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Summary 
 
Most research in the Arctic has been 
conducted during the time of year with 
daylight, but over the last years, the 
interest for the biological activity in the 
dark polar winter, the polar night, has 
grown. Recent studies show that part of the 
copepod community is still active in the 
upper parts of the water column during 
polar night, even performing diel vertical 
migration (DVM). The conventional 
paradigm of a “quiet” Arctic marine 
environment during polar night is thus 
about to be challenged, and with this, 
many interesting questions about the 
biology of the species present in the polar 
night are raised. As the intensity of the 
irradiance is far lower than at other times 
of year, the main light sources being 
background solar irradiance, moonlight, 
starlight (night sky irradiance), and aurora 
borealis, there are specific requirements to 
the visual capabilities of the different taxa. 
The ability of organisms to detect the 
downwelling irradiance is governed by 
sensitivity to absolute irradiance, as well as 
the spectral sensitivity of the species. In this 
thesis, patterns of DVM in the polar night 
were studied, and the vision of selected 
Arctic organisms was investigated by using 
hyperspectral imaging as well as 
behavioural experiments.  
 
During polar night, patterns of 
bioluminescence and DVM were mapped 
in Kongsfjorden, Svalbard, using an 
autonomous underwater vehicle (AUV) as 
well as zooplankton net hauls. The AUV 
was equipped with a bathyphotometer for 
bioluminescence measurements and 
Acoustic Doppler Current Profilers 
(ADCP) providing relative acoustic 
backscatter from zooplankton. 
Bioluminescence was, as the first 
registration during the polar night, 
documented throughout the water column. 
The taxa contributing to the documented 

bioluminescence were dominated by 
dinoflagellates (mainly Protoperidinium spp.), 
copepod nauplii (e.g. Metridia spp.), the 
copepod Oncaea borealis, appendicularians, 
and krill. Diel changes in bioluminescence 
over depth were observed, with a 
significantly greater proportion of the more 
intense flashes occurring in surface layers 
during night and at depth during day. 
These changes were interpreted as 
indications of DVM, as no diel changes in 
the bioluminescence potential itself were 
documented. Investigations using acoustic 
backscatter as well as plankton net hauls 
supported that the larger zooplankton, like 
Calanus spp., performed DVM in 
Kongsfjorden during polar night.  
 
To investigate the spectral characteristics 
of the eyes of different organisms, and thus 
their potential to detect irradiance in a 
low-light environment, the eyes of live 
specimens of different copepod and 
amphipod species were characterised using 
a hyperspectral imager. The spectral 
properties of the eyes were found to match 
the light climate of their habitats, sympagic 
and shallow-living pelagic species probably 
absorbing in blue and some in green 
wavebands, while deeper-living pelagic and 
hyperbenthic species absorbed mainly in 
blue. The sensitivity to ambient 
wavelengths may be part of the 
explanation to how organisms can stay 
active during the polar night, when 
ambient irradiance is very limited.  
 
Calanus spp. is a genus highly important to 
the Arctic marine ecosystem, and it is one 
of the taxa suggested to contribute to the 
activity observed during the polar night. It 
was therefore selected for studies of their 
potential response to extremely low 
irradiance levels. An experimental setup 
was developed to investigate the 
phototactic behaviour (behavioural 
response to irradiance) of Calanus spp., and 
laboratory cultured C. finmarchicus were 
investigated in the first study. Using a 
white light stimulus, the lowest irradiance 
levels eliciting a phototactic response were 
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in the range of 1-10 10-6 μmol photons m-2 
s-1. This irradiance level is a minute 
fraction compared to the irradiance in 
periods with daylight, e.g. at mid-day 
during summer the irradiance is in the 
range of 103 μmol photons m-2 s-1. Using 
parameters from spring phytoplankton 
bloom conditions, when attenuation of 
light is high, the irradiance threshold levels 
for C. finmarchicus were estimated to 
correspond to 48-57 m depth in a fjord 
(Trondheimsfjorden) and 158-186 m in 
open ocean (Norwegian Sea), which 
matched with reported depth ranges of 
natural C. finmarchicus populations.  
 
Finally, using the same experimental setup 
as above, the phototactic behaviour of 
Calanus spp. sampled during polar night 
was investigated, to start revealing the 
visual capabilities of polar night acclimated 
organisms. Different wavebands of visible 
light were used, thus also investigating the 
spectral sensitivity of Calanus spp. The 
copepods displayed negative phototaxis, 

and showed highest sensitivity towards blue 
and green wavebands. The lowest 
irradiance levels eliciting a phototactic 
response in these wavebands were in the 
range of 0.3-4 10-6 μmol photons m-2 s-1, 
and for the red waveband, the 
corresponding levels were about three 
orders of magnitude higher. The lower 
sensitivity to red suggests that Calanus spp. 
are adapted to the blue and green light 
climate of oceans and coastal areas, 
respectively. Correlating the lowest 
threshold level for response with 
estimations of polar night irradiance with 
depth, it was suggested that Calanus spp. 
may respond to irradiance from the night 
sky down to approximately 40-50 m, 
moonlight to 100-140 m, and aurora 
borealis down to 60-100 m depth. Thus, 
irradiance may be the proximate cue for 
the observed DVM patterns, and it was 
suggested that the background irradiance 
from the sun, moonlight, as well as aurora 
affect the pelagic ecosystem during the 
polar night.  
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Introduction  

Background 
The Arctic has been an area of interest for 
centuries, starting with the exploration of 
the region, and continuing with exploiting 
resources, like whaling, hunting, and coal 
mining. Today the Arctic is an indicator 
area for global climate changes, and there 
is also increasing interest and activity 
regarding fossil fuels, minerals, fisheries, 
tourism, and new transport routes. There is 
a strong interest for basic natural science 
research, both due to the mentioned 
activities and for the basic science itself. 
Development of new methods and 
information retrieval is highly needed for 
decision-making and a sound nature 
management in the Arctic. Thus, there is a 
need for knowledge about the Arctic 
ecosystems, both for mapping them as well 
as revealing the secrets of how they 
function, but also for monitoring over time 
as the Arctic changes.  
Most research in the Arctic has been 
conducted during the time of year with 
daylight (spring, summer, and autumn). 
Little work has been done during the dark 
winter season, the polar night, mainly due 
to logistical problems. Outdoors activities 
are challenging because of the darkness, 
low temperatures and harsh weather. Also, 
and partly due to the absence of data, it 
was for a long time assumed that the Arctic 
marine ecosystems were “shut down” and 
in some kind of dormancy through the 
polar night because of the lack of sunlight 
to fuel the ecosystem (Piepenburg 2005; 
Smetacek and Nicol 2005; Berge et al. 
2009). In the pelagic system, for instance, 
copepod populations have been shown to 
migrate to great depths, entering a resting 
state (diapause), over the winter (e.g. Falk-
Petersen et al. 2009).  
Over the last years, the interest for the 
biological activity in the polar night has 
grown. Recent studies show that part of the 
copepod community is still active in the 
upper parts of the water column in Arctic 

and sub-Arctic areas during winter (Sasaki 
et al. 2001; Sato et al. 2002; Berge et al. 
2009; Fort et al. 2010). Amphipods are 
actively feeding (Kraft et al. 2013), and 
benthic and littoral organisms, as well as 
seabirds, are observed to be active 
(Weslawski et al. 1991; Kuklinski et al. 
2013; Paper I). Thus, the conventional 
paradigm of a “quiet” Arctic marine 
environment during polar night is about to 
be challenged, and with this, many 
interesting questions about the biology of 
the species present in the polar night are 
raised.  
As the lives of many marine species largely 
rely on vision, there are very specific 
requirements to their visual capabilities 
and sensitivity to irradiance, which are 
related to their habitat. Irradiance is 
defined as the power of electromagnetic 
radiation (light) per unit area and time at 
400-700 nm, which is the spectral range of 
light perceived by most marine organisms. 
The light climate (intensity, spectral 
composition, and amplitude) in surface 
waters during polar night is very different 
from that during times with daylight, and 
may be comparable to that of far deeper 
water. For marine organisms, high 
sensitivity to irradiance, and eye pigments 
that can absorb the wavebands available, is 
thus needed to remain active during the 
polar night.  
 

Vision and light climate in the 

marine environment 
The eyes of marine animals are commonly 
highly adapted to their low-light 
environment (e.g. Warrant and Locket 
2004), as a result of evolutionary arms 
races between e.g. predators and prey. 
Prey need to have a vision adapted to the 
ambient irradiance in order to avoid their 
visual predators, and a sufficient visual 
sensitivity to enable their descent to depths 
below their predators’ limit for visually 
hunting (e.g. Zaret and Suffern 1976; Hays 
2003). In this respect, both the sensitivity to 
absolute irradiance, as well as the spectral 
sensitivity, should be considered. The 
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depth at which an organism is able to see 
the downwelling irradiance is governed by 
these two factors, as the intensity decreases 
and the waveband of the available 
irradiance gets narrower with depth. The 
properties of the irradiance at different 
depths depend on the inherent optical 
properties of the water and its constituents. 
In clear oceanic waters, the blue 
wavebands penetrates deepest, as the 
vertical diffuse attenuation coefficient 
(K( )) for pure water is smallest for blue 

light (Fig. 1; e.g. Jerlov et al. 1968; 
Sakshaug et al. 2009). In coastal areas, the 
concentrations of chlorophyll a (Chla) and 
cDOM (coloured dissolved organic matter) 
are higher, and due to the light absorbing 
properties of these substances, the K( ) 

generally increases. The spectral 
absorption of Chla and cDOM also causes 
K( ) to shift and become lowest in green, 

making coastal waters appear green (Fig 1).  
In addition to the downwelling irradiance, 
many marine organisms produce light 
themselves. This is called bioluminescence, 
and occurs among most phyla and for a 

variety of purposes (e.g. Haddock et al. 
2010; Widder 2010). The bioluminescence 
emission maxima (the wavelength with 
peak intensity; max) for most species are 

within the range from 450 nm to 490 nm, 
pelagic species emitting mostly in blue, 
while for benthic species there is a shift in 

max towards green (Herring 1983). Most 

marine organisms will generally need 
highest spectral sensitivity within the range 
of blue and green light, as both 
downwelling irradiance and 
bioluminescence falls within this 
waveband. More accurately, the peak 
spectral sensitivities of different species is 
expected to vary according to the ambient 
light of their habitat, as well as the nature 
of the visual scene; whether it is diffuse 
downwelling light (extended source) or 
bioluminescence (point source; e.g. 
Warrant and Locket 2004). 
In the polar night, the intensity of the 
downwelling irradiance is far lower than 
during times with daylight, and most of the 
polar night period is perceived as 
continuous darkness by the human eye. 

 
Fig 1. Vertical diffuse attenuation coefficients for different wavelengths for clearest ocean water 

(left image; mainly Sargasso Sea observations) and coastal water (right image; example from 
clearest Trondheimsfjord water; Chla concentration <0.05 mg m–3). Figure from Sakshaug et al. 
(2009), with permission. 
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The main light sources are background 
solar irradiance, moonlight, and starlight 
(night sky irradiance). The background 
solar irradiance has a 24 hour cycle, and in 
addition it varies with the time of year, the 
daytime irradiance varying with the solar 
elevation angle.  The moonlight has an 
approximate 25 hour daily cycle as well as 
the 29 days lunar cycle. These light sources 
have spectral properties resembling that of 
sunlight, creating a light field of 
downwelling irradiance with depth that is 
relatively similar to that during times of 
year with sunlight (Fig. 1), but with lower 
intensity and thus a more limited depth 
range. In addition, aurora borealis 
(northern light) is frequently occurring in 
the areas experiencing polar night. The 
most common is the green aurora, which 

has an emission line at 557.7 nm. The K( ) 
in this waveband is relatively low, 
particularly in coastal water, so the aurora 
might potentially be visible to organisms at 
some depth. The aurora has a 24 hour 
cycle due to the Earth’s rotation under the 
aurora oval. Thus, there is a periodicity in 
the polar night irradiance, which 
potentially may influence high-latitude 
ecosystems.  
Bioluminescence has to my knowledge not 
previously been investigated during the 
high Arctic polar night, but was 
documented for the first time in Paper I. 
Bioluminescence is ubiquitous, and has a 
variety of functions, like attracting prey, 
intraspecific communication, and 
“counter-illumination” (e.g.  Haddock et 
al. 2010). At times with very limited 
external (downwelling) light, it is 
reasonable to believe that bioluminescence 
may significantly contribute to the total 
light budget of an ecosystem (Paper I), and 
in this respect, it may be an important 
feature of the Arctic ecosystem during 
polar night.  
 

The genus Calanus 

Calanus spp. is a genus highly important to 
the Arctic marine ecosystem (e.g. Falk-
Petersen et al. 2009, Berge et al. 2012), and 

it is one of the taxa suggested to contribute 
to the activity observed during the polar 
night (Sato et al. 2002; Berge et al. 2009). 
On this basis it was selected for this thesis 
for closer investigations of the influence of 
downwelling irradiance (Papers III, IV, 
and V). In the Arctic, the genus mainly 
comprises the species C. finmarchicus, C. 
glacialis, and C. hyperboreus (Fig. 2). Calanus 
spp. are considered to be primarily 
herbivores, but do also feed on ciliates, and 
thus assimilate large amounts of energy 
from primary and secondary production 
(e.g. Vadstein 2009; Wold 2012). The 
energy taken up during spring bloom is 
stored as lipids in an oil sac, making 
Calanus spp. energy rich prey items (e.g. 
Sargent and Falk-Petersen 1988; Lee et al. 
2006; Falk-Petersen et al. 2009). The 
biomass of Calanus spp. is very large, 
constituting over 90 % of the zooplankton 
biomass in some areas (e.g. Blachowiak-
Samolyk et al. 2008). They are the main 
food of a variety of predators, including 
other copepods, amphipods, gelatinous 
zooplankton, fish, and whales, and are thus 
a key link in the food web, transferring 
large amounts of energy from 
phytoplankton to higher trophic levels (e.g. 
Falk-Petersen et al. 1990; Auel and Werner 
2003; Baumgartner and Mate 2003; 
Karnovsky et al. 2003). Calanus spp., being 
highly desirable prey organisms, have 
evolved different strategies for reducing the 
predation risk and thus increasing their 
fitness. One important strategy, which is 
common among a variety of planktonic 
organisms, is diel vertical migration (DVM; 
e.g. Ringelberg 1995; 2010). The most 
common migration pattern is nocturnal 
DVM. This involves an ascent to surface 
waters, where food organisms are 
abundant, at sunset to feed in the darkness. 
At sunrise, the zooplankton descend to 
deeper waters and stay there during the 
time of daylight to hide from visual 
predators. The ultimate cause for DVM is 
considered to be the optimising of feeding 
at the same time as minimising the risk of 
being predated (the predator evasion 
hypothesis; e.g. Lampert 1989; Hays 2003). 
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The primary proximate cause of DVM is 
considered to be the use of light 
(irradiance) as an exogenous cue (e.g. 
Cohen and Forward 2009). Light 
perception is thus an important feature for 
Calanus spp.  
DVM has been documented for Calanus 
spp. in the Arctic (e.g. Dale and Kaartvedt 
2000; Fortier et al. 2001; Cottier et al. 
2006; Rabindranath et al. 2011), and 
typical migration depths are 100-150 m. 
These investigations were performed 
during a time of year with daylight, when 
light cues obviously may be the proximate 
factor controlling the DVM behaviour. In 
a recent study Berge et al. (2009) found, 
using acoustic backscatter, a DVM signal 
during the darkest part of the year in the 
high Arctic. The diel variation in 
irradiance is very small at these latitudes 
during the polar night, and this study 
opened for the possibility of irradiance 
governing the observed DVM behaviour in 

zooplankton. It was suggested that Calanus 
spp. were one of the taxa contributing to 
the vertical displacement signal. The 
possibility of irradiance governing DVM 
even during the dark polar night is new 
insight and it is important to study this 
further to increase our knowledge of 
ecological processes in the Arctic marine 
ecosystem.  
 

Objectives 

The topic for this PhD work was 
investigating the role of irradiance in the 
Arctic marine (primarily pelagic) ecosystem 
during the polar night.  
The first part investigates bioluminescence 
and DVM during the polar night. The 
objectives were to document and 
characterise, if present, bioluminescence 
and DVM patterns, as well as to investigate 
the contributing taxa (Papers I and II).  

Fig 2. The three Calanus species that are common in the Arctic, from top to bottom: C. hyperboreus, 

C. glacialis, and C. finmarchicus. Figure from Berge et al. (2012), with permission. 



 15  15 

The second topic was the spectral 
sensitivity of crustaceans from different 
oceanic habitats. Hyperspectral imaging 
was used as a new method for investigating 
the spectral characteristics of the eye of 
copepods and amphipods, and the aim was 
to compare these characteristics to the 
habitat of the specific taxa, as well as to 
evaluate hyperspectral imaging as a tool for 
this kind of investigation (Paper III).  
The third part of this work investigated the 
phototactic behaviour of Calanus spp. Using 
a newly developed experimental setup, the 
aim was to determine threshold levels for 
response of lab cultured C. finmarchicus to 
irradiance in the visible range, and relate 
the results to the irradiance in their natural 
habitat (Paper IV). Then, using Calanus 
spp. sampled in the high Arctic during 

polar night, the irradiance thresholds for 
response to different wavebands of visible 
light were determined, thus also 
investigating the spectral sensitivity of 
Calanus spp. The results were related to the 
light sources present in the polar night, and 
the final aim was to evaluate the possibility 
of irradiance affecting the observed DVM 
behaviour of Calanus spp. during the 
darkest part of the year (Paper V).  
 

Methods 

Study area 

The field work for this study was 
conducted in the high Arctic archipelago of 
Svalbard (78-81°N; Fig. 3). The region is 

influenced by both Atlantic and Arctic 

Fig 3. A) Sampling by SCUBA diving in Kongsfjorden, January 2010. Photo: Sanna Majaneva. B) 

Field work in Adventfjorden, sampling with a WP3 plankton net, in January 2011. Photo: Cecilie 
Miljeteig. C) Map over the Svalbard archipelago with field work locations indicated. Kongsfjorden 
(green circle): field work for Papers I, II, and III. Kongsfjordrenna (yellow circle) and ice edge (red 
circle): field work for Paper III. Adventfjorden (blue circle): field work for Paper V. The map was 
obtained from Jakobsson et al. (2012).  
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water masses, giving a mix of species 
originating in Atlantic (C. finmarchicus, 
Themisto abyssorum) and Arctic areas (C. 
glacialis, Themisto libellula) (e.g. Hirche 1991; 
Unstad and Tande 1991; Dalpadado et al. 
1994; Hop et al. 2006). The polar night at 
these latitudes lasts for around four 
months, from November to February.  
 

Autonomous Underwater Vehicle 

(AUV) 
AUVs are battery-powered vehicles that 
provide continuous spatial sampling of the 
marine environment, using large payloads 
with different scientific sensors. The AUV 
used in this study (Papers I and II) was a 
REMUS-100 (Moline et al. 2005; Fig. 4), 
which is propeller-driven and developed 
for high-resolution surveys in near-shore 
coastal areas. The AUV was fitted with 
different equipment for registering 
environmental variables. The nose cone 
contained a bathyphotometer (BP) 
developed for integration into the AUV 
(Moline et al. 2005). The BP is designed to 
measure bioluminescence, and the 
instrument adapted to the AUV consists of 
a light measuring section and an 
instrument interface section. An impeller 
pump creates a water flow from the nose 
cone water inlet and into a light-measuring 
chamber, at the same time creating 
turbulence that stimulates bioluminescent 
organisms to emit light. A photomultiplier 
tube measures the stimulated 
bioluminescence. Next to the nose cone is 

an Acoustic Doppler Current Profiler 
(ADCP), consisting of four upward- and 
four downward-looking transponder 
beams, operating at 1200 kHz. The ADCP 
was configured to provide relative acoustic 
backscatter as an estimate of scattering 
volume, instead of current velocities, which 
in combination with the frequency makes it 
ideal for studying the distribution of 
zooplankton. Incorporated into the AUV 
are also a fluorometer and a CTD sensor 
(Moline et al. 2005). The AUV was also 
equipped with cylindrical plankton nets (20 
μm mesh size), which were fitted to each of 

the two exhausts of the BP (Moline et al. 
2009), capturing all organisms passing 
through the light-measuring chamber.  
The BP was also detached from the AUV 
and used for continuous observation at a 
single location (2 m depth) to investigate 
possible variations in bioluminescence 
activity over time.  
 

Sampling marine organisms 

Plankton nets used for zooplankton 
sampling consist of a cone-shaped net that 
has a cod-end in the narrow end to collect 
the organisms. Vertical net hauls were 
performed with plankton nets according to 
WP2 (0.25 m2 opening, 180 μm mesh size; 

Papers I and III) and WP3 (1 m2 opening, 
500 μm mesh size; Paper V) standards. 

SCUBA divers used both hand held nets as 
well as an underwater electric suction 
sampler (Lønne 1988) for capturing larger 
zooplankton as well as sympagic fauna. For 

Fig 4. The REMUS-100 AUV. The green section with red circles is the ADCP (upward- and 
downward-looking). The nose cone contains the BP, and the organisms passing through the BP 

detector are captured by the attached plankton nets. Photo: Geir Johnsen. 
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capturing deep-sea scavenging amphipods, 
baited traps with acoustic releasers were 
deployed on the seafloor for 4-6 days 
(Thoen et al. 2010).  
 

Hyperspectral imaging 

Over the last years hyperspectral imaging 
has been used for remote sensing of objects 
of interest (OOI) from platforms such as 
airplanes and balloons. It has been used for 
e.g., mapping of coral reefs, seagrass, kelp 
forests, and distribution of 
phytoplankton/Chla (e.g. Andréfouët et al. 
2003, 2004; Dierssen et al. 2003; Volent et 
al. 2007). More recently, it has been used 
on smaller scales, like underwater mapping 
of corals and sponges (Pettersen et al. 
submitted), and also mounted on a 
stereomicroscope, looking at the spectral 
properties of micro- and macroalgae 

(Volent et al. 2009) and copepods and 
amphipods (Paper III).  
The hyperspectral imager (HI) captures 
slices ( x) where each slice is an image with 

hyperspectral profiles (Fig. 5). x is the 

spatial resolution in the direction of 
movement, dependent on the entrance slit 
width. The hyperspectral image scan is 
saved in video format, and computer 
software assembles the images into a 
spectral image cube. This is called the push 
broom technique. The HI used (Sigernes et 
al. 2000) was designed with a front focusing 
lens (L1), entrance slit (S) with the slit 
direction perpendicular to the direction of 
movement, collector lens (L2), grating and 
prism (grism; P), and a silicon charge 
coupled device imaging detector (CCD) 
with a camera lens (L3). When mounting 
the HI a stereomicroscope, the imager is 
stationary, so a moving table is used to 

Fig 5. Principle of hyperspectral imaging: Left image illustrates the capturing and stacking of the 

hyperspectral profiles into a spectral image cube. The configuration of the hyperspectral imager in 
the middle shows L1 = front lens, S = entrance slit, L2 = collector lens, P = grism, and L3 = 

camera lens and CCD (imaging detector). x is the spatial resolution in the moving direction 
dependent of the entrance slit width. Right image shows the configuration of the moving table, 
stereomicroscope, and the hyperspectral imager. Figure from Volent et al. (2009), with permission.  
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move the OOI past the imager. After 
assembling the spectral image cube, 
monochromatic images of the OOI can be 
created, or reflectance spectra from the 
areas of interest can be extracted (Volent et 
al. 2007, 2009). As reflectance is the 
inverse of absorption, the spectral 
reflectance of the OOI also gives 
information about its spectral absorption 
characteristics. Looking at the bodies of 
crustaceans or other organisms, this 
information is useful regarding e.g. 
camouflage. In this work, the eyes of 
different amphipods and copepods were 
characterised in vivo using the HI, and the 
relative spectral reflectance (R( )), and thus 

the potential absorption, was related to the 

ambient light climate in the habitats of the 
different taxa.  
 

Experimental setup for light 

responses of Calanus spp.  
Hyperspectral imaging gives indications on 
the spectral sensitivity of the species. 
However, to assess the irradiance that 
elicits a signal reaching the brain (the light 
actually available for the individuals) as 
well as the sensory processing, behavioural 
experiments are needed. With behavioural 
experiments the absolute irradiance 
thresholds for response can also be 
investigated, which is of interest for low-
light environments. An experimental setup 

Fig. 6. A schematic overview of the experimental setup used to detect phototactic behaviour in 

Calanus finmarchicus from above (A) and the side (B) and a photograph of the experimental setup 
from the side (C). The experimental setup consisted of a camera (1), an aquarium (2) with a 
projection area in the middle (shaded area; partitioned by internal walls) fitted to the width of the 
light stimulus (3). The light stimulus unit consisted of a computer controlled filter wheel and a LED. 
On the table legs two near-infrared lamps (4) were attached with adjustable brackets. Figure from 
Paper IV.  
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was developed to investigate the 
behavioural response of Calanus spp. to 
irradiance (Fig. 6). The individuals were 
kept in an aquarium, illuminated by near-
infrared light (which did not elicit any 
response in the copepods), and the 
movements of the copepods were recorded 
with a video camera. The light stimulus 
unit consisted of a LED (light-emitting 
diode) and a filter wheel with neutral 
density filters to adjust the irradiance 
(Papers IV and V). Experiments were 
firstly performed with C. finmarchicus from a 
lab culture originating from individuals 
caught in Trondheimsfjorden 
(SINTEF/NTNU Centre of Fisheries and 
Aquaculture, Trondheim, Norway; 
Hansen et al. 2007). The phototactic 
responses of copepodite stage V (CV) as 
well as adult males and females (copepodite 
stage CVI; CVIm and CVIf) were 
investigated using a white LED. The 
threshold irradiance eliciting a response 
was then related to the depth of 
corresponding irradiance in 
Trondheimsfjorden as well as in open 
ocean (station in the Norwegian Sea) 
during a time of spring bloom.  
Secondly, we investigated the light 
responses of Calanus spp. (C. finmarchicus 
and C. glacialis; using the available 
developmental stages) sampled during the 
polar night. Due to transporting the 
equipment to Svalbard, the experimental 
setup was modified, using a smaller 
aquarium and a fitted table, as well as a 
different set of N-IR lamps (Paper V). 
Initially, we investigated potential diel 
variations in the phototactic response by 
comparing experiments run during 
daytime and during night-time. Then, we 
focused on the spectral sensitivity of Calanus 
spp. Experiments were performed with 
stages CIV and CV as well as CVIm and 
CVIf, using different wavebands of visible 
light (white, blue, green, aurora green, and 
red). We investigated the threshold 
irradiance levels eliciting a significant 
phototactic response to the different 
wavebands. The results from the 
behavioural experiments were then related 

to the available irradiance in the polar 
night.  
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Results and discussion 
 

Bioluminescence in the pelagic 
ecosystem during the polar night 
(Papers I and II) 
Using a REMUS-100 AUV equipped with 
a BP, the bioluminescence potential and 
acoustic backscatter (from the ADCP) at 
15, 45, and 75 m were sampled during day 
and night in January 2010. 
Bioluminescence was detected throughout 
the water column, and the amount of 
bioluminescence (photons L-1) was higher 
at depth during daytime and in surface 
(<45 m) during night-time (Fig. 1d in 
Paper I). The mean bioluminescence 
intensity per flash (photons flash-1) at the 
different depths was also different from day 
to night, the highest intensity found at 75 
m during day and at 15 m during night 
(Table 1). This indicates that the largest 
organisms, having the most intense flashes 
(Moline et al. 2009), migrated to surface 
waters during night and stayed deeper 
during day. Variability in bioluminescence 
from day to night may, however, be a 
result of circadian rhythms in the 
bioluminescence activity instead of diel 
migrations (Batchelder et al. 1992). We 
therefore investigated bioluminescence 
over 18 hours in a shallow bay (max depth 
5 m), where migrations would be restricted, 

and found no significant diel variations 
(Fig. 2 in Paper I). 
The estimates of relative backscatter (10-m 
swath around the AUV) showed the same 
pattern as the bioluminescence data at the 
different depths. The differences in Sv 
(relative backscatter coefficient) are shown 
in Table 1, the backscatter being 
significantly stronger at 40-50 m and 10-20 
m during night. 
For the daytime deployments, cylindrical 
plankton nets attached to the BP exhaust 
captured all organisms passing through the 
BP at each of the depths. Enumerations 
showed highest concentrations of 
organisms at 45 m, the main taxa being 
copepod nauplii and eggs, as well as 
tintinnid ciliates (Table 3 in Paper I). 
Other main contributors were the 
dinoflagellates Ceratium spp. and 
Protoperidinium spp., as well as the copepods 
Microcalanus spp., Pseudocalanus spp, and 
Oithona spp. The taxa contributing to the 
measured bioluminescence were 
dinoflagellates, mainly Protoperidinium spp., 
copepod nauplii (e.g. Metridia longa nauplii; 
Lapota et al. 1988), the copepod Oncaea 

borealis, appendicularians, and possibly 
krill. The highest concentration of known 
bioluminescent taxa was at 45 m (slightly 
higher than at 75 m), which was not 
consistent with the BP data with highest 
bioluminescence intensity at 75 m. 
However, copepod nauplii probably consist 
of both luminescent (Metridia spp.) and 

Table 1. Mean bioluminescence intensity (photons) per flash (± SE) surveyed by the AUV at the 

three different depths during the daytime and night-time deployments (LT is local time). Table 
from Paper I. 

 
Significant differences were found between depths using Mann–Whitney (a P = 0.016, n = 1,030; b 

P = 0.025, n = 286; c P = 0.022, n = 126), and additionally, the differences in the mean acoustic 
backscatter coefficient (Sv) between day and night are shown for each depth. The differences in Sv 
between day and night were significant (Mann–Whitney, P < 0.001) at all depths.  

 

Depth (m) Mean intensity/flash 
( 108) daytime 

(10:30-14:25 LT) 

Mean intensity/flash 
( 108) night-time 

(21:30-22:30 LT) 

Mean Sv difference 
(day-night) 

15 9 ± 2 a 160 ± 142 b - 16 

45 7 ± 2 8 ± 3 - 35 

75 18 ± 6 ac 4 ± 1bc 17 
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non-luminescent (e.g. Calanus spp.) taxa, 
and the distribution of these with depth is 
not known. The highest concentration of 
bioluminescent nauplii may have been at 
75 m, which would explain the observed 
bioluminescence pattern.  
The plankton community sampled at the 
same depth intervals as the AUV, using a 
WP2 plankton net, showed the same 
pattern as the bioluminescence and 
acoustic backscatter data. There was 
increased abundance above 60 m of the 
majority of the most abundant taxa during 
night, e.g., Calanus spp., Microcalanus spp., 

Pseudocalanus spp, Oithona atlantica, O. similis, 
and Thysanoessa spp. (Table 2). Based on 
bioluminescence, acoustic backscatter, and 
plankton net haul data, we concluded that 
the diel variation in plankton distribution 
probably was due to DVM performed by 
the larger zooplankton.  
Paper II re-investigated this data set, 
looking at the bioluminescence flash 
kinetics as a means of delineating the 
distribution of the planktonic community. 
The flash kinetics parameters used were 
the maximum flash intensity, the mean 
bioluminescence intensity, the time to 

Table 2. Concentrations of the plankton captured by the 180 μm WP2 plankton net during the day 

and at night for depth intervals 30–0, 60–30 and 90–60 m (data missing for 90–60 m at night). 
Asterisks indicate organisms known to be bioluminescent. Table from Paper I.  

Taxa Depth

(m)

ind./m3

(day)

ind./m3

(night)

Taxa Depth

(m)

ind./m3

(day)

ind./m3

(night)

Calanus finmarchicus 0-30 50 82 Heterorhabdus norvegicus* 0–30 \1 \1

30–60 41 148 30-60 \1 6

60–90 89 – 60–90 4 –

Calanus glacialis 0–30 4 10 Harpacticus chelifer 0–30 9 50

30–60 31 31 30–60 54 30

60–90 147 – 60–90 \1 –

Calanus hyperboreus 0–30 \1 1 Harpacticoida spp. 0–30 2 \1

30–60 \1 \1 30–60 11 \1

60–90 4 – 60–90 \1

Pseudocalanus spp. 0–30 3,100 10,300 Oithona atlantica 0–30 388 725

30–60 \1 16,820 30–60 \1 555

60–90 775 – 60–90 \1 –

Microcalanus spp. 0–30 563 2,300 Oithona similis 0–30 400 825

30–60 163 1,900 30–60 \1 1,335

60–90 63 – 60–90 131 –

Metridia lucens* 0–30 3 17 Appendicularia* 0–30 17 15

30–60 4 18 30–60 3 3

60–90 6 – 60–90 96 –

Metridia longa* 0–30 \1 \1 Limacina helicina 0–30 2 \1

30–60 \1 3 30–60 \1 1

60–90 11 – 60–90 12 –

Acartia longiremis 0–30 175 375 Sagitta elegans 0–30 \1 2

30–60 \1 385 30–60 5 11

60–90 \1 – 60–90 12 –

Paraeuchaeta norvegica 0–30 \1 \1 Eukrohnia hamata 0–30 4 30

30–60 1 \1 30–60 2 21

60–90 \1 – 60–90 11 –

Diastylis lucifera* 0–30 \1 \1 Thysanoessa longicaudata* 0–30 \1 2

30–60 1 \1 30–60 3 7

60–90 \1 – 60–90 2 –

Bradyidius similis 0–30 \1 1 Thysanoessa inermis* 0–30 \1 \1

30–60 \1 3 30–60 \1 22

60–90 6 – 60–90 \1 –

Oncaea borealis* 0–30 12 \1

30–60 51 200

60–90 \1 –
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reach maximum intensity, and the 
cumulative sum of bioluminescence until 
the flash reached its maximum intensity 
(see Table 3). As different taxa display 
different flash characteristics, the 
bioluminescent part of the planktonic 
communities may be characterised on the 
basis of the parameters (Moline et al. 
2009). When using an AUV, this may be 
done relatively efficiently, covering large 
areas and revealing horizontal as well as 
vertical distribution patterns. The 
bioluminescence observations were 
analysed and assigned to 3 groups: one 
dinoflagellate group (G1), and two 
zooplankton groups (small and large 
zooplankton; G2 and G3; Table 3). 
Investigating the vertical distribution of the 
three groups, there was a homogeneous 
distribution of dinoflagellates, and a 
heterogeneous distribution of the two 
zooplankton groups. The proportions of 
group G3 was higher at 75 m during day 
and at 15 m during night.  
Bioluminescence has to our knowledge not 
earlier been documented in these latitudes 
and time of year. As the amount of 
downwelling light is very limited, 
bioluminescence may be a significant part 
of the total light budget of the ecosystem. 
In this study, the diel variation in 

bioluminescence also provided 
circumstantial evidence for DVM.  
Berge et al. (2009) found, using acoustic 
backscatter, evidence for DVM in the 
Arctic during the polar night, and the same 
has been documented in the Antarctic 
(Cisewski et al. 2010). The results from 
Papers I and II support that DVM occurs 
in the planktonic community, and suggest 
that mainly larger zooplankton, e.g. Calanus 
spp., account for the migrations. These 
findings raise questions about the 
possibility of DVM being governed by 
downwelling irradiance, even though the 
irradiance amplitude through day and 
night is too small for the human eye to 
detect. The ability to detect irradiance at 
depth would depend on a high sensitivity 
to low-intensity irradiance, as well as a 
spectral sensitivity adapted to the 
waveband of the ambient light.  
 

The spectral sensitivities of 
crustaceans, investigated by 

hyperspectral imaging (Paper III) 
Organisms tend to have spectral 
sensitivities matched to the light climate of 
their habitats, which is important as it 
enables optimising of different behaviour, 
like feeding and predator avoidance. Using 
a HI, we measured the relative reflectance 

Table 3. Centroid vectors of the four parameters used to assign observations into 3 groupings 

using K-means cluster analysis, including maximum bioluminescence (BLmax, photons s-1), mean 
bioluminescence (BLmean, photons s-1), time to reach maximum bioluminescence (Tmax, sec.) and the 
sum of bioluminescence until the maximum is reached ( max, photons). Two values are presented 

under each depth and time of day. The first (left) is the percent of flashes per liter (%F L-1) 
contributed by each grouping (G1, G2, and G3) at each depth for either daytime (DT) or nighttime 
(NT). The second number is the percent of flashes per liter (%F L-1) contributed by each group at 
all three depths for each time of day. The bold numbers for G3 illustrate the differences in the 
depth distribution of that group for DT versus NT, with higher percentages at 75 m during DT 
and 15 m at NT. Finally, the number of individual flashes observed for each group is also shown. 
Table from Paper II.  

 

Cluster Flash Parameters   %F L-1 15m   %F L-1 45m   %F L-1 75m   

Grouping BLmax Blmean Tmax max DT NT   DT NT   DT NT # of obs 

G1 3,24E+08 1,59E+09 0,051 8,39E+09  67|25 63|23  71|37 64|27  63|38 73|48 1308 

G2 6,89E+09 2,84E+09 0,217 4,69E+10  29|25 29|29  26|32 33|34  30|43 23|37 546 

G3 1,62E+11 4,70E+10 0,163 1,00E+12   4|17 8|46   3|22 3|19   7|61 4|35 79 
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of the eyes of the sympagic (sea ice-
associated) amphipod Gammarus wilkitzkii, 

the pelagic amphipods Themisto libellula and 
T. abyssorum, the pelagic copepods Calanus 

 
Fig 7. Reflectance (R( )) spectra (±SD) (normalised to 600 nm), derived by hyperspectral imaging, 

from the eyes of copepods and amphipods, related to habitat. For Calanus spp. and E. gryllus, body 
R( ) is also shown. For Anonyx sp., body R( ) spectra are shown in a separate figure. Data from Paper 

III. 
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spp., and the hyperbenthic amphipods 
Eurythenes gryllus and Anonyx sp. As 
reflectance is the inverse of absorption, we 
assumed that the reflectance spectra gave 
indications on the absorption 
characteristics of the eye, and thus the 
spectral sensitivity of each taxon.  
The spectral properties of the eye of the 
different species matched well with their 
different habitats. G. wilkitzkii eyes reflected 
increasingly from green to red wavebands, 
indicating major absorption in blue and 
some in the green waveband (Fig. 7), being 
adapted to the under-ice habitat. G. 
wilkitzkii are assumed to feed using 
mechanosensory methods, thus not using 
vision for foraging (e.g. Werner 1997; 
Lønne and Gulliksen 1991), but vision may 
have other functions, like detecting 
predators in the surrounding environment 
and thus omitting them.  
Calanus spp. reflected increasingly from 
green towards red, probably absorbing in 
blue and green. Calanus spp. is very 
abundant in both open ocean and coastal 
areas, where the light field is 
predominantly blue and green, 
respectively. For Calanus spp. it is 
important to have a well-matched spectral 
sensitivity, as well as a generally high 
sensitivity to irradiance, to be able to 
perform DVM to depths where they 
become unavailable to visual predators. 
Themisto spp. are examples of visual 
predators that hunt Calanus spp. and other 
pelagic organisms (Scott et al. 1999; Auel 
et al. 2002; Dalpadado et al. 2008; Kraft et 
al. 2013), and thus need the same type of 
sensitivity. T. libellula eyes had lowest 
reflectance in the blue wavebands, and 
slightly increasing reflectance from green 
towards red (Fig. 7), thus probably 
absorbing over a wide waveband. This is 
consistent with its distribution in the upper 
water layers (Dalpadado et al. 2001; 
Dalpadado 2002), where wider wavebands 
of irradiance are available. The eye 
reflectance of the deeper-dwelling T. 
abyssorum increased steeply from 500 nm, 
indicating absorption mainly in blue. It 
thus seemed to be more blue-sensitive than 

T. libellula, which is consistent with 
adaptations to the blue light field in deeper 
water. The spectral sensitivity of pelagic 
species may be part of the explanation of 
the ability to remain active, feed, and 
perform DVM during the Arctic polar 
night (Berge et al. 2009; Kraft et al. 2013; 
Papers I, II and V).  
The hyperbenthic amphipod E. gryllus had 
eye reflectance resembling that of T. 
abyssorum, probably absorbing mainly in 
blue wavebands (Fig. 7). Anonyx sp. eye 
reflectance (older stages) was more red-
shifted, probably additionally absorbing 
some in green. The eye of E. gryllus has 
structural adaptations to enhance the light-
gathering abilities (Hallberg et al. 1980), 
and the same might be suggested for Anonyx 
sp. due to the similarities in ecology as well 
as the relatedness to E. gryllus. This study 
thus supports that E. gryllus, and probably 
also Anonyx sp. (the species in this study has 
not yet been described; Thoen et al. 2010), 
are adapted to the deep-sea light climate, 
where there is very little or no downwelling 
irradiance, the main light source being 
bioluminescence.  
We concluded that the eyes of the 
organisms investigated had spectral 
characteristics that matched their habitat, 
the deep-living species absorbing primarily 
in the blue waveband, while shallower-
living additionally absorbed in green. 
Hyperspectral imaging was judged to be a 
relatively simple method for retrieving 
information about the spectral properties 
of different organisms (Johnsen et al. 2012), 
as it is suitable for use in the field, and by 
mounting the HI on a stereomicroscope, 
even small organisms can be investigated. 
Hyperspectral imaging may thus be a 
good, non-invasive method for 
investigating the spectral properties of 
living marine organisms compared to the 
traditional, more time-consuming and 
complicated methods like behavioural 
studies and electrophysiology. 
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Phototactic behaviour of Calanus 
finmarchicus (Paper IV) 
The DVM behaviour of Calanus spp. is well 
documented (e.g. Dale and Kaartvedt 
2000; Fortier et al. 2001; Cottier et al. 
2006; Rabindranath et al. 2011), and light 
is considered to be the main proximate cue 

for the migrations (e.g. Cohen and 
Forward 2009). However, the phototactic 
behaviour of Calanus spp. has not 
previously been examined with respect to 
finding the irradiance threshold needed to 
elicit a phototactic response, and regarding 
spectral sensitivity, the only information 

Fig 8. Median distance (± interquartile range) to light source for A) copepodite stage V (CV) B) 

adult females (CVIf) and C) adult males (CVIm) exposed to increasing and decreasing irradiance of 
white light. Dashed lines indicate change in irradiance. The total length of the projection area was 
500 mm. D) A schematic view of the stepwise changes in irradiance related to OD level. Figure 
from Paper IV.  
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available is from studies on other copepod 
species (Stearns and Forward 1984; Cohen 
and Forward 2002) as well as the 
hyperspectral imaging of Calanus spp. eyes 
(Paper III). An experimental setup (Fig. 6) 
was developed for investigating the 
phototactic behaviour of Calanus spp., and 
laboratory cultured C. finmarchicus were 
used for the experiments (Paper IV). The 
experimental setup was designed in the 
horizontal plane in order to separate the 
active, directional phototactic responses 
from the effects of gravitation as well as 
buoyancy. As details of the spectral 
sensitivity of the species were unknown, a 
white LED was used as light stimulus. 
Experiments were performed with stage 
CV as well as CVIf and CVIm. The 
copepods were exposed to stepwise 
increases as well as decreases in irradiance, 
spanning from levels so low that there were 
no phototactic response, to levels beyond 
where clear responses had occurred.  
Stages CV and CVIf displayed negative 
phototaxis, moving away from the light 
stimulus when irradiance increased (Fig. 

8A,B). Negative phototaxis was expected 
because the older developmental stages of 
C. finmarchicus (particularly CV and CVIf) 
perform nocturnal DVM, which involves 
moving away from the increasing 
irradiance at sunrise. CVIm, however, 
displayed positive phototaxis, and the 
response was strong and uniform (Fig. 8C). 
CVIm spend most of their time on mate-
finding, and have been suggested to 
migrate upwards to a specific layer of water 
to search for mates (Hayward 1981; Tsuda 
and Miller 1998), which may account for 
the positive phototaxis. When irradiance 
decreased, there was no clear response at 
any irradiance level, and the individuals 
seemed to disperse randomly rather than 
actively swimming towards the light 
stimulus. Due to the horizontal orientation 
of the setup, the specimens were unable to 
actively swim upward, and the lack of clear 
response with decreasing irradiance may 
indicate that during DVM, some 
gravitational effect is involved in the ascent 
towards surface waters at sunset.  

 
Fig 9. Estimated irradiance (EPAR) plotted against depth for an ocean scenario (Station M, solid 

line) and a fjord scenario (Trondheimsfjorden, Norway, dashed line) at noon during the spring 
bloom. Vertical lines indicate the irradiance thresholds for phototactic response of C. finmarchicus 
(0.99 10-6 and 9.8 10-6 μmol photons m-2 s-1). Figure from Paper IV.  
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The lowest irradiance eliciting a significant 
phototactic behaviour was 9.8 10-6 μmol 

photons m-2 s-1 for CV and CVIf, and 
0.99 10-6 μmol photons m-2 s-1 for CVIm. 

This is within the range of irradiance 
thresholds found for other copepod species, 
e.g. Calanopia americana (blue-green 
irradiance at approximately 0.2 10-6 μmol 

photons m-2 s-1; Cohen and Forward 2005) 
and Acartia tonsa (approximately 0.5 10-6 

μmol photons m-2 s-1; Stearns and Forward 
1984). Regarding predator evasion, 
copepods would be expected to migrate 
deeper than their visual predators can feed 
(Ringelberg 1995). Herring and larval cod 
are known to feed on C. finmarchicus, and 
both were able to feed at irradiance levels 
down to approximately 2 10-5 μmol 

photons m-2 s-1 (Batty et al. 1990; Vollset et 
al. 2011). This is around one order of 
magnitude higher than the threshold 
irradiances for response in C. finmarchicus, 
which supports that C. finmarchicus use 
vision to enable a descent to depths where 
they are unavailable to visual predators.  
Simulations of irradiance changes with 
depth were conducted using input 
parameters from a spring phytoplankton 
bloom scenario, which is the time of year 
with the highest attenuation of light, for an 
ocean scenario (Norwegian Sea) and a 
fjord (Trondheimsfjorden) scenario. The 
threshold irradiances for phototactic 
response correspond to approximate 
depths of 158-186 m in the ocean scenario 
and 48-57 m in the fjord scenario (Fig. 9). 
The results correspond well to observed 
migration depths for C. finmarchicus (e.g. 
Tande 1988; Unstad and Tande 1991; 
Dale and Kaartvedt 2000).  
The results support that Calanus spp. are 
highly sensitive to irradiance and that 
irradiance governs the DVM behaviour. 
As the modelling of light with depth was 
performed using a spring bloom scenario, 
the depths should be regarded as minimum 
depths for detection of irradiance, and 
these copepods may probably respond to 
irradiance far deeper in the water column 
when the optical properties of the water 

are different. During winter in the Arctic, 
for instance, the content of cDOM, Chla, 
and inorganic particles is low, creating a 
low K( ) particularly in the blue waveband 

(Sakshaug et al. 2009). Thus, the water 
transparency is high, and light may 
penetrate deep into the water column. The 
limitations in this area during winter, 
however, are the extent of sea-ice as well as 
the limited irradiance from natural light 
sources.  
 

Phototactic behaviour and 
spectral sensitivity of Calanus 

spp. during the polar night 
(Paper V) 
After investigating the light responses of lab 
cultured C. finmarchicus, we took the 
experimental setup further, looking at the 
responses of high Arctic, polar night-
acclimated Calanus spp. The Calanus spp. 
were negatively phototactic, moving away 
from the light stimulus as the irradiance 
increased (Fig. 10). When investigating the 
phototactic response over 24 hours, we did 
not detect significant changes in response 
during daytime compared to night-time 
(Table 3 in Paper V). For the threshold 
level experiments, using five different 
wavebands of visible light, there were 
significant results for at least one waveband 
for each stage (Table 4). The number of 
replicates was low, and variability between 
replicates may account for the lack of 
significant threshold levels in some 
experiments as well as variable results in 
some wavebands. In general, the copepods 
responded to very low irradiance levels in 
blue, green, and white wavebands, the 
lowest irradiance eliciting a significant 
response ranging from 0.34 to 42 10-6 

μmol photons m-2 s-1 for CV, CVIf, and 

CVIm (Table 4). The lowest irradiance 
threshold was found in experiments with 
CVIf, using green irradiance (emission 
peak 525 nm). For the red waveband, the 
threshold was about three orders of 
magnitude higher (310-1800 10-6 μmol 

photons m-2 s-1). These results support the 
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investigation of spectral reflectance of 

 

 

 
Fig 10. Median distance from light (cm; each black dot representing one minute) with 

interquartile range (grey bars) over the duration of each experiment (2-3 replicates per experiment, 
see Table 2 in Paper V) for A) white, B) blue, C) green525 and aurora green550 (the latter only for 
stage CV), and D) red wavebands. Developmental stage/sex is indicated above each panel. Each 
irradiance level lasted 10 minutes. Dark is the initial dark period; subsequent OD levels are 
indicated (see Table 1 in Paper V for the irradiance range used in each experiment). Figure from 
Paper V. 
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investigations of spectral reflectance of 
Calanus spp. eyes (Paper III), where the 
results suggested that the eye absorbed 
mainly in blue and green wavebands (Fig. 
7). Calanus spp. was thus confirmed to be 
adapted to the light climate of coastal and 
oceanic areas, where green and blue 
penetrate deepest. The sensitivity to 

absolute irradiance was in the range of that 
of lab cultured C. finmarchicus (Paper IV) as 
well as other copepod species (Stearns and 
Forward 1984; Cohen and Forward 2005).  
The next step was to investigate the 
ecological relevance of our findings. We 
used approximate surface irradiance values 
for the different light sources during the 
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polar night (derived from literature; see 
Paper V), and compared these to the 
threshold levels for response of Calanus spp. 
(Table 4). Where a threshold level for 
phototaxis could be detected for blue and 
green wavebands, the threshold irradiance 
corresponded to <0.86% of surface 
moonlight and 1-43% of surface night sky 
irradiance. The threshold level for 
phototaxis for green and aurora green 
corresponded to <2.1% of surface aurora 
borealis irradiance.  
Using a relevant extinction coefficient 
(Hovland et al. 2012), and assuming ice-
free conditions, we estimated the 
irradiance changes with depth for the 
different light sources. Applying the lowest 
irradiance threshold for response, Calanus 

spp. may respond to irradiance from the 
night sky down to 40-50 m, moonlight to 
100-140 m, and aurora borealis down to 
60-100 m depth (Fig. 11). Our estimated 
depth range of night sky irradiance 
detection corresponds well to Berge et al. 
(2009) who reported that DVM occurred 
at a depth range of 30-60 m during the 
darkest time of the polar night (mid 
December to early January). As the solar 
elevation angle increases after winter 
solstice, the solar background irradiance 
during midday will increase, as will the 
depth for irradiance detection. This is 
reflected in the data of Berge et al. (2009), 
where the depth of DVM increased to 
around 70 m in late January and beyond 
90 m in February, as well as in Papers I 

Table 4. Modelling summary (ANOVA; + or -) and irradiance threshold value (where significant; 

μmol photons m-2 s-1) is given for all developmental stages and wavebands, as well as the fraction 

(%) of surface irradiance for each light source for the specific threshold value. Table from Paper V.  
 

 

  White Blue Green525 
Aurora 

green550 Red 

       

CIV Model + - -  - 

 Threshold -     

 Moon      

 Night sky      

 

Aurora 

borealis      

       

CV Model + + + + + 

 Threshold 4.7 10-6 4.3 10-6 2.1 10-6 0.43 10-6 1800 10-6 

 Moon 0.052-0.94 % 0.048-0.86 % 0.023-0.42 % 0.0048-0.086 % >20 % 

 Night sky 15-47 % 14-43 % 7-21 % 1.4-4.3 % >100 % 

 

Aurora 
borealis 0.12-4.7 % 0.11-4.3 % 0.053-2.1 % 0.011-0.43 % >45 % 

       

CVIf Model + - +  + 

 Threshold 0.47 10-6  0.34 10-6  1800 10-6 

 Moon 0.0052-0.094 %  0.0038-0.068 %  >20 % 

 Night sky 1.6-4.7 %  1.1-3.4 %  >100 % 

 

Aurora 
borealis 0.012-0.47 %  0.0085-0.34 %  >45 % 

       

CVIm Model + + -  + 

 Threshold 42 10-6 4.3 10-6   310 10-6 

 Moon 0.46-8.4 % 0.048-0.86 %   3.4-62 % 

 Night sky >100 % 14-43 %   >100 % 

 

Aurora 

borealis 1.0-42 % 0.11-4.3 %   >7.8 % 
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and II, where a DVM signal down to 
about 80 m was detected in late January. 
The irradiance from aurora and moonlight 
has higher intensity and will probably be 
detected deeper into the water column 
than night sky/solar background during 
mid-winter (Fig. 11). This is supported by 
the study of Berge et al. (2009), who 
reported a shift in DVM signal from a 24 
hour cycle toward a 25 hour lunar cycle 
during the 3 days prior to and after full 
moon. Zooplankton performing reverse 
DVM during full moon, the moon rising 
during night and setting during day, has 
also been described in Svalbard in January 
(Webster et al. ssubmitted). The DVM 
signal has to our knowledge not been 
investigated in relation to the aurora 
borealis, but the intensity of auroras is 
probably high enough for affecting DVM 
(Fig. 11). The aurora available to the 
marine organisms will vary according to 
the intensity of the aurora as well as its 
frequency of occurrence. The latter was 
reported to be about 65 % on average for 
Longyearbyen, Svalbard (from 2000 

through 2012; Pulkkinen et al. 2011 with 
additional data at 
http://www.space.fmi.fi/MIRACLE/ASC
/AuroralOccurrence.html). Another factor 
important for the irradiance in the ocean is 
the frequency of nights with clear or 
partially clear skies. This has been reported 
to be 68 % for Longyearbyen (1986-1995; 
Simmons et al. 1996). Combining the 
information about frequency of occurrence 
for aurora as well as clear nights, it seems 
likely that aurora may, at least in periods, 
affect the zooplankton during the polar 
night.  
Calanus spp. light perception thus seems to 
be highly adapted to life in the pelagic 
realm, and to the low-light environment 
during twilight or polar night, regarding 
absolute as well as spectral sensitivity. 
According to our findings, irradiance may 
be the cue for the observed DVM during 
polar night, and may affect the marine 
ecosystem during the darkest part of the 
year. 

 
Fig 11. Irradiance in the polar night from the moon, night sky, and aurora borealis with depth. 

The vertical dotted line (0.34 10-6 μmol photons m-2 s-1) represents the lowest E value for 

phototactic response in Calanus spp. Figure from Paper V.  
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Conclusions 

 
Bioluminescence was documented for the 
first time during the high Arctic polar night 
in January 2010 using an Autonomous 
Underwater Vehicle equipped with a 
bathyphotometer (bioluminescence 
detector). The taxa contributing to the 
detected bioluminescence were dominated 
by dinoflagellates (mainly Protoperidinium 
spp.), copepod nauplii (probably Metridia 
spp.), the copepod Oncaea borealis, 
appendicularians, and krill. Diel changes in 
bioluminescence over depth were 
documented, a larger proportion of the 
more intense flashes occurring in surface 
during night and at depth during day. 
These changes were interpreted as 
indications of diel vertical migration 
(DVM) due to that no diel changes in the 
bioluminescence potential (photons L-1) 
itself were documented. Investigations 
using acoustic backscatter as well as 
plankton net hauls supported that the 
larger zooplankton, like Calanus spp., 
performed DVM in the upper 80 m in 
Kongsfjorden during polar night.  
 
Using a hyperspectral imager, the in vivo 
spectral properties of the eyes of different 
crustacean species were found to match the 
light climate of their habitats. Sympagic 
and shallow-living pelagic species probably 
absorbed in blue and some in green 
wavebands, while deeper-living pelagic and 
hyperbenthic species absorbed mainly in 
the blue waveband. The sensitivity to 
ambient wavelengths may be part of the 
explanation to how organisms can stay 
active during the polar night, when 
ambient irradiance is very limited. 
Hyperspectral imaging was suggested to be 
a relatively fast and easy way of gaining 
information on the spectral properties of 
crustacean eyes, and a method well suited 
for use in the field as well as for 
investigating small species.  

 
Investigating the phototactic behaviour of 
laboratory cultured C. finmarchicus in an 
experimental setup, the lowest irradiance 
levels eliciting a phototactic response were 
in the range of 1-10 10-6 μmol photons m-2 

s-1. Stages CV and CVIf displayed negative 
phototaxis, while CVIm displayed positive 
phototaxis, which probably reflected the 
different ecological requirements of the 
different stages and sexes. Using 
parameters from spring phytoplankton 
bloom conditions, the irradiance threshold 
levels were estimated to correspond to 48-
57 m depth in a fjord (Trondheimsfjorden) 
and 158-186 m in open ocean (Norwegian 
Sea), which matched reported depth ranges 
for natural C. finmarchicus populations.   
 
When investigating the phototactic 
behaviour of Calanus spp. sampled during 
the polar night, all stages and sexes 
displayed negative phototaxis. This 
matches with the nocturnal DVM observed 
in Calanus spp. The sensitivity was highest 
towards blue and green wavebands, and 
the lowest irradiance levels eliciting a 
phototactic response in these wavebands 
were in the range of 0.3-4 10-6 μmol 

photons m-2 s-1. For the red waveband, the 
corresponding levels were about three 
orders of magnitude higher, suggesting that 
the Calanus spp. are adapted to the blue 
and green light climate of oceans and 
coastal areas, respectively. This is 
consistent with the results from 
hyperspectral imaging of Calanus spp. eyes. 
Correlating the lowest threshold level for 
response with estimations of polar night 
irradiance with depth, it was suggested that 
Calanus spp. may respond to irradiance 
from the night sky down to 40-50 m, 
moonlight to 100-140 m, and aurora 
borealis down to 60-100 m depth. Thus, 
irradiance may be the proximate cue for 
the observed DVM behaviour, and it was 
suggested that the sun and moon as well as 
aurora might affect the pelagic ecosystem 
during the polar night.  
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Future perspectives  

 
Due to the increased year-round human 
activity in the Arctic, such as utilisation of 
fossil fuels, fisheries, new transport routes, 
and tourism, there is a general need for 
further research on marine ecosystem 
dynamics during the polar night. 
Elucidating which organism groups are 
active, as well as the type of activity, is 
important information to be able to predict 
the consequences of incidents like oil spills, 
as well as the ongoing climate change. This 
thesis, elucidating the effect of natural light 
sources on DVM rhythms in zooplankton, 
is one of the first steps into looking at 
photobiology in the polar night. Light is a 
highly important environmental variable 
regulating biological activity, also during 
the polar night, and should be further 
investigated with respect to ocean 
heating/cooling (climate), weather, and 
temporal/spatial differences in light-
regulating mechanisms, affecting 
physiology, ecology and functional genetics 
in all marine taxa.  
Bioluminescence has now been 
documented for the first time during the 
polar night, and it would be interesting to 
delineate the proximate as well as ultimate 
reasons for this behaviour, both during the 
polar night and also whether it is 
comparable to those at other latitudes. Also 
concerning the DVM behaviour of Calanus 
spp. (and possibly other taxa), further 
research may involve the ultimate reasons 
for performing migrations during polar 
night. Pelagic predators like Themisto are 
active, so Calanus spp. performing predator 
evasion by descending to deeper waters 
seems apparent – but why ascend in the 
first place? Is there a sufficient amount of 
food in surface layers to gain advantages by 
migrating? Calanus spp. have been 
documented to undergo diapause during 
the winter, but the findings presented in 
this thesis indicate that only part of the 
population is in diapause and another part 
is active and migrating. Looking at the 
nutritional status of the two parts would be 

an interesting topic, and would probably 
also provide information about the 
ultimate reasons for DVM. Furthermore, 
more detailed investigations of the spectral 
sensitivity of Calanus spp. would give 
further insight into vision eco-physiology of 
copepods. This might reveal possible 
adaptations to different water masses or to 
specific light sources. Finally, the 
experimental setup developed for 
investigations of the phototactic behaviour 
of Calanus spp. has a large potential as a 
tool for further behavioural investigations, 
as it may be used for a variety of purposes 
as well as with many different taxa. 
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Abstract This study examines the composition and

activity of the planktonic community during the polar night

in the high Arctic Kongsfjord, Svalbard. Our results are the

first published evidence of bioluminescence among zoo-

plankton during the Arctic polar night. The observations

were collected by a bathyphotometer detecting biolumi-

nescence, integrated into an autonomous underwater

vehicle, to determine the concentration and intensity of

bioluminescent flashes as a function of time of day and

depth. To further understand community dynamics and

composition, plankton nets were used to collect organisms

passing through the bathyphotometer along with traditional

vertical net tows. Additionally, using a moored bathypho-

tometer closed to the sampling site, the bioluminescence

potential itself was shown not to have a diurnal or circadian

rhythm. Rather, our results provide evidence for a diel

vertical migration of bioluminescent zooplankton that does

not correspond to any externally detectable changes in

illumination.

Introduction

Of the various behaviors and adaptations that have evolved

in marine environments, bioluminescence stands out as one

of the particular importance, given the fact that it has

evolved independently more than 40 times (Haddock et al.

2010). While it does not necessarily give specific advan-

tage to species in cold environments, the long periods of

continuous darkness that characterize winters at high lati-

tudes create an environment, at least with respect to light,

that is similar to the deep-sea. Depending on which taxa are

bioluminescent, a variety of adaptive advantages have been

suggested. These include defensive functions such as the

‘‘counter-illumination,’’ the ‘‘burglar alarm’’ and offensive

mechanisms such as ‘‘prey attraction’’ and ‘‘intraspecific

communication’’ (Haddock et al. 2010).

Other adaptations have evolved in both phytoplankton

and zooplankton to survive in these harsh conditions that

relate more to metabolic rates and the actual vertical space

occupied in the water column within which a species

spends the winter months. One such strategy is to enter a

dormant state and overwinter at depth, seen for the cope-

pods Calanus glacialis and C. hyperboreus which are

commonly reported to enter a state of diapause at depth

during winter months (Fortier et al. 2001; Falk-Petersen

et al. 2008). They, then, return to shallower water in the

summer to take advantage of the high productivity rates

(Ashjian et al. 2003). Interestingly, Berge et al. (2009) for

the first time provide acoustic evidence of active vertical

migrations of zooplankton throughout the polar night in the

high Arctic. More recently, this phenomenon was
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corroborated in the Southern Hemisphere where diel ver-

tical migration (DVM) was shown to continue through the

Austral winter in the Lazarev Sea, but ceased during the

Austral summer (Cisewski et al. 2010).

The goal of the current study was to characterize

plankton abundance and distribution patterns during a time

of year that has rarely been studied by means of vertical net

tows and autonomous underwater vehicle (AUV) surveys.

Fitted on the AUV were ADCPs, a CTD and a bathypho-

tometer designed to register bioluminescence potential in

the water column.

Materials and methods

Data were collected off the coast of Ny Ålesund in

Kongsfjord, Svalbard (78�570 N, 11�560 E) in *120 m of

water from January 19 to 22, 2010. Spatial and temporal

dynamics of acoustic backscatter, salinity, temperature and

bioluminescence were measured using a REMUS-100

AUV (Moline et al. 2005). The vehicle was equipped with

upward and downward facing RD Instruments 1,200-kHz

Workhorse navigator acoustic Doppler current profilers

(ADCP), configured in this study to provide relative

acoustic backscatter as an estimate of scattering volume,

rather than current velocities, a Neil-Brown CTD and a

bioluminescence bathyphotometer (BP; Moline et al.

2005). The BP utilizes an impeller to continuously draw a

measured volume of water into a chamber through the front

of the nosecone where bioluminescence is measured by a

photomultiplier tube at 60 Hz [see Herren et al. (2005) for

details]. For statistical purposes, we restricted our analysis

to the non-zero observations.

The AUV was deployed at 10:27, 12:25 and at 13:40

(local time 19th of January) at depths of 15, 45 and 75 m,

respectively. These missions were surveyed a transect of

1.5 km at each respective depth. The vehicle was also

deployed at 21:30 (19th of January) along the same transect

as during the ‘‘day’’ but ran one mission surveying the

transect at 15, 45 and 75 m successively without breaks

between each depth. ADCP data were processed to remove

noise and calculate relative backscatter coefficient (Sv)

according to Deines (1999) for the data collected between

0.5 and 5.0 m away from either side of the vehicle. Fol-

lowing the AUV deployments, continuous BP observations

were made from 15:00 on January 21, 2010 until 09:00 on

January 22, 2010 at 1 m depth at the Ny Ålesund harbor

about 2 km from the study site. For logistical reasons

(power supply, stable holdfast for the instrument and

weather conditions), it was not possible to carry out the

continuous BP observations in the fjord at the same place

as the AUV deployments. However, given the short dis-

tance between the two locations and the absence of any

physical barriers, the two sites are regarded as comparable

for the examination of circadian rhythm (see also ‘‘Dis-

cussion’’). Concurrent with the REMUS deployments,

vertical net hauls were conducted using a WP2 plankton

net, 180-lm mesh size with a 0.25 m2 opening. In order to

collect vertical net hauls from the same depths surveyed by

the REMUS ADCP, two replicates from each depth were

taken from 30–0 m, 60–0 m and from 90–0 m between

10:30–13:00 LT. During the nighttime AUV deployment,

replicate hauls were taken between 30–0 m, but inclement

weather resulted in only one sample from 60–0 m was

collected and none between 90–0 m. To determine species

composition and abundance for specific depth intervals of

60–30 m and 90–60 m, the results from 30–0 m were

subtracted from those of 60–0 m, and results from 60–0 m

from those of 90–0 m, respectively. Additionally, the

REMUS BP was equipped with cylindrical plankton nets

(20-lm mesh size), and these nets were fitted to each of the

two exhausts of the BP (Moline et al. 2009), which hence

provided two replicate samples from each of the depths

(15, 45 and 75 m) sampled using the AUV. For all

plankton samples, the nets were rinsed and samples col-

lected and preserved in a 4% formaldehyde solution.

Samples were later enumerated and identified to the lowest

possible taxonomic unit using a Leica stereomicroscope

with 6.3–409 magnification.

Results

The temperature, salinity and density profiles were similar

between night and day during the sample period (Fig. 1)

and did hence not reveal any major advection events that

would otherwise influence the measurements and results

presented below. Based upon Willis et al. (2006), physical

parameters indicated that the water mass in Kongsfjord was

of Artic Water origin. Bioluminescence was detected

throughout the water column both night and day, with

higher bioluminescence at depth during the day and

increased surface bioluminscence at night (Fig. 1d).

Comparison of the bioluminescence at the specific depths

also provided that this result with significantly greater

bioluminescence intensity per flash was observed at 75 m

during the day and at 15 m at night (Table 1), suggesting

that the organisms with more intense flashes, i.e., larger

zooplankton (see Moline et al. 2009), had migrated toward

shallower depths at night.

It is important when interpreting changes in biolumi-

nescence signals that the circadian rhythms in the biolu-

minescence potential of planktonic organisms be taken into

account (Batchelder et al. 1992). The continuous BP

observations at the Ny Ålesund harbor showed no evidence

of a circadian rhythm in the bioluminescence signal
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(Fig. 2) in a location (sheltered by the pier and with a max

depth of 5 m) where vertical migration of zooplankton

would be restricted. Organisms collected by net hauls next

to the moored BP and by nets connected to the BP during

this period using identical methods described above for the

AUV showed[80% similarity to the study transects (data

not shown), thus making these results applicable to the

observations made by the AUV.

Estimates of relative backscatter coefficient as a relative

measure of zooplankton biomass in a 10-m swath around

the prescribed vehicle depths showed significantly higher

intensity between 70 and 80 m during the day, and between

10 and 20 m and 40–50 m at night (Table 1). In combi-

nation with the changes in bioluminescence intensity, these

data demonstrated a coordinated movement of biomass

indicative of DVM.

Plankton enumerations from WP2 vertical net hauls

show an increase above 60 m in the majority of the most

abundant zooplankton taxa at night, including Pseudocal-

anus spp., Microcalanus spp., Oithona spp., Calanus spp.,

Metridia spp. and Thysanoessa spp. These genera have

been reported to present throughout the year in this regions

(Lischka and Hagen 2005). Table 2 provides specific spe-

cies classification and shows that this increase above 60 m

at night is also apparent in the enumerations of other less

abundant taxa including Calanus finmarchicus, Acartia

longiremis, Oncaea borealis and Eukrohnia hamata. Of

these, Metridia lucens, Metridia longa, Oncaea borealis,

Thysanoessa inermis and Thysanoessa longicaudata most

likely account for the increase in high-intensity biolumi-

nescent flashes at 15 and 45 m during the night (Table 1).

Plankton enumerated from the[20 lm net collection of

the BP exhaust suggests that during the day, the greatest

biomass occurred at 45 m and was dominated by copepod

nauplii, copepod eggs and the Tintinnid Acantostomella

norvegica (Table 3). The same three groups of organisms

dominated the biomass at 15 and 75 m. Other major con-

tributors at each of these three depths were Ceratium and

Protoperidinium spp., Salpingella acuminata Pseudocal-

anus spp., Microcalanus spp., Oithona similis and Oithona

atlantica (Table 3), consistent with the WP2 nets samples

(Table 2).

Fig. 1 Vertical profiles of a temperature (�C), b salinity (ppt),

c density (kg m-3) and d bioluminescence (photons/l) as a function of

depth (m) taken from the REMUS AUV during the final ascents from

75 m during the day and night deployments. Daytime observations

represented in gray and nighttime in black. For this profile,

bioluminescence for the upper water column (\45 m) was signifi-
cantly less than that for the lower water column during the day

(Mann–Whitney, P = 0.009, n = 102) and higher bioluminescence

in the upper water column at night

Table 1 Mean Bioluminescence intensity per flash (±SE) surveyed by the AUV at the three different depths during the daytime and nighttime

deployments (LT is local time)

Depth (m) Mean intensity/flash

(9108) daytime

(10:30–14: 9 25 LT)

Mean intensity/flash

(9108) daytime

(21:30–22:30 LT)

Mean Sv difference
(day–night)

15 9 ± 2* 160 ± 142� -16

45 7 ± 2 8 ± 3 -35

75 18 ± 6*� 4 ± 1�,� 17

Significant differences were found between depths using Mann–Whitney (* P = 0.016, n = 1,030; � P = 0.025, n = 286; � P = 0.022,

n = 126), and additionally, the difference in the mean acoustic backscatter coefficients (Sv) between day and night is shown for each depth. The

differences in Sv between day and night were significant (Mann–Whitney, P\ 0.001) at all depths
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Evident from organisms collected from both net sam-

pling approaches is that the day/night changes in the ver-

tical distributions of bioluminescence and acoustic

scattering resulted from the larger zooplankton. Zoo-

plankton taxa[ 2.3 mm (Calanus spp., Metridia spp.,

Thysanoessa spp. and Appendicularia) collected by the

WP2 vertical net tows showed decreased abundance at the

surface (upper two depth layers) during the day than during

the night and the highest abundance of this size class was

found at depth during the day (Table 2). The smaller size

class (Pseudocalanus spp, Microcalanus spp., Oithona

spp.) did not show this trend. Histograms of the biolumi-

nescence intensity (data not shown) in conjunction with

plankton enumerations from each depth suggest that an

underlying low-to-intermediate-intensity bioluminescence

was consistent between day and night and likely attributed

to the dinoflagellates, from Protoperidinium that occurred

throughout the water column and to a lesser degree,

Ceratium furca and C. fusus that were present in signifi-

cantly lower abundances (Table 3).

Discussion

Though ubiquitous in the world’s oceans and important

from an ecological and evolutionary perspective (for

review see Haddock et al. 2010), few studies have descri-

bed bioluminescent communities and their distributions in

the Arctic, particularly during the winter darkness. Buskey

(1992), and Lapota et al. (1989, 1992) examined biolumi-

nescence distributions and community structure with the

goal of developing methodology to use bioluminescence as

a way to measure total biomass and light budgets of a given

water mass during the spring in the Greenland Sea, during

the fall in the Beaufort Sea and in summer in a Norwegian

Fjord, respectively. In contrast, this study quantified the

bioluminescent community during the polar night and

demonstrated the absence of circadian rhythm in

bioluminescence.

Furthermore, both the diurnal distribution of biolumi-

nescence intensity and concurrent changes in acoustic

backscattering provide independent evidence for an active

DVM of the larger bioluminescent zooplankton (and likely

non-bioluminescent zooplankton) within the upper 75 m of

the water column. Histograms of intensities showed the

major differences between day and night occurring at the

highest intensities, which is consistent with larger zoo-

plankton (Lapota et al. 1992; Moline et al. 2009) and with

the enumerations in this study. Bioluminscence and

acoustic backscatting may in fact not be directly linked, but

the circumstantial evidence provided herein suggests that

the diurnal signal in bioluminescence is in fact caused by

vertically migrating organisms. Numerous studies have

examined proximal triggers for DVM (Forward 1988;

Ringelberg 1995; Ringelberg and Van Gool 2003;

Benoit-Bird et al. 2009), and many others have looked at

triggers for the inhibition of bioluminescence as related to

its circadian rhythm (Batchelder et al. 1992; Kelly and

Katona 1966; Raymond and DeVries 1976; Swift et al.

1995). Interestingly all studies have in one way or another

implicated a relative or absolute change in irradiance

intensity, angle or daylength as a means of regulation for

both DVM and the circadian rhythm of bioluminescence.

Although changes in light during the time of this study are

not visible to the human eye, it is possible that they were

sufficient to initiate DVM in the organisms present at the

time of the study as was suggested in the study by Berge

et al. (2009). However, while external light cues may play

a role in regulating DVM, it might not be the only factor

relevant to consider for understanding this behavior. It has

been well established for photosynthetic dinoflagellates and

for heterotrophic dinoflagellates of the Protoperidinium

genus that the bioluminescent inhibition occurs when

light intensities are greater than the intensity of biolumi-

nescence of the organisms themselves (Sweeney et al.

1959; Buskey et al. 1992). This phenomenon could explain

why no circadian rhythm existed in bioluminescence dur-

ing December and January in Antarctica (Raymond and

DeVries 1976) and may also be related to the absence of a

circadian rhythm in bioluminescence in the current study.

Previous studies have found that Protoperidinium spp

contributed between 20 and 90% of the total light budget

from the surface to a depth of 100 m in the Beaufort Sea

(Lapota et al. 1992) and that dinoflagellates were estimated

to account for 96% of the total light budget in Vestfjord,

Fig. 2 Hourly means of log bioluminescence potential (solid black
line) with standard deviations (dotted black lines) collected at 1 m

depth from 15:00 LT on January 21 to 09:00 LT on January 22, 2010,

(n = 9,545, non-zero observations). Flashes per unit time were also

found to be consistent throughout the time series
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Norway (Lapota et al. 1989), so it is reasonable to assume

that they were significant contributors to the overall light

budget during this study. Wherein the lack of sunlight

facilitated an environment where the intensity of biolumi-

nescence was not inhibited by light greater than the bio-

luminescence of the organisms themselves. While this

regulatory factor has been established for dinoflagellates, it

is possible that it plays a role in other bioluminescent taxa

as well, such as copepods, appendicularians and Arctic krill

as in the case of this study.

Conclusions and perspectives

The most notable finding in this study is the detection of

bioluminescent activity among zooplankton during the

Table 2 Concentrations of the plankton captured by the 180 lm WP2 plankton net during the day and at night for depth intervals 30–0, 60–30

and 90–60 m

Taxa Depth

(m)

ind./m3

(day)

ind./m3

(night)

Taxa Depth

(m)

ind./m3

(day)

ind./m3

(night)

Calanus finmarchicus 0-30 50 82 Heterorhabdus norvegicus* 0–30 \1 \1

30–60 41 148 30-60 \1 6

60–90 89 – 60–90 4 –

Calanus glacialis 0–30 4 10 Harpacticus chelifer 0–30 9 50

30–60 31 31 30–60 54 30

60–90 147 – 60–90 \1 –

Calanus hyperboreus 0–30 \1 1 Harpacticoida spp. 0–30 2 \1

30–60 \1 \1 30–60 11 \1

60–90 4 – 60–90 \1

Pseudocalanus spp. 0–30 3,100 10,300 Oithona atlantica 0–30 388 725

30–60 \1 16,820 30–60 \1 555

60–90 775 – 60–90 \1 –

Microcalanus spp. 0–30 563 2,300 Oithona similis 0–30 400 825

30–60 163 1,900 30–60 \1 1,335

60–90 63 – 60–90 131 –

Metridia lucens* 0–30 3 17 Appendicularia* 0–30 17 15

30–60 4 18 30–60 3 3

60–90 6 – 60–90 96 –

Metridia longa* 0–30 \1 \1 Limacina helicina 0–30 2 \1

30–60 \1 3 30–60 \1 1

60–90 11 – 60–90 12 –

Acartia longiremis 0–30 175 375 Sagitta elegans 0–30 \1 2

30–60 \1 385 30–60 5 11

60–90 \1 – 60–90 12 –

Paraeuchaeta norvegica 0–30 \1 \1 Eukrohnia hamata 0–30 4 30

30–60 1 \1 30–60 2 21

60–90 \1 – 60–90 11 –

Diastylis lucifera* 0–30 \1 \1 Thysanoessa longicaudata* 0–30 \1 2

30–60 1 \1 30–60 3 7

60–90 \1 – 60–90 2 –

Bradyidius similis 0–30 \1 1 Thysanoessa inermis* 0–30 \1 \1

30–60 \1 3 30–60 \1 22

60–90 6 – 60–90 \1 –

Oncaea borealis* 0–30 12 \1

30–60 51 200

60–90 \1 –

Asterisks indicate organisms known to be bioluminescent
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polar night, which may be an important ecological feature.

While the ultimate and proximate explanations for both the

bioluminescence and the DVM behavior detected during

the campaign fall outside the data collected during this

study, these results provide evidence for both endogenous

and exogenous control of poorly understood or previously

unknown processes. Also, during this expedition, which

took place during the darkest period of the polar night, we

observed five different species of seabirds actively foraging

at sea; little auk (Alle alle), black-legged kittiwake (Rissa

tridactyla), northern fulmar (Fulmarus glacialis), black

guillemot (Cepphus grylle) and brünnich’s guillemot (Uria

Table 3 Concentrations of the

plankton captured by the 20 lm
plankton nets covering the

REMUS BP exhaust for

daytime deployments at 15, 45

and 75 m

Asterisks indicate organisms

known to be bioluminescent

Taxa Depth (m) ind/m3 Taxa Depth (m) ind/m3

Ceratium arcticum 15 229 Copepod nauplii* 15 1,409

45 352 45 2,726

75 246 75 1,403

Ceratium fusus* 15 9.6 Copepod eggs 15 903

45 91.3 45 1,631

75 80.3 75 1,372

Ceratium furca 15 \1 Oncaea borealis* 15 5

45 13 45 52

75 4 75 4

Protoperidinium spp.* 15 211 Harpacticoida spp.

Microsetella norvegica

15 7

45 391 45 7

75 387 75 4

Diatom spp. 15 10 15 5

45 59 45 7

75 80 75 4

Acantostomella norvegica 15 1,252 Oithona atlantica 15 67

45 2,023 45 117

75 827 75 59

Salpingella acuminata 15 241 Oithona similis 15 72

45 163 45 111

75 122 75 108

Heliocostomella subulata 15 2 Eukrohnia hamata 15 \1

45 13 45 1

75 \1 75 \1

Parafavella denticulata 15 7 Gastropoda larvae 15 23

45 33 45 33

75 45 75 11

Calanus finmarchicus 15 8 Appendicularia* 15 11

45 8 45 39

75 11 75 21

Paraeuchaeta norvegica CIII 15 \1 Membranipora larvae 15 19

45 1 45 20

75 \1 75 21

Acartia longiremis 15 29 Bivalve larvae 15 \1

45 7 45 7

75 18 75 \1

Pseudocalanus spp. 15 205 Limacina helicina 15 \1

45 215 45 \1

75 154 75 4

Microcalanus spp. 15 137 Thysanoessa longicaudata* 15 \1

45 437 45 \1

75 140 75 1
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lomvia). These seabirds have, to the best of our knowledge,

not been reported to overwinter at these latitudes. Whether

bioluminescence and/or DVM are playing roles in the

foraging behavior of these visual predators is an exciting

possibility, although still an open question. Despite the

limited scope of this study, results open new lines of

enquiry regarding the function and process during a time of

year when classical paradigms of Arctic ecosystems pos-

tulate that organisms are predominately in a state of

hibernation (see Berge et al. 2009). Ultimately, these

questions also have implications for human activities (i.e.,

oil exploration) in the high Arctic, which up until to now

has been considered ‘‘without life’’ during the polar night.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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Abstract 

Irradiance thresholds for phototactic response were determined for the first time for the 

marine calanoid copepod Calanus finmarchicus Gunnerus. C. finmarchicus is one of many 

zooplankton species that exhibit diel vertical migration. Light is considered the main 

proximate cause of diel vertical migration but irradiance sensitivity is unknown for many 

ecologically important zooplankton taxa, including C. finmarchicus. Here we study 

phototaxis in C. finmarchicus in response to low levels of irradiance using a custom-made 

experimental setup under controlled laboratory conditions. The setup consisted of an 

aquarium with a light stimulus in one end of a raceway. A video camera and near-infrared 

light for illumination was applied to monitor the response to light in the horizontal plane. 

Low levels of irradiance were achieved using a white LED and a combination of absorptive 

neutral density filters and diode pulsing.   

Copepodites stage V and adult females displayed negative phototaxis, and the threshold for 

phototactic response was 9.8 10
-6

 mol photons m
-2

 s
-1

. Adult males displayed positive 

phototaxis and the corresponding threshold value was 9.9 10
-7

 mol photons m
-2

 s
-1

. The 

results from the experiments were used to estimate the depths at which phototaxis is elicited 

in natural light conditions by conducting light simulations for an ocean scenario and a fjord 

scenario during peak spring bloom conditions. The estimated depths for irradiances that elicit 

a phototactic response corresponded to approximate depths of 158-186 m in the ocean 

scenario and 48-57 m in the fjord scenario. These depths are within the range of depth 

distributions of C. finmarchicus reported for ocean and fjord populations.  

Keywords: zooplankton, physiology, behaviour, diel vertical migration, light response
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1 Introduction 

Diel vertical migration (DVM) among zooplankton taxa, including Calanus species, is a 

widespread phenomenon and may represent the largest synchronised animal migration on the 

planet in terms of biomass (Hays, 2003). The most common migration pattern for 

zooplankton populations involves staying in deeper water layers during daytime, and active 

migration towards the surface at night. The widely supported hypothesis for this energetically 

costly activity is the predator avoidance hypothesis, stating that the animals reduce the risk of 

predation from visually hunting predators by staying away from the upper photic and 

phytoplankton-rich zone during daytime and ascending to feed during the night (e.g. 

Lampert, 1989; Hays, 2003), although other explanation models have also been suggested 

(e.g. Williamson, et al., 2011)  

For decades, various features of daily light changes have been considered the most important 

exogenous cue for timing of DVM (Cohen and Forward, 2009). The three major hypotheses 

on how light influences DVM are based on (1) absolute light intensity threshold, (2) relative 

rate of irradiance change and (3) preferred light intensity or isolume, and all three hypotheses 

are supported by field and laboratory evidence (Cohen and Forward, 2009). Other factors 

may also influence DVM, for example Ringelberg (1995) proposed a hierarchy of causality 

factors, with light being the primary which induces and maintains the movement. Secondary 

causal factors such as fish kairomones and food concentration may influence DVM dynamics 

by enhancing or inhibiting the effect of the primary cue. Also, environmental factors, such as 

temperature and oxygen gradients, may modulate the behaviour of the animals once the 

movement has been triggered (Ringelberg, 1995).  
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DVM does not only appear in response to solar light cycles. Nocturnal light and lunar cycles 

have also been shown to influence DVM in zooplankton (Alldredge and King, 1980; Benoit-

Bird, et al., 2009). Accordingly, Berge et al. (2009; 2012) reported DVM in Arctic 

zooplankton during the polar night and suggested that DVM in the polar night is regulated by 

solar and lunar irradiance that are below human perception and below the detection limit for 

most standard irradiance meters.  

Crustacean plankton quantitatively dominate the zooplankton communities in the North 

Atlantic and Norwegian Sea. Copepods constitute the main taxon within the group, and in 

these waters the calanoid copepod genus Calanus is generally considered the most important 

in terms of biomass, energy turnover and general ecosystem impact (Mauchline, 1998). 

Calanus species hence constitute a crucial component of the food web, transferring energy 

from the primary production of phytoplankton to fish species such as cod Gadhus morhua L. 

and herring Clupea harengus L. (Green, et al., 2004). Calanus finmarchicus Gunnerus is the 

dominant Calanus species in the northern part of the North Sea, the Norwegian Sea and the 

Atlantic inflow region to the Barents Sea (Planque and Batten, 2000). In these waters the 

species contributes to a very large fraction of the total plankton biomass (>90% in the 

southern Norwegian Sea; Planque and Batten, 2000), and C. finmarchicus is accordingly 

considered an ecological key species in the North Atlantic pelagic ecosystem (Mauchline, 

1998).  

The amplitude of DVM in C. finmarchicus may vary from a few metres to hundreds of 

metres. Studies investigating the stage-specific spatial distribution report that depth 

distribution is age-dependent (e.g. Unstad and Tande, 1991; Durbin, et al., 1995; Dale and 

Kaartvedt, 2000; Baumgartner, et al., 2003; Kwasniewski, et al., 2003; Cottier, et al., 2006; 

Rabindranath, et al., 2011). During daytime, the early copepodite stages (CI-CIII) are 
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primarily found in the upper water layers, whereas copepodite V (CV) and adult females 

(copepodite VI; CVIf) are found in the deeper water layers (e.g. Unstad and Tande, 1991; 

Kwasniewski, et al., 2003). Large proportions of C. finmarchicus CV and CVIf are found at 

depths of around 200 m during daytime, although it is uncertain whether these stages were 

actively migrating or in diapause (e.g. Unstad and Tande, 1991; Baumgartner, et al., 2003; 

Kwasniewski, et al., 2003).  

For most crustacean plankton, DVM is generally considered a crucial life history trait and 

intimately related to the ecological success of the species (Hays, 2003). However, with 

respect to environmental cues regulating DVM, many mechanisms are still poorly understood 

or characterised. In the present study we examined behavioural responses of C. finmarchicus 

to light stimuli of different intensities by using a video-recording system that recorded 

position over time relative to a light stimulus. The main aim of the study was to examine the 

behavioural sensitivity and specificity (phototactic response) in response to stimulation by 

white light, within a range of irradiances including those found in the deep ocean or in the 

dark polar night. To do this a new experimental laboratory set-up was developed, that 

allowed us to confidently measure phototactic behaviour in C. finmarchicus even at very low 

irradiances. Furthermore, light model simulations using available field data were included to 

estimate the ocean or fjord depths that correspond to the irradiance threshold for phototactic 

response.  

2 Material and methods 

2.1 Copepod culture 

Experimental copepods were collected from the continuous C. finmarchicus culture at 

SINTEF/NTNU Centre of Fisheries and Aquaculture (Trondheim, Norway). The culture was 

established from copepods collected in Trondheimsfjorden, Norway (63° N, 10° E), in 
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October 2004 (Hansen, et al., 2007). At the time of the experiments (autumn 2010), the 

copepod culture had been running for 27 generations under laboratory conditions. The culture 

is maintained in running seawater in polyester containers (280 L) at ~10 °C, and the culture 

copepods are reared on a mixture of the unicellular algae Rhodomonas baltica Karsten, 

Isochrysis galbana Parke and Dunaliella tertiolecta Bucher.  

At the time of the experiments the culture had been kept for several generations in a light-

dark cycle of 18:6 hours, with 6 hours of dawn and dusk in the first and last part of the light 

period, respectively. This corresponds to light conditions in late April at 63 °N. Endogenous 

rhythms may influence the phototactic response in the copepods, thus adaptation to a defined 

circadian rhythm is vital in order to obtain copepods in the same state for the experiments.  

2.2 Experimental setup 

The experimental setup included a 50  50  12 cm aquarium made of 10 mm glass 

(Pilkington Optiwhite, NSG Co., Ltd, Japan; Fig. 1). The aquarium was equipped with an 

overflow outlet (removing excess water), ensuring a water depth of maximum 8 cm during 

the experiments. There was no water renewal during experiments. A raceway was constructed 

inside the aquarium using glass plates (Pilkington Optiwhite, 8 mm) as walls, limiting the 

projection area available to the copepods to 48  13 cm. The walls of the raceway fit 

smoothly but not watertight to the outer walls of the aquarium, hence allowing water 

exchange with the rest of the aquarium.  

The light stimulus source was a white light emitting diode (LED; Luxeon I Lambertian, 350 

mA, Phillips Lumileds, LXHL-PW01) attached to a heat sink (ATSEU-077B-C2-R0, 

Advanced Thermal Solutions, MA, USA). To control the light intensity, absorptive neutral 

density filters (CVI Melles Griot, Netherlands) mounted in a computer controlled filter wheel 

(Tofra, Inc., Palo Alto, California, USA) were positioned between the LED and the aquarium. 
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The light intensity could be further adjusted over orders of magnitude (1-100%) using a 100 

Hz pulse width modulation (PWM) signal generated by a computer controlled USB device 

(National Instruments, USB-6212). A Fresnel lens (95  135 mm, optical PVC, 3Dlens.com, 

Taiwan) was attached one focal length from the LED (12 cm) to make the light path in the 

raceway collimated. The LED, filter wheel and Fresnel lens were assembled in a single 

tailored light-proof unit to avoid stray light from the LED. Between replicate tests, the 

position of the light stimulus assembly was alternated between the two ends of the raceway.  

The aquarium was placed on a table with a 48  48 cm opening for illumination from below. 

The edges of the opening were cut at an approximate angle of 45 degrees to the plumb line to 

avoid shadowing effects. Two near-infrared lamps (~845 nm, Eneo, Germany) were attached 

to the table legs with custom-made adjustable brackets that allowed the lamps to be regulated 

in most directions to optimise image quality. Infrared longpass filters (Kodak Wratten #87C, 

Edmund Optics Ltd, York, UK, 0% transmission up to ~790 nm wavelength) were attached 

to the near-infrared lamps to cut off any traces of visible light. To prevent distortions from 

near-infrared stray light being reflected off the walls in the laboratory, the setup was enclosed 

in a custom-made black fabric cape. Preliminary experiments were conducted to ensure that 

near-infrared illumination did not interfere with the experiments, and these demonstrated no 

behavioural response to the illumination.   

The positioning of the copepods in the aquarium raceway and their phototactic response 

following light stimuli was recorded using a video camera (Sony Handycam HDR-XR520-

VE, Sony) placed perpendicular to the aquarium on a quadrapod (Quadrapod Elite Copy 

Stand, Forensic Imaging, Inc., US). The movement of the copepods in the raceway relative to 

the light stimulus was monitored in the horizontal plane, to exclude the influence of 

buoyancy as well as gravitation on the light response movements. The copepods were 
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recorded in high definition video (HD) and in nightshot mode, in which the camera’s internal 

glass filter for removing near-infrared light is physically displaced. A black polyethylene 

sheet was placed below the aquarium in the raceway area to provide a uniform background 

with high contrast against the illuminated copepods.  

The experiments were conducted in a conditioning room at air and water temperature of 10 

(±2) °C in complete darkness, except for the light stimuli. To ensure no stray light would 

reach the experimental compartment, a custom made entry passage made in optically dense 

material and with an inner zipper door was fitted inside the entrance door. A second 

compartment in the entry passage contained the computer for remotely controlling the light 

stimulus, as well as a monitor displaying live video viewing from the camera. Thus, the 

experiments could be monitored and controlled without entering the experimental area.  

2.3 Light stimulus 

The range of irradiance used in the experiments were achieved using a combination of 

absorptive neutral density filters (CVI Melles Griot, Netherlands) controlled by WheelTool 

v1.0 software (Tofra Inc.) and diode pulsing maintained by a PWM signal controlled by 

LabView 8.2.1 (National Instruments). The absorptive neutral density filters used had an 

optical density (OD, absorbance, dimensionless) from 0.5 to 5 at 546 nm. By combining these 

filters with diode pulsing (diode pulsing was used on three of the light intensities), we 

obtained 9 irradiance levels over 9 orders of magnitude. These were for simplicity called 

OD1 through OD9. 

Spectral irradiance was determined using a spectroradiometer (Fixed Imaging Compact 

Spectrograph, FICS SN 7743, Oriel Instruments, USA; Fig. 2). The detector of the instrument 

was placed in front of the aquarium on the opposite side of the light source and the irradiance 

of white light was measured for several OD levels. The spectrometer was calibrated with a 
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Quartz Tungsten Halogen lamp (Model no. 63358, 45 W, 6.5 A, Oriel Instruments) to obtain 

the irradiance measurements in μW nm
-1

 m
-2

, which then were converted to μmol photons 

nm
-1

 m
-2

 s
-1

 (Baker and Romick, 1976).  

As the detector was not waterproof, the measurements were conducted outside the aquarium, 

thus detecting lower irradiance than the copepods experienced in the raceway. The 

measurements were therefore adjusted for the attenuation of irradiance through one Optiwhite 

glass wall (transmittance: 0.91). Total irradiance of the light stimulus applied was calculated 

for OD4 to OD6 as the integrated spectral-specific data over photosynthetic active radiation 

(PAR; 400-700 nm). Irradiance below OD6 and above OD4 were outside the linear response 

of the instrument, so the log linear relationship (R
2
=0.998, P<0.05) of the measured OD 

levels was used to calculate the irradiance of the remaining OD levels (Table 1).  

2.4 Experiments 

Experimental runs were conducted with adult males (copepodite VI; CVIm), CVIf and CV 

copepodites, respectively, and each run was replicated 5 times. A total of 50 (CVIm) or 60 

(CV and CVIf) individuals were used in each experiment replicate, amounting to a total of 

300 CVIf and CV and 250 CVIm. All experiments were conducted with copepods in the 

same diurnal phase, i.e. during daytime between 0900 and 1500 hrs. The copepods were 

sampled from the culture tanks shortly after 0900 hrs and sorted to developmental stage and 

sex using a stereo microscope and dim light conditions. Only apparently healthy individuals 

were selected. The copepods were not fed during the experiments. The collected copepods 

were transferred to the aquarium raceway, and then acclimated in darkness for 1 h before the 

experiment started.  

The distribution of the copepods in the raceway during the last 10 minutes of the acclimation 

period was assumed to represent the general distribution in darkness, and applied as the basis 
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positioning prior to light exposure. The irradiance was then increased stepwise from the 

lowest irradiance level (OD9) to the highest level (OD1) through a total of 9 steps, each with 

a tenfold (log10 unit) increase in intensity (Table 1). Each light intensity level lasted for 10 

minutes. The order of the stepwise change was then reversed from the highest irradiance 

(OD1) to the lowest (OD9), followed by a final 10 minute period in darkness.  

2.5 Image analysis 

The positioning and change in distribution of the copepods in the raceway in the test 

aquarium were analysed using image frames extracted from HD video. One image was 

extracted from the HD video per minute using Picture Motion Browser video software (v 4.2, 

Sony Corporation), providing a total of ten images representing each level of irradiance. The 

images were processed and analysed with ImageJ software (Rasband, 2009). Prior to particle 

analysis the images were organised in stacks with all ten images from each irradiance level, 

and the image quality was enhanced by increasing the contrast and subtracting the 

background using a rolling ball filter. Edges, air bubbles and other stationary irregularities 

were removed by calculating a median image based on all the images in the stack and 

subtracting it from all images in the same stack. Thresholding (by adjusting brightness and 

saturation) was used to create binary images for particle analysis (Fig. 3). Particle analysis 

provided data for size (area in square pixels) and coordinates of each particle; which was 

further organised and analysed in the R environment (R Development Core Team, 2011). The 

particles were sorted by size, and the 50, 60 and 60 (for CVIm, CV and CVIf, respectively) 

largest particles in each image were defined as the copepods and extracted for further 

analysis. A manual count was compared to the positions extracted from the automated 

particle analysis, and the positions were highly correlated (r=0.997, p<0.001, Pearson 

correlation). Thus, the simplified method of automated particle analysis based on particle size 
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was deemed reliable. The coordinate position obtained for each particle (i.e. individual 

copepod) provided information on its distance (mm) from the light stimulus.  

2.6 Statistical analysis 

The phototactic response for each developmental stage and sex was tested through Gaussian 

family linear mixed-effects modelling, with replicate as a random factor to account for the 

repeated measurements nature of the design. Likelihood ratio tests (ANOVA F-tests) were 

used to test the significance of irradiance level as a predictor of copepod distribution with the 

level for retention set to  < 0.05. The distribution of copepods at each irradiance level was 

then contrasted to the distribution of copepods during the initial dark period. The median 

position of the copepods over the time span of each irradiance level, i.e. 10 minutes, was used 

as the core unit in the analysis with one set of copepod positions relative to the light stimulus 

per minute. Statistical analyses were conducted in the R environment (R Development Core 

Team, 2011) using the package nlme (Pinheiro, et al., 2011).  

2.7 Light simulations 

Light simulations were conducted using Hydrolight, which is a radiative transfer rate-based 

numerical model of light propagation in water (Mobley, 1994). The inherent optical 

properties of pure water were based on the Pope and Fry (1997) model. The chlorophyll 

absorption spectrum was based on Prieur and Sathyendranath (1981), and chlorophyll 

scattering as a function of wavelength was modelled according to Loisel and Morel (1998). 

Coloured dissolved organic matter (CDOM) absorption was modelled using an exponentially 

decaying function of wavelength: 

 aCDOM( ) = aCDOM( 0) exp
(-S(  - 0))

 

where  is the wavelength, 0 is a reference wavelength and S is a parameter that depends on 

the composition of the CDOM. 
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Two scenarios were simulated. One scenario represented the ocean at the location of a 

permanent station in the Norwegian Sea (Station M; 66° N, 2° E), where extensive 

measurements were made during 1997 and 1998. The other scenario was representative of a 

Norwegian fjord using data from the station Trollet (63° N, 10° E) in Trondheimsfjorden. For 

the Station M scenario, chlorophyll (Chl a) data were obtained from Irigoien et al. (1998) and 

the solar angle at noon, 47.4°, was used. For the Trondheimsfjorden scenario, Chl a data from 

the station Trollet over several years were averaged, and a representative profile for 15 April, 

during the spring bloom, was chosen. The solar angle at noon in this case was 51.9°. In both 

scenarios, clear sky was assumed and Hydrolight's semi-empirical sky model based on 

RADTRAN (Gregg and Carder, 1990) was used. For Station M, CDOM absorption 

parameters (aCDOM( 0)=0.23 m
-1

, 0=350 nm and S=0.0169) were obtained from Stedmon and 

Markager (2001). For Trondheimsfjorden, the parameters (aCDOM( 0)=2.0 m
-1

, 0=340 nm and 

S=0.0135) were obtained from Kjeldstad (2006). The average wind speed at Station M in 

May of approximately 7 m s
-1

 was used in the simulation (http://www.ecmwf.int/, data from 

1997-1999). For Trondheimsfjorden, 1 m s
-1

 was used. Approximate depths based on the 

irradiance thresholds were extracted from both models.  

3 Results 

Irradiance (OD level) was a significant predictor for the distribution of the CV copepodites in 

the raceway (mixed effect model, F=9.39, P<0.001, replicate as random factor; Table 2). 

When increasing the irradiance,  there were no significant differences in distribution of the 

CV copepodites at OD9 to OD7 compared to the baseline dark period (Fig. 4A).The 

distribution of CV copepodites became significantly different from the distribution in the 

initial dark period at OD6 (P<0.01), corresponding to 9.8 10
-6

 mol photons m
-2

 s
-1

. The 

distribution remained significant from the initial dark period from OD6 to OD1, the highest 

irradiance level. The distance from the light source increased in comparison to the 
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distribution in the dark period, thus demonstrating negative phototaxis (Fig. 3). When the 

irradiance was decreased in steps from OD1 to OD9, the distribution returned to random at 

OD8 (P=0.14), with a change in significance level at OD7 (P=0.015) compared to OD1 to 

OD6 (P<0.001).  

Irradiance (OD level) was also a significant predictor for the distribution of the CVIf 

copepods in the experimental raceway (mixed effect model, F=4.04, p<0.001, replicate as 

random factor). When the CVIf copepods were exposed to increasing irradiances, the 

copepods were randomly distributed from OD9 to OD7 (Fig. 4B). The distribution of CVIf 

copepods became significantly different from the initial dark period at OD6 (P<0.05), 

corresponding to 9.8 10
-6

 mol photons m
-2

 s
-1

. . The distribution was significantly different 

from the initial dark period at OD6, OD5 (P<0.001) and OD4 (P<0.01), demonstrating a non-

random distribution with negative phototaxis. The distribution of the CVIf copepods was not 

significantly different from the initial dark period at OD3 (P=0.072), OD2 (P=0.070) and 

OD1 (P=0.30), but had a significantly different distribution when the irradiance level was 

decreased to OD2 (P=0.049) and OD3 (P=0.05). The CVIf copepods stayed randomly 

distributed throughout the remaining part of the experiment (irradiances at OD4 -OD9; Table 

2).  

Irradiance (OD level) was also a significant predictor for the distribution of the CVIm 

copepods in the experimental raceway (mixed effect model, F=43.60, p<0.001, replicate as 

random factor).  When the irradiance of the light stimulus was increased following the initial 

period in darkness, the distribution of the CVIm copepods were remained randomly 

distributed at OD9 and OD8 (Fig. 4C). The copepod distribution became significantly 

different from the initial dark period at OD7 (P<0.001), which corresponds to 9.9 10
-7

 mol 

photons m
-2

 s
-1

. The distribution remained significant from the initial dark period from OD7 
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to OD1. The distance from the light source decreased in comparison to the distribution in the 

dark period, thus demonstrating positive phototaxis (Fig. 3). When the irradiance decreased, 

the CVIm copepod distribution did not return to a random distribution during the duration of 

the experiment, however, the copepods started to disperse from OD7 (Fig. 4C).  

Simulated irradiance (EPAR) across depth was estimated for the ocean scenario (Station M) 

and the fjord scenario (Trondheimsfjorden; Fig. 5). The depths with PAR values closest to 

OD6 (CV and CIVf) and OD7 (CVIm), i.e. the lowest irradiances that elicited phototactic 

response, were determined. For Station M the depths were 158 m and 186 m, respectively, 

and for Trondheimsfjorden the depths were 48 m and 57 m.  

4 Discussion 

The data in the present study show phototaxis in C. finmarchicus in response to low levels of 

irradiance in controlled laboratory conditions. The direction of the phototactic response 

differed between the sexes, with CVIm displaying positive phototaxis and CVIf, as well as 

CV, displaying negative phototaxis. CVIm appeared to be more photosensitive than CVIf and 

CV, responding to irradiance levels of 9.9 10
-7

 mol photons m
-2

 s
-1

 compared to 9.8 10
-6

 

mol photons m
-2

 s
-1 

for CV and CVIf. Previous studies investigating phototactic response in 

C. finmarchicus have used one or only a few irradiance levels and in general at relatively 

high irradiance, and have therefore not determined an irradiance threshold for response (e.g. 

Aarseth and Schram, 1999; Wold and Norrbin, 2004). Thus, the irradiance reported in those 

particular studies are not comparable with the threshold levels reported in the present study. 

However, absolute irradiance thresholds inducing a phototactic response have been reported 

in other zooplankton species (e.g. Barnes and Klepal, 1972; Stearns and Forward, 1984; 

Cohen and Forward, 2005). Adult females of Calanopia americana Dahl F. exposed to the 

blue-green spectrum of light in a vertical system showed a significant negative phototaxis 
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when the absolute irradiance was >1 10
11

 photons m
-2

 s
-1

 at daytime and >1 10
14

 photons m
-

2
 s

-1
 during the night, which corresponds to ~1.7 10

-7
 and ~1.7 10

-4
 mol photons m

-2
 s

-1
, 

respectively (Cohen and Forward, 2005). Stearns and Forward (1984) reported that the 

intensity threshold for positive phototaxis in dark-adapted Acartia tonsa Dana was 2.8 10
11

 

photons m
-2

 s
-1

, which corresponds to ~4.6 10
-7

 mol photons m
-2

 s
-1

.. Thus, the irradiance 

thresholds that elicited phototactic response in C. finmarchicus are within the range of that 

reported for other zooplankton species.  

Predator evasion is probably the most important ultimate reason for DVM (Hays, 2003). 

Thus, the ambient irradiance at the depths the zooplankton migrate to should be lower than 

the threshold irradiance at which visually hunting fish successfully can catch prey 

(Ringelberg, 1995). Consequently, zooplankton with DVM behaviour should be able to detect 

and respond to irradiances lower than the threshold irradiance at which fish can hunt by 

vision. Herring (C. harengus), one of the main predators of C. finmarchicus (Marshall and 

Orr, 1972), was offered a mixture of zooplankton including C. finmarchicus, at different 

irradiances to determine the irradiance threshold for visual feeding by biting (Batty, et al., 

1990). The threshold proved to be at 0.001 lux, which corresponds to approximately 2 10
-5

 

mol photons m
-2

 s
-1

. Furthermore, larval cod (G. morhua) were able to feed at light 

intensities of 3.67 10
-6

 W m
-2

 (Vollset, et al., 2011), corresponding to approximately 2 10
-5

 

mol photons m
-2

 s
-1

. Hence, the irradiance thresholds for phototactic response in C. 

finmarchicus identified in the present study were one to two orders of magnitude lower than 

the irradiance necessary for successful visual hunting in herring and larval cod. This 

strengthens the view that C. finmarchicus is able to migrate to depths with irradiances below 

the irradiance necessary for successful hunting by its predators, and still be able to detect and 

respond to the low irradiance.  
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Both CV and CVIf elicited negative phototactic response to the light stimulus, whereas CVIm 

showed a positive phototactic response. Particularly the response in CVIm was strong and 

uniform, as seen from the small variation in the distribution of the copepods after the light 

response had been elicited (Fig. 4). Forward (1988) pointed out that positive phototaxis is not 

common among zooplankton and often this is a laboratory artefact resulting from a narrow 

stimulus beam or high light intensities. In our study, the copepods were exposed to low levels 

of irradiance and a relatively wide light field, thus the observed differences in light response 

between the developmental stages and sexes probably reflect their ecological requirements  

The CVIm copepod behaviour is primarily focused on mate-finding. They spend little time 

feeding and exhibit a higher swimming activity than CVIf, allowing them to cover large areas 

probably mainly to increase their chances of detecting female pheromones and finally mating 

(Kiørboe and Bagøien, 2005). However, in addition to requiring more energy, this behaviour 

also increases the chances for being detected and caught by predators (Irigoien, et al., 2000). 

CVIm are generally found in low abundance (e.g. Pasternak, et al., 2001; Niehoff, et al., 

2002). Thus, because most investigations addressing phototactic behaviour or DVM in 

Calanus copepods have been field studies, few studies have been able to include phototactic 

behaviour of CVIm. CVIm appear earlier in spring than the CVIf, probably due to a faster 

development of the gonads compared to CVIf (Irigoien, et al., 2000). It has been suggested 

that male copepods migrate upwards and stop at a certain level, e.g. at a thermohaline layer, 

to increase their chances of mate-finding by restricting the search behaviour to certain strata 

of the water column (Hayward, 1981; Tsuda and Miller, 1998). Hence, an inherent strong 

light-governed behaviour evolved to increase mating success may help explain the positive 

phototaxis observed in the CVIm in the current experiments. On the other hand, temperature 

or salinity gradients that can act to modulate or reverse the positive phototaxis under field 
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conditions are not included in the experimental setup, which may be in accordance with the 

uniform positive phototaxis observed.  

In contrast to CVIm, CVIf showed a less clear-cut response to the light stimulus throughout 

the experiment. This is evident by the larger variation in the distances from the light source in 

these groups (Fig. 4). In the present study, the copepods were selected based on their 

developmental stage or sex, and within-stage variation was not taken into account. There was 

probably a relatively large variation within the CVIf group with respect to age, ranging from 

newly molted unmated females through females with different stages of egg production and 

egg-laying females, to females that had exploited all their reserves for egg-laying. Several 

studies indicate that copepods can modulate their DVM behaviour depending on body 

condition, food conditions and predator presence (e.g. Hays, et al., 2001; Basedow, et al., 

2010), and they may also modulate their behaviour in relation to reproductive status. 

Furthermore, copepods have been reported to have higher lipid content in deeper water 

compared to copepods in the surface water (Hays, et al., 2001; Bergvik, et al., 2012), which 

indicate that also lipid content can modulate copepod DVM behaviour. Individual variation in 

lipid content may thus also explain some of the observed variation in phototactic response 

found within the different groups in the present study.  

Decreasing irradiance did not elicit as distinctive responses as those observed during the 

increasing irradiance. Rather, when the irradiance was decreased, the copepods appeared to 

become gradually redistributed towards random distribution as the stimulus decreased below 

the irradiance that produced a phototactic response during the gradual increase in irradiance. 

Ringelberg (1999) suggested that vertical movements are normal hop-and-sink swimming 

activity controlled by two balanced internal oscillators in a positive and negative mode. These 

two modes determine vertical displacement, and temporary dominance of one oscillator will 
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result in an individual gradually moving upwards or downwards. Changes in irradiance 

affects the upwards or downwards movements by increasing one mode and shortening the 

other, e.g. giving downwards movement by longer periods of sinking at increasing 

irradiances (Ringelberg, 1999). In the horizontal two-dimensional setup used in the present 

study, this hop-and-sink behaviour could not be investigated, only reactive and optically 

oriented swimming could be monitored. However, the slow redistribution of the copepods 

when the irradiances decreased below the threshold eliciting a phototactic response indicates 

that the copepods did not have a direct response to decreasing irradiance.  

Light simulations estimated that the irradiances that elicited phototactic response in the 

copepods correspond to approximate depths of 158-186 m in an ocean scenario and 48-57 m 

at noon in a fjord scenario (Trondheimsfjorden). The simulations were conducted using input 

parameters from a spring bloom scenario, at the time of year with the highest attenuation of 

light. Thus, at other times of the year corresponding irradiances are expected to be found at 

greater depths. Furthermore, in Trondheimsfjorden the light attenuation is particularly high 

during spring, due to river run-off during snow melt (Sakshaug and Sneli, 2000). 

Nevertheless, the estimated depths are within the range of the depth distributions of C. 

finmarchicus of down to 200 m reported from field samplings in the open sea and in Arctic 

fjords with clear water (Unstad and Tande, 1991; Kwasniewski, et al., 2003). In Norwegian 

fjords, the depths at which C. finmarchicus are found are more variable, ranging from 20-40 

m to 180 m (Marshall and Orr, 1972; Tande, 1988). At least some of this variation may be 

explained by the differences in light attenuation between fjords (Sakshaug, et al., 2009).  

The white LED used in the light stimulus in the current study contained a considerable 

amount of red light (Fig. 2). In seawater the red light is absorbed very quickly and at depths 

below the surface layer the spectral composition of the light is either blue (ocean) or blue-
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green (fjord; Sakshaug, et al., 2009). It is unlikely that animals have a substantial spectral 

sensitivity to wavebands that are attenuated quickly in the water column (Forward, 1988), 

and studies on several marine copepods do show highest spectral sensitivity in wavebands 

generally below ~600 nm (Stearns and Forward, 1984; Cohen and Forward, 2002). Although 

the spectral sensitivity of C. finmarchicus is presently unknown, it is reasonable to assume 

that C. finmarchicus has a lower sensitivity to red compared to the blue and green 

wavebands. Hence, since the irradiance values used here were integrated over 400-700 nm, 

the irradiance thresholds for phototactic response may be even lower than those we report, 

when taking spectral sensitivity into account. Accordingly, corresponding ocean and fjord 

depths would have increased slightly. Re-calculating our irradiance values based on the 

assumed highest spectral sensitivity (400-600 nm) reduces the irradiance at each level to 

about half. However, this is still within the same order of magnitude as the irradiance values 

we have reported, thus the effect of not correcting for spectral sensitivity is modest and for 

the depth estimates it is in the range of a few meters. Still, investigating the spectral 

sensitivity of C. finmarchicus is an important topic that deserves attention in future studies.  

Most previous studies on phototactic behaviour in plankton have been performed with wild-

caught animals, and the representativeness of the cultured animals used in the present study 

may be questioned. However, to counteract unintended effects of possible selection the 

current stock of C. finmarchicus has been cultured under a light regime simulating light 

conditions at a representative destination within the distribution area of the species. Also 

other rearing conditions have been kept as close to natural conditions as possible. As we 

assume responses to light are highly adaptive and probably well conserved in the species, we 

therefore expect, at least qualitatively, a high level of agreement between the cultured 

animals and wild populations. 
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To enable migration to depths too dark for fish to hunt by vision while using light as a cue for 

migration, a high sensitivity to light is necessary. The present study confirms such high 

sensitivity to light in C. finmarchicus by showing that CV and adults of C. finmarchicus 

respond with phototaxis to low levels of irradiance in the range of 9.8 10
-6

 - 9.9 10
-7

 mol 

photons m
-2

 s
-1

, for the first time determining irradiance thresholds for phototactic response in 

this species. Furthermore, these irradiance levels determined in an experimental laboratory 

setting correspond to the irradiance at depths where C. finmarchicus are found both in ocean 

and fjords. Small differences in sensitivity were found between the sexes and instars 

investigated in the present study and further research on the younger copepodite stages is 

needed to determine whether differences in light sensitivity can help explain and predict the 

stage-specific depth distribution regularly found in field.  
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Figure 1. A schematic overview of the experimental setup used to detect phototactic 

behaviour in Calanus finmarchicus from above (A) and the side (B) and a photograph of the 

experimental setup from the side (C). The experimental setup consisted of a camera (1), an 

aquarium (2) with a raceway in the middle (shaded area) fitted to the width of the light 

stimulus (3). A computer controlled filter wheel was fitted to the light stimulus device (3). On 

the table legs two near-infrared lamps (4) were attached with adjustable brackets.  
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Figure 2. Spectral irradiance for the light stimulus at irradiance level OD4 to OD6 obtained 

with neutral density filters.  
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Figure 3. Examples of copepod distribution, viewing the aquarium from above, A) in the 

initial dark period for CV (random distribution), B) at OD6 for CV (negative phototaxis) and 

C) at OD6 for CVIm (positive phototaxis).   
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Figure 4. Median distance (±interquartile range; mm) to light source for A) copepodite stage 

V (CV) B) adult females (copepodite VI; CVIf) and C) adult males (copepodite VI; CVIm) 

exposed to increasing and decreasing irradiance of white light. Dashed lines indicate change 

in irradiance level. D) A schematic view of the stepwise changes in irradiance related to OD 

level.  
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Figure 5. Estimated irradiance (EPAR) plotted against depth for an ocean scenario (Station M, 

solid line) and a fjord scenario (Trondheimsfjorden, Norway, dashed line) at noon during the 

spring bloom. Vertical grey lines indicate the irradiance threshold for phototactic response in 

C. finmarchicus in CV and CVIf (dotted line) and CVIm (dashed line). The calculations are 

representing the situation at noon during the spring algal bloom.   
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Table 1. Measured (OD4, OD5 and OD6) and extrapolated irradiance at 400-700 nm (μmol 

photons m
-2

 s
-1

) for the light stimulus levels used in experiments. . The lowest irradiances 

eliciting significant phototactic response are shown in bold.  
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Table 2. Output from mixed modelling of phototactic response, comparing distance from 

light source (mm) at each irradiance level to the distance to light source in the initial dark 

period, for CV, adult females (CVIf) and adult males (CVIm). Position is the median distance 

from light stimulus (mm) for the initial dark period (Dark) and the change in median distance 

for the subsequent irradiance levels. P-values indicate significance or irradiance level relative 

to the initial dark period, and significant P-values are indicated in bold. Likelihood ratio 

ANOVA tests; CV: F=9.39, P<0.001, CVIf: F=4.04, P<0.001, CVIm: F=43.60, P<0.001.  
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Abstract 
Recent studies have shown that the biological activity during the Arctic polar night is higher 

than previously thought. Zooplankton perform diel vertical migration during the dark 

period/winter, with the calanoid copepods Calanus spp. being one of the main taxa assumed 

to contribute to the observed diel vertical migration. We investigated the sensitivity of field 

collected Calanus spp. to irradiance by keeping individuals in an aquarium and exposing 

them to gradually increasing irradiance in white, blue, green, and red wavebands, recording 

their response with a near-infrared-sensitive video camera. Experiments were performed with 

the two oldest copepodite stages as well as adult males and females. The copepods were 

negatively phototactic, and the lowest irradiance eliciting a significant phototactic response 

was of the order of 10
-6

 μmol photons m
-2

 s
-1

 for white, green and blue wavebands, whereas 

the comparative irradiance for red wavebands was up to three orders of magnitudes higher. 
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The different copepod developmental stages displayed different sensitivities to irradiance. 

During the darkest part of the polar night, the lowest irradiance for significant response 

corresponded to 0.0085-3.4 % of the ambient surface irradiance, and Calanus spp. may 

respond to irradiance from the night sky down to 40-50 m, moonlight to 100-140 m, and 

aurora borealis down to 60-100 m depth. The high sensitivity to blue and green light may 

explain the Calanus’ ability to perform diel vertical migration during the polar night when 

intensity and diurnal variation of ambient irradiance is low. 

 

 

Keywords: phototaxis, light response, spectral sensitivity, Arctic  

 

 

Introduction 

The diel vertical migration (DVM) of zooplankton is found in all the world’s oceans, and is 

considered the largest synchronised movement of biomass on the planet (Hays 2003). It is 

thus an important factor in structuring the pelagic community. The most common type is 

nocturnal DVM, where the plankton ascend to surface waters at sunset to feed in the darkness, 

hiding from visual predators, and descend to deeper waters at sunrise. The ultimate cause for 

DVM is considered to be the optimising of feeding at the same time as minimising the risk of 

being predated (the predator evasion hypothesis; e.g., Lampert 1989; Hays 2003). The 

primary proximate cause of DVM is considered to be the use of light as an exogenous cue 

(irradiance 400-700 nm; henceforth abbreviated as E) (e.g., reviewed in Cohen and Forward 

2009). There are three main hypotheses to explain this. The isolume hypothesis states that the 

zooplankton will follow a preferred E level during migration. The rate-of-change hypothesis 

describes the relative rate and direction of change in E from the ambient level as the cue for 

migration, while the absolute intensity threshold hypothesis states that migration is initiated 

when E increases above or decreases below a certain threshold intensity (Lampert 1989; 

Ringelberg 1995, 1999; Hays 2003; Ringelberg and Van Gool 2003; Cohen and Forward 

2009). The spectral sensitivity of the zooplankton is also of importance, as it influences the E 

available to the individuals. The peak spectral sensitivity tends to be clustered in the blue-

green wavebands (460-530 nm), matching the ambient E at the time of migration, which 

commonly is twilight (Forward 1988; Cohen and Forward 2009).  
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Copepods are major contributors to DVM, and may perform diel migrations down to 200-300 

meters (e.g., Tande 1988; Dale and Kaartvedt 2000; Fortier et al. 2001; Baumgartner et al. 

2003; Yamagutchi et al. 2004; Cottier et al. 2006). Assuming that E is the proximate factor 

triggering the migration behaviour, copepods must have high sensitivity to light to be able to 

detect and respond to E at great depths. A few studies have investigated the phototactic 

response of copepods related to the rate of change and absolute intensity threshold as well as 

spectral sensitivity. Cohen and Forward (2005) studied responses of Calanopia americana to 

absolute E changes as well as relative rates of change, and found that both factors affected 

DVM. Stearns and Forward (1984) investigated both E thresholds for phototactic response as 

well as the spectral sensitivity of Acartia tonsa, and found that the peak spectral sensitivity 

was broad and matched the E available for the copepods during daytime. Cohen and Forward 

(2002) found that the spectral sensitivities of copepod species varied between species and 

were closely connected to different patterns of DVM, the peak spectral sensitivity of species 

performing DVM in coastal waters matching the E during twilight, and that of a non-

migrating species being broader and corresponding to a shallower habitat. Miljeteig et al. 

(submitted) established the absolute E threshold for phototactic response of Calanus 

finmarchicus from a laboratory culture, and concluded that it matched the E available in the 

depth range reported for natural C. finmarchicus populations. 

 

In the Arctic, DVM has mostly been studied during the time of year when there is a distinct 

photoperiod (daylight), and a clear DVM signal has been described (Fortier et al. 2001; 

Cottier et al. 2006; Falk-Petersen et al. 2008; Wallace et al. 2010; Rabindranath et al. 2011). 

Over the last few years, researchers have also taken interest in the dark winter period, the 

polar night, and recent studies have described biological activity far higher than previously 

thought during this time of year (Sato et al. 2002; Berge et al. 2009, 2012; Fort et al. 2010). It 

has been shown that zooplankton perform DVM during the polar night despite the low light 

conditions (Berge et al. 2009, 2012). The E in the polar night originates from different 

sources, and has varying periodicity. The night sky and scattered E from the Sun has a 24 

hour cycle, and the latter varies with the time of year, the daytime E increasing/decreasing 

with the solar elevation angle (e.g., Simmons et al. 1996). The moonlight has an approximate 

25 hour daily cycle as well as the 29 days lunar cycle. The aurora borealis also has a 24 hour 

cycle due to the Earth’s rotation under the aurora oval, and in Svalbard, the green aurora 

(emission line 557.7nm) outbreaks are most frequent between 19:00 and 00:00 (e.g., Myrabø 

1985; Simmons et al. 1996). In the Arctic, the frequency of active aurora borealis varies 
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depending on location and the solar activity. Furthermore, all E varies according to cloud 

cover. Thus, although variable, there is a periodicity in all polar night E, which in theory 

could influence high-latitude ecosystems.  

 

The calanoid copepod genus Calanus is one of the major taxa performing DVM in the Arctic 

(e.g., Dale and Kaartvedt 2000; Fortier et al. 2001; Cottier et al. 2006; Rabindranath et al. 

2011). The genus constitute a major part of the zooplankton biomass in the Arctic shelf seas 

(e.g., Hassel 1986; Mumm et al. 1998; Blachowiak-Samolyk et al. 2008), and is a highly 

important food source for amphipods and other zooplankton, as well as fish, seabirds, and 

whales (e.g., Falk-Petersen et al. 1990; Auel and Werner 2003; Baumgartner and Mate 2003; 

Karnovsky et al. 2003). Calanus spp. are considered to be primarily herbivores, but may also 

switch to heterotrophic prey (reviews by Falk-Petersen et al. 2009; Vadstein 2009). In the 

Arctic, the most dominant Calanus species are C. hyperboreus, which is associated with the 

deeper parts of the polar ocean, C. glacialis, an Arctic shelf species, and C. finmarchicus, 

which is dominant in areas influenced by water masses with Atlantic origin (e.g., Conover 

1988; Falk-Petersen et al. 2009). As C. hyperboreus mainly is a polar basin species, 

overwintering at large depths (500-2000 m; Falk-Petersen et al. 2009), C. glacialis and C. 

finmarchicus are the dominant species in West Spitsbergen fjords during winter (Arnkværn et 

al. 2005; Berge et al. 2012). The main overwintering stages of C. glacialis and C. 

finmarchicus are copepodite stage IV (CIV) through adults (e.g., Tande 1982; Hirche 1991; 

Falk-Petersen et al. 2009).  

 

Due to the ecological importance of Calanus spp., as well as the reported DVM during polar 

night (Berge et al. 2009, 2012), the genus was used in this study. The E in the polar night has 

low intensity, but still a certain periodicity, and given a sufficient sensitivity to E, 

zooplankton could be influenced by it. To our knowledge, the only study investigating the E 

threshold for response of Calanus spp. was performed with laboratory cultured C. 

finmarchicus, using a white light stimulus (Miljeteig et al. submitted). We aim to investigate 

the absolute E needed to elicit a phototactic response in an Arctic population of Calanus spp. 

by sampling in field during the polar night, and using a laboratory experimental setup 

designed to test phototactic response in low-light conditions. We perform experiments with 

the developmental stages of Calanus spp. present in the polar night, investigating the 

sensitivity to different wavebands of visible light. We also compare the Calanus spp. response 



Polar Biology. In revision 

and sensitivity to E during daytime and night-time, and finally we relate our findings to the 

ambient E in the polar night.  

 

Materials and methods 

Zooplankton collection 

Calanus spp. were collected using a WP3 net (mesh size 500 μm, diameter 1 m) in 

Adventfjorden, close to Longyearbyen, Svalbard (78.228 N, 15.604 E) through a hole in the 

ice. Samples were collected the 7
th

-8
th

, 11
th

, and 17
th

 of January 2011. Several net hauls were 

taken during the 4 sampling days to collect the sufficient amount of zooplankton. The samples 

were stored in 10-20 L buckets and transported to a seawater laboratory at the University 

Centre in Svalbard, Longyearbyen. The Calanus spp. were immediately sorted by 

developmental stage; copepodite stages IV and V (CIV and CV), and sex; adult females and 

males (AF and AM), and incubated according to stage in 3 L buckets with lids at 1-2 °C (20-

25 individuals per bucket). Due to sampling in shallow waters, there was some sediment in 

the samples. During sorting, the Calanus spp. were inspected visually for sediment particles 

and only individuals appearing healthy were selected for experiments. Buckets were covered 

in 3 layers of black plastic bin liners and stored in the dark seawater laboratory for at least 24 

hours to ensure the zooplankton were acclimated to darkness before the experiments.  

 

The experimental setup 

An acrylic glass aquarium with 18 cm width, 48 cm length, and 8 cm height (internal 

dimensions), and 1 cm thick walls, was used to keep the zooplankton (sampled in January 

2011) during experiments. Inside the aquarium was a 48 8 cm wall, which was used to adjust 

the width to fit the light stimulus (13 cm), limiting the projection area available to the 

copepods to 48 13 cm. The water depth was 6 cm during all experiments. Experiments were 

performed in the horizontal plane to avoid possible effect of gravitation. A light emitting 

diode (LED) was fitted to a filter wheel with integrated controller (Tofra, Inc., Palo Alto, 

California, US). The filter wheel was attached to a 14 10 12 cm light tight box with a 

Fresnel lens (95 135 mm, optical PVC, 3Dlens.com, Taiwan) in front, making the light path 

collimated. To adjust the E, the filter wheel contained neutral optical density (OD) filters 

(CVI Melles Griot, Netherlands) with increasing OD (absorbance, dimensionless). OD is 
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logarithmic, decreasing the E with 1 10
-1

 for each increasing OD number. Filters with OD 

from 4 to 9 were used in the experiments, called OD4 to OD9, respectively. The LED and 

filter wheel assembled in the light tight box made up the light stimulus unit. WheelTool v1.0 

software (Tofra Inc., Palo Alto, California, US) controlled the position of the filter wheel. In 

addition, LabView 8.2.1 software was used to further adjust the E of the LEDs by pulsing the 

light. It was used to reduce the E at each OD level by 50 % (for simplicity named OD4.5, 

OD5.5, and so on), providing a higher resolution to the E levels the zooplankton were 

exposed to. Experiments were performed with white (LXHL-PW01), blue (LXHL-PR03; 

emission peak at 455 nm), green (LXHL-PM01; peak at 525 nm; called green525), and red 

(LXHL-PD01; peak at 640 nm) LEDs (Fig. 1). In addition, the white LED was used with a 

green transmission filter with peak at 550 nm (hereafter called aurora green550), to more 

closely simulate the green aurora borealis (emission line at 557.7 nm), which is a common 

light source in the polar night.  

 

To record the responses of the zooplankton, the aquarium was placed on a table with a 48 18 

cm hole, and illuminated from below by four inclined near-infrared (N-IR) lamps (IR30, 

SmartProdukter Norge AS, emission peak at 850 nm). The experiments were recorded from 

above using a N-IR sensitive video camera (Sony Handycam HDR-XR550) in NightShot 

mode standing on a quadrapod (Quadrapod Elite Copy Stand, Forensic Imaging, Inc., US). 

The N-IR lamps were covered with filters to remove the visible part of the spectrum (Kodak 

Wratten Infrared filters, #87C, Edmund Optics Ltd, York, UK; 0% transmission up to ~790 

nm). The experimental setup was covered in black fabric during experiments to avoid possible 

stray light from entering and to minimise the effect of air currents on the aquarium. See 

Online Resource 1 for a photograph of the experimental setup. 

The experimental setup, apart from the aquarium and the N-IR lamps, was the same as 

described in Miljeteig et al. (submitted).  

 

A spectroradiometer (ORIEL Fixed Imaging Compact Spectrograph; FICS SN 7743) was 

used to obtain the spectral E used in experiments. The detector of the instrument was placed 

in front of the aquarium, on the opposite side of the light stimulus unit, and the highest E 

levels for all LEDs (OD4 through OD6 for white, blue, green525, and red, and OD3 through 

OD5.5 for the aurora green550) were measured. The lower E levels were outside the linear 

response area of the instrument, and were instead calculated, extrapolating from the measured 

E levels. As the detector was not waterproof, the measurements were done outside of the 
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aquarium, including both aquarium walls as well as the water. Thus, the E measured was 

lower than that experienced by the copepods. To correct for this, measurements were also 

done (white LED, OD5), with only one aquarium wall as well as through both walls of the 

aquarium without water, and the fraction of E absorbed by one aquarium wall was calculated. 

This factor was then used to correct the E for all wavebands and OD levels used. The 

spectroradiometer was calibrated with a Quartz Tungsten Halogen lamp (Oriel Instruments, 

Model no. 63358, 45 W, 6.5 A) to convert the data from the original output in counts s
-1

 to 

μW m
-2

 nm
-1

. To convert to photons m
-2

 s
-1

 nm
-1

, the equation by Baker and Romick (1976) 

was used:  

1 photon/s = 1.986475(1/ )  10
-19

 W,  

where  is wavelength in μm. The output was further converted into μmol photons m
-2

 s
-1

 nm
-

1
.  

 

Light response experiments 

All experiments were performed in a temperature controlled seawater laboratory at the 

University Centre in Svalbard. Room and water temperature was 1-2 °C. To make the 

laboratory completely dark and prevent stray light, all openings were covered with 3 layers of 

aluminium foil. The computer controlling the light stimulus was placed outside the laboratory, 

so that the experiments could be performed without entering the room. Freshly collected 

Calanus spp. (20 individuals for stages CIV and AM, 25 individuals for stages CV and AF; 

acclimated in dark for at least 24 hours prior to experiments) were transferred from the storing 

buckets to the aquarium as quickly as possible, using only red light to minimise light 

exposure (Cohen and Forward 2005). A small touch by a pair of tweezers was used as a 

simple fitness test; only individuals performing immediate escape response were considered 

healthy and used in experiments. The Calanus spp. were acclimated in the aquarium for at 

least 1 h in darkness before experiments started. The location of the light stimulus was 

alternated from one side of the aquarium to the other between replicates to control for room 

effects, e.g., air currents produced by the cooling system.  

 

24 hour experiments 

24 hour experiments (two replicates with different sets of Calanus spp. individuals) were 

performed to test whether the Calanus spp. responded differently during daytime than night-
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time. The light stimulus was a white LED. A sample of 25 specimens of Calanus spp. CV 

were transferred to the aquarium at 11:00 and dark acclimated, and at 12:00 (noon) the 

camera was turned on to record the starting distribution (darkness). After 10 min the LED was 

turned on, starting with OD8 (0.099 10
-6

 μmol photons m
-2

 s
-1

; Table 1). The E range used in 

the experiment was determined by preliminary experiments (not shown), to ensure a starting 

E well below the threshold for phototactic response. Every 10 minutes, the filter wheel was 

turned so that the OD decreased by 1, thus increasing the E. The highest E used for this 

experiment was OD4 (860 10
-6

 μmol photons m
-2

 s
-1

), giving a total of 6 E levels including 

the dark initial period. The light stimulus was then turned off and the Calanus spp. were left 

in the aquarium. This procedure (trial) was repeated every 3 hours for 24 hours (at 15:00, 

18:00, 21:00, 00:00, 03:00, 06:00, 09:00) and then one last time at 12:00; making a total of 9 

trials for each replicate.  

 

Threshold value experiments (white, blue, green525, aurora green550, and red 

wavebands)  

A sample of 20 (for stages CIV and AM) or 25 (for stages CV and AF) specimens of Calanus 

spp. were transferred to the aquarium and dark acclimated. The camera was turned on, and the 

first 10 minute period of the experiment was recorded as distribution in darkness. The light 

stimulus was then turned on, the starting E level varying from OD7.5 to OD9 depending on 

the waveband (Table 2; Fig. 1). The E range used for each waveband was determined by 

preliminary experiments (not shown), to ensure a starting E well below the threshold for 

phototactic response. Every 10 minutes the E was increased by incrementing the OD by 0.5. 

The Calanus spp. were left in the dark for at least 1h to acclimate, the LED was then changed 

to a different waveband and a corresponding experiment was performed. The order of the 

wavebands was randomized. Experiments with the aurora green light stimulus were run with 

stage CV only.  

 

Image analysis 

Using Picture Motion Browser video software (v 4.2, Sony Corporation) we extracted one 

still image per minute from the video of the experiments, amounting to ten images 

representing each E level. Images were analysed in stacks (one stack per replicate), using the 

image analysing software ImageJ (1.43u; Rasband 1997-2009). The images were cropped and 

contrast was improved. Using the whole image stack, the median image was calculated and 
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then subtracted from the stack, removing air bubbles, aquarium edges, and debris (all 

stationary objects). Colour threshold was adjusted (saturation and brightness) to create binary 

images for particle analysis. The particle analyses was performed by defining thresholds for 

minimum size and circularity, and provided the particles’ distances from the light stimulus (in 

cm; the total length of the aquarium was 48 cm), as well as their size (area in square pixels). 

Due to some floating debris particles in the aquarium, the number of particles was larger than 

the number of copepods. We assumed that the copepods were the largest particles observed, 

and used the R environment (R Development Core Team 2012) to extract the position of the 

20 or 25 (depending on stage) copepods for further analyses.  

 

Statistical analyses 

Statistical modelling of the experimental data was performed using linear mixed-effects 

modelling, computed with the packages nlme and lme4 in the R environment (Bates et al. 

2011; Pinheiro et al. 2012; R Development Core Team 2012).  

24 hour experiments:  

The trials performed at 18:00, 21:00, 00:00, 03:00, and 06:00 from both replicates (10 trials 

altogether) were defined as night-time, and the remaining (12:00, 15:00, 09:00, and 12:00 

second time; 8 trials altogether) were defined as daytime. The phototactic response was tested 

with linear mixed-effects modelling, with trial as random factor to account for the repeated 

measurements nature of the design. Median position (distance from light stimulus) over the 

duration of an E level (10 minutes) was used in the analysis. Firstly, for night-time, the 

distribution of copepods at each E level was compared to the distribution of copepods in the 

initial dark period. Then, the distribution of copepods during daytime trials as a whole was 

compared to that of night-time. Lastly, the distribution of copepods at each level during 

daytime was compared to that of each level during night-time, to investigate whether the 

response was different during day compared to night. The conventional significance level of 

0.05 was lowered to 0.01, to reduce the false discovery rate when conducting multiple tests.  

Threshold value experiments (white, blue, green525, aurora green550, and red 

wavebands):  

The phototactic response in each experiment (developmental stage and waveband; Table 2) 

was investigated using linear mixed-effects modelling, with replicate as random factor to 

account for the repeated measurements nature of the design. Median position (distance from 
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light stimulus) over the duration of an E level (10 minutes) was used in the analyses. The 

distribution of copepods at each E level was compared to the distribution of copepods in the 

initial dark period. The overall significance of effects in the model was tested by the ANOVA 

F statistic, with the significance level set at 0.05.  The significance level was again lowered to 

0.01 for testing individual effects, due to the problem of multiple testing. 

 

Irradiance from natural light sources in the polar night 

There was no light meter or spectroradiometer available that was sensitive enough to measure 

ambient polar night E, hence values for background (night sky) E, moonlight, and aurora 

borealis at sea surface, as well as data on cloud cover, could only be derived from literature 

(Waterman 1974; Myrabø 1985; Simmons et al. 1996; Jensen et al. 2001; Müller et al. 2011). 

Neither was there an extinction coefficient available for the water masses on West 

Spitsbergen during winter, but we assumed that the inherent optical properties of the water 

and its constituents (Johnsen et al. 2009) resembled those of Arctic water masses at a time of 

year with low concentrations of chlorophyll a (“winter concentration”), coloured dissolved 

organic matter and total suspended matter (Case 1 waters; Jerlov 1968). Water masses with 

these characteristics were sampled in the Barents Sea during August by Hovland et al. (2012), 

and this extinction coefficient was used to model the E from the different light sources with 

increasing depth. The E with increasing depth was compared to the lowest E for significant 

response in Calanus spp. to investigate how deep the copepods may be influenced by E 

during the polar night. The E eliciting a significant response in Calanus spp. was also 

compared (in %) to the surface E from moonlight, night sky and aurora borealis.  

 

Results 

24 hour experiments 

The median distance to the light stimulus increased with increasing E through the trials, thus, 

the Calanus spp. CV were consistently negatively phototactic throughout the 24 hour period 

(see Online Resource 2 for figures). The response to the white LED used was significant from 

0.94 10
-6

 μmol photons m
-2

 s
-1

 (OD7; Tables 1, 3). There was no overall change in response 

to the light stimulus during day compared to night (p = 0.822; Table 3). Neither were there 

diel changes in response to the light stimulus at any E level (0.057 < p < 0.646; Table 3).  



Polar Biology. In revision 

 

Threshold values experiments 

Calanus spp. were negatively phototactic for all wavebands (Fig. 2; Table 4; see Online 

Resource 2 for viewing the replicates separately). For all stage CV experiments, AF 

experiments with white, green525, and red, and AM experiments with white, blue, and red 

LED, there was a phototactic response throughout the experiments, and a threshold value for 

response was identified. For the experiment with stage CIV white LED, there was a 

phototactic response over time (ANOVA p=0.026; Table 4), however, no significant 

threshold value for response was detected. For the remaining experiments we did not detect a 

significant phototactic response. The threshold E level for response differed depending on 

waveband as well as copepod developmental stage (summarised in Table 5). For the white 

waveband, the threshold for significant phototactic response was 0.47-42 10
-6

 μmol photons 

m
-2

 s
-1 

(Tables 4, 5). For the blue waveband, the threshold for response was 4.3 10
-6

 μmol 

photons m
-2

 s
-1

, and for the green525 waveband, the threshold for response was 0.34-2.1 10
-6

 

μmol photons m
-2

 s
-1

. For aurora green550 (experiments performed with stage CV only), the 

threshold was 0.43 10
-6

 μmol photons m
-2

 s
-1

, which was lower than the significant response 

of stage CV to green525 LED (2.1 10
-6

 μmol photons m
-2

 s
-1

). For the red waveband the 

threshold for significant response was 310-1800 10
-6

 μmol photons m
-2

 s
-1

. Thus, the 

sensitivity to red light was one to three orders of magnitude lower compared to other 

wavebands. For white and green525 wavebands, AF showed the highest sensitivity to light, 

while CIV generally were the least sensitive, displaying a significant response to white only. 

Where a threshold level for phototaxis could be detected for blue and green wavebands, the 

threshold E corresponded to <0.86% of surface moonlight and 1-43% of surface night sky E 

(Table 5). The threshold level for phototaxis for green525 and aurora green550 corresponded 

to <2.1% of surface aurora borealis E. For the red waveband, the threshold level for response 

corresponded to >20% of the surface moonlight, and >100% of the night sky E.  

 

Discussion 
All developmental stages and both sexes of Calanus spp. displayed negative phototaxis, and 

were highly sensitive to E. The negative phototaxis is in accordance with what would be 

expected for species displaying nocturnal (normal) DVM, which has been documented for 

Calanus spp. (e.g., Nicholls 1933; Huntley and Brooks 1982; Frost 1988; Lampert 1989; 
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Fortier et al. 2001; Falk-Petersen et al. 2008; Baumgartner et al. 2011). The lowest E eliciting 

a significant phototactic response in this study were 0.34 10
-6

 μmol photons m
-2

 s
-1

, displayed 

by AF (green525 waveband; see Tables 3-5), and 0.43 10
-6

 μmol photons m
-2

 s
-1

, displayed 

by CV (aurora green550; simulating aurora borealis emission line). These are ecologically 

relevant E values, corresponding to <0.09% of the surface moon E, <4% of the night sky E, 

and <0.4% of the Aurora borealis E (Table 5). This clearly indicates that a phototactic 

response to ambient E is indeed possible for Calanus spp. in the polar night. 

 

When applying an E threshold value of 0.34 10
-6

 μmol photons m
-2

 s
-1

 as well as an 

attenuation coefficient of light in water assumed to correspond to the ambient (winter) 

conditions, Calanus spp. may respond to E from the clear night sky down to about 40-50 m, 

from aurora borealis down to 60-100 m, and moonlight to 100-140 m depth (Fig. 3). Berge et 

al. (2009) found that DVM occurred at a depth range of 30-60 m during the darkest time of 

the polar night (mid December to early January). This corresponds well to our estimated 

depth range of night sky E detection of Calanus spp. As the solar elevation angle increases 

after winter solstice, the E (solar background) during midday will increase, as will the depth 

for E detection. This is reflected in the data of Berge et al. (2009), showing that the depth of 

DVM increased to around 70 m in late January and beyond 90 m in February. Berge et al. 

(2012) also detected a DVM signal down to 80-90 m in late January. The E from aurora and 

moonlight will probably be detected deeper into the water column than night sky/solar 

background during mid-winter (Table 5; Fig. 2). This is supported by the study of Berge et al. 

(2009), who found that during the 3 days prior to and after full moon, there was a shift in 

DVM signal from a 24 hour cycle toward a 25 hour lunar cycle. Zooplankton performing 

reverse DVM during full moon, the Moon rising during night and setting during day, has also 

been described in Svalbard in January (Webster et al. unpublished data). The DVM signal has 

to our knowledge not been investigated in relation to the aurora borealis, but the intensity of 

auroras is probably high enough for affecting DVM (Fig. 3). The frequency of winter nights 

with clear or partially clear skies has been reported to be 68 % for Longyearbyen, Svalbard 

(1986-1995; Simmons et al. 1996). Looking at the frequency of auroras, the average 

occurrence was approximately 65 % for the same location (varying between 55 and 95 % 

from 2000 through 2012; Pulkkinen et al. 2011). Thus, the frequency of nights with aurora 

visible at sea surface level may be about 44 % (0.68  0.65 = 0.44). The intensity of the 

aurora varies, as will the depth it can be perceived by the zooplankton, so the frequency of 
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44 % may be seen as a maximum estimate. Still, the aurora may, at least in periods, affect the 

zooplankton during the polar night.  

 

The Calanus spp. specimens used in our experiments were probably a mix of C. glacialis and 

C. finmarchicus, as these are species described to be common in West Spitsbergen fjords (e.g., 

Hop et al. 2006, Kwasniewski et al. 2003, Arnkværn et al. 2005, Gabrielsen et al. 2012), and 

that the third common Calanus species, C. hyperboreus, would have been recognised by its 

size as well as morphological traits during sorting. We chose not to attempt identification of 

the specimens to species, due to that recent investigations have described large rates of 

misidentification using prosome length, which is the conventional and least time-consuming 

way of separating C. glacialis and C. finmarchicus (Parent et al. 2011; Lindeque et al. 2004; 

Gabrielsen et al. 2012). In addition, these species have recently been found to have a high 

frequency of hybridisation (Parent et al. 2012). We thus treated our sets of individuals as 

Calanus spp. As the specimens were sampled from the population in Adventfjorden during 

January, they were ecologically relevant for our study.  

 

The different developmental stages and sexes showed different sensitivities to E. AF were the 

most sensitive, with thresholds of e.g., 0.47 and 0.34 10
-6

 μmol photons m
-2

 s
-1

 for white and 

green525 wavebands, respectively (Table 5). The lowest E thresholds for stage CV were 0.43 

and 2.1 10
-6

 μmol photons m
-2

 s
-1

 for aurora green550 and green525 wavebands, respectively, 

while for AM the lowest threshold values were 4.3 and 42 10
-6

 μmol photons m
-2

 s
-1

 for blue 

and white wavebands, respectively. Stage CIV displayed negative phototaxis to white only, 

but no threshold value could be identified. Related to DVM, this would correspond to deepest 

migration depths for AF, followed by CV, AM, and probably shallowest for CIV, which is in 

accordance with field studies of stage-specific migration depth of Calanus spp. copepodite 

stages and AF. Huntley and Brooks (1982) found that for C. pacificus, the amplitude of DVM 

increased with increasing age/stage, the night depths remaining constant while daytime depths 

increased. Nicholls (1933) reported that C. finmarchicus AF inhabited the deepest parts and 

that migration depth decreases with stage, and Unstad and Tande (1991) reported the same for 

both C. finmarchicus and C. glacialis. During summer in Kongsfjorden, West Spitsbergen, 

the younger stages (CI-CIV) of C. finmarchicus and C. glacialis have been reported to inhabit 

surface and intermediate water layers, while older stages stayed in bottom layers, however, 

the latter had probably descended for overwintering (Kwasniewski et al. 2003). An 

explanation to the deeper migration of larger stages may be that larger and more pigmented 
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individuals are more susceptible to predators, and must thus, according to the predator 

evasion hypothesis, migrate deeper to get the same protection (Hays 2003). The need of high 

sensitivity to light is thus expected to be more pronounced in larger and older individuals, 

which is generally supported in this study. Larger individuals also tend to have larger lipid 

reserves, which decreases the need of migrating to surface waters to feed (e.g., Hays et al. 

2001; Hays 2003). This may be part of the explanation to the deeper distribution and higher 

light sensitivity of older individuals. In this study, AM displayed lower sensitivity to light 

than AF and CV, as well as higher variability in response (Fig. 2; Table 4; Online Resource 2), 

and did thus not follow the general rule of higher sensitivity to light in older stages. Copepod 

AM generally display higher swimming activity than AF and CV, spend little time feeding, 

and are mainly focused on mate-finding, (e.g., Irigoien et al. 2000; Kiørboe and Bagøien 

2005), which may lead to the weaker and less uniform response to E. In contrast to this study, 

Miljeteig et al. (submitted) found that C. finmarchicus AM from a laboratory culture had a 

strong, uniform positive phototaxis. The reason for these differences is not known, but the 

cultured animals may be acclimated differently both regarding nutritional and mating status 

compared to the polar night acclimated, field collected specimens.  

 

The threshold E values we found for Calanus spp. are highly comparable to those of other 

zooplankton. For Crustacea in general, the threshold was stated to be about 5 10
-5

 μW cm
-2

 

(Waterman 1974), corresponding to about 2.3 10
-6

 μmol photons m
-2

 s
-1

, which is 

approximately one order of magnitude higher than the lowest threshold detected in this study. 

Cohen and Forward (2005) found that using the blue-green waveband, the copepod C. 

americana responded to E > 1 10
11

 to 1 10
14

 photons m
-2

 s
-1

 during day and night, 

respectively, which corresponds to 0.17-170 10
-6

 μmol photons m
-2

 s
-1

. The copepod A. tonsa 

displayed positive phototaxis, and responded to E down to 2.8 10
11

 photons m
-2

 s
-1

, 

corresponding to 0.46 10
-6

 μmol photons m
-2

 s
-1

 (Stearns and Forward 1984). For Calanus 

spp., a few studies have looked at the response to ultraviolet radiation stress and PAR in C. 

finmarchicus (Aarseth and Schram 1999; Wold and Norrbin 2004), but the E levels used in 

these studies were relatively high (14-75 μmol photons m
-2

 s
-1

) and thus not relevant for 

detecting a threshold level for response. Miljeteig et al. (submitted) detected threshold levels 

of 0.99-9.8 10
-6

 μmol photons m
-2

 s
-1

 (white waveband) for C. finmarchicus CV, AM, and 

AF from a laboratory culture. The threshold E for response of field collected Calanus spp. in 

this study to the white waveband was slightly lower for CV and AF, but higher for AM.   
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The E needed to elicit a significant phototactic response was lowest in the green wavebands 

(0.34-2.1 10
-6

 μmol photons m
-2

 s
-1

; Table 2), slightly higher in the blue waveband (4.3 10
-6

 

μmol photons m
-2

 s
-1

), and more variable in white (0.47-42 10
-6

 μmol photons m
-2

 s
-1

). For 

stage CV, the E for significant response was lower in aurora green550 (0.43 10
-6

 μmol 

photons m
-2

 s
-1

) compared to green525 (2.1 10
-6

 μmol photons m
-2

 s
-1

). The Calanus spp. 

were about 1 to 3 orders of magnitude less sensitive to red (310-1800 10
-6

 μmol photons m
-2

 

s
-1

), depending on developmental stage and sex. The low sensitivity to red is probably related 

to the ecology of these copepods. The extinction coefficient of light in water is higher in the 

red waveband (600-700 nm) than in the rest of the visible spectrum (Sakshaug et al. 2009), 

and the blue or green light penetrates deepest depending on the constituents of the water (blue 

in Case I water, green in Case II water; Jerlov 1968; Sakshaug et al. 2009). C. finmarchicus 

and C. glacialis are pelagic species, inhabiting depths down to hundreds of meters (e.g., 

Tande 1988; Fortier et al. 2001; Cottier et al. 2006; Falk-Petersen et al. 2009; Bergvik et al. 

2012), and benefit from being more sensitive to the predominant blue-green wavebands than 

to red. This pattern has also been confirmed by hyperspectral imaging of Calanus spp. eyes, 

showing high reflectance and thus low absorbance in the red waveband, and lower 

reflectance/higher absorption in blue and green wavebands (Båtnes et al. unpublished data). 

Cohen and Forward (2002) investigated the spectral sensitivities of four copepod species 

displaying different migration patterns, and found that the species Centropages typicus and C. 

americana, both performing nocturnal DVM, had spectral sensitivity peaks from 480 to 520 

nm, which is in the range of the blue and green wavebands used in this study. Species 

inhabiting shallow/estuarine waters with broad spectral E have broader spectral sensitivities, 

e.g., A. tonsa (Stearns and Forward 1984) and Labidocera aestiva (Cohen and Forward 2002).  

 

The phototactic response of Calanus spp. was not significantly different during day compared 

to night (Table 3). In contrast, the copepod C. americana had an E threshold of response three 

orders of magnitude lower during day than during night (Cohen and Forward 2005). C. 

americana undergoes twilight DVM, which involves a descent after sunset (the “midnight 

sink”) and an ascent before sunrise (the “early morning rise”) in addition to the sunset ascent 

and sunrise descent also involved in nocturnal DVM. The additional descent and ascent is 

under endogenous control, and the endogenous rhythms of C. americana were thought to 

suppress the phototactic response during night (Cohen and Forward 2005). Calanus spp. is 
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known to perform nocturnal DVM, which may explain the uniform phototactic response over 

24 hours.  

 

For the CIV white waveband experiment, there was a significant phototactic response, but no 

particular threshold could be detected (Table 4), and for many of the experiments, the 

response seems to be gradual, ranging over at least three E levels (Fig. 2). This may indicate 

variability within the group of copepods, some of the individuals starting the response earlier 

than others, and some not responding at all. As we did not track the position of the 

individuals, only of the group, we could not detect this in detail. The group of individuals in 

each replicate was probably composed of at least two different species (C. glacialis and C. 

finmarchicus), and of individuals with different nutritional status as well as different 

age/development within the stage (Nicholls 1933), and this may affect the DVM behaviour 

(e.g., Huntley and Brooks 1982; Hays et al. 2001; Bergvik et al. 2012) and the underlying 

light responses. In addition, due to sampling difficulties the number of replicates (2-3 

replicates with 20-25 individuals in each) was low, which makes the analyses vulnerable to 

variability between replicates. The variability between replicates may appear because of 

“room effects” (air currents from the cooling system and other, unidentified causes), in 

addition to that some of the Calanus spp. may have been in poor condition after sampling and 

storage in buckets over time (24 hours to 18 days). Particularly AM are vulnerable to 

handling and keeping in small containers, (D. Altin, personal comment), which is reflected in 

highly variable results with replicates 2 and 3 (Online Resource 2). The variability between 

replicates may also partly explain the lack of significant results in some of the experiments 

(e.g., CIV and AF blue waveband), even though the results as shown in a figure (Fig. 2) may 

be interpreted as a clear phototactic response.  

 

Knowledge about the spectral sensitivities as well as the E levels triggering phototactic 

response is crucial to understanding the migrations of Calanus spp. and their role in the polar 

night ecosystem. In this study, we show that both developmental stages and both sexes (CIV, 

CV, AF, and AM) responded with negative phototaxis to at least one of the wavebands used 

in the experiments. The lowest E eliciting a significant response (0.34 10
-6

 μmol photons m
-2

 

s
-1

) corresponds to 0.0085-3.4 % of the polar night surface E. Modelling the E from different 

light sources with depth, the Calanus spp. may respond down to approximately 40-50 m 

depth to clear night sky E, 100-140 m to moonlight, and 60-100 m to aurora borealis. This 

supports that the ambient E, including the aurora borealis, may be a proximate cue for DVM 
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also during the polar night. Further investigations on the rhythmicity of migrations in relation 

to ambient E, as well as the ultimate reasons for undergoing diel migrations in “complete 

darkness”, would further increase the understanding of marine pelagic ecosystem in the polar 

night.  
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Fig.1 Relative spectral irradiance (E) for the different wavebands used in experiments. Based 

on the measurements of OD5 for all wavebands  



Polar Biology. In revision 

 

 

Fig. 2 Median distance from light (cm; each black dot representing one minute) with 

interquartile range (grey bars) over the duration of each experiment (2-3 replicates per 

experiment, see Table 2) for A) white, B) blue, C) green525 and aurora green550 (the latter 

only for stage CV), and D) red wavebands. Developmental stage/sex is indicated above each 

panel. Each irradiance level lasted 10 minutes. Dark is the initial dark period; subsequent OD 

levels are indicated (see Table 1 for the irradiance range used in each experiment). 
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Fig. 2 Cont. 
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Fig. 3 Irradiance in the polar night from the Moon, night sky, and aurora borealis with depth. 

The vertical dotted line (0.34 10
-6

 μmol photons m
-2

 s
-1

) represents the lowest E value for 

phototactic response in Calanus spp.  
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Table 1 Irradiance (E; 400-700 nm) for the different wavebands and OD levels used in 

experiments. Values are in μmol photons m
-2

 s
-1

 10
-6

.  

  White Blue Green525 Aurora green550 Red 

OD4 860 - - - - 

OD4.5 - - - 52  1800 

OD5 79 - - 8.1 310 

OD5.5 42 39 - 4.6 150 

OD6 9.4 8.7 4.3 0.85  28 

OD6.5 4.7 4.3 2.1 0.43 14 

OD7 0.94 0.62 0.34 0.083 2.6 

OD7.5 0.47 0.31 0.17 0.041 1.3 

OD8 0.099 0.050 0.030 - - 

OD8.5 - 0.025 0.015 - - 

OD9 - 0.0040 0.0026 - - 

 

 

Table 2 Overview of threshold value experiments performed with different Calanus spp. 

developmental stages and sexes. Number of replicates, number of individuals per replicate, 

the range of light intensities (range of optical densities; OD), and duration of experiments 

(minutes) for each waveband. White, blue, green525, and red are LEDs, aurora green550 is 

the white LED with a green transmission filter, emission peak 550 nm.  

Stage/sex CIV CV AF AM 

  2 replicates, 20 ind.  3 replicates, 25 ind. 2 replicates, 25 ind. 3 replicates, 20 ind. 

  OD range (duration) OD range (duration) OD range (duration) OD range (duration) 

White 5.5-8 (70) 5-8 (80) 5.5-8 (70) 5-8 (80) 

Blue 6-9 (80) 6-9 (80) 6-9 (80) 5.5-9 (90) 

Green525 6-9 (80) 6-9 (80) 6-9 (80) 6-9 (80) 

Aurora green550  4.5-7.5 (80)     

Red 4.5-7.5 (80) 4.5-7.5 (80) 4.5-7.5 (80) 4.5-7.5 (80) 
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Table 3 Output from mixed modelling of phototactic response in 24 hour experiment, 

comparing the distance from the light source at each irradiance level to the to the distance 

from light source in the initial dark period. “Distance” is the median distance from the light 

stimulus (cm) for the initial dark period (Dark) and change in median distance for the 

subsequent E levels. Dark through OD4 represent the results from night-time trials. Day is 

daytime; the effect needed to add to the results from night-time to get those of daytime. 

OD8:Day through OD4:Day represent the effects needed to add to the effects from night-time, 

level by level, to get the results of daytime trials.  

 Distance p-value 

Dark 19.5 <0.001 

OD8 0.2 0.871 

OD7 3.2 <0.001 

OD6 13.7 <0.001 

OD5 20.8 <0.001 

OD4 22.5 <0.001 

Day -0.2 0.822 

OD8:Day -2.7 0.057 

OD7:Day -1.4 0.309 

OD6:Day -1.7 0.218 

OD5:Day -0.6 0.646 

OD4:Day 0.8 0.557 
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Table 5. Modelling summary (ANOVA; + or -) and threshold value (where significant; μmol 

photons m
-2

 s
-1

) is given for all developmental stages and wavebands, as well as the fraction 

(%) of surface irradiance for each light source for the specific threshold value.  

 

 

 

 

 

 

  White Blue Green525 Aurora green550 Red 

       

CIV Model + - -  - 

 Threshold -     

 Moon      

 Night sky      

 Aurora borealis      

       

CV Model + + + + + 

 Threshold 4.7 10
-6

 4.3 10
-6

 2.1 10
-6

 0.43 10
-6

 1800 10
-6

 

 Moon 0.052-0.94 % 0.048-0.86 % 0.023-0.42 % 0.0048-0.086 % >20 % 

 Night sky 15-47 % 14-43 % 7-21 % 1.4-4.3 % >100 % 

 Aurora borealis 0.12-4.7 % 0.11-4.3 % 0.053-2.1 % 0.011-0.43 % >45 % 

       

AF Model + - +  + 

 Threshold 0.47 10
-6

  0.34 10
-6

  1800 10
-6

 

 Moon 0.0052-0.094 %  0.0038-0.068 %  >20 % 

 Night sky 1.6-4.7 %  1.1-3.4 %  >100 % 

 Aurora borealis 0.012-0.47 %  0.0085-0.34 %  >45 % 

       

AM Model + + -  + 

 Threshold 42 10
-6

 4.3 10
-6

   310 10
-6

 

 Moon 0.46-8.4 % 0.048-0.86 %   3.4-62 % 

 Night sky >100 % 14-43 %   >100 % 

 Aurora borealis 1.0-42 % 0.11-4.3 %   >7.8 % 
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Physiological effects of reduced water quality on fish 
in aquaculture 

  1997 Per Gustav Thingstad  Dr. 
scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

  1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors 

  1997 Signe Nybø  Dr. 
scient. 
Zoology 

Impacts of long-range transported air pollution on 
birds with particular reference to the dipper Cinclus 
cinclus in southern Norway 

  1997 Atle Wibe  Dr. 
scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), 
analysed by gas chromatography linked to 
electrophysiology and to mass spectrometry 

  1997 Rolv Lundheim  Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators    

  1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep 
depredation and conservation 

  1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural 
transformation in Acinetobacter calcoacetius 

  1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically 
structured populations: Ecological, population genetic, 
and statistical models 

  1997 Trygve Hesthagen  Dr. 
philos 
Zoology 

Population responces of Arctic charr (Salvelinus 
alpinus (L.)) and brown trout (Salmo trutta L.) to 
acidification in Norwegian inland waters 

  1997 Trygve Sigholt  Dr. 
philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

  1997 Jan Østnes  Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

  1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases 
and myrosinase-binding proteins 

  1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

  1998 Erling Johan Solberg Dr. 
scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

  1998 Sigurd Mjøen 
Saastad 

Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex 
(Bryophyta): genetic variation and phenotypic 
plasticity 

  1998 Bjarte Mortensen Dr. scient Metabolism of volatile organic chemicals (VOCs) in a 



Botany head liver S9 vial  equilibration system in vitro 
  1998 Gunnar Austrheim Dr. scient 

Botany 
Plant biodiversity and land use in subalpine 
grasslands. – A conservtaion biological approach 

  1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related 
moth species 

  1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

  1999 Hans Kristen 
Stenøien 

Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

  1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning 
in the outlying haylands at Sølendet, Central Norway 

  1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

  1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 

  1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

  1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: 
blue whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus 
morhua) in the North-East Atlantic 

  1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

  1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon 
(Salmo salar) revealed by molecular genetic 
techniques 

  1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

  1999 Stein-Are Sæther Dr. 
philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

  1999 Katrine Wangen 
Rustad 

Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission 
related to cognitive dysfunctions and Alzheimer’s 
disease 

  1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica) 

  1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown 
trout (Salmo trutta L.) inhabiting the deep pool 
habitat, with special reference to their habitat use, 
habitat preferences and competitive interactions 

  1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of 
arhrophod species richness 

  1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

  2000 Ingrid Salvesen Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 



  2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

  2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used 
for the rearing of marine fish larvae 

  2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

  2000 Odd A. Gulseth Dr. 
philos 
Zoology 

Seawater tolerance, migratory behaviour and growth 
of Charr, (Salvelinus alpinus), with emphasis on the 
high Arctic Dieset charr on Spitsbergen, Svalbard 

  2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

  2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution 
of breeding time and egg size 

  2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine 
shrimp Artemia sp. as live food organism for larvae of 
marine cold water fish species 

  2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

  2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in 
corkwing wrasse (Symphodus melops L.) 

  2001 Bård Gunnar Stokke Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites 
and their hosts 

  2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer 
(Rangifer tarandus platyrhynchus) 

  2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

  2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

  2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

  2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

  2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian 
conifer chronologies providing dating of historical 
material 

  2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

  2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of 
dominating tree species along major environmental 
gradients 

  2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in 

cellular organisms. Studies of RAC GTPases in 

Arabidopsis thaliana and the Ral GTPase from 

Drosophila melanogaster 

  2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

  2003 Jens Rohloff Dr. 
philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

  2003 Åsa Maria O. 
Espmark Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

  2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

  2003 Bjørn Dahle Dr. scient Reproductive strategies in Scandinavian brown bears 



Biology 

  2003 Cyril Lebogang 
Taolo 

Dr. scient 
Biology 

Population ecology, seasonal movement and habitat 
use of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

  2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species 
(Helicoverpa armigera, Helicoverpa assulta and 
Heliothis virescens) 

  2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

  2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to 
species interaction and microclimatic gradients in 
alpine and Artic environments 

  2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

  2003 Eldar Åsgard 
Bendiksen 

Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

  2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

  2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

  2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein 
complex in Arabidopsis thaliana 

  2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent 
past, present state and future possibilities 

  2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant 
odours in heliothine moths. An anatomical, 
physiological and behavioural study of three related 
species (Heliothis virescens, Helicoverpa armigera 
and Helicoverpa assulta) 

  2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the 
natural environment 

  2004 Emmanuel J. Gerreta Dr. 
philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

  2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

  2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in 
cultivated strawberry (Fragaria x ananassa): 
characterisation and induction of the gene following 
fruit infection by Botrytis cinerea 

  2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

  2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR 
analysis of whole-cell samples 

  2005  Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

  2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

  2005 Tonette Røstelien ph.d 
Biology 

Functional characterisation of olfactory receptor 
neurone types in heliothine moths 



  2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

  2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid 
hormone and vitamin A concentrations 

  2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

  2005 Lasse Mork Olsen ph.d 
Biology 

Interactions between marine osmo- and phagotrophs 
in different physicochemical environments 

  2005 Åslaug Viken ph.d 
Biology 

Implications of mate choice for the management of 
small populations 

  2005 Ariaya Hymete Sahle 
Dingle 

ph.d 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

  2005 Anders Gravbrøt 
Finstad 

ph.d 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

  2005 Shimane Washington 
Makabu 

ph.d 
Biology 

Interactions between woody plants, elephants and 
other browsers in the Chobe Riverfront, Botswana 

  2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 

  2006 Kari Mette Murvoll ph.d 
Biology 

Levels and effects of persistent organic pollutans 
(POPs) in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?  

  2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

  2006 Nils Egil Tokle ph.d 
Biology 

Are the ubiquitous marine copepods limited by food 
or predation? Experimental and field-based studies 
with main focus on Calanus finmarchicus 

  2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

  2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in 
the breeding habitat of amphibians in Norway 

  2006 Johanna Järnegren ph.d 
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

  2006 Bjørn Henrik Hansen ph.d 
Biology 

Metal-mediated oxidative stress responses in brown 
trout (Salmo trutta) from mining contaminated rivers 
in Central Norway 

  2006 Vidar Grøtan ph.d 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

  2006 Jafari R Kideghesho ph.d 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

  2006 Anna Maria Billing ph.d 
Biology 

Reproductive decisions in the sex role reversed 
pipefish Syngnathus typhle: when and how to invest in 
reproduction 

  2006 Henrik Pärn ph.d 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

  2006 Anders J. Fjellheim ph.d 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

  2006 P. Andreas Svensson ph.d 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

  2007 Sindre A. Pedersen ph.d 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-
essential amino acid cysteine 



  2007 Kasper Hancke ph.d 
Biology 

Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

  2007 Tomas Holmern ph.d 
Biology 

Bushmeat hunting in the western Serengeti: 
Implications for community-based conservation 

  2007 Kari Jørgensen ph.d 
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens 

  2007  Stig Ulland ph.d 
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae 
L.) (Lepidoptera, Noctuidae). Gas Chromatography 
Linked to Single Cell Recordings and Mass 
Spectrometry 

  2007 Snorre Henriksen ph.d 
Biology 

Spatial and temporal variation in herbivore resources 
at northern latitudes 

  2007 Roelof Frans May ph.d 
Biology 

Spatial Ecology of Wolverines in Scandinavia  
 

  2007 Vedasto Gabriel 
Ndibalema 

ph.d 
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 

  2007 Julius William 
Nyahongo 

ph.d 
Biology 

Depredation of Livestock by wild Carnivores and 
Illegal Utilization of Natural Resources by Humans in 
the Western Serengeti, Tanzania 

  2007 Shombe Ntaraluka 
Hassan 

ph.d 
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

  2007 Per-Arvid Wold ph.d 
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

  2007 Anne Skjetne 
Mortensen 

ph.d 
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and 
Profiling of Gene Expression Patterns in Chemical 
Mixture Exposure Scenarios 

  2008 Brage Bremset 
Hansen 

ph.d 
Biology 

The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

  2008 Jiska van Dijk ph.d 
Biology 

Wolverine foraging strategies in a multiple-use 
landscape 

  2008 Flora John Magige ph.d 
Biology 

The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti 
Ecosystem, Tanzania 

  2008 Bernt Rønning ph.d 
Biology 

Sources of inter- and intra-individual 
variation in basal metabolic rate in the zebra 
finch, (Taeniopygia guttata) 

  2008 Sølvi Wehn ph.d  
Biology 

Biodiversity dynamics in semi-natural 
mountain landscapes.  
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

  2008 Trond Moxness 
Kortner 

ph.d 
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus 
morhua): Identification and patterns of 
differentially expressed genes in relation to 
Stereological Evaluations" 

  2008 Katarina Mariann 
Jørgensen 

Dr.Scient 
Biology 

The role of platelet activating factor in 
activation of growth arrested keratinocytes 
and re-epithelialisation 

  2008 Tommy Jørstad ph.d Statistical Modelling of Gene Expression 



Biology Data 
  2008 Anna Kusnierczyk ph.d 

Bilogy 
Arabidopsis thaliana Responses to Aphid 
Infestation 

  2008 Jussi Evertsen ph.d 
Biology 

Herbivore sacoglossans with photosynthetic 
chloroplasts 
 

  2008 John Eilif Hermansen ph.d 
Biology 

Mediating ecological interests between locals and 
globals by means of indicators. A study attributed to 
the asymmetry between stakeholders of tropical forest 
at Mt. Kilimanjaro, Tanzania 

  2008 Ragnhild Lyngved ph.d 
Biology 

Somatic embryogenesis in Cyclamen persicum. 
Biological investigations and educational aspects of 
cloning 

  2008 Line Elisabeth  
Sundt-Hansen 

ph.d 
Biology 

Cost of rapid growth in salmonid fishes 
 

  2008 Line Johansen ph.d 
Biology 

Exploring factors underlying fluctuations in white 
clover populations – clonal growth, population 
structure and spatial distribution 

  2009 Astrid Jullumstrø 
Feuerherm 

ph.d 
Biology 

Elucidation of molecular mechanisms for pro-
inflammatory phospholipase A2 in chronic disease 

  2009 Pål Kvello ph.d 
Biology 

Neurons forming the network involved in gustatory 
coding and learning in the moth Heliothis virescens: 
Physiological and morphological characterisation, and 
integration into a standard brain atlas 

  2009 Trygve Devold 
Kjellsen 

ph.d 
Biology 

Extreme Frost Tolerance in Boreal Conifers 

  2009 Johan Reinert Vikan ph.d 
Biology 

Coevolutionary interactions between common 
cuckoos Cuculus canorus and Fringilla finches 

  2009 Zsolt Volent ph.d 
Biology 

Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and suspended 
matter 

  2009 Lester Rocha ph.d 
Biology 

Functional responses of perennial grasses to simulated 
grazing and resource availability 

  2009 Dennis Ikanda ph.d 
Biology 

Dimensions of a Human-lion conflict: Ecology of 
human predation and persecution of African lions 
(Panthera leo) in Tanzania 

  2010 Huy Quang Nguyen ph.d 
Biology 

Egg characteristics and development of larval 
digestive function of cobia (Rachycentron canadum) 
in response to dietary treatments 
-Focus on formulated diets 

  2010 Eli Kvingedal ph.d 
Biology 

Intraspecific competition in stream salmonids: the 
impact of environment and phenotype 

  2010 Sverre Lundemo ph.d 
Biology 

Molecular studies of genetic structuring and 
demography in Arabidopsis from Northern Europe 

  2010 Iddi Mihijai Mfunda  ph.d 
Biology 

Wildlife Conservation and People’s livelihoods: 
Lessons Learnt and Considerations for Improvements. 
Tha Case of Serengeti Ecosystem, Tanzania 

  2010 Anton Tinchov 
Antonov 

ph.d 
Biology 

Why do cuckoos lay strong-shelled eggs? Tests of the 
puncture resistance hypothesis 

  2010 Anders Lyngstad ph.d 
Biology 

Population Ecology of Eriophorum latifolium, a 
Clonal Species in Rich Fen Vegetation 

  2010 Hilde Færevik ph.d 

Biology 

Impact of protective clothing on thermal and cognitive 

responses 

  2010 Ingerid Brænne Arbo ph.d 

Medical 

Nutritional lifestyle changes – effects of dietary 

carbohydrate restriction in healthy obese and 



technolo

gy 

overweight humans 

  2010 Yngvild Vindenes ph.d 

Biology 

Stochastic modeling of finite populations with 

individual heterogeneity in vital parameters 

  2010 Hans-Richard 

Brattbakk 

ph.d 

Medical 

technolo

gy 

The effect of macronutrient composition, insulin 

stimulation, and genetic variation on leukocyte gene 

expression and possible health benefits 

  2011 Geir Hysing Bolstad ph.d 

Biology 

Evolution of Signals: Genetic Architecture, Natural 

Selection and Adaptive Accuracy 

  2011 Karen de Jong ph.d 

Biology 

Operational sex ratio and reproductive behaviour in 

the two-spotted goby (Gobiusculus flavescens) 

  2011 Ann-Iren Kittang ph.d 

Biology 

Arabidopsis thaliana L. adaptation mechanisms to 
microgravity through the EMCS MULTIGEN-2 
experiment on the ISS:– The science of space 
experiment integration and adaptation to simulated 
microgravity 

  2011 

 

Aline Magdalena Lee ph.d 

Biology 

Stochastic modeling of mating systems and their 

effect on population dynamics and genetics 

  2011 

 

Christopher 

Gravningen Sørmo 

ph.d 

Biology 

Rho GTPases in Plants: Structural analysis of ROP 

GTPases; genetic and functional 

studies of MIRO GTPases in Arabidopsis thaliana 

  2011 Grethe Robertsen ph.d 

Biology 

Relative performance of  salmonid phenotypes across 

environments and competitive intensities 

  2011 

 

 

Line-Kristin Larsen ph.d 

Biology 

Life-history trait dynamics in experimental 

populations of guppy (Poecilia reticulata): the role of 

breeding regime and captive environment 

  2011 Maxim A. K. 

Teichert 

ph.d 

Biology 

Regulation in Atlantic salmon (Salmo salar): The 

interaction between habitat and density 

  2011 Torunn Beate Hancke ph.d 

Biology 

Use of Pulse Amplitude Modulated (PAM) 

Fluorescence and Bio-optics for Assessing Microalgal 

Photosynthesis and Physiology 

  2011 Sajeda Begum ph.d  

Biology 

Brood Parasitism in Asian Cuckoos: Different Aspects 

of Interactions between Cuckoos and their Hosts in 

Bangladesh 

  2011 Kari J. K. Attramadal ph.d 

Biology 

Water treatment as an approach to increase microbial 

control in the culture of cold water marine larvae 

  2011 Camilla Kalvatn 

Egset 

ph.d 

Biology 

The Evolvability of Static Allometry: A Case Study 

  2011 AHM Raihan Sarker ph.d 

Biology 

Conflict over the conservation of the Asian elephant 

(Elephas maximus) in Bangladesh 

  2011 Gro Dehli Villanger ph.d 

Biology 

Effects of complex organohalogen contaminant 

mixtures on thyroid hormone homeostasis in selected 

arctic marine mammals 

  2011 Kari Bjørneraas ph.d 

Biology 

Spatiotemporal variation in resource utilisation by a 

large herbivore, the moose 

  2011 John Odden ph.d 

Biology 

The ecology of a conflict: Eurasian lynx depredation 

on domestic sheep 

  2011 Simen Pedersen ph.d 

Biology 

Effects of native and introduced cervids on small 

mammals and birds 

  2011  Mohsen Falahati-

Anbaran 

ph.d 

Biology 

Evolutionary consequences of seed banks and seed 

dispersal in Arabidopsis 

  2012 Jakob Hønborg 

Hansen 

ph.d 

Biology 

Shift work in the offshore vessel fleet: circadian 

rhythms and cognitive performance 

  2012 

 

Elin Noreen 

 

ph.d 

Biology 

Consequences of diet quality and age on life-history 

traits in a small passerine bird 



2012  Irja Ida Ratikainen ph.d 

Biology 

Theoretical and empirical approaches to studying 

foraging decisions: the past and future of behavioural 

ecology 

  2012 Aleksander Handå ph.d 

Biology 

Cultivation of mussels (Mytilus edulis):Feed 

requirements, storage and integration with salmon 

(Salmo salar) farming 

  2012 Morten Kraabøl ph.d 

Biology 

Reproductive and migratory challenges inflicted on 

migrant brown trour (Salmo trutta L) in a heavily 

modified river 

  2012 

 

2012 

Jisca Huisman 

 

Maria Bergvik 

ph.d 

Biology 

ph.d 

Biology 

Gene flow and natural selection in Atlantic salmon 

 

Lipid and astaxanthin contents and biochemical post-

harvest stability in Calanus finmarchicus 

       

2012 

Bjarte Bye Løfaldli ph.d 

Biology 

Functional and morphological characterization of 

central olfactory neurons in the model insect Heliothis 

virescens. 

  2012 Karen Marie 
Hammer 

ph.d 

Biology. 

Acid-base regulation and metabolite responses in 
shallow- and deep-living marine invertebrates during 
environmental hypercapnia 

  2012 Øystein Nordrum 

Wiggen 

ph.d 

Biology 

Optimal performance in the cold 

  2012 Robert Dominikus 

Fyumagwa 

Dr. 

Philos. 

Anthropogenic and natural influence on disease 
prevalence at the human –livestock-wildlife interface 
in the Serengeti ecosystem, Tanzania 

  2012 Jenny Bytingsvik ph.d 

Biology 

Organohalogenated contaminants (OHCs) in polar 
bear mother-cub pairs from Svalbard, Norway  
Maternal transfer, exposure assessment and thyroid 
hormone disruptive effects in polar bear cubs 

  2012 Christer Moe 
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