- NTNU

Norwegian University of Science and Technology

Development and Testing of a Sensor Setup for a Ship Captain's Chair

Helge Soltvedt Garsmark

Mechanical Engineering
Submission date: June 2017
Supervisor: Martin Steinert, MTP

Acknowledgements

This thesis is the result of a challenge given by PhD candidate Andreas Wulvik, to look in to the possibilities that lies in a ship captain's chair. Thanks to the research community TrollLabs NTNU, and especially Andreas Wulvik and Jørgen A. B. Erichsen for guidance and couching regarding especially experiment setup. Thanks to Martin Steinert for guidance and counseling. Finally I would like to give a special thanks to my partner in crime Erik Borge for sharing the frustration of setting up an experiment.

This page is be intentionally left blank.

Abstract

Human-Computer Interaction systems are rapidly changing. In such interactions, human performance might be essential for the system to function in the best possible way. Thus the need to optimize for interaction design that take human emotion in to account are advancing. Great challenges are involved in capturing emotions, for instance that human emotion are complex, and difficult to quantify. In this thesis theory about body language and emotions are adapted in an attempt to introduce a new tool for Affective Engineering. This is done through developing a pilot chair sensor setup and test its capabilities towards capturing emotional states. A pilot experiment setup is used to test association between posture sensed by the chair and level of mental activation or arousal. Statistical analyzes on the data recorded is done to compare established measures of arousal with posture data from the chair. The analyzes show some tendencies toward association between movement and arousal, but more comprehensive analyzes are needed to introduce the setup as a new tool for affective research. The main take away from this thesis would be the experimental framework that was developed, which with small modification can be used for testing tools to be used in interaction studies.
Keywords: Affective Engineering, Arousal, Body Language, Emotions, Interaction Studies, Unembedded Sensing

This page is be intentionally left blank.

Sammendrag

Human-Computer Interaction systemer endrer seg raskt. I slike interaksjoner kan menneskelig ytelse være alfa omega for at systemet skal fungere på best mulig måte. Derfor har behovet for å optimalisere for interasksjonsdesign som tar hensyn til menneskers mentale tilstand $ø \mathrm{kt}$ betraktelig. Store utfordringer er involvert hva gjelder måling av mental tilstand, for eksempel er mental tilstand kompleks og vanskelig å kvantifisere. I denne oppgaven er teori om kroppsspråk og mental tilstand brukt for å introdusere et nytt verktøy for Affective Engineering. Dette er gjort gjennom å utvikling av et pilotoppsett av sensorer i en stol og testing av oppsettets evne til å måle brukerens mentale tilstand. Et piloteksperiment ble satt opp for å teste assosiasjoner mellom sittemønster og mentalt aktivitetsnivå. Statistiske analyser på innsamlet data ble gjort for å sammeligne etablerte målemetoder for arousal med data fra stolen. Analysene viser noen tendenser hva gjelder assosiasjon mellom bevegelse og arousal, men mer omfattende analyser er nødvendig for å kunne introdusere oppsettet som et verktøy for affektiv forskning. Nøkkelpunktet fra denne oppgaven vil nok være utviklingen av rammeverket for eksperimentet, dette vil med små forrandringer kunne brukes itesting av nye verktøy for interaksjonsstudier.

This page is be intentionally left blank.

Table of Contents

Acknowledgements i
Abstract iii
Sammendrag v
Table of Contents ix
List of Tables xi
List of Figures xiv
Abbreviations xv
1 Introduction 1
1.1 Scope 2
1.2 Outline 2
2 Theoretical Background 3
2.1 Affective Engineering 3
2.2 Classifying emotions 4
2.3 Arousal 4
2.3.1 Objective Measures Arousal 5
2.3.2 Subjective Measures Arousal 6
2.4 Body Language 8
2.4.1 Body Language and Emotions 9
2.5 Similar work 9
3 Sensor Chair 11
3.1 Development challenge 11
3.2 Key Features 12
3.2.1 Posture/ Sitting Position 12
3.2.2 Position Change 12
3.2.3 Heart rate and HRV 12
3.3 Sensor Exploration 12
3.3.1 Optical Fiber 12
3.3.2 EMFi 12
3.3.3 Eontex fabrics 13
3.3.4 FSR - Force sensitive resistors 13
3.4 The Sensing Chair 14
4 Experiment Setup 17
4.1 Hypotheses 18
4.1.1 Valence Hypotheses 18
4.1.2 Arousal Hypotheses 18
4.2 Independent Variables 19
4.2.1 Difficulty 19
4.2.2 Lights 19
4.2.3 Music 19
4.2.4 Feedback 20
4.3 Dependent Variables 20
4.4 Physical Setup 20
4.5 Computer Setup 22
4.6 TETRIS 23
4.7 Sensor platform and Measurements 24
4.7.1 Affect - self report measurements 24
4.7.2 Chair sensors and measurements 26
4.7.3 Biometric sensors and measurements 27
4.8 User Interface 28
4.9 Procedure 29
4.9.1 Initiation 31
4.9.2 Scenario 1 32
4.9.3 Scenario 2 33
4.9.4 Scenario 3 35
5 Results 37
5.1 Preparing the data 37
5.1.1 Sorting the biometric data 37
5.1.2 HRV extractions 38
5.1.3 Machine learning 39
5.1.4 Grouping the cases 40
5.2 Descriptive Results 41
5.2.1 Arousal - Objective Measurements 41
5.2.2 Arousal - Subjective Measurements 43
5.2.3 Number of changes in sitting position 46
5.2.4 Leaning 47
5.3 Statistical Evaluation 49
5.3.1 Evaluating the established measures of arousal 50
5.3.2 Testing the arousal hypotheses 52
5.4 Hypothesis Evaluation 53
5.4.1 Position changes hypothesis H3 54
5.4.2 Leaning hypothesis H4 54
6 Discussion 57
6.1 Result Discussion 57
6.2 Limitations 58
6.3 Future Research 61
7 Conclusion 63
Bibliography 65
Appendix A - Experimental GUI A-1
Appendix B - The Affect Grid B-1
Appendix C - Positive Affect Negative Affect Schedule (PANAS) C-1
Appendix D - The Activation-Deactivation Adjective Check List (AD ACL) D-1
Appendix E - Arduino Schematics E-1
Appendix F - Arduino Code F-1
Appendix G-Complete Dataset G-1
Appendix B - TETRIS CODE H-1
Appendix I - Machine Learning, Classification of Postions and Leaning I-1
Appendix J - Participant Consent Form J-1
Appendix K - Background Information Questionnaire K-1
Appendix L - Correlation matrices L-1
Appendix M-Risk Assessment M-1

This page is be intentionally left blank.

List of Tables

2.1 Spectral Components of the frequency domain 6
2.2 Adjectives from AD ACL, in the same order as presented 8
4.1 Dependent variables 20
4.2 Words of the PANAS questionnaire 25
4.3 Word of the AD-ACL questionnaire 26
4.4 The three desired levels of affect 30
5.1 Group statistics of pNN50, with scenarios as groups 40
5.2 Independent samples test of pNN , with scenarios as groups 40
5.3 Group statistics of pNN50, with self reported arousal as groups 41
5.4 Independent samples test of pNN , with self reported arousal as groups 41
5.5 Descriptive statistics of heart rate and heart rate variability 42
5.6 Descriptive statistics of AD-ACL scores 44
5.7 Descriptive statistics of grid y-scores 45
5.8 Descriptive statistics of number of changes in sitting position 46
5.9 Descriptive statistics of leaning 48
5.10 Descriptive statistics of leaning 49
5.11 Independent Samples t-test of HRV variables 50
5.12 Mann-Whitney U test of AD-ACL 51
5.13 Mann-Whitney U test of y-scores from the affect grid 51
5.14 t-test on leaning and position changes measures 52
5.15 Correlation between the posture measures and the HRV features 53
5.16 Correlation between the posture measures and the subjective measures 53
7.1 Correlation Matrix, HRV, AD ACL, and Affect Grid L-2
7.2 Complete correlation between the posture measures and the HRV features L-3
7.3 Complete correlation between the posture measures and the subjective measures L-4

This page is be intentionally left blank.

List of Figures

2.1 Eight addect concepts in a circular order (Russell, 1978) 4
2.2 Relationship between arousal and performance (Williams, 1993) 5
2.3 The affect grid, represented by a $9 x 9$ matrix of squares. (Russell et al., 1989) 7
2.4 Grouping of technologies (Wulvik et al., 2016) 9
3.1 The student project chair, (Jensen et al., 2016) 13
3.2 Kongsberg Maritime chair in ship simulator 14
3.3 Captian's Ship Bridge Chair from Kongsberg Maritime 15
3.4 Captian's Ship Bridge Chair from Kongsberg Maritime 15
3.5 The FSR placements on the chair 16
3.6 Mounting the sensors 16
4.1 Room layout. 21
4.2 Overview of the physical setup 21
4.3 Other aspects in the physical setup 22
4.4 Overview of the computer setup 23
4.5 Tetris 24
4.6 Electrode placement (Hacks, 2017) 27
4.7 The e-Health Sensor Platform 28
4.8 The GUI 29
4.9 Parts of the subjective evaluation screens 29
4.10 The desired placement of the three scenarios in the affect grid. 30
4.11 Connected sensor electrodes. 31
4.12 TETRIS, scenario 1. 32
4.13 TETRIS, scenario 2. 33
4.14 TETRIS, scenario 3. 35
5.1 The QRS complex marked by the ECG Feature Extractor 38
5.2 HRV data preesented in the Heart Rate Variability Analyzer 39
5.3 Distribution of heart rate and heart rate variability in the two groups. Mild outliers are marked with circles, extreme outliers are marked with asterisks 43
5.4 Distribution of AD-ACL scores in the two groups. Mild outliers are marked with circles, extreme outliers are marked with asterisks 45
5.5 Distribution of grid y-scores in the two groups. Mild outliers are marked with circles 46
5.6 Distribution of number of changes in sitting position in the two groups. Mild outliers are marked with circles, extreme ouliers are marked with asterisks 47
5.7 Distrubution of leaning in the two groups, based on chair data. 48
5.8 Distribution of leaning in the two groups, based on the distance sensor. Mild outliers are marked with circles 49
6.1 Coffee effect on number of position changes 60
7.1 Schematics of biometric set up E-2
7.2 Schematics of chair set up E-3

Abbreviations

Symbol	$=$ definition
HCI	$=$
Human Computer Interaction	
ANS	$=$ Autonomic Nervous System
PNS	$=$ Parasympathetic Nervous System
SNS	$=$ Sympathetic Nervous System
HR	$=$ Heart Rate
HRV	$=$ Heart Rate Variability
ECG	$=$ Electrocardiogram
NN	$=$ Normal-to-Normal
RR	$=$ Normal-to-Normal
RMSSD	$=$ Root Mean Square of Sucsessive Differences
NN50	$=$ Number of Sucsessive NN Intervals With a Difference Greater Than 50 ms
pNN50	$=$ NN50 Devided by Total Number of NN Intervals
TINN	$=$ Triangular Interpolation of the NN intervals
FFT	$=$ Fast Fourier Transform
AR	$=$ Autoregressive
VLF	$=$ Very Low Frequency Component
LF	$=$ Low Frequency Component
HF	$=$ High Frequency Component
LF/HF	$=$ Low Frequency Component Devided by High Frequency Component
AD ACL	$=$ Activation-Deactivation Adjective Check List
A1	$=$ Energetic Sub-Dimension of Activation-Deactivation Adjective Check List
A2	$=$ Tiredness Sub-Dimension of Activation-Deactivation Adjective Check List
B1	$=$ Tension Sub-Dimension of Activation-Deactivation Adjective Check List
B2	$=$ Calmness Sub-Dimension of Activation-Deactivation Adjective Check List
API	$=$ Application Programming Interface
EMFi	$=$ Electromechanical film
FSR	$=$ Force Sensitive Resistor
NTNU	$=$ Norwegian University of Science and Technology
PANAS	$=$ Positive and Negative Affect Schedule
PA	$=$ Positive Affect
NA	$=$ Negative Affect
EMG	$=$ Electromyography
GUI	$=$ Graphical User Interface
S1	$=$ Scenario 1
S2	$=$ Scenario 2
S3	$=$ Scenario 3

This page is be intentionally left blank.

${ }^{c}$ chaseat 1

Introduction

In an ever growing world of autonomy and automation, the Human-Computer Interaction HCI are constantly evolving, and some years age Picard and Picard (1997) coined the term "Affective Computing", for computing that is related to human emotions. In short it is computing affected by human emotions, or computing that can affect human emotions. If you combine the concept of Affective Computing with the concept of Affective Engineering (Balters and Steinert, 2014), a need for interaction design for new unexplored situations will emerge. The ability to measure the emotional responses in an interaction, allows the design of the interaction system and its informational stimuli to facilitate for better user experience and performance. In the design of a new interaction system, interaction studies can be used to measure what kind of stimuli and communication evokes different types of emotions and corresponding performances in different tasks for the system.

Imagine you are a ship captain in the future, in fact your title is not ship captain, but ship monitor. You are responsible for monitoring several autonomous ships, and if needed take over the control. You feel tired and unresponsive and you are counting the seconds before your shift ends. Suddenly you have to take control over two of the ships at the same time, there are alarms going off all around you. You fail your task, and one of the ships crashes in to the docks.

What if in the scenario above, the interaction was designed to take your emotions and affective state in to account. First of all if the system was able to recognize that you were to tired for the task at hand, and your shift should have ended earlier. Second that depending on your affective state, all the alarms are not necessarily helping the situation. What if the system was able to know your capabilities based on your mental state?

But what is human emotion? Simply put can emotions be derived in to two main components, the rational and the affective feelings. The affective feelings are harder to explain compared to the rational feelings, but this thesis will however do an attempt to at least try to explain one dimension of the affective emotions, the level of activation, also known as arousal.

1.1 Scope

In interaction studies the use of physiological responses to measure emotions are growing fast and the need for alternative ways of capturing these responses are growing at the same pace. The use of biometric measurements are establishes and widely used, but most of the sensors used for this are either intrusive or embedded on the bodies of the subjects. This thesis is therefore a call for a non-intrusive and unembedded sensor setup for measuring emotion. Body language can be sensed without the need for embedding sensors on subjects or intrusive sensors. For instance are facial expressions widely used to measure emotional reactions. In this thesis another apprauch are taken, a chair setup, with sensors embedded in the chair rather then on the participants bodies, are piloted and tested as a measurement of emotions. This setup of this chair are explained in detail in chap. 3

Arousal or activation has previously been connected to the level of performance (Duffy, 1957). The ability to find a way to measure arousal in interaction studies can hence be helpful in the design of the next study or even the final interaction system. This thesis will focus on developing and piloting a chair sensor setup that can sense various activity patterns, and explore how much information about the user that can be read out of this activity. It will more specifically explore what features regarding the posture measured by the chair setup can give information about the level of arousal.

1.2 Outline

The structure of this thesis is set up in the following way: Theoretical background, selection and development of chair setup, experimental setup, results, evaluations, conclusion.

The theoretical chapter includes relevant background information and previous research used for the work done in this thesis, it also includes a section of similar work done earlier.

In the chapter about the chair setup, evaluations around sensor types and features needed for the setup are taken to consideration. It is important to state that the setup is more a selection based on information rather than a development process were different aspects are tested before they are chosen.

The experimental setup or method chapter is done in collaboration with another master student. It includes some hypotheses and information that is not further discussed in this thesis. However the setup in general is used in the way it is presented.

The result chapter includes descriptive statistics as well as statistical tests and evaluations of the hypotheses.

Lastly reflections and conclusions are discussed based upon the work done.

Theoretical Background

2.1 Affective Engineering

Affective Engineering or Kansei Engineering was introduced by Nagamachi (1995) as a response to changing consumer desire. It is as a product development method that includes the customers emotions in product design. In short the definition of Kansei Engineering is:
"Translating technology of a consumer's feelings (Kansei) and image for a product into design elements"
-Nagamachi (1995)
Kansei is a japaneese word which means a consumer's psychological feeling and image regarding a new product Nagamachi (1995).

Dahlgaard et al. (2008) suggest "new Kansei Engineering" or Affective Engineering as a way to broaden the scope of Kansei Engineering. They stress the importance of stepping back, and try to understand the user's human needs before trying to design to affect the emotions of the user.

Balters and Steinert (2015) states that most of the existing Kansei tools main focus is deriving insights from triangulation of external factors, like supporting the consumer and the designers decisions (Matsubara and Nagamachi, 1997). Balters and Steinert (2015) believe that to be able to understand the response and the effect on the situational experience of the user, lies in measuring the emotional reactivity, determined by the physiological response from the human body. They describe the keys to understand the behavioral dimensions of the human are the emotions effect on behavior.

Dahlgaard et al. (2008) statement that users are getting more and more concerned about the fact that products or interactions are matching their feelings, might be quite accurate. The need to include the user's or customer's emotions or affect towards the product are hence becoming increasingly important in product development and design. This thesis is stressing and empathizing Balters and Steinert (2014) call for affective engineering.

2.2 Classifying emotions

Regarding the classification of emotion, two schools of thought exist. Were the first school describes the emotions to be discrete and fixed biologically (Ekman and Friesen, 1971). The other school describes the emotions in dimensions of arousal and valence (Wundt and Pintner, 1912). Russell (1978) described a circumplex model of affect with eight words presented in a two-dimensional model fig. 2.1, where the y axis are described as the sleep-arousal dimension, and the x -axis represents the pleasure-displeasure or valence dimension. In this model the remaining words do not form independent dimensions, but can be described by the two already established dimensions of arousal and valence.

Figure 2.1: Eight addect concepts in a circular order (Russell, 1978)

Russell et al. (1989) empathizes that these two dimensions are not all there is to the concept of affect, but that there are good reasons to evaluate the state of affect using these two dimensions. The concept of arousal refers to a self reported subjective feeling (Russell et al., 1989).

2.3 Arousal

The concept of arousal has been part of psychology for a long time. Both Wundt (1896) and Freud and Strachey (1964) had some kind of model for arousal in their research. Duffy (1962) gave the concept of arousal or activation some more empirical context in her behavioral analyzes. Thayer (1989) refers to arousal as a basic element of mood and behavior, he further differentiate between two types of arousal in his approach, energetic
arousal and tense arousal. The energetic arousal involves that with the exertion necessary for an activity the autonomic nervous system ANS switches from being dominated by the parasympathetic nervous system PNS to being dominated by the sympathetic nervous system SNS. The PNS are associated with body maintenance, while the SNS are associated with mobilization for action. The tense arousal are very similar, but the changes in the ANS are triggered by emergency, rather than the energy motivated planned increase in activation in the energetic arousal.

The concept of arousal has had its share of criticism, and according to Thayer (1989) the criticism has limited the concept from being used in a larger scale. Most of the criticism is based upon the fact that different models of arousal does not correlate well enough with each other. One instance of such a criticism is Lacey (1967) who concluded that there are three types of arousal: autonomic, behavioral, and cortical. Thayer (1989) argues that this criticism does not make sense evolutionary, because dissociation between the three types of arousal should not be favorable in natural selection.

Research has been done to find the optimal level of arousal for maximum performance. According to Duffy (1957) the arousal-performance relationship can be represented by an inverse U-curve fig. 2.2, where moderate arousal gives best performance. The ability to measure arousal in a non-intrusive non-interrupting way can possibly facilitate for maximum performance potential in interaction studies.

EMOTIONAL AROUSAL
Figure 2.2: Relationship between arousal and performance (Williams, 1993)

2.3.1 Objective Measures Arousal

Even if the reason for stress is psychological there are some documented physiological effects of stress. According to Akselrod et al. (1981) if a person is exposed to stress the ANS is engaged. In this case the SNS is activated, while the PNS is suppressed (Taelman et al., 2009). The result of this effect is increased muscle tension, change in heart rate, change
in heart rate variability (HRV), and increased blood pressure (Van Houdenhove, 2005). These physiological reactions are triggered by the secretion of the hormones epinephrine and norepinephrine into the bloodstream (Taelman et al., 2009).

Heart Rate Variability

Taelman et al. (2009) concluded that short term heart rate variability HRV was reduced with a mental task, and that the sympathovagal balance may have been increased. HRV and its features are explained in this section.

HRV can be evaluated with different methods, but the two most used methods are the Time Domain Method and the Frequency domain method. In a continuous electrocardiogram ECG signal, each of the QRS complexes are detected and marked, and the normal-tonormal NN- or RR-intervals are calculated (Saykrs, 1973). In the time domain method the features obtained are mean RR-intervals and their standard deviations, RMSSD the root mean square of successive differences, NN50 number of successive NN intervals with a difference greater than $50 \mathrm{~ms}, \mathrm{pNN} 50$ the proportion of NN50 divided by total number of NN intervals (Carney et al., 1995). The time domain method also include a couple of geometrical features. The RR triangular index is the integral of the density distribution of NN intervals, and TINN the triangular interpolation of the NN intervals (Acharya et al., 2006). The frequency domain method also known as the spectral density method gives information of how the spectral power is distributed as a function of frequency (Kay and Marple, 1981). There are different methods to calculate this spectrum, but they are generally classified as either parametric or non-parametric (Malik, 1996). The non-parametric methods are generally preferred because of the simplicity of the algorithm and the high processing speed. Fast Fourier Transform FFT is the most common of these non-parametric methods (Malik, 1996), and employs a Hanning window for the spectrum (Welch, 1967). In short term measurements of HRV it is common to devide the spectrum in to three spectral components (Rottman et al., 1990), tab. $\mathbf{2 . 1}$ shows the three components with their respectable bands. The sympathovagal balance is derived from dividing the low frequency component LF with the high frequency component HF (LF/HF). Both Taelman et al. (2009) and Thayer et al. (2012) has found HRV as an indicator of stress, in this thesis it will be treated as an indicator of arousal, even if stress is not a direct synonym for arousal.

Table 2.1: Spectral Components of the frequency domain

Frequency component	Frequency Band
Very Low Frequency (VLF)	$0.00 \mathrm{~Hz}-0.04 \mathrm{~Hz}$
Low Frequency LF	$0.04 \mathrm{~Hz}-0.15 \mathrm{~Hz}$
High Frequency	$0.15 \mathrm{~Hz}-0.40 \mathrm{~Hz}$

2.3.2 Subjective Measures Arousal

There are at least 20 different methods of self report to measure affect (Ekkekakis, 2013), but depending on the structure of the study, not all methods fit the experiment. One of the most widely used are the Affect Grid (Russell et al., 1989), which evaluates both
dimensions of affect. Another commonly used tool to asses the arousal dimension are the Activation-Deactivation Adjective Check List AD ACL (Thayer, 1967).

Affect Grid

Developed by Russell et al. (1989) the affect grid is a $9 x 9$ matrix of squares fig. 2.3, where the middle square represents neutral feelings. The horizontal dimension represents the pleasant-unpleasant dimension or valence dimension. from unpleasant on the left to pleasant on the right. The horizontal dimension is the arousal dimension and represents the degree of arousal or how awake, alert or activated the subject is. The fact that it describes both arousal and valence, and that the inquiry of the emotional state is fast and simple lead to Steinert et al. (2012) and Balters and Steinert (2015) labeled it as the best subjective tool to capture affective emotions.

Figure 2.3: The affect grid, represented by a $9 x 9$ matrix of squares. (Russell et al., 1989)

Abstract

AD-ACL The activation-deactivation adjective check list or AD ACL is a multidimensional questionnaire test of different aspacts of arousal (Thayer, 1990). According to Thayer (1986) the AD ACL format have showed evidence of being concistant with other models of arousal and mood (Watson and Tellegen, 1985).

AD ACL consists of four sub-dimensions; energetic A1, tiredness A2, tension B1, and calmness B2. Each of these consists of five words, which are rated on a scale consisting of; 4:definitely feel, 3:feel slightly, 2 :cannot decide, and 1:definitely not feel. The value of one to four are then assigned to the word, and the score for the representative subdimension are summed up, each with a minimum and maximum of 10 and 40 . The short version of AD ACL and its associated words are presented in tab. 2.2

Table 2.2: Adjectives from AD ACL, in the same order as presented

Word	Sub-dimension
Active	Energetic
Placid	Calmness
Sleepy	Tiredness
Jittery	Tension
Energetic	Energetic
Intense	Tension
Calm	Calmness
Tired	Tiredness
Vigorous	Energetic
At-rest	Calmness
Drowsy	Tiredness
Fearful	Tension
Lively	Energetic
Still	Calmness
Wide-awake	Tiredness
Clutched-up	Tension
Quiet	Calmness
Full-of-pep	Energetic
Tense	Tension
Wakeful	Tiredness

2.4 Body Language

The concept of body language is not a simple concept. Body language is complex, and is derived from several different "channels" of information, for instance body movement, gestures and facial expressions (Wulvik et al., 2016). Wulvik et al. (2016) also separated the tools for measuring body language into manual and automatic tools. Were the manual includes observations and manual video coding. The automatic tools are more interesting, since humans does not have to interpret all the data. These automatic tools rely on sensors and data processing for clustering and classification. They further separated the tools into camera based tools and wearable based tools fig. 2.4.

Figure 2.4: Grouping of technologies (Wulvik et al., 2016)

2.4.1 Body Language and Emotions

"From everyday experience we know that an angry face is more menacing when accompanied by a fist."
-De Gelder (2006)
There have been done a lot of research on how human emotion effects facial expressions, however there is little exploration done on how the emotions affects the body movement. This is in spite of (Darwin and Ekman, 1872) having a postural descriptions included in The expression of the emotion in man and animals. Emotion recognition from body movement is still unresolved. Coulson (2004) generated computer figures from descriptions of postural expressions and presented results on six emotions(anger, disgust, fear, happiness, sadness, and surprise). He concluded that recognition from static body postures could be compared to recognition from voice, and some postures are as recognizable as facial expressions. Gunes and Piccardi (2007) did a bi-modal emotion recognition study with the two modalities being facial expressions and upper-body gestures. They found that the classification using both modalities outperformed both the mono-modal recognition classifications. Since bodies are large, compared to for example faces, and have the possibility to show a waste amount of different static postures, if the static postures is combined with a similar amount of movements, the channel of information gathered from body language would be ideal for affective communication (Coulson, 2004). The affective state of a person can be decoded more precisely over distances with body postures compared to facial expressions (Walk and Walkers 1988). This also implies that it might be possible to decode some affective states with a sensor setup that classify the body postures and possible the change in postures(movement). This sensor setup is what is going to be explored in this thesis.

2.5 Similar work

Woolf et al. (2010) used a combination of a pressure sensing chair, a pressure sensing mouse, a camera, and a skin conductance bracelet to measure physiological responses that
are linked to affective states. They used this in combination with self report and human observation to classify the affective states of students, and was in some degree able to do so, but in their step-wise regression model, they found that the pressure sensing chair features was not among the most important features.

Kapoor et al. (2004) developed a multimodal framework for recognition of affective states. In their experiments used among other modalities postures and activity on chair, they used a neural network to classify postures and levels of activity from a sensor sheet with 42 by 48 sensing units placed on a chair. They found that from the modalities they tested these were the ones that had the highest recognition rate when performance from individual modalities was tested. Which means that the individual contribution to the final classifier was higher from the posture and activity features, compared with facial data and game stimuli data.

Sensor Chair

As a part of a process where research are to be done in a ship simulator and possibly even on a real ship bridge, the chair described in this chapter is the first version of a sensor based chair which are going to be further developed in the future. It will later be used for testing of several aspects of the in situation interactions and stimuli. In this part of the development process the chair is going to be tested in a more neutral environment compared to the in-situ situation that is represented by a ship simulator or a real ship. In this more neutral environment the idea is to explore and evaluate what is possible to get out of a sensor embedded chair.

In this chapter the challenges of embedding a chair with sensors are presented and given some context. It is important to make it clear that the development of the chair is by intention done in small increments, where this is the first increment. The development is done in increments because it is easier to evaluate different aspects of the solution this way, rather than developing a complete solution before any testing is done. Although the chair is only in its first stage, there are several aspects that can be tested, however in this thesis the evaluation is focused on measurements of affect, more on this is explained in the next chapter. Hopefully these evaluations and results will ultimately indicate what to explore next, and how to further develop the chair.

3.1 Development challenge

The idea is to implement a chair with some kind of sensor setup to be able to recognize the user's behavior. In this case the interesting features are sitting position, level of forward leaning, utilization of arm rest, position changes and heart rate. The thought is to use these features to examine if they have some correlation with emotional states. As mentioned earlier regarding heart rate, more specifically HRV, there have been proven correlation to arousal and stress. The main focus is hence to try to find some correlation concerning the posture or movement based features.

3.2 Key Features

Before developing a sensor based chair it is important to make it clear which features the chair needs to be able to sense. These features will be presented in this section.

3.2.1 Posture/ Sitting Position

The chair have to be able to differentiate between different postures or sitting position in this case. This is important because with this feature it is possible to explore the correlation between postures and emotions. It is also necessary to have this feature to be able to obtain the next key feature, which is position change.

3.2.2 Position Change

Based on the feature of sitting position, the setup have to be able to record the number of position changes for a given period of time, to be able to do this the sampling has to be continuous and the threshold must be given by the before mentioned feature of sitting positions. Again this feature is important because correlation between number of changes and emotions are to be evaluated.

3.2.3 Heart rate and HRV

Although not taken in to consideration at this stage of the chair development, a future version of the chair should possibly include the ability to sense at least heart rate, and possibly also be able to extract HRV features from this data.

3.3 Sensor Exploration

Based on the above mentioned scope, it was challenging to find a suitable technology for the sensor setup. Following are some of the different technologies and setups that was considered.

3.3.1 Optical Fiber

One of the most promising setups was the optical fiber sensor based setup. Derived from the (darmachair), it is supposed to be able to sense all the above mentioned features. Also there is some in-house expertise on this kind of sensor (Rayleigh backscatter). However the ready-to-use darmachair does not include an application programming interface API and would be useless in this scenario. Also the available in-house sensor was not chosen, mainly because of it being to comprehensive for the scope of this thesis.

3.3.2 EMFi

The next technology considered was EMFi or electromechanical film. This is a polypropylene film based sensor that is sensitive to forces normal to the materials surface (Kärki
et al., 2009). This material is commercially available from the Finnish company Emfit Ltd. Anttonen and Surakka (2005) actually used this kind of sensor to make a chair for sensing heart rate in an experiment were they used emotional provocative stimuli, they successfully measured heart rate responses that differed significantly between positive and negative emotions. The uncertainty and complexity regarding using this film material lead to it not being chosen for the chair at this time.

3.3.3 Eontex fabrics

These are fabrics that have been coated with Eonyx to create different types of fabricbased sensors. They are conductive and the resistance depends on both distance and strain applied pressure or force. It is possible to sense location, pressure, stretch and bend with these sensors, and they can even be combined to sense a combination of the before mentioned. However these material based sensors was discovered far to late for them to be applicable in the solution in this version, but they can possible be implemented in a later version of the setup.

3.3.4 FSR - Force sensitive resistors

The force sensitive resistors (FSRs) will have a resistance that is dependent on the pressure that is applied to its surface. More total force gives lower resistance and vice versa. The sensors are somewhat flexible and flat, and to implement them in a chair is highly possible and was actually done as a student project here at NTNU last year. The students put these sensors in an office chair Fig. 3.1 which combined with a machine learning program allowed them to differentiate between different pre-trained sitting positions (Jensen et al., 2016).

Figure 3.1: The student project chair, (Jensen et al., 2016)
This ended up being the chosen setup for the chair. The process of putting the chair
sensor setup together will be described in detail in the next section.

3.4 The Sensing Chair

As in future research the chair are to be used in a in-situ environment, possibly in a ship simulator, the environment of the simulator was explored. Fig. 3.2 show how the captain's chair look in Kongsberg Maritime's ship simulator.

Figure 3.2: Kongsberg Maritime chair in ship simulator

The chair used in this setup is a Captains Ship Bridge Chair provided from Kongsberg Maritime Fig. 3.3, which is similar to the one they have employed in the simulator.

Figure 3.3: Captian's Ship Bridge Chair from Kongsberg Maritime
The FSRs that are most suitable are the type that is square, they have a sensing area that is $4.445 \mathrm{~cm} \times 4.445 \mathrm{~cm}$ Fig. 3.4. These are the ones with the biggest sensing area of the standard component FSRs that was obtainable within a reasonable time.

Figure 3.4: Captian's Ship Bridge Chair from Kongsberg Maritime

As mentioned the FSR sensors were chosen to sense the posture and movement in the chair. The placement of the sensors are shown in Fig. 3.5. In fig. 3.6 the mounting of some of the FSRs on the seat can be seen.

Figure 3.5: The FSR placements on the chair

Figure 3.6: Mounting the sensors

\section*{| Chapter |
| :---: |}

Experiment Setup

Erik: The following chapter presents the experimental approach and setup used by the author to study how the physiological reactions measured by the chair setup could vary with arousal. The author and another master student have been working on this setup together, as the intention of the two allowed a merge of two experiments. Hereby, this chapter is written by both students. As some tools and theory was applied by one student only, this causes some information from Chapter 2 to be duplicated. The abstract of this student's master thesis is presented to enable an overview of his research:

The much-debated topic of physiologically differentiating emotions has been of great interest to the research community in recent times. While many studies focus on facial reactions, the rest of the body is rather unexplored. This thesis takes upon the challenge of experimentally piloting and testing whether we can measure positive and negative emotional valence changes through physiological reactions in a user interaction setting. 34 adult subjects played variations of Tetris while collecting electromyography (EMG) data on the neck and forearm, and leaning distance in a seated position. Three scenarios were designed with different levels of valence and arousal (high valence-low arousal, low valence-high arousal, high valence-high arousal), upon which physiological data was analyzed. Valence was used as a within-subjects factor via self-report measurements by the Russell Affect Grid (Valence-Arousal grid) and Positive Affect Negative Affect Schedule (PANAS). Results showed that there was no statistically significant difference in physiological data between the scenarios ($p=.761, p=.191$ and $p=.093$ for EMG neck, EMG arm and leaning distance, respectively). However, the data showed tendencies in increased leaning distance from negative to positive valence. Furthermore, the thesis focuses on how one without much knowledge within the field of human experimentation can prototype and iterate one's way to such an experimental design, applying product development models to achieve this.

The combined intentions of the experiment was hereby to study how physiological reactions vary with changes in affect, including both valence and arousal. The goal was to design three scenarios to achieve three different levels of affect within the two dimensions, and then evaluate how the physiological data relates with the two. Furthermore, the setup of this experiment was not only result based. It was also a pre-study and an exploration on how one can study physiological reactions and emotional states in a user interaction setting. As such, this experiment is also provided as a pilot and a framework for how one can achieve this. This chapter introduces hypotheses, the complete setup for the experiment as well as the chosen measurement methods and input variables.

4.1 Hypotheses

In the following section a number of hypotheses are presented. All of the hypotheses are listed with their corresponding null-hypotheses. The hypotheses relates to relative change in valence and arousal.

4.1.1 Valence Hypotheses

These valence hypotheses relates to the established subjective measurements of valence and the goal was to explore the relationship between the objective measurements of physiological data, EMG and leaning distance, and the established subjective measurements, the Affect Grid and PANAS. The first hypothesis is regarding valence and its effect on muscle tension:

> H1: "Changes in valence induce changes in muscle tension"
> H1null: "Changes in valence does not induce changes in muscle tension"

The second hypothesis is regarding valence and its effect on the level of forward leaning, i.e. leaning distance:

H2: "Changes in valence affects the level of forward leaning"
 H2null: "Changes in valence does not affect the level of forward leaning"

Hypothesis H1 was tested with EMG data which was compared with the data from the PANAS and the Affect Grid section 4.7. Hypothesis H 2 was tested with data from a Lidar distance sensor, which was then compared with the same control measurements.

4.1.2 Arousal Hypotheses

The following arousal hypotheses relates to established measurements of arousal. The goal was to test if another objective measurement gathered from features from the chair setup were associated with the established subjective and objective measurements. The first hypothesis regarding arousal is connected to the effects arousal has on number of posture changes in a chair.

H3: "Changes in arousal affect the number of position changes in a chair in a given time period "
H3null: "Changes in arousal does not affect the number of position changes in a chair in a given time period"

The second hypothesis is regarding arousal and its effect on the level of forward leaning:

H4: "Changes in arousal affect the level of forward leaning" H4null: "Changes in arousal does not affect the level of forward leaning"

Hypotheses H3 and H4 were tested with data from the chair that was processed through machine learning to classify positions and level of forward leaning. This data was then compared with both the subjective self report AD-ACL-questionnaire and objective HRV measurements. H4 was also tested with the Lidar distance sensor data.

4.2 Independent Variables

Since there was no direct way to vary the affect of the subjects, stimuli was used to achieve the desired emotional state. The stimuli represents the independent variable, where this was tuned to guide subjects in the wanted directions of affect. Following are the different means of stimuli used, and a short explanation of how they were adjustable. How they were implemented in this experiment is described in section 4.9.

4.2.1 Difficulty

The task, in this case TETRIS (described in 4.6), varied in difficulty. The manipulated version of the game allowed for adjustable speed, reversing the controls and to decide the order of the pieces, including which pieces to be included at all.

4.2.2 Lights

This was a visual stimuli that was in the form of a LED-strip around the LCD-screen. It could vary in intensity and color, be turned on/off and the speed of all these variations could be controlled.

4.2.3 Music

This was an audible stimuli. There are infinite aspects of music that could be controlled. The aspects that were given most thought in this experiment were tempo, pitch and familiarity.

4.2.4 Feedback

This was both a visual and audible stimuli and was controlled to match the performance and desired affect level. The feedback consisted of several elements, including a continuously changing feedback bar on the screen, score of the game and score relative to other people. It could differentiate from positive to negative loaded with both color and sound, and could be enabled and disabled.

4.3 Dependent Variables

For this experiment several dependent variables were used, both subjective and objective. Heart rate variability (HRV) and all of the subjective variables are established as measurements of the affect dimensions. EMG and the posture measurements (both chair and leaning distance) are the proposed new measurements for valence and arousal. The intention was to compare the EMG and leaning data with the established valence variables, and all the posture data with the established arousal variables. The variables are presented in table 4.1.

Variable	Measurement	Subjective or objective
Valence	Panas	Subjective
Valence and arousal	Affect Grid	Subjective
Arousal	AD-ACL	Subjective
Arousal	ECG - HRV	Objective
Proposed valence	EMG - Muscle tension	Objective
Proposed valence	Chair posture data	Objective
Proposed arousal	Chair posture data	Objective

Table 4.1: Dependent variables

4.4 Physical Setup

In the physical aspects of the experiment setup it was important to have a minimum of external "noise" to bias the data. In this experiment the physical setup was constructed by a mock-up room room Fig. 4.1 where the test subjects participate without any human interaction after the initial briefing and sensor connection Fig. 4.11. That being said, the room was in a busy hallway close to a hallway door that was often being opened and slammed, that lead to some interrupting sounds and vibrations. Also the room requires to have a window open and a lot of outside sounds could be heard by the subjects. The intention behind this experiment does not require the setup to be "white-room" and totally isolated from external factors, which also would have been difficult in the scope of the project. But it is was supposed to be a lot more "neutral" compared to an in-situ setup which is a setup that is supposed to represent a situation that is as close to a real life situation as possible.

Figure 4.1: Room layout.

Figure 4.2: Overview of the physical setup

The subjects were placed in the chair, where they were initially briefed and connected to the physiological sensors Fig. 4.11. The subjects were given a wireless headset for sound stimuli and they interacted with the experiment interface with a wireless Xbox One-
controller Fig. 4.3a. The interface was presented to the subjects on a 32 " LCD screen with surrounding LED-strips for light stimuli 4.3b. These LED-strips were controlled with an Arduino controlled button circuit Fig. 4.3c. Information sheets about how to use the Russel Affect Grid (Appendix B) were placed on the subjects left hand side. The subjects were isolated from the rest of the room with two cardboard walls to eliminate distractions from external effects in the room Fig. 4.2. Behind the cardboard wall on the chairs right hand side, the computer setup was placed Fig. 4.3d, this is where the experiment was controlled and monitored. This is explained in detail in the next section. A camera was placed on the top of the wall to the right of the subject for video recording Fig. 4.1.

Figure 4.3: Other aspects in the physical setup

4.5 Computer Setup

The vast amount of data collection and impulses required great control of the experimental environment. Three computers were used to ensure complete overview and control (Fig. 4.4). The sampling computer was set up to gather all sensory data from the subjects, meaning ECG, EMG and posture both from the chair sensors and the Lidar distance sensor. The sensor platform, consisting of four Arduinos, provided the sensory data over a serial
connection with software on the sampling computer capturing this and displaying it in real-time on screen. This allowed for substantial control of the input data, especially in the first phase of the experiment where the connection of the electrode pads for ECG and EMG sometimes didn't provide a good data stream. If some of the electrodes weren't connected well enough this could be easily seen and corrected. The sensor platform in itself will be fully explained and discussed in section 4.7. The stimuli computer functioned solely to provide the test subjects with the user interface part of the experiment. Here, the interface software, which will be explained in detail in (section 4.8), guided the user through the whole experiment on the TV screen. This made it possible to avoid interference with the subjects during testing, and at the same time ensured the exact same user experience for every subject. The third computer, the camera computer, was used to do video recordings as well as allowing visual observation of the subjects.

Figure 4.4: Overview of the computer setup

4.6 TETRIS

The traditional game TETRIS was applied as the main task of the experiment. TETRIS is a simple game where a grid defines the playing area. Pieces put together in different shapes fall down from the top one by one Fig. 4.5a, and the goal of the game is to puzzle these pieces together at the bottom so that you cover a full line with pieces across the grid

Fig. 4.5b. This line then disappears, and you receive points for each line. The game is over when the stack of bricks reaches the top of the grid Fig. 4.5c.

Figure 4.5: Tetris

The TETRIS game used in this experiment was a clone of the original game, downloaded from GitHub. It was coded from scratch in the programming language Python and uses a series of functions from Pygame, which is a graphical interface pack compatible with Python. The fact that the whole game is constructed by just under 600 lines of code made i fairly easy to tweak for the purposes of the experiment, and design several versions of the game to achieve the different levels of affect intended. Moreover, it allowed for fast prototyping of the game and made it easy to test changes and see how they affected pilot subjects. The final versions are explained further in section 4.9.

4.7 Sensor platform and Measurements

In this section the different measurements, both subjective and objective, are described. Also the sensors and tools used to collect some of these measurements are described in this section.

4.7.1 Affect - self report measurements

To be able to have some control measurements in the experiment, some subjective measurements of affect was needed. The Russel Affect Grid is as mentioned in chap. 2 an established agent of measuring both dimensions of affect (arousal and valence). However we felt it was needed to include at least one more control measurement of both dimensions, and PANAS and AD-ACL was chosen for their proven reliability. Following are some short explanation of these measurements, a more detailed explanation of all three is included in

Russel Affect Grid

The grid consist of a 9 x 9 matrix, the horizontal dimension represents valence and the vertical dimension represents arousal. This is described by Russel et al. (1989) as a map representation of feelings. The top right quadrant represents feelings of excitement, the bottom right quadrant represents feelings of relaxation, the bottom left represents feelings of depression and sadness, and lastly the top left quadrant represents distressing and tense feelings.

PANAS

The Positive and Negative Affect Schedule (PANAS) (Watson et al., 1988) is a questionnaire to measure valence, similar to the horizontal axis in the Russel Affect Grid. The subjects are presented with a mix of positively and negatively loaded adjectives. The subjects are to indicate the extent they feel these feelings on a scale with the following scale points: 1 . Very slightly or not at all, 2. A little, 3. Moderately, 4. Quite a bit, 5. Extremely. The words are presented in table 4.2. The sub scales, Positive affect (PA) and Negative affect ($N A$), contain the words $1,3,5,9,10,12,14,16,17$, and 19 , and $2,4,6,7,8,11$, $13,15,18$, and 20 , respectively. The subjective rating of each word is summed up, and the mean momentary scores of PA and NA are 29.7 and 14.8 respectively.

no.	Word
1.	Interested
2.	Distressed
3.	Excited
4.	Upset
5.	Strong
6.	Guilty
7.	Scared
8.	Hostile
9.	Enthusiastic
10.	Proud
11.	Irritable
12.	Alert
13.	Ashamed
14.	Inspired
15.	Nervous
16.	Determined
17.	Attentive
18.	Jittery
19.	Active
20.	Afraid

Table 4.2: Words of the PANAS questionnaire

AD ACL

The Activation-Deactivation Adjective Check List (AD ACL) is also a questionnaire where the subjects are presented with adjectives which they are to indicate on a scale their extent of feeling the specific feeling. But rather than being a measurement of valence like PANAS $\mathrm{AD} A C L$ is a measurement of arousal. The scale points in the Ad ACL questionnaire are: 1. Definitely do not feel, 2. Cannot decide, 3. Feel slightly, 4. Definitely feel

Number	Word
1	Active
2	Placid
3	Sleepy
4	Jittery
5	Energetic
6	Intense
7	Calm
8	Tired
9	Vigorous
10	At-rest
11	Drowsy
12	Fearful
13	Lively
14	Still
15	Wide-awake
16	Clutched-up
17	Quiet
18	Full-of-pep
19	Tense
20	Wakeful

Table 4.3: Word of the AD-ACL questionnaire

4.7.2 Chair sensors and measurements

Force sensitive resistors (FSRs), were embedded in the chair. They acted as pressure sensors where the the resistance varied depending on the pressure applied. The intention of the chair sensor setup in this experiment was to provide measurements of the subjects posture during the experiment. This included sitting position, number of changes in sitting position in a given period of time, and in which degree the subjects was leaning forward. The forward leaning was also measured by using a Lidar distance sensor placed on the back of the chair, behind the subjects' heads. The Lidar sensor was chosen, even with some issues with stability in measurements, mainly because the only other option taht was available in this time scope was a HC-SR04 ultra sonic sensor, but the ultra sonic distance measurements gave sky high peak readings. In comparison the Lidar is highly reliable, although it has fairly low accuracy for the purpose of this experiment $(\pm 2.5 \mathrm{~cm})$. All the
above mentioned data was collected using an Arduino Mega, which had a sampling rate of 5 Hz .

4.7.3 Biometric sensors and measurements

The biometric sensors used in this experiment included two sets of electromyography (EMG) electrodes and one set of electrocardiography (ECG) electrodes. The EMG is an established method of measuring muscle tension (Merletti and Parker, 2004) and was used to measure muscle tension in the subjects' Flexor Digitorum Superficialis muscle on the arm and the Platysma muscle on the neck. Electrical impulses appear during a muscle contraction and hereby generates a voltage difference between the electrodes. The more contraction, the more voltage difference. ECG is a proven tool for measuring the muscle functions of the heart (Yakut et al., 2014). Also the ECG measurements was acquired by using three surface electrodes, the hearts muscle generates an electrical signal periodically (Yakut et al., 2014), this is represented by an analogical signal in volts by the ECG.

Figure 4.6: Electrode placement (Hacks, 2017)

Both the EMG and the ECG signals were gathered using an Arduino Uno with an e-health shield Fig. 4.7 at a sampling rate of 380 Hz to provide sufficient resolution of the ECG data. The e-health shield provided a simple way of gathering physiological data with the Arduino platform. Besides EMG and ECG it also has the capabilities to do other measurements such as blood pressure, body temperature and skin conductivity.

Figure 4.7: The e-Health Sensor Platform

4.8 User Interface

How the test subject is interacting with the tasks of an experiment is a vital part of every research that includes studying human behaviour. The interface created for this experiment was designed to facilitate easy interpretation of the necessary information, as well as focusing on consistency for all subjects. Furthermore, it was put effort to facilitate for a non biased response, as some of the main output used for data analysis was subjective (Affect grid, PANAS and AD-ACL). The interface was designed in a graphical experiment builder software, OpenSesame. This is a simple, free and open-source software for designing the graphical user interface (GUI) of experiments (Mathôt et al., 2012). OpenSesame provided tools for making the whole experiment, screen by screen (Fig. 4.8). Appendix A shows the GUI in its entirety. The subjects simply clicked their way through by using the controller. It also supports implementation of python scripts, which made it easy to integrate the Tetris code into the GUI. Even more convenient was the opportunity to code the affect $\operatorname{grid}($ Fig. 4.9a) and the PANAS and AD-ACL (Fig. 4.9b) questionnaires in python as well, making the whole experiment on screen. This was done from scratch Appendix B, C, D. OpenSesame also provides data logging from scripts which allowed easy extraction of the subjects' answers, outputting all the data to a . $c s v$ file, ready for analysis. There were several other advantages of using this software. Firstly, it enabled complete
separation between the subjects and the experimenters, which kept distractions and biases towards their evaluation of themselves to a minimum. It also provided continuity for the subjects, as well as allowing them to proceed in their own time without missing any information. Furthermore, the subjects were presented with the exact same information in the exact same order every test run. This not only provided consistency for the subjects, but also relieved the experimenters of the task of presenting all this information, freeing time to monitor and to keep an overview of the experiment.

Figure 4.8: The GUI

Figure 4.9: Parts of the subjective evaluation screens

4.9 Procedure

This section presents the complete procedure for the experiment, including detailed explanation of the three scenarios (S1-S3) mentioned in the beginning of this chapter. It
discusses how and why the various impulses were applied to achieve different levels of affect. As mentioned, the goal was to vary the affect of the subjects in three levels. These were as follows (Table 4.4, Fig. 4.10):

Scenario no.	Desired level of affect
S1	Low arousal, Positive valence
S2	High arousal, Negative valence
S3	High arousal, Positive valence

Table 4.4: The three desired levels of affect

Figure 4.10: The desired placement of the three scenarios in the affect grid.

By achieving these three levels of affect this would have facilitatet both the authors' needs at the same time. The span in valence (S2 and S3) enables analysis according to this dimension and could at the same time confirm the change in physiological reactions also for low arousal (S1). The same goes for analysis of arousal, with span in this dimension (S1 and S3) and confirmation with negative valence (S2).

The scenarios were presented in the same order for every subject, with S1, considered as the "calmest" one, first. The reason for this was to avoid lingering effects from the high
arousal scenarios (S2 and S3) into the low arousal scenario (S1), which was experienced during pilot testing. Another observation made in the pilot tests was an elevated arousal level in the beginning of the experiment. Many subjects seemed to get an increased arousal level by being wired up with electrodes and at all be excited, and even a bit nervous, to be a part of a research experiment. This confliced with the desired low arousal state, but the lingering effects of having S2 and S3 first was experienced to have a larger impact on arousal. Each scenario had a duration of 5 minutes, with approximately 2 minutes of questionnaires after each and a two minute break in between to "reset" the emotional state. Including introduction and instructions the experiment had a total duration of about 30 minutes.

4.9.1 Initiation

The subject was welcomed to the experiment by reading and signing a standard consent form Appendix J. After this all the nine electrodes were placed on the subject's body. Three in the front upper body area for ECG, three on the right forearm and three on the neck for EMG Fig. 4.11. As both experimenters were males an image was presented to the female subjects, which showed the placement of the ECG electrodes. The correct placement of the electrodes was easily checked as real time sensor data was shown on the sampling computer. For the sake of simplicity the rest of the electrodes were placed by one of the experimenters. The subject was then given the headset and controller. Some information was conveyed personally, such as informing about the two information sheets linked to the affect grid Appendix B. After commencing the experiment the subjects were asked to report their initial state in an affect grid on screen. This was intended both for the subject to get to know the grid, but also to generate a starting point on how this person was feeling before starting.

Figure 4.11: Connected sensor electrodes.

4.9.2 Scenario 1

Figure 4.12: TETRIS, scenario 1.

Before starting the first scenario, instructions about the game layout and controls were given to the subjects. The layout of this situation included a pleasant picture of a cat. Cats are well known to be cute creatures and pilot testing indicated that the cat evoked pleasant feelings. In this scenario the layout did not include a score or a counter of how many lines the subjects had accomplished in the game, as the experience was intended to be as calm and as little competitive as possible. A performance bar was placed to the right of the game, actively giving the subjects feedback on their performance. The stimuli used in this scenario were as follows:

Difficulty

The speed of the game was set to a relative low setting, pilot testing showed that this was comfortable for the subjects, and far from being a challenging factor. To achieve the desired relaxed emotional state, the three pieces most of the pilot subjects found challenging were removed, this left only four pieces which gave the game a pleasant and calming effect. The game was too simple and unchallenging for the subjects to get aroused, yet it was fulfilling for the subjects to perform well.

Lights

The lights was set to a steady setting with a warm color and low intensity. The light was not supposed to stimulate on its own, it was a complimentary feature to make the visual experience from the screen more pleasant and less intense.

Music

The music the subjects were presented with in this scenario was slow paced and calming.

Feedback

In this scenario the subjects were only presented with positive feedback. Every time they cleared a line a positive sound was played, and the performance bar only moved in the positive direction, upwards. On the positive side, the bar had a green color, often associated with correct actions. This was done to keep the subjects from getting bored and unfulfilled.

4.9.3 Scenario 2

Figure 4.13: TETRIS, scenario 2.

Also before starting the second scenario instructions were given. The layout in this scenario did not include a picture of a cat, but here the score was presented in addition to the time remaining. Both the score and the remaining time were included to evoke the feeling
of needing to perform, resulting in the desired arousal level. In addition, the subjects were given information stating that this scenario was a part of a competition, utilizing people's competitive spirit to achieve even higher arousal.

Difficulty

The speed was by default set at a really high level, and most pilot subjects found it to be too fast to be able to perform well. The speed also increased after 3 minutes to a level that even high performing Tetris players would find too high. The input controls were inverted so move right became move left and vice versa. The controls were switched back to normal after two and a half minutes, and then back to inverted after four minutes. This lead to a lot of frustration because when finally the controls were familiarized they were switched again. The pieces in this scenario included all seven pieces, however the order was manipulated in a way so that the three pieces the pilot subjects found most challenging appeared at a higher rate, and the most helpful piece at a much lower rate.

Lights

The lights in this scenario were strobing fast through four colors similar to police car flashers, red, blue, green and white. The intensity was set to the highest possible setting to make it as unpleasant and annoying as possible. This stimuli was kept in spite of one of the pilot subjects feeling it was over the top. Along with the difficulty, the lights appeared to be the most prominent traction stimuli for negative valence in this scenario. To clarify, the subjects were asked if they had any kind of epilepsy in the consent form before participation.

Music

Several kinds of music were subject to pilot tests for this scenario. Eventually a song was chosen based on feedback from pilot subjects. This song was "up-beat", powerful and ominous, similar to the music in a horror movie when the action level is on it's highest.

Feedback

In this scenario the subjects were not presented with any positive feedback, but given negative feedback both by an intense and negative buzz sound and the performance bar moving in the negative direction (downwards) when performing bad. On the negative side the bar had a red color, often associated with incorrect actions. Because of the scenario having a quite high level of difficulty, these negative feedback aspects were presented with high frequency, giving the subjects an even more negative experience.

4.9.4 Scenario 3

Figure 4.14: TETRIS, scenario 3.

Before starting the third scenario the subjects were again presented with the instructions and layout of the scenario. This time they were presented with the instruction about this scenario being part of a competition two times to make an even call to the competitive spirit to increase arousal levels. In this scenario the layout included a highscore list, starting at third place, this is more explained in the feedback description below.

Difficulty

The game speed wass set relatively high, but still achievable. The thought was to let the subjects make it, but only barely, to achieve a maximum positive valence and high-arousal effect. By giving the subjects a good fight the intention was for them to achieve an even greater feeling of accomplishment when they made it.

Lights

The lights in this scenario were intended to increase arousal without compromising positive valence. Though the flashing lights in S2 were perceived as very negative due to the fast flashes, flashing colors in a slower pace seemed to avoid getting negative valence. Quite the opposite, this switching of colors seemed to only reinforce positive feelings as
the scenario in itself was positive. The intervals between each color was set to 961 ms to accompany the beat of the music.

Music

Several songs were tested for this scenario before the final version of the experiment, and various up-beat instrumental songs were perceived as only moderately arousing. What seemed to do the trick was the association people had with the song, which could often push them towards both higher arousal and more positive valence at the same time. This is possibly a bit risky, as associations could differ greatly from person to person. To minimize this risk, a song that lies in the hearts of many 90 s children's memories is chosen, as the majority of the participants in the experiment was born in the early 90 s. The song is called "Sandstorm" and is performed by Darude.

Feedback

The feedback of this scenario was exclusively positive. The bar was used in the same way as in S1, going up for each line taken, whilst playing a positive "ping" sound. In addition to this a highscore list was shown. As in Fig. 4.14, the game started by showing the 3rd place score. When the subject passed this score, the screen turned black with the text "YOU ARE NOW IN 3RD PLACE!" flashing in blue and green in the center, and a corresponding "level up" sound was played. The score on the right changed to show the 2nd place score, and further to 1st place score, also with a flashing text and sound in between. When the 1st place score was beaten, the text "YOU ARE NOW IN THE LEAD!" was shown. After recommencing the game, this text was also shown to the right instead of "x place score". The indications of increasing positioning on the highscore list evolved from being just the subtle change in the text to the right to a more pretentious and explicit notification, as subjects were often too deep into the game to notice this change.

Results

From the experiment a lot of data was collected. In this chapter the data is presented and analyzed. The data collected involves a lot of variables, and only the most important ones are discussed. The participants are in some cases split in three groups, depending on the situation the data was collected from, in other cases the participants are split in two groups, high arousal and low arousal, based on the recorded data. Total number of participants in the experiment was 34 , but since the experiment involved three scenarios, the data is handled as it was 102 independent data points. Efforts was made to minimize order- and learning effects in the experiment setup, and they are hence excluded from the following results. The Hawthorne effect was to some degree observed by the participants high heart rate before the experiment was started, because of its' complex nature, it is also excluded from the following results. Seven of the participants was female, and 27 was male. Three participants has a master degree, four a bachelor degree, and 27 has a high schoool diploma as their highest achieved education. A total of 19 was between 20-25 years of age, and 15 between 26-30. To extract the HRV data from the raw ECG data, Biomedical Workbench ${ }^{\mathrm{TM}}$, a software from National Instruments, was used. To analyze the data, SPSS Statistics 24^{TM}, a software from IBM, was used.

5.1 Preparing the data

In this section the methods used to prepare the data for further analyzes are presented.

5.1.1 Sorting the biometric data

The raw data form the biometric sensors (EMG and ECG) are in a continuous form for every participant. This means that there is only a manually coded signal for every scenario start and stop. The data is hence split in to the three scenarios, and the brakes are deleted. This gives the data in milliseconds, ECG-value and EMG-value for each scenario. One might argue that the data from the brakes might be interesting, but since there is only
recorded subjective data for the discrete scenarios, the biometric data for the brakes are disregarded.

5.1.2 HRV extractions

To extract the HRV features from the ECG data, a software pack called Biomedical Workbench was used. The raw data was converted in to a usable format with a file converter included in the package, in this process the sampling rate was also put in to the data. Then a ECG feature extractor was used to extract the QRS complex from the ECG data fig. 5.1. Lastly the annotated file is opened in Heart Rate Variability Analyzer fig. 5.2 where the HRV statistics are presented along with power spectrum from both a Fast Fourier Transform and an Auto Regressive AR model. The spectrum is divided in to three discrete components, very low frequency $\operatorname{VLF}(0,00-0,04 \mathrm{~Hz})$, low frequency $\operatorname{LF}(0,04-0,15 \mathrm{~Hz})$, and high frequency $\operatorname{HF}(0,15-0,40 \mathrm{~Hz})$. To limit the data size, only the FFT power spectrum is used further.

Figure 5.1: The QRS complex marked by the ECG Feature Extractor

Figure 5.2: HRV data preesented in the Heart Rate Variability Analyzer

5.1.3 Machine learning

The pressure sensor data from the chair are re-coded in to two different variables, Number of position changes and level of leaning. To do this a classification algorithm is used. In this case a k-dimensional tree algorythm was used. A k-dimensional tree is a binary tree were every node is a k-dimensional point Ramasubramanian and Paliwal (1992) Hunt et al. (2006). It is an established data structure for organizing points in k-dimensional spaceZhou et al. (2008)Shevtsov et al. (2007). In this case there are 14 dimensions, one for each pressure sensor.

The classifying is done in two scripts, one for each output variable. The classifiers are trained with two sets of training data, one for position changes and one for leaning. The training data for the position changes consists of seven recorded positions:

1. Straigh with head on headrest
2. Straight without head on headrest
3. Leaning forward
4. "Slouching" with head on headrest
5. "Slouching" without head on headrest
6. Leaning to the right
7. leaning to the left

The training data for the leaning consists of 5 different levels of leaning forward, from the equivalent to the first postion from the position set, to all the way forward with no back contact to the chair at all.

The position data was further processed by splitting the scenarios, and deleting the brakes, and then the number of changes was counted for each scenario(case). Similar with leaning, the data was split, and then the mean of the levels of leaning was calculated. However the leaning data did not turn out dependable, this might be caused by over-fitting or the training data was not well enough recorded.

5.1.4 Grouping the cases

As it turned out, the self reported arousal from each scenario did not turn out to be as divergent as desired Table 5.2.

	Group	N	Mean	Std. Deviation	Std. Error Mean
pNN50	Scenario 1	32	15,6288	16,068279	2,94913
	Scenario 3	33	13,7406	14,14856	2,46295

Table 5.1: Group statistics of pNN 50 , with scenarios as groups

	t	df	t -test for Equality of Mean			95 \% Conf.Interval of the Difference	
			Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Higher
pNN50	0,493	63	0,624	1,88814	3,383253	-5,77056	9,54685

Table 5.2: Independent samples test of pNN , with scenarios as groups

As one can see there is no significant difference in pNN50 between the two groups. pNN50 is an established objective significant measure of arousal (Taelman et al., 2009) and the missing difference in the distribution between the two groups can hence be seen as an indicator that there is not significant difference in arousal. This is an indication that the stimuli in the different scenarios did not work as intended. To further be able to examine the effect arousal has on posture, the cases are grouped by the scores from the AD ACL questionnaire. To properly examine the relation the arousal has on posture, the
cases that reported high or low arousal was chosen, while the cases that reported medium arousal was ignored. One might say that by doing so, the complete relation is not shown, but tendencies are amplified and more detectable. The cases that reported a score higher than 13 was put in the high arousal group, and cases that reported a score below 5 was put in the low arousal group. Following are the results of an independent T-tests run on the participants pNN50 values based on the new groups.

	Group	N	Mean	Std. Deviation	Std. Error Mean
pNN50	Low Arousal	33	19,4824	16,86438	2,93571
	High Arousal	32	11,4116	14,33361	2,53385

Table 5.3: Group statistics of pNN50, with self reported arousal as groups

	t	df		t-test for Equality of Mean		95 \% Conf.Interval of the Difference	
			Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Higher
pNN50	2,076	63	0,042	8,07086	3,88777	0,30178	15,83995

Table 5.4: Independent samples test of pNN , with self reported arousal as groups

Now there is a significant difference between the groups.

5.2 Descriptive Results

In this section descriptive results from the experiment is described. The descriptive results are sectioned according to the dependent variables of arousal listed in section4.3. The dependent variables related to valence is not discussed in this thesis. The distributions are presented in box plots, and tables containing number of cases, means, medians, standard deviations, and minimum and maximum values are presented for later analysis purposes.

5.2.1 Arousal - Objective Measurements

Following are the descriptives of heart rate and heart rate variability. Included in the descriptives statistics tab. $\mathbf{5 . 5}$ and the presented distributions fig. $\mathbf{5 . 3}$ are heart rate, the time based HRV feature pNN50, and three frequency based HRV features. The VLF feature from the power spectrum is ignored because of the short sampling time of 5 minutes.

Table 5.5: Descriptive statistics of heart rate and heart rate variability

		Heart Rate Mean	pNN50	LF Power	HF Power	LF/HF
Low	N	33	33	33	33	33
	Mean	76.33	19.4824	655.91	413.233	2.7939
	Median	76.00	14.0000	620.00	287.000	2.2000
	Std. Deviation	12.457	16.86438	469.717	530.7924	1.9254
	Minimum	55	.00	82	11.1	.3800
	Maxium	110	57.00	1900	2670.0	7.4000
High	N	32	32	32	32	32
	Mean	80.09	11.4116	544.69	209.400	3.6475
	Median	82.00	6.5500	320.00	130.500	2.9000
	Std. Deviation	10.593	14.33361	516.471	250.7182	2.3973
	Minimum	56	.00	100	19.7	.4700
	Maximum	100	46.00	2000	1350.0	9.2000

Figure 5.3: Distribution of heart rate and heart rate variability in the two groups. Mild outliers are marked with circles, extreme outliers are marked with asterisks

5.2.2 Arousal - Subjective Measurements

To investigate how the posture and position relates to arousal, two established subjective measures are included as countermeasures below. The first is the Activation-Deactivation Adjectvive Check List (AD-ACL) questionnaire, and the second is the y-score from the Russel Affect Grid

AD-ACL

The 20 words from the AD-ACL are divided in to four sub-dimensions(Thayer, 1990). The four sub-dimension are "Energetic" A1, "Tired" A2, "Tension" B1, and "Calmness" B2. Each sub-dimension are contrived from the associated words where each word are scored on a Likert scale with a range of 1-4. This gives each sub-dimension a minimum
score of 5 and a maximum score of 20 . As the sub-dimension's names suggest, a high score on A1 and B1 indicate high arousal, while a high score on A2 and B2 indicate low arousal. For a more complete picture a total AD ACL-score is calculated by adding the A1and B1-scores and then subtracting the scores from A2 and B2. This gives a AD-ACLscore ranging from -30 to 30 , where a score of -30 equals the lowest possible arousal, and 30 represents the highest possible arousal. The descriptive statistics of the scores are presented in tab. $\mathbf{5 . 6}$ and the distribution of the calculated scores are presented in fig. 5.4

Table 5.6: Descriptive statistics of AD-ACL scores

		A1	A2	B1	B2	AD-ACL-score
Low	N	33	33	33	33	33
	Mean	11.39	11.42	8.36	14.64	-6.30
	Median	12.00	12.00	8.00	15.00	-7.00
	Std. Deviation	2.499	3.783	2.644	2.737	7.951
	Minimum	5	7	5	8	-24
	Maxium	16	19	15	19	4
High Arousal	N	34	34	34	34	34
	Mean	16.15	6.06	14.97	7.15	17.91
	Median	16.00	6.00	15.00	7.00	17.00
	Std. Deviation	1.708	1.229	2.289	2.047	3.379
	Minimum	12	5	11	5	14
	Maximum	20	11	19	15	29

Figure 5.4: Distribution of AD-ACL scores in the two groups. Mild outliers are marked with circles, extreme outliers are marked with asterisks

Affect Grid

The descriptive statistics of the y-scores from the Russel Affect Grid are presented in tab. 5.7 and the mean distribution are presented in fig. $\mathbf{5 . 5}$

	Low Arousal	High Arousal	Total
N	33	34	67
Mean	5,52	7,76	6,66
Median	6	8	7
Std. Deviation	1,302	0,819	1,562
Minimum	2	6	2
Maximum	7	9	9

Table 5.7: Descriptive statistics of grid y-scores

Figure 5.5: Distribution of grid y-scores in the two groups. Mild outliers are marked with circles

5.2.3 Number of changes in sitting position

The raw data from the chair was as previously mentioned classified by an algorithm to determine the position the participant was using. The number of position changes during the five minute period of each scenario was then counted and used as a new variable. Tab. $\mathbf{5 . 8}$ shows the descriptive statistics from the number of position changes, and fig. $\mathbf{5 . 6}$ shows the distribution in both groups.

	Low Arousal	High Arousal	Total
N	33	34	67
Mean	14,36	45,15	29,99
Median	3,00	31,00	7,00
Std. Deviation	27,521	48,107	42,010
Minimum	1	1	1
Maximum	113	187	187

Table 5.8: Descriptive statistics of number of changes in sitting position

Figure 5.6: Distribution of number of changes in sitting position in the two groups. Mild outliers are marked with circles, extreme ouliers are marked with asterisks

5.2.4 Leaning

The leaning is obtained by two measures, one from the Lidar distance sensor and one from the classification script run on the raw chair data. The descriptive statistics and the distribution are presented for both variables. Tab. $\mathbf{5 . 9}$ and fig. 5.7 presents information about the classified variable, while Tab. $\mathbf{5 . 1 0}$ and fig. $\mathbf{5 . 8}$ represents the Lidar data.

Classified mean of leaning

	Low Arousal	High Arousal	Total
N	33	34	67
Mean	2,8718	2,7957	2,8332
Median	2,9050	2,9399	2,9050
Std. Deviation	0,70028	0,77167	0,73278
Minimum	1,94	1,09	1,09
Maximum	4	4	4

Table 5.9: Descriptive statistics of leaning

Figure 5.7: Distrubution of leaning in the two groups, based on chair data.

Lidar

	Low Arousal	High Arousal	Total
N	33	34	67
Mean	19,113568	19,532324	19,326071
Median	18,791734	19,451644	19,026899
Std. Deviation	4,1897754	6,2514866	5,3005822
Minimum	10,8638	6,5006	6,5006
Maximum	30,0928	32,0565	32,0565

Table 5.10: Descriptive statistics of leaning

Figure 5.8: Distribution of leaning in the two groups, based on the distance sensor. Mild outliers are marked with circles

5.3 Statistical Evaluation

In this section the data presented previously are evaluated statistically. First the established measures are evaluated and tested internally. Then the new suggested measures are eval-
uated and related to the hypotheses. As mentioned earlier the data from each scenario of each participant is treated as one independent case (data point).

When analyzing the established measures, the independent samples t-test is used on HRV variables, since they are continuous, and on the obcjective measures the MannWhitney U-test is used.

5.3.1 Evaluating the established measures of arousal

HRV

To do an independent t test on the HRV variables three main criteria must be satisfied. Two of which, having a continuous dependent variable (in this case the HRV variables) and an independent variable with two levels or categories (in this case the arousal groups), are satisfied. But the third criteria is to have independent cases, which in this case is questionable since the cases are derived from participants doing three scenarios, but with each scenario from each participant being treated as one independent case. This can be seen as a critique of the experiment design. However since the learning and order effects have been neglected, the assumption that the cases are independent are maintained. The result of the independent samples t-test are presented in tab. 5.11. The first two columns represents the Lavene's test for equality of variances that checks if there is a significant difference in the variance between the two groups. However the t -test is robust and includes a test even if the variances have significant difference(the second line of each t-test).

Table 5.11: Independent Samples t-test of HRV variables

		Lavene's test for Equality of Variances		t-test for Equality of Means						
									95\% Con Interval of Differenc	lence the
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Heart Rate Mean	Equal variances assumed	. 448	. 506	-1.309	63	. 195	-3.760	2.872	-9.500	1.979
	Equal variances not assumed			-1.312	61.957	. 194	-3.760	2.865	-9.488	1.967
pNN50	Equal variances assumed	2.618	. 111	2.076	63	. 042	8.07086	3.88777	. 30178	15.83995
	Equal variances not assumed			2.081	61.948	. 042	8.07086	3.87799	. 31875	15.82298
LF power	Equal variances assumed	. 008	. 927	. 909	63	. 367	111.222	122.381	-133.338	355.781
	Equal variances not assumed			. 907	62.020	. 368	111.222	122.563	-133.776	356.219
HF Power	Equal variances assumed	4.230	. 044	1.969	63	. 053	203.8333	103.5013	-2.9975	410.6642
	Equal variances not assumed			1.989	45.911	. 053	203.8333	102.4791	-2.4571	410.1238
LF/HF	Equal variances assumed	1.521	. 222	-1.585	63	. 118	-. 85356	. 53850	-1.92966	. 22254
	Equal variances not assumed			-1.580	59.398	. 119	-. 85356	. 54032	-1.93458	. 22746

AD-ACL

A visual inspection of the distribution of both groups for all the sub-dimensions and for the total score indicates similarity in distribution, which is an assumption for the Mann Whitney test. Hence the Mann Whitney test was run to determine if there were differences in self reported AD ACL-scores, and the results can be seen in tab. 5.12

Table 5.12: Mann-Whitney U test of AD-ACL

	A1	A2	B1	B2	AD-ACL-score
Total N	67	67	67	67	67
Mann-Whutney U	1078.000	61.000	1076.500	30.000	1122.000
Wilcoxon W	1673.000	656.000	1671.500	625.000	1717.000
Test Statistic	1078.000	61.000	1076.500	30.000	1122.000
Standard Error	79.245	78579	79.323	79.391	79.619
Standarized Test Statistic	6.524	-6.363	6.499	-6.688	7.046
Asymptotic Sig. (2-sided test)	.000	.000	.000	.000	.000

The significant differences are highlighted in yellow. It looks a little suspicious that all the sub-dimensions and the total score yields significant median differences, but the groups were set by cases that reported high or low AD ACL scores, which means that the degree of freedom from the AD-ACL questionnaire are already been used, and these results can not be used further in the evaluation.

Affect Grid

Also the distrubution of grid y-scores for both groups also indicates similarity by visual inspection, and hence is the assumption for the Mann-Whitney U test satisfied. The results of the following test is shown in tab. $\mathbf{5 . 1 3}$

Table 5.13: Mann-Whitney U test of y-scores from the affect grid

	Grid y-score
Total N	67
Mann-Whutney U	1056.000
Wilcoxon W	1651.000
Test Statistic	1056.000
Standard Error	77.822
Standarized Test Statistic	6.361
Asymptotic Sig. (2-sided test)	.000

Also here the difference in medians between the two groups are significant as seen by the highlighted significance. But the y-scores from the affect grid is also a subjective measurement of arousal and it is expected that the median difference between the cases that reported high and low arousal according to the AD ACL questionnaire also reported high and low arousal in the affect grid

Correlations

Here the correlations between the HRV measures and the two subjective measures are presented. The Spearman correlation test is used for this. This is because it is either a test of association between two ordinal variables or between one ordinal and one continuous variable. The correlation matrix is presented in Appendix L The correlation between the different HRV features are included in the table, but marked in grey because they are dependent on each other and also all continuous, which means Pearson correlation should have been used. Also the correlation between the sub-dimensions of AD-ACL and the AD ACL-score are marked in grey because they are dependent on each other. Some of the cells are marked in a light grey color, this is due to the values on the left side ,of the diagonal from the upper left corner to the lower right corner, are duplicates of the values on the upper right side of the diagonal.

Clearly the counter measures and the objective measure are not correlating that well, but there are some trends visible for the time domain feature pNN 50 , which as mentioned before have some identified ties to arousal. The more comprehensive frequency domain features does not have any significant correlation with the subjective measures, except for the HF power, which show significant correlation to the B2 sub-dimension, and some weak correlation all over. It is suspected that the lack of correlation for the LF power is due to the relatively short term observations of 5 minutes, the LF frequency have an absolute minimum observation term of 4 minutes and 10 seconds. The subjective measures all have highly significant high correlation within themselves, but this was also excepted.

5.3.2 Testing the arousal hypotheses

Following are some statistical tests on the measures of leaning and the position changes measure. Since all of the measures are continuous the independent samples t-test is used to see if there is a significant difference in the distribution in the two groups tab. 5.14.

Table 5.14: t-test on leaning and position changes measures

		Levene's test for Equality of Variances		t-test for Equality of Means								
			95\% Confidence Interval of the Difference									
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper		
Leaning	Equal variances assumed			4.830	. 032	-. 321	65	. 749	-. 4187565	1.3041745	-3.0233728	2.1858597
Lidar	Equal variances not assumed			-. 323	57.837	. 748	-. 4187565	1.2966841	-3.0145072	2.1769942		
Leaning	Equal variances assumed	. 464	. 498	. 422	65	. 675	. 07602	. 18019	-. 28386	. 43589		
Chair	Equal variances not assumed			. 422	64.713	. 674	. 07602	. 17993	-. 28336	. 43539		
Number of	Equal variances assumed	9.939	. 002	-3.202	65	. 002	-30.783	9.614	-49.984	-11.583		
Position Changes	Equal variances not assumed			-3.227	52.814	. 002	-30.783	9.540	-49.921	-11.646		

In tab. 5.14 the only measure with a significant difference in distribution is number of position changes, this indicates that the number of position changes might have some association with arousal, but it also indicates that the leaning might not have any association. To further test the association, the three measures are tested for correlation with the HRV measures and the subjective countermeasures. Pearson correlation test is used to test
the measures with the HRV features tab. 5.15, this is because all the variables are continuous, while Spearman correlation test is used to test the correlation with the subjective countermeasures tab. 5.16.

Table 5.15: Correlation between the posture measures and the HRV features

| | | Number
 of Position
 Changes | Leaning
 Chair | Leaning
 Lidar | Heart
 Rate
 Mean | pNN50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | LF |
| :--- |
| power | | HF |
| :--- |
| power | LF/HF

Table 5.16: Correlation between the posture measures and the subjective measures

		Number of Position Changes	Leaning Chair	Leaning Lidar	A1	A2	B1	B2	AD-ACL Total	Grid y-score
	Correlation Coefficient	1.000	-. 112	. 032	. 363	-. 461	. 276	-. 464	. 465	. 433
Number of Position	Sig. (2-tailed)	.	. 365	. 795	. 003	. 000	. 024	. 000	. 000	. 000
Changes	N	67	67	67	67	67	67	67	67	67
	Correlation Coefficient	-. 112	1.000	-. 391	. 040	. 153	. 054	. 074	-. 057	. 005
Leaning Chair	Sig. (2-tailed)	. 365	-	. 001	. 745	. 216	. 667	. 552	. 644	. 966
	N	67	67	67	67	67	67	67	67	67
	Correlation Coefficient	. 032	-. 391	1.000	. 118	-. 190	. 043	. 021	. 071	-. 026
Leaning Lidar	Sig. (2-tailed)	. 795	. 001	.	. 340	. 124	. 728	. 866	. 570	. 833
	N	67	67	67	67	67	67	67	67	67

5.4 Hypothesis Evaluation

The previously presented statistical tests was conducted to evaluate the arousal hypotheses from 4.1. These two arousal hypotheses relates to different aspects of posture recorded. The evaluation of H3 and H4 are presented below. Both hypothesis are evaluated both subjectively and objectively. First the difference between the groups derived from subjec-
tive self report are evaluated. The correlations between the measure in question and the subjective and objective measures are then evaluated.

5.4.1 Position changes hypothesis H3

From the t-test it is clear that the difference between the two groups are highly significant, with a significance level of $p=.002$, and $t(52.814)=-3.227$. Further does the position changes measure have a correlation between $r=.267$ and $r=.464$ with a significance level of maximum $p=.024$ with the sub-dimensions of AD ACL, where the strongest correlations are with the dimensions of tiredness (A2) and calmness (B2), these two both have a negative correlation, which means the more tiredness and or calmness the subjects reported they felt, the less position changes were recorded. A2 and B2 also have the highest correlation $r=-.461$ and $r=-.464$, with significance levels of $p<.01$. Also with the total AD ACL score and the grid y -score, the correlations are relative high with $r=.465$ and $r=.433$ with significance levels of $p<.01$. Moving on to the correlation with the objective HRV measures. The only significant correlation position changes has with the features from the HRV analysis is a correlation of $r(63)=.318$ with a significance level of $p=.01$ with heart rate. the correlation with pNN50 are $r(63)=-.235 p=.059$, which is close to be significantly relevant.

As presented above there are some statistical evidence that the number of position changes have an association with arousal, more specific that the number of position changes increases with increased arousal. The evidence is at least strong enough for further research to be done on this feature of posture. Most interesting are the decrease in position changes connected with the increase in the tiredness and calmness sub-dimensions. The null hypothesis is rejected and the proposed alternate hypothesis is accepted.

5.4.2 Leaning hypothesis H4

From the t -test it is clear that both leaning measures does not have statistically significant differences between the groups. The p -values are far from $p \leq 0.05$. The significance levels are as high as $p=.748$ for the lidar measure and $p=.675$ for the chair leaning measure. When it comes to correlations the leaning measures actually show some correlation with the HRV features. Both measures show statistically significant correlation with both pNN50 and LF power. The lidar has correlations of $r=.336, p=.006$ and $r=.257$, $p=.039$ with those two features. The chair leaning have correlations of $r=-.261$, $p=0.36$, and $r=-.283, p=0.22$. The leaning measures show no statistically significant correlation with the subjective measures, with the correlation between the lidar and the A2 sub-dimension of $r=-.190, p=.124$ being the closest one.

The tests also show that the two leaning measures have negative correlation between themselves, which should indicate that they are opposite directed, but they are not. The most plausible explanation for this negative correlation is that the machine learning for the chair leaning was not accurate at all. Because of the lidar measure are considered the most reliable of the two, the chair measure are not further considered.

The small correlation between the objective HRV features and the lidar measure are not enough to reject the null hypothesis, but it show an indication of association between
leaning and HRV. Therefore the null hypothesis still stands after this experiment, but the trends will be further discussed in section 6.3.

This page is be intentionally left blank.

Chapter

Discussion

In hinesight of the experiment described in this thesis, there are several interesting findings both expected and unexpected. Some findings are interesting regarding the intention of thesis, others are interesting because of the way they affected or limited the work done in this thesis. All of these aspects will be discussed in this chapter. Also some implications and recommendation for future similar research are included in the end of this chapter.

6.1 Result Discussion

First it must be mentioned that the statistical analyzes all have at least 30 cases in each group. This means that the result must be treated as implications, but they can not in any way be seen as a representative representation of the population, more on this in sec. 6.2.

The basis for evaluating the level of leaning in association with arousal, derives from subjective observations from real life situations, were for instance while playing video games, people tend to lean forward in thrilling and crucial situations. The results show little indication that the subjects leans more forward in situations with high activation. There are correlation with HRV, and the direection of this correlation is even the opposite direction compared to the assumption. The validity of the HRV data are suspected to be low, which will be discussed in sec. 6.2.

Regarding the number of position changes this thesis provides evidence that the hypothesis H3 can be supported. This is in spite of the many limitations discussed in sec. 6.2. Position changes showed highly significant difference in distribution between the groups that was derived from subjective arousal. The mean difference of more than 30 means that the distribution are centered at more than 30 position changes from each other. As mentioned earlier also the correlation test with the subjective measures show an overall strong association to the position changes variable. It is important to remember that the position changes are derived from nominal positions, and that the level of the movement are not considered in this variable, the measure can hence not be seen as a measure of activity, because the number of changes can be just between two positions that are close to each other and require little or no activity change.

6.2 Limitations

Being fresh in research and experimental work at this magnitude, the personal learning from this thesis is enormous. Most fascinating and at times frustrating was the amount of limitations that surfaced and had to be taken in to account in some way. Some of the challenges that surfaced from the pilot testing, was taken care of in the design, but not every challenge was possible handle in the scope of this thesis. Also some limitations was discovered in hindsight of the experiment. This section will describe these limitations witch regard the thesis as a whole.

Firstly the chair setup must be discussed. In chap. 3 it was disclosed that the chair was the first stage in a development process for further research. However some aspects of this stage had to be modified. For instance was the arm rest sensors not used, they were excluded because of the sampling rate for the arduino was greatly reduced, and a decision was taken that it was more important to have good sampling rate for the pressure sensors rather then including the arm rest sensors at the cost of loosing sampling rate. In the case of the pressure sensors, they should have had higher resolution, in other words they reach their maximum reading to fast. This would have been possible by using smaller pull upresistors in the circuit. To put it on the edge, they almost functioned as digital sensors, were the output was either under pressure or not.

Next up are the facilitation of the experiment. As mentioned in sec. 4.4 the setup was supposed to be neutral, in other words somewhere between real situation and white room. This was somewhat achieved, but disturbances from the hallway was unavoidable, also in spite of having a sign on the door, some outsiders could not resist sticking their head in and distracting the subjects. Also the lighting was controlled by cardboard walls in front of the window, but different ambient lighting made it impossible to have the same conditions for every scenario for every participant. A camera was also used to monitor the experiment, but low lighting combined with difficulties in finding a good angle for the camera resulted in the utilization of the camera feed was low.

The central point of interactions in the experiment was the TV. Most of the time only the center part of the TV was used to display information and display the task. The fact that the main stimuli was from this one point might affect the posture. A setup were the interaction are placed at different spacial orientations might be more helpful if the affect from different types of events are to be evaluated.

Moving on to the contextual part of the experiment design. In the scope of the work done in this thesis, it made more sense to set up an experiment in collaboration with another master student. The rewards from doing so out-weighted the costs. The rewards include a better integration of the different stimuli and self report questionnaires, and a much better designed task for the experiment. The cost is that the experiment is designed to measure two aspects of affective emotions at the same time, and when selecting stimuli it is needed to consider both dimensions at the same time. In combination with other aspects the result was that the arousal levels from the scenarios was not as differentiated as desired, and the new subjective grouping was hence needed. To reduce the duration of the experiment a real baseline scenario was not included, in a set up that only considered one of the dimensions there would be at most two scenarios, even one might suffice. Also the order of the scenarios was always the same, and even if the learning effect was not important in this study, the fact that initial experimental effects always affected the same scenario
are not optimal. Another way of exploring the effects of arousal, is having one group or scenario with an activating task, and having another group or scenario that is basically doing nothing "rest" or "brake". This will however compare the task of doing nothing against doing a mentally demanding task, and will not give nuances in the arousal levels of doing tasks with different stimuli and difficulties.

It is an unavoidable truth that the human factors are going to be challenging in a study of human emotions. The participants of this experiment imposes some more limitations concerning the work done. It is once more repeated that the participants does not represent the entire population in any way. In fact they represent a quite monotonic part of the population, they are mostly engineering students or freshly graduated engineering students. Almost all of them are in their twenties and there are only seven female of a total of 34 . Not only are most of them engineering students, but many of them are in the process of finishing their masters degree, which can be an emotional load that they have not experienced before. Since some of the participants belong to the same department as the author, they might have some bias towards what is being measured, and this might affect the subjective measures especially. The fact that some of the participants knew each other and was aware of each others participation, had some effects regarding arousal caused by competitive spirit, this was most visible in parts of the experiment that was not supposed to be inspired by competition.

As mentioned in the beginning of chap. 5 the Hawthorne Effect is probably present in most of the participants. This involves that the subjects modify their behavior because of the fact that they are being observed. The initial procedure of embedding the subjects with sensors, are probably also affecting the behavior of the subjects. It is suspected that this effect is strongest in the beginning, and it was observed that the heart rate of most of the subjects were unnaturally high before starting the experiment. Again if this effect was strongest in the beginning of the experiment, the order of the scenarios are hence affected. The lack of randomizing the order of the scenarios can hence be seen as weakness in the design of the experiment, but it was suspected that by having a high arousal scenario before a low arousal scenario would be greatly affected by the delay of secretion of hormones caused by the high arousal in previous scenario, hence the low arousal scenario was always the first scenario. The learning effects are not important in this study since the performance is unimportant, giving the choice to not have random order more precedence.

The process were the scientist or the person performing the research influence the results in order to achieve a certain outcome are often referred to as research or experimenter bias. The grouping done in this thesis, which is based on data collected in the experiment and not set as part of the experiment design can be considered as experimenter bias. To further criticize the decision to use such a grouping, this sort of manipulation can be seen as hunting for significant results. As previously mentioned the reasoning for making such a controversial decision was low distribution difference in arousal between the predetermined scenarios. Again he goal of the experiment was not to evaluate the effect of the different stimuli in the different scenarios, but to see how the new proposed measures associated with the established measures of arousal. It was hence more useful to use a separation in subjective reported arousal to group the cases, at least to see if there was any trends based on self perceived activation.

It was mentioned in the previous chapter that the HRV measures might not be as valid
as desired. In some cases the measures are not valid or missing, this is because of problems with the signal from the sensor platform. This is neglectable because there are enough valid cases even with these missing data points. A more worrying aspect is the sampling rate, other studies including HRV have at least a sampling rate of 500 Hz , but the platform used in this experiment could only collect data at a rate of approximately 380 Hz , it is hard to tell if this was enough to have valid data, but it is important to be aware that the data might not be sufficiently precise. Another factor regarding HRV, at least concerning the frequency domain is the duration of the measurement. The five minute scenarios are in the world of HRV considered short term, it should be sufficient for the LF spectrum, but it is barely within the limits.

The machine learning algorithm used for the two chair measures is adopted from the setup used by Jensen et al. (2016) and is not specially adopted for the system in this thesis. Limited knowledge regarding machine learning in general expedited the decision to not design or test alternate algorithm for the work in this thesis. The fact that the leaning measure failed totally is an indication that the classification for the leaning was poorly designed. The position changes was more properly tested, and during continuous real term monitoring it showed high accuracy compared to subjective observations.

The framework and background procedure for this experiment was quite streamlined, but it still relied on having two experimenters present during the entire experiment, were one was in control of stimuli and feedback in addition to ensuring the progress from predetermined stops. The other was in charge of syncing the data from two different data streams. This was done manually by assigning markers in the raw data for starts and stops of each scenario. This process could have been automated, and the data could have been automatically sorted according to the sync markers, which would have saved a lot of work in the data processing.

Finally a lot of external variables was not taken in to consideration in this experiment. Temperature, time of day, personal mood and shape, day of week and so forth was not considered. For instance the day after the Norwegian Independence day, some of the subjects reported poor form caused by activities the day before. Also previous experience with TETRIS was not considered, but it was to some degree visible that it affected the arousal. Some of these variables was collected but not used further in the analyzes, for instance was the amount of coffee consumed the same day collected. In fig. 6.1 an obvious effect on position changes can be observed.

Figure 6.1: Coffee effect on number of position changes

6.3 Future Research

The work done is this thesis can be split in two parts. Piloting and testing of a chair sensor setup, and piloting and development of a experimental framework for human interaction studies.

As for the framework it is done in collaboration with another master student, and can with small modifications be used in a variety of studies regarding human interaction and or user experiences. It is highly recommended that future studies regarding product development utilizes this or a similar framework to evaluate the emotional aspects of the design or product. Even if the framework has its flaws it has potential for further development, and Open Sesame in combination with python scrips has almost limitless possibilities.

Regarding further development of the chair sensor setup. This stage of the development was always meant as the initial stage of a longer development process of a setup for interaction studies. The next obvious step would be to investigate if the current setup makes more sense if raw data from the chair are evaluated instead of features derived from the k-tree classification algorithm. Further to include the arm rest data, and possibly tune the pressure sensors or even exchange the sensors for a sheet-based setup, where a complete pressure map can be extracted. If the chair are to be used for real time monitoring, the capability to extract HRV data from the chair would be extremely useful, but it might be difficult to implement sensors that are sensitive enough to sense the muscular contractions in the heart and at the same time not be affected by "noise" from other muscles such as the respiration movement.

As for the results from the analyzes in this thesis, the indications that number of position changes are associated with arousal, can further be tested, maybe even regarding the level of activity in mind. Even to include the magnitude of the position changes and investigate if there are some real association present migh be useful. I am confident that further and more comprehensive studies of the posture in this chair can lead to findings that can with confidence be used in interaction studies for real life situations.

This page is be intentionally left blank.

Chapter 7

Conclusion

This thesis started out with the goal to pilot a chair sensor setup that can sense various activity patterns, and explore how much information about the user that can be read out of this activity. It ended up as a study of this setup's capabilities to measure arousal in an experimental setting. To start off the thesis, knowledge of Affective Engineering, emotions and body language was gathered. Then a phase of deriving the needed features the sensor setup needed for the context of the planned experiment, and selection of the technologies used in the sensor setup. Many of the decisions made for the setup was rushed, but most of the wanted features was fulfilled.

The most comprehensive part of this thesis is the experimental setup and procedure, which is done in collaboration with another master student. A lot of time was spent developing and fine tuning everything from physical setup to procedure, and the framework of the experiment can be further used as a foundation for future studies.

In spite of the limitation of the work in this thesis, I would strongly advise and encourage researchers to look further in to the concept of using a chair to gather information about the users emotional state.

In the introduction for this thesis you were presented with the following narrative: "Imagine you are a ship captain in the future, in fact your title is not ship captain, but ship monitor. You are responsible for monitoring several autonomous ships, and if needed take over the control. You feel tired and unresponsive and you are counting the seconds before your shift ends. Suddenly you have to take controll over two of the ships at the same time, there are alarms going off all around you. You fail your task, and one of the ships crashes in to the docks."
Followed by the question: "What if the system was able to know what your capabilities were based on your emotion state?" Have the results of the work done in this thesis helped in reaching the goals in said situation? Maybe not, but it may describe a potential tool for getting one step closer to such a system.

This page is be intentionally left blank.

Bibliography

Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., Suri, J. S., 2006. Heart rate variability: a review. Medical and biological engineering and computing 44 (12), 10311051.

Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., 1981. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Tech. rep., MASSACHUSETTS INST OF TECH CAMBRIDGE HARVARD-MIT DIV OF HEALTH SCIENCES AND TECHNOLOGY.

Anttonen, J., Surakka, V., 2005. Emotions and heart rate while sitting on a chair. In: Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, pp. 491-499.

Balters, S., Steinert, M., 2014. Decision-making in engineering-a call for affective engineering dimensions in applied engineering design and design sciences. In: Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on. IEEE, pp. 11-15.

Balters, S., Steinert, M., 2015. Capturing emotion reactivity through physiology measurement as a foundation for affective engineering in engineering design science and engineering practices. Journal of Intelligent Manufacturing, 1-23.

Carney, R. M., Saunders, R. D., Freedland, K. E., Stein, P., Rich, M. W., Jaffe, A. S., 1995. Association of depression witk reduced heart rate variability in coronary artery disease. The American journal of cardiology 76 (8), 562-564.

Coulson, M., 2004. Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. Journal of nonverbal behavior 28 (2), 117-139.

Dahlgaard, J. J., Dahlgaard, J. J., Schütte, S., Ayas, E., Mi Dahlgaard-Park, S., 2008. Kansei/affective engineering design: A methodology for profound affection and attractive quality creation. The TQM Journal 20 (4), 299-311.

Darwin, C., Ekman, P. E., 1872. The expression of the emotions in man and animals.

De Gelder, B., 2006. Towards the neurobiology of emotional body language. Nature Reviews Neuroscience 7 (3), 242-249.

Duffy, E., 1957. The psychological significance of the concept of" arousal" or" activation.". Psychological review 64 (5), 265.

Duffy, E., 1962. Activation and behavior.
Ekkekakis, P., 2013. The measurement of affect, mood, and emotion: A guide for healthbehavioral research. Cambridge University Press.

Ekman, P., Friesen, W. V., 1971. Constants across cultures in the face and emotion. Journal of personality and social psychology 17 (2), 124.

Freud, S., Strachey, J. E., 1964. The standard edition of the complete psychological works of sigmund freud.

Gunes, H., Piccardi, M., 2007. Bi-modal emotion recognition from expressive face and body gestures. Journal of Network and Computer Applications 30 (4), 1334-1345.

Hacks, C., 2017. e-health documentation.
URL https://www.cooking-hacks.com/documentation/tutorials/ ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical\# step4_2

Hunt, W., Mark, W. R., Stoll, G., 2006. Fast kd-tree construction with an adaptive errorbounded heuristic. In: Interactive Ray Tracing 2006, IEEE Symposium on. IEEE, pp. 81-88.

Jensen, M., Wulvik, A., Kriesi, C., Boe, O., Phillip, A., Jors, E., Steinert, M., 2016. Interactions in a world of intelligent products-a case study of a smart and learning office chair.

Kapoor, A., Picard, R. W., Ivanov, Y., 2004. Probabilistic combination of multiple modalities to detect interest. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. Vol. 3. IEEE, pp. 969-972.

Kärki, S., Lekkala, J., Kuokkanen, H., Halttunen, J., 2009. Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements. Sensors and Actuators A: Physical 154 (1), 57-64.

Kay, S. M., Marple, S. L., 1981. Spectrum analysis-a modern perspective. Proceedings of the IEEE 69 (11), 1380-1419.

Lacey, J. I., 1967. Somatic response patterning and stress: Some revisions of activation theory. Psychological stress: Issues in research, 14-42.

Malik, M., 1996. Heart rate variability. Annals of Noninvasive Electrocardiology 1 (2), 151-181.

Mathôt, S., Schreij, D., Theeuwes, J., 2012. Opensesame: An open-source, graphical experiment builder for the social sciences. Behavior research methods 44 (2), 314-324.

Matsubara, Y., Nagamachi, M., 1997. Hybrid kansei engineering system and design support. International Journal of Industrial Ergonomics 19 (2), 81-92.

Merletti, R., Parker, P. A., 2004. Electromyography: physiology, engineering, and noninvasive applications. Vol. 11. John Wiley \& Sons.

Nagamachi, M., 1995. Kansei engineering: a new ergonomic consumer-oriented technology for product development. International Journal of industrial ergonomics 15 (1), 3-11.

Picard, R. W., Picard, R., 1997. Affective computing. Vol. 252. MIT press Cambridge.
Ramasubramanian, V., Paliwal, K. K., 1992. Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Transactions on Signal Processing 40 (3), 518-531.

Rottman, J. N., Steinman, R. C., Albrecht, P., Bigger, J. T., Rolnitzky, L. M., Fleiss, J. L., 1990. Efficient estimation of the heart period power spectrum suitable for physiologic or pharmacologic studies. The American journal of cardiology 66 (20), 1522-1524.

Russel, J. A., Weiss, A., Mendelsohn, G. A., 1989. Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology 57 (3), 493-502.

Russell, J. A., 1978. Evidence of convergent validity on the dimensions of affect. Journal of personality and social psychology 36 (10), 1152.

Russell, J. A., Weiss, A., Mendelsohn, G. A., 1989. Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology 57 (3), 493-502.

Saykrs, B. M., 1973. Analysis of heart rate variability. Ergonomics 16 (1), 17-32.
Shevtsov, M., Soupikov, A., Kapustin, A., 2007. Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes. In: Computer Graphics Forum. Vol. 26. Wiley Online Library, pp. 395-404.

Steinert, M., Leifer, L., Jalbokow, K., 2012. Eager: Analyzed—analyzing engineering design activities. In: NSF engineering research and innovation conference, sponsored by the National Science Foundation's Division of Civil, Mechanical and Manufacturing Innovation (CMMI), Boston, USA.

Taelman, J., Vandeput, S., Spaepen, A., Huffel, S., 2009. Influence of mental stress on heart rate and heart rate variability. In: 4th European conference of the international federation for medical and biological engineering. Springer, pp. 1366-1369.

Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., Wager, T. D., 2012. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience \& Biobehavioral Reviews 36 (2), 747-756.

Thayer, R. E., 1967. Measurement of activation through self-report. Psychological reports 20 (2), 663-678.

Thayer, R. E., 1986. Activation-deactivation adjective check list: Current overview and structural analysis. Psychological Reports 58 (2), 607-614.

Thayer, R. E., 1989. The biopsychology of mood and arousal: Oxford university press. New York.

Thayer, R. E., 1990. The biopsychology of mood and arousal. Oxford University Press.
Van Houdenhove, B., 2005. In wankel evenwicht: Over stress, levensstijl en welvaartsziekten. Lannoo Uitgeverij.

Watson, D., Clark, L. A., Tellegen, A., 1988. Development and validation of brief measures of positive and negative affect: the panas scales. Journal of personality and social psychology 54 (6), 1063.

Watson, D., Tellegen, A., 1985. Toward a consensual structure of mood. Psychological bulletin 98 (2), 219.

Welch, P., 1967. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics 15 (2), 70-73.

Williams, J. M. E., 1993. Applied sport psychology: Personal growth to peak performance. Mayfield Publishing Co.

Woolf, B. P., Arroyo, I., Cooper, D., Burleson, W., Muldner, K., 2010. Affective tutors: Automatic detection of and response to student emotion. In: Advances in Intelligent Tutoring Systems. Springer, pp. 207-227.

Wulvik, A., Erichsen, J., Steinert, M., 2016. Capturing body language in engineering design-tools and technologies. DS 85-1: Proceedings of NordDesign 2016, Volume 1, Trondheim, Norway, 10th-12th August 2016.

Wundt, W., Pintner, R. T., 1912. An introduction to psychology.
Wundt, W. M., 1896. Grundriss der psychologie. W. Engelmann.
Yakut, O., Solak, S., Bolat, E. D., 2014. Measuring ecg signal using e-health sensor platform. In: International Conference on Chemistry, Biomedical and Environment Engineering, Antalya. pp. 71-75.

Zhou, K., Hou, Q., Wang, R., Guo, B., 2008. Real-time kd-tree construction on graphics hardware. ACM Transactions on Graphics (TOG) 27 (5), 126.

Appendix A - Experimental GUI

Velkommen

Først vil vi be deg om å rapportere hvordan du føler deg akkurat nå.

Sett av kryss i følgende skjema for å indikere din status.

Instruksjoner for skjema finner du på din venstre side.

Trykk A når du er klar.

Dette eksperimentet består av tre deler.
Du skal spille TETRIS i hver del.
Du vil bli utsatt for diverse stimuli, og spillet vil variere i vanskelighetsgrad.

Trykk A når du er klar.

To av delene er en del av en konkurranse mellom alle deltakerne i eksperimentet.

Den som får høyest sammenlagt poengsum på disse delene vinner et midtby-gavekort på 1000kr.

Trykk A når du er klar

Trykk A når du er klar.

Instruksjoner

I denne runden vil spillet se slik ut:

Next Pece:	peaformance:	Poengsum vises til høyre for spillområdet.
$\begin{aligned} & \text { scone:0 } \\ & \text { umes:0 } \end{aligned}$		Prestasjonen din i forhold til gjennomsnittet vises helt til høyre.

Denne delen er IKKE en del av konkurransen

Trykk A for å gå videre

Denne delen er nå ferdig.

Vi ber deg om å rapportere hvordan du opplevde denne delen av eksperimentet i tilsvarende skjema som i starten.

Trykk A når du er klar.

Du blir nå presentert med 20 ord som beskriver forskjellige følelser.

Kryss av i passende rute for i hvilken grad du hadde denne følelsen
i denne delen av eksperimentet
Din initielle reaksjon er best.

Trykk A når du er klar

Interested

\section*{\square
 Very slightly or not at all
 A little
 Moderately Quite abit Extremely

Excited

Distressed

Very slightly or not at all

A little
Moderately Quite a bit

Extremely

Upset

Very slightly
or not at all

Strong

Very slightly
or not at all

A little
Moderately Quite a bit
Extremely

Scared

Guilty

Very slightly
or not at all

Hostile

Very slightly
or not at all

Enthusiastic

-

Proud

Moderately Quite a bit
Very slightly
or not at all

Extremely
-

Nervous

Very slightly or not at all

Determined

Very slightly
or not at all

Alert

Moderately Quite a bit

Jittery

Very slightly or not at all

Active

 Kryss igjen av i passende rute.Din initielle reaksjon er best.
OBS! Skalaen er litt forskjellig
fra de forrige 20 ordene.

Trykk A når du er klar
Du blir nå presentert med 20 nye ord.

Afraid

Very slightly
or not at all

A little

Moderately Quite a bit

Extremely

Jittery

Energetic

Definitely do not feel

Definitely feel

Definitely
do not feel

Vigorous

Cannot decide
Feel slightly
Definitely feel

At-rest

Drowsy

Cannot decide

Definitely feel

Fearful

Definitely do not feel

Cannot decide

Feel slightly

Definitely feel

Definitely do not feel

Lively

Cannot decide Feel slightly

Definitely feel

Still

Clutched-up

Definitely do not feel

Cannot decide
Feel slightly
Definitely feel

Definitely
do not feel

Wide-awake

Quiet

Definitely
do not feel

Cannot decide Feel slightly
Definitely feel

Full-of-pep

Tense

Wakeful

Dette er en innlagt pause.
Den varer i 2 minutter.

> Gjør deg klar

Instruksjoner

I denne runden vil spillet se slik ut:

Trykk A når du er klar.
Denne delen er en del av konkurransen.
Ditt mål er å få mest mulig poeng.

Trykk A når du er klar

Vennligst vent...

1

NEXT PIECE: PERFORMANCE:

Du blir nå presentert med 20 ord som beskriver forskjellige følelser.

Kryss av i passende rute for i hvilken grad du hadde denne følelsen
i denne delen av eksperimentet
Din initielle reaksjon er best.

Trykk A når du er klar

Interested

Very slightly or not at all

Denne delen er nå ferdig.
Vi ber deg om å rapportere hvordan du opplevde denne delen av eksperimentet i tilsvarende skjema som i starten.

Trykk A når du er klar.

Distressed

Very slightly
or not at all

Excited

Upset

Very slightly or not at all

Strong

Guilty

Scared

Very slightly
or not at all

A little
Moderately Quite a bit
Extremely

Very slightly
or not at all

A little

Hostile

Very slightly
or not at all

A little
Moderately Quite a bit

Extremely

Enthusiastic

Very slightly
or not at all

Proud

 Moderately Quite a bit
 Extremely

Irritable

Alert

Moderately Quite a bit
Extremely

Very slightly
or not at all

Attentive

Very slightly or not at all

Jittery
Jitery

Very sightil
or not at all

Inspired

Extremely

Du blir nå presentert med 20 nye ord. Kryss igjen av i passende rute.

Din initielle reaksjon er best.
OBS! Skalaen er litt forskjellig fra de forrige 20 ordene.

Trykk A når du er klar

Placid

Definitely do not feel

Cannot decide Feel slightly Definitely feel

Jittery

Definitely
do not feel

Sleepy

Cannot decide
Feel slightly
Definitely feel

Definitely do not feel

Active

Cannot decide Feel slightly

Definitely feel
$+$

Intense

Calm

Definitely do not feel
Cannot decide Feel slightly
Definitely feel

Fearful

Still

Wide-awake

Cannot decide

Definitely feel

Full-of-pep

Definitely do not feel

Cannot decide
Feel slightly
Definitely feel

Wakeful

Dette er en innlagt pause.
Den varer i 2 minutter.

Gjør deg klar

Denne delen er en del av konkurransen.
Ditt mål er å få mest mulig poeng.

Trykk A når du er klar

Instruksjoner

I denne runden vil spillet se slik ut:

Trykk A når du er klar.

Vennligst vent...
Og husk! Dette er en konkurranse!

Instruksjoner

Trykk A når du er klar.

\square

NEXT PIECE:

1410
YOUR SCORE:
840

YOU ARE NOW IN 2nd PLACE!

YOU ARE NOW IN THE LEAD!

NEXT PIECE:
\square
YOU ARE NOW IN THE LEAD!

YOUR SCORE: 2200

Denne delen er nå ferdig.
Vi ber deg om å rapportere hvordan du opplevde denne delen av eksperimentet i tilsvarende skjema som i starten.

Trykk A når du er klar.

Du blir nå presentert med 20 ord som beskriver forskjellige følelser.

Kryss av i passende rute for
i hvilken grad du hadde denne følelsen
i denne delen av eksperimentet
Din initielle reaksjon er best.

Trykk A når du er klar

Interested

\square
Very slightly or not at all

A little

Moderately Quite a bit Extremely

Strong

Very slightly or not at all

Guilty

Very slightly
or not at all

Very slightly
or not at all

Distressed

A little
Moderately Quite a bit
Extremely

Upset

Very slightly
or not at all

A little

Moderately Quite a bit

Extremely

Scared

Hostile

Very slightly
or not at all

Moderately Quite a bit

Extremely

Enthusiastic

Ashamed

Very slightly
or not at all

Alert

A little
Moderately Quite a bit
Extremely

Very signly
or not at all

Proud

A little

Moderately Quite a bit
Extremely

Inspired

Very slightly
or not at all

Nervous
 Very slightly or not at all}

Determined

Very slightly
or not at all

Jittery

Very slightly
or not at all

A little
Moderately Quite a bit

Extremely

Active

Very slightly or not at all

A little
Moderately Quite a bit
Extremely

Active

Afraid

Very slightly
or not at all

A little
Moderately Quite a bit
Extremely

Du blir nå presentert med 20 nye ord. Kryss igjen av i passende rute.

Din initielle reaksjon er best.
OBS! Skalaen er litt forskjellig
fra de forrige 20 ordene.

Trykk A når du er klar

Placid

Sleepy

Cannot decide
Feel slightly

Definitely feel

Intense

Definitely do not feel

Cannot decide
Feel slightly
Definitely feel

Definitely
do not feel

Calm

Feel slightly
Definitely feel

At-rest

Drowsy

Fearful

Definitely
do not feel

Cannot decide

Feel slightly

Definitely
do not feel

Lively

Cannot decide
Cannot decide Feel slightly
Definitely feel

Still

Definitely do not feel

Definitely do not feel

Cannot decide

Feel slightly
Definitely feel

Definitely
do not feel

Wide-awake

Definitely feel

Quiet

Cannot decide
Feel slightly

Full-of-pep

Definitely do not feel

Feel slightly
Definitely feel

Wakeful

Definitely
do not feel

Cannot decide
Feel slightly
Definitely feel

This page is be intentionally left blank.

Appendix B - The Affect Grid

Originally from the appendix of (Russel et al., 1989).

Please use the affect grid below to describe how you feel right now.
(For instructions on how to use the affect grid below, please refer to the following two pages)

Extremely
High Arousal

Extremely
Unpleasant Feelings

Appendix

The Affect Grid

You use the "affect grid" to describe feelings. It is in the form of a square-a kind of map for feelings. The center of the square (marked by \mathbf{X} in the grid below) represents a neutral, average, everyday feeling. It is neither positive nor negative.

The right half of the grid represents pleasant feelings. The farther to the right the more pleasant. The left half represents unpleasant feelings. The farther to the left, the more unpleasant.

The vertical dimension of the map represents degree of arousal. Arousal has to do with how wide awake, alert, or activated a person feels-independent of whether the feeling is positive or negative. The top half is for feelings that are above average in arousal. The lower half for feelings below average. The bottom represents sleep, and the higher you go, the more awake a person feels. So, the next step up from the bottom would be half awake/half asleep. At the top of the square is maximum arousal. If you imagine a state we might call frantic excitement (remembering that it could be either positive or negative), then this feeling would define the top of the grid.

EXTREMELY HIGH AROUSAL.

EXIREME SLHEPINESS

If the "frantic excitement" was positive it would, of course, fall on the right half of the grid. The more positive, the farther to the right. If the "frantic excitement" was negative, it would fall on the left half of the grid. The more negative, the farther to the left. If the "frantic excitement" was neither positive nor negative, then it would fall in the middle square of the top row, as shown below.

EXTREMELY PLEASANT feElings

EXAMPLE: Suppose, instead, that you were only mildly surprised but that the surprise was a mildly pleasant one. You might put your mark as shown below.

Other areas of the grid can be labeled as well. Up and to the right are feelings of ecstasy, excitement, joy. Opposite these, down and to the left, are feelings of depression, melancholy, sadness, and gloom.
Up and to the left are feelings of stress and tension. Opposite these, down and to the right, are feelings of calm, relaxation, serenity.

Feelings are complex. They come in all shades and degrees. The labels we have given are merely landmarks to help you understand the affect grid. When actually using the grid, put an X anywhere in the grid to indicate the exact shade and intensity of feeling. Please look over the entire grid to get a feel for the meaning of the various areas.
EXAMPLE: Suppose that you were just surprised. Suppose further that the surprise was neither pleasant nor unpleasant. Probably you would feel more aroused than average. You might put your mark as shown.

Received October 22, 1987
Revision received January 13, 1989
Accepted February 10, 1989

Affect Grid GUI Code

```
import pygame
import time
import sys
from pygame import K_SPACE, K_w, K_s, K_a, K_d
from pygame.locals import *
def get_pygame_events():
pygame_events = pygame.event.get()
return pygame_events
st = 1
affectresult = (0,0)
pygame.init()
sizex = 800
sizey = 600
screen = pygame.display.set_mode((sizex,sizey))
#colors
red = (255,0,0)
green = (0, 255,0)
blue = (0,0,255)
black = (0,0,0)
white = (255,255,255)
myfont = pygame.font.SysFont("arial", 25)
extremely = myfont.render("EXTREMELY", 1, white)
extreme = myfont.render("EXTREME", 1, white)
highar = myfont.render("HIGH AROUSAL",1,white)
lowar = myfont.render("SLEEPINESS", 1, white)
unpleasant = myfont.render("UNPLEASANT", 1, white)
feelings = myfont.render("FEELINGS", 1, white)
pleasant = myfont.render("PLEASANT", 1, white)
```

pygame.draw.rect (screen, white, ((sizex/2)-180, (sizey/2)-180, 360, 360)

```
'r'
x = 0
y = 0
for i in range(0,9):
for j in range(0,9):
pygame.draw.rect(screen, white, (200+i, 100+i, 40, 40), 1)
```

```
x += 40
x=0
y+=40
','
```

offset $=40$
theight $=400$
twidth $=400$
for i in xrange (9): pygame.draw.line(screen, white, (220+i*offset, 120)
for i in xrange(9): pygame.draw.line(screen, white, (220, 120+i*offset)
screen.blit (extremely, (335, 40))
screen.blit(highar, (325, 70))
screen.blit (extreme, (350, 500))
screen.blit(lowar, (340, 530))
screen.blit (extremely, (80, 255))
screen.blit(unpleasant, (80, 285))
screen.blit(feelings, (80, 315))
screen.blit (extremely, (600, 255))
screen.blit(pleasant, (600, 285))
screen.blit(feelings, (600, 315))
$\operatorname{posx}=380$
posy $=280$
pygame.draw.line (screen, white, (posx, posy), (posx+40, posy+40))
pygame.draw.line(screen, white, (posx+40, posy), (posx, posy+40))
def move():
pygame.draw.rect (screen, black, (lastposx+2, lastposy+2, 36, 36), 0)
pygame.draw.line (screen, white, (posx+2, posy+2), (posx+36,posy+36), 2)
pygame.draw.line (screen, white, (posx+36, posy+2), (posx+2,posy+36), 2)

```
while st == 1:
lastposx=posx
lastposy=posy
keys_pressed = get_pygame_events()
for event in keys_pressed:
if event.type == pygame.KEYDOWN:
if event.key == K_w:
posy-=40
if event.key == K_s:
posy+=40
if event.key == K_a:
posx-=40
```


B-6

```
if event.key == K_d:
posx+=40
if event.key == K_SPACE:
affectresult = (((posx-220)/40)+1, ((posy-120)/40)+1)
log.write(affectresult)
st = 0
if posx<220 or posx>540:
posx = lastposx
if posy<120 or posy>440:
posy = lastposy
move()
pygame.display.update()
```

This page is be intentionally left blank.

Appendix C - PANAS

Originally from the appendix of (Watson et al., 1988).

Appendix

The PANAS

This scale consists of a number of words that describe different feelings and emotions. Read each item and then mark the appropriate answer in the space next to that word. Indicate to what extent [INSERT APPROPRIATE TIME INSTRUCTIONS HERE]. Use the following scale to record your answers.

1 very slightly or not at all	$\begin{gathered} 2 \\ \text { a little } \end{gathered}$	$\begin{gathered} 3 \\ \text { moderately } \end{gathered}$	4 quite a bit	5 extremely
	interested distressed excited upset strong guilty scared hostile enthusiastic proud		\qquad irritable \qquad alert \qquad ashamed \qquad inspired \qquad nervous \qquad determined \qquad attentive \qquad jittery \qquad active \qquad afraid	

We have used PANAS with the following time instructions:

Moment	(you feel this way right now, that is, at the present moment)
Today	(you have felt this way today)
Past few days	(you have felt this way during the past few days)
Week	(you have felt this way during the past week)
Past few weeks	(you have felt this way during the past few weeks)
Year	(you have felt this way during the past year)
General	(you generally feel this way, that is, how you feel on the average)

PANAS GUI Code

```
import pygame
import time
import sys
from pygame import K_SPACE, K_w, K_s, K_a, K_d
from pygame.locals import *
def get_pygame_events():
    pygame_events = pygame.event.get()
    return pygame_events
wordcount = 0
st = 1
pygame.init()
sizex = 800
sizey = 600
screen = pygame.display.set_mode((sizex,sizey))
pos = 3
results = []
#colors
red = (255,0,0)
green = (0, 255,0)
blue = (0,0,255)
black = (0,0,0)
white = (255,255,255)
myfont = pygame.font.SysFont("arial", 70)
myfont2 = pygame.font.SysFont("arial", 30)
alt1 = myfont2.render("Very slightly",1,white)
alt12 = myfont2.render("or not at all",1,white)
alt2 = myfont2.render("A little",1,white)
alt3 = myfont2.render("Moderately",1,white)
alt4 = myfont2.render("Quite a bit",1,white)
alt5 = myfont2.render("Extremely",1,white)
screen.blit(alt1, (55, 370))
screen.blit(alt12, (59, 405))
screen.blit(alt2, (230, 370))
screen.blit(alt3, (340, 370))
screen.blit(alt4, (480, 370))
screen.blit(alt5, (630, 370))
```

wordlist $=$ ['Interested', 'Distressed', 'Excited','Upset','
Strong',' Guilty' ,'Scared' ,'Hostile' ,' Enthusiastic' ,'

Proud','Irritable','Alert','Ashamed',' Inspired' ,'Nervous ','Determined','Attentive',' Jittery' ' 'Active' ,'Afraid']
def words(counter):
return wordlist[counter]
def drawWord(counter):
pygame.draw.rect (screen, black, ($0,0,800,200$) , 0) word = myfont.render(wordlist[counter], 1, white) screen.blit(word, (320, 100))
count $=0$
for count in xrange(5): pygame.draw.rect (screen, white, $(100+$ count $*(87.5+50), 300,50,50), 2) ;$ count+=1

```
posx = 375
```

posy $=300$
pygame.draw.line (screen, white, (posx, posy), (posx+50, posy+50) , 3)
pygame.draw.line(screen, white, (posx+50, posy), (posx, posy+50) , 3)
def move():
pygame.draw.rect (screen,black, (lastposx+2, lastposy $+2,47,47), 0)$
pygame.draw.line(screen, white, (posx, posy), (posx+50, posy+50), 3)
pygame.draw.line(screen, white, (posx+50,posy), (posx, posy+50), 3)
def erase():
pygame.draw.rect (screen, black, (100+2, 300+2, 47, 47)
, 0)
pygame.draw.rect (screen, black, (237.5+2, 300+2, 47, 47) , 0)
pygame.draw.rect (screen, black, $(375+2,300+2,47,47)$, 0)
pygame.draw.rect (screen, black, (512. 5+2, 300+2,47,47)
, 0)
pygame.draw.rect (screen,black, $(650+2,300+2,47,47)$
, 0)
while wordcount<20:
lastposx=posx
lastposy=posy
lastpos=pos
keys_pressed = get_pygame_events()
for event in keys_pressed:
if event.type == pygame.KEYDOWN:
if event.key == K_a: posx-=87.5+50
pos-=1
if event.key == K_d:
posx+=87.5+50
pos+=1
if event.key == K_SPACE:
result = pos results.append(result)
print (words (wordcount) +str(result))
if wordcount == 19:
PA = results[0]+ results[2]+ results[4]+ results[8]+ results[9]+ results[11]+ results[13]+ results[15]+ results[16]+ results[18] NA $=$ results[1]+ results[3]+ results[5]+ results[6]+ results[7]+ results[10]+ results[12]+ results[14]+ results[17]+ results[19] print('PA='+str(PA)) print('NA='+str(NA)
)
wordcount+=1
erase()
pos=3

```
            posx=375
            move()
if posx<100 or posx>=700:
    posx = lastposx
    pos=lastpos
```

move ()
if wordcount<20:
drawWord (wordcount)
pygame.display.update()

Appendix D - The Activation-Deactivation Adjective Check List (AD ACL)

Originally from the appendix of (Thayer, 1989)

APPENDIX I

The Activation-Deactivation Adjective Check List (AD ACL)

The AD ACL is a multidimensional test of various transitory arousal states, including energetic and tense arousal (see Chapter 3). It has been used widely in many psychophysiological (e.g., Mackay, 1980) and psychological contexts,* and it has taken a variety of language forms (e.g., Bohlin \& Kjellberg, 1973--Swedish version; Grzegolowska-Klarkowska, 1980-Polish version; Mackay et al., 1978-Anglicized version). Within the wider dimensions of energetic and tense arousal are four sub-scales-Energy (General Activation), Tiredness (Deactivation-Sleep), Tension (High Activation), and Calmness (General Deactivation).

The above parenthetical designations were given in the 1960s (Thayer, 1967), before the multidimensional arousal model was conceptualized in its present form. If these parenthetical names were to be modifed at the present time, they would be somewhat different. For example, the parenthetical name associated with Tiredness would probably now be General Deactivation, thus indicating that it is likely to represent the opposite pole from General Activation. Other names associated with Tension and Calmness might be High and Low Preparatory-Emergency Activation (or Arousal), thus indicating the likely function of these kinds of arousal.

The self-rating response format used in this test originally followed a format employed by Nowlis (1965) with the Mood Adjective Check List. This four-point self-rating system is slightly unconventional in comparison with the more usual three-, five-, or seven-point formats used in a number of other adjective checklists. Also, the verbal anchors of the AD ACL (as well as of the Mood Adjective Check List), although quite meaningful, are not completely symmetrical.

In order to determine if these somewhat unconventional features result in important differences, a study was recently completed to compare factor structures using different self-rating formats (Thayer, 1986). In this research, little difference was observed between the usual AD ACL format and others. Additional evidence for the validity of the AD ACL format may be found in other studies that employed it, and that obtained findings consistent with both mood and general arousal theories (Purcell, 1982; Watson \& Tellegen, 1985). Therefore, the format most often employed with the AD ACL appears to be satisfactory. Alternatively, other more conventional

* In addition to studies reviewed in this book, see Social Science Citation Index with Thayer (1967, 1978a, 1986) as search references.

[^0]formats probably can be employed with little difference in results so long as the factor groupings are maintained.

Following is the AD ACL Short Form with the self-descriptive adjectives of Energy (A1), Tiredness (A2), Tension (B1), and Calmness (B2). Scoring is based on four possible points for each adjective. A common procedure in many studies has been to score only A1 and B1, since they are the best indications of energetic and tense arousal, respectively. A2 and B2 are particularly useful if the primary purpose of a study is to focus on the low arousal states of each dimension (Tiredness and Calmness). However, use of the full range of dirnensions tends to reduce somewhat the strength of the relationships observed between arousal and other behaviors. This may be because people often do not make good discriminations of states of calmness, or it may occur because different processes underlie the pole opposites of each dimension (see Chapter 3).

AD ACL Short Form

Each of the words on the back describes feelings or mood. Please use the rating scale next to each word to describe your feelings at this moment.

EXAMPLES:

relaxed (vv) v ? no If you circle the double check (vv) it means that you definitely feel relaxed at the moment.
relaxed vv (V)? no If you circle the single check (v) it means that you feel slightly relaxed at the moment.
relaxed $v v \quad v$ (?) no If you circle the question mark (?) it means that the word does not apply or you cannot decide if you feel relaxed at the moment.
relaxed $v v v_{\text {? (no }}$ If you circle the no it means that you are definitely not relaxed at the moment.

Work rapidly, but please mark all the words. Your first reaction is best. This should take only a minute or two.
(Back page)


```
active vv v ? no
placid vv v ? no
sleepy vv v ? no
jittery vv v ? no
energetic vv v ? no
intense vv v ? no
calm vv v ? no
tired vv v ? no
vigorous vv v ? no
at-rest vv v ? no
```

drowsy vv v ? no

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 6/18/2017 7:42 AM via NTNU UNIVERSITY LIBRARY
AN: 151151 ; Thayer, Robert E..; The Biopsychology of Mood and Arousal

The AD ACL is scored by assigning 4, 3,2 , and 1 , respectively to the "vv, v, ?," and "no" scale points, and summing or averaging the five scores for each subscale. (An appropriate cardboard template can be easily constructed.) In order of appearance, the subscale adjectives are as follows: Energetic (active, energetic, vigorous, lively, full-of-pep); Tired (sleepy, tired, drowsy, wide-awake, wakeful); Tension (jittery, intense, fearful, clutched-up, tense); Calmness (placid, calm, at-rest, still, quiet). Scoring for "wakeful" and "wide-awake" must be reversed for the Tiredness subscale. Also, if full bipolar dimensions of energetic and tense arousal are of interest (see above), Tiredness and Calmness scores must be reversed (but not wakeful and wide-awake, in this case) before summing the ten scores.

The AD ACL Long Form (Thayer, 1967, 1978a) includes additional activation adjectives as well as filler adjectives to disguise the purpose of the test. It contains the same instructions except that respondents are told that the test will take only a couple of minutes to complete. Based on previous analyses (Thayer, 1967, 1978a), the following adjectives are included on this form. The designations A1, A2, A3, and A4 after each significantly loaded activation adjective represent the subscales of Energy, Tiredness, Tension, and Calmness, respectively.

In order of appearance, the adjectives are: carefree, serious, peppy (A1), pleased, placid (A4), leisurely (A4), sleepy (A2), jittery (A3), intense (A3), grouchy, energetic (A1), egotistic, calm (A3, A4), suspicious, tired (A2), regretful, stirred-up (A3), warmhearted, vigorous (A1), engaged-in-thought, at-rest (A4), elated, drowsy (A2), witty, anxious (A3), aroused, fearful (A3), lively (A1), defiant, still (A4), self-centered, wideawake (A1, A2), skeptical, activated (A1), sad, full-of-pep (A1), affectionate, quiet (A4), concentrating, sluggish (A1, A2), overjoyed, quick (A1), nonchalant, quiescent (A4), clutched-up (A3), wakeful (A1, A2), rebellious, active (A1), blue, alert (A1), tense (A3). Since different numbers of activation adjectives are included in the four factors, these factor scores must be averaged instead of just summed if interfactor comparisons are to be made.

AD ACL GUI Code

```
import pygame
import time
import sys
from pygame import K_SPACE, K_w, K_s, K_a, K_d
from pygame.locals import *
def get_pygame_events():
    pygame_events = pygame.event.get()
    return pygame_events
wordcount = 0
st = 1
pygame.init()
sizex = 800
sizey = 600
screen = pygame.display.set_mode((sizex,sizey))
pos = 3
results = []
#colors
red = (255,0,0)
green = (0,255,0)
blue = (0,0,255)
black = (0,0,0)
white = (255,255,255)
myfont = pygame.font.SysFont("arial", 70)
myfont2 = pygame.font.SysFont("arial", 30)
alt1 = myfont2.render("Definitely",1,white)
alt12 = myfont2.render("do not feel",1,white)
alt2 = myfont2.render("Cannot decide",1,white)
alt3 = myfont2.render("Feel slightly",1,white)
alt4 = myfont2.render("Definitely feel",1,white)
screen.blit(alt1, (75, 370))
screen.blit(alt12, (65, 405))
screen.blit(alt2, (230, 370))
screen.blit(alt3, (430, 370))
screen.blit(alt4, (610, 370))
```

```
wordlist = ['Active', 'Placid', 'Sleepy','Jittery','
    Energetic','Intense','Calm','Tired','Vigorous','At-rest
    ','Drowsy','Fearful','Lively','Still','Wide-awake','
    Clutched-up','Quiet','Full-of-pep','Tense','Wakeful']
```

```
def words(counter):
    return wordlist[counter]
def drawWord(counter):
    pygame.draw.rect(screen,black, (0,0,800, 200),0)
    word = myfont.render(wordlist[counter], 1, white)
    screen.blit(word, (320, 100))
count=0
for count in xrange(4): pygame.draw.rect(screen, white,
    (100+count* (133.33+50), 300,50,50),2); count+=1
posx = 466.66
posy = 300
pygame.draw.line(screen,white,(posx, posy),(posx+50,posy+50)
    ,3)
pygame.draw.line(screen,white, (posx+50,posy), (posx,posy+50)
    ,3)
def move():
    pygame.draw.rect(screen,black,(lastposx+2,lastposy
                    +2,47,47),0)
        pygame.draw.line(screen,white, (posx, posy), (posx+50,
            posy+50),3)
        pygame.draw.line(screen,white,(posx+50,posy), (posx,
            posy+50),3)
def erase():
        pygame.draw.rect (screen,black, (100+2, 300+2,47,47)
            ,0)
        pygame.draw.rect (screen,black
            ,(283.33+2,300+2,47,47),0)
        pygame.draw.rect (screen,black
            ,(466.66+2,300+2,47,47),0)
        pygame.draw.rect (screen,black
            ,(649.99+2,300+2,47,47),0)
while wordcount<20:
        lastposx=posx
        lastposy=posy
        lastpos=pos
        keys_pressed = get_pygame_events()
```


D-6

for event in keys_pressed:
if event.type == pygame.KEYDOWN:

```
        if event.key == K_a:
            posx-=(133.33+50)
    pos-=1
if event.key == K_d:
    posx+=133.33+50
    pos+=1
if event.key == K_SPACE:
    result = pos
    if wordcount == 14 or
        wordcount == 19:
```

 if result == 4:
 result \(=1\)
 elif result \(==3\) :
 result \(=2\)
 elif result == 2:
 result \(=3\)
 elif result == 1:
 result \(=4\)
 results.append (result)
 print (words (wordcount) +' ' +
 str(result))
 if wordcount == 19:
 \(\mathrm{A} 1=\) results [0]+
 results [4]+
 results [8]+
 results [12] +
 results[17]
 A2 \(=\) results [2]+
 results [7]+
 results [10] +
 results[14]+
 results [19]
 B1 = results[3]+
 results [5] +
 results[11]+
 results[15] +
 results[18]
 B2 = results[1]+
 results [6]+
 results [9]+
 results[13]+
 results[16]
 print('A1='+str(A1)
    ```
                                    )
                                    print('A2='+str(A2)
                                    )
                                print('B1='+str(B1)
        )
        print('B2='+str(B2)
        )
    wordcount+=1
    erase()
    pos = 3
        posx=466.66
        move()
if posx<99 or posx>=700:
    posx = lastposx
    pos=lastpos
move()
if wordcount < 20:
    drawWord(wordcount)
pygame.display.update()
```


Appendix E - Arduino Schematics

Figure 7.1: Schematics of biometric set up

Figure 7.2: Schematics of chair set up

This page is be intentionally left blank.

Appendix F - Arduino Code

Arduino code for biometric sensors

eHealth sensor platform for Arduino and Raspberry from Cooking-hacks.

Description: "The e-Health Sensor Shield allows Arduino and Raspberry Pi users to perform biometric and medical applications by using 9 different sensors: Pulse and Oxygen in Blood Sensor (SPO2), Airflow Sensor (Breathing), Body Temperature, Electrocardiogram Sensor (ECG), Glucometer, Galvanic Skin Response Sensor (GSR - Sweating), Blood Pressure (Sphygmomanometer) and Patient Position (Accelerometer)."

In this example we read the values in volts of ECG sensor and show these values in the serial monitor.

Copyright (C) 2012 Libelium Comunicaciones Distribuidas S.L. http://www.libelium.com

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Version 2.0
Author: Luis Martin Ahmad Saad Modified by Helge Soltvedt Garsmark

```
#include <eHealth.h>
```

byte serialByte;

```
float ECG;
```

int EMGneck;
int EMGarm;
int $i=0$;
//double distance;
// The setup routine runs once when you press reset:
void setup() \{
Serial.begin(115200);
pinMode (A1, INPUT);

```
    pinMode(A4,INPUT);
}
// The loop routine runs over and over again forever:
void loop() {
    while (Serial.available()>0) {
        serialByte=Serial.read();
        if (serialByte=='C') {
                Serial.println("Time , ECG , EMGneck , EMGarm");
                while(1){
                    EMGneck = analogRead(A4);
                    EMGarm = analogRead(A1);
                    ECG = eHealth.getECG();
                    //distance = analogRead(A1);
                    //Serial.print("ECG value : ");
                    Serial.print(millis());
                    Serial.print(";");
                    Serial.print(ECG,5);
                    Serial.print(";");
                    Serial.print(EMGneck);
                    Serial.print(";");
                    Serial.println(EMGarm);
                //Serial.print(" V");
                //Serial.println("");
                    delay(1); // wait for a millisecond
                    if (Serial.available()>0) {
                        serialByte=Serial.read();
                            if (serialByte=='r') {Serial.print("Situation
                            ");
                            Serial.print(i); Serial.println(" end"); delay
                                    (50);}
                            else if (serialByte=='t') { i += 1;
                            Serial.print("Situation "); Serial.print(i);
                        Serial.println(" start"); delay(50); }
                        else if (serialByte=='F') break;
                }
            }
        }
    }
}
```


Arduino code for chair sensors

//\#include <CapacitiveSensor.h>

```
byte serialByte;
int i = 0;
long previousMillis = 0;
int numSensors = 14;
#define LtrigPin 12
#define LmonPin 11
double distance;
//long rightarm;
//long leftarm;
//CapacitiveSensor cs_4_2 =
CapacitiveSensor(4,2); // 2 is sensor pin
//CapacitiveSensor cs_4_6 =
CapacitiveSensor(4,6); //6 is sensor pin
```

```
void setup() {
    pinMode(LtrigPin, OUTPUT);
    digitalWrite(LtrigPin, LOW);
    pinMode(LmonPin, INPUT);
    Serial.begin(115200);
}
```

void loop() \{
while (Serial.available()>0) \{
serialByte=Serial.read();
if (serialByte=='C')\{
while(1) \{
if (millis()-previousMillis>199)\{
String dataString = "";
Serial.print(millis());
Serial.print(";");
//Pressure 1-16
// read three sensors and append to the
string:
for (int analogPin = 0; analogPin <
numSensors;
analogPin++)

```
        int sensor = analogRead(analogPin);
        Serial.print(sensor);
        Serial.print(";");
        }
    //rightarm = cs_4_2.capacitiveSensor(60);
        //leftarm = cs_4_6.capacitiveSensor(60);
        //Serial.print(rightarm);
        //Serial.print(";");
        //Serial.print(leftarm);
        //Serial.print(";");
        distance = pulseIn(LmonPin, HIGH);
        distance = distance/10;
        Serial.print(distance);
        Serial.println(";");
        previousMillis = millis();
        if (Serial.available()>0) {
            serialByte=Serial.read();
            if (serialByte=='r') {
                Serial.print("Situation ");
                Serial.print(i);
                Serial.println(" end");
                delay(50);
                }
            else if (serialByte=='t') {
                i += 1;
                Serial.print("Situation ");
                Serial.print(i);
                Serial.println(" start");
                    delay(50);
                }
            else if (serialByte=='F') {
                break;
                }
                        }
                }
            }
        }
    }
}
```

This page is be intentionally left blank.

Appendix G - Complete Dataset

ゅも \ddagger をも

| カ6L | 8\＆ऽOヤE．L | とャع60L｀て | | 61 | 9 | 61 | 8 | LI | 61 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ع <1 | 6L6\＆t6＇S | 8て08\＆t＇て | 6Iヵع＇ยくI | LI | L | SI | カI | てI | Oع | t |
| 602 | 9S80SL＇9 | てぃて86s＇て | 七て8I＊60て | 9I | L | L | $\varepsilon \tau$ | $\varepsilon \tau$ | 92 | t |
| SLI | 80S9s＇01 | 96\＆0¢でを | 6LTs＊SLT | OT | ZI | 8 | カI | LI | てع | t |
| $\angle L I$ | 8てLOZ8＇S | 6โ9てLヤでて | LLIで $2 \angle T$ | $\varepsilon \tau$ | 8 | 8I | てI | LE | 9ε | ε |
| L8I | て8tとがてて | 七S9EL＇t | と0tL゙ 28τ | 91 | 9 | $\varepsilon \tau$ | カI | II | 七¢ | 9 |
| L8I | と90くてでし | てع889｀て | て6しでく8T | 91 | OI | $\dagger \tau$ | てI | II | 92 | S |
| 28I | L666を1＊8 | 890をS8＇て | 8โ8でて8I | $\varepsilon \tau$ | てI | 8 | てI | $\varepsilon 乙$ | 62 | t |
| 88I | 8てZ0¢8＊6 | 6TદS\＆T• | 909ガ88โ | LI | 9 | 七I | OT | 8I | 82 | t |
| LLI | と90L8＊8 | てع9力をて＇9 | โ908＇LLT | SI | 9 | SI | S | II | 81 | 9 |
| 802 | てZ06L＇てI | ても¢9 ${ }^{\text {c }}$ ¢ | 8てとが80て | てI | SI | OI | ZI | 8I | ऽ | S |
| โ6โ | ても6ヶciL | 6T9くもぐて | L二巾8．06I | LI | S | SI | 8 | IT | \＆乙 | S |
| LI9 | ヤ＜9ts＇s6 | L9ZELL＇6 | 8L8t｀9t9 | SI | 81 | S | $\angle T$ | 81 | 切 | ε |
| ع8I | とL06ET’9 | ع0LLLt＇て | โSカでと8โ | 91 | II | L | $\angle I$ | દ乙 | 切 | 9 |
| ILI | SOtLtt＇s | 896ととと＇て | てIEโ「โくT | II | カI | 9 | 91 | SI | tt | て |
| てIて | 90SSti8t | ऽ\＆6S6でも | 80しでてIて | カI | OI | 6 | てI | $\dagger \tau$ | $\varepsilon \varepsilon$ | 9 |
| ャてて | 86Iちtで9 | 6て8て6tて | カてく0•七てて | 6I | てI | てI | てI | 91 | દย | S |
| カてZ | SL69LL＇S | 七\＆ऽ\＆0t＇て | とカでわてて | SI | 6 | L | てI | 91 | 8ε | t |
| 8LI | ESt965＇L | 99t9SL＇Z | 9t98 12 L | 6 | $\angle I$ | 9 | SI | દ乙 | $\varepsilon \varepsilon$ | ε |
| 691 | LLO6とع＇S | カ七901と＇て | 96T0．69T | LI | 8 | 8 | OT | 91 | 0¢ | S |
| 8LT | \＆SLt9t＊9 | 88Sてtc＇て | $8 \mathrm{BC} 8^{\circ} \angle \angle T$ | 8I | S | てI | 6 | OL | $\varepsilon 乙$ | L |
| 002 | L8LSL9 8 | 69tSt6＇て | 8tto 00 | てI | II | L | 七I | 8I | $\varepsilon \square$ | て |
| 891 | ع9¢¢8＇ऽ | SOLSIt＊ | で8と＊89โ | $\varepsilon \tau$ | OI | 9 | 91 | SI | てヤ | ε |
| 6LI | て¢SSLO＊ | L866S9＊て | 8ع88．8LT | โI | てI | 9 | 七I | LI | 9ε | ε |
| 28I | โIをてT• | ¢てTLSでも | てIてら「て8I | 9I | SI | てI | 6I | $\varepsilon 乙$ | てヤ | 9 |
| LIZ | 6くt8t9 6 | て901＊${ }^{\text {c }}$ | S6İくして | 8I | 6 | $\varepsilon \tau$ | 七I | 七I | 8ε | 9 |
| 902 | \＆SOOS9｀s | カ869LE＇て | カ七で「90て | カI | てI | 9I | L | てI | ऽて | ε |
| 七くL | とt90＇0て | 6T\＆6くガカ | 60T6 \downarrow－T | SI | S | てI | 8 | OL | દ乙 | 8 |
| 08I | LS9E86．L | ऽ\＆ऽsz8＇て | 86L6．6LT | II | II | 9 | てI | 6I | โع | ε |
| $\varepsilon \angle I$ | てS90LS＊9 | 8てを¢9¢＇て | โعLS＇$¢ \angle \tau$ | SI | L | II | II | LI | 0ε | S |
| 8LT | て0L8S6．S | てて60カt＇て | L8โt＊ 8 L | てI | 6 | SI | 6 | SI | 97 | t |
| 68I | 9SS06．8 | 6してカ86＇て | て0Lで68โ | 8I | L | SI | 6 | てI | Lて | t |
| દとて | SL6990＊9 | とてIE9t「て | 8SてL｀てとて | カI | てI | L | 6 | 92 | 97 | t |
| 8LI | LLES6．とโ | | عとL0＊8くป | てI | OL | 6 | $\varepsilon \tau$ | 91 | ऽ | t |

| S6 | LE | 989 | 806LL＇I | Lعદ6๕0＊0 | 98દ861＊0 | 992808＇โ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | てSع08＇โ | โ8โ8てع0 | TL8ZLS 0 | S9066L＇亡 |
| 001 | sて | Z8S | 806LL＇L | 8ャ0660＊0 | 6T | カโヤ8โ8＇亡 |
| て8 | てL | $87 L$ | 806LL＇L | S9tくてO＊0 | LZLS9t＊0 | 9988โ8 ${ }^{\text {T }}$ |
| عL | 6ε | 978 | ع986L＇L | てS98S0＊0 | し8してカで0 | L9Z0Z8＇โ |
| L8 | \dagger ¢ | S69 | 96Lて8＇ | 8S920＊0 | とદ0๕9โ0 | \＆ऽ0928＊ |
| | | | 806LL＇L | LLL8てと＇0 | โ6をとLS＊0 | 8SてT8L＇โ |
| દ8 | 8ε | てદL | てSE08＇I | 6S0090＊0 | 890らカで0 | TS92T8＊ |
| 七6 | 62 | \＆ऽ9 | 七LE6L＇I | દLદદS0＊0 | ¢てOLદで0 | 9L8をて8 ${ }^{\text { }}$ |
| ๕9 | OS | £96 | 9888L＇し | L69SE0＊0 | 8ع688t0 | 七て6E08 τ |
| LL | $\varepsilon \downarrow$ | ع8L | โ $7808{ }^{\text {L }}$ | とカヤてを0＊0 | 6It08t＊0 | ع96を8＇ |
| εL | $\dagger \varepsilon$ | SZ8 | ع9864＇L | カ8カ七¢0＊0 | LS8t＊0 | |
| $\angle 9$ | 8 t | ع06 | 806LL＇L | とてZS80＊0 | と6I6で0 | \＆รLとて8＇โ |
| L6 | OZT | くヤ9 | Lع69L＇L | てSSI80＊0 | tくらS8で0 | S8SLI8．L |
| | | | S | L000＊0 | 10＇0 | 6てヤち66 ${ }^{\text {¢ }}$ |
| Z6 | Iて | ६ऽ9 | ع986L＇L | 8SてIとで0 | と6808t＊ | 898てT8＊ |
| ¢9 | 091 | 000 | ع986L＇L | 86とTくと＊0 | ¢てヤ609＊0 | 七S8898 ${ }^{\text { }}$ |
| 69 | OちT | 806 | L6E8L＇I | 982990＊0 | て9tLsで0 | て9して08＊ |
| IL | Lع | ZS8 | 七LE6L＇I | LETLLİO | 9L80てガ0 | 88โをて8＇โ |
| SL | Lع | 908 | L8tカぐし | LILLOZO | 9LSSt＊0 | 6L0カt8 τ |
| ¢9 | †9 | ZS6 | Tع69L＇ | 69Scst＊0 | ててカ七6と＊ | 28ET8 |
| ع8 | $\angle t$ | てعL | L0とて8＇ | ST668t＇0 | て6LSعt＊0 | 88\＆ャ08 ${ }^{\text {¢ }}$ |
| 69 | $\varepsilon \square$ | عL8 | 9888L＇L | S85280＊0 | 9LEL8で0 | LعてLI8＇โ |
| 88 | $\angle t$ | Z69 | 6LtLL＇I | 88LIOT＊0 | てヤ06IE＇0 | 968LI8 ${ }^{\text {T }}$ |
| I6 | IS | 699 | てSE08＇โ | S8tt60＊0 | ع8¢LOE＇0 | S8SIS8 ${ }^{\text {T }}$ |
| 68 | 七て | $9 \angle 9$ | LZOEL＇I | عとL6LI＇0 | 676とてガ0 | 6T6ちt8＊ |
| 98 | とて | T0L | LZOEL＇し | 69T6020 | SELSt＊0 | 978078＇โ |
| દ8 | LL | | 866とL＇ | 66T010 | 6S\＆6IE＊ | L9TST8 τ |
| 七6 | $\angle 乙$ | で9 | 806LL＇L | 8ャ9TS0＊0 | と9てLてで0 | عโ8โ8 τ |
| 68 | โ9 | ع89 | 806LL＇L | 七てISt0＊0 | カてカてIで0 | 878L08＊ |
| LL | $\varepsilon \varepsilon$ | 682 | L8ttL＇し | 8Lも80で0 | t6S9St＊o | 6T0Z08＇โ |
| I8 | Ot | $67 L$ | 806LL＇L | 909600 | ऽ\＆660¢ 0 | L8I8I8．亡 |
| ع8 | LS | OEL | t＜E6L＇I | 6t88It 0 | カャレカャ¢＇0 | 6とて8LL＇โ |
| 69 | S6 | ع88 | 806LL＇L | とヵてO\＆0＊0 | S06をLt＇0 | โ 18008 |
| $\square \mathrm{yH}^{-}$ | ¢ | पע | pow ${ }^{-}$ | 」еへ－${ }^{-}$ | płs ${ }^{-}$－ | ว－อכヨ |

층
亳
$\stackrel{\rightharpoonup}{\omega}$
$\omega \omega$

\sum_{n}
_TINr

| 1 |
| :---: |
| $\frac{1}{2}$ |
| $\frac{1}{n}$ |
| $\frac{N}{2}$ |

$184.1234 \quad 2.486958 \quad 6.184962$ 9STSt6＇s 69て8\＆tて 七て9＇88T
 SO98TS＇9 9SIESS＇て 8LIE＇Z6T

 † $\angle 9790^{\circ} \mathrm{L}$ 69SLS9＇Z IISS＇EOZ N
N
in
O
N

荅 N | $\stackrel{\rightharpoonup}{0}$ |
| :--- |
| $\stackrel{1}{0}$ |
| － |
| 0 |

 てZ00 861 | $\stackrel{\rightharpoonup}{\sim}$ |
| :---: |
| $\underset{\sim}{\sim}$ |
| $\underset{\sim}{\sim}$ |
| $\underset{\sim}{\sim}$ |

 tost＇tor

 て966＇tマて $\stackrel{\sim}{\sim}$ $\stackrel{\rightharpoonup}{0}$
$\stackrel{y}{0}$
ín
ज く七て6．96โ
 3EMGa＿M
194.4515

$\begin{array}{lllllllllllll}V & \omega & \infty & \ddots & \omega & \omega & A & V & A & \perp & \infty & & \infty \\ \omega & \infty & N & \sim & \sim & 0 & A & A & \infty & \dot{\sim} & A & A & v \\ \omega\end{array}$

| |
| :---: |
| | |
| | |
| | | 10.55915 L86I・てZ T6SくIて

 โ8と6โ「して 19.4224 19.48089 $\stackrel{\rightharpoonup}{+}$
$\stackrel{\rightharpoonup}{+}$

－ | N |
| :--- |
| う |
| 万 |
| ㅎ․ |
| ∞ |

 18.49966 StEO•8I \sim
\sim
$\underset{\sim}{\sim}$
$\underset{\sim}{\sim}$
$\stackrel{\infty}{\infty}$
$\stackrel{\sim}{\sim}$

\sim $\stackrel{\omega}{\sim}$ | $\stackrel{\rightharpoonup}{\sim}$ |
| :--- |
| $\underset{\sim}{\infty}$ |
| $\stackrel{+}{\alpha}$ | $\stackrel{\leftrightarrow}{\omega}$

$\stackrel{+}{+}$
$\stackrel{\infty}{+}$
$\stackrel{\rightharpoonup}{\bullet}$
 $\stackrel{\leftrightarrow}{\circ}$
∞
∞
\sim_{0}

\sim_{v} $\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{+}{+}}$ | N N |
| :--- |
| $\stackrel{y}{\sim}$ O |
| N |
| N |
| | 26.66535

 $31.2 \quad 3.999321$

N $\stackrel{\rightharpoonup}{\omega} \underset{\sim}{\sim} \underset{\sim}{\sim}$ N

Appendix B - TETRIS CODE

TETRIS SCENARIO 1

```
#!/usr/bin/env python
# PyTris (c) Lukasz Grzegorz Maciak
# Licensed under GNU General Public License Version 3
import sys, pygame, random
from pygame.locals import *
from pygame import K_q
import time
img = pygame.image.load('C:/Users/erikm/Google Drive/My
    Documents/Skoleting/Master/Scenarios/1st Prototype 27
    apr/Experiment/Pytris-master/cat.png')
pygame.mixer.pre_init(44100,-16,2,2048)
pygame.mixer.init()
pygame.init()
pygame.mixer.music.load('C:/Users/erikm/Google Drive/My
    Documents/Skoleting/Master/Scenarios/1st Prototype 27
    apr/Experiment/Sound/Relaxing.mp3')
positivesound = pygame.mixer.Sound('C:/Users/erikm/Google
    Drive/My Documents/Skoleting/Master/Scenarios/1st
    Prototype 27 apr/Experiment/Sound/levelup.wav')
positivesound.set_volume(0.05)
pygame.mixer.music.play()
pygame.mixer.music.set_volume(0.3)
# useful constants
size = width, height = 800, 600
lines_per_level = 200 #increas level after x
    lines
delay = 800 #speed
mode = False
                                    #for switching
    directions
counter = 0 #feedback bar counter
st = 1
bitnumber = 0
lastlinecount = 0
# define colors
black = 0, 0, 0
red = 255, 0, 0
green = 0, 255, 0
```

```
blue = 0, 0, 255
white = 255, 255, 255
yellow = 255, 255, 0
purple = 160, 32, 240
cyan = 0, 255, 255
orange = 255, 165, 0
gray = 45, 45, 45
currentcolor = red #for feedback bar
myfont = pygame.font.Font(None, 24)
timeFont = pygame.font.Font(None, 24)
perf = myfont.render("PERFORMANCE:", 1, white)
myfont2 = pygame.font.Font(None, 14)
timeshow = timeFont.render("TIME:", 1, white)
startTime = time.time()
lastTime = time.time()
countdown = 300
block_size = 15 # each piece is 4 blocks
block_gap = 1 # distance between blocks
offset = block_size + block_gap
twidth = 10 * offset
right_edge = 125+twidth - block_size
theight = 24 * offset
bottom_edge = 100+theight - block_size
start_point = 125+twidth/2 - block_size, 100
next_point = 125+twidth+125, 100+100
# Block object exists mostly to allow us to break a piece
    into individual
# components once it is locked in place. This is why the
    color information
# is redundant
class Block(object):
                                    """ Represents a rectangular Tetris block """
        def__init__(self, x, y, color):
                self.x = x
                self.y = y
                self.color = color
```

```
    def draw(self):
    pygame.draw.rect(screen, self.color, self.
        rect)
    @property
    def rect(self):
        return (self.x, self.y, block_size,
        block_size)
class Piece(object):
    """ A Tetris Piece - composed of 4 blocks """
    def ___init__(self,x,y):
            self.x = x
            self.y = y
            self.mobile = True
            self.rotation = 0 # defines which of the
                members of self.positions to use for
                this object
            # set of offsets that is applied to
                coordinates of each block in this piece
            self.positions = None
    def get_blocks(self):
            """ Returns an array of 4 blocks which make
                up this piece; each block has it's own
                coordinates and draw function """
            blocks = []
            for i in range(4):
                        blocks.append( Block(self.x + self.
                            positions[self.rotation][i][0],
                    self.y + self.positions[self.
                    rotation][i][1], self.color) )
            return blocks
    def draw(self):
```

```
        """ Draw all the blocks of this piece to
        the screen """
        blocks = self.get_blocks()
        for b in blocks:
        pygame.draw.rect(screen, self.color
                        , b.rect)
# calling flip repeatedly cycles through all
        available positions and goes back to the first
        one
def flip(self):
            if(self.rotation < len(self.positions) -1):
            self.rotation += 1
            else:
                        self.rotation = 0
def set_point(self, x, y):
            self.x = x
            self.y=y
```

\# Define different piece types: Z, S, O, T, I, L, J
class ZPiece(Piece):
def__init__(self,x,y):
super(ZPiece, self).__init__(x, y)
self.color $=$ red
self.positions $=\quad$ [
$(0,0)$, (
offset,
0), (
offset,
offset),
(2 *
offset,
offset)
),
$(0,0)$,
(0,

```
    offset),
        (-
    offset,
    offset),
        (-
    offset,
    2*offset
    ) )
    ]
class SPiece(Piece):
    def __init__(self,x,y):
        super(SPiece, self).___init___(x, y)
        self.color = green
        self.positions =
        [
        ( (0,0), (-
        offset,
        0), (-
        offset,
        offset),
            (-2*
        offset,
        offset)
            ),
        ( (0,0),
        (0,
        offset),
            (offset
        , Offset
        ), (
        offset,
        2*offset
        ) )
    ]
```

class OPiece(Piece) :
def __init__(self, $x, y):$
super (OPiece, self).__init__(x,y)

```
self.color = yellow
self.positions = [
    ( (0,0), (
                                    offset,
    0), (
    offset,
    offset),
        (0,
        offset)
        )
    ]
```

class TPiece(Piece):
def
init__(self,x,y):
super(TPiece, self).__init__(x, y)
self.color $=$ purple
self.positions =
($(0,0)$,
(0,
offset),
(-
offset,
offset),
(offset
, offset
)
),
$(0,0)$,
(0,
offset),
(offset
, Offset
), (0 ,
2 *offset
)),
$(0,0)$, (-
offset,
0), (
offset,

```
    0), (0,
    offset)
    ),
                                    ( (0,0),
    (0,
    offset),
        (-
    offset,
    offset),
        (0, 2*
    offset)
        ),
    ]
class IPiece(Piece):
    def __init__(self,x,y):
    super(IPiece, self).__init__(x, y)
    self.color = cyan
    self.positions = [
                                    ( (0,0),
                                    (0,
    offset),
        (0, 2*
        offset),
        (0, 3*
        offset)
                                    ),
                                    ( (0,0), (
                                    offset,
                                    0), (2*
                                    offset,
                                    0), (3*
                                    offset,
                                    0)
                                    )
]
```

class LPiece(Piece):
def init \qquad (self, x, y) :

```
super(LPiece, self).
```

\qquad

``` init (x, y)
self.color \(=\) orange self.positions =
```

$(0,0)$,
$(0$,
offset),
(0, 2*
offset),
(offset
, 2 *
offset)
),
$(0,0)$,
(0,
offset),
(offset
, 0),
(2*
offset,
$0)$
$(0,0)$, (-
offset,
0), (0,
offset),
(0, 2*
offset)
),
$(0,0)$,
(0,
offset),
(-
offset,
offset),
(-2*
offset,
offset)
),
class JPiece(Piece):

$$
\begin{aligned}
& \text { def __init__(self,x,y): } \\
& \quad \text { super(JPiece, self).__init__(x, y) } \\
& \quad \text { self.color }=\text { blue } \\
& \quad \text { self.positions }=\quad[
\end{aligned}
$$

$(0,0)$,
$(0$,
offset $),$
$(0,2 \star$
offset),
$(-$
offset,
$2 \star$ offset
$)$
$(0,0)$, (offset, $0)$, (2 * offset, $0)$, (2* offset, offset)
),
$(0,0),($
offset,
$0)$ (0 ,
offset),
(0, 2*
offset)
)
$\left(\begin{array}{l}\prime \\ (0,0)\end{array}\right.$
(0,
offset), (offset
, offset
), (2 *
offset, offset)
class Grid(object):
def __init__(self):
self.current $=$ None
self.next $=$ None self.blocks = []
self.next_piece()
self.total_cleared_lines = 0
self.cleared_lines $=0$
self.level = 1
self.score $=0$
self.lines_til_next_level = lines_per_level
self.delay = delay
self.game_over = False
self.next_rect = pygame. $\operatorname{Rect}(150+125$, $90+100,300,300)$
\# this is for multiplying scores self.multiplier =
$0: 0$,
\# no
lines
cleared
1 : 40,
\# single
line
cleared
2 : 100,

```
                        # two
                    lines
                    cleared
                    3: 300,
                        # three
                    lines
                    cleared
                    4 : 1200
                    # TETRIS
            }
        self.nfont = pygame.font.Font(None, 24)
        self.largefont = pygame.font.Font(None, 40)
        self.smallfont = pygame.font.Font(None, 14)
def random_piece(self):
        rekkefolge
        =[0,3,1,2,0,0,1,1,1,0,0,3,0,0,2,3,0,0,2,1,1,2,3,1,2,
        pcs = {
            #0 : ZPiece(*next_point),
            0 : OPiece(*next_point),
            #2 : SPiece(*next_point),
            #1 : TPiece(*next_point),
            1 : IPiece(*next_point),
            2 : LPiece(*next_point),
            3 : JPiece(*next_point)
            }
        global bitnumber
        c = rekkefolge[bitnumber]
        bitnumber+=1
        return pos[c]
def next_piece(self):
    if not self.next:
        self.next = self.random_piece()
        self.current = self.random_piece()
    else:
        self.current = self.next
        self.next = self.random_piece()
```

```
    self.current.set_point(*start_point)
def move_down(self):
    if(self.current.y < theight+100):
        self.current.y += offset
        if self.has_overlap():
                                self.current.y -= offset
                                self.current.mobile = False
    else:
        self.current.mobile = False
    if self.current.mobile == False and self.
        current.y == 100:
            self.game_over = True
# this is a hard drop - just go all the way down
    until you hit something
def drop_down(self):
    while(self.current.mobile): self.move_down
        ()
def move_right(self):
    if(self.current.mobile): self.current.x +=
        offset
    if self.has_overlap(): self.current.x -=
        offset
def move_left(self):
    if(self.current.mobile): self.current.x -=
        offset
    if self.has_overlap(): self.current.x +=
        offset
# TODO: wall kick logic needed
def rotate(self):
    self.current.flip()
    while self.has_overlap(): self.current.flip
        ()
```

```
# Saves individual blocks of the current piece -
    they become part of the grid
# Automatically check for lines
def remember_block_positions(self):
    self.blocks.extend(self.current.get_blocks
            ())
self.next_piece()
self.blocks = sorted(self.blocks, key=
                                    lambda block: block.y)
self.check_for_lines()
#for b in self.blocks: print str(b.y)+", "
def draw_blocks(self):
    for b in self.blocks:
        b.draw()
# check if current piece overlaps with walls or
    with other pieces
def has_overlap(self):
    blocks = self.current.get_blocks()
    for b in blocks:
        if b.x < 125 or b.x > right_edge
                or b.y < 100 or b.y >
                bottom_edge: return True
    # TODO: optimize the shit out of this
    for b in self.blocks:
        for c in self.current.get_blocks():
        if b.x == c.x and b.y == c.
                        y: return True
    return False
    # TODO: there ought to be a better way to do this
def check_for_lines(self):
    lines = {}
```

for b in self.blocks:

$$
\begin{array}{ll}
\text { if } b \cdot y \text { in lines: } \\
& \text { lines }[b \cdot y]+=1 \\
\text { else: } & \\
& \text { lines }[b \cdot y]=1
\end{array}
$$

lines_to_be_destroyed = []
for \ln in lines:
if lines[ln] == 10:
self.total_cleared_lines += 1
self.cleared_lines += 1
lines_to_be_destroyed. append (ln)
for 1 in lines_to_be_destroyed: self.destroy_line(l)
copy_of_blocks = self.blocks[:]
if len(lines_to_be_destroyed) > 0:
self.collapse_hovering_blocks (min (lines_to_be_destroyed), len(lines_to_be_destroyed))
\#for \ln in lines_to_be_destroyed: \#self.
collapse_hovering_blocks (ln, copy_of_blocks)
self.calculate_score()
def destroy_line(self, ln):
\# note the slice notation - I'm iterating over a copy of self.blocks but removing
\# from the original
for b in self.blocks[:]:
if $b . y==1 n:$ self.blocks.remove (b)

```
def collapse_hovering_blocks(self, ln, total):
    """ drop down all the blocks that are
        hovering """
        for i,b in enumerate(self.blocks):
            if b.y < ln:
                        self.blocks[i].y += offset
                                * total
def block_overlaps(self, block, block_list):
    for b in block_list:
    if block.y == b.y and block.x == b.
        x:
            return True
    return False
def calculate_score(self):
    # score is calculated like so: M * ( N + 1
        ) where:
    # M is multiplier (see self.multiplier)
    # N is level (self.level)
    self.score += self.multiplier[self.
        cleared_lines] * (self.level + 1)
    tmp = self.lines_til_next_level - self.
        cleared_lines
    if tmp <= 0:
        self.level +=1
        self.lines_til_next_level =
            lines_per_level + tmp
        self.delay -= self.level * 30
        if self.delay < 10: self.delay = 10
```

```
else:
        self.lines_til_next_level = tmp
self.cleared_lines = 0
self.draw_text()
```

\# redraws the whole UI - we should really be
bliting this shit
def draw_ui(self):
pygame.draw.rect (screen, gray, (125,100,
right_edge+offset-125, bottom_edge+
offset-100))
for i in xrange(10): pygame.draw.line(
screen, black, (i*offset+125, 100),
(125+i*offset, theight+offset+100))
for i in xrange(24): pygame.draw.line(
screen, black, (125, i*offset+100), (
twidth+125, i*offset+100))
self.draw_text()
\# I really dislike the default font in pygame def draw_text (self):

```
msg = self.nfont.render("NEXT PIECE:", 1,
        white)
screen.blit(msg, (250+125, 50+100))
pygame.draw.rect (screen, black, (250+125,
        100+200, 200, 100))
#SC = self.nfont.render("SCORE: " + str(
        self.score), 1, white)
#screen.blit(sc, (250+125, 200+100))
#SC = self.nfont.render("LINES: " + str(
        self.total_cleared_lines), 1, white)
#screen.blit(sc, (250+125, 230+100))
#SC = self.nfont.render("LEVEL: " + str(
        self.level), 1, white)
```

```
    #screen.blit(sc, (250, 260))
    #msg = self.smallfont.render("Left, Right
    Arrow to move", 1, white)
    #screen.blit(msg, (230, 290))
    #msg = self.smallfont.render("Up Arrow to
        flip", 1, white)
    #screen.blit(msg, (230, 300))
    #msg = self.smallfont.render("Down Arrow to
        move downw", 1, white)
    #screen.blit(msg, (230, 310))
    #msg = self.smallfont.render("Space or
        Enter to drop down", 1, white)
#screen.blit(msg, (230, 320))
#msg = self.smallfont.render("Esc to pause,
        F1 for new game", 1, white)
#screen.blit(msg, (230, 330))
#screen.blit(self.smallfont.render("ver
    0.2", 1, white), (230, 350))
def draw_game_over(self):
    msg = self.largefont.render("GAME OVER", 1,
        red)
    screen.blit(msg, (195+125,95+100))
    #msg2 = self.nfont.render("PRESS F1 TO PLAY
        AGAIN", 1, red)
    #screen.blit(msg2, (175, 130))
# magic
screen = pygame.display.set_mode(size)
pygame.key.set_repeat(100, 150)
#pygame.time.set_timer(USEREVENT+1, delay)
```


H-18

```
grid = Grid()
clock = pygame.time.Clock()
paused = False
time_elapsed = 0
while st == 1:
    currentTime = time.time()
    if grid.total_cleared_lines>lastlinecount:
        positivesound.play()
        lastlinecount=grid.total_cleared_lines
        counter+=1
    if not paused and not grid.game_over:
        time_elapsed += clock.tick()
        #print str(grid.delay)
        # timed block drop
        if time_elapsed > grid.delay:
            time_elapsed = 0
            grid.move_down()
            # check if a line was created and remove it
            grid.check_for_lines()
            # clear the next piece area
            pygame.draw.rect(screen, black, grid.
                next_rect)
            # draw the gridlines
            grid.draw_ui()
            # if the current piece is locked in place
                memorize it's position
            if not grid.current.mobile:
                    grid.remember_block_positions()
            # draw the memorized blocks
            grid.draw_blocks()
```

 for event in pygame.event.get():
    ```
if event.type == pygame.QUIT: sys.exit()
if event.type == KEYDOWN:
    if event.key == k_ESCAPE: paused =
        not paused
    if event.key == K_F1:
    grid = Grid()
    clock = pygame.time.Clock()
    counter = 0
    paused = False
    time_elapsed = 0
if mode == True:
    if not paused and not grid.
        game_over:
            if event.key == K_d
                : grid.move_left
                    ()
            if event.key == K_a
                : grid.
                move_right()
                    if event.key == K_s
                : grid.move_down
                ()
            if event.key == K_w
                : grid.rotate()
            if event.key ==
                K_SPACE: grid.
                drop_down()
            if event.key ==
                K_RETURN: grid.
                drop_down()
            if event.key == K_q
                : mode = False
            if event.key == K_1
                : grid.delay =
                100
            if event.key == K_2
                : grid.delay =
                200
    if event.key == K_3
```

```
    : grid.delay =
    300
    if event.key == K_4
    : grid.delay =
    400
    if event.key == K_5
    : grid.delay =
    500
    if event.key == K_6
    : grid.delay =
    60
    if event.key == K_7
    : grid.delay =
    70
    if event.key == K_8
    : grid.delay =
    800
    if event.key == K_9
    : grid.delay =
    900
    if event.key == K_0
    : grid.delay =
    1000
    if event.key ==
    K_UP: counter
    +=1;
    positivesound.
    play()
    if event.key ==
    K_DOWN: counter
    -=1.5
    if event.key == K_m
    : counter-=4
    if event.key == K_p
        : st=0
        if mode == False:
    if not paused and not grid.
        game_over:
            if event.key == K_d
            : grid.
            move_right()
            if event.key == K_a
            : grid.move_left
            ()
    if event.key == K_s
```

```
    : grid.move_down
    ()
    if event.key == K_w
    : grid.rotate()
    if event.key ==
    K_SPACE: grid.
    drop_down()
if event.key ==
    K_RETURN: grid.
    drop_down()
if event.key == K_e
    : mode = True
if event.key == K_1
    : grid.delay =
    100
if event.key == K_2
    : grid.delay =
    200
if event.key == K_3
    : grid.delay =
    300
if event.key == K_4
    : grid.delay =
    4 0 0
if event.key == K_5
    : grid.delay =
    500
if event.key == K_6
    : grid.delay =
    600
if event.key == K_7
    : grid.delay =
    700
if event.key == K_8
    : grid.delay =
    800
if event.key == K_9
    : grid.delay =
    900
if event.key == K_0
    : grid.delay =
    1000
if event.key ==
    K_UP: counter
    +=1;
```

$$
\begin{aligned}
& \text { positivesound. } \\
& \text { play() } \\
& \text { if event.key == } \\
& \text { K_DOWN: counter } \\
& \quad-=1.5 \\
& \text { if event.key }==\text { K_m } \\
& \quad \text { : counter==4 } \\
& \text { if event.key }==\text { K_p } \\
& \text { : st=0 }
\end{aligned}
$$

if not paused and not grid.game_over:

```
grid.current.draw() # draw current
    piece
grid.next.draw() # draw the next
    piece
if counter < 0:
        currentcolor = red
else:
        currentcolor = green
if counter >=11: counter = 11
if counter <=-10: counter = -10
pygame.draw.rect(screen, black,
        (370+125,100,200,1000), 0)
screen.blit(perf, (405+125, 100+50))
#screen.blit(timeshow, (250, 300))
if currentTime - lastTime > 1:
            countdown-=1
            if countdown <= 0:
                countdown = 0
            lastTime = currentTime
m, s = divmod(countdown, 60)
#if m >= 1:
# screen.blit(timeFont.render(str(m)
        ,1,white), (305, 300))
            screen.blit(timeFont.render(":",1,
        white), (313, 300))
# screen.blit(timeFont.render(str(s)
        ,1,white), (320, 300))
#else:
# screen.blit(timeFont.render(str(s)
    ,1,white), (320, 300))
pygame.draw.rect(screen, currentcolor,
        (370+125,100+230,200,-counter*15), 0)
```

```
    screen.blit(img,(180+125,100+250))
    pygame.display.flip()
# draw game over message
if grid.game_over:
    #grid.draw_game_over()
    counter = 0
    if currentTime - lastTime > 1:
    countdown-=1
    if countdown <= 0:
                                    countdown = 0
    lastTime = currentTime
    #pygame.display.flip()
    grid = Grid()
    clock = pygame.time.Clock()
    counter = 0
    paused = False
    time_elapsed = 0
```


TETRIS SCENARIO 2

```
#!/usr/bin/env python
# PyTris (c) Lukasz Grzegorz Maciak
# Licensed under GNU General Public License Version 3
import sys, pygame, random
from pygame.locals import *
from pygame import K_q
import time
from time import sleep
pygame.mixer.pre_init(44100,-16,2,2048)
pygame.mixer.init()
pygame.init()
pygame.mixer.music.load('C:/Users/erikm/Google Drive/My
    Documents/Skoleting/Master/Scenarios/1st Prototype 27
    apr/Experiment/Sound/War Warrior.mp3')
positivesound = pygame.mixer.Sound('C:/Users/erikm/Google
    Drive/My Documents/Skoleting/Master/Scenarios/1st
    Prototype 27 apr/Experiment/Sound/levelup.wav')
positivesound.set_volume(0.7)
negativesound = pygame.mixer.Sound('C:/Users/erikm/Google
    Drive/My Documents/Skoleting/Master/Scenarios/1st
    Prototype 27 apr/Experiment/Sound/Wrongbuzz.wav')
negativesound.set_volume(0.6)
pygame.mixer.music.play()
# useful constants
size = width, height = 800, 600
lines_per_level = 200 #increas level after x
    lines
delay = 200 #speed
mode = True #for switching
    directions
counter = 0 #feedback bar counter
st = 1
bitnumber = 0
# define colors
black = 0, 0, 0
red = 255, 0, 0
green = 0, 255, 0
```

```
blue = 0, 0, 255
white = 255, 255, 255
yellow = 255, 255, 0
purple = 160, 32, 240
cyan = 0, 255, 255
orange = 255, 165, 0
gray = 45, 45, 45
currentcolor = red #for feedback bar
myfont = pygame.font.Font(None, 24)
timeFont = pygame.font.Font(None, 50)
perf = myfont.render("PERFORMANCE:", 1, white)
myfont2 = pygame.font.Font(None, 14)
timeshow = timeFont.render("TIME:", 1, white)
startTime = time.time()
lastTime = time.time()
lastTime1 = time.time()
countdown = 270
block_size = 15 # each piece is 4 blocks
block_gap = 1 # distance between blocks
offset = block_size + block_gap
twidth = 10 * offset
right_edge = 125+twidth - block_size
theight = 24 * offset
bottom_edge = 100+theight - block_size
start_point = 125 + twidth/2 - block_size, 100
next_point = 125 + twidth+125, 100+100
# Block object exists mostly to allow us to break a piece
    into individual
# components once it is locked in place. This is why the
    color information
# is redundant
class Block(object):
""" Represents a rectangular Tetris block """
def ___init__(self, x, y, color):
self.x = x
self.y = Y
```

```
    self.color = color
    def draw(self):
    pygame.draw.rect(screen, self.color, self.
        rect)
    @property
    def rect(self):
    return (self.x, self.y, block_size,
        block_size)
class Piece(object):
    """ A Tetris Piece - composed of 4 blocks """
    def __init__(self,x,y):
    self.x = x
    self.y = y
    self.mobile = True
    self.rotation = 0 # defines which of the
                members of self.positions to use for
                this object
    # set of offsets that is applied to
                coordinates of each block in this piece
            self.positions = None
    def get_blocks(self):
        """ Returns an array of 4 blocks which make
                up this piece; each block has it's own
                coordinates and draw function """
    blocks = []
    for i in range(4):
                                    blocks.append( Block(self.x + self.
                                    positions[self.rotation][i][0],
                                    self.y + self.positions[self.
                                    rotation][i][1], self.color) )
    return blocks
```

```
def draw(self):
    """ Draw all the blocks of this piece to
                the screen """
        blocks = self.get_blocks()
        for b in blocks:
                            pygame.draw.rect(screen, self.color
                                , b.rect)
```

\# calling flip repeatedly cycles through all
available positions and goes back to the first
one
def flip (self):
if(self.rotation < len(self.positions) -1):
self.rotation $+=1$
else:
self.rotation $=0$
def set_point (self, $x, y):$
self. $x=x$
self.y $=\mathrm{y}$
\# Define different piece types: Z, S, O, T, I, L, J
class ZPiece(Piece):
def __init__(self,x,y):
super(ZPiece, self).__init__(x, y)
self.color $=$ red
self.positions $=\quad$ [
$(0,0)$, (
offset,
0), (
offset,
offset),
(2*
offset,
offset)
),
$(0,0)$,

```
    (0,
    offset),
        (-
    offset,
    offset),
        (-
    offset,
    2*offset
    ) )
    ]
class SPiece(Piece):
    def __init__(self,x,y):
    super(SPiece, self).___init__(x, y)
    self.color = green
    self.positions =
    [
    ( (0,0), (-
    offset,
    0), (-
    offset,
        offset),
            (-2*
        offset,
        offset)
            ),
            ( (0,0),
    (0,
    offset),
            (offset
        , Offset
        ), (
        offset,
        2*offset
        ) )
    ]
    class OPiece(Piece):
    def __init__(self, x, y):
    super(OPiece, self).___init__(x,y)
```

```
self.color = yellow
self.positions = [
                                    ( (0,0), (
                                    offset,
    0), (
    offset,
    offset),
        (0,
        offset)
            )
```

]
class TPiece(Piece) :
def __init__(self,x,y):
super(TPiece, self).__init__(x, y)
self.color $=$ purple
self.positions =
($(0,0)$,
(0)
offset),
(-
offset,
offset),
(offset
, offset
)
),
$(0,0)$,
(0,
offset),
(offset
, offset
), (0 ,
2 *offset
)),
$(0,0),(-$
offset,
0) , (

```
    offset,
    0), (0,
    offset)
    ),
    ( (0,0),
        (0,
        offset),
        (-
    offset,
    offset),
        (0, 2*
        offset)
        ),
    ]
class IPiece(Piece):
    def __init__(self,x,y):
        super(IPiece, self).___init__(x, y)
        self.color = cyan
        self.positions =
\((0,0)\),
    (0,
    offset),
        (0, 2*
        offset),
            (0, 3*
        Offset)
            ),
            ( (0,0), (
                                    offset,
                                    0), (2*
                                    offset,
                                    0), (3*
                                    offset,
                                    0)
                                    )
]
```

class LPiece(Piece):

```
def ___init__(self,x,y):
    super(LPiece, self).___init__(x, y)
    self.color = orange
    self.positions = [
```

$(0,0)$,
(0,
offset),
(0, 2*
offset),
(offset
, 2 *
offset)
),
$(0,0)$,
(0,
offset),
(offset
, 0),
(2*
offset,
0)
)
$(0,0),(-$
offset,
$0),(0$,
offset),
(0, 2*
offset)
) ,
(0,0),
(0,
offset),
(-
offset,
offset),
(-2 *
offset,
offset)
class JPiece(Piece):
def __init__(self,x,y):
super(JPiece, self).__init__(x, y)
self.color = blue self.positions = [
($(0,0)$, (0, offset),
(0, 2*
offset),
(-
offset, $2 *$ offset)
$(10,0),($ offset, 0) , (2 * offset, 0) , (2 * offset, offset)
),
$(0,0),($
offset,
0), (0,
offset),
(0, 2*
offset)
)
,
$(0,0)$,
(0,
offset),
(offset
, offset
), (2 * offset, offset)),
class Grid(object): def __init__(self):
self.current $=$ None self.next $=$ None self.blocks = []
self.next_piece()
self.total_cleared_lines = 0
self.cleared_lines $=0$
self.level = 1
self.score $=0$
self.lines_til_next_level = lines_per_level
self.delay = delay
self.game_over = False
self.next_rect = pygame. Rect $(150+125$,
$90+100,300,300)$
\# this is for multiplying scores self.multiplier =
$0: 0$,
\# no
lines
cleared
1 : 40,
\# single
line
cleared
2 : 100,

```
    # two
    lines
    cleared
    3 : 300,
    # three
    lines
    cleared
    4 : 1200
    # TETRIS
        }
        self.nfont = pygame.font.Font(None, 24)
        self.largefont = pygame.font.Font(None, 40)
        self.smallfont = pygame.font.Font(None, 14)
def random_piece(self):
        rekkefolge =
            [3,5,3,5,4,0,1,5,5,1,1,2,1,2,5,2,3,0,2,2,0,3,6,0,4,5
        pcs = {
            0 : ZPiece(*next_point),
            1 : OPiece(*next_point),
            2 : SPiece(*next_point),
            3 : TPiece(*next_point),
            4 : IPiece(*next_point),
            5 : LPiece(*next_point),
                            6 : JPiece(*next_point)
            }
        global bitnumber
        c = rekkefolge[bitnumber]
        bitnumber+=1
        return pcs[c]
def next_piece(self):
    if not self.next:
        self.next = self.random_piece()
        self.current = self.random_piece()
    else:
```

```
        self.current = self.next
        self.next = self.random_piece()
    self.current.set_point(*start_point)
def move_down(self):
    if(self.current.y < theight+100):
            self.current.y += offset
            if self.has_overlap():
                                    self.current.y -= offset
                                    self.current.mobile = False
    else:
            self.current.mobile = False
    if self.current.mobile == False and self.
        current.y == 100:
            self.game_over = True
# this is a hard drop - just go all the way down
    until you hit something
def drop_down(self):
    while(self.current.mobile): self.move_down
        ()
def move_right(self):
    if(self.current.mobile): self.current.x +=
        offset
    if self.has_overlap(): self.current.x -=
        offset
def move_left(self):
    if(self.current.mobile): self.current.x -=
        offset
    if self.has_overlap(): self.current.x +=
        offset
# TODO: wall kick logic needed
def rotate(self):
    self.current.flip()
    while self.has_overlap(): self.current.flip
```

```
# Saves individual blocks of the current piece -
    they become part of the grid
# Automatically check for lines
def remember_block_positions(self):
    self.blocks.extend(self.current.get_blocks
            ())
    self.next_piece()
    self.blocks = sorted(self.blocks, key=
            lambda block: block.y)
    self.check_for_lines()
    #for b in self.blocks: print str(b.y)+", "
def draw_blocks(self):
    for b in self.blocks:
    b.draw()
# check if current piece overlaps with walls or
    with other pieces
def has_overlap(self):
    blocks = self.current.get_blocks()
    for b in blocks:
        if b.x < 125 or b.x > right_edge
                or b.y < 100 or b.y >
                bottom_edge: return True
            # TODO: optimize the shit out of this
            for b in self.blocks:
            for c in self.current.get_blocks():
                        if b.x == c.x and b.y == c.
                        y: return True
            return False
# TODO: there ought to be a better way to do this
def check_for_lines(self):
```

```
lines = {}
for b in self.blocks:
    if b.y in lines:
        lines[b.y] +=1
    else:
        lines[b.y] = 1
lines_to_be_destroyed = []
for ln in lines:
    if lines[ln] == 10:
        self.total_cleared_lines +=
        1
            self.cleared_lines += 1
        lines_to_be_destroyed.
                append(ln)
for l in lines_to_be_destroyed:
    self.destroy_line(l)
copy_of_blocks = self.blocks[:]
if len(lines_to_be_destroyed) > 0:
    self.collapse_hovering_blocks(min(
        lines_to_be_destroyed), len(
        lines_to_be_destroyed))
    #for ln in lines_to_be_destroyed:
        #self.
                            collapse_hovering_blocks
                            (ln, copy_of_blocks)
self.calculate_score()
def destroy_line(self, ln):
    # note the slice notation - I'm iterating
        over a copy of self.blocks but removing
# from the original
for b in self.blocks[:]:
    if b.y == ln: self.blocks.remove(b)
```

```
def collapse_hovering_blocks(self, ln, total):
    """ drop down all the blocks that are
                hovering """
    for i,b in enumerate(self.blocks):
                        if b.y<ln:
                                self.blocks[i].y += offset
                                * total
```

def block_overlaps(self, block, block_list):
for b in block_list:
if block.y == b.y and block.x == b.
x :
return True
return False
def calculate_score(self):

```
# score is calculated like so: M * ( N + I
    ) where:
# M is multiplier (see self.multiplier)
# N is level (self.level)
self.score += self.multiplier[self.
        cleared_lines] * (self.level + 1)
tmp = self.lines_til_next_level - self.
        cleared_lines
if tmp <= 0:
    self.level +=1
    self.lines_til_next_level =
        lines_per_level + tmp
    self.delay -= self.level * 30
```

```
                                    if self.delay < 10: self.delay = 10
            else:
            self.lines_til_next_level = tmp
            self.cleared_lines = 0
            self.draw_text()
# redraws the whole UI - we should really be
    bliting this shit
def draw_ui(self):
pygame.draw.rect(screen, gray, (125,100,
                right_edge+offset-125, bottom_edge+
                offset-100))
            for i in xrange(10): pygame.draw.line(
                screen, black, (i*offset+125, 100),
                (125+i*offset, theight+offset+100))
            for i in xrange(24): pygame.draw.line(
        screen, black, (125, i*offset+100), (
        twidth+125, i*offset+100))
            self.draw_text()
# I really dislike the default font in pygame
def draw_text(self):
```

```
msg = self.nfont.render("NEXT PIECE:", 1,
```

msg = self.nfont.render("NEXT PIECE:", 1,
white)
white)
screen.blit(msg, (250+125, 50+100))
screen.blit(msg, (250+125, 50+100))
pygame.draw.rect (screen, black, (250+125,
pygame.draw.rect (screen, black, (250+125,
200+100, 200, 100))
200+100, 200, 100))
sc = self.nfont.render("YOUR SCORE: ", 1,
sc = self.nfont.render("YOUR SCORE: ", 1,
white)
white)
screen.blit(sc, (240+125, 220+100))
screen.blit(sc, (240+125, 220+100))
sc = self.largefont.render(str(self.score)
sc = self.largefont.render(str(self.score)
, 1,white)
, 1,white)
screen.blit(sc, (270+125, 240+100))
screen.blit(sc, (270+125, 240+100))
\#sc $=$ self.nfont.render("LINES: " + str(

```
\#sc \(=\) self.nfont.render("LINES: " + str(
```

```
        self.total_cleared_lines), 1, white)
#screen.blit(sc, (250, 230))
#sc = self.nfont.render("LEVEL: " + str(
    self.level), 1, white)
#screen.blit(sc, (250, 260))
#msg = self.smallfont.render("Left, Right
    Arrow to move", 1, white)
#screen.blit(msg, (230, 290))
#msg = self.smallfont.render("Up Arrow to
    flip", 1, white)
#screen.blit(msg, (230, 300))
#msg = self.smallfont.render("Down Arrow to
    move downw", 1, white)
#screen.blit(msg, (230, 310))
#msg = self.smallfont.render("Space or
    Enter to drop down", 1, white)
#screen.blit(msg, (230, 320))
#msg = self.smallfont.render("Esc to pause,
    F1 for new game", 1, white)
#screen.blit(msg, (230, 330))
#screen.blit(self.smallfont.render("ver
    0.2", 1, white), (230, 350))
def draw_game_over(self):
pygame.draw.rect(screen, black,
        (125,0,800,800),0)
msg = self.largefont.render("GAME OVER", 1,
        red)
screen.blit(msg, (195+125,95+100))
#msg2 = self.nfont.render("PRESS F1 TO PLAY
        AGAIN", 1, red)
#screen.blit(msg2, (175, 130))
```

```
# magic
screen = pygame.display.set_mode(size)
pygame.key.set_repeat(100, 150)
#pygame.time.set_timer(USEREVENT+1, delay)
grid = Grid()
clock = pygame.time.Clock()
paused = False
time_elapsed = 0
while st == 1:
    currentTime = time.time()
    if (currentTime-lastTime1>150):
                                    mode = False
                            grid.delay = 170
    if (currentTime-lastTime1>240):
                            mode = True
                            grid.delay = 150
    if not paused and not grid.game_over:
                    time_elapsed += clock.tick()
                    #print str(grid.delay)
                    # timed block drop
                    if time_elapsed > grid.delay:
                    time_elapsed = 0
                    grid.move_down()
                    # check if a line was created and remove it
                    grid.check_for_lines()
                    # clear the next piece area
                    pygame.draw.rect(screen, black, grid.
                next_rect)
                    # draw the gridlines
                    grid.draw_ui()
```

```
# if the current piece is locked in place
    memorize it's position
if not grid.current.mobile:
                                grid.remember_block_positions()
# draw the memorized blocks
grid.draw_blocks()
```

for event in pygame.event.get():

```
if event.type == pygame.QUIT: sys.exit()
```

if event.type $==$ KEYDOWN:
if event.key == K_ESCAPE: paused =
not paused
if event.key $==$ K_F1:
grid $=$ Grid()
clock = pygame.time.Clock()
counter $=0$
\#countdown $=300$
paused = False
time_elapsed $=0$
if mode $==$ True:
if not paused and not grid.
game_over:
if event.key $==$ K_d
: grid.move_left
()
if event.key == K_a
: grid.
move_right()
if event.key == K_s
: grid.move_down
()
if event.key $==$ K_w
: grid.rotate()
if event.key ==
K_SPACE: grid.
drop_down()
if event.key ==

> K_RETURN: grid. drop_down()

```
                                    : st=0
if mode == False:
    if not paused and not grid.
        game_over:
            if event.key == K_d
                : grid.
                move_right()
    if event.key == K_a
        : grid.move_left
        ()
    if event.key == K_s
        : grid.move_down
        ()
    if event.key == K_w
        : grid.rotate()
    if event.key ==
        K_SPACE: grid.
        drop_down()
    if event.key ==
        K_RETURN: grid.
        drop_down()
    if event.key == K_e
        : mode = True
    if event.key == K_1
        : grid.delay =
        160
    if event.key == K_2
        : grid.delay =
        200
    if event.key == K_3
        : grid.delay =
        300
    if event.key == K_4
        : grid.delay =
        4 0 0
    if event.key == K_5
        : grid.delay =
        500
    if event.key == K_6
        : grid.delay =
        600
    if event.key == K_7
        : grid.delay =
        700
    if event.key == K_8
```

```
    : grid.delay =
    800
if event.key == K_9
    : grid.delay =
    900
if event.key == K_0
    : grid.delay =
    1000
if event.key ==
    K_UP: counter
    +=1;
if event.key ==
    K_DOWN: counter
    -=1.5;
    negativesound.
    play()
if event.key == K_m
    : counter-=4
if event.key == K_p
    : st=0
```

if not paused and not grid.game_over:

```
grid.current.draw() # draw current
    piece
grid.next.draw() # draw the next
            piece
if counter < 0:
    currentcolor = red
else:
    currentcolor = green
if counter >=11: counter = 11
if counter <=-10: counter = -10
pygame.draw.rect(screen, black,
    (370+125,100,200,1000), 0)
screen.blit(perf, (405+125, 50+100))
#screen.blit(timeshow, (250+125, 300+100))
if currentTime - lastTime > 1:
            countdown-=1
            if countdown <= 0:
                                    countdown = 30
                            lastTime = currentTime
m, s = divmod(countdown, 60)
if m >= 1:
```

```
    screen.blit(timeFont.render(str(m)
                ,1,white), (305+75, 300+100))
    screen.blit(timeFont.render(":",1,
    white), (313+85, 300+100))
    screen.blit(timeFont.render(str(s)
                ,1,white), (320+95, 300+100))
    else:
        screen.blit(timeFont.render(str(s)
                                ,1,white), (320+95, 300+100))
    pygame.draw.rect(screen, currentcolor,
    (370+125,230+100,200,-counter*15), 0)
    pygame.display.flip()
# draw game over message
if grid.game_over:
    grid.draw_game_over()
    pygame.display.flip()
    sleep(1)
    counter = 0
    if currentTime - lastTime > 1:
            countdown-=1
            if countdown <= 0:
                                    countdown = 30
                                    lastTime = currentTime
    grid = Grid()
    clock = pygame.time.Clock()
    counter = 0
    paused = False
    time_elapsed = 0
```


TETRIS SCENARIO 3

```
#!/usr/bin/env python
# PyTris (c) Lukasz Grzegorz Maciak
# Licensed under GNU General Public License Version 3
import sys, pygame, random
from pygame.locals import *
from pygame import K_q
import time
from time import sleep
img = pygame.image.load('cat.png')
```

pygame.mixer.init()
pygame.init()
pygame.mixer.music.load('C:/Users/erikm/Google Drive/My
Documents/Skoleting/Master/Scenarios/1st Prototype 27
apr/Experiment/Sound/Sandstorm.mp3')
positivesound = pygame.mixer.Sound('C:/Users/erikm/Google
Drive/My Documents/Skoleting/Master/Scenarios/1st
Prototype 27 apr/Experiment/Sound/levelup.wav')
positivesound.set_volume (0.7)
negativesound = pygame.mixer.Sound('C:/Users/erikm/Google
Drive/My Documents/Skoleting/Master/Scenarios/1st
Prototype 27 apr/Experiment/Sound/Wrongbuzz.wav')
negativesound.set_volume (0.3)
levelupsound = pygame.mixer.Sound('C:/Users/erikm/Google
Drive/My Documents/Skoleting/Master/Scenarios/1st
Prototype 27 apr/Experiment/Sound/Epic_win2.wav')
pygame.mixer.music.play()
\# useful constants
size = width, height = 800, 600
lines_per_level = 200 \#increas level after x
lines
delay $=600$ \#speed
mode = False \#for switching
directions
counter = $0 \quad \# f e e d b a c k ~ b a r ~ c o u n t e r ~$
highscore = 780
highscorecount $=3$

```
st = 1
bitnumber = 0
lastlinecount = 0
# define colors
black = 0, 0, 0
red = 255, 0, 0
green = 0, 255, 0
blue = 0, 0, 255
white = 255, 255, 255
yellow = 255, 255, 0
purple = 160, 32, 240
cyan = 0, 255, 255
orange = 255, 165,0
gray = 45, 45, 45
currentcolor = red #for feedback bar
myfont = pygame.font.Font(None, 24)
timeFont = pygame.font.Font(None, 24)
perf = myfont.render("PERFORMANCE:", 1, white)
myfont2 = pygame.font.Font(None, 14)
timeshow = timeFont.render("TIME:", 1, white)
highscoreFont = timeFont.render("SCORE TO BEAT:",1,white)
myfont3 = pygame.font.Font(None, 35)
myfont4 = pygame.font.Font(None,50)
inthelead1 = myfont4.render("YOU ARE NOW IN THE LEAD!",1,
    green)
inthelead2 = myfont4.render("YOU ARE NOW IN THE LEAD!",1,
    blue)
thirdplace1 = myfont4.render("YOU ARE NOW IN 3rd PLACE!",1,
    green)
thirdplace2 = myfont4.render("YOU ARE NOW IN 3rd PLACE!",1,
    blue)
secondplace1 = myfont4.render("YOU ARE NOW IN 2rd PLACE
        !",1,green)
secondplace2 = myfont4.render("YOU ARE NOW IN 2rd PLACE
        !",1,blue)
startTime = time.time()
lastTime = time.time()
countdown = 300
block_size = 15 # each piece is 4 blocks
block_gap = 1 # distance between blocks
```

```
offset = block_size + block_gap
twidth = 10 * offset
right_edge = 125+twidth - block_size
theight = 24 * offset
bottom_edge = 100+theight - block_size
start_point = 125+twidth/2 - block_size, 100
next_point = 125+twidth+125, 100+100
# Block object exists mostly to allow us to break a piece
        into individual
# components once it is locked in place. This is why the
    color information
# is redundant
def bitcountfunction(arg):
    arg-=1
class Block(object):
        """ Represents a rectangular Tetris block """
        def __init__(self, x, y, color):
            self.x = x
                self.y = y
                self.color = color
        def draw(self):
            pygame.draw.rect(screen, self.color, self.
                                    rect)
        @property
        def rect(self):
            return (self.x, self.y, block_size,
                block_size)
class Piece(object):
        """ A Tetris Piece - composed of 4 blocks """
        def ___init__(self,x,y):
            self.x = x
```

```
self.y = y
self.mobile \(=\) True
self.rotation \(=0\) \# defines which of the
    members of self.positions to use for
        this object
\# set of offsets that is applied to
    coordinates of each block in this piece
self.positions \(=\) None
```

def get_blocks(self):
""" Returns an array of 4 blocks which make
up this piece; each block has it's own
coordinates and draw function """
blocks = []
for i in range(4):
blocks.append (Block(self.x + self.
positions[self.rotation][i][0],
self.y + self.positions[self.
rotation][i][1], self.color))
return blocks
def draw (self):
""" Draw all the blocks of this piece to
the screen """
blocks = self.get_blocks()
for b in blocks:
pygame.draw.rect(screen, self.color
, b.rect)
\# calling flip repeatedly cycles through all
available positions and goes back to the first
one
def flip(self):
if(self.rotation < len(self.positions) -1):
self.rotation $+=1$
else:
self.rotation $=0$

```
def set_point(self, x, y):
    self.x = x
    self.y = Y
```

\# Define different piece types: Z, S, O, T, I, L, J
class ZPiece(Piece):
def __init__(self,x,y):
super(ZPiece, self).__init__(x, y)
self.color $=$ red
self.positions = [
$(0,0),($
offset,
$0)$, (
offset,
offset),
(2*
offset,
offset)
$(0,0)$,
(0,
offset),
(-
offset,
offset),
(-
offset,
2 *offset
))
]
class SPiece(Piece) :
def __init__(self,x,y):
super(SPiece, self).__init__(x, y)
self.color $=$ green
class OPiece(Piece):
def __init__(self, $x, y):$
super (OPiece, self).__init__(x,y)
self.color = yellow
self.positions $=\quad$ [
$(0,0),($
offset,
0), (
offset,
offset),
(0,
offset)
)
]
class TPiece(Piece):

```
    def ___init__(self,x,y):
```

$$
\begin{aligned}
& \text { super(TPiece, self).__init__(x, y) } \\
& \text { self.color = purple } \\
& \text { self.positions = [} \\
& (0,0) \text {, } \\
& \text { (0, } \\
& \text { offset), } \\
& \text { (- } \\
& \text { offset, } \\
& \text { offset), } \\
& \text { (offset } \\
& \text {, offset } \\
& \text {) } \\
& \text {), } \\
& (0,0) \text {, } \\
& \text { (0, } \\
& \text { offset), } \\
& \text { (offset } \\
& \text {, offset } \\
& \text {), (0, } \\
& 2 * o f f s e t \\
& \text {)), } \\
& (0,0) \text {, (- } \\
& \text { offset, } \\
& 0) \text {, (} \\
& \text { offset, } \\
& 0) \text { (} 0 \text {, } \\
& \text { offset) } \\
& \text {), } \\
& \text { (}(0,0) \text {, } \\
& \text { (0, } \\
& \text { offset), } \\
& \text { (- } \\
& \text { offset, } \\
& \text { offset), } \\
& \text { (0, 2* } \\
& \text { offset) } \\
& \text {), } \\
& \text {] }
\end{aligned}
$$

class IPiece(Piece):
def init \qquad (self, x, y):

```
                        super(IPiece, self).__init__(x, y)
```

 self.color = cyan
 self.positions =
 (0,
 offset),
 (0, 2*
 offset),
 (0, 3*
 offset)
),
 \((0,0),(\)
 offset,
 0) , (2 *
 offset,
 0) , (3*
 offset,
 0)
)
]
 class LPiece(Piece) :
def __init__(self,x,y):
super(LPiece, self).__init__(x, y)

$$
\text { self.color }=\text { orange }
$$

$$
\text { self.positions }=\quad \text { [}
$$

$(0,0)$,

$$
10
$$

offset),
(0, 2*
offset),
(offset
, 2 *
offset)

```
    ),
    ( (0,0),
    (0,
    offset),
        (offset
        , 0),
        (2*
        offset,
        0)
        ( (0,0), (-
        offset,
        0), (0,
        offset),
        (0, 2*
        offset)
        ),
    ( (0,0),
        (0,
    offset),
        (-
    offset,
    offset),
        (-2*
        offset,
        offset)
        ),
    ]
class JPiece(Piece):
    def __init__(self,x,y):
        super(JPiece, self).__init__(x, y)
        self.color = blue
        self.positions =
                                    ( (0,0),
                                    (0,
                                    offset),
        (0, 2*
    offset),
        (-
```

$$
\begin{aligned}
& \text { offset, } \\
& 2 \text { *offset } \\
& \text {) } \\
& (0,0),(\\
& \text { offset, } \\
& \text { 0) , (} 2 \text { * } \\
& \text { offset, } \\
& \text { 0) , (} 2 \text { * } \\
& \text { offset, } \\
& \text { offset) } \\
& \text {), } \\
& (0,0),(\\
& \text { offset, } \\
& 0) \text { (} 0 \text {, } \\
& \text { offset), } \\
& \text { (0, 2* } \\
& \text { offset) }
\end{aligned}
$$

]
 class Grid(object):

```
def __init__(self):
    self.current = None
    self.next = None
    self.blocks = []
    self.next_piece()
```

```
self.total_cleared_lines = 0
self.cleared_lines = 0
self.level = 1
self.score = 0
self.lines_til_next_level = lines_per_level
self.delay = delay
#self.bitcount = 0
self.game_over = False
self.next_rect = pygame.Rect(150+125,
    90+100, 300, 300)
# this is for multiplying scores
self.multiplier =
    0:0,
    # no
    lines
    cleared
    1 : 40,
    # single
    line
    cleared
    2 : 100,
    # two
    lines
    cleared
    3:300,
        # three
        lines
        cleared
    4 : 400
        # TETRIS
    }
self.nfont = pygame.font.Font(None, 24)
self.largefont = pygame.font.Font(None, 40)
```

```
    self.smallfont = pygame.font.Font(None, 14)
```

```
def random_piece(self):
    rekkefolge =
            [3,5,3,5,4,0,1,5,5,1,1,2,1,2,5,2,3,0,2,2,0,3,6,0,4,5
pcs = {
                        0 : ZPiece(*next_point),
                        1 : OPiece(*next_point),
                        2 : SPiece(*next_point),
                        3 : TPiece(*next_point),
                        4 : IPiece(*next_point),
                            5 : LPiece(*next_point),
                            6 : JPiece(*next_point)
        }
```

 global bitnumber
 c = rekkefolge[bitnumber]
 bitnumber \(+=1\)
 return pcs[c]
 def next_piece(self):
if not self.next:
self.next $=$ self.random_piece()
self.current $=$ self.random_piece()
else:
self.current $=$ self.next
self.next $=$ self.random_piece()
self.current.set_point(*start_point)
def move_down(self):
if(self.current.y < theight+100):
self.current. $y+=$ offset
if self.has_overlap():
self.current.y $-=$ offset
self.current.mobile $=$ False
else:
self.current.mobile = False

```
    if self.current.mobile == False and self.
        current.y == 100:
            self.game_over = True
# this is a hard drop - just go all the way down
    until you hit something
def drop_down(self):
    while(self.current.mobile): self.move_down
        ()
def move_right(self):
    if(self.current.mobile): self.current.x +=
        offset
    if self.has_overlap(): self.current.x -=
        offset
def move_left(self):
    if(self.current.mobile): self.current.x -=
        offset
    if self.has_overlap(): self.current.x +=
        offset
# TODO: wall kick logic needed
def rotate(self):
    self.current.flip()
    while self.has_overlap(): self.current.flip
        ()
# Saves individual blocks of the current piece -
    they become part of the grid
# Automatically check for lines
def remember_block_positions(self):
    self.blocks.extend(self.current.get_blocks
        ())
    self.next_piece()
    self.blocks = sorted(self.blocks, key=
        lambda block: block.y)
    self.check_for_lines()
```

\#for b in self.blocks: print str(b.y)+", " def draw_blocks(self):
for b in self.blocks: b.draw ()
\# check if current piece overlaps with walls or with other pieces
def has_overlap (self):
blocks $=$ self.current.get_blocks()
for b in blocks:
if b.x < 125 or b.x > right_edge or $\mathrm{b} \cdot \mathrm{y}<100$ or $\mathrm{b} \cdot \mathrm{y}>$ bottom_edge: return True
\# TODO: optimize the shit out of this for b in self.blocks: for c in self.current.get_blocks(): if $b . x==c \cdot x$ and $b \cdot y==c$. $y:$ return True
return False
\# TODO: there ought to be a better way to do this def check_for_lines (self):

```
lines = {}
for b in self.blocks:
    if b.y in lines:
                        lines[b.y] +=1
        else:
        lines[b.y] = 1
    lines_to_be_destroyed = []
    for ln in lines:
        if lines[ln] == 10:
        self.total_cleared_lines +=
        1
    self.cleared_lines += 1
```

```
lines_to_be_destroyed.
    append(ln)
    for l in lines_to_be_destroyed:
        self.destroy_line(l)
    copy_of_blocks = self.blocks[:]
    if len(lines_to_be_destroyed) > 0:
    self.collapse_hovering_blocks(min(
        lines_to_be_destroyed), len(
        lines_to_be_destroyed))
    #for ln in lines_to_be_destroyed:
        #self.
                                collapse_hovering_blocks
                                (ln, copy_of_blocks)
    self.calculate_score()
def destroy_line(self, ln):
    # note the slice notation - I'm iterating
        over a copy of self.blocks but removing
        # from the original
        for b in self.blocks[:]:
        if b.y == ln: self.blocks.remove(b)
def collapse_hovering_blocks(self, ln, total):
    """ drop down all the blocks that are
        hovering """
    for i,b in enumerate(self.blocks):
        if b.y < ln:
        self.blocks[i].y += offset
                            * total
def block_overlaps(self, block, block_list):
```

```
for b in block_list:
    if block.y == b.y and block.x == b.
        x:
            return True
```

return False
def calculate_score(self):
\# score is calculated like so: M * (N + 1
) where:
\# M is multiplier (see self.multiplier)
\# N is level (self.level)
self.score $+=$ self.multiplier[self.
cleared_lines] * (self.level + 1)
tmp $=$ self.lines_til_next_level - self.
cleared_lines
if $t \mathrm{mp}<=0$:
self.level +=1
self.lines_til_next_level =
lines_per_level + tmp
self.delay -= self.level * 30
if self.delay < 10: self.delay = 10
else:
self.lines_til_next_level = tmp
self.cleared_lines $=0$
self.draw_text()
\# redraws the whole UI - we should really be
bliting this shit
def draw_ui(self):
pygame.draw.rect (screen, gray, (125,100,
right_edge+offset-125, bottom_edge+
offset-100))

```
for i in xrange(10): pygame.draw.line(
    screen, black, (i*offset+125, 100),
    (125+i*offset, theight+offset+100))
for i in xrange(24): pygame.draw.line(
    screen, black, (125, i*offset+100), (
    twidth+125, i*offset+100))
self.draw_text()
```

\# I really dislike the default font in pygame
def draw_text (self):
$m s g=s e l f . n f o n t . r e n d e r(" N E X T$ PIECE:", 1,
white)
screen.blit(msg, (250+125, 50+100))
pygame.draw.rect (screen, black, (250+125,
$200+100,200,100)$)
sc = self.nfont.render("YOUR SCORE: ", 1,
white)
screen.blit(sc, (240+125, 250+100))
$\mathrm{sc}=$ self.largefont.render(str(self.score)
, 1, white)
screen.blit(sc, (270+125, 270+100))
\#sc = self.nfont.render("LINES: " + str(
self.total_cleared_lines), 1, white)
\#screen.blit(sc, (250, 280))
\#Sc = self.nfont.render("LEVEL: " + str(
self.level), 1, white)
\#screen.blit(sc, (250, 260))
\#msg = self.smallfont.render("Left, Right
Arrow to move", 1, white)
\#screen.blit(msg, (230, 290))
\#msg = self.smallfont.render("Up Arrow to
flip", 1, white)
\#screen.blit(msg, (230, 300))

```
#msg = self.smallfont.render("Down Arrow to
            move downw", 1, white)
    #screen.blit(msg, (230, 310))
    #msg = self.smallfont.render("Space or
        Enter to drop down", 1, white)
    #screen.blit(msg, (230, 320))
    #msg = self.smallfont.render("Esc to pause,
        F1 for new game", 1, white)
    #screen.blit(msg, (230, 330))
    #screen.blit(self.smallfont.render("ver
        0.2", 1, white), (230, 350))
        def draw_game_over(self):
            msg = self.largefont.render("GAME OVER", 1,
            red)
            screen.blit(msg, (195+125,95+100))
            #msg2 = self.nfont.render("PRESS F1 TO PLAY
                AGAIN", 1, red)
            #screen.blit(msg2, (175, 130))
# magic
screen = pygame.display.set_mode(size)
pygame.key.set_repeat(100, 150)
#pygame.time.set_timer(USEREVENT+1, delay)
grid = Grid()
clock = pygame.time.Clock()
paused = False
time_elapsed = 0
while st == 1:
    currentTime = time.time()
    if grid.total_cleared_lines>lastlinecount:
```

```
    positivesound.play()
    lastlinecount=grid.total_cleared_lines
    counter+=1
if not paused and not grid.game_over:
    time_elapsed += clock.tick()
    #print str(grid.delay)
    # timed block drop
    if time_elapsed > grid.delay:
        time_elapsed = 0
        grid.move_down()
    # check if a line was created and remove it
    grid.check_for_lines()
    # clear the next piece area
    pygame.draw.rect(screen, black, grid.
        next_rect)
    # draw the gridlines
grid.draw_ui()
    # if the current piece is locked in place
        memorize it's position
    if not grid.current.mobile:
                                grid.remember_block_positions()
    # draw the memorized blocks
    grid.draw_blocks()
for event in pygame.event.get():
    if event.type == pygame.QUIT: sys.exit()
    if event.type == KEYDOWN:
        if event.key == K_ESCAPE: paused =
        not paused
        if event.key == K_F1:
        grid = Grid()
```

```
    clock = pygame.time.clock()
    counter = 0
    paused = False
    time_elapsed = 0
if mode == True:
    if not paused and not grid.
        game_over:
            if event.key == K_d
            : grid.move_left
            ()
    if event.key == K_a
        : grid.
        move_right()
    if event.key == K_s
        : grid.move_down
            ()
    if event.key == K_w
        : grid.rotate()
    if event.key ==
        K_SPACE: grid.
        drop_down()
    if event.key ==
        K_RETURN: grid.
        drop_down()
    if event.key == K_q
        : mode = False
    if event.key == K_1
        : grid.delay =
        100
    if event.key == K_2
        : grid.delay =
        200
    if event.key == K_3
        : grid.delay =
        300
    if event.key == K_4
        : grid.delay =
        400
    if event.key == K_5
        : grid.delay =
        500
    if event.key == K_6
        : grid.delay =
        6 0 0
```

```
    if event.key == K_7
    : grid.delay =
    700
    if event.key == K_8
    : grid.delay =
    800
    if event.key == K_9
        : grid.delay =
        900
    if event.key == K_0
        : grid.delay =
        1000
    if event.key ==
        K_UP: counter
        +=1;
        positivesound.
        play()
    if event.key ==
        K_DOWN: counter
        -=1.5;
        if event.key == K_m
        : counter-=4
    if event.key == K_p
        : st=0
if mode == False:
    if not paused and not grid.
        game_over:
            if event.key == K_d
            : grid.
            move_right()
    if event.key == K_a
        : grid.move_left
        ()
    if event.key == K_s
        : grid.move_down
            ()
    if event.key == K_w
        : grid.rotate()
    if event.key ==
        K_SPACE: grid.
        drop_down()
    if event.key ==
        K_RETURN: grid.
        drop_down()
    if event.key == K_e
```

```
    : mode = True
    if event.key == K_1
    : grid.delay =
    100
    if event.key == K_2
    : grid.delay =
    200
if event.key == K_3
    : grid.delay =
    300
    if event.key == K_4
    : grid.delay =
    400
    if event.key == K_5
        : grid.delay =
        500
    if event.key == K_6
        : grid.delay =
        6 0 0
    if event.key == K_7
        : grid.delay =
        700
    if event.key == K_8
        : grid.delay =
        800
    if event.key == K_9
        : grid.delay =
        900
    if event.key == K_0
        : grid.delay =
        1000
    if event.key ==
    K_UP: counter
    +=1;
    positivesound.
    play()
    if event.key ==
        K_DOWN: counter
    -=1.5;
    if event.key == K_m
    : counter-=4
    if event.key == K_p
    : st=0
```

if not paused and not grid.game_over:

```
grid.current.draw() # draw current
    piece
grid.next.draw() # draw the next
```

 piece
 if counter < 0 :
currentcolor $=$ red
else:
currentcolor = green
if counter >=11: counter = 11
if counter <=-10: counter = -10
pygame.draw.rect(screen, black,
(370+125,100,200,1000), 0)
screen.blit (perf, ($405+125,100+50)$)
\#screen.blit(timeshow, (250, 300))
if grid.score >= highscore and
highscorecount >=0:
highscore+=630
grid.delay -=100
highscorecount-=1
paused = not paused
pygame.mixer.music.set_volume (0.1)
levelupsound.play()
if highscorecount==2:
pygame.draw.rect (screen,
black, ($0,0,800,600$), 0)
screen.blit(thirdplace1,
(150, 200))
pygame.display.flip()
sleep(0.2)
pygame.draw.rect (screen,
black, (0,0,800,600), 0)
screen.blit(thirdplace2,
(150, 200))
pygame.display.flip()
sleep(0.2)
pygame.draw.rect (screen,
black, (0,0,800,600), 0)
screen.blit(thirdplace1,
(150, 200))
pygame.display.flip()
sleep(0.2)
pygame.draw.rect (screen,
black, ($0,0,800,600$), 0)
screen.blit(thirdplace2,
(150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, ($0,0,800,600), 0)$
screen.blit(thirdplace1, (150, 200))
pygame.display.flip()
sleep (1)
pygame.draw.rect (screen, black, (0,0,800,600), 0)
pygame.display.flip()
if highscorecount==1:
pygame.draw.rect (screen, black, $(0,0,800,600), 0)$
screen.blit (secondplace1, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, ($0,0,800,600), 0)$
screen.blit (secondplace2, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, $(0,0,800,600), 0)$
screen.blit (secondplace1, (150, 200))
pygame.display.flip()
sleep(0.2)
pygame.draw.rect (screen, black, ($0,0,800,600)$, 0)
screen.blit (secondplace2, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, ($0,0,800,600)$, 0)
screen.blit (secondplace1, (150, 200))
pygame.display.flip()
sleep (1)
pygame.draw.rect (screen, black, $(0,0,800,600), 0)$
pygame.display.flip()
if highscorecount==0:
pygame.draw.rect (screen, black, (0,0,800,600), 0)
screen.blit(inthelead1, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, ($0,0,800,600), 0)$
screen.blit(inthelead2, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, (0,0,800,600), 0)
screen.blit(inthelead1, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, ($0,0,800,600), 0)$
screen.blit (inthelead2, (150, 200))
pygame.display.flip()
sleep (0.2)
pygame.draw.rect (screen, black, ($0,0,800,600), 0$)
screen.blit (inthelead1, (150, 200))
pygame.display.flip()
sleep (1)
pygame.draw.rect (screen, black, $(0,0,800,600), 0)$
pygame.display.flip()
pygame.mixer.music.set_volume (1)
paused $=$ not paused
if highscorecount $==3$:
screen.blit (timeFont.render ("3rd
place score:",1,white),
$(235+125,100+180)$)
screen.blit(myfont3.render (str (
highscore), 1, white),
$(270+125,100+200)$)

```
elif highscorecount == 2:
    screen.blit (timeFont.render("2nd
        place score:",1,white),
        (235+125,100+180))
    screen.blit(myfont3.render(str(
        highscore),1,white),
        (270+125,100+200))
elif highscorecount == 1:
    screen.blit(timeFont.render("1st
        place score:",1,white),
        (235+125,100+180))
    screen.blit(myfont3.render(str(
        highscore),1,white),
        (270+125,100+200))
    else:
        screen.blit(myfont3.render("YOU ARE
            NOW",1,white),
            (200+125,100+170))
    screen.blit(myfont3.render("IN THE
        LEAD!",1,white),
        (200+125,200+100))
    #else:
    # screen.blit(highscoreFont,
    (220,180))
# screen.blit(myfont3.render(
    str(highscore),1,white), (270,200))
if currentTime - lastTime > 1:
    countdown-=1
    if countdown <= 0:
                                    countdown = 0
    lastTime = currentTime
m, s = divmod(countdown, 60)
#if m >= 1:
# screen.blit(timeFont.render(str(m)
    ,1,white), (305, 300))
# screen.blit(timeFont.render(":",1,
    white), (313, 300))
# screen.blit(timeFont.render(str(s)
    ,1,white), (320, 300))
#else:
# screen.blit(timeFont.render(str(s)
        ,1,white), (320, 300))
pygame.draw.rect(screen, currentcolor,
        (400+125,100+230,150,-counter*15), 0)
#screen.blit(img, (180, 250))
```

```
    pygame.display.flip()
# draw game over message
if grid.game_over:
    #grid.draw_game_over()
    counter = 0
    highscorecount=3
    highscore = 1410
    if currentTime - lastTime > 1:
        countdown-=1
        if countdown <= 0:
                countdown = 0
        lastTime = currentTime
    #pygame.display.flip()
    grid = Grid()
    clock = pygame.time.Clock()
    counter = 0
    paused = False
    time_elapsed = 0
```


Appendix I - Machine Learning, Classification of Postions and Leaning

Claasification Algorithm

```
    # coding=utf-8
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import neighbors, datasets
from sklearn import svm
from sklearn.metrics import accuracy_score
from time import time
from time import sleep
from collections import Counter
from sklearn.model_selection import train_test_split
import serial
```

\#Definisjon av underfunksjonene, som kalles p i
hovedscriptet:

```
#Gj r datasettet klart til maskinl ringa
def preProcessing(dataset):
    trainValidation_dataset = pd.DataFrame.from_csv(dataset
        )
    train, validation = train_test_split(
        trainValidation_dataset, test_size=0.2)
    # labels
    labels_train = train['Label']
    labels_validation = validation['Label']
    # features
    features_train = train.drop('Label', 1)
    features_validation = validation.drop('Label', 1)
    return features_train, features_validation,
        labels_train, labels_validation
```

\#Trener til K-Ball-tree, men du kan lett bytte ut med en
annen sklearn-algoritme

```
def model_train(features_train, features_validation,
    labels_train, labels_validation):
    # KD-Tree
    t0 = time()
    clfKD = neighbors.KNeighborsClassifier(8, weights='
            distance', algorithm='kd_tree')
    clfKD.fit(features_train, labels_train)
    validation = clfKD.predict(features_validation)
    print 'KD Initialize speed:', round((time() - t0) *
        1000, 2), 'ms'
    t0 = time()
    print 'KD Marginal 1000:', round((time() - t0) * 1000,
        2), 'ms'
    print 'Validation accuracy\t', accuracy_score(
        labels_validation, validation)
    mistakeList = []
#print validation, type(validation)
#print features_validation[1], type(features_validation[1])
    temp=[]
    for x in range (0,len(labels_validation.keys())):
    #print labels_validation[labels_validation.keys()[x]]
    #print labels_validation.keys()[x]
        if labels_validation[labels_validation.keys()[x]]!=
            validation[x]:
                temp=[labels_validation[labels_validation.keys
                    () [x]],validation[x]]
                mistakeList.append(temp)
    print mistakeList
    Overview = Counter(tuple(e) for e in mistakeList)
    print Overview
    for x in range(0, len(Overview.keys())):
        print 'True:\t', positionDict[Overview.keys()[x
            ][0]], '\t', 'Guessed:\t', positionDict[Overview
            .keys()[x][1]], '\t', 'Count:\t', Overview[
            Overview.keys()[x]]
    return clfKD
```

\#Start kommunikasjon med arduino
def arduino_start (COM, BAUD):
print 'arduino_start'
arduino=serial.Serial (COM, BAUD)

```
    sleep(5)
    return arduino
#Les av verdi(er) fra arduino
def arduino_read(arduino):
    print 'arduino_read'
    #arduino write: for starte opp arduino, som ellers
        er i en loop "while python not sending a command, do
        nothing..."
    arduino.write('1')
    sleep(0.97)
    #venter til arduino har sendt et signal f r den leser
        ...
    while True:
        if arduino.inWaiting() > 0:
            data = arduino.readline()
            data = data.strip('\r\n')
            data = data.split(',')
            #data = [map(int, data) for x in data]
            #for i in range(data):
                # data[i] = int(data)
            #break
                #ha passende antall sensorer, her 14
                    trykksensorer og to capacitive sensorer (P1
                    = pressure 1)
                datapoint = pd.Series(data, index =['P1', 'P2',
                    'P3', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', '
                P10','P11','P12','P13','P14'] )
                #print datapoint
                return datapoint
def Prediction(datapoint, classifier):
    guess = classifier.predict(datapoint) [0]
    #print guess
    return guess
def file_read(number):
        dir = 'C:/Users/helge/Google Drive/Master/
            Experiment (1)/SensorData/mega/Rawdata/Mega_312_
            ,
        megafil = open(dir + number + '.txt', 'r')
        data = megafil.readline()
        data = data.strip('\r\n')
        data = data.split(';')
```

```
#tid = data.pop
    (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
data.pop(16)
data.pop(15)
data.pop(0)
print data
datapoint = pd.Series(data, index =['P1', 'P2', 'P3
    ', 'P4', 'P5', 'P6', 'P7', 'P8', 'P9', 'P10','
    P11','P12','P13','P14'] )
return datapoint
#Hva forskjellige labels skal v re (de du bruker n r du
    lager dataset)
positionDict = {1: 'Helt tilbake med hodet', 2: 'Helt
    tilbake uten hodet', 3: 'fremoverlent ikke kors', 4:'
    slouching med hodet',5:'slouching uten hodet',6:'
    h yrelent',7:'venstrelent',}
```

\#Her kj rer koden, med funksjonene som er definert over... du kan evt $k j$ re de fra et eget script, og kalle p machineLearning."funksjonnavn"...

```
#Velg hvilket dataset du skal bruke til training
dataset = 'positions.csv'
features_train, features_validation, labels_train,
    labels_validation = preProcessing(dataset)
classifier = model_train(features_train,
    features_validation, labels_train, labels_validation)
```

\#Sett inn COMPORT og baudrate (du finner det i arduinoIDE
$n \quad r$ du velger port)
\#arduino = arduino_start('COM4',115200)
\#directory = 'C:/Users/helge/Google Drive/Master/ML/logdata
/'
\#filename = directory + raw_input('Define log data filename
: ') + '.csv'
\#start_time $=$ time()
\#number $=$ raw_input('candidate number')
\#dir = 'C:/Users/helge/Google Drive/Master/Experiment (1)/
SensorData/mega/Rawdata/Mega_312_'
\#megafile $=$ open (dir + number + '.txt', 'r')
\#For n prediction
\#datapoint = arduino_read(arduino)

```
#prediction= Prediction(datapoint,classifier)
#print "Predicted position: ",positionDict[prediction]
countfile = 0
#for predicitons fram til du drar ut USB:
for i in range(6,40):
    directory = 'C:/Users/helge/Google Drive/Master/ML/
        logdata/'
    filename = directory + 'nypositions' + str(i) + '.
        csv'
    dir = 'C:/Users/helge/Google Drive/Master/
        Experiment (1)/SensorData/mega/Rawdata/Mega_312_
        ,
    megafile = open(dir + str(i) + '.txt', 'r')
    count = 1
    countfile += 1
    #datapoint = file_read(number)
    for line in megafile:
            print countfile
            print count
            count+=1
            data = line
            if len(line) < 22:
                                    prediction = 0
            else:
                data = data.strip('\r\n')
                    data = data.split(';')
                #tid = data.pop
                    (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
                    data.pop(16)
                    data.pop(15)
                    data.pop(0)
                    #print data
                    datapoint = pd.Series(data, index
                            =['P1', 'P2', 'P3', 'P4', 'P5',
                    'P6', 'P7', 'P8', 'P9', 'P10','
                    P11','P12','P13','P14'] )
                    prediction = Prediction(datapoint,
                    classifier)
            #print "Predicted position: ", positionDict
                [prediction]
            with open(filename, 'a') as file:
                file.write(str(prediction) + '\n')
```


Learning Data Set Positions

| 420 | 873 | 831 | 5 | 757 | 981 | 1011 | 986 | 1004 | 353 | 5 | 997 | 140 | 751 | 858 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 421 | 873 | 831 | 5 | 752 | 980 | 1010 | 986 | 1004 | 350 | 5 | 997 | 140 | 752 | 858 | 5 |
| 422 | 873 | 831 | 5 | 751 | 981 | 1011 | 986 | 1004 | 352 | 5 | 997 | 140 | 751 | 857 | 5 |
| 423 | 874 | 831 | 5 | 741 | 981 | 1011 | 986 | 1004 | 357 | 5 | 998 | 140 | 727 | 850 | 5 |
| 424 | 874 | 831 | 5 | 742 | 981 | 1011 | 986 | 1004 | 352 | 5 | 998 | 141 | 733 | 851 | 5 |
| 425 | 873 | 831 | 5 | 749 | 981 | 1011 | 986 | 1004 | 354 | 5 | 997 | 141 | 748 | 858 | 5 |
| 426 | 839 | 802 | 4 | 632 | 989 | 852 | 1007 | 1011 | 302 | 5 | 538 | 131 | 777 | 5 | 6 |
| 427 | 844 | 806 | 4 | 617 | 991 | 852 | 1007 | 1011 | 310 | 4 | 118 | 131 | 818 | 4 | 6 |
| 428 | 848 | 805 | 4 | 643 | 992 | 851 | 1007 | 1011 | 302 | 4 | 276 | 133 | 828 | 4 | 6 |
| 429 | 850 | 808 | 5 | 643 | 992 | 850 | 1007 | 1011 | 305 | 5 | 354 | 134 | 826 | 4 | 6 |
| 430 | 851 | 808 | 4 | 655 | 992 | 848 | 1008 | 1011 | 305 | 5 | 398 | 134 | 822 | 4 | 6 |
| 431 | 851 | 807 | 4 | 655 | 993 | 845 | 1007 | 1011 | 297 | 4 | 407 | 135 | 827 | 5 | 6 |
| 432 | 852 | 808 | 5 | 648 | 993 | 846 | 1008 | 1011 | 292 | 4 | 368 | 135 | 833 | 5 | 6 |
| 433 | 853 | 808 | 5 | 654 | 993 | 844 | 1008 | 1011 | 307 | 4 | 389 | 135 | 833 | 4 | 6 |
| 434 | 853 | 808 | 4 | 653 | 993 | 841 | 1008 | 1011 | 309 | 4 | 431 | 137 | 832 | 4 | 6 |
| 435 | 854 | 805 | 4 | 670 | 993 | 836 | 1008 | 1011 | 316 | 4 | 456 | 137 | 835 | 4 | 6 |
| 436 | 854 | 805 | 4 | 666 | 993 | 822 | 1008 | 1012 | 323 | 4 | 456 | 137 | 835 | 4 | 6 |
| 437 | 854 | 804 | 5 | 664 | 993 | 863 | 1008 | 1011 | 328 | 4 | 470 | 137 | 833 | 5 | 6 |
| 438 | 854 | 805 | 4 | 667 | 993 | 863 | 1008 | 1011 | 334 | 4 | 483 | 137 | 834 | 4 | 6 |
| 439 | 855 | 803 | 5 | 670 | 994 | 863 | 1008 | 1012 | 334 | 5 | 482 | 138 | 837 | 4 | 6 |
| 440 | 855 | 803 | 5 | 688 | 994 | 862 | 1008 | 1011 | 327 | 4 | 494 | 137 | 838 | 5 | 6 |
| 441 | 855 | 804 | 5 | 691 | 994 | 860 | 1008 | 1012 | 327 | 4 | 506 | 138 | 839 | 5 | 6 |
| 442 | 856 | 805 | 4 | 696 | 994 | 860 | 1008 | 1011 | 321 | 4 | 464 | 139 | 841 | 4 | 6 |
| 443 | 856 | 807 | 5 | 687 | 994 | 855 | 1009 | 1012 | 323 | 4 | 493 | 139 | 841 | 5 | 6 |
| 444 | 856 | 806 | 5 | 691 | 995 | 856 | 1008 | 1012 | 337 | 4 | 504 | 139 | 835 | 5 | 6 |
| 445 | 856 | 807 | 5 | 689 | 995 | 858 | 1008 | 1012 | 345 | 5 | 524 | 139 | 831 | 4 | 6 |
| 446 | 856 | 807 | 4 | 681 | 995 | 860 | 1009 | 1012 | 338 | 4 | 548 | 139 | 831 | 4 | 6 |
| 447 | 856 | 807 | 4 | 687 | 995 | 858 | 1009 | 1012 | 343 | 4 | 535 | 139 | 838 | 5 | 6 |
| 448 | 857 | 797 | 5 | 674 | 994 | 850 | 1008 | 1012 | 335 | 4 | 661 | 140 | 823 | 5 | 6 |
| 449 | 857 | 802 | 5 | 681 | 994 | 853 | 1008 | 1012 | 334 | 4 | 591 | 140 | 833 | 4 | 6 |
| 450 | 857 | 803 | 4 | 684 | 994 | 853 | 1009 | 1012 | 324 | 4 | 585 | 140 | 834 | 5 | 6 |
| 451 | 857 | 804 | 5 | 689 | 995 | 854 | 1008 | 1012 | 319 | 4 | 563 | 140 | 836 | 5 | 6 |
| 452 | 857 | 804 | 5 | 690 | 995 | 855 | 1009 | 1012 | 317 | 5 | 552 | 140 | 836 | 5 | 6 |
| 453 | 857 | 805 | 4 | 692 | 995 | 855 | 1009 | 1012 | 311 | 4 | 565 | 141 | 833 | 4 | 6 |
| 454 | 858 | 805 | 5 | 692 | 996 | 857 | 1009 | 1012 | 309 | 4 | 577 | 141 | 827 | 4 | 6 |
| 455 | 857 | 806 | 5 | 694 | 996 | 858 | 1009 | 1012 | 307 | 4 | 617 | 141 | 815 | 4 | 6 |
| 456 | 858 | 806 | 5 | 690 | 996 | 856 | 1008 | 1012 | 309 | 4 | 604 | 141 | 827 | 5 | 6 |
| 457 | 858 | 806 | 4 | 698 | 996 | 857 | 1009 | 1012 | 307 | 5 | 618 | 141 | 828 | 4 | 6 |
| 458 | 858 | 807 | 5 | 698 | 996 | 856 | 1009 | 1012 | 316 | 5 | 594 | 141 | 832 | 5 | 6 |
| 459 | 870 | 812 | 4 | 832 | 826 | 906 | 1006 | 1003 | 281 | 4 | 5 | 136 | 4 | 1006 | 7 |
| 460 | 875 | 781 | 4 | 762 | 902 | 902 | 1006 | 1006 | 326 | 4 | 4 | 138 | 5 | 1006 | 7 |
| 461 | 880 | 739 | 4 | 806 | 928 | 913 | 1008 | 1005 | 386 | 4 | 4 | 141 | 4 | 995 | 7 |
| 462 | 882 | 746 | 4 | 811 | 941 | 911 | 1008 | 1006 | 371 | 5 | 4 | 141 | 4 | 999 | 7 |
| 463 | 883 | 751 | 4 | 806 | 949 | 915 | 1008 | 1006 | 371 | 5 | 4 | 142 | 4 | 999 | 7 |
| 464 | 884 | 753 | 4 | 805 | 953 | 918 | 1008 | 1006 | 371 | 4 | 4 | 142 | 4 | 999 | 7 |
| 465 | 886 | 756 | 4 | 809 | 956 | 919 | 1008 | 1007 | 385 | 5 | 4 | 142 | 4 | 999 | 7 |
| 466 | 886 | 757 | 4 | 800 | 958 | 921 | 1008 | 1007 | 383 | 4 | 4 | 142 | 4 | 999 | 7 |
| 467 | 886 | 757 | 4 | 783 | 961 | 922 | 1008 | 1007 | 383 | 4 | 4 | 142 | 4 | 998 | 7 |
| 468 | 887 | 760 | 4 | 785 | 962 | 921 | 1008 | 1008 | 385 | 4 | 5 | 142 | 4 | 997 | 7 |
| 469 | 888 | 761 | 4 | 786 | 964 | 918 | 1008 | 1007 | 383 | 4 | 4 | 142 | 4 | 998 | 7 |
| 470 | 888 | 764 | 4 | 791 | 964 | 919 | 1008 | 1008 | 389 | 4 | 4 | 142 | 4 | 998 | 7 |
| 471 | 889 | 764 | 4 | 796 | 965 | 919 | 1008 | 1008 | 386 | 4 | 4 | 144 | 4 | 998 | 7 |
| 472 | 889 | 765 | 4 | 796 | 966 | 920 | 1008 | 1008 | 389 | 5 | 4 | 144 | 4 | 998 | 7 |
| 473 | 889 | 765 | 4 | 795 | 966 | 920 | 1008 | 1008 | 396 | 4 | 4 | 144 | 4 | 999 | 7 |
| 474 | 890 | 766 | 4 | 796 | 967 | 920 | 1009 | 1008 | 393 | 4 | 4 | 144 | 4 | 999 | 7 |
| 475 | 890 | 768 | 4 | 796 | 968 | 922 | 1008 | 1008 | 388 | 5 | 4 | 144 | 4 | 999 | 7 |
| 476 | 890 | 768 | 4 | 798 | 968 | 919 | 1009 | 1008 | 394 | 4 | 4 | 144 | 5 | 999 | 7 |
| 477 | 891 | 768 | 4 | 797 | 969 | 920 | 1008 | 1008 | 389 | 5 | 4 | 144 | 4 | 999 | 7 |
| 478 | 891 | 768 | 4 | 800 | 969 | 921 | 1009 | 1008 | 386 | 5 | 5 | 145 | 4 | 999 | 7 |
| 479 | 891 | 769 | 4 | 798 | 970 | 924 | 1009 | 1008 | 386 | 4 | 4 | 145 | 4 | 1000 | 7 |
| 480 | 891 | 770 | 4 | 797 | 970 | 924 | 1009 | 1008 | 385 | 5 | 4 | 145 | 4 | 1000 | 7 |
| 481 | 891 | 770 | 4 | 796 | 970 | 925 | 1009 | 1008 | 386 | 5 | 4 | 145 | 4 | 999 | 7 |
| 482 | 892 | 771 | 4 | 794 | 971 | 925 | 1009 | 1008 | 385 | 4 | 4 | 145 | 5 | 999 | 7 |
| 483 | 892 | 770 | 4 | 796 | 971 | 925 | 1009 | 1009 | 388 | 5 | 4 | 146 | 5 | 999 | 7 |
| 484 | 892 | 771 | 4 | 797 | 971 | 924 | 1009 | 1008 | 389 | 5 | 5 | 146 | 4 | 1000 | 7 |
| 485 | 892 | 771 | 4 | 799 | 972 | 925 | 1009 | 1009 | 385 | 5 | 4 | 146 | 5 | 999 | 7 |
| 486 | 892 | 771 | 4 | 798 | 972 | 925 | 1009 | 1009 | 384 | 4 | 4 | 146 | 5 | 999 | 7 |
| 487 | 892 | 772 | 4 | 797 | 972 | 925 | 1009 | 1009 | 384 | 5 | 5 | 146 | 4 | 999 | 7 |
| 488 | 893 | 772 | 4 | 797 | 973 | 926 | 1009 | 1009 | 383 | 4 | 4 | 146 | 5 | 1000 | 7 |
| 489 | 893 | 773 | 4 | 794 | 973 | 926 | 1009 | 1009 | 382 | 4 | 4 | 146 | 4 | 999 | 7 |
| 490 | 893 | 774 | 4 | 794 | 973 | 926 | 1009 | 1009 | 380 | 4 | 5 | 146 | 4 | 999 | 7 |
| 491 | 893 | 773 | 4 | 789 | 974 | 926 | 1008 | 1009 | 380 | 4 | 4 | 145 | 5 | 1000 | 7 |
| 492 | 893 | 774 | 4 | 786 | 974 | 925 | 1009 | 1009 | 378 | 5 | 4 | 145 | 4 | 1000 | 7 |

Learning Data Set Leaning

| 252 | 879 | 878 | 5 | 1007 | 1005 | 904 | 1014 | 1014 | 1012 | 912 | 5 | 122 | 5 | 5 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 253 | 879 | 878 | 5 | 1007 | 1005 | 903 | 1014 | 1014 | 1012 | 921 | 5 | 125 | 5 | 5 | 4 |
| 254 | 880 | 879 | 5 | 1007 | 1005 | 905 | 1014 | 1013 | 1012 | 929 | 5 | 126 | 5 | 5 | 4 |
| 255 | 880 | 879 | 5 | 1007 | 1005 | 906 | 1014 | 1014 | 1012 | 928 | 5 | 127 | 5 | 5 | 4 |
| 256 | 880 | 880 | 5 | 1007 | 1005 | 905 | 1014 | 1014 | 1012 | 932 | 5 | 127 | 5 | 5 | 4 |
| 257 | 881 | 880 | 5 | 1008 | 1005 | 906 | 1014 | 1014 | 1012 | 933 | 5 | 127 | 5 | 5 | 4 |
| 258 | 881 | 880 | 5 | 1008 | 1006 | 906 | 1014 | 1014 | 1012 | 936 | 5 | 128 | 5 | 5 | 4 |
| 259 | 881 | 881 | 5 | 1008 | 1006 | 907 | 1014 | 1014 | 1012 | 936 | 5 | 129 | 5 | 5 | 4 |
| 260 | 882 | 881 | 5 | 1008 | 1005 | 908 | 1014 | 1014 | 1012 | 932 | 5 | 128 | 5 | 5 | 4 |
| 261 | 882 | 881 | 5 | 1008 | 1006 | 908 | 1014 | 1014 | 1012 | 931 | 5 | 129 | 5 | 5 | 4 |
| 262 | 882 | 881 | 5 | 1008 | 1006 | 908 | 1014 | 1014 | 1012 | 935 | 5 | 129 | 5 | 5 | 4 |
| 263 | 881 | 882 | 5 | 1008 | 1006 | 909 | 1014 | 1014 | 1012 | 940 | 5 | 129 | 5 | 5 | 4 |
| 264 | 882 | 882 | 5 | 1008 | 1006 | 908 | 1014 | 1014 | 1012 | 941 | 5 | 130 | 5 | 5 | 4 |
| 265 | 882 | 882 | 5 | 1008 | 1006 | 908 | 1014 | 1014 | 1012 | 942 | 5 | 130 | 5 | 5 | 4 |
| 266 | 882 | 882 | 5 | 1008 | 1006 | 909 | 1014 | 1014 | 1012 | 942 | 5 | 129 | 5 | 5 | 4 |
| 267 | 883 | 882 | 5 | 1008 | 1005 | 909 | 1014 | 1014 | 1012 | 944 | 5 | 129 | 4 | 5 | 4 |
| 268 | 882 | 882 | 5 | 1008 | 1006 | 909 | 1014 | 1014 | 1012 | 943 | 5 | 129 | 5 | 5 | 4 |
| 269 | 883 | 882 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1012 | 946 | 5 | 129 | 5 | 5 | 4 |
| 270 | 883 | 882 | 5 | 1008 | 1006 | 909 | 1014 | 1014 | 1012 | 948 | 5 | 131 | 5 | 5 | 4 |
| 271 | 883 | 882 | 5 | 1008 | 1006 | 909 | 1014 | 1014 | 1013 | 949 | 5 | 131 | 5 | 5 | 4 |
| 272 | 883 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 947 | 5 | 132 | 5 | 5 | 4 |
| 273 | 883 | 882 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1012 | 948 | 5 | 132 | 5 | 5 | 4 |
| 274 | 884 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 948 | 5 | 134 | 5 | 5 | 4 |
| 275 | 883 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 949 | 5 | 135 | 5 | 5 | 4 |
| 276 | 884 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 950 | 5 | 135 | 5 | 5 | 4 |
| 277 | 884 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 953 | 5 | 136 | 5 | 5 | 4 |
| 278 | 884 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 953 | 5 | 136 | 5 | 5 | 4 |
| 279 | 884 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 954 | 5 | 137 | 5 | 5 | 4 |
| 280 | 884 | 883 | 5 | 1008 | 1006 | 910 | 1014 | 1014 | 1013 | 954 | 5 | 137 | 5 | 5 | 4 |
| 281 | 884 | 883 | 5 | 1008 | 1006 | 911 | 1014 | 1014 | 1013 | 953 | 5 | 137 | 5 | 5 | 4 |
| 282 | 884 | 883 | 5 | 1008 | 1006 | 911 | 1014 | 1014 | 1013 | 955 | 5 | 137 | 5 | 5 | 4 |
| 283 | 884 | 884 | 5 | 1008 | 1006 | 911 | 1014 | 1014 | 1013 | 955 | 5 | 136 | 5 | 5 | 4 |
| 284 | 884 | 884 | 5 | 1008 | 1006 | 911 | 1014 | 1014 | 1013 | 956 | 5 | 136 | 5 | 5 | 4 |
| 285 | 885 | 884 | 5 | 1008 | 1006 | 911 | 1014 | 1014 | 1013 | 948 | 5 | 136 | 5 | 5 | 4 |
| 286 | 885 | 884 | 5 | 1008 | 1006 | 912 | 1014 | 1014 | 1013 | 952 | 5 | 137 | 5 | 5 | 4 |
| 287 | 885 | 884 | 5 | 1008 | 1006 | 912 | 1014 | 1014 | 1013 | 951 | 5 | 137 | 5 | 5 | 4 |

Appendix J - Participant Consent Form

Fakultet for ingeniørvitenskap og teknologi

Request for Participation in Research Project

Warning

If you are epileptic, please make us aware of this.

Background and Purpose

The purpose of this project is to study the change of physiological reactions due to changes in affect. This experiment is part of a MSc at MTP, Norwegian University of Science and Technology.

What does participation in the project imply?

The participant will be asked to conduct a select number of rounds in a computer game, and data from these will be stored. After being introduced to the task, the participant will be guided through the experiment. The experiment is comprised of three parts; Part I, Part II and Part III. The participant will be asked to fill out several surveys as part of the experiment. A video recording of the participant will be made. The participant will be presented with true and erroneous information.

What will happen to the information about you?

All personal data will be treated anonymously. No name is connected to the gathered data. The only persons having access to the data are the two master students and their supervisor. In case of a publication, participants will therefore not be recognizable by name. The project is scheduled for completion by 01.07 .2017 . After this date the personal data will be stored encrypted.

Voluntary participation

The participation of this experiment is voluntary, and you can at any time choose to stop and withdraw from the experiment. If you would like to participate or if you have any questions concerning the project, please contact Erik Borge (+47 95222034) or Helge Garsmark (+47 94898375).

Consent for participation in the study

I have received information about the project and am willing to participate. I agree that data is collected, analyzed and published anonymously. I further agree to be confidential about the experiment to provide non-biased conditions for every participant.

Name of the participant (Please use capital letters) e-mail (for award purposes)

Signature (Please include Place \& Date)

| Postadresse | Org.nr. 974767880 | Besøksadresse | Telefon |
| :--- | :--- | :--- | :--- |
| 7491 Trondheim | E-post: | Richard Birkelandsvei 2b | +4791897830 |
| | martin.steinert@ntnu.no | Lab M66 | Telefaks |
| | http://www.ivt.ntnu.no/ipm/ | Gløshaugen | +4773594129 |

Appendix K - Background Information Questionnaire

Fakultet for ingeniørvitenskap og teknologi

Background Information Questionnaire

This questionnaire is designed to collect additional background information about you.

Part A. Education

The questions in this section are designed to collect information on your education.

A1. What is your current level of achieved education?

High SchoolBachelor's DegreeMaster's DegreePh.D.

A2. When did you graduate?
\square Year \square

A3. Please record your primary area of specialization.

Primary Area of Specialization: \qquad

A4. Are you currently studying for a degree? If no, skip to part B. If yes, please specify:High School
Bachelor's Degree
Master's DegreePh.D.

A5. When do you plan to graduate?

Month \square Year \square

A6. Please record your primary area of specialization.

Primary Area of Specialization: \qquad

Part B: Demographic Information

| Postadresse | Org.nr. 974767880 | Besøksadresse | Telefon |
| :--- | :--- | :--- | :--- |
| 7491 Trondheim | E-post: | Richard Birkelandsvei 2b | +4741646804 |
| | | | Telefaks |
| helgesg@stud.ntnu.no | | | |
| http://www.ivt.ntnu.no/ipm/ | Gløshaugen | +4773594129 | |

The questions in this section are designed to collect some of your demographic information.

B1. Are you:MaleFemale

B2. In what year were you born?

Year of Birth: $\square \square \square \square$

B3. What is your nationality (i.e. citizenship)?
Please specify if you have multiple citizenships.

Answer: \qquad

Part B: Specifics

The questions in this section are designed to collect some of your demographic information.

C1. How many cups of coffee did you drink today?None
$\square 2$ or 34 or more

C2. Are you feeling sick today?

C3a. Do you have any chronic illness? If no skip question C3b.

C3b. Is the illness affecting your emotion?

Part D: Further Participation

D1. Are you willing to receive follow-up questions or surveys of this study via e-mail in the future? If yes, please write your e-mail address below.

E-mail address: \qquad

Part E: General Information

You have just participated in an experiment on emotional state evaluation, containing elements of stimuli and physiological measurements.

As stimuli, you were presented with three tasks with different difficulty, in addition you were stimulated with different visuals and audio during the three tasks. The audio stimuli was both performance based and in general connected to the different tasks. You provided us with three different types of emotional feedback during this experiment. Also physiological data was collected from you through EMG, ECG, a distance sensor and the chair. The goal of this experiment is to provide qualitative data on the correlation between emotional state and physiological measurements, and further how a possible correlation can be used in affective research.

We wish to remind you to be confidential about the content of this experiment to provide nonbiased conditions for every participant, as stated in the consent form. We hope you enjoyed participating, and thank you kindly for your commitment of time to this experiment!

Thank you for your time and participation!

Appendix L - Correlation matrices

Table 7.1: Correlation Matrix, HRV, AD ACL, and Affect Grid

| Heart Rate Mean | Correlation
 Coefficient
 Sig.
 (2-tailed) | Heart Rate
 Mean | pNN50 | LF
 power | HF
 power | LF/HF | A1 | A2 | B1 | B2 | AD-ACL
 Total | Grid y-score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1.000 | -. 819 | -. 602 | -. 635 | . 223 | . 133 | -. 198 | . 149 | -. 197 | . 194 | . 088 |
| | | | . 000 | . 000 | . 000 | . 074 | . 292 | . 114 | . 237 | . 116 | . 121 | . 483 |
| pNN50 | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Correlation Coefficient | -. 819 | 1.000 | . 697 | . 878 | -. 420 | -. 219 | . 239 | -. 214 | . 279 | -. 248 | -. 151 |
| | Sig.
 (2-tailed) | . 000 | . | . 000 | . 000 | . 000 | . 080 | . 055 | . 087 | . 025 | . 046 | . 230 |
| LF power | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Correlation Coefficient | -. 602 | . 697 | 1.000 | . 673 | . 108 | -. 152 | . 025 | -. 107 | . 069 | -. 090 | -. 004 |
| | Sig.
 (2-tailed) | . 000 | . 000 | | . 000 | . 393 | . 227 | . 846 | . 394 | . 584 | . 478 | . 974 |
| HF power | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Correlation Coefficient | -. 635 | . 878 | . 673 | 1.000 | -. 601 | -. 224 | . 165 | -. 144 | . 249 | -. 180 | -. 142 |
| | Sig.
 (2-tailed) | . 000 | . 000 | . 000 | - | . 000 | . 072 | . 188 | . 252 | . 045 | . 152 | . 260 |
| LF/HF | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Correlation Coefficient | . 223 | -. 420 | . 108 | -. 601 | 1.000 | . 128 | -. 165 | . 061 | -. 195 | . 111 | . 123 |
| | Sig.
 (2-tailed) | . 074 | . 000 | . 393 | . 000 | | . 310 | . 189 | . 632 | . 119 | . 378 | . 330 |
| A1 | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Correlation Coefficient | . 133 | -. 219 | -. 152 | -. 224 | . 128 | 1.000 | -. 717 | . 641 | -. 659 | . 811 | . 697 |
| | Sig.
 (2-tailed) | . 292 | . 080 | . 227 | . 072 | . 310 | - | . 000 | . 000 | . 000 | . 000 | . 000 |
| A2 | N | 65 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | -. 198 | . 239 | . 025 | . 165 | -. 165 | -. 717 | 1.000 | -. 659 | . 737 | -. 879 | -. 725 |
| | Sig.
 (2-tailed) | . 114 | . 055 | . 846 | . 188 | . 189 | . 000 | | . 000 | . 000 | . 000 | . 000 |
| B1 | N | 65 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | . 149 | -. 214 | -. 107 | -. 144 | . 061 | . 641 | -. 659 | 1.000 | -. 682 | . 840 | . 691 |
| | Sig.
 (2-tailed) | . 237 | . 087 | . 394 | . 252 | . 632 | . 000 | . 000 | - | . 000 | . 000 | . 000 |
| B2 | N | 65 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | -. 197 | . 279 | . 069 | . 249 | -. 195 | -. 659 | . 737 | -. 682 | 1.000 | -. 873 | -. 794 |
| | Sig.
 (2-tailed) | . 116 | . 025 | . 584 | . 045 | . 119 | . 000 | . 000 | . 000 | | . 000 | . 000 |
| $\begin{aligned} & \text { AD-ACL } \\ & \text { total } \end{aligned}$ | N | 65 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | . 194 | -. 248 | -. 090 | -. 180 | . 111 | . 811 | -. 879 | . 840 | -. 873 | 1.000 | . 827 |
| | Sig.
 (2-tailed) | . 121 | . 046 | . 478 | . 152 | . 378 | . 000 | . 000 | . 000 | . 000 | | . 000 |
| Grid y-score | N | 65 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | . 088 | -. 151 | -. 004 | -. 142 | . 123 | . 697 | -. 725 | . 691 | -. 794 | . 827 | 1.000 |
| | Sig.
 (2-tailed) | . 483 | . 230 | . 974 | . 260 | . 330 | . 000 | . 000 | . 000 | . 000 | . 000 | - |
| | N | 65 | 65 | 65 | 65 | 65 | 67 | 67 | 67 | 67 | 67 | 67 |

Table 7.2: Complete correlation between the posture measures and the HRV features

| Number of Position Changes | Pearson
 Correlation Sig. (2-tailed) | Number of Position Changes | Leaning Chair | Leaning
 Lidar | Heart
 Rate
 Mean | pNN50 | LF power | HF power | LF/HF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | -. 107 | . 003 | . 318 | -. 235 | -. 027 | -. 124 | . 150 |
| | | | . 387 | . 983 | . 010 | . 059 | . 829 | . 324 | . 234 |
| | N | 67 | 67 | 67 | 65 | 65 | 65 | 65 | 65 |
| Leaning Chair | Pearson
 Correlation | -. 107 | 1 | -. 407 | . 088 | -. 261 | -. 283 | -. 164 | . 120 |
| | Sig.
 (2-tailed) | . 387 | | . 001 | . 488 | . 036 | . 022 | . 191 | . 341 |
| | N | 67 | 67 | 67 | 65 | 65 | 65 | 65 | 65 |
| | Pearson
 Correlation | . 003 | -. 407 | 1 | -. 208 | . 336 | . 257 | . 094 | . 082 |
| Leaning
 Lidar | Sig.
 (2-tailed) | . 983 | . 001 | | . 096 | . 006 | . 039 | . 457 | . 516 |
| | N | 67 | 67 | 67 | 65 | 65 | 65 | 65 | 65 |
| | Pearson
 Correlation | . 318 | . 088 | -. 208 | 1 | -. 776 | -. 578 | -. 368 | . 158 |
| Heart Rate Mean | Sig.
 (2-tailed) | . 010 | . 488 | . 096 | | . 000 | . 000 | . 003 | . 208 |
| | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| pNN50 | Pearson
 Correlation | -. 235 | -. 261 | . 336 | -. 776 | 1 | . 628 | . 671 | -. 367 |
| | Sig.
 (2-tailed) | . 059 | . 036 | . 006 | . 000 | | . 000 | . 000 | . 003 |
| | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Pearson
 Correlation | -. 027 | -. 283 | . 257 | -. 578 | . 628 | 1 | . 503 | . 178 |
| LF power | Sig. (2-tailed) | . 829 | . 022 | . 039 | . 000 | . 000 | | . 000 | . 157 |
| | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| HF power | Pearson
 Correlation | -. 124 | -. 164 | . 094 | -. 368 | . 671 | . 503 | 1 | -. 426 |
| | Sig.
 (2-tailed) | . 324 | . 191 | . 457 | . 003 | . 000 | . 000 | | . 000 |
| | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |
| | Pearson
 Correlation | . 150 | . 120 | . 082 | . 158 | -. 367 | . 178 | -. 426 | 1 |
| LF/HF | Sig.
 (2-tailed) | . 234 | . 341 | . 516 | . 208 | . 003 | . 157 | . 000 | |
| | N | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 |

Table 7.3: Complete correlation between the posture measures and the subjective measures

| | | Number of Position Changes | Leaning
 Chair | Leaning
 Lidar | A1 | A2 | B1 | B2 | AD-ACL
 Total | Grid y-score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Correlation Coefficient | 1.000 | -. 112 | . 032 | . 363 | -. 461 | . 276 | -. 464 | . 465 | . 433 |
| Number of Position | Sig. (2-tailed) | | . 365 | . 795 | . 003 | . 000 | . 024 | . 000 | . 000 | . 000 |
| Changes | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| Leaning
 Chair | Correlation Coefficient | -. 112 | 1.000 | -. 391 | . 040 | . 153 | . 054 | . 074 | -. 057 | . 005 |
| | Sig.
 (2-tailed) | . 365 | . | . 001 | . 745 | . 216 | . 667 | . 552 | . 644 | . 966 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | . 032 | -. 391 | 1.000 | . 118 | -. 190 | . 043 | . 021 | . 071 | -. 026 |
| Leaning
 Lidar | Sig.
 (2-tailed) | . 795 | . 001 | . | . 340 | . 124 | . 728 | . 866 | . 570 | . 833 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | . 363 | . 040 | . 118 | 1.000 | -. 717 | . 641 | -. 659 | . 811 | . 697 |
| A1 | Sig.
 (2-tailed) | . 003 | . 745 | . 340 | . | . 000 | . 000 | . 000 | . 000 | . 000 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | -. 461 | . 153 | -. 190 | -. 717 | 1.000 | -. 659 | . 737 | -. 879 | -. 725 |
| A2 | Sig.
 (2-tailed) | . 000 | . 216 | . 124 | . 000 | . | . 000 | . 000 | . 000 | . 000 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| B1 | Correlation Coefficient | . 276 | . 054 | . 043 | . 641 | -. 659 | 1.000 | -. 682 | . 840 | . 691 |
| | Sig.
 (2-tailed) | . 024 | . 667 | . 728 | . 000 | . 000 | | . 000 | . 000 | . 000 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | -. 464 | . 074 | . 021 | -. 659 | . 737 | -. 682 | 1.000 | -. 873 | -. 794 |
| B2 | Sig.
 (2-tailed) | . 000 | . 552 | . 866 | . 000 | . 000 | . 000 | . | . 000 | . 000 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| AD-ACL total | Correlation Coefficient | . 465 | -. 057 | . 071 | . 811 | -. 879 | . 840 | -. 873 | 1.000 | . 827 |
| | Sig.
 (2-tailed) | . 000 | . 644 | . 570 | . 000 | . 000 | . 000 | . 000 | | . 000 |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |
| | Correlation Coefficient | . 433 | . 005 | -. 026 | . 697 | -. 725 | . 691 | -. 794 | . 827 | 1.000 |
| Grid y-score | Sig.
 (2-tailed) | . 000 | . 966 | . 833 | . 000 | . 000 | . 000 | . 000 | . 000 | . |
| | N | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 |

Appendix M - Risk Assessment

$\stackrel{\text { Nive }}{ }$

| $1 \mathrm{e}-\mathrm{ii}$ | | Eksponering hud | 4 | A | A | A | A | 4A | Bruk hansker, ha datablad tilgjengelig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline 1 \mathrm{e}- \\ \text { iii } \end{array}$ | | Eksponering åndedrett | 4 | A | A | A | A | 4A | Bruk åndedretsvært/ god ventilasjon. Ha datablad tilgjengelig. |
| $\begin{aligned} & 1 \mathrm{e}- \\ & \mathrm{iv} \end{aligned}$ | | SøI | 4 | A | B | A | A | 4A | Ha papir/ rengjøringsmateriell tilgjengelig. Ha datablad tilgjengelig. |
| 2 | Tilstedeværelse ved arbeid utført av andre. | Se andres risikovurdering om sikkerhet betviles. | 3 | C | C | C | C | 3C | Hold et øye med hva som foregår rundt deg. |
| 3-i | Eksperimentelt arbeid | Skade ved fall e.l. | 2 | A | A | A | A | 2A | Sikre eksperimentelt utstyr. Førstehjelps-kit tilgjengelig. |
| 3-ii | | Anfall grunnet mye impuls | 2 | B | A | A | A | 2B | I forkant sikre at testsubjekter er rustet til det som skal gjøres i eksperimentet. Førstehjelps-kit tilgjengelig. |
| 3-iii | | Skade ved bruk av sensorikk i nærheten av mennesker | 2 | B | A | A | A | 2B | Sørge for at sensorikk brukes på forsvalig vis og lese datablad på sensorene. |

| Utarbeidet av | Nummer | Dato | |
| :--- | :--- | :--- | :--- |
| HMS-avd. | HMSRV2601 | 22.03 .2011 | |
| Godkjent av | | Erstatter | |
| Rektor | | 01.12 .2006 | |

Sannsynlighet vurderes etter følgende kriterier:
Konsekvens vurderes etter følgende kriterier:

| Gradering | Menneske | Ytre miljø Vann, jord og luft | Øk/materiell | Omdømme |
| :---: | :---: | :---: | :---: | :---: |
| E Svært Alvorlig | Død | Svært langvarig og ikke reversibel skade | Drifts- eller aktivitetsstans >1 år. | Troverdighet og respekt betydelig og varig svekket |
| D
 Alvorlig | Alvorlig personskade. Mulig uførhet. | Langvarig skade. Lang restitusjonstid | Driftsstans > $1 / 2$ år Aktivitetsstans i opp til 1 år | Troverdighet og respekt betydelig svekket |
| Moderat | Alvorlig personskade. | Mindre skade og lang restitusjonstid | Drifts- eller aktivitetsstans < 1 mnd | Troverdighet og respekt svekket |
| $\begin{gathered} \text { B } \\ \text { Liten } \end{gathered}$ | Skade som krever medisinsk behandling | Mindre skade og kort restitusjonstid | Drifts- eller aktivitetsstans < 1uke | Negativ påvirkning på troverdighet og respekt |
| A Svært liten | Skade som krever førstehjelp | Ubetydelig skade og kort restitusjonstid | Drifts- eller aktivitetsstans < 1dag | Liten påvirkning på troverdighet og respekt |

miljø, Okonomi/materiell og Omdømme. I så fall beregnes
Risikoverdi $=$ Sannsynlighet \mathbf{x} Konsekvens disse hver for seg.
Til kolonnen "Kommentarer/status, forslag til forHGyggende og korrigerende tiltak":
Tiltak kan påvirke både sannsynlighet og konsekvens. Prioriter tiltak som kan forhindre at hendelsen inntreffer, dvs. sannsynlighetsreduserende tiltak foran skjerpet beredskap, dvs. konsekvensreduserende tiltak.
Prinsipp over akseptkriterium. Forklaring av fargene som er brukt i risikomatrisen.

| Farge | Beskrivelse |
| :--- | :--- |
| Rød | Uakseptabel risiko. Tiltak skal gjennomføres for å redusere risikoen. |
| Gul | Vurderingsområde. Tiltak skal vurderes. |
| Grønn | Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn. |

[^0]: EBSCO Publishing : eBook Collection (EBSCOhost ${ }^{1} 7 \mathbf{-}_{\text {printed on }} 6 / 18 / 2017$ 7:42 AM via NTNU UNIVERSITY LIBRARY
 AN: 151151 ; Thayer, Robert E..; The Biopsychology of Mood and Arousal

