet gravel, wet coarse/fine sand………100 – 200 
Dry firm clay…………………………...200 – 300 
Less firm clay………………….………...50 – 200 
Wet clay, sand/clay mix……….………..20 – 100 
 

6.2.1 Wall foundation – required width of footing 
 
Centrically loaded foundation 
 
 
Figure 6.2.1 shows a section through a wall foundation which is subjected to a centric load 
from the structure, NEd (kN/m).  NEd is load in ULS. 
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b 

NEd 

qEd 

NEd 

NEd 
MEd 

a )   Moment and vertical load 

b)  Equivalent eccentric vertical load 

e = MEd / NEd 

qEd 

bo 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.1 Centrically loaded wall foundation 
 
Assuming that the footing is stiff, the ground pressure may be considered as uniformly 
distributed with magnitude: 
                   
 
 
The criterion for required width of footing is simply   gdEdq σ≤ , hence    
 

                                                             (6.2.1) 
 
 
Eccentrically loaded foundation 
 
Often the foundation has to transfer moment from the wall, MEd , to the ground, in addition to 
the vertical load, see Figure 6.2.2a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.2 Eccentrically loaded wall foundation (symmetric) 
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bo/2 

MEd = 0 

NEd 

bo 

qEd 

MEd = MEd,max 

NEd 

bo 

qEd 

emax = MEd,max/NEd 

NEd 

b 

bo/2 

 
Combined moment and vertical load can be considered as an equivalent eccentric vertical 
load, see Figure 6.2.2b. 
 
An ”effective width” can be determined according to Eq. (6.2.1) by assuming uniform ground 
pressure: 
 

                                                                                                 (6.2.2) 
 
 
For symmetric wall foundation the total width is found from: 
 

            e
2

b
2
b o +=  

Hence 
 

                                                                                                (6.2.3) 
 
 
 
For moment acting in one direction the obvious economic choice is an asymmetric wall 
foundation. 
 
The required width is determined for a moment variation: 
 
           
 
This is shown in Figure 6.2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.3 Eccentrically loaded wall foundation (asymmetric) 
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Combining the two load cases in Figure 6.2.3 gives the required width: 
 

                                                                 (6.2.4) 
 
 
 

6.2.2 Column foundation – required size of footing 
 
Foundations for single columns may be centrically or eccentrically loaded similar to wall 
foundations. 
 
Eccentrically loaded column foundations may be subjected to moments in one or two 
directions. 
 
Centrically loaded column foundation 
 
The required size of the footing is determined from  
Figure 6.2.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.4 Centrically loaded column foundation 
 
 
The required width (quadratic footing) is found from: 
 

                                                                            (6.2.5) 
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NEd 

by = bo 

bx 

qEd 

e = MEd /NEd 

bo 

bo 

bo/2 Load area 

 
Eccentrically loaded column foundation 
 
 
 
Figure 6.2.5 shows a column foundation transferring moment in one direction to the ground: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.5 Eccentrically loaded column foundation – moment in one direction 
 
 
 
If a symmetric foundation is chosen, the required area of the footing is bx∙by , with 
 
 
 

                                                                    (6.2.6) 
 
 
 

                                                                                            (6.2.7) 
 
 
              
 
 
 
If a symmetric foundation is chosen, by is still found from eq. (5.2.7), while bx is determined 
similar to eq.(5.2.4) as 
 
 

                                                                                           (6.2.8) 
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The most general case, moment in two directions and asymmetric foundation is shown in  
Figure 6.2.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2.6 Asymmetric column foundation with moment in two directions 
 
 
 

Similarly as previously for moment in one direction  
gd

Ed
o

Nb
σ

=  , 

 
 

                                            (6.2.9) 
 
 
 
  
 
 

6.3 DESIGN OF SIMPLE FOUNDATIONS 
 
 
Determination of required footing size in chapter 6.2 ensures that the carrying capacity of the 
ground is not exceeded. 
 
Furthermore, the footing itself has to be dimensioned, i.e. required depth and reinforcement 
have to be determined. 
 
In principle, this is a simple dimensioning of a cantilever plate, however, with some special 
requirements for foundations. 
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6.3.1 Plain concrete wall foundation 
 
 
According to EC2, 12.9.3, a wall foundation (strip footing) may be designed and constructed 
as plain concrete provided that:  
 
 

                                                                                         (6.3.1) 
 
 
or as a simplification if  
 

                                                                                                             (6.3.2) 
 
where 
          hF      = the foundation depth 
          a      = the width from the column face to edge of the footing 
          σgd   = the design ground pressure  
          fctd,pl = the design concrete tensile strength (for plain concrete) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.1 Plain concrete wall foundation 
 
 
 
EC2, 12.3.1 specifies a design tensile strength for capacity calculations of plain concrete: 
 
 

                                                                (6.3.3) 
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Check that: 
 
    EdRd MM ≥  

 
 
 
Moment capacity,  MRd 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.2 Linear stress distribution  
 
 
The moment capacity is found when the bottom tensile stress, σu , equals the tensile strength 
according to eq.(5.3.2), i.e.: 
 

         (6.3.4) 
 
 
The moment capacity per meter along the strip footing (L = 1 meter) : 

 

                                                                                                                                                          (6.3.5) 
 
 

 
External design moment  , MEd : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.3 External design moment at wall face 
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6.3.2 Reinforced wall foundation 
 
 
If the requirement in eq. (5.3.1) is not satisfied, the foundation must be reinforced. 
 
Requirements for reinforced foundations are found several places in Eurocode 2: 
 

- EC2, 2.6 gives so-called ”supplementary requirements for foundations”: 
2.6(2), Note 2:  Simple methods ignoring the effects of ground deformation are 
normally appropriate for the majority of structural designs. 
This means that soil/structure interaction normally can be ignored. 
2.6(3), Concrete foundations should be sized in accordance with  
NS-EN 1997-1 (Geotechnical design). This can be considered satisfied by design 
according to chapter 5.2. 

 
- EC2, Table 4.1 categorizes foundations in Exposure class XC2 (Wet, rarely dry). 

Tabell NA.4.4N requires minimum cover, cmin,dur , 25mm or 35mm for 50 or 100 years 
life time, respectively. 
 

- EC2, NA.4.4.1.3(1)P To calculate nominal cover cnom , a deviation ∆cdev = 10mm 
shall be added to the minimum cover cmin , hence,   cnom= cmin+ ∆cdev 

 
NA.4.4.1.3(4)  is valid for foundations: 
For concrete cast against uneven surfaces, the nominal cover should generally be 
increased by allowing larger deviations in design.  The increase should comply with 
the difference caused by the unevenness, but the nominal cover should be at least 
k1=40mm for concrete cast against prepared ground (including blinding) and  
k2=75mm for concrete cast directly against soil. 
This is shown in Figure 6.3.4. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.4 Cover requirements 
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a)  Cast directly against ground 

hF 

Nominal cover 
cnom ≥ k1 = 40mm 

b) Cast against prepared ground 
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Nominal cover 
cnom ≥ k2 = 75mm 
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DESIGN / CAPACITY CONTROL 
 
EC2, 9.8.2.1(1) says that the main reinforcement should be anchored according to 
requirements of 8.4 and 8.5.  
NA.9.8.2.1(1) requires a minimum bar diameter φmin = 8mm. 
 
Figure 6.3.5 shows a section through a wall foundation with moment reinforcement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.5 Reinforced wall foundation with design load actions 
 
 
Design for moment, Section 1 (wall face) 
 
The concrete compression zone’s moment capacity for normal reinforced cross section: 
 

                                                                                     (6.3.6) 
 
 
With b = 1 meter, the dimension of MRd equals that of MEd  (kNm/m). 
 
Check that        

20,275Rd cdM f bd= ⋅ ⋅

1Rd EdM M≥
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0,5d 0,5d 
crack, 45˚ 

α = 45˚ (perpendicular to crack) 

 
 
This is normally satisfied with good margin, and the compression zone is partly utilized.  
Hence, the internal lever arm can be approximated as  
 

                                                                                   (6.3.7) 
 
 
The required bottom reinforcement in the foundation becomes 
 

                                                                                                   (6.3.8) 
 
 
 
 
 
Design for shear force 
 
 
      -  Shear force at a distance d from wall face, VEd2 , is checked for shear tension failure  
         according to EC2, 6.2.1(8) , 6.2.2 and 6.2.3 
 

-  Shear force at wall face , VEd1 , is checked for shear compression failure according to   
    EC2, 6.2.3 

 
According to EC2, 9.3.2(1), slabs with shear reinforcement should at least be 200mm thick. 
Normally, wall foundations are chosen with sufficient thickness to avoid shear reinforcement. 
 
If shear reinforcement is chosen, it is most practical (and common) with skew reinforcement 
as shown in Figure 6.3.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 6.3.6 Shear reinforcement in foundation 
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Anchoring of longitudinal reinforcement bars 
 
EC2, 9.8.2.2 shows a model that can be used to check if straight reinforcement bars are 
sufficiently anchored. 
EC2, 9.8.2.2(1) – The tensile force in the reinforcement is determined from equilibrium 
conditions, taking into account the effect of inclined cracks, see Figure 6.3.7.  The tensile 
force at a location x should be anchored in the concrete within the same distance x from the 
edge of the footing, i.e. Lb < x. 
EC2, 9.8.2.2(2) – The tensile force Fs to be anchored is given by: 
 

                                                                                                      (6.3.9) 
 
where     R          is the resultant of ground pressure within distance  x 
               NEd,AB   is the vertical force corresponding to total ground pressure between sections 
                           A and B 
               ze          is the external lever arm, i.e. the distance between R and the vertical  
                            force  NEd,AB 
               zi          is the internal lever arm, i.e. distance between the reinforcement and  
                            the horizontal force Fc 
               Fc         is the compressive force corresponding to maximum tensile force Fs,max 
 
EC2, 9.8.2.2(3) – ze og zi can be determined with regard to the necessary compression zones 
                             for NEd,AB and Fc , respectively 
                             As simplifications, ze may be determined assuming e = 0,15b and  
                             zi may be taken as 0,9d 
 
EC2, 9.8.2.2(4) – If available anchoring length for straight bars Lb is not sufficient to anchor  

Fs within x, bars may either be bent up to increase the available length or be                             
provided with end anchorage devices. 

 
EC2, 9.8.2.2(5) – For straight bars without end anchorage, the minimum value of x is the most 

critical.  As a simplification xmin = hF/2 may be assumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.7 Model for tensile force with regard to inclined cracks 
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bF/4 

EC2, 8.4.3(2) defines the ”basic anchoring length” as 
 

                                                                        (6.3.10) 
 
where  φ                  is reinforcement diameter 
           σsd =  Fs/As  is design bar stress at position from where the anchorage is measured from 
           fbd                 is design bond strength according to EC2, 8.4.2(2) 
                                (normally equal to 2,25fctd ) 
 
The design anchoring length is given in EC2, 8.4.4(1): 
    

                                                             (6.3.11) 
 
 
For straight bars with sufficient cover, transverse reinforcement or transverse pressure is 
 

                                                                                            (6.3.12) 
 
 

6.3.3 Column foundations 
 
PLAIN CONCRETE COLUMN FOUNDATION 
 
The same design method as for plain concrete wall foundations, see chapter 6.3.1. 
 
REINFORCED COLUMN FOUNDATION 
 
Requirements for cover and depth are as for wall foundations. 
The former Norwegian design rules gave recommendations for distribution of moment 
reinforcement in a column foundation as shown in Figure 6.3.8.  It is proposed to satisfy these 
recommendations also when designing based on EC2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.8 Recommended distribution of bottom reinforcement in column foundation 
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Design for moment : 
 
Section at column face – similar as for wall foundation 
 
 
Design for bond : 
 
Section at distance x from edge of footing – similar as for wall foundation 
 
 
Design for shear : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3.9 Critical sections for shear design 
 
Shear compression failure 
 
Design shear force at section 1’-1’ in Figure 6.3.9: 
 

                                                                                         (6.3.13) 
 
 
The design shear force is checked against shear compression capacity according to EC2. 
This may be decisive because the critical section for shear compression is the column width.    
 
Shear tension failure    
 
The design section for bending shear is section 2’-2’ in Figure 6.3.9: 
 
 
Design for punching : 
 
See chapter 4 on ”Punching of concrete slabs”. 
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