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PROBLEM SPECIFICATION
A simplified CFD solver is developed based on the SOLA code [1]. Special attention is paid to calculation

efficiency, so the code runs fast for simulations of large models with many grid points. As a test case, flow around
a complex geometry is tested with spacial attention to the forces. Therefore, a method for simulations of fluid-
structure interactions is developed. The main objectives of the thesis are:

• Multigrid methods are developed to reach convergence faster than a iterative scheme.
• Immersed boundary method is implemented for simulations of fluid-structure problem.
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SOLVER CONSTRUCTION
A simplified Navier-Stokes solver for two-dimensional incompressible viscous flow is the base for this master

thesis. The solver is constructed by use of:

• A equidistant staggered grid.
• The finite difference method as spatial discretization, described in [2].
• The explicit Euler method for temporal discretization.
• The projection method for decoupling the pressure and velocity coupling by [3].
• A method for solving the Poisson equation, future described under METHOD DESCRIPTION.

SIMULATIONS

Error in the Poisson solver Speed-up factor Pressure for Re = 20 Pressure for Re = 100

RESULTS AND CONCLUSION
The chosen grid spacing for the test case is h =

0.0078, i.e. 128 cells in each direction on a domain
[0:1]x[0:1].

• The efficiency is improved by a speed-up factor,
with respect to the Gauss Seidel method, equals to
63.5.
• The root-mean square of the error relative to an

exact solution is 7.34 × 10−7, i.e. the accuracy of
the resolution in the domain is good enough.
• Force coefficients from the cylinder test: Re = 20,
CL = 0.007 and CD = 2.282. Re = 100, CL = 0.333
and CD = 1.499. The coefficients coincides with
existing studies.

CL for Re = 20 should be equals to zero, i.e. there is an
small offset in the solver. By analyzing different results,
it is possible to see an asymmetry in the error of the Pois-
son solver, witch probably causes the offset.
For future work:

• Correct the offset in the Poisson solver.
• Implement weighed restriction for better perfor-

mance of the multigrid method.
• The temporal discretization method should be

evaluated. The explicit Euler method needs too
small ∆t to achieve the optimal efficiency increase.

METHOD DESCRIPTION
The multigrid method for solving elliptic partial differential equations, like the Poisson equation, introduced by Brandt [4] accelerate the convergence of an iterative method,

like Gauss Seidel which is used here, from O(n2) to O(n), when the partial differential equation is discretized on n grid points. The main purpose of a multigrid method is
reducing the different error components by transferring the domain to different grid levels and iterate by a iterative method. To transfer from a fine grid to a coarser grid
is called restriction and done by a restriction matrix, I2hh : Rn → Rn/2. To transfer from a coarse to a finer grid is called prolongation and done by a prolongation matrix,
Ih2h : Rn/2 → Rn. n is number of grid points in one direction of the domain. When transferring, the number of grid points n and the grid spacing h is always changing with a
factor of 2. The transferring is always a local averaging or a direct transferring of a cell value. The prolongation is preformed by a bi-linear interpolation matrix and the restricting
is preformed by injection (direct transferring of even-numbered fine grid values).

Bilinear interpolation Two-step multigrid V-cycle multigrid Full multigrid Linear interpolation (from [6])

The foundation of the immersed boundary method was introduced by Peskin [5]. He provided a method where it is possible to replace a mesh-conforming boundary description
with a force replicating the boundary in a fixed computational domain. The governing equations of the immersed boundary is transformed from a Lagrangian representation
onto the Eulerian grid of the computational domain as a force. The forces are found by a direct forcing method, i.e. linear interpolation of the velocities closest to the immersed
boundary with respect to the immersed velocity boundary conditions. The immersed pressure boundary condition, ∂(δp)∂xn

= 0 is not corrected, according to [6].


