
Numerical Simulations of Flow Around a
Bluff Body, Using Multigrid and an
Immersed Boundary Method

Marie Flø Aarsnes

Master of Science in Engineering and ICT

Supervisor: Håvard Holm, IMT

Department of Marine Technology

Submission date: June 2017

Norwegian University of Science and Technology

iii

Preface

This is a master thesis on CFD, which is my last contribution to my master de-

gree at Norwegian University of Science and Technology (NTNU) as a part of the

study program engineering and ICT. The work was carried out during the spring

2017 and is an extension of my project thesis "Navier Stokes Solver".

I would first like to thank my supervisor Håvard Holm for the time, valuable

input and support during this semester. Furthremore I would like to thank Jon

Coll Mossige for sharing his knowledge and work on the immersed boundary

method.

Finally I would like to thank my family and friends for being helpful and

supportive during all my five years at NTNU.

iv

Summary

Increase in computational efficiency is one of the most prominent factors for

successful applications of large CFD models with many grid points. Conse-

quences of the increase are reduction in CPU-time and memory usage, so better

mesh refinement could be used. Hence, the CFD-solver will improve the reso-

lution in the computational domain.

This report provides an introduction to the background theory in CFD with

basis on methods used to develop a simple incompressible Navier Stokes solver.

Different multigrid algorithms and an immersed boundary method are discussed,

where the solver exploit the cause of increased computational efficiency, espe-

cially by using multigrid. Validation is done based on efficiency and accuracy for

the multigrid algorithms compared to Gauss Seidel method and SOR method.

Force calculations around a submerged bluff cylinder in a 2D flow are used to

validate the immersed boundary method implemented in the solver together

with a full multigrid algorithm.

By implementing a full multigrid method, the time used to solve the Poisson

equation was reduced significantly and the accuracy of the resolution is kept.

The validation tests of a solver combining an immersed boundary method and

the full multigrid algorithm was successfully carried out except for too low co-

efficients at Re = 100 in the final test case. The accuracy of flow resolution was

specially affected by the time refinement and the width of the computational

domain.

v

Sammendrag

Økning i beregnings effektivitet er en av hoved faktorene for å oppnå suksess-

fulle CFD applikasjoner for store modeller med mange grid-punkter. Konsekvensene

av økningen er reduksjon i CPU-tid og minne bruk, så finere grid kan bli brukt

og CFD-løseren kan dermed oppnå enda bedre numeriske resultater i domenet.

Denne rapporten gir en introduksjon til bakgrunnsteori til CFD basert på

de metoder som blir brukt til å utvikle en enkel inkompressibel Navier Stokes

løser. Forskjellige multigrid algoritmer og en immersed boundary methode er

diskutert, hvor løseren utnytter den resulterende økningen av beregnings effek-

tivitet, særlig på vegne av multigird metoden. Valideringen er basert på effek-

tivitet og nøyaktighet for multigrid algoritmene sammenlignet med Gauss Sei-

del metoden og SOR metoden. Krefter rundt en nedsenket fast sylinder i en 2D

strøm er beregnet og brukt til å validere immersed boundary metoden som er

implementert i løseren sammen med en full multigrid metode.

Ved å implementere en full multigrid metode, er tiden brukt på å løse Pois-

sons likning redusert betraktelig samtidig som nøyaktigheten i resultatet er be-

holdt. Gjennomføringen av validerings testene for en løser som kombinerer en

immersed boundary methode og en full multigrid methode var vellykket, bort-

sett fra for lave koeffisienter i siste test ved Re = 100. Nøyaktigheten i strømn-

ingsfeltet var særlig påvirket av valget av tids-steg og bredden på domenet som

ble brukt til simuleringene.

vi

Contents

Preface . iii

Summary . iv

Oppsummering . v

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 3

1.3 Approach . 3

1.4 Outline . 4

2 Fundamentals 5

2.1 Navier Stokes Equation . 5

2.1.1 Incompressible Navier Stokes equation 6

2.1.2 Dimensionless approach of variables 6

2.1.3 The projection method . 8

2.2 Grid . 9

2.2.1 Staggered grid . 10

2.2.2 Adaptive grid . 11

2.3 Discretization . 12

2.3.1 Spatial . 12

vii

viii CONTENTS

2.3.2 Temporal . 14

2.4 Boundary Conditions . 16

2.5 Methods to Solve Linear Systems . 18

2.6 Stability Analysis . 19

3 Multigrid 23

3.1 Grid Transfer . 25

3.1.1 Restriction . 26

3.1.2 Prolongation . 27

3.2 Different algorithms . 28

3.2.1 The Two-Level Method . 28

3.2.2 V-Cycle Multigrid Method . 29

3.2.3 The Full Multigrid Method 30

3.3 Smoothening Parameters . 32

3.4 Convergence and Computational Work 33

4 Immersed Boundary Method 35

4.1 Imposing of Immersed Boundary Conditions 36

4.2 Discrete Forcing Methods . 37

4.2.1 Direct Forcing approach . 37

4.2.2 Interpolation . 38

5 Code layout 41

5.1 Staggered Grid Generation . 43

5.2 Finite Difference Scheme . 43

5.3 Explicit Euler Scheme . 45

5.4 Poisson Solver . 46

5.4.1 Gauss Seidel . 46

CONTENTS ix

5.4.2 Successive Over Relaxation 46

5.4.3 Multigrid . 47

5.5 IBM . 49

5.5.1 Limitations on the Immersed Boundary 52

5.6 Convergence criteria . 53

5.7 General Limitations . 53

5.8 Post-processing . 54

6 Validation 55

6.1 Poisson Solver . 56

6.1.1 Gauss Seidel and SOR . 57

6.1.2 Multigrid . 61

6.1.3 Comparison . 69

6.2 Navier Stokes Solver . 72

6.2.1 Time Refinement Test . 74

6.2.2 Mesh Refinement Test . 75

6.2.3 Domain Refinement Test . 77

6.2.4 Multigrid together with IBM 79

6.2.5 Efficiency analysis . 84

7 Conclusion 85

7.1 Conclusions . 85

7.2 Recommendations for Further Work 87

7.2.1 Short-Term . 87

7.2.2 Long-Term . 87

A Acronyms and Symbols 89

B Source code 95

x CONTENTS

Bibliography 163

List of Figures

1.1 Blodflow trough a human heart valve (Peskin, 1972). 2

2.1 Different kinds of grids, a modification from Djeddi et al. (2013). . 9

2.2 Staggered grid (Djeddi et al., 2013). 10

2.3 Adaptive grid around a cylinder (Vanella et al., 2014) 11

2.4 Primary behavior of FDM, FVM and FEM 13

2.5 5-point stencil for central FDM. 13

2.6 Boundary conditions on a vertical wall 17

2.7 How to apply periodic boundary condition 18

2.8 Stability, CFL-condition. Left figure: stable. Right figure: unstable. 20

2.9 The stability area for a explicit Euler scheme, the axis are scaled for

hλ. 21

3.1 Linear interpolation in 1D (Drikakis et al., 1998). 27

3.2 Schematic of two-step multigrid, modification from Strang (2006). 29

3.3 Schematic of V-cycle multigrid, modification from Strang (2006). . 30

3.4 Schematic of full multigrid, modification from Strang (2006). . . . 31

4.1 From Fadlun et al. (2000). (a) no interpolation,(b) volume fraction

weighting,(c) linear interpolation. 39

xi

xii LIST OF FIGURES

5.1 Flow chart of the Navier Stokes solver 42

5.2 A staggered grid cell at position i , j 42

5.3 The representation of u-velocity in the staggered grid. 43

5.4 The representation of v-velocity in the staggered grid. 43

5.5 The representation of the pressure in the staggered grid. 43

5.6 The representation of pressure and velocities used for x-direction

calculations. 44

5.7 The representation of pressure and velocities used for y-direction

calculations. 44

5.8 Velocities used to calculate pi , j . 44

5.9 Bilinear interpolation (Drikakis et al., 1998). 48

5.10 Mixed interpolation (Drikakis et al., 1998). 48

5.11 A demonstration of the surrounding domain for an immersed bound-

ary. 49

5.12 How to apply grid shift on the surrounding domain. The black

grid is the original staggered grid, red is v-velocities and green is

u- velocities. 50

5.13 Parallel interpolation after 1
2 -gridshift, from Mossige (2017). 50

6.1 Analytical solution (green) vs numerical solution (purple) by Gauss

Seidel. 58

6.2 Analytical solution (green) vs numerical solution (purple) by SOR. 58

6.3 Difference between the analytical solution and Gauss Seidel. . . . 59

6.4 Difference between the analytical solution and SOR. 59

6.5 Change in residual per iteration for Gauss Seidel method. 60

6.6 Change in residual per iteration for SOR. 60

6.7 Change in residual per iteration for two-step MG. 61

LIST OF FIGURES xiii

6.8 Change in residual per iteration for v-cycle MG when d = 3. 61

6.9 Change in residual per iteration for v-cycle MG when d = 4. 62

6.10 Change in residual per iteration for full MG. 62

6.11 Pre-iteration test, iterations - 1:purple, 2:green, 3:blue. 64

6.12 Post-iteration test. 64

6.13 CPU-time vs number of coarse iterations, v-cycle MG. 65

6.14 CPU-time vs number of coarse iterations, full MG. 65

6.15 Analytical solution (green) vs numerical solution (purple) by v-

cycle MG with d = 3. 67

6.16 Difference between the analytical solution and numerical solution

of v-cycle MG with d = 3. 67

6.17 Analytical solution (green) vs numerical solution (purple) by full

MG. 68

6.18 Difference between the analytical solution and numerical solution

of full MG. 68

6.19 The speed-up factor with respect to Gauss Seidel method. Purple:

GS, green: SOR, light blue: two-step MG, orange: v-cycle d=3 MG,

yellow: v-cycle d=4 MG and dark blue: full MG. 70

6.20 Total number of iterations. Purple: GS, green: SOR, light blue:

two-step MG, orange: v-cycle d=3 MG, yellow: v-cycle d=4 MG and

dark blue: full MG. 71

6.21 RMS of the error in the domain for different number of grid cells.

Purple: GS, green: SOR, light blue: v-cycle d=3 MG and orange:

full MG. 71

6.22 The computational domain of the default case with BC’s and do-

main size. 73

6.23 Pressure contours at Re = 20. 81

xiv LIST OF FIGURES

6.24 Pressure contours and velocity arrows at Re = 20. 81

6.25 Pressure contours at Re = 100. 82

6.26 Streamlines and velocity arrows at Re = 100. 82

6.27 Drag (green) and lift (purple) coefficients at Re = 100. 83

List of Tables

2.1 Non-dimensional parameters (Richard H. Pletcher, 2013). 7

6.1 Refinement of time. 74

6.2 Refinement of number of cells in cylinder diameter. 75

6.3 Accuracy of the Poisson solver on domain [0:2]x[0:1]. 75

6.4 Refinement of domin length. 77

6.5 Refinement of domin width. 78

6.6 Refinement of domin inflow. 78

6.7 Result from the final test case at Re = 20. 79

6.8 Result from the final test case at Re = 100. 80

6.9 Time break-down when using Gauss Seidel. 84

6.10 Time break-down when using full multigrid. 84

xv

Chapter 1

Introduction

1.1 Background

To get essential engineering data for complex problems, Computational Fluid

Dynamics (CFD) is a useful tool to provide data in an inexpensive way. By nu-

merical simulations, a CFD-solver studies the physical laws under viscous con-

ditions by solving the governing equations numerically. At a current state, it has

been developed numbers of CFD-solvers. Some are commercial, e.g. Fluent,

and other are open source, e.g. OpenFoam. The solvers are build up by using

different approaches based on old methods. The development of the solvers are

not yet at a level where the user can work with the tool uncritically, so knowledge

of numerics involved are essential.

CFD is a powerful tool and can be used to visualize complex problems out-

side our range of vision, like Peskin (1972) used CFD with an Immersed Bound-

ary Method (IBM) to simulate blood-flow trough a human heart valve, figure

1.1. Different areas of the solution domain can be observed without disturbing

the flow field around. Perhaps the simulations simulate a flow around an com-

plex rigid boundaries like Lai and Peskin (2000) presented in their studies. The

1

2 CHAPTER 1. INTRODUCTION

results may supplement experimental tests as a qualitative tool to decide e.g.

design before the tests are preformed.

Because of computational limitations, CFD applications are not at a level

where it can be used for real time computations. Increase in computational

power and efficiency is one of the most prominent factors. When focusing on

efficiency in a Navier Stokes solver, the Poisson solver should be evaluated. The

process solving the Poisson equation usually takes the vast majority of the run-

time. To affect the overall performance, an efficient method should be used on

the Poisson solver. At a current state, one of the most efficient methods is still

the multigrid method introduced by (Brandt, 1977).

Figure 1.1: Blodflow trough a human heart valve (Peskin, 1972).

1.2. OBJECTIVES 3

1.2 Objectives

The main objective of this thesis is to develop a CFD-solver with special atten-

tion paid to calculation efficiency, so the code runs fast for simulations of large

models with many grid points. As a test case, flow around a cylinder is tested

with spacial attention on the forces. Therefore, a method for simulations of fluid

structure interactions (FSI) is developed. The main objective is future divided

into:

1. Modeling the Navier Stokes equation in a proper way based on old meth-

ods.

2. Develop multigrid methods to reach convergence faster than iterative schemes.

3. Implement immersed boundary method (IBM) for simulations of fluid-

structure problem.

1.3 Approach

The basis of the Navier Stokes solver is formed by "SOLA - Solution Algorithm

for 2D incompressible laminar transient flow", an excerpt from "A Navier Stokes

Solver using the Multigrid Method" by Reidar Kristoffersen and based on Hirt

et al. (1975). My project thesis "Navier Stokes Solver" (Aarsnes) consists of a

preliminary layout and development of the solver, and this master thesis is an

extension for that.

The following limitations are used in the solver:

1 Constant density, ρ = constant

2 Constant viscosity, ν = constant

4 CHAPTER 1. INTRODUCTION

3 Newtonian fluid

4 Laminar flow

5 Cartesian coordinates, (xi) = (x, y)T and (ui) = (u, v)T

Hence, the governing equations to be solved simplifies to a simple two-dimensional

incompressible Navier Stokes system. The temporal-derivatives are discretized

by a forward Euler scheme and the spatial-derivatives are discretized by a sec-

ond order central differences scheme on an equidistant staggered grid. This

is known as the FTCS-scheme (Forward-Time Central-Space). For the iterative-

scheme used to solve the Poisson equation, Gauss Seidel, successive over-relaxation

(SOR) or different multigrid methods may be chosen. In a test case with flow

around a cylinder, the FSI problem is solved by IBM.

1.4 Outline

Chapter 2 provides an overview of the fundamental theory in a CFD-solver. The

simplified governing equations, discretization methods to solve the derivatives,

different way of structuring the computational nodes in the domain and some

numerical methods are presented. In Chapter 3, the efficient multigrid method

is described in three different algorithms. Chapter 4 presents how to solve the

FSI problem with IBM. The code layout and some comments to the develop-

ment are given in Chapter 5. Validation of the code and a test case of flow

around a cylinder is presenter in Chapter 6, and concluded in Chapter 7 to-

gether with some recommendations for future work.

Chapter 2

Fundamental Theory

In this chapter some fundamental theory used for developing a Navier-Stokes

solver are introduced. This is an extension from my project thesis "Navier Stokes

Solver" (Aarsnes), where the relevant parts from the project are included here.

2.1 Navier Stokes Equation

For many viscous flow problems, it is not possible to get an accurate solution

using simple equations. The solutions of the Navier-Stokes equations can dis-

play very fine details of the flow structure, such as strong viscous-inviscid inter-

actions with large separated flow regions. The unsteady compressible Navier-

Stokes equations are a mixed set of hyperbolic-parabolic equations in time, and

the incompressible Navier-Stokes equations are a mixed set of elliptic-parabolic

equations. Thus, the inviscid and viscous equations require significantly differ-

ent solution strategies.

5

6 CHAPTER 2. FUNDAMENTALS

2.1.1 Incompressible Navier Stokes equation

When heat transfer or significant property variations are not present, the in-

compressible Navier-Stokes equation is the best choice. The governing equa-

tions for the two-dimensional incompressible Navier-Stokes system with a con-

stant property flow and without body forces or external heat can be written in

conservative form:

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x
+ν(

∂2u

∂x2 + ∂2u

∂y2) (2.1)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
=− 1

ρ

∂p

∂y
+ν(

∂2v

∂x2 + ∂2v

∂y2) (2.2)

∂u

∂x
+ ∂v

∂y
= 0 (2.3)

Here, u and v represents the velocity components in x- and y-direction, re-

spectively, p is the pressure, ρ is the density and ν is the kinematic viscosity.

Equation 2.1 is the x-momentum equation and 2.2 is the y-momentum equation,

which are parabolic PDEs. Equation 2.3 is the continuity equation, which is an

elliptic PDE. In the momentum equations there is a convective term, u∇u, and

a diffusive term, ν∇2u, hence the Navier-Stokes equation belongs to the class of

convection-diffusion equations.

2.1.2 Dimensionless approach of variables

A dimensionless approach generalize the problem and reduces the number of

parameters in the equation. This is possible because it is easier to see how to

treat the parameters, i.e. possibilities for neglecting or approximating them.

The purpose of making Navier Stokes equation dimensionless is to reduce the

number of times the equation needs to be solved numerically.

2.1. NAVIER STOKES EQUATION 7

Table 2.1: Non-dimensional parameters (Richard H. Pletcher, 2013).

Name Reference parameter Non-dimensional parameter
Velocity U u∗ = u

U
Length L r∗ = r

L
Time - t∗ = tU

L
Pressure - p∗ = p

ρU 2

Reynolds number - Re = U L
ν

For the case of flow without heat transfer, the non-dimensional equations

only depend on the Reynolds number, which is a ratio between the viscous and

the advective term. This means that the non-dimensional parameters will have

the same value at same Reynolds number. The non-dimensional primitive-

variables for a Cartesian coordinate system are introduced in table 2.1.

By substituting the non-dimensional parameters from table 2.1 into the Navier

Stokes equations 2.1, 2.2 and 2.3, the non-dimensional x-momentum equation

2.5, y-momentum equation 2.6 and continuity equation 2.4 are obtained.

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0 (2.4)

∂u∗

∂t∗
+u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ =−∂p∗

∂x∗ + 1

Re
(
∂2u∗

∂x∗2 + ∂2u∗

∂y∗2) (2.5)

∂v∗

∂t∗
+u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ =−∂p∗

∂y∗ + 1

Re
(
∂2v∗

∂x∗2 + ∂2v∗

∂y∗2) (2.6)

8 CHAPTER 2. FUNDAMENTALS

2.1.3 The projection method

For an incompressible fluid, the pressure and the velocity are independent of

time.

The projection method, also called the method of fractional steps, is a pro-

cedure used to decouple the pressure and velocity and was first presented by

Chorin (1968) on a regular grid. The pressure gradient terms are omitted from

the momentum equation (2.1 and 2.2) in the frist step and advanced in time. By

using the Helmholtz decomposition, resolved into a divergence-free term and a

curl-free term, equation 2.7 is preformed.

uk+1 −u∗

∆t
+∇pk+1 = 0 (2.7)

Where uk+1−u∗
∆t has zero divergence and ∇pk+1 has zero curl. u∗ denotes the

predicted velocity, uk+1 is the velocity field at the new time-step and pk+1 is the

new pressure. Now, there are two unknowns, uk+1 and pk+1, that must be solved

to find the solution. The continuity equation 2.3 can be differentiated to yield,

thus the pressure field needs to satisfy the incompressibility constraint 2.8.

∇·uk+1 = 0 (2.8)

Hence, the Poisson equation 2.9 will be derived with a source term equal to the

divergence of the predicted velocity field and the pressure difference as an po-

tential function .

∇2pk+1 = 1

∆t
∇u∗ (2.9)

Then follow this solution procedure:

1 Calculate the predicted velocity u∗ from momentum equation while ne-

glecting the pressure gradient terms.

2.2. GRID 9

2 Solve the Poisson equation 2.9 for the corrected pressure pn+1.

3 Calculate the corrected velocity un+1 from 2.7.

The projection method is possible to implement on both regular and stag-

gered grids, where explicit and implicit methods are employed. Using an explicit-

first-order Euler scheme for time-derivatives and staggered grid Peyret and Tay-

lor demonstrated that the scheme is closely related to marker and cell (MAC)

method by Harlow et al. (1965).

2.2 Grid

Grid, also called mesh, is a necessary tool when working with computational

simulations. To approximate numerical solutions to a PDE, a discretization of

the equation needs to be done to find a system of algebraic differential equa-

tions. Therefor the discretization is accomplished by placing discrete nodes

over the solution field, where the discrete nodes can be connected in different

ways to form discrete cells. The differential equations can be represented over

discrete nodes or over discrete cells. This is just a short introduction to some

types of grids, for future reading see Thompson et al. (1998).

Figure 2.1: Different kinds of grids, a modification from Djeddi et al. (2013).

10 CHAPTER 2. FUNDAMENTALS

When coupling grid and solution processes together several choices based

on underlying principles and mathematics can be made to optimize the pro-

cess. For the finite difference method (FDM), the derivatives of field variables

are easily expressed, thus structured grids are usually used. For the finite ele-

ment method (FEM) and the finite volume method (FVM), unstructured grids

are more convenient because of the flexibility these methods offers.

2.2.1 Staggered grid

Staggered grid is a structured grid, i.e. with uniform cell size, where the field

variables are represented at different locations (Harlow et al., 1965). The pres-

sure is represented at the center of the cell and the velocities at the cell edges

in each direction, see figure 2.2. Staggered grids are more accurate than non-

staggered (collocated) grids and can therefore use coarser grids, sometimes twice

as coarse grid, to obtain the same accuracy (Mccormick, 1988). For pressure cal-

culations, like the Poisson equation, staggered grids has an advantage because

of a more direct coupling between velocity and pressure, thus avoiding unphys-

ical pressure oscillations.

Figure 2.2: Staggered grid (Djeddi et al., 2013).

2.2. GRID 11

2.2.2 Adaptive grid

When using structured grid on a flow filed, unnecessary computational effort

are done in some parts of the domain. Usually, a flow field is not uniform, hence

different grid treatment should be used for different areas in the domain, see

figure 2.3.

Figure 2.3: Adaptive grid around a cylinder (Vanella et al., 2014)

12 CHAPTER 2. FUNDAMENTALS

Adaptive grids follows gradients in the physical solution, hence the areas

with higher gradients, f.ex high velocity and pressure gradients, are better rep-

resented with a refined grid due to the rest of the domain. High gradients usu-

ally occurs around boundary layers and flow fields past a body is a critical area

where higher resolutions are need. Structured grid will in these cases need high

resolution in the whole domain to handle the high gradients around the body,

which is very inefficient.

2.3 Discretization

As mentioned on section 2.2, the discrete operators depends on the chosen grid,

but also on a discretization method. A discretization method approximates the

first and second derivatives in the Navier Stokes system, equations 2.5, 2.6 and

2.4. The momentum equations are re-ranged to make the discretization easier

with the temporal derivatives on the left hand side and the spatial derivatives

on the right hand side. see equation 2.10. i and j denotes x- and y- direction,

respectively, for velocity and in space.

∂ui

∂t
=−∂ui u j

∂x j
− ∂p

∂xi
+ 1

Re

∂2ui

∂x j
(2.10)

2.3.1 Spatial

Spatial discretization methods are used to represent and evaluate PDE’s. The

most common ones are the FDM, the FVM and the FEM. This subsection will

give a short introduction of each.

2.3. DISCRETIZATION 13

Figure 2.4: Primary behavior of FDM, FVM and FEM

Finite Difference Method

The FDM is working on stencils, see figure 2.4. Thus, the method is approximat-

ing the node derivatives for a problem and leads to sparse matrices. It is limited

for use on uniform-structured grid and is therefore simple to implement and

derive.

There are different approaches of FDM, which differ in how the stencil is

built up. One approach is the central FDM, see figure 2.5, a five point stencil

scheme which approximates the derivatives with the closest neighboring nodes.

Figure 2.5: 5-point stencil for central FDM.

14 CHAPTER 2. FUNDAMENTALS

Finite Element Method

The FEM is working on elements, see figure 2.4. Thus, the method uses basis

functions over a finite region which leads to large, banded matrices. The ad-

vantages of the method are that it can be used on unstructured grids and that

it is general. Irregular geometries require more computer storage, making FEM

more time consuming in these situations.

Finite Volume Method

The FVM is working with volumes, see figure 2.4. Thus, the method is approxi-

mating integrals to find the solution. Divergence terms are converted to surface

integrals using the divergence theorem and evaluated as fluxes at the surface

of the finite volumes. The advantages of the method are that it can be used on

unstructured grids and that it is conservative.

2.3.2 Temporal

In time, it is useful to consider the discretization process in two stages (LeVeque,

1992):

1. Discretize the problem in space and leave it continuous in time. Then

the PDE become a system of ordinary differential equations (ODE’s), also

called semi discrete equations. Then the right hand side can be solved as a

boundary value problem.

2. Discretize in time using a numerical method that solves a system of ODE’s.

Two different explicit numerical methods for solving the system of ODE’s are

described briefly.

2.3. DISCRETIZATION 15

Forward Euler

Explicit Euler scheme is named after and first introduced by Euler (1768), see

equation 2.11, is first-order accurate in time, O (∆t). Hence, small time-step ∆t

is decreed because on the lack of stability and accuracy.

un+1 −un

∆t
= R(un) (2.11)

R(un) is the right hand side of the equation, n is the current time-step and n+1

is the new time-step.

Runge-Kutta

Solving the system of ODE’s by a first-order method may entail high computa-

tional costs. By choosing a higher-order method like Runge-Kutta (Kutta, 1901)

is recommended if high accuracy is desired. Runge-Kutta schemes can have dif-

ferent orders of accuracy depending on the order of the applied Runge-Kutta.

For a second-order Runge-Kutta method, see equation 2.12, the order of accu-

racy is two, O (∆t 2).

u(1) = un +∆tR(un) un+1 = un + ∆t

2

(
R(un)+R(u(1))

)
(2.12)

R(un) is the right hand side of the forward Euler equation 2.11, n is the current

time-step and n +1 is the new time-step.

16 CHAPTER 2. FUNDAMENTALS

2.4 Boundary Conditions

A boundary value problem is a differential equation together with some con-

straints, boundary conditions (BC). The technique used for implementing BC’s

have great influence on the stability and convergence of the numerical solution.

For flow field problems, just a limited domain of the problem will be evaluated.

Therefore, BC’s need to be specified in a finite distance from e.g. the geometry

in the flow. The two main BC’s are:

• Dirichlet boundary condition, or fixed boundary condition, specifies the

value at the boundary, f (x), and can be expressed in a general form as

u(x) = f (x) ∀x ∈ ∂Ω, Ω⊂Rn

• Neumann boundary conditions specifies what the value of derivatives over

the boundary, f (x), is and can be expressed in a general form as

∂u(x)

∂n
= f (x) ∀x ∈ ∂Ω, Ω⊂Rn

Thus, the boundary needs to be sufficiently smooth so a derivative in the

same direction exist. Neumann boundary conditions are not well defined

at corners.

Where n denotes the normal vector to the boundary ∂Ω of the domainΩ and u

is the velocity of the fluid.

According to way of representing the calculation values on a staggered grid,

ghost-cells outside of the domain (i.e. exterior cells) are being used to specify

BC’s. For a geometry, the cell right inside of the geometry-wall can be seen as

ghost-cells. BC’s in a staggered grid are located at the boundary of a calculation

2.4. BOUNDARY CONDITIONS 17

cell. Therefore a BC at a vertical cell-wall will pass through a horizontal-velocity

node and a horizontal-wall will pass trough a vertical-velocity node. Some BC’s

for a 2D staggered grid are future discussed.

A rigid impermeable wall may be either no-slip or free-slip, considered as

a plane of symmetry (Harlow et al., 1965). The velocity nodes on the wall will

vanish at all times for either wall types. Suppose a impermeable wall along the

y-axis, see figure 2.6, then the velocities will have the constraints:

- No-slip: u′ = 0 and v ′ =−v

- Free-slip: u′ = 0 and v ′ = v

Where u′ and v ′ are velocities in the ghost-cells and u and v are the velocities in

the fluid. Analogous boundary conditions are applied on a wall along the x-axis.

In general, there should be no change in pressure over a boundary if there are

no body-forces, hence p ′ = p. p ′ is the pressure in the ghost-cell and p is the

pressure on the fluid side.

Figure 2.6: Boundary conditions on a vertical wall

Velocity and pressure needs to have at least one Dirichlet condition, i.e. be

stated at least once in the domain, otherwise the numerical system could turn

out unsolvable.

18 CHAPTER 2. FUNDAMENTALS

Figure 2.7: How to apply periodic boundary condition

To apply periodic boundary conditions (Patankar et al., 1977) an extra source

term need to be attached to the momentum equation for the stream direction.

Periodic conditions are pressure driven, so the source term will be equivalent to

the pressure drop per unit periodic length. The boundary conditions for velocity

and pressure at inlet cells are equal to the ghost-cells at outlet face and vice versa

for the outlet cells:

- Inlet: ui nlet = u′
outlet vi nlet = v ′

outlet pi nlet = p ′
outlet

- Outlet: uoutlet = u′
i nlet voutlet = v ′

i nlet poutlet = p ′
i nlet

A visualization is given in figure 2.7.

2.5 Methods to Solve Linear Systems

The Poisson equation 2.9 is a linear system of equations and can be written as

Au = b. A is the coefficient matrix, u is a vector of unknowns and b is the source

term. To solve it, an iterative or a direct scheme is used.

Direct schemes, e.g. Gaussian elimination, is solving the systems of equa-

tions exactly. Direct schemes are efficient on systems with a limited number

2.6. STABILITY ANALYSIS 19

of unknowns. However, when the number of unknowns increase the computa-

tional work increases considerably too and a iterative scheme should be consid-

ered.

Iterative methods is based on relaxing the solution at each node by start-

ing with an initial guess and modifying it until a limit of convergence is reached.

Each modifying is an iteration called relaxing sweep and the final solution would

become an approximation of the exact solution. Gauss Seidel and SOR are two

iterative schemes that may be used. Gauss Seidel is a simple method which re-

quires only one storage vector, hence it is easy to implement. SOR method may

be a refinement of the Gauss Seidel method but provides faster convergence

by choosing a optimal damping coefficient ωopt . As Kahan (1958) presented ω

∈(0,2) for SOR to converge, however ωopt may be hard to find. For ω= 1, SOR is

the same as Gauss Seidel method.

In chapter 3 a more complex method for solving the Poisson equation is in-

troduced, the multigrid method. Equations for implementation of Gauss Seidel

and SOR on a 2D central FDM scheme are prescribed in section 6.1 together

with a limit for convergence.

2.6 Stability Analysis

Stability criteria are taken into account to ensure that there will be no numer-

ical uncertainties in the simulation. By Lax’s equivalence theorem provided by

Richtmyer and Morton (1967) this is true if the scheme is consistent.

Lax’s equivalence theorem: Given a properly posed initial value problem and a

finite-difference approximation that satisfies the consistency condition, stabil-

ity is the necessary and sufficient condition for convergence.

20 CHAPTER 2. FUNDAMENTALS

The Navier Stokes equation is a complex non-linear PDE, therefore it is hard

to apply von Neumann’s analysis. The normal procedure is to linearize the equa-

tion and investigate one term at a time. In subsection 2.1, the different terms are

pointed out for the Navier -Stokes equation.

Figure 2.8: Stability, CFL-condition. Left figure: stable. Right figure: unstable.

From the convection term, the Courant-Friedrichs-Lewy condition (CFL-condition)

2.13 is derived, see figure 2.8. The non-dimensional number C is called the

Courant number, which represent how many cell-sizes∆xi a fluid particle passes

trough a time-step ∆t with velocity uxi . The condition must be consistent in all

dimensions and at the whole domain at each time-step.

Ci =
uxi∆t

∆xi
≤Cmax , i = 1,2,3 (2.13)

Cmax is changing with the discretization method. Deciding whether the time-

discretization method are implicit or explicit has a great impact. For explicit

methods Cmax is usually equals to one. Implicit methods are usually less sensi-

tive for numerical instability, so Cmax can be larger.

From the diffusion term, a stability criteria to ensure that the viscous dif-

fusion of momentum is limited to one cell per time-step, see equation 2.14, is

derived.

∆t ≤ Re

2

(∆x2 ·∆y2

∆x2 +∆y2

)
(2.14)

2.6. STABILITY ANALYSIS 21

The last stability criteria ensures that the stability is sustained for the com-

putation. The equation 2.15 provides positive diffusion by stabilizing the nu-

merically unstable convection term. The condition must be consistent in all

dimensions and on the whole domain at each time-step, since it build on the

CFL-condition.

∆t ≤ Mi n
(2

Re(un
i , j)2 ,

2

Re(vn
i , j)2

)
(2.15)

Equations 2.14 and 2.15 are here given for a 2D problem and based on Cmax = 1,

i.e. adjusted for explicit methods. For other Cmax they will change accordingly.

Stability of Explicit Euler

Linear stability of explicit Euler is found from |1+hλ| ≤ 1, where λ is the eigen-

value of the linear test equation. The stability domain is given in figure 2.9,

where the axes are the real and imaginary of hλ. The explicit Euler method de-

mands small time-steps if the solution is fast decaying or have highly oscillating

modes.

Figure 2.9: The stability area for a explicit Euler scheme, the axis are scaled for
hλ.

22 CHAPTER 2. FUNDAMENTALS

Chapter 3

Multigrid

The multigrid method for solving elliptic PDE introduced by Brandt (1977) ac-

celerate the convergence of an iterative method, like Jacobi method or Gauss

Seidel method, from O (n2) to O (n), when the PDE is discretized on n grid points.

This is done by combining coarse and fine grids, where the error is transferred

from fine to coarser grids. By analyzing the error or difference in the iterative

scheme with Fourier analysis, it can be seen that the error components have dif-

ferent frequencies. Iterative methods like Jacobi and Gauss Seidel are efficient

for reducing high frequencies, because the new solution value is dependent on

the previous one. Therefore, in a multigrid algorithm the coarse grid is used to

reduce the low frequency components (which becomes high frequency compo-

nents on coarse grids) of the error and the fine grid improves the accuracy by

reducing the high frequencies. Hence, the coarse grids are only used to obtain

correction, never to seek solutions of the original problem.

23

24 CHAPTER 3. MULTIGRID

In a multigrid method, several grids which are typically increased by a factor

of 2 can be used. Set the chosen difference representation on the left side of the

equation and the discretized iterative scheme on the right side, then equation

3.1 represents the linear system to be solved.

Ahuh = fh (3.1)

Where h is the grid spacing on the corresponding equidistant grid. See subsec-

tion 2.5 for an introduction on methods to solve the linear system of equations.

The method could be applied to the linear system directly or to the error equa-

tion, which is called the residual equation.

The residual equation

Let u∗(k) be an approximation of u at iteration k, then the error e(k) = u - u∗(k)

satisfies the residual equation 3.2.

Ae(k) = f− Au∗(k) =: r(k) (3.2)

In multigrid methods, the residual equation is used to update the current

u(k). An approximation of e(k), e*(k), is computed and used to find the new iter-

ation u(k+1) = u(k) + e*(k). Close to the solution the error e(k) is small, therefore

zero is a good initial guess for 3.2.

3.1. GRID TRANSFER 25

There are two ways of constructing multigrid methods, the standard geo-

metric multigrid (GMG) and the algebraic multigrid (AMG). GMG, which is the

multigrid design used in this chapter, have some limitations regarding hierar-

chy of grids. Sometimes the hierarchy dependency on the underlying geometry

is hard to handle, then AMG can be used. In contrast to GMG, AMG do not ex-

ploit the underlying geometry and work directly on the linear system. For future

reading on AMG, see Stüben (1983) and Xu and Zikatanov (2017).

3.1 Grid Transfer

When grids are transferred, they are either restricted, i.e. transfer error from

fine to coarse grid, or prolongated (also called interpolation), i.e. transfer initial

solution from coarse to fine grid.

When transposing from a fine to a coarser grid, the error (residual) is trans-

fered from Ωh to Ω2h . By a discrete Fourier analysis of the modes on different

grids (Wienands and Oosterlee, 2001) can prove that the k-th Fourier mode on

Ωh is the k-th Fourier mode on Ω2h , see equation 3.3 (Strang, 2006). A trans-

formation from the fine to the coarse grid provides the k-th mode with higher

frequency when 1 < k < n
2 .

wh
k,2 j = si n

(2 j kπ

n

)
= si n

(j kπ
n
2

)
= w2h

k, j , f or 1 < k < n

2
(3.3)

wh
k,2 j =−w2h

n−k, j , f or
n

2
< k < n (3.4)

For n
2 < k < n the k-th mode becomes negative, see equation 3.4, which means

that the modes on Ω2h is represented as relatively smooth compared to the os-

cillating modes on Ωh . Therefore, it is necessary to reduce the oscillating error

on modes onΩh before transferring (restricting) it toΩ2h . Usually, 1-2 iterations

26 CHAPTER 3. MULTIGRID

is enough for reducing the high frequency errors with an iterative scheme.

To improve the behavior of an iterative method, the initial guess is impor-

tant. In a multigrid scheme, this is done by solving the problem approximately

on the coarsest grid,Ωxh , and transferring (prolongate) the solution to the next

finer grid,Ω(x+1)h . The transferred solution can be used as a initial guess on the

fine grid since the oscillating error modes are damped on the coarsest grid.

3.1.1 Restriction

The transformation from fine to coarse grid is called restriction. A restriction

procedure can restrict solutions or residual dependent on the multigrid algo-

rithm. Restriction operator, I 2h
h , can be preformed in different ways, in this sub-

section two different methods is taken into consideration, injection and weighted

restriction.

I 2h
h :Rn →Rn/2

u2h = I 2h
h uh

The fine grid, Ωh , consists of n grid cells and the coarse grid, Ω2h , consists of

n
2 grid cells. Node numbering i and j on the coarse grid corresponds to node

numbering 2i and 2j on the fine grid.

Injection

The simplest restriction method is restriction by injection. A injection matrix,

I 2h
h , for a FDM consists of only one and zeros, i.e. ignores the odd-numbered

fine grid values and directly adopt the even-numbered values to the coarse grid.

With this method, the error will not be corrected on the odd-numbered fine

nodes. This can cause a reduction of the efficiency of the multigrid method.

3.1. GRID TRANSFER 27

Weighted restriction

Weighted restriction uses all the nodes on the fine grid in the transformation

and can be preformed in several ways, full-weighted, half-weighted etc. The

injection matrix I 2h
h for full-weighted restriction has the relation to the linear in-

terpolation matrix equals to I 2h
h = 1

2

(
I h

2h

)T
(Strang, 2006). In 2D, the full- weighted

stencil will include nine neighboring points.

3.1.2 Prolongation

The transformation from coarse grid to fine grid is called prolongation (or inter-

polation). This is done by a prolongation matrix, I h
2h , which is defined by a local

averaging for FDMs. The simplest averaging method is linear interpolation, see

figure 3.1.

I h
2h :Rn/2 →Rn

uh = I h
2hu2h

The coarse grid, Ω2d , consists of n
2 grid cells and the fine grid, Ωd , consists of

n grid cells. Node numbering 2i and 2j on the fine grid corresponds to node

numbering i and j on the coarse grid.

Figure 3.1: Linear interpolation in 1D (Drikakis et al., 1998).

28 CHAPTER 3. MULTIGRID

3.2 Different algorithms

There are many possibilities for preforming a multigrid method. In this section

algorithms for a two-step, v-cycle and full multigrid is focused on. For future

explanation or reading on other algorithms see Wesseling (1995) and Stüben

and Trottenberg (1982).

The new variables in the algorithms is explained here, where v1 is the pre-

smoothing, v2 is the coarse-smoothing and v3 is the post-smoothing, see section

3.3 for more information on the smoothing parameters. The residual is denoted

as r and the solution-error as e.

It is important that the right-hand side of the linear system, f, is constant

trough the methods, i.e. f is equal on a downward stoke and an upward stoke

for the respective grid depth.

3.2.1 The Two-Level Method

Two-step multigrid can be used to test the residual equation 3.2 in a multigrid

method. A schematic configuration is given in figure 3.2 and the algorithm is:

1 Iterate Ahuh = fh , v1-times.

2 Compute the residual rh = fh − Ahuh on Ωh and restrict it to Ω2h , f2h =
I 2h

h rh .

3 Iterate A2he2h = f2h v2-times or solve directly. Start with the initial guess

e2h = 0.

4 Prolongate e2h toΩ2h , eh = I h
2he2h and update the solution uh = uh +eh .

5 Iterate Ahuh = fh , v3-times.

3.2. DIFFERENT ALGORITHMS 29

Figure 3.2: Schematic of two-step multigrid, modification from Strang (2006).

3.2.2 V-Cycle Multigrid Method

A V-cycle multigrid method starts similar as a two-step multigrid method, but

the depth of the cycle can vary, see figure 3.3. The V-cycle multigrid method is

the simplest one and the algorithm is:

1 Iterate Ahuh = fh , v1-times. Store uh and fh .

2 Compute the residual rh = fh − Ahuh on Ωh and restrict it to Ω2h , f2h =
I 2h

h rh . Store f2h .

3 Iterate A2he2h = f2h v2-times and store e2h . Start with the initial guess

e2h = 0.

4 Compute the residual r2h = f2h−A2hu2h onΩ2h and restrict it toΩ4h , f4h =
I 4h

2h r2h . Store f4h .

• Continue until coarsest grid is reached ...

5 Solve coarsest grid Axhexh = fxh by iterating v3-times or solve directly.

Start with the initial guess exh = 0.

6 Prolongate exh to Ω(x+1)h , e(x+1)h = I (x+1)h
xh exh and update the solution

e(x+1)h = e(x+1)h
ol d +e(x+1)h

new .

7 Iterate A(x+1)he(x+1)h = f(x+1)h , v3-times.

30 CHAPTER 3. MULTIGRID

• Continue until finest grid is reached ...

8 Prolongate e2h toΩh , eh = I h
2he2h and update the solution uh = uh +eh .

9 Iterate Ahuh = fh , v3-times.

The V-cycle algorithm can be preformed in different number of cycles, γ, by

using a for-loop over step 2-9.

Figure 3.3: Schematic of V-cycle multigrid, modification from Strang (2006).

3.2.3 The Full Multigrid Method

The full multigrid method start at the coarsest grid and prolongate up to the

next finer grid to provide a good initial guess. Then V-cycles of each depth are

preformed to improve the solution until the finest grid is reached, see figure 3.4.

The full multigrid algorithm is:

1 Store fh .

2 Restrict fh toΩ2h , f2h = I 2h
h fh and store f2h .

• Continue until the coarsest grid is reached ...

3.2. DIFFERENT ALGORITHMS 31

3 Restrict f(x−1)h toΩxh , fxh = I xh
(x−1)hf(x−1)h .

4 Solve coarsest grid Axhexh = fxh by iterating v3-times or solve directly and

store exh . Start with the initial guess exh = 0.

5 Prolongate exh toΩ(x+1)h , e(x+1)h = I (x+1)h
xh exh and store e(x+1)h .

• Run V-cycles, see subsection 3.2.2, for each depth until the finest grid is

reached ...

6 Prolongate e2h toΩh , eh = I h
2he2h and update the solution uh = uh +eh .

7 Iterate Ahuh = fh , v3-times.

Figure 3.4: Schematic of full multigrid, modification from Strang (2006).

32 CHAPTER 3. MULTIGRID

3.3 Smoothening Parameters

The purpose of a multigrid method is to reach convergence more efficiently

then an iterative method. For a PDE problem, the accuracy is solved to O (n2)

in 5-12 iterations (Mccormick, 1988).

During a multigrid scheme, there are stated three different values for iter-

ations, pre-smoothing, coarse-smoothing and post-smoothing. This is done to

solve the multigrid method as efficient as possible.

For pre-smoothing, which is used in a downward stoke, there only needs to

be preformed a few iterations, 1-3, depending on the problem to be solved. The

purpose (goal) here is not to reach convergence, but to reduce the high frequen-

cies which an iterative scheme do quite fast, see section 3.1 for more details.

For coarse-smoothing, which is used to smooth the coarsest grids, there can

be preformed a higher number of iterations. Usually, the cost and time spent on

iterating on the coarsest grids is quite low compared to iterating on the finest

grid. Therefore it is expedient (appropriate) to find a optimal number for coarse-

smoothing so the initial guess for the next coarsest grid is good. This number

will make a change in the computational work and the running time for a multi-

grid method.

For post-smoothing, which is used in an upward stoke, number of iterations

can vary depending on the the problem to be solved. There should not be neces-

sary to iterate to many times. Usually, it is better to change the coarse-smoothing

or number of cycles instead of increasing the number of post-smoothing itera-

tions, to reach convergence.

3.4. CONVERGENCE AND COMPUTATIONAL WORK 33

3.4 Convergence and Computational Work

It is possible to find a convergence factor β, which is the spectral radius of the

overall iteration matrix, by numerical analysis Strang (2006). β is a constant fac-

tor less than one, β< 1, and independent of the grid size h. Hence, theoretically

the number of iterations is bounded independent of the grid level on the linear

system and only dependent of the accuracy.

To achieve an optimal multigrid algorithm, the number of floating point op-

erations (flops) per multigrid cycle should behave like O (n), where n is the num-

ber of degrees of freedom (unknowns). Number of flops for a deep v-cycle or a

full multigrid is greater than for a two-step multigrid Strang (2006), the relation

is given in equation 3.5.

Flops in full MG < 2d

2d −1
(Flops in V−cycle) <

(2d

2d −1

)2
(Flops in two−step)

(3.5)

d is the dimension in space and the power of 2 is related to the transpose re-

lation between a fine and a coarse grid. Hence, the total number of flops are

asymptotically optimal for multigrid methods.

Good programing is decisive to optimize the multigrid algorithm together

with the chosen transposing methods. Regardless, the multigrid method is one

of the most efficient iterative methods known today (Hackbusch, 1985).

34 CHAPTER 3. MULTIGRID

Chapter 4

Immersed Boundary Method

The governing equations for the fluid are easily adopted to fluid-structure inter-

action problems. This is done by an approach to model the coupling between

the structure and the fluid. Hence, the immersed boundary method (IBM) can

be used to solve the coupling.

The IBM was first proposed and implemented by Peskin (1972). He inserted

an immersed boundary of the flexible leaflet of a human heart valve and pre-

sented it as a method for solving the Navier-Stokes equation on a rectangular

domain accomplished by replacing the boundary by a field of force defined on

the mesh points of the rectangular domain. Later, the method was adopted by

Lai and Peskin (2000) to simulate rigid boundaries.

In IBM, the immersed boundary points on a geometry does not need to

conform with the Eulerian grid points in the computational fluid domain. The

points are applied to a Lagrangian grid, but by imposing the immersed bound-

ary conditions on the geometry the immersed boundary can be handled in the

Eulerian grid by modifying the governing equations.

35

36 CHAPTER 4. IMMERSED BOUNDARY METHOD

There are several advantages by using the IBM to apply a geometry in a fluid:

• The geometry does not need to fit the computational grid.

• It can handle moving boundaries.

• Grid complexity and quality are not significantly affected.

• The computational cost of each grid node is generally less expensive, i.e.

less memory and CPU are used.

• IBM solved by explicit time stepping schemes require solvers only for the

Eulerian equations (Guy et al., 2015).

• Works together with multigrid methods.

4.1 Imposing of Immersed Boundary Conditions

Imposing of the immersed boundary conditions is the key factor in an immersed

boundary algorithm. The method used to impose these boundary conditions

is what distinguishes the algorithms, i.e. how to modify the governing equa-

tions. The domain occupied by the geometry is denoted by Ωb and the im-

mersed boundary by Γb , then the immersed boundary conditions is specified

as equation 4.1.

u = uΓ and
∂p

∂x
= 0 on Γb (4.1)

The governing equations (2.5, 2.6 and 2.4) for the domain Ω is discretized

without taking the immersed boundary into account. The immersed boundary

condition is imposed indirectly by modifying 2.5 and 2.6 with a forcing function

fb, see 4.2, representing the effect of the immersed boundary.

4.2. DISCRETE FORCING METHODS 37

ut +u·∇u =−∇p + 1

Re
∇2u+ fb on Ω (4.2)

∇·u = 0 (4.3)

The forcing function can be implemented in two different ways:

1. Continuous forcing method - fb is applied to the entire domain, i.e. 4.2 is

solved on (Ω +Ωb).

2. Discrete forcing method - first, fb = 0 and 4.2 is discretized without the

immersed boundary, then the cell-velocities near the immersed boundary

are adjusted to account for the immersed boundary.

When a continuous forcing method is used, elastic and rigid boundaries

needs different treatment. This method will not be described here, for future

discussions around elastic boundaries read Peskin (1972) and for rigid bound-

aries read Goldstein et al. (1993).

4.2 Discrete Forcing Methods

Discrete forcing methods are divided into indirect and direct forcing approaches.

Indirect approaches are imposing the immersed BC’s indirectly on the immersed

boundary. Otherwise, the direct forcing approaches are imposing the immersed

BC’s directly on the immersed boundary, which will be future discussed here.

4.2.1 Direct Forcing approach

The direct forcing approach was derived by Mohd-Yusof (1997). He provided a

method where the velocity value is imposed directly on the boundary and the

implementation do not require additional CPU time. To demonstrate the main

38 CHAPTER 4. IMMERSED BOUNDARY METHOD

steps in the approach assume a 2D immersed boundary with the Eulerian grid

points (i , j). Considering the equation 4.2 discretized in time by the explicit

Euler method, equation 4.4 arise.

un+1
i , j −un

i , j

∆t
= RHSi , j + fi , j (4.4)

n+1 and n are respectively the next and the present time-step, i , j is the location

on the Eulerian grid. For un+1
i , j =Ui , j , where Ui , j is the fluid velocity next to the

immersed boundary, then equation 4.5 for fi , j yields.

fi , j =
Ui , j −un

i , j

∆t
−RHSi , j near Γb (4.5)

Since the immersed boundary does usually not coincide with the underlying

grid, an interpolation procedure needs to be used to determine Ui , j close to the

intersection points.

When the projection method from subsection 2.1.3 is used to decouple the

velocities and the pressure, the immersed BC’s are forced on the predicted ve-

locities, u∗
i , j and v∗

i , j , together with the interpolation procedure. Balaras (2004)

prescribe this simplification without reducing the temporal accuracy of the method.

4.2.2 Interpolation

Different interpolation schemes can be used to find the velocities close to the

immersed boundary. Fadlun et al. (2000) presents three different schemes on a

staggered grid (see figure 4.1), no interpolation, volume fraction weighting and

velocity interpolation, and tested the results they provided. The velocity inter-

polation gave the best results and will be described here.

4.2. DISCRETE FORCING METHODS 39

Figure 4.1: From Fadlun et al. (2000). (a) no interpolation,(b) volume fraction
weighting,(c) linear interpolation.

The interpolation scheme presented by Fadlun et al. (2000) is different and

more accurate than the interpolation scheme presented by Peskin (1972). The

interpolation is done by a linear approximation of the velocities close to the im-

mersed boundary wall. The velocity profiles are assumed to be approximately

linear from the wall if the grid around the immersed boundary is fine enough.

40 CHAPTER 4. IMMERSED BOUNDARY METHOD

Chapter 5

Code layout

A Navier Stokes solver is developed to preform case studies with multigrid and

IBM. The incompressible Navier Stokes equations for a 2-dimensional flow is

solved on an equidistant grid and the following sections will give a short intro-

duction on the code layout, methods used, assumptions taken and limitations

on the code. The respective code is found in Appendix B and a flow chart can be

seen in figure 5.1.

The programming language used to develop the program is C with compiler

gcc and flags -W and -o. Double precisions is used to ensure convergence of the

simulations. A vtf-file is written in the end of each time-step (or at chosen time-

steps) to visualize the result in GLview. The program is ran on Ubuntu 16.04

with 4 (64-bit, 1.8GHz) CPUs.

41

42 CHAPTER 5. CODE LAYOUT

Figure 5.1: Flow chart of the Navier Stokes solver

Figure 5.2: A staggered grid cell at position i , j .

5.1. STAGGERED GRID GENERATION 43

5.1 Staggered Grid Generation

The solver uses an equidistant staggered grid in the computational domain.

When refering to u, v and p in the computational node, the definitions given

in figure 5.3, 5.4 and 5.5 are the current one. By using these definitions, half-

integer velocity adresses are not needed and a cell i defined as in figure 5.2.

Figure 5.3: The represen-
tation of u-velocity in the
staggered grid.

Figure 5.4: The represen-
tation of v-velocity in the
staggered grid.

Figure 5.5: The represen-
tation of the pressure in
the staggered grid.

5.2 Finite Difference Scheme

A FDM scheme, represented by the nodes in figure 5.6, 5.7 and 5.8, is used to

solve the spatially differential terms in equation 2.10 as RHS(u, v, p) in 5.1. The

FDM-stencil presented by Harlow and Welch (Harlow et al., 1965) is used with

the following equations for the viscous terms 5.3, the advective terms 5.2 and

the pressure terms 5.4. h =∆x =∆y since an equidistant grid is used and u.

u∗−un

∆t
= RHS(u, v, p) (5.1)

Where u = {u, v} is the velocities in 2D.

44 CHAPTER 5. CODE LAYOUT

Ax = 0.25

h

((
ui+1, j +ui , j

)2 − (
ui , j +ui−1, j

)2

+ (
ui , j+1 +ui , j

)(
vi+1, j + vi , j

)− (
ui , j +ui , j−1

)(
vi+1, j−1 + vi , j−1

))
Ay = 0.25

h

((
ui , j+1 +ui , j

)(
vi+1, j + vi , j

)− (
ui−1, j +ui−1, j−1

)(
vi−1, j + vi , j

)
+ (

vi , j + vi , j+1
)2 − (

vi , j−1 + vi , j
)2

)
(5.2)

Vx = 1

Re

(ui+1, j +ui−1, j +ui , j+1 +ui , j−1 −4ui , j

h2

)
Vy = 1

Re

(vi+1, j + vi−1, j + vi , j+1 + vi , j−1 −4vi , j

h2

) (5.3)

Px = pi , j −pi+1, j

h

Py =
pi , j −pi , j+1

h

(5.4)

Figure 5.6: The repre-
sentation of pressure
and velocities used for
x-direction calculations.

Figure 5.7: The repre-
sentation of pressure
and velocities used for
y-direction calculations.

Figure 5.8: Velocities
used to calculate pi , j .

5.3. EXPLICIT EULER SCHEME 45

5.3 Explicit Euler Scheme

An explicit Euler scheme 2.11 is used to solve the temporal discretization. Hence,

the Navier Stokes equations will be solved for each ∆t until tmax is reached,

starting from t = 0, see 5.1. The current spatial values are used in the right-hand

side solution according to the explicit Euler scheme, see equation 5.5.

u∗−un

∆t
= RHS(un , vn , pn+1) (5.5)

To solve the pressure-velocity coupling by the projection method a predic-

tor, PM-predictor, is stated from the euler scheme. The output from the PM-

predictor results in the predicted velocities, equation 5.6, which are used to

form the right-hand side of the Poisson equation. After the Poisson equation

is solved, a projection method corrector, PM-corrector, will update the non-

solenoidal velocities with the pressure correction found in the Poisson solver,

see equation 5.7.

u∗ = un +∆tRHS(un , vn , pn)

v∗ = vn +∆tRHS(un , vn , pn)
(5.6)

un = u∗−∆t
∆pi+1, j −∆pi , j

h

vn = v∗−∆t
∆pi , j+1 −∆pi , j

h

(5.7)

pn+1 = pn +∆p (5.8)

46 CHAPTER 5. CODE LAYOUT

5.4 Poisson Solver

The Poisson equation can be solved with different equation solvers. In the present

code, Gauss Seidel, SOR, two-step multigrid and V-cycle multigrid are com-

pared. The right-hand side, f , is stated as the divergence of the predicted ve-

locities, u∗ and v∗, divided by ∆t .

−∆p = f i n Ω= (0,1)2 (5.9)

5.4.1 Gauss Seidel

Gauss Seidel method is implemented straight forward. Equation 5.10 presents

the scheme to be iterated for each iteration k.

∆pk
i , j =

1

4

(
∆pk−1

i+1, j +∆pk
i−1, j ∆pk−1

i , j+1 +∆pk
i , j−1 −h2 fi , j

)
(5.10)

5.4.2 Successive Over Relaxation

For SOR method it is reasonable to find the optimal omega,ωopt , for the currant

grid size. ωopt is found by linear interpolation between the grid size and inter-

polation values found from experimental results. The iterative scheme solved is

presented in equation 5.11 and iterated for each iteration k.

∆pk
i , j =

(
1−ωopt

)
∆pk−1

i , j + ωopt

4

(
∆pk−1

i+1, j +∆pk
i−1, j ∆pk−1

i , j+1 +∆pk
i , j−1 −h2 fi , j

)
(5.11)

5.4. POISSON SOLVER 47

5.4.3 Multigrid

The multigrid method is implemented to accelerate the rate of convergence of

the Poisson solver. Three different multigrid algorithms are implemented, two-

step multigrid (see algorithm in subsection 3.2.1), v-cycle multigrid (see algo-

rithm in subsection 3.2.2) and full multigrid(see algorithm in subsection 3.2.3).

All the algorithms are using Gauss-Seidel, presented in subsection 5.4.1, to find

an approximate solution. The number of interior points in x- and y-direction is

2d in a [0:1]x[0:1] domain, where d is the number of multigrid levels.

In 2D, the injection done by the restriction matrix I 2h
h in the present code is

presented in equation 5.12. n is the number of fine grid points, h represents the

fine grid and 2h the coarse grid.

∆p2h
i , j =∆ph

2i ,2 j , i = 1, ...,
n

2
and j = 1, ...,

n

2
(5.12)

The prolongation matrix I h
2h for linear interpolation will in 2D be represented

as bilinear interpolation, see figure 5.9 with corresponding equation 5.13, where

n is the number of coarse grid points.

eh
2i ,2 j =

9

16
e2h

i , j +
3

16
(e2h

i+1, j +e2h
i , j+1)+ 1

16
e2h

i+1, j+1,

eh
2i+1,2 j =

9

16
e2h

i+1, j +
3

16
(e2h

i+1, j+1 +e2h
i , j)+ 1

16
e2h

i , j+1,

eh
2i ,2 j+1 =

9

16
e2h

i , j+1 +
3

16
(e2h

i+1, j+1 +e2h
i , j)+ 1

16
e2h

i+1, j ,

eh
2i+1,2 j+1 =

9

16
e2h

i+1, j+1 +
3

16
(e2h

i+1, j +e2h
i , j+1)+ 1

16
e2h

i , j ,

f or i = 0, ...,n and j = 0, ...,n.

(5.13)

48 CHAPTER 5. CODE LAYOUT

To improve the prolongation, mixed interpolation, see figure 5.10, are imple-

mented at the boundaries on the fine grid. Mixed interpolation is prescribed un-

der section 3.1.2 and developed in the present code as equation 5.14. bound ar y

represents a boundary point in the fine grid for eh and in the coarse grid for e2h .

n is the number of coarse grid points.

eh
bound ar y,2 j =

3

4
e2h

bound ar y, j +
1

4
e2h

bound ar y, j+1,

eh
bound ar y,2 j+1 =

3

4
e2h

bound ar y, j+1 +
1

4
e2h

bound ar y, j ,

eh
2i ,bound ar y =

3

4
e2h

i ,bound ar y +
1

4
e2h

i+1,bound ar y ,

eh
2i+1,bound ar y =

3

4
e2h

i+1,bound ar y +
1

4
e2h

i ,bound ar y ,

f or i = 0, ...,n and j = 0, ...,n.

(5.14)

Figure 5.9: Bilinear interpolation
(Drikakis et al., 1998).

Figure 5.10: Mixed interpolation
(Drikakis et al., 1998).

5.5. IBM 49

5.5 IBM

To insert a geometry in the fluid flow, IBM is used. The IBM developed in the

present code is based on Mossige (2017) and measures the force function by

direct force approach, which is a discrete force method.

Coinciding with theory prescribed in chapter 4, the velocities close to the

immersed boundary should be modified. In order to find the positions relative

to the underlying computational grid, the staggered grid configurations needs

to be taken into consideration. To interpolate parallel to the velocity directions,

which is done in the present code, a grid shifting of the velocity is accomplished.

To save computational time, a domain surrounding the immersed boundary is

defined, see fiure 5.11. A representation of parallel linear interpolation and the

grid shift are given in figure 5.13 and 5.12.

Figure 5.11: A demonstration of the surrounding domain for an immersed
boundary.

50 CHAPTER 5. CODE LAYOUT

Figure 5.12: How to apply grid shift on the surrounding domain. The black grid
is the original staggered grid, red is v-velocities and green is u- velocities.

Figure 5.13: Parallel interpolation after 1
2 -gridshift, from Mossige (2017).

5.5. IBM 51

The direction into the fluid from the immersed boundary is detected for

each intersection point and the two first fluid node velocities are used in the lin-

ear interpolation together with the immersed boundary velocity. The purpose

of the interpolation is to modify the first fluid node with respect to the two other

nodes, i.e. the effect of the boundary is stated indirectly. Since the predicted ve-

locities, see equation 5.6, are used in the IBM, the interpolated velocities are

flagged to not be corrected by the PM-corrector. Pressure boundary conditions

are not imposed according to Fadlun et al. (2000) and the internal flow flied is a

freely developed.

Force coefficients for lift and drag are calculated from the lift and drag forces,

see equation 5.15. For each intersection point, i , a contribution to the forces

are measured by Newton’s second law and third law, see equation 5.16, where

the change in velocity in x-direction will give a contribution to the drag force

and the change in velocity in y-direction will give a contribution to the lift force.

Hence, the forces are equal but has the opposite direction of the influence the

immersed boundary has on the fluid. ud and vd denotes the difference between

the interpolated and the predicted velocity, A is the areal of the geometry, u∞ is

the inflow velocity, ρ is the density and ρh2 represents the mass.

CD = 2
FD

ρu2∞A

CL = 2
FL

ρu2∞A

(5.15)

FD =∑
i
−ud

∆t
ρh2

FL =∑
i
− vd

∆t
ρh2

(5.16)

52 CHAPTER 5. CODE LAYOUT

When a fluid flows over a geometry, the geometry exerts a (pressure) force,

and if a geometry surface is no-slip, the fluid exerts a share force too. Conceptu-

ally, the geometry exerts a force with opposite direction on the fluid (Goldstein

et al., 1993).

5.5.1 Limitations on the Immersed Boundary

How to define the immersed boundary geometry has certain limitations, which

needs to be taken into consideration:

• The geometry should be located 2h from the boundary cells because of

the choice of interpolation nodes described earlier.

• The geometry should be a closed polygon.

• Grid generation around the immersed boundary have to be fine enough

to assume linear velocity profiles.

• The immersed boundary cannot be too close to another part of the im-

mersed boundary, then an interpolated velocity can be used to interpo-

late a new velocity.

• The forced motion procedure on a body is not tested, hence may not be

perfectly developed.

The IBM-module is not complete due to the fluid structure interaction prob-

lem. It still reminds to implement the deformation and the velocity response

of the immersed boundary. At this point, the boundaries can only move by a

pre-described motion as a closed rigid geometry.

5.6. CONVERGENCE CRITERIA 53

5.6 Convergence criteria

For the Poisson solver, the convergence criteria is 10−6 due to the infinity-norm,

see equation 5.17. ∆pd is the change in ∆p per iteration.

‖∆pd‖∞ ≤ 10−6 (5.17)

5.7 General Limitations

To define the domain in the refinement test, a change where made to handle

rectangular domains. This includes the dimX and dimY in the code, which are

factors multiplied by the number of cells in the original domain [0:1]x[0:1]. Be

aware of that dimX and dimY needs to be equals to or larger than 1.0. To get

right post-processing in GLview, dimX needs to be larger or equals to dimY, but

this has no impact on the computations done before the post-processing stage.

The IBM is not affected by the multiplication, hence the immersed boundary

need to be placed in the domain [0:1]x[0:1] with the same restrictions as de-

scribed earlier. This modification of the code is not optimal, but are done in the

late stage of the implementation process due to efficiency of the computational

work.

During the implementation some changes were made in the code, which

have impact on the code setup. Static allocation of memory where implemented

first, but during the implementation of multigrid methods, too much memory

where occupied for larger problems. Therefore, a change to dynamic allocation

where made. By lack of time, just the necessary modifications for this change

where implemented.

54 CHAPTER 5. CODE LAYOUT

5.8 Post-processing

In the post processing stage, an averaging of the velocities and pressure is done

to be represented in the same node as specified for visualization in GLview. The

averaging is only for the visualization and will not affect the previous calcula-

tions steps. When using IBM, the interpolated velocities close to the immersed

boundary are already specified, but this is not taken into consideration at this

stage. This means that the visualization of velocities closest to the boundary

will be affected by the velocities inside of the immersed boundary and the BC’s

at the wall are not achieved in the visualization. This should be taken into con-

sideration when analyzing the figures.

Chapter 6

Validation

The developed solver is validated to check accuracy, efficiency and force coeffi-

cients, a final test case is done in the end to collect it all. First, the Poisson solver

is validated and the most efficient method with acceptable accuracy is used in

the following. Further, the chosen method is tested together with the IBM in a

final case. Refinement tests are preformed before the final test case to optimize

the simulations. An efficiency overview for one time-step of the final test case is

presented at the end.

The fluid solver without IBM is assumed to work OK and is not validated

here. The fluid solver is previously validated in my project thesis (Aarsnes),

where the solver is based on the same methods as the present solver and SOR

method is used to solve the Poisson equation. Some modifications are done in

the code, but it is still reasonably to assume that the validations are valid.

55

56 CHAPTER 6. VALIDATION

6.1 Poisson Solver

In the Navier-Stokes solver, there are several possible methods defined to solve

the Poisson equation 2.9. Only iterative methods has been developed accord-

ing to the large model problem and memory limitations. Two simple methods,

Gauss Seidel and SOR, are tested against the more complex multigrid methods.

In subsection 6.1.1 the Poisson solver is run with Gauss Seidel method and SOR

method, in subsection 6.1.2 it is run with different multigrid methods. First, a

test problem is defined.

Test Problem

A test problem is defined and used in all validations under this section. The

domain, Ω = [0,1]x[0,1], have periodic boundary conditions at dΩ and a non-

zero forcing function 6.1 of the Poisson equation. The analytical solution of the

problem is given in equation 6.2. Mesh resolution in the tests for the Poisson

solver is 256x256 with h = 1
256 . x and y refers to the position on the 2D domain.

f(x, y) = cos(2πx)cos(2πy) (6.1)

pexact = 1

(2π)2 cos(2πx)cos(2πy) (6.2)

6.1. POISSON SOLVER 57

6.1.1 Gauss Seidel and SOR

Figure 6.1 and figure 6.2 shows the analytical solution, equation 6.2, plotted

against the numerical solutions preformed by Gauss Seidel and SOR. The so-

lution values lie along a line in the middle of the domain, horizontally (y = 0.5).

In both cases, the numerical results are following the analytical solution in an

acceptable way by crossing it, hence the curvature line of the difference given

in figure 6.3 and figure 6.4. The difference between the analytical solution and

the numerical solution turns out asymmetric with the left slope slower than the

right slope. Thereby, there is a small displacement in the Poisson solver pre-

formed by the Gauss Seidel method. This could arise from how the solver sweep

trough the domain in x- and y-direction. Here, the Gauss Seidel method sweep

from the lower left corner to the upper right corner of the domain. Since y is

constant trough the domain, the solution passes from left to right and can per-

mit the largest errors to accumulate at the high values of x (Kahan, 1958). When

this displacement occurs in the Gauss Seidel method, it will also occur in the

other methods which are based on the Gauss Seidel algorithm. Figure 6.4 is a

plot of the difference when using SOR method to solve the Poisson equation

numerically. SOR can be seen as a method who applies a correction to the

value already obtained from the Gauss Seidel method based on extrapolation

from previous iterations (Richard H. Pletcher, 2013) and therefor provide a more

asymmetric but accurate solution.

From Kahan (1958), SOR should smooth down the error to the convergence

criteria (see subsection 5.6) faster then Gauss Seidel if the damping factor ω

is optimal. Figures 6.5 and 6.6 shows how the residual, ∆pk - ∆pk−1, propa-

gate during the iterations, k, for the two methods. The Gauss Seidel method

smooths the Poisson equation properly in 3431 iterations and SOR in 571 itera-

tions. Hence, SOR method are proven to be faster then Gauss Seidel.

58 CHAPTER 6. VALIDATION

Figure 6.1: Analytical solution (green) vs numerical solution (purple) by Gauss
Seidel.

Figure 6.2: Analytical solution (green) vs numerical solution (purple) by SOR.

6.1. POISSON SOLVER 59

Figure 6.3: Difference between the analytical solution and Gauss Seidel.

Figure 6.4: Difference between the analytical solution and SOR.

60 CHAPTER 6. VALIDATION

Figure 6.5: Change in residual per iteration for Gauss Seidel method.

Figure 6.6: Change in residual per iteration for SOR.

6.1. POISSON SOLVER 61

6.1.2 Multigrid

A way to test whether a multigrid algorithm works properly or not, is to measure

the residual before and after the algorithm goes to a coarser grid (Wesseling,

1995). A significant reduction in the residual should be found.

Figure 6.7: Change in residual per iteration for two-step MG.

Figure 6.8: Change in residual per iteration for v-cycle MG when d = 3.

62 CHAPTER 6. VALIDATION

Figures 6.7, 6.8, 6.9 and 6.10 consists of plots of the residual reduction before

an after the algorithm goes to a coarser grid, i.e. change in residual over a v-

cycle. The number of iterations is measured depending on the depth in the v-

cycle. The results coincides with the theory presented in chapter 3.

Figure 6.9: Change in residual per iteration for v-cycle MG when d = 4.

Figure 6.10: Change in residual per iteration for full MG.

6.1. POISSON SOLVER 63

It is possible to see that the change in residual deceases faster in the be-

ginning of the iteration scheme when the depth in the v-cycle increases. This

coincides with the reduction in high frequencies error for each grid step, i.e.

transfered to lower frequencies on the fine grid, and deeper v-cycles will reach

the convergence limit faster.

For the full multigrid algorithm, which starts on the coarsest grid, the re-

duction in residual is significantly higher in the beginning then for the v-cycle,

but it also starts with a higher residual. By the algorithm, the method will con-

tinuously improve the initial guess at each depth, and quickly reduce the slow

low frequent components of the fine grid. Independently of when the conver-

gence criteria is reached, the algorithm applies v-cycles at each depth until the

solution is back on the fine grid.

In a multigrid algorithm, the projection and restriction are sensitive parts. If

the reduction in the residual is not found, these parts are not functioning prop-

erly and should be investigated (Wesseling, 1995).

To decide the number of pre-, coarse- and post-iterations, different iteration

testes are made. The optimal iteration number is stated from the run-time for a

converged solution. As a default case, pre-iteration v1 = 2, coarse-iteration v2 =
50 and post-iteration v3 = 8. Figure 6.11 is a plot of the change in residual over

number of cycles when changing v1. The optimal choice for v1 is 2. Figure 6.12 is

a plot of the CPU-time used for different number of iterations where the optimal

choice of v3 is 8. For v-cycle multigrid and full multigrid, different number of

coarse-iterations are optimal. From plots on figures 6.13 and 6.14, it can be seen

that v2 for v-cycle multigrid should be 35 and for the full multigrid v2 should be

15, with respect to the CPU-time. These iteration values are used in all future

work.

64 CHAPTER 6. VALIDATION

Figure 6.11: Pre-iteration test, iterations - 1:purple, 2:green, 3:blue.

Figure 6.12: Post-iteration test.

6.1. POISSON SOLVER 65

Figure 6.13: CPU-time vs number of coarse iterations, v-cycle MG.

Figure 6.14: CPU-time vs number of coarse iterations, full MG.

66 CHAPTER 6. VALIDATION

The multigrid methods, figure 6.17 and 6.15, are less accurate then the SOR

method, but more accurate then the Gauss Seidel method. The difference from

the analytical solution, equation 6.2, to the numerical solutions are still propa-

gating asymmetrically trough the domain, figure 6.18 and 6.16, see the accuracy

validation of the Gauss Seidel method for more details. The same way of finding

solution values and difference as prescribed under 6.1.1 yields for these plots.

6.1. POISSON SOLVER 67

Figure 6.15: Analytical solution (green) vs numerical solution (purple) by v-cycle
MG with d = 3.

Figure 6.16: Difference between the analytical solution and numerical solution
of v-cycle MG with d = 3.

68 CHAPTER 6. VALIDATION

Figure 6.17: Analytical solution (green) vs numerical solution (purple) by full
MG.

Figure 6.18: Difference between the analytical solution and numerical solution
of full MG.

6.1. POISSON SOLVER 69

6.1.3 Comparison

To compare the different methods used to solve the Poisson equation, num-

ber of iterations and the speed-up factor is presented. The speed-up factor is

calculated basted on the measured CPU-time for a method with respect to the

measured CPU-time for the Gauss Seidel method, see equation 6.3.

S = (C PU − t i me)GS

(C PU − t i me)method
(6.3)

For a multigrid algorithm, the iterations is counted only for post-iterations

on a upward stoke. This is an approximation based on the cost done to pre-

form an iteration on a coarser grid compared to the finest grid. Since an upward

stoke consists of coarser grids too, all iteration counts are merged together to

count on just one stoke (upward, because it have most iterations). Therefore,

the full multigrid iterations will count less then the iterations done on a v-cycle,

i.e. the full multigrid has maximum 8 iterations on the finest grid per time-step.

Together with the speed-up factor, this will give a good enough result of the ef-

ficiency relation between the different methods.

The plot of the speed-up factor, 6.19, and the plot of iterations, 6.20, have

coinciding but opposite (ranging of the methods) results.

The Gauss Seidel method is clearly the slowest method, as expected. SOR

will generally speed up the run-time 2-3 times and the two-step multigrid ap-

proximately 5 times, independent of number of grid points in the domain. V-

cycle multigrid with depth more then two and the full multigrid method are de-

pendent on number of grid points in the domain. On very coarse grids, they are

not working optimal, therefore h > 1
64 when using multigrid. The speed-up fac-

tor for the v-cycle algorithm will stagnate at approximately 15 for depth equals

to three and 33 for depth equals to four. In a v-cycle it is not adequate to go

70 CHAPTER 6. VALIDATION

deeper then four depths. Therefor, in this solver it is possible to conclude with

a maximum speed-up factor on 33 for the v-cycle algorithm.

For the full multigrid algorithm, the speed-up factor vary even more de-

pending on number of grid cells. The reason for this is that the number of it-

erations in a full multigrid algorithm is independent of number of grid cells in

the domain, distinct from the other methods (especially Gauss Seidel). Hence,

it is clearly the fastest method to solve the Poisson equation. For the accuracy in

the full multigrid algorithm, the RMS of the error in the solution domain will sta-

bilize on an acceptable level when number of grid cells in the domain increases,

according to plot 6.21.

Figure 6.19: The speed-up factor with respect to Gauss Seidel method. Purple:
GS, green: SOR, light blue: two-step MG, orange: v-cycle d=3 MG, yellow: v-
cycle d=4 MG and dark blue: full MG.

6.1. POISSON SOLVER 71

Figure 6.20: Total number of iterations. Purple: GS, green: SOR, light blue: two-
step MG, orange: v-cycle d=3 MG, yellow: v-cycle d=4 MG and dark blue: full
MG.

Figure 6.21: RMS of the error in the domain for different number of grid cells.
Purple: GS, green: SOR, light blue: v-cycle d=3 MG and orange: full MG.

72 CHAPTER 6. VALIDATION

6.2 Navier Stokes Solver

Several refinement tests are done to optimize the numerical result on the Navier-

Stokes solver. The model in the refinement tests should be as similar to the

actual test case as possible i.e. same geometry, fluid properties etc. Force coef-

ficients for lift and drag are measured to compare the test results and to chose

the the most proper refinement. The lift coefficient is measured as the maxi-

mum value over 10 periods at the end of the time-period. The drag coefficient

is measured at the arithmetic average over 10 periods at the end of the time-

period. Flow past a cylinder is a traditional fluid dynamic problem, and is there-

fore chosen as a test case. It is easy to find published experiments to compare

result values with. The von Karmen vertex street in the wake of a cylinder has

some characteristics which are useful to validate together with the forces and

Strouhals number when vary the Reynolds number.

Default case

The default test case is a channel flow with slip conditions at the walls, Dirichlet

condition on the pressure at outflow and inflow velocity equals to 1.0 m/s, see

figure 6.22 for more details. The domainΩ is [0:2]x[0:1]. The immersed bound-

ary is stated by 50 points to create a proper circle and the diameter in the circle

is equal to 0.1 and consists of approximately 12 cells. Reynolds number 20 and

100 are used to test the flow-field. The time-step ∆t is set to meet the stability

criteria, i.e. ∆tRe=100 = 0.001 and ∆tRe=20 = 0.0003, and a time-series lasts to 30

sec (tmax = 30.0). All tests are done with the default test case when nothing

else is specified. If any of the variables are specified later, the new value is the

valid one.

6.2. NAVIER STOKES SOLVER 73

Figure 6.22: The computational domain of the default case with BC’s and do-
main size.

74 CHAPTER 6. VALIDATION

6.2.1 Time Refinement Test

A time refinement test is done for a time dependent problem to check the de-

pendency between the time resolution and accuracy. Several tests are presented

in table 6.1.

Table 6.1: Refinement of time.

Re ∆t CL CD

20

0.001 - unstable
0.0003 - 2.281875
0.0001 - 2.206216

0.00007 - 2.188227
0.00005 - 2.193227

100

0.001 0.249477 1.444527
0.0003 0.16241 1.378774
0.0001 0.141969 1.361831

0.00007 0.139043 1.359352
0.00005 0.137111 1.357709

The accuracy of the result is dependent of the time resolution in the solver.

An explicit Euler scheme has a small stability area, hence considered as a less

stable and more time-step restricted, i.e. need smaller time-steps, then other

higher-order methods. All the tested ∆t for Re = 100 in table 6.1 are in the sta-

ble area for explicit Euler according to the stability analysis, but other factors

may also influence the accuracy. Explicit Euler is a first-order accuracy method,

thereby the result was expected and∆t needs to be taken into consideration and

may never converge. The optimal∆t for the final test case should be chosen ac-

cording to previous published experimental results and closes to the limit set by

the stability criteria in the stable area.

6.2. NAVIER STOKES SOLVER 75

6.2.2 Mesh Refinement Test

When using the FDM method, the accuracy of the solution is linked to the mesh

size in the domain. When the mesh size decreases towards zero, the solution is

moving toward the exact solution of the equation. Some limitations here are the

time and limited computational resources. Therefore, it is important to find the

optimal mesh size with an mesh refinement test where the goal is to minimize

the error to a acceptable level depending on the analyzing goals.

In the mesh refinement tests, the mesh size is tested against the diameter of

the cylinder, D
h , where h =∆x =∆y , i.e. an equidistant grid is kept. The test case

setup is similar to the default case, but some changes are done for∆t . Only Re =

100 is tested for because of the high rate of changes in the velocity and pressure

gradients trough the domain.

Table 6.2: Refinement of number of cells in cylinder diameter.

Re h ∆t D
h , cells CL CD

100

1
64 0.006 6 0.119433 1.765178

1
128 0.003 12 0.260477 1.498631

1
256 0.0001 24 0.265365 1.497785

Table 6.3: Accuracy of the Poisson solver on domain [0:2]x[0:1].

Number of cells (2nxn) RMS of domain

8192 (n=64) 1.8068 ·10−6

32768 (n=128) 7.33725 ·10−7

131072 (n=256) 5.35976 ·10−7

76 CHAPTER 6. VALIDATION

Another test is done to check the accuracy against an analytical solution,

equation 6.2. To establish this test, the test problem from section 6.1 is used and

the Poisson solver is tested. The difference between the numerical result and the

analytical solution is calculated by a L2-norm (RMS) of the domain [0:2]x[0:1].

The results are presented in table 6.3.

Table 6.2 shows that the numerical results are dependent of the mesh res-

olution. The RMS of the solution differences in the domain are acceptable for

all the tests. From table 6.2, D
h = 12 is has two decimals equals to D

h = 24 for the

force coefficients. Due to run-time of the time-series and the small difference

in the solution coefficients, D
h = 12 will be used in the final test case.

6.2. NAVIER STOKES SOLVER 77

6.2.3 Domain Refinement Test

Different domain refinement tests are preformed to find the optimal refinement

of the domain length (L), domain width (W) and the cylinder distance from the

inflow (I). The results of the lift and drag coefficients for different L and W are

presented in table 6.4 and table 6.5.

The force coefficients are not affected significantly by changing in the do-

main length. For Re = 20, this is as expected since no vortex shedding occur. For

Re = 100, this is more unexpected because of the large vortex velocity gradients

that follows the von Karmen street downstream in the domain. The resolution

of the vortex shedding is important, otherwise an unstable von Karmen street

may distract the pressure distribution around the cylinder and effect oscillation

of the drag force. L = 20D is the longest possible construction of the domain and

will be used for the final test case. It may turn out to not be long enough.

Table 6.4: Refinement of domin length.

Re L (length) CL CD

20

12.5D - 2.605942
15D - 2.605528

17.5D - 2.605466
20D - 2.605461

100

12.5D 0.255942 1.444761
15D 0.25048 1.444593

17.5D 0.249475 1.444526
20D 0.248281 1.444507

In the domain refinement tests, the force coefficients are significantly af-

fected by the change in the domain width. The coefficients are not converged

properly, but W = 17.5D will be used in the final test case and is the larges possi-

ble construction of the domain in the CFD-solver together with L = 20D.

78 CHAPTER 6. VALIDATION

Table 6.5: Refinement of domin width.

Re W (width) CL CD

20

10D - 2.605461
12.5D - 2.515492
15D - 2.461674

17.5D - 2.426802

100

10D 0.248281 1.444507
12.5D 0.244023 1.407576
15D 0.240576 1.386462

17.5D 0.238610 1.373361

For the inflow refinement test, the length of the domain, L, is changed to

20D. This is done with respect to the length refinement test and are constant

during domain inflow refinement test. The x-position in the cylinder center will

vary depending on I and the length behind the cylinder will change between

13D-16D. If the cylinder is placed to close the inflow, the numerical solutions

will be affected by the constant inflow velocity. The converged inflow coeffi-

cients are found for I = 6D, and will be used in the final test case.

Table 6.6: Refinement of domin inflow.

Re I (inflow) CL CD

20

4D - 2.443131
5D - 2.426646
6D - 2.425538
7D - 2.425098

100

4D 0.310410 1.490689
5D 0.240358 1.386235
6D 0.238520 1.377452
7D 0.238758 1.376718

The domain refinement test are strongly dependent of the Reynolds number

6.2. NAVIER STOKES SOLVER 79

because of the von Karmen vortex street. For higher Reynolds numbers, the test

should be reverse.

6.2.4 Multigrid together with IBM

A final test case is made to test and analyses the results provided by a solver

which used a multigrid method together with an IBM. To summarize the final

test setup:

L = 20D W = 17.5D I = 6D

∆tRe=100 = 0.001 D
h = 12 h = 1

128

∆tRe=20 = 0.0003

The Poisson equation is solved with a full multigrid algorithm.

Strouhals number is a dimensionless frequency of the vortices which are

shed from the body, given in equation 6.4. fv = 1
Tv

is the vortex shedding fre-

quency, Tv is a dimensionless time period, D is the diameter of the body and

U∞ is the inflow velocity.

St = D fv

U∞
(6.4)

Table 6.7: Result from the final test case at Re = 20.

Result source CD

Present 2.123974
Taira and Colonius (2007) 2.07

Park et al. (1998) 2.01
Xu and Wang (2006) 2.23

80 CHAPTER 6. VALIDATION

Table 6.8: Result from the final test case at Re = 100.

Result source CL CD Strouhals number

Present 0.171374 1.281555 0.182
Lai and Peskin (2000) scheme 1 0.3290 1.4630 0.144
Lai and Peskin (2000) scheme 2 0.3299 1.4473 0.165

Park et al. (1998) 0.3321 1.33 -
Xu and Wang (2006) 0.34 1.423 0.171

Table 6.7 present the drag-coefficient at Re = 20. The coefficient for the

present CFD-solver is lying in between the results from previous studies. Visu-

alizations associated with the test are as expected and presented in figure 6.23

and 6.24.

For the test with Re=100, several parameters are checked and presented in

table 6.8. The Strouhals number is larger then from the other studies, but in

an acceptable range. For the lift- and drag- coefficients, the previous studies

presents much higher coefficients. As seen for the refinement tests, the coeffi-

cient values are more similar to those from previous studies. From the default

case, only the domain size has been changed and the domain width had large

impact on the coefficients. More thorough analyses should therefor be done on

the domain before any conclusions are made. The visualizations of the pressure,

velocities and streamlines, see figures 6.25 and 6.26, are behaving as expected

during the time-series.

The visualization defects of the velocities done in the post-processing stage

should be taken into consideration when analyzing figures 6.24 and 6.26. This

is described in subsection 5.8.

6.2. NAVIER STOKES SOLVER 81

Figure 6.23: Pressure contours at Re = 20.

Figure 6.24: Pressure contours and velocity arrows at Re = 20.

82 CHAPTER 6. VALIDATION

Figure 6.25: Pressure contours at Re = 100.

Figure 6.26: Streamlines and velocity arrows at Re = 100.

6.2. NAVIER STOKES SOLVER 83

Figure 6.27: Drag (green) and lift (purple) coefficients at Re = 100.

The displacement found in the Poisson solver for the Gauss Seidel algorithm

generate a small contribution to the lift coefficient at Reynolds number 20. It

may provide some contribution to the other coefficients too, but it is easier to

notice in the lift coefficient calculations since it should have been zero. The

produced error only differ 0.57% and will be neglected in all parts of the problem

analysis.

84 CHAPTER 6. VALIDATION

6.2.5 Efficiency analysis

To analyses which part of the Navier Stokes solver who vast most of the running

time, a time break-down of one time-step is presented for the final test case.

Table 6.9 present the different parts in a Navier Stokes solver where the Gauss

Seidel method is used in the Poisson solver and table 6.10 present the different

parts in a Navier Stokes solver where a full multigrid algorithm is used in the

Poisson solver. For both cases, it can be seen that the Poisson solver is the most

decisive part, but there is an extreme difference by changing to full multigrid in

the deflection on the print-out procedure. To illuminate, the print-out proce-

dure will not run every time-step, only for visualization of the numerical result.

Table 6.9: Time break-down when using Gauss Seidel.

Solution process % of the computational time

Poisson solver 99.9%
IBM solver 0.0%

Print-out procedure 0.08%
Other 0.02%

Table 6.10: Time break-down when using full multigrid.

Solution process % of the computational time

Poisson solver 75.6%
IBM solver 0.3%

Print-out procedure 21.8%
Other 2.3%

Chapter 7

Conclusion and

Recommendations for Further

Work

7.1 Conclusions

To increase the calculation efficiency in a CFD-solver, investigation of the Pois-

son solver was mentioned. The vast majority of the run-time is spent at this

process, and by solving it on a final test case with the iterative scheme Gauss

Seidel minimum 99.9% of the computational time was spent here. A full multi-

grid method was developed and decreased the run-time of the Poisson solver

with a factor of 110 (on a domain with 65536 grid-cells) compared to Gauss Sei-

del on a simple test case. The speed-up factor are related to the mesh resolution,

but increases when the number of grid-cells increases. Consequently, the run-

time spent on solving the Poisson equation in the CFD-solver on a final test case

was reduced to minimum 75.6% with the full multigrid algorithm.

85

86 CHAPTER 7. CONCLUSION

The CFD-solver with a full multigrid method was validated with an FSI prob-

lem solved by IBM. Force coefficients acting on a cylinder in a flow with Reynolds

number 20 and 100 where used as reference values in several refinement tests.

The accuracy of the resolution in the domain is significantly dependent on the

size of ∆t in the numerical simulation. Explicit Euler has a small stability area

which force∆t to be quite small (depending on the problem) to provide reliable

numerical results.

Areas of large velocity or pressure gradients need to have fine enough mesh

resolution, e.g. areas close to the buff cylinder and in the von Karmen vortex

street. Together with a large domain compared to the cylinder diameter, width

should be at least 17.5 times the diameter and the length should be at least 20

times the diameter, the resolution is kept for Re = 20. The domain have a huge

impact on the calculated force coefficients, so more thorough analysis should

therefore be done on the domain to validate the numerical solution for Re =

100. In the next section some recommendations for further work and changes

are provided to optimize the solver.

7.2. RECOMMENDATIONS FOR FURTHER WORK 87

7.2 Recommendations for Further Work

In this section some recommendations for future work and changes are pro-

vided to optimize the solver.

7.2.1 Short-Term

One of the most important criteria for a CFD-solver is to provide accurate results

in a certain time limit. To achieve that criteria for the present CFD-solver, the

development of the domain and how to place the geometry in the flow should

be reversed. A larger domain in both (x- and y-) directions are preferred. To get a

more versatile code, the IBM module should be validated for moving geometries

and expand into a full fluid structure interaction solver.

Different experimentations consisting of changing the transformation schemes

in multigrid to increase the efficiency could be done. The restriction proce-

dure could for example be changed to full-weighted restriction, explained under

chapter 3.

A part of the code which have potential for efficiency and accuracy increase

of the numerical simulations without to much effort, is the temporal-discretization

scheme. Explicit Euler is restricted to so small ∆t for this problem, hence a

higher order Runge-Kutta scheme, see subsection 2.3.2, would use much less

computational time.

7.2.2 Long-Term

If the CFD-solver shall work for turbulent or transitional flow, the resolution re-

quires 3D simulations. To capture all scales of motions ∆xi and ∆t needs to be

so small, hence a super computer and parallelization of the code is required. A

CFD-solver with multigrid methods are highly parallelizable because each pro-

88 CHAPTER 7. CONCLUSION

cesses can simultaneously be performed at all grid points. For more details of

parallel multigrid processing see Brandt (1981).

To reduce the unnecessary computational effort preformed in the numerical

simulation, adaptive grid refinement (subsection 2.2.2) should be included in

the CFD-solver.

Appendix A

Acronyms and Symbols

Acronyms

CFD Computational Fluid Dynamics

IBM Immersed Boundary Method

SOR Successive Over Relaxation

GS Gauss Seidel

FSI Fluid Structure Interaction

MG Multigrid

GMG Geometric Multigrid

AMG Algebraic Multigrid

FMG Full Multigrid

FSI Fluid Structure Interactions

BC Boundary Condition

89

90 APPENDIX A. ACRONYMS AND SYMBOLS

1D One-Dimension

2D Two-Dimensions

PM Projection Method

ODE Ordinary Differential Equation

PDE Partial Differential Equation

CFL Courant-Friedrichs-Lewy

FDM Finite Difference Method

FVM Finite Volume Method

FEM Finite Element Method

FTCS Forward-Time Central-Space

MAC Marker and cell

flops Floating Point Operations

RMS Root-mean square

CPU Central Processing Unit

Symbols

d Depth of an multigrid

n Number of grid points

λ Eigenvalue

Ω Computational domain

91

∂Ω Boundary of domain

Ωb Domain occupied by geometry

∂Γb Boundary of geometry

fb Forcing function

h Grid cell-size, equidistant

∆xi Grid cell-size in x-direction (i=1) and y-direction (i=2)

t Time

∆t Time-step

xi Cartesian coordinates, (x, y)

u Velocity in x-direction

v Velocity in y-direction

p Pressure

∆p Change in pressure

u∗ Predicted velocity in x-direction

v∗ Predicted velocity in y-direction

i Position in x-direction in a Cartesian grid

j Position in y-direction in a Cartesian grid

ρ Density

ν Kinematic viscosity

92 APPENDIX A. ACRONYMS AND SYMBOLS

Re Reynolds number

St Strouhals number

O

R

n Normal vector

ω Damping coefficient

ωopt Optimal damping coefficient

C Courant number

Cmax Criteria for CFL-condition

I 2h
h Restriction operator/matrix

I h
2h Prolongation operator/matrix

k Iteration counter

e Error

r Residual

f Right-hand side of a linear system

A Coefficient matrix in a linear system

s Solve with iteration

e Solve exact or with iteration

r Restrict the system

93

p Prolongate the system

γ Number of cycles in multigrid

v1 Number of pre-iterations

v2 Number of coarse-iterations

v3 Number of post-iterations

β convergence factor

Ui , j Fluid velocity in a cell next to an immersed boundary

CL Lift coefficient

CD Drag coefficient

FD Drag force

FL Lift force

U∞ Inflow velocity

fv vortex shedding frequency

Tv vortex shedding period

I Inflow length in domain

L Domain length

W Domain width

94 APPENDIX A. ACRONYMS AND SYMBOLS

Appendix B

Source code

Listing B.1: head.h, all functions.

1 # i fndef Header_Header

2 #define Header_Header

3 i n t main () ;

4 void FDMsolver (double * * , double * * , double * *) ;

5 void l i ne ar S o l v e r (double t , double * * , double * * , double * * , double ** deltaP) ;

6 void multigrid (double t , double * * , double * * , double * * , double ** deltaP) ;

7 void GaussSeidel (i n t imax , i n t nn, double ** f , double ** phi , i n t * i t e r , double * res ,

double * error) ;

8 void SOR(i n t nn, double ** f , double ** phi , i n t * i t e r , double * res , double * error) ;

9 void correctVelo (i n t nn, double * * , double * * , double ** deltaP , double ** uFlag ,

double ** vFlag) ;

10 void presCorr (i n t nn, double **p , double ** deltaP) ;

11 void velBCfield (i n t nn, double * * , double * *) ;

12 void pBCfield (i n t nn, double * *) ;

13 double residual (i n t nn, double ** f , double ** phi , i n t i , i n t j) ;

14 void weightedResidual (i n t nn, double **RHS, double ** phi , double **R) ;

15 void injectedResidual (i n t nn, double **RHS, double ** phi , double **R) ;

16 void injected (i n t nC, double **R) ;

17 void weighted (i n t nC, double **R) ;

18 void interpolat ion (i n t nC, double **E) ;

19 void addValue (i n t nn, double **E , double ** phi) ;

20 void presCorr (i n t nn, double **p , double ** deltaP) ;

95

96 APPENDIX B. SOURCE CODE

21 void solveCoarse (double ** phi , double ** f) ;

22 void startResidual (i n t nF , double **RHS, double ** phi , double **R) ;

23 void stream (double * * , double * * , double * *) ;

24 void r e s u l t s (double * * , double * * , double * * , double * * , double * * , double * * ,

double * * , double * * , double * *) ;

25 void IC (int , double * * , double * * , double * *) ;

26 void validatePoisson () ;

27 void s t a b i l i t y (void) ;

28 double avg (i n t nn, double ** matrix) ;

29 void CFL(double , double) ;

30 double maxNorm(i n t nn, double ** matrix) ;

31 double RMS(i n t nn, double ** x) ;

32 double sum(i n t nn, double ** matrix) ;

33 void toZero (i n t dim , double ** matrix) ;

34 void toZeroM (i n t dd , double * * * matrix) ;

35 void arrayMatrix (i n t nn, double * * * array , double ** matrix , i n t dd) ;

36 void matrixArray (i n t nn, double ** matrix , double * * * array , i n t dd) ;

37 void copy (double * * * from , double * * * to , i n t dd) ;

38 void ccopy (double ** from , double ** to) ;

39 double interp (void) ;

40 double l inearInterp (double nn, double x0 , double x1 , double y0 , double y1) ;

41 i n t powerOf (i n t k) ;

42 i n t log_2 (i n t n) ;

43 //−−−−−−−−−− From the included f i l e n r u t i l . c−−−−−−−−−−−−−−−−−−−−−−−−−−−//

44 void free_dmatrix (double **m, long nrl , long nrh , long ncl , long nch) ;

45 double ** dmatrix (long nrl , long nrh , long ncl , long nch) ;

46 double * * * f3tensorD (long nrl , long nrh , long ncl , long nch , long ndl , long ndh) ;

47 void free_f3tensorD (double * * * t , long nrl , long nrh , long ncl , long nch ,

48 long ndl , long ndh) ;

49 void n r u t i l () ;

50 #endif

97

Listing B.2: input.h, file to change input variables.

1 # i fndef SHAREFILE_INCLUDED

2 #define SHAREFILE_INCLUDED

3 # i f d e f MAIN_FILE

4 /*−−−−−−−− Input variables −−−−−−−−−−−−−−−−*/

5 const i n t n = 128; //Numer of i nte r nal c e l l s

6 const double epsi = 0.000001; // Error

7 const i n t Re = 100; // Reynholds number −−> (RealRe /2* radius)

8 const double rho = 1 . 0 ; // Density

9 const double nu = 0 . 0 5 ; // Kinematic v i s c o s i t y

10 const double tmax = 3 0 . 0 ; //End time

11 const double dt = 0.00001; //Time stepsize

12 const i n t itmax = 500; //Max inerations

13 const i n t i t P r e = 2 ; //Max inerations − PRE−smoothing MG

14 const i n t itCoarse = 35; //Max i t e r a t i o n s − COARSE−smoothing MG

15 const i n t i t P o s t = 8 ; //Max inerations − POST−smoothing MG

16

17 /*−−−−−− Set wall type and v e l o c i t y −−−−−−−−*/

18 const i n t wall = 3 ; // 1 : Lid driven top , 2 : Couette flow , 3 : Channel−velocity ,

19 // 4 :No−s l i p channel flow , 5 : Preiodic−free−s l i p , 6 : P o i s e u i l l e flow

20 const double velX = 1 . 0 ; //Stream v e l o c i t y − x direction [m/ s]

21 const double velY = 0 . 0 ; //Stream v e l o c i t y − y direction [m/ s]

22

23 const double dimX = 1 . 0 ; // Scaling f a c t o r in x−dim

24 const double dimY = 1 . 0 ; // Scaling f a c t o r in y−dim

25

26 const i n t method = 2 ; // 1 : Gauss Seidel , 2 :SOR, 3 : two−grid i t e r a t i o n 4 :V−cycle

multigrid , 5 : Full−multigrid

27 const i n t d = 0 ; //Depth of multigird −−> n = 512 , 256 , 128 , 64 , 32 , 16 , 8 , 4 , 2 .

d have to be at l e a s t 2 .

28 const i n t ncycle = 0 ; //Number of repeated V−cycles in multigrid

29

30 /*−−−−−− IBM −−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

31 const i n t runIBM = 1 ; // 0 : not run , 1 : run

32 const i n t calcForce = 1 ; // 0 : not calculate forses , 1 : calculate forces

33 const i n t bType = 3 ; // 1 :random points as a simple polygon ,

34 // 2 : two lines−equal number of points (nPoint /2) , 3 : c i r c l e

35 const i n t nPoint = 50; //Number of points to form the geometry

98 APPENDIX B. SOURCE CODE

36

37 const i n t bMotion = 0 ; // 0 : No body motion , 1 : Body motion on

38 const i n t mDir = 1 ; //0 = x−dir , 1 = y−dir of motion

39 const double bFreq = 6 . 2 8 ; //Motion frequency of the body , approx 2* pi

40 const double bAmp = 0 . 0 0 1 ; //Motion amplitude of the body

41 const double nMotion = 10; //Number of motion cycles .

42

43 //Max and min positions of the geometry in domain

44 const double xmin = 0 . 4 5 ;

45 const double xmax = 0 . 5 5 ;

46 const double ymin = 0 . 4 5 ;

47 const double ymax = 0 . 5 5 ;

48

49 const i n t maxIntersec = 500;

50 // Simple polygon or two lines , { x−coord } , { y−coord }

51 const double pointPos [2] [4] = { { 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 } , { 0 . 9 0 6 2 5 , 0.90625 , 0.09375 ,

0 . 0 9 3 7 5 } } ;

52 // Cylinder

53 const double CG[2] = { 0 . 5 , 0 . 5 } ; //Mass center of cyl inder

54 const double radius = 0 . 0 5 ; // Radius of cylinder

55

56 /*−−−−−− I n t e r v a l l for writ ing out to screen and vtf− f i l e −−−−−−−−−−*/

57 const i n t writeOut = 500; // Write out i n t e r v a l l for vt f− f i l e

58 const i n t printOut = 1 ; // Print out to terminal

59

60 //−−−−−−−− Validation −−//

61 const i n t v al i da te = 0 ; // 0 :no val idat ion 1 : Poisson val idat ion

62 # else

63 extern i n t n , Re , itmax , wall , nr , bType , nPoint , maxIntersec , method , runIBM , d ,

ncycle , i tPre , i tPost , itCoarse ;

64 extern i n t bMotion , mDir , calcForce , fromYin , toYin , fromYout , toYout , writeOut ,

printOut , v a l i d at e ;

65 extern double epsi , tmax , dt , velX , velY , xmin , xmax , ymin , ymax, radius , rho ,

bFreq , bAmp, nMotion , nu , dimX, dimY ;

66 extern double element1 [5] , element2 [2] , pointPos [2] [5 0] , CG[2] ;

67 #endif

68 #endif

99

Listing B.3: main.c, main file of the solver.

1 #include "head . h"

2 #include <math . h>

3 #include <stdio . h>

4 #include < s t d l i b . h>

5 #include " n r u t i l . h"

6 #define MAIN_FILE

7 #include " input . h"

8

9 void p r i n t F i l e (double , double * * , double * * , double * * , double [4] [nPoint]) ;

10 void IBM(double t , double * * , double * * , double body [4] [nPoint] , double ** uFlag ,

double ** vFlag) ;

11 void setBody (double t , double body [4] [nPoint]) ;

12 /*−−−−−−−−−−−−−−−− Main program −−−−−−−−−−−−−−−−−−−−−−−−−−*/

13 i n t main ()

14 {

15 /*−−−−−−−−−−−−−−−− Variable d e f i n i t i o n −−−−−−−−−−−−−−−−−*/

16 i n t saveOut , newIC , step , time ;

17 i n t i , j , i t e r = 0 , countW = 1 , countP = 1 , id ;

18 double omega, beta , div = 0 . 0 , integer , divMax , d i f f ;

19 double **u , ** v , **p , body [4] [nPoint] , f r a c t i o n ;

20 double ** uFlag , ** vFlag , ** deltaP ;

21

22 p = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

23 u = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

24 v = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

25 deltaP = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

26 uFlag = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

27 vFlag = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

28 /*−−−−−−−−− Check s t a b i l i t y requirements −−−−−−−−−−−−−*/

29 s t a b i l i t y () ;

30 i f (v a l i d at e == 1) { p r i n t f ("VALIDATION \n") ; validatePoisson () ; }

31 else

32 {

33 /*−− Set i n i t i a l conditions for primitive−variables −−*/

34 IC (newIC , u , v , p) ;

35 toZero (n , deltaP) ;

36 toZero (n , uFlag) ;

100 APPENDIX B. SOURCE CODE

37 toZero (n , vFlag) ;

38 velBCfield (n , u , v) ;

39 /*−−−−−−−−−−−−−−−− Time i t e r a t i o n , main loop −−−−−−−−−−−−−−−−−−−−−*/

40 for (double t = 0 ; t <= tmax ; t = t +dt)

41 {

42 step = (i n t) (t / dt) + 1 ;

43 f r a c t i o n = modf(step / printOut , &integer) ;

44 /* Set body and calculate body motions i f s t a r t motion i s given */

45 setBody (t , body) ;

46 /*−−−−−FSM predictor (Use FTCS−scheme with staggered grid) −−−*/

47 FDMsolver (u , v , p) ;

48 velBCfield (n , u , v) ;

49 /*−−−−−−−−−−−−−−−−−−−− Run IBM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

50 i f (runIBM == 1)

51 {

52 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("RUN IBM\n") ; }

53 IBM(t , u , v , body , uFlag , vFlag) ;

54 }

55 /*−−−−−−−−−−−−− Choosen method to solve Poisson −−−−−−−−−−−−−*/

56 i t e r = 0 ;

57 i f (method == 1 | | method == 2)

58 {

59 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("LINEAR SOLVER \n"

) ; }

60 l i n ea r S o l v e r (t , u , v , p , deltaP) ;

61 } e lse i f (method == 3 | | method == 4 | | method == 5)

62 {

63 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("MULTIGRID \n") ; }

64 multigrid (t , u , v , p , deltaP) ;

65 } e lse

66 {

67 p r i n t f (" Error in choice of method, \ n") ;

68 p r i n t f ("method = 1 , method = 2 OR method = 3 . \n") ;

69 e x i t (1) ;

70 }

71 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f (" t = %f \n\n\n" , t)

; }

72

101

73 /*−−−−−−−−−−−−−−−− PM corrector −−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

74 correctVelo (n , u , v , deltaP , uFlag , vFlag) ;

75 velBCfield (n , u , v) ;

76 /*−−−−−−−−−−−−−−− Write to screen / f i l e −−−−−−−−−−−−−−−−−−−−*/

77 p r i n t F i l e (t , u , v , p , body) ;

78 }

79 }

80 free_dmatrix (p , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

81 free_dmatrix (u , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

82 free_dmatrix (v , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

83 free_dmatrix (deltaP , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

84 free_dmatrix (uFlag , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

85 free_dmatrix (vFlag , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

86 return 0 ;

87 }

102 APPENDIX B. SOURCE CODE

Listing B.4: solver.c, FDM-scheme.

1 #include "head . h"

2 #include <math . h>

3 #include <stdio . h>

4 #include < s t d l i b . h>

5 #include " input . h"

6 void FDMsolver (double **u , double ** v , double **p)

7 {

8 i n t i , j ;

9 double h = 1 . /n ;

10 double fux , fuy , fvx , fvy , visu , visv , pdu , pdv ;

11

12 for (i = 1 ; i <= (i n t) (dimX*n) ; i ++)

13 {

14 for (j = 1 ; j <= (i n t) (dimY*n) ; j ++)

15 {

16 // Advective terms

17 fux = (powf (u[i] [j] + u[i +1][j] , 2) − powf (u[i −1][j] + u[i] [j] , 2)) * (0 .25/h) ;

18 fuy = (((v [i] [j] + v [i +1][j]) * (u[i] [j] + u[i] [j +1])) − ((v [i] [j −1] + v [i +1][j

−1]) * (u[i] [j −1] + u[i] [j]))) * (0 .25/h) ;

19 fvx = (((u[i] [j] + u[i] [j +1]) * (v [i] [j] + v [i +1][j])) − ((u[i −1][j] + u[i −1][j

+1]) * (v [i −1][j] + v [i] [j]))) * (0 .25/h) ;

20 fvy = (powf (v [i] [j] + v [i] [j +1] ,2) − powf (v [i] [j −1] + v [i] [j] , 2)) * (0 .25/h) ;

21

22 // viscous terms = nu* laplacian /

23 visu = (u[i +1][j] + u[i −1][j] + u[i] [j +1] + u[i] [j −1] − 4.0*u[i] [j]) / (Re*powf (

h , 2)) ;

24 vi sv = (v [i +1][j] + v [i −1][j] + v [i] [j +1] + v [i] [j −1] − 4.0* v [i] [j]) / (Re*powf (h

, 2)) ;

25

26 // Pressure gradient /

27 pdu = (p[i] [j] − p[i +1][j]) /h ;

28 pdv = (p[i] [j] − p[i] [j +1]) /h ;

29

30 //PM−predrictor (u and v t i l d e) , pdu − fux − fuy + visu = RHS /

31 u[i] [j] = u[i] [j] + dt * (pdu − fux − fuy + visu) ;

32 v [i] [j] = v [i] [j] + dt * (pdv − fvx − fvy + v isv) ;

33

103

34 i f (u[i] [j] != u[i] [j])

35 {

36 p r i n t f ("NaN or i n f achieved , program aborted . . . \n") ;

37 e x i t (EXIT_FAILURE) ; // E x i t program

38 }

39 }

40 }

41 }

104 APPENDIX B. SOURCE CODE

Listing B.5: IBM.c, all functions.

1 #include <math . h>

2 #include <stdio . h>

3 #include < s t d l i b . h>

4 #include "head . h"

5 #include " input . h"

6

7 /* Functions used in t h i s f i l e */

8 void setBodyIBM (double xa , double xb , double ya , double yb , double body [4] [nPoint] ,

double bodyPos [2] [nPoint] , double bodyVel [2] [nPoint]) ;

9 void g r i d S h i f t i n g (double g r i d S h i f t [2] [n] , i n t xDim, i n t yDim, i n t) ;

10 void intersectionP (i n t * nIntersec , int , i n t xDim, i n t yDim, i n t intersecInfo [3] [

maxIntersec] , double intersecValue [3] [maxIntersec] , double bpdyPos [2] [nPoint]) ;

11 void v e l o c i t y (i n t nIntersec , double xa , double ya , double bodyPos [2] [nPoint] , double

bodyVel [2] [nPoint] , i n t intersecInfo [3] [maxIntersec] , double intersecValue [3] [

maxIntersec] , double **u , double ** v ,

12 double ** uFlag , double ** vFlag , double * Cl , double *Cd) ;

13

14 void IBM(double t , double **u , double ** v , double body [4] [nPoint] , double ** uFlag ,

double ** vFlag)

15 {

16 i n t nIntersec = 0 ;

17 double h = 1 . /n , Cl = 0 , Cd = 0 ;

18 /*Domain around body , s t a r t i n g from zero , see report */

19 double xa = (bType == 2) ? 0 . 0 : f l o o r (xmin/h) *h , xb = (bType == 2) ? n*h : c e i l (xmax/

h) *h , ya = (bType == 2) ? 0 . 0 : f l o o r (ymin/h) *h , yb = (bType == 2) ? n*h : c e i l (ymax

/h) *h ;

20 i n t xDim, yDim ; //Dimensions of the sorunding domain

21 /* Define martix */

22 double bodyPos [2] [nPoint] , bodyVel [2] [nPoint] ;

23 double intersecValue [3] [maxIntersec] ;

24 i n t intersecInfo [3] [maxIntersec] ;

25 FILE * f i l e F o r c e ;

26

27 xDim = (i n t) ((xb − xa) /h) ; yDim = (i n t) ((yb − ya) /h) ;

28 setBodyIBM (xa , xb , ya , yb , body , bodyPos , bodyVel) ;

29 // Finds intersect ionInfo and Value for each intersect ion

30 intersectionP (&nIntersec , 1 , xDim, yDim, intersecInfo , intersecValue , bodyPos) ;

105

31 // Calculation the interpolated v e l o c i t i e s

32 v e l o c i t y (nIntersec , xa , ya , bodyPos , bodyVel , intersecInfo , intersecValue , u , v ,

uFlag , vFlag , &Cl , &Cd) ;

33 // Print Forces to f i l e

34 i f (calcForce == 1)

35 {

36 f i l e F o r c e = fopen (" Force_calculations . t x t " , "a") ;

37 f p r i n t f (f i leForce , "%f %f %f \n" , t , Cl , Cd) ;

38 f c l o s e (f i l e F o r c e) ;

39 }

40 }

41 /*===*/

42 /*−−−−−−−−−−−−−−−−−−−−− Set body positions −−−−−−−−−−−−−−−−−−−−−−−−*/

43 /*===*/

44 void setBody (double t , double body [4] [nPoint])

45 {

46 /* Internal var iables */

47 double h = 1 . /n , dTheta , theta , integer ;

48 i n t step = (i n t) (t / dt) + 1 ;

49 double f r a c t i o n = modf(step / printOut , &integer) ;

50

51 /* Set body values */

52 i f (bType == 1 | | bType == 2)

53 {

54 for (i n t point = 0 ; point < nPoint ; point ++)

55 {

56 body [0] [point] = pointPos [0] [point] ; //x−pos

57 body [1] [point] = pointPos [1] [point] ; //y−pos

58 body [2] [point] = 0 . 0 ; //u−vel

59 body [3] [point] = 0 . 0 ; //v−vel

60 }

61 } e lse i f (bType == 3) // Cylinder

62 {

63 dTheta = 2*M_PI/ nPoint ;

64 for (i n t point = 0 ; point < nPoint ; point ++)

65 {

66 theta = point * dTheta ;

67 body [0] [point] = CG[0] + radius * cos (theta) ;

106 APPENDIX B. SOURCE CODE

68 body [1] [point] = CG[1] + radius * sin (theta) ;

69 body [2] [point] = 0 . 0 ;

70 body [3] [point] = 0 . 0 ;

71 }

72 } e lse

73 {

74 p r i n t f (" \n") ;

75 p r i n t f (" Fatal error when finding body values \n") ;

76 p r i n t f ("Not a v al id body type . \ n") ;

77 e x i t (1) ;

78 }

79 // Apply body motions

80 i f (bMotion == 1 && bType == 3 && bFreq * t <= nMotion*2*M_PI)

81 {

82 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("IN MOTION\n") ; }

83 for (i n t point = 0 ; point < nPoint ; point ++)

84 {

85 body [mDir] [point] += bAmp* (sin (bFreq * t)) ;

86 body [mDir+2][point] = bAmp* bFreq * cos (bFreq * t) ;

87 }

88 }

89 return ;

90 }

91 /*===*/

92 /*−−−−−−−−−− Set body positions in surrounding domain −−−−−−−−−−−−−*/

93 /*===*/

94 void setBodyIBM (double xa , double xb , double ya , double yb , double body [4] [nPoint] ,

double bodyPos [2] [nPoint] , double bodyVel [2] [nPoint])

95 {

96 /* Internal var iables */

97 double h = 1 . /n ;

98

99 /* Error i f the sorunding domain i s l e s s than two c e l l s from the boundary of the

computional domain*/

100 i f ((xa < 2*h | | xb > (n*h − 2*h) | | ya < 2*h | | yb > (n*h − 2*h)) && bType ! = 2)

101 {

102 p r i n t f (" \n") ;

103 p r i n t f (" Fatal error when using IBM\n") ;

107

104 p r i n t f ("The body i s to close the boundary for the computional domain . \ n") ;

105 p r i n t f ("Need at l e a s t two c e l l s = %f distance \n" , 2*h) ;

106 e x i t (1) ;

107 }

108

109 for (i n t point = 0 ; point < nPoint ; point ++)

110 {

111 bodyPos [0] [point] = body [0] [point] − xa ;

112 bodyPos [1] [point] = body [1] [point] − ya ;

113 bodyVel [0] [point] = body [2] [point] ; // 0 . 0 ;

114 bodyVel [1] [point] = body [3] [point] ; // 0 . 0 ;

115 }

116 return ;

117 }

118 /*==*/

119 /*−−−−−−−−−−−−−−−−−−−− Grid s h i f t i n g −−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

120 /*==*/

121 void g r i d S h i f t i n g (double g r i d S h i f t [2] [n] , i n t xDim, i n t yDim, i n t s t a t e)

122 {

123 double h = 1 . /n ;

124 /* set values */

125 for (i n t vLine = 0 ; vLine < xDim ; vLine ++)

126 {

127 g r i d S h i f t [0] [vLine] = (vLine + 0.5* s t a t e) *h ;

128 }

129 for (i n t uLine = 0 ; uLine < yDim ; uLine++)

130 {

131 g r i d S h i f t [1] [uLine] = (uLine + 0.5* s t a t e) *h ;

132 }

133 return ;

134 }

135

136 /*==*/

137 /* Find i n t e r s e c t i o n s positions (x , y) between body boundary and computional grid */

138 /*==*/

139 void intersectionP (i n t * nIntersec , i n t state , i n t xDim, i n t yDim, i n t intersecInfo

[3] [maxIntersec] , double intersecValue [3] [maxIntersec] , double bodyPos [2] [nPoint

])

108 APPENDIX B. SOURCE CODE

140 {

141 /* Goal : find i ntersect ion points in x and y position ,

142 f ind the distance from the cloasest outer v e l o c i t y in i ntersect ion direction

143 */

144 i n t count = 0 , pointPlusEn , dummy1 = 0 , dummy2 = 0 , dummy3 = 0 ;

145 double h = 1 . /n , d i f f = h/10.0 , pdy , pdx , ppdx , ppdy ;

146 double g r i d S h i f t [2] [n] ;

147

148 // Set values for the soroundin grid at u− and v− l i n e s

149 g r i d S h i f t i n g (g r i d S h i f t , xDim, yDim, s t a t e) ;

150

151 // I t e r a t i n g trough points to find intersect i on points

152 for (i n t point = 0 ; point < nPoint ; point ++)

153 {

154 pointPlusEn = (point == nPoint−1) ? 0 : point +1;

155 pdx = bodyPos [0] [pointPlusEn] − bodyPos [0] [point] ;

156 pdy = bodyPos [1] [pointPlusEn] − bodyPos [1] [point] ;

157 // Finding intersect ion points close to velocity−l i n e s in v−direction .

158 for (i n t vLine = 0 ; vLine < xDim ; vLine ++)

159 {

160 // I f pointPlusEn has l a r g e r x−position compared to point

161 i f (bodyPos [0] [pointPlusEn] > bodyPos [0] [point]) { i n t dd = point ; dummy3 = 1 ;

point = pointPlusEn ; pointPlusEn = dd ; }

162 i f ((g r i d S h i f t [0] [vLine] >= bodyPos [0] [pointPlusEn]) && (bodyPos [0] [point] >=

g r i d S h i f t [0] [vLine]))

163 {

164 intersecInfo [0] [count] = 2 ; // intersect ion wall

165 i f (dummy1 == 1) { dummy1 = 0 ; pointPlusEn = 0 ; point = nPoint −1;}

166 else i f (dummy3 == 1) { i n t dd = point ; dummy3 = 0 ; point = pointPlusEn ;

pointPlusEn = dd ; }

167 intersecInfo [1] [count] = point ;

168 intersecInfo [2] [count] = pointPlusEn ;

169 intersecValue [0] [count] = (−pdx > 0) ? 1:−1;

170 intersecValue [1] [count] = g r i d S h i f t [0] [vLine] ; //x−pos

171 intersecValue [2] [count] = bodyPos [1] [point] − ((bodyPos [0] [point]−g r i d S h i f t

[0] [vLine]) /pdx) *pdy ; //y−pos

172 count += 1 ;

173 }

109

174 // Return dummy 3

175 i f (dummy3 == 1) { i n t dd = point ; dummy3 = 0 ; point = pointPlusEn ; pointPlusEn =

dd ; }

176 }

177 for (i n t uLine = 0 ; uLine < yDim ; uLine ++)

178 {

179 // I f pointPlusEn has l a r g e r y−position compared to point

180 i f (bodyPos [1] [pointPlusEn] > bodyPos [1] [point]) { i n t dd = point ; dummy2 = 1 ;

point = pointPlusEn ; pointPlusEn = dd ; }

181 i f ((g r i d S h i f t [1] [uLine] >= bodyPos [1] [pointPlusEn]) && (bodyPos [1] [point] >=

g r i d S h i f t [1] [uLine]))

182 {

183 intersecInfo [0] [count] = 1 ; // intersect ion wall

184 i f (dummy1 == 1) {dummy1 = 0 ; pointPlusEn = 0 ; point = nPoint −1;}

185 else i f (dummy2 == 1) { i n t dd = point ; dummy2 = 0 ; point = pointPlusEn ;

pointPlusEn = dd ; }

186 intersecInfo [1] [count] = point ;

187 intersecInfo [2] [count] = pointPlusEn ;

188 intersecValue [0] [count] = (pdy > 0) ? 1:−1;

189 intersecValue [1] [count] = bodyPos [0] [pointPlusEn] − ((bodyPos [1] [pointPlusEn

]−g r i d S h i f t [1] [uLine]) /pdy) *pdx ; //x−pos

190 intersecValue [2] [count] = g r i d S h i f t [1] [uLine] ; //y−pos

191 count += 1 ;

192 }

193 // Return dummy 2

194 i f (dummy2 == 1) { i n t dd = point ; dummy2 = 0 ; point = pointPlusEn ; pointPlusEn

= dd ; }

195 }

196 // Return dummy 1

197 i f (dummy1 == 1) { point = nPoint − 1 ; dummy1 = 0 ; }

198

199 /* Error i f there i s to many intersect ion points compared to the al located matrix */

200 i f (count >= maxIntersec)

201 {

202 p r i n t f (" \n") ;

203 p r i n t f (" Fatal error when using IBM\n") ;

204 p r i n t f ("There i s to many intersect i on points compared to the al located matrix . \ n

") ;

110 APPENDIX B. SOURCE CODE

205 p r i n t f (" maxIntersec needs to be l a r g e r than %i \n" , maxIntersec) ;

206 e x i t (1) ;

207 }

208 }

209 * nIntersec = count ; // Total number of i n t e r s e c t i o n s

210 return ;

211 }

212 /*===*/

213 /*−−−−−−−−−−− IBM v e l o c i t i e s at each intersect ion point −−−−−−−−−−−*/

214 /*===*/

215 // Finding IBM v e l o c i t i e s with l i n e a r interpolat ion

216 void v e l o c i t y (i n t nIntersec , double xa , double ya , double bodyPos [2] [nPoint] , double

bodyVel [2] [nPoint] , i n t intersecInfo [3] [maxIntersec] , double intersecValue [3] [

maxIntersec] , double **u , double ** v , double ** uFlag , double ** vFlag , double * Cl

, double *Cd)

217 {

218 i n t l ine , node ;

219 double intersecVel , nodeVel , h = 1 . /n , Fl = 0 . 0 , Fd = 0 . 0 ;

220 double ** uInterP , ** vInterP ; // Interpolated v e l o c i t i e s

221 double ** fx , ** fy ; // Forcing terms . Force from body on f l u i d c e l l s due to

acceleration

222

223 uInterP = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

224 vInterP = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

225 f x = dmatrix (0 , (i n t) (dimX*n)−2, 0 , (i n t) (dimY*n)−2) ;

226 fy= dmatrix (0 , (i n t) (dimX*n)−2, 0 , (i n t) (dimY*n)−2) ;

227

228 toZero (n , uInterP) ;

229 toZero (n , vInterP) ;

230 toZero (n , uFlag) ;

231 toZero (n , vFlag) ;

232 toZero (n−4, f x) ;

233 toZero (n−4, fy) ;

234

235 for (i n t i = 0 ; i < nIntersec ; i ++)

236 {

237 i f (intersecInfo [0] [i] == 1)

238 {

111

239 // Find current v e l o c i t y at intersect ion points from the cegment between the

nodes/

240 intersecVel = l inearInterp (intersecValue [2] [i] , bodyPos [1] [intersecInfo [1] [i

]] , bodyPos [1] [intersecInfo [2] [i]] , bodyVel [0] [intersecInfo [1] [i]] , bodyVel [0] [

intersecInfo [2] [i]]) ;

241 //The number on u−v e l o c i t y l i n e in y−dir (where 1 i s the u−velo corresponding

to node 1)

242 l i n e = (i n t) ((intersecValue [2] [i] /h) +0.5 + f l o o r (ymin/h)) ;

243 //The nearest f l u i d node in x−dir . S t a r t i n g from 1 , node 0 i s the node outside

the surounding domain .

244 node = (i n t) (r i n t ((intersecValue [1] [i] /h) + intersecValue [0] [i] * 0 . 5 1) + f l o o r (

xmin/h)) ;

245 //Impose the IBM conditions on the f l u i d /computional grid /

246 nodeVel = l inearInterp (node*h , intersecValue [1] [i] + xa , (node+intersecValue

[0] [i]) *h , intersecVel , u [(i n t) (node+intersecValue [0] [i])] [l i n e]) ;

247 // Forcing terms/

248 f x [node] [l i n e] = f x [node] [l i n e] − ((nodeVel−u[node] [l i n e]) / dt) * rho *h*h ;

249 // Store interpolated v e l o c i t y /

250 u[node] [l i n e] = nodeVel ;

251 // Flag the corrected velocity , PM−solver should not calculate i t one more time

252 uFlag [node] [l i n e] = 1 . 0 ;

253 } e lse i f (intersecInfo [0] [i] == 2)

254 {

255 // Find current v e l o c i t y at intersect ion points from the cegment between the

nodes/

256 intersecVel = l inearInterp (intersecValue [1] [i] , bodyPos [0] [intersecInfo [1] [i

]] , bodyPos [0] [intersecInfo [2] [i]] , bodyVel [1] [intersecInfo [1] [i]] , bodyVel [1] [

intersecInfo [2] [i]]) ;

257 //The number on v−v e l o c i t y l i n e in x−dir (where 1 i s the v−velo corresponding

to node 1)

258 l i n e = (i n t) ((intersecValue [1] [i] /h) + 0.5 + f l o o r (xmin/h)) ;

259 //The nearest f l u i d node in y−dir

260 node = (i n t) (r i n t ((intersecValue [2] [i] /h) + intersecValue [0] [i] * 0 . 5 1) + f l o o r (

ymin/h)) ;

261 //Impose the IBM conditions on the f l u i d /computional grid /

262 nodeVel = l inearInterp (node*h , intersecValue [2] [i] + ya , (node+intersecValue

[0] [i]) *h , intersecVel , v [l i n e] [(i n t) (node+intersecValue [0] [i])]) ;

263 // Forcing terms/

112 APPENDIX B. SOURCE CODE

264 fy [l i n e] [node] = fy [l i n e] [node] − ((nodeVel−v [l i n e] [node]) / dt) * rho *h*h ;

265 // Store interpolated v e l o c i t y /

266 v [l i n e] [node] = nodeVel ;

267 // Flag the corrected velocity , PM−solver should not calculate i t one more time

268 vFlag [l i n e] [node] = 1 . 0 ;

269 }

270 }

271 // Calculate forces

272 i f (calcForce == 1)

273 {

274 for (i n t i = 0 ; i <= (i n t) (dimX*n) −2; i ++)

275 {

276 for (i n t j = 0 ; j <= (i n t) (dimY*n) −2; j ++)

277 {

278 Fl += fy [i] [j] ;

279 Fd += f x [i] [j] ;

280 }

281 }

282 * Cl = 2.0* Fl /(2* radius) ; // Cl = 2* Fl /(rho * v^2*A)

283 *Cd = 2.0*Fd/(2* radius) ; //Cd = 2*Fd/(rhod* v^2*A)

284 }

285 free_dmatrix (uInterP , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

286 free_dmatrix (vInterP , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

287 free_dmatrix (fx , 0 , (i n t) (dimX*n)−2, 0 , (i n t) (dimY*n)−2) ;

288 free_dmatrix (fy , 0 , (i n t) (dimX*n)−2, 0 , (i n t) (dimY*n)−2) ;

289 return ;

290 }

291 /*===*/

292 /*−−−−−−−−−−−−−− Linear interpolat ion 1D −−−−−−−−−−−−−−−−−−−−−−−−*/

293 /*===*/

294 double l inearInterp (double nn, double x0 , double x1 , double y0 , double y1)

295 {

296 double l inearInterp ;

297 /* nn = interp point

298 x0 = boundary point , known function valuelvalue required as l e f t operand of

assignment

299 x1 = boundary point , known function value

300 y0 = function value at x0

113

301 y1 = function value at x1

302 */

303 return l inearInterp = y0 +((y1−y0) * fabs (nn−x0)) / fabs (x1−x0) ;

304 }

114 APPENDIX B. SOURCE CODE

Listing B.6: linearSolver.c, Gauss Seidel method and SOR method is found here.

1 #include <math . h>

2 #include <stdio . h>

3 #include "head . h"

4 #include " input . h"

5 void l i ne ar S o l v e r (double t , double **u , double ** v , double **p , double ** deltaP)

6 {

7 i n t print , i t e r = 0 ;

8 double **RHS, div , h = 1 . /n , res = 0 . 0 , error = 0 . 0 , integer ;

9 i n t step = (i n t) (t / dt) + 1 ;

10 double f r a c t i o n = modf(step / printOut , &integer) ;

11 RHS = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

12 toZero (n , RHS) ;

13

14 //Forming the r i g h t hand side of the poisson equation rho/ dt * div (u_t i lde) :

15 for (i n t j = 1 ; j <= (i n t) (dimY*n) ; j ++)

16 {

17 for (i n t i = 1 ; i <= (i n t) (dimX*n) ; i ++)

18 {

19 div = (u[i] [j] − u[i −1][j] + v [i] [j] − v [i] [j −1]) /h ; //Here , h = dx = dy

20 RHS[i] [j] = div / dt ;

21 }

22 }

23 /*−−−−−−−− Pressure−correction , Poisson eq . −−−−−−−−−−−−−−*/

24 i f (method == 1)

25 {

26 GaussSeidel (itmax , n , RHS, deltaP , &i t e r , &res , &error) ;

27 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

28 {

29 p r i n t f ("GAUSS SEIDEL \n") ;

30 p r i n t f (" I t e r a t i o n s : %i \n" , i t e r) ;

31 p r i n t f (" Residual : %f . \n\n" , res) ;

32 }

33 } e lse i f (method == 2)

34 {

35 SOR(n , RHS, deltaP , &i t e r , &res , &error) ;

36 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

37 {

115

38 p r i n t f ("SOR \n") ;

39 p r i n t f (" I t e r a t i o n s : %i \n" , i t e r) ;

40 p r i n t f (" Residual : %f . \n\n" , res) ;

41 }

42 }

43 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

44 {

45 p r i n t f (" \ nTotal nr of i t e r a t i o n s : %i \n" , i t e r) ;

46 p r i n t f ("End residual : %g \n" , res) ;

47 }

48 /*−−−−−−−−−−−−−−−−−−−−− Correct pressure −−−−−−−−−−−−−−−−−−−−−*/

49 presCorr (n , p , deltaP) ;

50 free_dmatrix (RHS, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

51 return ;

52 }

53 /*−−−*/

54 /*−−−−−−−−−−−−−−−−−−−−−− PM corrector −−−−−−−−−−−−−−−−−−−−−−−*/

55 /*−−−*/

56 // Correct v e l o c i t i e s without overwriting interpolated v e l o c i t i e s from IBM

57 void correctVelo (i n t nn, double **u , double ** v , double ** deltaP , double ** uFlag ,

double ** vFlag)

58 {

59 double h = 1 . /nn ;

60

61 i f (runIBM == 1) //IBM

62 {

63 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

64 {

65 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

66 {

67 i f (uFlag [i] [j] == 1 && vFlag [i] [j] == 1)

68 {

69 continue ; // Continue the for−loop

70 } e lse i f (uFlag [i] [j] == 1)

71 {

72 v [i] [j] = v [i] [j] − (1/ rho) * (dt /h) * (deltaP [i] [j +1] − deltaP [i] [j]) ;

73 } e lse i f (vFlag [i] [j] == 1)

74 {

116 APPENDIX B. SOURCE CODE

75 u[i] [j] = u[i] [j] − (1/ rho) * (dt /h) * (deltaP [i +1][j] − deltaP [i] [j]) ;

76 } e lse

77 {

78 u[i] [j] = u[i] [j] − (1/ rho) * (dt /h) * (deltaP [i +1][j] − deltaP [i] [j]) ;

79 v [i] [j] = v [i] [j] − (1/ rho) * (dt /h) * (deltaP [i] [j +1] − deltaP [i] [j]) ;

80 }

81 CFL(u[i] [j] , v [i] [j]) ; //CFL−condition

82 }

83 }

84 } e lse

85 {

86 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

87 {

88 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

89 {

90 u[i] [j] = u[i] [j] − (1/ rho) * (dt /h) * (deltaP [i +1][j] − deltaP [i] [j]) ;

91 v [i] [j] = v [i] [j] − (1/ rho) * (dt /h) * (deltaP [i] [j +1] − deltaP [i] [j]) ;

92 CFL(u[i] [j] , v [i] [j]) ; //CFL−condition

93 }

94 }

95 }

96 velBCfield (nn, u , v) ;

97 return ;

98 }

99 /*−−−*/

100 /*−−−−−−−−−−−−−−−−− Pressure−correctin −−−−−−−−−−−−−−−−−−−−−−*/

101 /*−−−*/

102 void presCorr (i n t nn, double **p , double ** deltaP)

103 {

104 double avgPress , h = 1 . /nn ;

105

106 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

107 {

108 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

109 {

110 p[i] [j] = p[i] [j] + deltaP [i] [j] ;

111 }

112 }

117

113 i f (wall == 5 | | wall == 6)

114 {

115 avgPress = avg (nn, p) ;

116 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

117 {

118 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

119 {

120 p[i] [j] = p[i] [j] − avgPress ;

121 }

122 }

123 }

124 pBCfield (nn, p) ;

125 return ;

126 }

127 /*−−*/

128 /*−−−−−−−−−−−−−− Gauss Seidel i s used to smooth −−−−−−−−−−−−*/

129 /*−−*/

130 void GaussSeidel (i n t imax , i n t nn, double ** f , double ** phi , i n t * i t e r , double * res ,

double * error)

131 {

132 double h = 1 . /nn, ** phiDiff , ** phiPrev , ** phiErr ;

133 double residual = 0 . 0 , test1 , integer ;

134 i n t i t ;

135 phiDiff = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

136 phiErr = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

137 phiPrev = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

138

139 * i t e r = 0 ;

140 for (i t = 1 ; i t <= imax ; i t ++)

141 {

142 toZero (nn, phiDiff) ; toZero (nn, phiPrev) ; toZero (nn, phiErr) ;

143 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

144 {

145 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

146 {

147 phiPrev [i] [j] = phi [i] [j] ;

148 phi [i] [j] = 0 . 2 5 * (phi [i +1][j] + phi [i −1][j] + phi [i] [j +1] + phi [i] [j

−1] − h*h* f [i] [j]) ;

118 APPENDIX B. SOURCE CODE

149 phiErr [i] [j] = f [i] [j] − phi [i] [j] ;

150 phiDiff [i] [j] = phi [i] [j] − phiPrev [i] [j] ;

151 }

152 }

153 pBCfield (nn, phi) ;

154 // Find residual between RHS and LHS

155 t e s t 1 = maxNorm(nn, phiDiff) ;

156 i f (t e s t 1 <= 0 . 0) { residual = 0 . 0 ; }

157 else { residual = maxNorm(nn, phiDiff) ; }

158

159 i f (residual <= epsi) { break ; }

160 i f (i t >= itmax) { break ; }

161 }

162 * error = maxNorm(nn, phiErr) ;

163 * res = residual ;

164 * i t e r = i t −1;

165 free_dmatrix (phiErr , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

166 free_dmatrix (phiDiff , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

167 free_dmatrix (phiPrev , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

168 return ;

169 }

170 /*−−−*/

171 /*−−−−−−−−−−−−−−−−−−−−−−−−−− SOR −−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

172 /*−−−*/

173 void SOR(i n t nn, double ** f , double ** phi , i n t * i t e r , double * res , double * error)

174 {

175 double h = 1 . /nn, ** phiErr , ** phiPrev ;

176 double residual = 0 . 0 , omega, t e s t 1 ;

177 i n t i t ;

178 phiErr = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

179 phiPrev = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

180 omega = interp () ; //Using l i n e a r interpolation , omega_opt

181

182

183 * i t e r = 0 ;

184 for (i t = 1 ; i t <= itmax ; i t ++)

185 {

186 toZero (nn, phiErr) ; toZero (nn, phiPrev) ;

119

187 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

188 {

189 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

190 {

191 phiPrev [i] [j] = phi [i] [j] ;

192 phi [i] [j] = (1−omega) * phiPrev [i] [j] + omega* 0 . 2 5 * (phi [i +1][j] + phi [i

−1][j] + phi [i] [j +1] + phi [i] [j −1] − h*h* f [i] [j]) ;

193 phiErr [i] [j] = phi [i] [j] − phiPrev [i] [j] ;

194 }

195 }

196 pBCfield (nn, phi) ;

197 // Find residual between RHS and LHS

198 t e s t 1 = maxNorm(nn, phiErr) ;

199 i f (t e s t 1 <= 0 . 0) { residual = 0 . 0 ; }

200 else { residual = maxNorm(nn, phiErr) ; }

201 i f (residual <= epsi) { break ; }

202 i f (i t >= itmax) { break ; }

203 }

204 * res = residual ;

205 * i t e r = i t ;

206 free_dmatrix (phiErr , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

207 free_dmatrix (phiPrev , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

208 return ;

209 }

210 /*−−*/

211 /*−−−−−−−−−−−−−−− l i n e a r interpolat ion for omega_opt −−−−−−−−−−−*/

212 /*−−*/

213 double interp (void)

214 {

215 double nn[9] = { 0 , 5 , 10 , 20 , 30 , 40 , 60 , 100 , 50 0} ;

216 double oo [9] = { 1 . 7 , 1 .78 , 1.86 , 1 .92 , 1.95 , 1.96 , 1.97 , 1.98 , 1 . 9 9 } ;

217 i n t i , s i z e ;

218 double interp , x0 , x1 , y0 , y1 ;

219 s i z e = 9 ;

220 for (i = 1 ; i < s i z e ; i ++)

221 {

222 i f (nn[i] > n)

223 {

120 APPENDIX B. SOURCE CODE

224 x0 = nn[i −1];

225 x1 = nn[i] ;

226 y0 = oo [i −1];

227 y1 = oo [i] ;

228 break ;

229 }

230 }

231 return interp = y0 + ((y1−y0) * (n−x0)) /(x1−x0) ;

232 }

121

Listing B.7: multigrid.c, all multigird functions are found here.

1 #include <math . h>

2 #include <stdio . h>

3 #include < s t d l i b . h>

4 #include "head . h"

5 #include " input . h"

6 void twoStepM(i n t nn, double t , double **RHS, double ** deltaP , i n t * i t e r , double

error [ncycle] , double endRes [ncycle]) ;

7 void Vcycle (i n t nn, double t , double ** f , double **MVAL, i n t * i t e r , double error [

ncycle] , double endRes [ncycle]) ;

8 void f u l l M u l t i g r i d (i n t nn, double t , double ** f , double ** value , i n t * i t , double

error [ncycle] , double endRes [ncycle]) ;

9

10 void multigrid (double t , double **u , double ** v , double **p , double ** deltaP)

11 {

12 i n t nF = n , k , i t e r = 0 , step = (i n t) (t / dt) + 1 ;

13 double h = 1 . /n , integer , div , residual [ncycle] , error [ncycle] ;

14 double f r a c t i o n = modf(step / printOut , &integer) , **RHS;

15

16 RHS = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

17 toZero (n , RHS) ;

18 //−−−−−−−−−−−−−− Check i f n i s a power of 2 −−−−−−−−−−−−−−−−−−/

19 k = log_2 (n) ;

20 i f (n != powerOf (k))

21 {

22 p r i n t f (" \n") ;

23 p r i n t f (" Fatal error when using MULTIGRID\n") ;

24 p r i n t f ("N i s not a power of 2 . \n") ;

25 e x i t (1) ;

26 }

27 //−−−−−−−−−−−−−−−− Set the r i g h t hand side −−−−−−−−−−−−−−−−−−−−−/

28 for (i n t j = 1 ; j <= (i n t) (dimY*nF) ; j ++)

29 {

30 for (i n t i = 1 ; i <= (i n t) (dimX*nF) ; i ++)

31 {

32 div = (u[i] [j] − u[i −1][j] + v [i] [j] − v [i] [j −1]) /h ; //Here , h = dx = dy

33 RHS[i] [j] = (rho/ dt) * div ;

34 }

122 APPENDIX B. SOURCE CODE

35 }

36 //−−−−−−−−−−−−−−−− Run the choosen method −−−−−−−−−−−−−−−−−−−−−−/

37 i f (method == 3) //Two−step multigrid

38 {

39 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("TWO−STEP MULTIGRID\

n") ; }

40 twoStepM(n , t , RHS, deltaP , &i t e r , residual , error) ;

41 } e lse i f (method == 4) //V−cycle multigrid

42 {

43 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("V−CYCLE MULTIGRID \

n\n") ; }

44 Vcycle (n , t , RHS, deltaP , &i t e r , residual , error) ;

45 } e lse i f (method == 5) // Ful l multigrid

46 {

47 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("FULL MULTIGRID \n")

; }

48 f u l l M u l t i g r i d (n , t , RHS, deltaP , &i t e r , residual , error) ;

49 }

50 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

51 {

52 p r i n t f (" \ nTotal nr of i t e r a t i o n s : %i \n" , i t e r) ;

53 }

54 //−−−−−−−−−−−−−−−−−− Correct pressure −−−−−−−−−−−−−−−−−−−−−−−−−/

55 presCorr (nF , p , deltaP) ;

56 pBCfield (n , p) ;

57

58 free_dmatrix (RHS, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

59 }

60 /*==*/

61 /* two−step multigrid (f ine −> coarce −> fine) */

62 /*==*/

63 void twoStepM(i n t nn, double t , double **RHS, double ** value , i n t * i t , double error [

ncycle] , double endRes [ncycle])

64 {

65 i n t nC = nn/2 , nF = nn, k , nIter = 0 , i t e r = 0 , numb = (i n t) (t / dt) , print = 0 ;

66 double h = 1 . /nn, res = 0 . 0 , err = 0 . 0 , integer ;

67 i n t step = (i n t) (t / dt) + 1 ;

68 double f r a c t i o n = modf(step / printOut , &integer) ;

123

69 double **R, **E , div ;

70

71 R = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

72 E = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

73

74 //−−−−−−−Relax v times on the f i n e s t grid−−−−−/

75 GaussSeidel (i tPre , nF , RHS, value , &i t e r , &res , &err) ;

76 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

77 {

78 p r i n t f ("Pre−smoothing − i t e r a t i o n s : %i \n" , i t e r) ;

79 p r i n t f (" Residual : %g . \n\n" , res) ;

80 }

81 //Loop trough a f ixed number of V−cycles .

82 for (i n t c = 0 ; c < ncycle ; c++)

83 {

84 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f (" \nCYCLE NUMBER %i \

n" , c+1) ; }

85 //−− R e s t r i c t the residual from fine grid to coarse grid −−/

86 toZero (n , R) ;

87 // weightedResidual (nC, RHS, value , R) ;

88 injectedResidual (nC, RHS, value , R) ;

89 //Use zero as i n i t i a l guess for E on the coarse grid approximation of the

error E .

90 toZero (nF , E) ;

91 GaussSeidel (itCoarse , nC, R, E , &i t e r , &res , &err) ;

92 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

93 {

94 p r i n t f ("Smooth coarse grid − i t e r a t i o n s : %i \n" , i t e r) ;

95 p r i n t f (" Residual : %g . \n\n" , res) ;

96 }

97 // Interpolate from coarse grid to f ine grid

98 interpolat ion (nC, E) ;

99 pBCfield (nF , value) ;

100 addValue (nF , E , value) ;

101 // Post−smoothing , removing error

102 GaussSeidel (i tPost , nF , RHS, value , &i t e r , &res , &err) ;

103 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

104 {

124 APPENDIX B. SOURCE CODE

105 p r i n t f (" Post−smoothing − i t e r a t i o n s : %i \n" , i t e r) ;

106 p r i n t f (" Residual : %g . \n\n" , res) ;

107 }

108 nIter += i t e r ;

109 endRes [c] = res ;

110 error [c] = err ;

111 i f (res <= epsi) { break ; }

112 }

113 * i t = nIter ;

114 free_dmatrix (R, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

115 free_dmatrix (E , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

116 return ;

117 }

118 /*==*/

119 /* V−cycle multigrid */

120 /*==*/

121 void Vcycle (i n t nn, double t , double ** f , double **MVAL, i n t * i t , double error [

ncycle] , double endRes [ncycle])

122 { //MVAL = deltaP

123 i n t nC = nn/2 , nF = nn, k , nIter = 0 , i t e r = 0 , dCurr , count = 0 , numb, print = 0 ;

124 double h = 1 . /nn, integer , res = 0 . 0 , err = 0 . 0 ;

125 i n t step = (i n t) (t / dt) + 1 , l i m i t ;

126 double f r a c t i o n = modf(step / printOut , &integer) ;

127 //−−−−−−−−−−−−−−−−−Allocate matrix−−−−−−−−−−−−−−−−−−−−−−−/

128 double ** value , ** newValue , **R, **E , div ;

129 double * * *RHS, * * *VAL, **MRHS;

130

131 MRHS = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

132 value = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

133 newValue = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

134 R = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

135 E = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

136 RHS = f3tensorD (0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

137 VAL = f3tensorD (0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

138

139 toZero (n , value) ;

140 toZero (n , R) ;

141 toZero (n , MRHS) ;

125

142 for (i n t dd = 0 ; dd < d ; dd++)

143 {

144 toZeroM (dd , RHS) ;

145 toZeroM (dd , VAL) ;

146 }

147

148 matrixArray (nF , f , RHS, 0) ;

149 matrixArray (nF , MVAL, VAL, 0) ;

150

151 //−−−−−−−Relax v times on the f i n e s t grid−−−−−/

152 GaussSeidel (i tPre , nF , f , MVAL, &i t e r , &res , &err) ;

153 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

154 {

155 p r i n t f ("Pre−smoothing 1 − i t e r a t i o n s : %i \n" , i t e r) ;

156 p r i n t f (" Residual : %g . \n\n" , res) ;

157 }

158 //Loop trough a f ixed number of V−cycles .

159 for (i n t c = 0 ; c < ncycle ; c++)

160 {

161 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f (" \nCYCLE NUMBER %i \

n" , c+1) ; }

162 nC = nn/2 , nF = nn ;

163 //−− R e s t r i c t the residual from fine grid to coarse grid −−/

164 arrayMatrix (nF , RHS, MRHS, 0) ;

165 // weightedResidual (nC, MRHS, MVAL, R) ;

166 injectedResidual (nC, MRHS, MVAL, R) ;

167 // Set R equals to RHS for the current depth and store i t in RHS

168 matrixArray (nC, R, RHS, 1) ;

169

170 k = log_2 (nn) ;

171 l i m i t = (k > d) ? d : k ;

172 dCurr = 2 ;

173 //−−−−−−−−−−−−−−−− Go coarser −−−−−−−−−−−−−−−−−−−−−−−−−−−−/

174 while (dCurr < l i m i t)

175 {

176 // Set number of grid points in coarse and fine grid

177 nF = nC; nC = nF/ 2 ;

178 //Use zero as i n i t i a l guess for E on the coarse grid approximation of the error E

126 APPENDIX B. SOURCE CODE

.

179 toZero (n , E) ;

180 toZero (n , MRHS) ;

181 arrayMatrix (nF , RHS, MRHS, dCurr−1) ;

182

183 GaussSeidel (i tPre , nF , MRHS, E , &i t e r , &res , &err) ;

184 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

185 {

186 p r i n t f ("Pre−smoothing %i − i t e r a t i o n s : %i \n" , dCurr , i t e r) ;

187 p r i n t f (" Residual : %g . \n\n" , res) ;

188 }

189

190 // Store correrction

191 matrixArray (nF , E , VAL, dCurr−1) ;

192 // R e s t r i c t the residual

193 // weightedResidual (nC, MRHS, E , R) ;

194 injectedResidual (nC, MRHS, E , R) ;

195 // Set R equals to RHS for the current depth and store i t in RHS

196 matrixArray (nC, R, RHS, dCurr) ;

197 dCurr += 1 ;

198 }

199 //−−−−−−−−−−−−−−−− Solve coarsest grid −−−−−−−−−−−−−−−−−−−−//

200 dCurr −= 1 ;

201 i f (nC < 2) { p r i n t f (" \n\ nFatal error in MULTIGRID. \ nCoarsest grid has n l e s s

than 2 ! \n") ; e x i t (1) ; }

202

203 //OR solve d i r e c t l y with A^Lh

204 toZero (n , E) ;

205 toZero (n , MRHS) ;

206 arrayMatrix (nC, RHS, MRHS, dCurr) ;

207

208 i f (nC == 2)

209 {

210 solveCoarse (E , MRHS) ;

211 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("SOLVED EXACTLY

FOR n = 2 . \n") ; }

212 } e lse

213 {

127

214 GaussSeidel (itCoarse , nC, MRHS, E , &i t e r , &res , &err) ;

215 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

216 {

217 p r i n t f (" Coarsest grid − i t e r a t i o n s : %i \n" , i t e r) ;

218 p r i n t f (" Residual : %g . \n\n" , res) ;

219 }

220 }

221 dCurr −= 1 ;

222 //−−−−−−−−−−−−−−−− Go f i n e r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

223 while (0 <= dCurr)

224 {

225 // Interpolate from coarse grid to f ine grid

226 interpolat ion (nC, E) ; //Get interpolated E

227

228 toZero (n , MVAL) ;

229 arrayMatrix (nF , VAL, MVAL, dCurr) ;

230

231 // Set pressure BC on MVAL

232 addValue (nF , E , MVAL) ; //Get value = value + E

233 pBCfield (nF , MVAL) ;

234

235 toZero (n , MRHS) ;

236 arrayMatrix (nF , RHS, MRHS, dCurr) ;

237

238 // Post−smoothing , removing error

239 GaussSeidel (i tPost , nF , MRHS, MVAL, &i t e r , &res , &err) ;

240 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

241 {

242 p r i n t f (" Post−smoothing %i − i t e r a t i o n s : %i \n" , dCurr+1 , i t e r) ;

243 p r i n t f (" Residual : %g . \n\n" , res) ;

244 }

245 nIter += i t e r ;

246

247 i f (dCurr == 0) { matrixArray (nF , MVAL, VAL, 0) ; }

248 // Set number of grid points in coarse and fine grid

249 nC = nF ; nF = nC* 2 ;

250 dCurr −= 1 ;

251 }

128 APPENDIX B. SOURCE CODE

252 endRes [c] = res ;

253 error [c] = err ;

254 i f (res <= epsi) { break ; }

255 }

256 * i t = nIter ;

257

258 free_dmatrix (MRHS, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

259 free_dmatrix (value , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

260 free_dmatrix (newValue , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

261 free_dmatrix (R, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

262 free_dmatrix (E , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

263 free_f3tensorD (RHS, 0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

264 free_f3tensorD (VAL, 0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

265 return ;

266 }

267 /*==*/

268 /* Ful l multigrid */

269 /*==*/

270 void f u l l M u l t i g r i d (i n t nn, double t , double ** f , double ** value , i n t * i t , double

error [ncycle] , double endRes [ncycle])

271 { // value = deltaP

272 i n t nC = nn/2 , nF = nn, nnC, nnF , k , nIter = 0 , i t e r = 0 , dCurr , count = 0 , numb,

print = 0 ;

273 double h = 1 . /nn, res = 0 . 0 , err = 0 . 0 , integer ;

274 i n t step = (i n t) (t / dt) + 1 , l i m i t ;

275 double f r a c t i o n = modf(step / printOut , &integer) ;

276

277 k = log_2 (nn) ;

278 l i m i t = (k > d) ? d : k ;

279 dCurr = l imit −1;

280 //−−−−−−−−−−−−−−−−−Allocate matrix−−−−−−−−−−−−−−−−−−−−−−−/

281 double **R, **MRHS, **MVAL, div ;

282 double * * * reRHS , * * *RHS, * * *VAL ;

283

284 MRHS = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

285 MVAL = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

286 R = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

287 reRHS = f3tensorD (0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

129

288 RHS = f3tensorD (0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

289 VAL = f3tensorD (0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

290

291 toZero (n , R) ;

292 toZero (n , MRHS) ;

293 toZero (n , MVAL) ;

294 for (i n t dd = 0 ; dd < d ; dd++)

295 {

296 toZeroM (dd , reRHS) ;

297 toZeroM (dd , RHS) ;

298 toZeroM (dd , VAL) ;

299

300 }

301 //Forming the r i g h t hand side of the poisson equation

302 matrixArray (nF , f , reRHS , dCurr) ;

303

304 //−− F i l l temporary coarser RHS with r e s t r i c t i o n s from the calculated RHS −−//

305 //−−−−−−−−−−−−−−−−− Go coarser u n t i l next coarsest grid −−−−−−−−−−−−−−−−−−−−//

306 while (dCurr > 0)

307 {

308 injected (nC, f) ;

309 // weighted (nC, MRHS, value) ;

310 matrixArray (nC, f , reRHS , dCurr−1) ;

311 dCurr −= 1 ;

312 nF = nC; nC = nC/ 2 ;

313 }

314 //−−−−−−−−−−−−−−−−− Set i n i t i a l solution on coarsest grid −−−−−−−−−−−−−−−−−−//

315 i f (nF < 2) { p r i n t f (" \n\n Fatal error in MULTIGRID. \n Coarsest grid has n l e s s

than 2 ! \n") ; e x i t (1) ; }

316

317 injected (nC, f) ;

318 toZero (n , MVAL) ;

319 // Solve on coarsest grid

320 i f (nF == 2) { p r i n t f ("SOLVED EXACTLY FOR n = 2 . \n") ; solveCoarse (MVAL, f) ; }

321 else

322 {

323 GaussSeidel (itCoarse , nC, f , MVAL, &i t e r , &res , &err) ;

324 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

130 APPENDIX B. SOURCE CODE

325 {

326 p r i n t f (" Coarsest grid (START) − i t e r a t i o n s : %i \n" , i t e r) ;

327 p r i n t f (" Residual : %g . \n\n" , res) ;

328 }

329 }

330

331 matrixArray (nF , MVAL, VAL, dCurr) ;

332 dCurr += 1 ;

333 nC = nF ; nF = nF* 2 ;

334 //−−−−−−−−−−−−−−−−−−−−−− Nested i t e r a t i o n loop −−−−−−−−−−−−−−−−−−−−−−−−−//

335 while (dCurr < l i m i t)

336 {

337 toZero (n , MVAL) ;

338 arrayMatrix (nC, VAL, MVAL, dCurr−1) ;

339

340 interpolat ion (nC, MVAL) ; //Get interpolated MVAL back

341

342 matrixArray (nF , MVAL, VAL, dCurr) ;

343 copy (reRHS , RHS, dCurr) ;

344

345 for (i n t c = 1 ; c <= ncycle ; c++) //Loop trough a f ixed number of V−cycles .

346 {

347 i f (f r a c t i o n == 0.0 && step == (printOut * integer)) { p r i n t f ("CYCLE NUMBER %i \

n" , c) ; }

348 nnF = nF ; nnC = nC;

349 for (i n t dCalc = dCurr ; dCalc >= 1 ; dCalc−−) //Loop downward in V .

350 {

351 toZero (n , MVAL) ;

352 arrayMatrix (nnF , VAL, MVAL, dCalc) ;

353 toZero (n , MRHS) ;

354 arrayMatrix (nnF , RHS, MRHS, dCalc) ;

355

356 GaussSeidel (i tPre , nnF , MRHS, MVAL, &i t e r , &res , &err) ;

357 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

358 {

359 p r i n t f ("Pre−smoothing %i − i t e r a t i o n s : %i \n" , dCalc , i t e r) ;

360 p r i n t f (" Residual : %g . \n\n" , res) ;

361 }

131

362

363 toZero (n , R) ;

364 // weightedResidual (nnC, MRHS, MVAL, R) ;

365 injectedResidual (nnC, MRHS, MVAL, R) ; // Restr icted residual , use as the

next RHS

366

367 matrixArray (nnC, R, RHS, dCalc−1) ;

368 toZero (n , MVAL) ;

369 matrixArray (nnC, MVAL, VAL, dCalc−1) ; // Zero as i n i t i a l guess for next

smoothning

370 nnF = nnC; nnC = nnC/ 2 ;

371 }

372 // Solve on coarsest grid

373 i f (nnF == 2) { p r i n t f ("SOLVED EXACTLY FOR n = 2 . \n") ; solveCoarse (MRHS, MVAL

) ; }

374 else

375 {

376 GaussSeidel (itCoarse , nnF , R, MVAL, &i t e r , &res , &err) ;

377 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

378 {

379 p r i n t f (" Coarsest grid − i t e r a t i o n s : %i \n" , i t e r) ;

380 p r i n t f (" Residual : %g . \n\n" , res) ;

381 }

382 }

383 matrixArray (nnF , MVAL, VAL, 0) ;

384 nnC = nnF ; nnF = nnF* 2 ;

385

386 for (i n t dCalc = 1 ; dCalc <= dCurr ; dCalc++) //Loop upward in V .

387 {

388 toZero (n , MVAL) ;

389 toZero (n , value) ;

390 arrayMatrix (nnF , VAL, MVAL, dCalc−1) ;

391 arrayMatrix (nnF , VAL, value , dCalc) ;

392

393 // Interpolate from coarse grid to f ine grid

394 interpolat ion (nnC, MVAL) ;

395 addValue (nnF , MVAL, value) ; //Get value = value + E

396

132 APPENDIX B. SOURCE CODE

397 // Set pressure BC on value

398 pBCfield (nnF , value) ;

399

400 toZero (n , MRHS) ;

401 arrayMatrix (nnF , RHS, MRHS, dCalc) ;

402

403 // Post−smoothing , removing error

404 GaussSeidel (i tPost , nnF , MRHS, value , &i t e r , &res , &err) ;

405 i f (f r a c t i o n == 0.0 && step == (printOut * integer))

406 {

407 p r i n t f (" Post−smoothing %i − i t e r a t i o n s : %i \n" , dCalc , i t e r) ;

408 p r i n t f (" Residual : %g . \n\n" , res) ;

409 }

410 nIter += i t e r ;

411 matrixArray (nnF , value , VAL, dCalc) ;

412 nnC = nnF ; nnF = nnF* 2 ;

413 }

414 endRes [c−1] = res ;

415 }

416 dCurr += 1 ;

417 nC = nF ; nF = nF* 2 ;

418 }

419 * i t = nIter ;

420 free_dmatrix (MRHS, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

421 free_dmatrix (MVAL, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

422 free_dmatrix (R, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

423 free_f3tensorD (reRHS , 0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

424 free_f3tensorD (RHS, 0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

425 free_f3tensorD (VAL, 0 , d , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

426 return ;

427 }

428 /*−−−*/

429 /*−−−−−−−−−−−−−− Residual −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

430 /*−−−*/

431 // r = f − A* phi , phi : approximation of value .

432 double residual (i n t nn, double ** f , double ** phi , i n t i , i n t j)

433 {

434 double R, h = 1 . /nn ;

133

435 R = f [i] [j] − (1/pow(h , 2)) * (phi [i +1][j] + phi [i −1][j] + phi [i] [j +1] + phi [i] [j −1]

− 4* phi [i] [j]) ;

436 return R ;

437 }

438 /*−−−*/

439 /*−−−−−−−−−−−−−−−− R e s t r i c t i o n of residual −−−−−−−−−−−−−*/

440 /*−−−*/

441 void weightedResidual (i n t nC, double **RHS, double ** phi , double **R)

442 {

443 i n t i i , j j , nn = nC* 2 ;

444 double Rcurr , R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 ;

445 toZero (n , R) ;

446

447 for (i n t j = 2 ; j < (i n t) (dimY*nC) ; j ++)

448 {

449 for (i n t i = 2 ; i < (i n t) (dimX*nC) ; i ++)

450 {

451 j j = j *2+1; i i = i *2+1;

452 Rcurr = residual (nn, RHS, phi , i i , j j) ;

453 R1 = residual (nn, RHS, phi , i i −1, j j −1) ;

454 R2 = residual (nn, RHS, phi , i i , j j −1) ;

455 R3 = residual (nn, RHS, phi , i i +1 , j j −1) ;

456 R4 = residual (nn, RHS, phi , i i −1, j j) ;

457 R5 = residual (nn, RHS, phi , i i +1 , j j) ;

458 R6 = residual (nn, RHS, phi , i i −1, j j +1) ;

459 R7 = residual (nn, RHS, phi , i i , j j +1) ;

460 R8 = residual (nn, RHS, phi , i i +1 , j j +1) ;

461

462 R[i] [j] = 0 . 2 5 * (Rcurr + 0 . 5 * (R2 + R4 + R5 + R7) + 0 . 2 5 * (R1 + R3 + R6 + R8)

) ;

463 }

464 }

465 // Set ghost c e l l s

466 for (i n t j = 1 ; j <= (i n t) (dimY*nC) ; j ++)

467 {

468 j j = j *2−1;

469 Rcurr = residual (nn, RHS, phi , 1 , j j) ;

470 R [1] [j] = Rcurr ;

134 APPENDIX B. SOURCE CODE

471 Rcurr = residual (nn, RHS, phi , (i n t) (dimX*nn) , j j) ;

472 R [(i n t) (dimX*nC)] [j] = Rcurr ;

473 }

474 for (i n t i = 1 ; i <= (i n t) (dimX*nC) ; i ++)

475 {

476 i i = i *2−1;

477 Rcurr = residual (nn, RHS, phi , i i , 1) ;

478 R[i] [1] = Rcurr ;

479 Rcurr = residual (nn, RHS, phi , i i , (i n t) (dimY*nn)) ;

480 R[i] [(i n t) (dimY*nC)] = Rcurr ;

481 }

482 }

483 /*−−*/

484 void injectedResidual (i n t nC, double **RHS, double ** phi , double **R)

485 {

486 i n t i i , j j , nF = nC* 2 ;

487 double h = 1 . /nF ;

488 toZero (n , R) ;

489

490 //Loop over c e l l s and find r e s t r i c t e d residual for the coarse grid−c e l l s

491 for (i n t j = 1 ; j <= (i n t) (dimY*nC) ; j ++)

492 {

493 for (i n t i = 1 ; i <= (i n t) (dimX*nC) ; i ++)

494 {

495 j j = j * 2 ; i i = i * 2 ;

496 R[i] [j] = residual (nF , RHS, phi , i i , j j) ;

497 }

498 }

499 }

500 /*−−−*/

501 /*−−−−−−−−−−−−−−−−−−− R e s t r i c t i o n −−−−−−−−−−−−−−−−−−−−−−−−−*/

502 /*−−−*/

503 void weighted (i n t nC, double **R)

504 {

505 i n t iC , iF , jC , jF , nF = nC* 2 ;

506 double ** Rout ;

507 Rout = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

508 toZero (n , Rout) ;

135

509 //Loop over c e l l s and find r e s t r i c t e d values for the coarse grid−c e l l s

510 for (jC = 1 , jF = 2 ; jC <= (i n t) (dimY*nC) ; jC ++ , jF +=2)

511 {

512 for (iC = 1 , iF = 2 ; iC <= (i n t) (dimX*nC) ; iC ++ , iF +=2)

513 {

514 Rout [iC] [jC] = 0 . 2 5 * (R[iF] [jF] + 0 . 5 * (R[iF] [jF−1] + R[iF −1][jF] + R[iF +1][

jF]

515 + R[iF] [jF +1]) + 0 . 2 5 * (R[iF −1][jF−1] + R[iF +1][jF−1] + R[iF −1][jF +1] + R[iF +1][jF

+1])) ;

516 }

517 }

518 ccopy (Rout , R) ;

519 free_dmatrix (Rout , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

520 }

521 /*−−−*/

522 void injected (i n t nC, double **R)

523 {

524 i n t iC , iF , jC , jF , nF = nC* 2 ;

525 double ** Rout ;

526 Rout = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

527 toZero (n , Rout) ;

528 //Loop over c e l l s and find r e s t r i c t e d values for the coarse grid−c e l l s

529 for (jC = 1 , jF = 2 ; jC <= (i n t) (dimY*nC) ; jC ++ , jF +=2)

530 {

531 for (iC = 1 , iF = 2 ; iC <= (i n t) (dimX*nC) ; iC ++ , iF +=2)

532 {

533 Rout [iC] [jC] = R[iF] [jF] ;

534 }

535 }

536 ccopy (Rout , R) ;

537 free_dmatrix (Rout , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

538 }

539 /*−−−*/

540 /*−−−−−−−−−−−−−−−−−− Add Value −−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

541 /*−−−*/

542 void addValue (i n t nn, double **E , double ** phi)

543 {

544 //Add interpolated value to f ine grid c e l l value

136 APPENDIX B. SOURCE CODE

545 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

546 {

547 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

548 {

549 phi [i] [j] += E[i] [j] ;

550

551 }

552 }

553 return ;

554 }

555 /*−−−*/

556 /*−−−−−−−−−−−−−−−−−−−− Interpolasjon −−−−−−−−−−−−−−−−−−−−−−*/

557 /*−−−*/

558 void interpolat ion (i n t nC, double **E)

559 {

560 double ** returnE ;

561 i n t iC , jC , iF , jF , nF = nC* 2 ;

562

563 returnE = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

564 toZero (n , returnE) ;

565

566 // B i l i n e a r interpolat ion for i nt er na l nodes

567 for (jC = 0 , jF = 0 ; jC <= (i n t) (dimY*nC) ; jC ++ , jF +=2)

568 {

569 for (iC = 0 , iF = 0 ; iC <= (i n t) (dimX*nC) ; iC ++ , iF +=2)

570 {

571 returnE [iF] [jF] = 0.5625*E[iC] [jC] + 0.1875*(E[iC +1][jC] + E[iC] [jC +1]) +

0.0625*E[iC +1][jC + 1] ;

572 returnE [iF +1][jF] = 0.5625*E[iC +1][jC] + 0.1875*(E[iC +1][jC +1] + E[iC] [jC

]) + 0.0625*E[iC] [jC + 1] ;

573 returnE [iF] [jF +1] = 0.5625*E[iC] [jC +1] + 0.1875*(E[iC +1][jC +1] + E[iC] [jC

]) + 0.0625*E[iC +1][jC] ;

574 returnE [iF +1][jF +1] = 0.5625*E[iC +1][jC +1] + 0.1875*(E[iC +1][jC] + E[iC] [

jC +1]) + 0.0625*E[iC] [jC] ;

575 }

576 }

577 // Set mixed prolongation at boundary nodes

578 for (jC = 0 , jF = 0 ; jC <= (i n t) (dimY*nC) ; jF +=2 , jC ++)

137

579 {

580 returnE [0] [jF] = 0.75*E [1] [jC] + 0.25*E [1] [jC + 1] ;

581 returnE [0] [jF +1] = 0.75*E [1] [jC +1] + 0.25*E [1] [jC] ;

582 returnE [1] [jF] = 0.75*E [1] [jC] + 0.25*E [1] [jC + 1] ;

583 returnE [1] [jF +1] = 0.75*E [1] [jC +1] + 0.25*E [1] [jC] ;

584

585 returnE [(i n t) (dimX*nF)] [jF +1] = 0.75*E [(i n t) (dimX*nC)] [jC +1] + 0.25*E [(i n t) (

dimX*nC)] [jC] ;

586 returnE [(i n t) (dimX*nF)] [jF] = 0.75*E [(i n t) (dimX*nC)] [jC] + 0.25*E [(i n t) (dimX*

nC)] [jC + 1] ;

587 returnE [(i n t) (dimX*nF) +1][jF +1] = 0.75*E [(i n t) (dimX*nC)] [jC +1] + 0.25*E [(i n t) (

dimX*nC)] [jC] ;

588 returnE [(i n t) (dimX*nF) +1][jF] = 0.75*E [(i n t) (dimX*nC)] [jC] + 0.25*E [(i n t) (

dimX*nC)] [jC + 1] ;

589 }

590 for (jC = 0 , jF = 0 ; jC <= (i n t) (dimX*nC) ; jF +=2 , jC ++)

591 {

592 returnE [jF] [1] = 0.75*E[jC] [1] + 0.25*E[jC + 1] [1] ;

593 returnE [jF + 1] [1] = 0.75*E[jC + 1] [1] + 0.25*E[jC] [1] ;

594 returnE [jF] [0] = 0.75*E[jC] [1] + 0.25*E[jC + 1] [1] ;

595 returnE [jF + 1] [0] = 0.75*E[jC + 1] [1] + 0.25*E[jC] [1] ;

596

597 returnE [jF + 1] [(i n t) (dimY*nF)] = 0.75*E[jC + 1] [(i n t) (dimY*nC)] + 0.25*E[jC] [(i n t

) (dimY*nC)] ;

598 returnE [jF] [(i n t) (dimY*nF)] = 0.75*E[jC] [(i n t) (dimY*nC)] + 0.25*E[jC + 1] [(i n t)

(dimY*nC)] ;

599 returnE [jF + 1] [(i n t) (dimY*nF) +1] = 0.75*E[jC + 1] [(i n t) (dimY*nC)] + 0.25*E[jC] [(

i n t) (dimY*nC)] ;

600 returnE [jF] [(i n t) (dimY*nF) +1] = 0.75*E[jC] [(i n t) (dimY*nC)] + 0.25*E[jC + 1] [(

i n t) (dimY*nC)] ;

601 }

602 // Set return matrix

603 ccopy (returnE , E) ;

604 free_dmatrix (returnE , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

605 return ;

606 }

607 /*−−*/

608 /*−−−−−−−−−−−−−− Solve coarsest grid−−−−−−−−−−−−−−−−−−−−−−*/

138 APPENDIX B. SOURCE CODE

609 /*−−*/

610 void solveCoarse (double ** phi , double ** f)

611 {

612 double h = 0 . 5 , ** returnPhi ;

613 returnPhi = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

614 toZero (n , returnPhi) ;

615

616 returnPhi [1] [1] = (phi [0] [1] + phi [2] [1] + phi [1] [0] + phi [1] [2] − h*h* f [1] [1])

/ 4 . 0 ;

617

618 ccopy (returnPhi , phi) ;

619 free_dmatrix (returnPhi , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

620 }

621 /*−−−*/

622 /*−−−−−−−−−−−−−−− Transform array to matrix −−−−−−−−−−−−−−−*/

623 /*−−−*/

624 void arrayMatrix (i n t nn, double * * * array , double ** matrix , i n t dd)

625 {

626 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

627 {

628 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

629 {

630 matrix [i] [j] = array [dd] [i] [j] ;

631 }

632 }

633 }

634 /*−−−*/

635 /*−−−−−−−−−−−−−−− Transform matrix to array −−−−−−−−−−−−−−−*/

636 /*−−−*/

637 void matrixArray (i n t nn, double ** matrix , double * * * array , i n t dd)

638 {

639 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

640 {

641 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

642 {

643 array [dd] [i] [j] = matrix [i] [j] ;

644 }

645 }

139

646 }

647 /*−−−*/

648 /*−−−−−−−−−−−−−−−−−−− Copy values −−−−−−−−−−−−−−−−−−−−−−−−−*/

649 /*−−−*/

650 void copy (double * * * from , double * * * to , i n t dd)

651 {

652 for (i n t j = 0 ; j < (i n t) (dimY*n) +2; j ++)

653 {

654 for (i n t i = 0 ; i < (i n t) (dimX*n) +2; i ++)

655 {

656 to [dd] [i] [j] = from [dd] [i] [j] ;

657 }

658 }

659 }

660 /*−−*/

661 void ccopy (double ** from , double ** to)

662 {

663 for (i n t j = 0 ; j <= (i n t) (dimY*n) +1; j ++)

664 {

665 for (i n t i = 0 ; i <= (i n t) (dimX*n) +1; i ++)

666 {

667 to [i] [j] = from [i] [j] ;

668 }

669 }

670 }

671 /*−−−*/

672 /*−−−−−−−−−−−−−−− set matrix to zero −−−−−−−−−−−−−−−−−−−−*/

673 /*−−−*/

674 void toZero (i n t dim , double ** matrix)

675 {

676 for (i n t j = 0 ; j <= (i n t) (dimY*dim) +1; j ++)

677 {

678 for (i n t i = 0 ; i <= (i n t) (dimX*dim) +1; i ++)

679 {

680 matrix [i] [j] = 0 . 0 ;

681 }

682 }

683 }

140 APPENDIX B. SOURCE CODE

684 /*−−*/

685 /*−−−−−−−−−−− set matrix with d i f f dim to zero −−−−−−−−−−−*/

686 /*−−*/

687 void toZeroM (i n t dd , double * * * matrix)

688 {

689 for (i n t i = 0 ; i < (i n t) (dimX*n) +2; i ++)

690 {

691 for (i n t j = 0 ; j < (i n t) (dimY*n) +2; j ++)

692 {

693 matrix [dd] [i] [j] = 0 . 0 ;

694 }

695 }

696 }

697 /*−−*/

698 /*−−−−−−−−−− calculat ing 2 logarithm of n −−−−−−−−−−−−−−−−*/

699 /*−−*/

700 i n t log_2 (i n t nn)

701 {

702 i n t absN = abs (nn) , baseNr = 2 , realNr ;

703

704 i f (nn == 0)

705 {

706 realNr = 0 ;

707 }

708 else

709 {

710 realNr = 0 ;

711 while (baseNr <= absN)

712 {

713 realNr = realNr + 1 ;

714 baseNr = baseNr * 2 ;

715 }

716 }

717 return realNr ;

718 }

719 /*−−*/

720 /*−−−−−−−−−−− calculat ing 2 power of value k −−−−−−−−−−−−−*/

721 /*−−*/

141

722 i n t powerOf (i n t k)

723 {

724 i n t value ;

725

726 i f (k < 0)

727 {

728 p r i n t f (" Error : b^c = a , c i negative . n needs to be p o s i t i v e . ") ;

729 e x i t (1) ;

730 }

731 else i f (k == 0) { value = 1 ; }

732 else i f (k == 1) { value = 2 ; }

733 else

734 {

735 value = 1 ;

736 for (i n t i = 1 ; i <= k ; i ++)

737 {

738 value = value * 2 ;

739 }

740 }

741 return value ;

742 }

142 APPENDIX B. SOURCE CODE

Listing B.8: BC.c,velocity and pressure BC’s.

1 #include "head . h"

2 #include <math . h>

3 #include <stdio . h>

4 #include < s t r i n g . h>

5 #include " input . h"

6 /*−−*/

7 /* BC FOR VELOCITY */

8 /*−−*/

9 void velBCfield (i n t nn, double **u , double ** v)

10 {

11 double h = 1 . /nn ;

12

13 i f (wall == 1) //BC ’ s for l i d driven cavety flow

14 {

15 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

16 {

17 v [0] [j] = −v [1] [j] ;

18 v [(i n t) (dimX*nn) +1][j] = −v [(i n t) (dimX*nn)] [j] ;

19 u [0] [j] = 0 . 0 ;

20 u [(i n t) (dimX*nn)] [j] = 0 . 0 ;

21 }

22 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

23 {

24 u[i] [(i n t) (dimY*nn) +1] = −u[i] [(i n t) (dimY*nn)] + 2.0* velX ;

25 u[i] [0] = −u[i] [1] ;

26 v [i] [(i n t) (dimY*nn)] = 0 . 0 ;

27 v [i] [0] = 0 . 0 ;

28 }

29 } e lse i f (wall == 2) // Couette flow

30 {

31 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

32 {

33 u [0] [j] = u [1] [j] ;

34 v [0] [j] = v [1] [j] ;

35 u [(i n t) (dimX*nn) +1][j] = u [(i n t) (dimX*nn)] [j] ;

36 v [(i n t) (dimX*nn) +1][j] = v [(i n t) (dimX*nn)] [j] ;

37 }

143

38 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

39 {

40 v [i] [(i n t) (dimY*nn)] = 0 . 0 ;

41 v [i] [0] = 0 . 0 ;

42 u[i] [(i n t) (dimY*nn) +1] = −u[i] [(i n t) (dimY*nn)] + 2.0* velX ;

43 u[i] [0] = −u[i] [1] ;

44 }

45 } e lse i f (wall == 3) //Channel flow with inflow v e l o c i t y

46 {

47 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

48 {

49 u [0] [j] = velX ;

50 v [0] [j] = v [1] [j] ;

51 u [(i n t) (dimX*nn) +1][j] = u [(i n t) (dimX*nn)] [j] ;

52 v [(i n t) (dimX*nn) +1][j] = v [(i n t) (dimX*nn)] [j] ;

53 }

54 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

55 {

56 v [i] [0] = 0 . 0 ;

57 v [i] [(i n t) (dimY*nn)] = 0 . 0 ;

58 u[i] [(i n t) (dimY*nn) +1] = u[i] [(i n t) (dimY*nn)] ;

59 u[i] [0] = u[i] [1] ;

60 }

61 } e lse i f (wall == 4) //Channel flow with inflow v e l o c i t y

62 {

63 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

64 {

65 u [0] [j] = velX ;

66 v [0] [j] = v [1] [j] ;

67 u [(i n t) (dimX*nn) +1][j] = u [(i n t) (dimX*nn)] [j] ;

68 v [(i n t) (dimX*nn) +1][j] = v [(i n t) (dimX*nn)] [j] ;

69 }

70 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

71 {

72 v [i] [0] = 0 . 0 ;

73 v [i] [(i n t) (dimY*nn)] = 0 . 0 ;

74 u[i] [(i n t) (dimY*nn) +1] = −u[i] [(i n t) (dimY*nn)] ;

75 u[i] [0] = −u[i] [1] ;

144 APPENDIX B. SOURCE CODE

76 }

77 } e lse i f (wall == 5) // channel flow , peroidic bc and free−s l i p

78 {

79 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

80 {

81 u [0] [j] = u [(i n t) (dimX*nn)] [j] ;

82 v [0] [j] = v [(i n t) (dimX*nn)] [j] ;

83 u [(i n t) (dimX*nn) +1][j] = u [1] [j] ;

84 v [(i n t) (dimX*nn) +1][j] = v [1] [j] ;

85 }

86 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

87 {

88 v [i] [(i n t) (dimY*nn)] = 0 . 0 ;

89 v [i] [0] = 0 . 0 ;

90 u[i] [(i n t) (dimY*nn) +1] = u[i] [(i n t) (dimY*nn)] ;

91 u[i] [0] = u[i] [1] ;

92 }

93 } e lse i f (wall == 6) // P o i s e u i l l e flow (peroidic bc and no−s l i p)

94 {

95 for (i n t j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

96 {

97 u [0] [j] = u [(i n t) (dimX*nn) −1][j] ;

98 v [0] [j] = v [(i n t) (dimX*nn)] [j] ;

99 u [(i n t) (dimX*nn)] [j] = u [1] [j] ;

100 v [(i n t) (dimX*nn) +1][j] = v [1] [j] ;

101 }

102 for (i n t i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

103 {

104 v [i] [(i n t) (dimY*nn)] = 0 . 0 ;

105 v [i] [0] = 0 . 0 ;

106 u[i] [(i n t) (dimY*nn) +1] = −u[i] [(i n t) (dimY*nn)] ;

107 u[i] [0] = −u[i] [1] ;

108 }

109 }

110 }

111 /*−−*/

112 /* BC FOR PRESSURE */

113 /*−−*/

145

114 void pBCfield (i n t nn, double **p)

115 {

116 i n t i , j ;

117 double h = 1 . /nn ;

118

119 i f (wall == 2 | | wall == 3 | | wall == 4 | | wall == 8) // channel flow

120 {

121 for (j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

122 {

123 p [0] [j] = p [1] [j] ;

124 p [(i n t) (dimX*nn) +1][j] = 0 . 0 ;

125 }

126 for (i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

127 {

128 p[i] [(i n t) (dimY*nn) +1] = p[i] [(i n t) (dimY*nn)] ;

129 p[i] [0] = p[i] [1] ;

130 }

131 }

132 else i f (wall == 5 | | wall == 6 | | wall == 7) // periodic BC at outflow

133 {

134 for (j = 0 ; j <= (i n t) (dimY*nn) +1; j ++)

135 {

136 p [0] [j] = p [(i n t) (dimX*nn)] [j] ;

137 p [(i n t) (dimX*nn) +1][j] = p [1] [j] ;

138 }

139 for (i = 0 ; i <= (i n t) (dimX*nn) +1; i ++)

140 {

141 p[i] [(i n t) (dimY*nn) +1] = p[i] [(i n t) (dimY*nn)] ;

142 p[i] [0] = p[i] [1] ;

143 }

144 }

145 }

146 APPENDIX B. SOURCE CODE

Listing B.9: results.c, functions for post-processing.

1 #include <stdio . h>

2 #include "head . h"

3 #include " input . h"

4 #include < s t d l i b . h>

5 #include <math . h>

6

7 void v t f F i l e (double * * , double * * , double * * , double * * , double * * , int , double , int

, int , double [4] [nPoint]) ;

8 void setBodyIBM (double , double , double , double , double [4] [nPoint] , double [2] [

nPoint] , double [2] [nPoint]) ;

9 void g r i d S h i f t i n g (double [2] [n] , int , int , i n t) ;

10 void intersectionP (i n t * , int , int , int , i n t [3] [maxIntersec] , double [3] [

maxIntersec] , double [2] [nPoint]) ;

11 void IBMvelocity (double * * , double * * , double [4] [nPoint]) ;

12 /*−−*/

13 /*−−−−−−−−−−−−−−− Print to f i l e −−−−−−−−−−−−−−−−−−−−−−−−−−*/

14 /*−−*/

15 // Results and write out at writeOut i n t e r v a l l

16 void p r i n t F i l e (double t , double **u , double ** v , double **p , double body [4] [nPoint])

17 {

18 double **u_new , **v_new , **p_new , ** psi_new , ** div_new , ** psi , ** u_test , ** v _ t e s t ;

19 i n t step = (i n t) (t / dt) + 1 , id = (i n t) (tmax / (dt * writeOut)) + 1 , l i m i t ;

20 double integer , f r a c t i o n = modf(step / writeOut , &integer) ;

21

22 u_new = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

23 v_new = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

24 p_new = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

25 psi_new = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

26 div_new = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

27 psi = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

28

29 u_test = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

30 v _ t e s t = dmatrix (0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

31 ccopy (u_new , u_test) ; ccopy (v_new , v _ t e s t) ;

32

33 toZero (n−1, u_new) ;

34 toZero (n−1, v_new) ;

147

35 toZero (n−1, p_new) ;

36 toZero (n−1, psi_new) ;

37 toZero (n−1, div_new) ;

38

39 i f (f r a c t i o n == 0.0 && step == (writeOut * integer))

40 {

41 stream (psi , u , v) ;

42 r e s u l t s (u , v , p , psi , u_new , v_new , p_new , psi_new , div_new) ;

43 v t f F i l e (u_new , v_new , p_new , div_new , psi_new , integer , t , id , writeOut , body) ;

44 }

45 free_dmatrix (v_test , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

46 free_dmatrix (u_test , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

47 free_dmatrix (p_new , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

48 free_dmatrix (u_new , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

49 free_dmatrix (v_new , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

50 free_dmatrix (psi_new , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

51 free_dmatrix (div_new , 0 , (i n t) (dimX*n) +1 , 0 , (i n t) (dimY*n) +1) ;

52 free_dmatrix (psi , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

53 }

54 /*−−*/

55 /*−−−− calculat ing r e s u l t s for u , v , p , psi and div −−−−−−*/

56 /*−−*/

57 // Regenerating v e l o c i t y vectors and pressure ,

58 //removing ghost c e l l s and averaging

59 void r e s u l t s (double **u , double ** v , double **p , double ** psi , double **u_new ,

double **v_new , double **p_new , double ** psi_new , double ** div_new)

60 {

61 i n t i , j ;

62 double h = 1 . / (n+ 1 .) ;

63 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++) // Averaging for GLview

64 {

65 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

66 {

67 u_new[i] [j] = (u[i] [j]+u[i] [j +1]) / 2 ;

68 v_new [i] [j] = (v [i] [j]+ v [i +1][j]) / 2 ;

69 p_new[i] [j] = (p[i] [j]+p[i] [j +1]+p[i +1][j +1]+p[i +1][j]) / 4 ;

70 psi_new [i] [j] = −(psi [i] [j] + psi [i +1][j]) / 2 ;

71

148 APPENDIX B. SOURCE CODE

72 }

73 }

74 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++) // Dicergence , needs u_new and v_new

75 {

76 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

77 {

78 div_new [i] [j] = (u_new[i +1][j]−u_new[i] [j]) /h + (v_new [i] [j +1]−v_new [i] [j])

/h ;

79 }

80 }

81 }

82 /*−−*/

83 /*−−−−−−−−−−calcu lat ing streamfunction −−−−−−−−−−−−−−−−−−−*/

84 /*−−*/

85 void stream (double ** psi , double **u , double ** v)

86 {

87 i n t i , j ;

88 double h = 1 . /n ;

89 for (i = 1 ; i <= (i n t) (dimX*n) ; i ++)

90 {

91 psi [i] [0] = psi [i −1][0] − v [i] [0] * h ;

92 }

93

94 for (i = 0 ; i <= (i n t) (dimX*n) +1; i ++)

95 {

96 for (j = 1 ; j <= (i n t) (dimY*n) ; j ++)

97 {

98 psi [i] [j] = psi [i] [j −1] + u[i] [j] * h ;

99 }

100 }

101 }

149

Listing B.10: vtfFile.c, a function to generate the vtf-file for GLview.

1 #include <stdio . h>

2 #include " input . h"

3

4 void v t f F i l e (double **u_new , double **v_new , double **p_new , double ** div_new ,

double ** psi_new , i n t count , double t , i n t id , i n t writeOut , double body [4] [

nPoint])

5 {

6 i n t i , j , time ;

7 double h = 1 . /n ;

8 FILE * f i l e ;

9

10 i f (count == 1)

11 {

12 f i l e = fopen (" glview . v t f " , "w") ;

13 f p r i n t f (f i l e , " *VTF−1.00 \n \n") ;

14 f p r i n t f (f i l e , " *NODES 1 \n") ;

15 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++)

16 {

17 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

18 {

19 f p r i n t f (f i l e , "%f %f %i \n" , i *h , j *h , 0) ;

20 }

21 }

22 i f (runIBM == 1)

23 {

24 f p r i n t f (f i l e , " \n\n*NODES 2 \n") ;

25 for (i n t point = 0 ; point < nPoint ; point ++)

26 {

27 f p r i n t f (f i l e , "%f %f %i \n" , body [0] [point] , body [1] [point] , 0) ;

28 }

29 }

30 f p r i n t f (f i l e , " \n*ELEMENTS 1 \n") ;

31 f p r i n t f (f i l e , "%%NODES #1 \n") ;

32 f p r i n t f (f i l e , "%%QUADS \n") ;

33 for (i = 1 ; i <= (i n t) (dimX*n) ; i ++)

34 {

35 for (j = 1 ; j <= (i n t) (dimY*n) ; j ++)

150 APPENDIX B. SOURCE CODE

36 {

37 f p r i n t f (f i l e , "%i %i %i %i \n" , j +(i −1) * ((i n t) (dimY*n) +1) ,

38 j +1+(i −1) * ((i n t) (dimY*n) +1) , j +1+ i * ((i n t) (dimY*n) +1) , j + i * ((i n t) (dimY*n) +1)) ;

39 }

40 }

41 i f (runIBM == 1)

42 {

43 i f (bType == 1 | | bType == 3)

44 {

45 f p r i n t f (f i l e , " \n*ELEMENTS 2 \n") ;

46 f p r i n t f (f i l e , "%%NODES #2 \n") ;

47 f p r i n t f (f i l e , "%%BEAMS \n") ;

48 for (i n t point = 1 ; point <= nPoint ; point ++)

49 {

50 i f (point == nPoint) { f p r i n t f (f i l e , "%i %i \n" , point , 1) ; }

51 else { f p r i n t f (f i l e , "%i %i \n" , point , point + 1) ; }

52 }

53 } e lse i f (bType == 2)

54 {

55 f p r i n t f (f i l e , " \n*ELEMENTS 2 \n") ;

56 f p r i n t f (f i l e , "%%NODES #2 \n") ;

57 f p r i n t f (f i l e , "%%BEAMS \n") ;

58 for (i n t point = 1 ; point <= nPoint/2−1; point ++)

59 {

60 f p r i n t f (f i l e , "%i %i \n" , point , point + 1) ;

61 }

62 f p r i n t f (f i l e , " \n*ELEMENTS 3 \n") ;

63 f p r i n t f (f i l e , "%%NODES #2 \n") ;

64 f p r i n t f (f i l e , "%%BEAMS \n") ;

65 for (i n t point = nPoint/2 + 1 ; point <= nPoint−1; point ++)

66 {

67 f p r i n t f (f i l e , "%i %i \n" , point , point + 1) ;

68 }

69 }

70 }

71 f p r i n t f (f i l e , " \n*GLVIEWGEOMETRY 1 \n") ;

72 f p r i n t f (f i l e , "%%ELEMENTS \n") ;

73 i f (runIBM == 1)

151

74 {

75 i f (bType == 1 | | bType == 3) { f p r i n t f (f i l e , "%i %i \n" , 2 , 1) ; }

76 else i f (bType == 2) { f p r i n t f (f i l e , "%i %i %i \n" , 3 , 2 , 1) ; }

77 } e lse

78 {

79 f p r i n t f (f i l e , "%i \n" , 1) ;

80 }

81 } e lse

82 {

83 f i l e = fopen (" glview . v t f " , "a") ;

84 }

85 // Pressure r e s u l t for each timestep

86 f p r i n t f (f i l e , " \n\n*RESULTS %i \n" , count) ;

87 f p r i n t f (f i l e , "%%DIMENSION 1 \n") ;

88 f p r i n t f (f i l e , "%%PER_NODE #1 \n") ;

89 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++)

90 {

91 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

92 {

93 f p r i n t f (f i l e , "%f \n" , p_new[i] [j]) ;

94 }

95 }

96 // Velocity r e s u l t for each timestep

97 f p r i n t f (f i l e , " \n*RESULTS %i \n" , id + count) ;

98 f p r i n t f (f i l e , "%%DIMENSION 3 \n") ;

99 f p r i n t f (f i l e , "%%PER_NODE #1 \n") ;

100 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++)

101 {

102 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

103 {

104 f p r i n t f (f i l e , "%f %f %f \n" , u_new[i] [j] , v_new [i] [j] , 0 . 0) ;

105 }

106 }

107 // Streamfunction for each time−step

108 f p r i n t f (f i l e , " \n*RESULTS %i \n" , (2* id) + count) ;

109 f p r i n t f (f i l e , "%%DIMENSION 1 \n") ;

110 f p r i n t f (f i l e , "%%PER_NODE #1 \n") ;

111 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++)

152 APPENDIX B. SOURCE CODE

112 {

113 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

114 {

115 f p r i n t f (f i l e , "%f \n" , psi_new [i] [j]) ;

116 }

117 }

118 // Divergence for each time−step

119 f p r i n t f (f i l e , " \n*RESULTS %i \n" , (3* id) + count) ;

120 f p r i n t f (f i l e , "%%DIMENSION 1 \n") ;

121 f p r i n t f (f i l e , "%%PER_NODE #1 \n") ;

122 for (i = 0 ; i <= (i n t) (dimX*n) ; i ++)

123 {

124 for (j = 0 ; j <= (i n t) (dimY*n) ; j ++)

125 {

126 f p r i n t f (f i l e , "%f \n" , div_new [i] [j]) ;

127 }

128 }

129 // I f l a s t time−step , l i n k r e s u l t s to i t

130 i f (t > ((double) tmax−(dt * writeOut)))

131 {

132 // Pressure

133 f p r i n t f (f i l e , " \n*GLVIEWSCALAR 1 \n") ;

134 f p r i n t f (f i l e , "%%NAME \"PRESSURE\" \n") ;

135 for (time = 1 ; time <= count ; time++)

136 {

137 f p r i n t f (f i l e , "%%STEP %i \n" , time) ;

138 f p r i n t f (f i l e , "%%STEPNAME \"Time : %f \" \n" , dt * time * writeOut) ;

139 f p r i n t f (f i l e , "%i \n" , time) ;

140 }

141 // Velocity

142 f p r i n t f (f i l e , " \n*GLVIEWVECTOR 1 \n") ;

143 f p r i n t f (f i l e , "%%NAME \"VELOCITY\" \n") ;

144 for (time = 1 ; time <= count ; time++)

145 {

146 f p r i n t f (f i l e , "%%STEP %i \n" , time) ;

147 f p r i n t f (f i l e , "%%STEPNAME \"Time : %f \" \n" , dt * time * writeOut) ;

148 f p r i n t f (f i l e , "%i \n" , id + time) ;

149 }

153

150 // Streamfunction

151 f p r i n t f (f i l e , " \n*GLVIEWSCALAR 2 \n") ;

152 f p r i n t f (f i l e , "%%NAME \"STREAMLINES\" \n") ;

153 for (time = 1 ; time <= count ; time++)

154 {

155 f p r i n t f (f i l e , "%%STEP %i \n" , time) ;

156 f p r i n t f (f i l e , "%%STEPNAME \"Time : %f \" \n" , dt * time * writeOut) ;

157 f p r i n t f (f i l e , "%i \n" , (2* id) + time) ;

158 }

159 // Dirvergence

160 f p r i n t f (f i l e , " \n*GLVIEWSCALAR 3 \n") ;

161 f p r i n t f (f i l e , "%%NAME \"DIVERGENCE\" \n") ;

162 for (time = 1 ; time <= count ; time++)

163 {

164 f p r i n t f (f i l e , "%%STEP %i \n" , time) ;

165 f p r i n t f (f i l e , "%%STEPNAME \"Time : %f \" \n" , dt * time * writeOut) ;

166 f p r i n t f (f i l e , "%i \n" , (3* id) + time) ;

167 }

168 f p r i n t f (f i l e , " \n") ;

169 }

170 // Close f i l e

171 f c l o s e (f i l e) ;

172 }

154 APPENDIX B. SOURCE CODE

Listing B.11: validation.c, a function to validate the Poisson solver.

1 #include <time . h>

2 #include <math . h>

3 #include <stdio . h>

4 #include < s t r i n g . h>

5 #include " input . h"

6 #include "head . h"

7

8 void twoStepM(i n t nn, double t , double **RHS, double ** deltaP , i n t * i t e r , double

error [ncycle] , double endRes [ncycle]) ;

9 void Vcycle (i n t nn, double t , double ** f , double **MVAL, i n t * i t e r , double error [

ncycle] , double endRes [ncycle]) ;

10 void f u l l M u l t i g r i d (i n t nn, double t , double ** f , double ** value , i n t * i t , double

error [ncycle] , double endRes [ncycle]) ;

11

12 void validatePoisson ()

13 {

14 double h = 1 . /n , residual , err , endRes [ncycle] , error [ncycle] , x ;

15 double **RHS, ** exact , ** deltaP , ** d i f f ;

16 i n t i t e r = 0 , k = 2 , nn, mh = method ; //k = wave number

17 clock_t s t a r t , end ;

18 double cpuTimeUsed ;

19 FILE * f i l e E r r o r , * f i l e I t e r , * f i l e D i f f , * fileCPU , * f i l e S o l u t i o n s , * f i l e R e s , *

f i l e G S e r r o r ;

20

21 RHS = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

22 exact = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

23 deltaP = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

24 d i f f = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

25

26 for (nn = n ; nn <= n ; nn = nn*2)

27 {

28 toZero (n , deltaP) ;

29 toZero (n , RHS) ;

30 toZero (n , exact) ;

31 p r i n t f (" \n nn = %i \n" , nn) ;

32 h = 1 . /nn, residual = 0 . 0 , i t e r = 0 ;

33

155

34 for (i n t j = 1 ; j <= (i n t) (dimY*n) ; j ++)

35 {

36 for (i n t i = 1 ; i <= (i n t) (dimX*n) ; i ++)

37 {

38 // Test problem , set r i g h t hand side

39 RHS[i] [j] = cos (k*M_PI* i *h) * cos (k*M_PI* j *h) ;

40 // The exact solution / a n a l y t i c a l solution

41 exact [i] [j] = (−1.0/(2.0*powf (k*M_PI , 2))) *RHS[i] [j] ;

42 }

43 }

44 // Set boundary conditions

45 pBCfield (nn, deltaP) ;

46 pBCfield (nn, exact) ;

47

48 i f (mh == 1) //Gauss Seidel

49 {

50 // Set clock , s t a r t

51 s t a r t = clock () ;

52 //Run equation slover

53 GaussSeidel (itmax , nn, RHS, deltaP , &i t e r , &residual , &err) ;

54 // Stop clock

55 end = clock () ;

56 p r i n t f ("Tot i t e r a t i o n s : %i \n" , i t e r) ;

57 p r i n t f (" Residual : %g \n" , residual) ;

58 p r i n t f (" Error : %g \n\n\n" , err) ;

59 } e lse i f (mh == 2) //SOR

60 {

61 // Set clock , s t a r t

62 s t a r t = clock () ;

63 //Run equation slover

64 SOR(nn, RHS, deltaP , &i t e r , &residual , &err) ;

65 // Stop clock

66 end = clock () ;

67 p r i n t f ("Tot i t e r a t i o n s : %i \n" , i t e r) ;

68 p r i n t f (" Residual : %g \n" , residual) ;

69 p r i n t f (" Error : %g \n\n\n" , err) ;

70 } e lse i f (mh == 3) //Two−step multigrid

71 {

156 APPENDIX B. SOURCE CODE

72 // Set clock , s t a r t

73 s t a r t = clock () ;

74 //Run equation slover

75 twoStepM(nn, 0 , RHS, deltaP , &i t e r , error , endRes) ;

76 // Stop clock

77 end = clock () ;

78 p r i n t f ("Tot i t e r a t i o n s : %i \n\n\n" , i t e r) ;

79 } e lse i f (mh == 4) //V−cycle multigrid

80 {

81 // Set clock , s t a r t

82 s t a r t = clock () ;

83 //Run equation slover

84 Vcycle (nn, 0 , RHS, deltaP , &i t e r , error , endRes) ;

85 // Stop clock

86 end = clock () ;

87 p r i n t f ("Tot i t e r a t i o n s : %i \n\n\n" , i t e r) ;

88 } e lse i f (mh == 5) // Ful l multigrid

89 {

90 // Set clock , s t a r t

91 s t a r t = clock () ;

92 //Run equation slover

93 f u l l M u l t i g r i d (nn, 0 , RHS, deltaP , &i t e r , error , endRes) ;

94 // Stop clock

95 end = clock () ;

96 p r i n t f ("Tot i t e r a t i o n s : %i \n\n\n" , i t e r) ;

97 }

98 //CLOCKS_PER_SEC = the number of clock t i c k s per second .

99 // Calculate processor time

100 cpuTimeUsed = ((double) (end − s t a r t)) / CLOCKS_PER_SEC ;

101

102 // Print to f i l e number of i t e r a t i o n s

103 f i l e I t e r = fopen (" Validation / v a l i d a t i o n _ i t e r a t i o n . t x t " , "a") ;

104 f p r i n t f (f i l e I t e r , "%i %i \n" , nn , i t e r) ;

105 f c l o s e (f i l e I t e r) ;

106 // Print to f i l e the processor time

107 fileCPU = fopen (" Validation / validation_CPU . t x t " , "a") ;

108 f p r i n t f (fileCPU , "%i %f \n" , nn , cpuTimeUsed) ;

109 f c l o s e (fileCPU) ;

157

110 // Print to f i l e the dif ference between the exact solution and the numerical

solution

111 f i l e D i f f = fopen (" Validation / v a l i d a t i o n _ d i f f . t x t " , "w") ;

112 f i l e S o l u t i o n s = fopen (" Validation / val idat ion_solut ions . t x t " , "w") ;

113 for (i n t i = 1 ; i <= (i n t) (dimX*n) ; i ++)

114 {

115 for (i n t j = 1 ; j <= (i n t) (dimY*n) ; j ++)

116 {

117 d i f f [i] [j] = exact [i] [j] − deltaP [i] [j] ;

118 }

119 x = i *h ;

120 // f p r i n t f (f i l e D i f f , "%f %g \n" , x , d i f f [i] [(i n t) (nn/2)]) ;

121 f p r i n t f (f i l e S o l u t i o n s , "%f %g %g \n" , x , deltaP [i] [(i n t) (nn/2)] , exact [i

] [(i n t) (nn/2)]) ;

122 }

123 f p r i n t f (f i l e D i f f , "%i %g \n" , nn , RMS(nn, d i f f)) ;

124 f c l o s e (f i l e D i f f) ;

125 f c l o s e (f i l e S o l u t i o n s) ;

126 // Print to f i l e numerical error

127 f i l e E r r o r = fopen (" Validation / validation_SOLUerror . t x t " , "a") ;

128 f p r i n t f (f i l e E r r o r , "%i %g \n" , nn , avg (nn, d i f f)) ;

129 // f p r i n t f (f i l e E r r o r , "%i %g \n" , nn , RMS(nn, d i f f)) ;

130 // f p r i n t f (f i l e E r r o r , "%i %g \n" , nn , maxNorm(nn, d i f f)) ;

131 f c l o s e (f i l e E r r o r) ;

132 i f (mh == 3 | | mh == 4)

133 {

134 // Print residual and error of each V−cycle

135 f i l e R e s = fopen (" Validation / val idat ion_residual . t x t " , "w") ;

136 f i l e G S e r r o r = fopen (" Validation / validation_GSerror . t x t " , "w") ;

137 for (i n t c = 0 ; c < ncycle ; c++)

138 {

139 f p r i n t f (f i l e R e s , "%i %g \n" , c+1 , endRes [c]) ;

140 f p r i n t f (f i leGSerror , "%i %g \n" , c+1 , error [c]) ;

141 }

142 f c l o s e (f i l e R e s) ;

143 f c l o s e (f i l e G S e r r o r) ;

144 } e lse {

145 f i l e R e s = fopen (" Validation / val idat ion_residual . t x t " , "a") ;

158 APPENDIX B. SOURCE CODE

146 f i l e G S e r r o r = fopen (" Validation / validation_GSerror . t x t " , "a") ;

147 f p r i n t f (f i l e R e s , "%i %f \n" , nn, residual) ;

148 f p r i n t f (f i leGSerror , "%i %g \n" , nn, err) ;

149 f c l o s e (f i l e R e s) ;

150 f c l o s e (f i l e G S e r r o r) ;

151 }

152 }

153 free_dmatrix (RHS, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

154 free_dmatrix (deltaP , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

155 free_dmatrix (exact , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

156 free_dmatrix (d i f f , 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

157 return ;

158 }

159

Listing B.12: criteria.c, functions for CFL-condition, RMS, max-norm etc.

1 #include < s t d l i b . h>

2 #include <math . h>

3 #include <stdio . h>

4 #include "head . h"

5 #include " input . h"

6 /*−−−*/

7 /*−−−−−−−−−−−−−−−− Set i n i t i a l conditions −−−−−−−−−−−−−−−−−−−−−−−*/

8 /*−−−*/

9 void IC (i n t newIC , double **u , double ** v , double **p)

10 {

11 i n t i , j ;

12 FILE * f i l e ;

13 p r i n t f ("n = %i , dt = %f , Re = %i \n" , n , dt , (i n t) (Re*2* radius)) ;

14

15 i f (newIC == 0)

16 {

17 for (i = 0 ; i <= (i n t) (dimX*n) +1; i ++)

18 {

19 for (j = 0 ; j <= (i n t) (dimY*n) +1; j ++)

20 {

21 v [i] [j] = 0 . 0 ;

22 u[i] [j] = 0 . 0 ;

23 p[i] [j] = 0 . 0 ;

24 }

25 }

26 }

27 else

28 {

29 f i l e = fopen ("Timestep . t x t " , " r ") ;

30 for (i = 0 ; i <= (i n t) (dimX*n) +1; i ++)

31 {

32 for (j = 0 ; j <= (i n t) (dimY*n) +1; j ++)

33 {

34 fscanf (f i l e , "%l f %l f %l f " , &u[i] [j] , &v [i] [j] , &p[i] [j]) ;

35 }

36 }

37 f c l o s e (f i l e) ;

160 APPENDIX B. SOURCE CODE

38 }

39 }

40 /*−−*/

41 /*−−−−−−−−−−−− S t a b i l i t y requirements −−−−−−−−−−−−−−−−−−−−−−−−−−*/

42 /*−−*/

43 void s t a b i l i t y (void)

44 {

45 double h = 1 . /n ;

46 // S t a b i l i t y requirements , CFL i f v e l o c i t y i s equals to 1 .

47 i f (dt > h | | dt > (((double)Re*powf (h , 2)) /4) | | dt > (2 / (double)Re))

48 {

49 p r i n t f ("Warning ! dt should be l e s s then %f , %f or %f , but are %f \n" , h , (((

double)Re*pow(h , 2)) /4) , (2 / (double)Re) , dt) ;

50 e x i t (EXIT_FAILURE) ; // E x i t program

51 }

52 }

53 /*−−*/

54 /*−−−−−−−−−−−−−−−−−− Maximum Norm/uMax −−−−−−−−−−−−−−−−−−−−−−−−−*/

55 /*−−*/

56 double maxNorm(i n t nn, double ** matrix)

57 {

58 double max = 0 . 0 ;

59 for (i n t i = 1 ; i <= (i n t) (dimX*n) ; i ++)

60 {

61 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

62 {

63 i f (fabs (matrix [i] [j]) > max) {max = fabs (matrix [i] [j]) ; }

64 }

65 }

66 return max;

67 }

68 /*−−*/

69 /*−−−−−−−−−−−−−−−− Root Mean Square (RMS) −−−−−−−−−−−−−−−−−−−−−−*/

70 /*−−*/

71 double RMS(i n t nn, double ** x)

72 {

73 double RMS, **pow2 ;

74 pow2 = dmatrix (0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

161

75 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

76 {

77 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

78 {

79 pow2[i] [j] = x [i] [j] * x [i] [j] ;

80 }

81 }

82 RMS = sqrt (sum(nn, pow2)) / ((i n t) (dimX*nn) * (i n t) (dimY*nn)) ;

83 free_dmatrix (pow2, 0 , (i n t) (dimX*n) +2 , 0 , (i n t) (dimY*n) +2) ;

84 return RMS;

85 }

86 /*−−*/

87 /*−−−−−−−−−−−−−−−−−−−−− Average −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

88 /*−−*/

89 double avg (i n t nn, double ** matrix)

90 {

91 double avg = 0 . 0 ;

92 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

93 {

94 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

95 {

96 avg = avg + matrix [i] [j] ;

97 }

98 }

99 avg = avg / ((i n t) (dimX*nn) * (i n t) (dimY*nn)) ;

100 return avg ;

101 }

102 /*−−*/

103 /*−−−−−−−−−−−−−−−−−−−−−− Sum −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

104 /*−−*/

105 double sum(i n t nn, double ** matrix)

106 {

107 double sum = 0 . 0 ;

108 for (i n t i = 1 ; i <= (i n t) (dimX*nn) ; i ++)

109 {

110 for (i n t j = 1 ; j <= (i n t) (dimY*nn) ; j ++)

111 {

112 sum = sum + matrix [i] [j] ;

162 APPENDIX B. SOURCE CODE

113 }

114 }

115 return sum;

116 }

117 /*−−*/

118 /*−−−−−−−−−−−−−−−−−− CFL−condition −−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

119 /*−−*/

120 void CFL(double u , double v)

121 {

122 double h = 1 . /n ;

123 i f (u* dt /h > 1 | | v * dt /h > 1)

124 {

125 p r i n t f ("Warning ! ! CFL > 1 when u * (dt /h) = %f and v * (dt /h) = %f \n" , u* dt /h , v *

dt /h) ;

126 e x i t (EXIT_FAILURE) ; // E x i t program

127 }

128 }

Bibliography

Aarsnes, M. F. Navier stokes solver. My project thesis.

Balaras, E. (2004). Modeling complex boundaries using an external force field

on fixed cartesian grids in large-eddy simulations. Computers & Fluids,

33(3):375–404.

Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems.

Mathematics of computation, 31(138):333–390.

Brandt, A. (1981). Multigrid solvers on parallel computers.

Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathe-

matics of computation, 22(104):745–762.

Djeddi, S. R., Masoudi, A., and Ghadimi, P. (2013). Numerical simulation of

flow around diamond-shaped obstacles at low to moderate reynolds num-

bers. American Journal of Applied Mathematics and Statistics, 1(1):11–20.

Drikakis, D., Iliev, O., and Vassileva, D. (1998). A nonlinear multigrid method

for the three-dimensional incompressible navier–stokes equations. Journal

of Computational Physics, 146(1):301–321.

Euler, L. (1768). Institutionum calculi integralis, volume 1. imp. Acad. imp.

Saènt.

163

164 BIBLIOGRAPHY

Fadlun, E., Verzicco, R., Orlandi, P., and Mohd-Yusof, J. (2000). Combined

immersed-boundary finite-difference methods for three-dimensional com-

plex flow simulations. Journal of computational physics, 161(1):35–60.

Goldstein, D., Handler, R., and Sirovich, L. (1993). Modeling a no-slip flow

boundary with an external force field. Journal of Computational Physics,

105(2):354–366.

Guy, R. D., Philip, B., and Griffith, B. E. (2015). Geometric multigrid for

an implicit-time immersed boundary method. Advances in Computational

Mathematics, 41(3):635–662.

Hackbusch, W. (1985). Multi-grid methods and applications, vol. 4 of springer

series in computational mathematics.

Harlow, F. H., Welch, J. E., et al. (1965). Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface. Physics of fluids,

8(12):2182.

Hirt, C., Nichols, B., and Romero, N. (1975). Sola: A numerical solution algo-

rithm for transient fluid flows. NASA STI/Recon Technical Report N, 75:32418.

Kahan, W. M. (1958). Gauss-Seidel methods of solving large systems of linear

equations. PhD thesis, Thesis–University of Toronto.

Kutta, M. W. (1901). Beitrag zur näherungsweisen integration totaler differen-

tialgleichungen. Zeitschrift für Mathematik und Physik.

Lai, M.-C. and Peskin, C. S. (2000). An immersed boundary method with formal

second-order accuracy and reduced numerical viscosity. Journal of Compu-

tational Physics, 160(2):705–719.

BIBLIOGRAPHY 165

LeVeque, R. J. (1992). Numerical methods for conservation laws. Springer Sci-

ence & Business Media.

Mccormick, S. F. (1988). Multigrid methods: Theory, applications, and super-

computing. CRC Press.

Mohd-Yusof, J. (1997). For simulations of flow in complex geometries. Annual

Research Briefs, 317.

Mossige, J. C. (2017). Numerical simulations of swimming fish. A project thesis.

Park, J., Kwon, K., and Choi, H. (1998). Numerical solutions of flow past a circular

cylinder at reynolds numbers up to 160. Journal of Mechanical Science and

Technology, 12(6):1200–1205.

Patankar, S., Liu, C., and Sparrow, E. (1977). Fully developed flow and heat trans-

fer in ducts having streamwise-periodic variations of cross-sectional area.

Journal of Heat Transfer, 99(2):180–186.

Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method.

Journal of computational physics, 10(2):252–271.

Peyret, R. and Taylor, T. D. Computational methods for fluid flow.

Richard H. Pletcher, John C. Tannehill, D. A. A. (2013). Computional Fluid Me-

chanics and Heat Transfer. CRC Press.

Richtmyer, R.-D. and Morton, K.-W. (1967). Difference methods for initial-value

problems.

Strang, G. (2006). Linear algebra and its applications, thomson, brooks/cole,

belmont, ca. Technical report, ISBN 0-030-10567-6.

166 BIBLIOGRAPHY

Stüben, K. (1983). Algebraic multigrid (amg): experiences and comparisons.

Applied mathematics and computation, 13(3):419–451.

Stüben, K. and Trottenberg, U. (1982). Multigrid methods: Fundamental al-

gorithms, model problem analysis and applications. In Multigrid methods,

pages 1–176. Springer.

Taira, K. and Colonius, T. (2007). The immersed boundary method: a projection

approach. Journal of Computational Physics, 225(2):2118–2137.

Thompson, J. F., Soni, B. K., and Weatherill, N. P. (1998). Handbook of grid gen-

eration. CRC press.

Vanella, M., Posa, A., and Balaras, E. (2014). Adaptive mesh refinement for im-

mersed boundary methods. Journal of Fluids Engineering, 136(4):040909.

Wesseling, P. (1995). Introduction to multigrid methods. Technical report, DTIC

Document.

Wienands, R. and Oosterlee, C. W. (2001). On three-grid fourier analysis for

multigrid. SIAM Journal on Scientific Computing, 23(2):651–671.

Xu, J. and Zikatanov, L. (2017). Algebraic multigrid methods. Acta Numerica,

26:591–721.

Xu, S. and Wang, Z. J. (2006). An immersed interface method for simulating

the interaction of a fluid with moving boundaries. Journal of Computational

Physics, 216(2):454–493.

	Preface
	Summary
	Oppsummering
	Introduction
	Background
	Objectives
	Approach
	Outline

	Fundamentals
	Navier Stokes Equation
	Incompressible Navier Stokes equation
	Dimensionless approach of variables
	The projection method

	Grid
	Staggered grid
	Adaptive grid

	Discretization
	Spatial
	Temporal

	Boundary Conditions
	Methods to Solve Linear Systems
	Stability Analysis

	Multigrid
	Grid Transfer
	Restriction
	Prolongation

	Different algorithms
	The Two-Level Method
	V-Cycle Multigrid Method
	The Full Multigrid Method

	Smoothening Parameters
	Convergence and Computational Work

	Immersed Boundary Method
	Imposing of Immersed Boundary Conditions
	Discrete Forcing Methods
	Direct Forcing approach
	Interpolation

	Code layout
	Staggered Grid Generation
	Finite Difference Scheme
	Explicit Euler Scheme
	Poisson Solver
	Gauss Seidel
	Successive Over Relaxation
	Multigrid

	IBM
	Limitations on the Immersed Boundary

	Convergence criteria
	General Limitations
	Post-processing

	Validation
	Poisson Solver
	Gauss Seidel and SOR
	Multigrid
	Comparison

	Navier Stokes Solver
	Time Refinement Test
	Mesh Refinement Test
	Domain Refinement Test
	Multigrid together with IBM
	Efficiency analysis

	Conclusion
	Conclusions
	Recommendations for Further Work
	Short-Term
	Long-Term

	Acronyms and Symbols
	Source code
	Bibliography

