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Problem text

The problem text for the master’s thesis is the same as for the specialization project delivered

in December 2016, and is thus presented here.
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Abstract

Steels exhibit a great temperature dependence in their deformation behaviour and tough-

ness. At higher temperatures, steel is ductile and the ductile fracture mechanism with void

nucleation, growth and coalescence, prevails. At lower temperatures, however, the mecha-

nism shifts towards brittle, and the steel may fracture catastrophically and without warning.

The ductile-to-brittle transition happens over a temperature range, which is of crucial im-

portance when designing structures and components for the cold Arctic.

The goal of this work was to establish a simulation scheme that incorporates both ductile

and brittle fracture modes with respect to temperature in order to describe the aforemen-

tioned toughness dependency on temperature. Whether or not changing only temperature

and constraint level would be sufficient to show the ductile-to-brittle transition without in-

corporating ductile material softening through the Gurson model was investigated. It was

found that a stress-criterion alone would not capture the transition of material behaviour.

The complete Gurson model was used to simulate softening induced ductile tearing in

ABAQUS. The model was incorporated through a user subroutine, UMAT. Simulations for

three different temperatures (21°C , 0°C and −60°C ) were run. Fracture resistance curves

for all temperatures were plotted from the simulations and compared to experimental data.

From this the ductile-to-brittle transition as captured by the complete Gurson model could

be plotted. As the model was fitted from the highest temperature, 21°C , the fit was very good

and the model predicted both CTOD and ∆a-values here. However, the Gurson model is not

able to capture the brittle characteristics that appear at lower temperatures, and the results

clearly deviated at both 0°C and −60°C .

To account for cleavage, a brittle stress criterion, the RKR-criterion, was applied as a post-

processing routine. The input parameters for the criterion were fitted from −60°C , and the

prediction of CTOD at this temperature from simulations was very good. A parametric study

of the input parameters for the RKR-criterion has been conducted. The length scale, which

should be tied with microstructure, was used as a material fitting parameter.

The combined Gurson+RKR model severely overestimated brittleness at high tempera-

tures and needed a competing criterion to determine if cleavage has occurred or not. The

CTOD at the increment in the simulation corresponding to the maximum force of the char-

acteristic experimental value was used for this. The resulting ductile-to-brittle transition

curve gave accurate results at both the upper and lower shelf, and satisfactory, if somewhat

conservative, results in the intermediate region. The model captured the change of fracture

mechanism over the temperature range from −60°C to 21°C . The model still needs some im-

provement. Some of the material parameters have been detached from their physical value

and used as fitting parameters. The simulated DBT-curve is not uniquely determined, but

can be shifted.
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Sammendrag

Stål viser stor temperaturavhengighet i sin deformasjonsadferd. Ved høyere temperaturer er

stål duktilt og den duktile bruddmekanismen med nukleasjon, vekst og koalesens av porer

råder. Ved lavere temperaturer skifter mekanismen seg mot sprø, og stålet kan bryte katastro-

falt og uten forvarsel. Den duktile til sprø overgangen skjer over et temperaturområde som

er avgjørende for utformingen av konstruksjoner og komponenter for kalde arktiske strøk.

Målet med oppgaven var å etablere et simuleringforløp som inkorporerer både duktile

og sprø bruddmekanismer med hensyn til temperatur. Hvorvidt endring av bare temper-

atur og constraintnivå ville være tilstrekkelig til å vise den duktile til sprø overgangen uten å

inkorporere materialmykning gjennom Gurson-modellen ble undersøkt. Det ble konkludert

med at et stresskriterium alene ikke kunne fange overgangen i materiell atferd. Den kom-

plette Gurson-modellen har blitt brukt til å simulere duktil riving i ABAQUS. Modellen ble

innlemmet gjennom en bruker subrutine, UMAT. Simuleringer for tre forskjellige tempera-

turer (21°C , 0°C og−60°C ) ble utført. Bruddmotstandskurver for alle temperaturer ble plottet

fra simuleringene og sammenlignet med eksperimentelle data. Fra dette kan den duktile til

sprø overgangen som fanget av den komplette Gurson-modellen bli plottet. Da modellen

var tilpasset høyeste temperatur, 21°C , var prediksjonen veldig bra, og modellen fanget både

CTOD- og ∆a-verdier her. Gurson-modellen er imidlertid ikke i stand til å fange de sprø

egenskapene som opptrer ved lavere temperaturer, og resultatene avviker klart ved både 0°C

og −60°C .

For å ta hensyn til spaltning ble et sprøtt stresskriterium, RKR-kriteriet, anvendt som en

rutine etter simulering. Inputparametrene for kriteriet ble tilpasset −60°C , og derfor var

prediksjonen av CTOD ved denne temperaturen fra simuleringer meget god. En parame-

terstudie av inputparametrene for RKR-kriteriet er utført. Lengdeskalaen, som skal knyttes

til mikrostruktur, ble brukt som en tilpasningsparameter.

Den kombinerte Gurson + RKR modellen overvurderte sterkt sprøhet ved høye tempera-

turer og trengte et konkurrerende kriterium for å avgjøre om spaltning har oppstått eller ikke.

CTOD ved inkrementet i simuleringene tilsvarende den maksimale kraften av den karakter-

istiske eksperimentelle verdien ble brukt til dette. Den resulterende duktile-til-sprø over-

gangskurven ga nøyaktige resultater på både øvre og nedre platå og tilfredsstillende resul-

tater i mellomområdet. Modellen fanger mekanismeendringene i materialet over tempera-

turintervallet fra −60°C til 21°C . Modellen trenger imidlertid videre utvikling. Noen av mate-

rialparametrene er løsnet fra deres fysiske verdi og brukes som tilpasningsparametere. Den

simulerte overgangskurven er ikke unikt bestemt, men kan tilpasses etter ønske.
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Nomenclature

A Specimen Cross-Section Area

A0 Initial Specimen Cross-Section Area

B Depth of a SENB Specimen

C0 Particle Diameter

E Young’s Modulus of Elasticity

E ′ Plane Strain Dependent Young’s Modulus

F Applied Force

G Shear Modulus

K I c Critical Stress Intensity Factor

L Elongation

L0 Initial Specimen Length

R Artificial Unit Cell Dimension

R0 Initial Artificial Unit Cell Dimension

S Distance Between Applied Loads

Tp Peak Temperature

W Width of a SENB Specimen

∆a Crack Extension

∆aav g Average Crack Extension

∆t8/5 Cooling Time from 800-500 ° C

Φ Gurson Yield Function

α Ferrite

δi j Kronecker Delta

ε True Strain

εp Plastic Strain Tensor

γ Austenite

γp Plastic Surface Energy

γs Elastic Surface Energy

γe Effective Surface Energy

γg b Plastic Surface Energy over a Grain Boundary

εp Equivalent Plastic Strain

σ Flow Stress

r Mean Void Radius

σ True Stress
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viii Nomenclature

σ22 Opening Stress

σU T S Ultimate Tensile Stress

σV M Von Mises (equivalent) Stress

σapp Applied Remote Stress

σc Critical Stress

σe Equivalent Stress

σ f Critical Crack Tip Stress

σh Hydrostatic Stress

σi j Stress Tensor

σi Stress Resisting Dislocation Movement

σm Mean Normal Stress

σy s Yield Stress

σy y Opening Stress

τi Shear Stress Resisting Dislocation Movement

τs Applied Shear Stress

b Burger’s Vector

υ Poisson’s Ratio

a Crack Length

d Average Grain Diameter

e Engineering Strain

f Void Volume Fraction

f ( a
W ) Dimensionless Shape Factor

f ∗ Artificially Accelerated Void Growth

fε Void Nucleation Intensity

f0 Initial Void Volume Fraction

fF Void Volume Fraction at Final Fracture

fc Critical Void Volume Fraction

lc Mesh Size

n Strain Hardening Exponent

q Heat Input per Unit Length Weld

q1 Constant Factor (=1.5)

q2 Constant Factor (=1)

r Void Radius

rp Rotational Factor

s Engineering Stress

xc Characteristic Distance



Nomenclature ix

BCC Body-Centered Cubic

CGHAZ Coarse Grained Heat Affected Zone

CMOD Crack Mouth Opening Displacement

CTOD Crack Tip Opening Displacement

DBTT Ductile-to-Brittle Transition Temperature

FCC Face-Centered Cubic

HAZ Heat Affected Zone

M-A Martensite-Austenite

RKR Ritchie-Knot-Rice

SENB Single-Edge-Notched Bend Specimen

UMAT User-Defined Material Model
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1 | Introduction

Industrial activity in arctic climates is increasing. The Arctic region is characterized by

ice, harsh weather, low temperatures and large distances, which all contribute to the need of

enhanced material performance and abilities. In order to fully exploit the Northern region’s

resources, better materials, including better comprehension of their mechanical properties

under the influence of extreme weather conditions, is both a necessity and a concern.

One of the most sought after mechanical properties of steel is the ductile-to-brittle tran-

sition temperature (DBTT). This temperature range is often characterized by a more or less

gradual shift from a ductile to brittle behaviour as the temperature decreases. Brittle be-

haviour may be catastrophic as the fracture will happen abruptly, and must therefore be

avoided. Setting a scheme for determining a steels behaviour over a large temperature inter-

val ranging from complete ductile to complete brittle, including the transition, will improve

the ability to design materials for extreme weather conditions. Using computational simula-

tions to determine the DBTT for a material requires less testing in the lab. This will lower the

costs as both time and test material requirements are reduced. A simulation scheme for the

ductile-to-brittle transition must be able to capture material softening at higher tempera-

tures, brittle characteristics a low temperatures as well as a combination in the intermediate

temperature region.

This thesis presents the necessary underlying theoretical principles behind the ductile-

to-brittle transition phenomena, along with the material mechanics that define the material

models used in simulation. The Gurson model has been used to simulate ductile rupture in

ABAQUS and the RKR-criterion has been applied as a post-processing routine to account for

cleavage. The underlying ideas for both models are presented and their implementation to

the computational simulation scheme discussed.

The scope of the thesis is to establish whether or not a combined Gurson-RKR model

is able to capture the shift in material behaviour with temperature. Each model and their

respective attributions have been assessed individually before the combined model has been

evaluated.
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2 | Theoretical Background

This section will cover theory required for understanding and using the numerical calcu-

lations presented in the thesis. Some theoretical elements are used directly in calculations

and discussion in subsequent chapters, while others are added solely to substantiate the dis-

cussion and enhance comprehension.

2.1 Heat Affected Zone

The base material investigated in this thesis is a weld simulated steel. A description is pro-

vided in Section 4.1. Weldments are considered the most dangerous part of large steel struc-

tures as the heat input changes the mechanical properties of the steel in both the weld and

the adjacent areas. The welds are brittle and have a large density of impurities, which con-

tributes to the degradation of toughness. Research on weld simulated steel and their tough-

ness degradation is thus a large part of further material development.

Large steel structures are assembled by welding components together. There are many

ways in which welding can be carried out, but all methods involve deposition of molten weld

metal between the components to be joined. When the weld metal solidifies the two com-

ponents are combined. The heat flow from the weld metal will cause changes in the regions

of the steel structure in close proximity to the weld, which will influence the performance.

The region adjacent to the weld will melt completely. This, along with the weld metal itself,

is called the fusion zone and will exhibit a solidification microstructure after cooling. The

region that is heat affected, but not melted, is called the heat-affected zone (HAZ), and is a

region of great interest.

Diffusion of heat from the fusion zone will cause microstructural changes and, conse-

quently, changes in the mechanical properties of the HAZ. The heat-flow gradient from the

fusion zone to surrounding material is well-defined, making it beneficial to categorize the

HAZ based on changes in microstructure and mechanical properties as a function of dis-

tance from the fusion zone. The transformation temperature from ferrite, α, to austenite, γ,

is, although dependent on the chemical composition, roughly 950°C [12], as seen in Figure

2.1. The region closest to the fusion zone is heated well above this temperature and will not

only be completely transformed to γ, but also be annealed giving rise to a coarse grained

zone, the coarse-grained HAZ (CGHAZ). Further from the fusion zone, the temperature will

not be sufficient to cause full annealing, and the fine-grained HAZ will occur. Beyond this

zone, the heat input will not be sufficient to completely transform the microstructure to γ,

and a partially transformed zone will arise called the intercritical HAZ. At a threshold dis-

tance from the fusion zone, the heat input will not be sufficient to give temperatures above

950°C , and no γ will form in the subcritical HAZ[12]. All zones are indicated in Figures 2.1

3



4 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Different regions of the HAZ. a) fusion zone, b) partially melted zone, c) CGHAZ,
d) fine-grained HAZ, e) partially transformed zone, f) subcritical zone. From [29]

Figure 2.2: Regions of the HAZ in a single pass weld.

and 2.2.

Both peak temperature, Tp , and heating rate decrease with distance from the fusion zone,

while the cooling rate is less dependent on distance. The cooling rate is expressed as the

time, t , it takes to cool from 800°C to 500°C ,∆t8−5, and is central for the transformation from

austenite to ferrite after heating[12]. This parameter along with Tp can be used to express the

thermal cycles of the HAZ. Both parameters are proportional to the heat input, q , given per

unit length of weld. Thus, Tp and ∆t8−5 can be used to determine the thermal cycle at any

point in the HAZ, and are given by Equations 2.1 and 2.2, respectively, where r is the distance

from the fusion line and n equals 1 or 2 depending on the thickness ratio of the components

to be welded and the weld[12].

TP ∝
q

r
(2.1)

∆t8−5 ∝ qn (2.2)
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2.1.1 Coarse-Grained HAZ

The CGHAZ is the zone adjacent to the fusion zone, where Tp reaches its ultimate value. This

region is of particular interest due to the mechanical properties caused by the significant

austenite coarsening and rapid cooling rates, resulting in brittle microstructures. During

cooling, new and complex microstructures will occur, changing the properties of the steel.

The final microstructure of the CGHAZ will be dependant on alloy composition and ∆t8−5,

as well as the density of impurities in the parent metal.

During cooling, the new microstructure will often be more complex than the parent

metal. This is caused by the wide variety of possible transformation products such as bainitic

ferrite, pearlite, carbides and M-A constituents. Bainitic lamella and needle structure are

typically nucleated at γ-boundaries, making the γ grain size affect the microstructural prop-

erties of the CGHAZ. Bainite packet boundaries influence the brittle fracture properties[2].

During rapid cooling, i.e. low ∆t8−5, the transformation from γ to α-bainite is incomplete,

resulting in the presence of M-A constituents[2][41]. The M-A constituents are hard, brittle

islands of carbon rich martensite and retained austenite enclosed in a bainitic ferrite matrix.

They are further discussed in Section 2.1.2.

The CGHAZ has historically been viewed as the region in the HAZ with lowest toughness.

In later studies, the intercritically reheated CGHAZ (ICCGHAZ) has shown the highest degra-

dation in toughness because it exhibits several unfavourable microstructural features, large

prior austenite grain size, bainite, M-A constituents and microalloy precipitates[63]. During

mulitpass welding the CGHAZ will be reheated to the α+γ-region shown in Figure 2.1. The

material will experience a partial transformation to γ where γ will nucleate and grow along

prior austenite grain boundaries and bainitic boundaries in the CGHAZ[63]. Upon cooling,

M-A constituents will form in a bainite matrix, degrading the toughness of the steel.

2.1.2 M-A Constituents

M-A constituents are generally considered as the major contributor to deterioration of HAZ

toughness [23][41][50][51][63]. The brittleness of the M-A constituents is linked to cleavage.

They crack readily and promote cleavage fracture initiation. The M-A constituents are signif-

icantly harder than the matrix and will therefore promote a local stress concentration when

the material is stressed. The high stresses around the M-A constituent interface might even-

tually lead to debonding between the M-A constituent and the matrix. This will introduce a

microcrack that might propagate either in a brittle manner, as described in Section 2.5.1 or

in a ductile manner, described in Section 2.5.2, by linking with other debonded regions

During the phase transformation fromγ toα-bainite, the unit cells of the material change

from a FCC to a BCC structure meaning that the material experiences a volume expansion.

This will introduce stresses in the matrix which will be influenced by the presence of M-A

constituents. Two or more M-A constituents in proximity will generate overlapping stress

and strain fields that amplify the stress concentration. The effect of flaws and microcracks



6 CHAPTER 2. THEORETICAL BACKGROUND

on stress fields in treated in Section 2.7.1.

Several studies have concluded with M-A constituents being the dominating factor for

lowered toughness in the HAZ. The degree of deterioration is linked directly to the size and

volume fraction of M-A constituents[23][24][50][51]. This is further treated in Section 2.5.3

2.2 Deformation

All materials experience deformation when subjected to an external load. The deformation

process may be divided into two separate stages, the elastic stage and the plastic stage. Dur-

ing elastic deformation, the interatomic bonds in a material will only be stretched, and the

material will recover its original shape if the stresses are relieved. When the applied load ex-

ceeds the elastic limit, the mode of deformation switches to plastic. The interatomic bonds

will be broken and rebuilt leaving permanent changes so that the material will not recover

its original shape upon removal of the load.

Materials can generally be classified as either ductile or brittle depending on their abil-

ity to undergo plastic deformation. A brittle material will fracture at the elastic limit load,

whereas a ductile material will redistribute the stresses. This means that a ductile material is

able to undergo plastic deformation and experience plastic flow[25]. The main deformation

mechanism in a ductile material is dislocation movement.

2.2.1 Dislocations and Slip

Using the term dislocation to describe a line defect at the atomic scale was first introduced

by G.I. Taylor (1934)[68]. A dislocation can be perceived as a two-dimensional fault in the ho-

mogeneous atomic stacking pattern of a material. The movement of dislocations is respon-

sible for plastic deformation of a material[16][25]. Thus, a ductile material can be viewed as

a material where dislocations may move freely. When the stresses within a material reach a

critical value, the dislocations move, and the adjacent atoms move from one side of a dis-

location to the other. The dislocations and the atoms move one interatomic length, which

corresponds to the Burgers vector, b. As the material is deformed through dislocation move-

ment, new dislocations are nucleated.

The process of plastic deformation by dislocation movement is called slip. The disloca-

tion moves along preferred crystallographic planes and directions called slip plane, shown in

Figure 2.3 and slip direction, respectively. Together these two constitute the slip system. The

preferred slip plane is the plane with the most dense atomic packing, and the slip direction

is the most densely packed direction within that plane.

2.2.2 Cracking Due to Dislocations

Dislocations may pile up along their slip planes at obstacles, such as grain boundaries and

M-A constituents, and cause a build up of stresses. The idea that a dislocation pile-up might
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Figure 2.3: A dislocation moves through a crystal lattice along the slip plane. From [16].

cause fracture was first introduced by Zener[84]. Stroh[67] showed that if these stresses were

not relieved through plastic deformation, they would nucleate microcracks in the mate-

rial. Cottrell[20] expressed this mathematically through Equation 2.3 where τs is the applied

shear stress, τi is a frictional stress resisting dislocation movement, n is the number of dislo-

cations with Burgers vector b, β is a constant related to the stress state, and γs is the surface

energy of the crack, i.e. the energy requirement to create two new surfaces.

(τs −τi)nb =βγs (2.3)

Equation 2.3 is an energy balance, which relates the work done by the applied shear stress

in producing a displacement, nb, of dislocations against the frictional stress to the surface

energy requirement of opening a crack. The equation shows that a material will create a

crack when the surface energy requirement is lower than the stress requirement for further

propagation of dislocations. The total displacement expressed by nb is a function of grain

size [25][45], which indicates that a material’s ductility is dependent on the grain size. This

is shown in the Hall-Petch equation, Equation 2.4, where σy s is the yield strength, σi is the

friction stress related to dislocation movement, k a material parameter and d is the average

grain diameter[31][53].

σy s =σi +
k√
d

(2.4)

2.3 Stress-Strain Curve

The elastic and plastic characteristics of a material mentioned in Section 2.2, are described

by its stress-strain curve. An example of a stress-strain curve with some key material param-

eters indicated, is shown in Figure 2.4. The curve is found from tensile testing, described in

Section 2.8.1.

The slope of the elastic part of the curve is the Young’s modulus, E , which is a measure of

the stiffness of a solid material. The yield strength defines the point where the stress-strain

curve bends over into the plastic region, namely, the stress level at which plastic deforma-

tion of a material initiates. Beyond the yield point, the stresses continually increase with

strain due to hardening of the material. The slope of the curve is described by a hardening
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exponent, n, which ranges between 0.1 and 0.5 for most metals[16]. If n = 0, the material

is perfectly plastic, and the plastic part of the stress-strain curve will be flat. The region be-

tweenσy s adnσU T S is called the plastic flow curve. After reaching the ultimate tensile stress,

σU T S , necking will initiate. Non-uniform deformation will prevail until the material eventu-

ally fractures.

Figure 2.4: Stress-strain curve.

2.3.1 Physical Interpretation

On an atomic scale, elastic strain is manifested as small changes in the interatomic spacing

and the stretching of interatomic bonds. Young’s modulus can be viewed as a measure of the

resistance to separation of adjacent interatomic bonds[25]. In other words, the resistance to

undergo plastic deformation and slip.

At the yield stress, σy s , the stress is sufficient to activate dislocations and slip and homo-

geneous deformation occurs. As the density of dislocations increases it becomes increas-

ingly difficult for them to move, and more stress is required for further propagation. This is

called hardening, described by the hardening exponent, and explains the rising plastic flow

curve. When the stress levels reach the ultimate strength of the material, necking will start.

At the onset of necking, local deformation initiates. The voids in the material will grow and

coalesce to form a crack, ultimately resulting in ductile fracture. This is further treated in

Section 2.5.2.

2.3.2 Mathematical Approach

A material’s stress-strain curve is found through tensile testing, described in Section 2.8.1.

The output from such a test is the applied force, F , and the elongation of the material, L.

From the initial dimensions of the test specimen, engineering stresses and strains can be

found through Equations 2.5 and 2.6, respectively. A0 is the initial cross-section area of the

specimen and L0 the initial length.
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s = F

A0
(2.5)

e = L−L0

L0
(2.6)

The specimen elongation will happen in the direction of the applied load. In the direction

perpendicular to the load, the material contracts giving rise to transversal strains. The axial

and transversal strains are related through Poisson’s ratio, υ. The expression for Poisson’s

ratio is shown in Equation 2.7[16].

υ =−εtr ansver sal

εaxi al
(2.7)

When transforming applied force and elongation to engineering stresses and strain, the

initial dimensions of the specimen are used in calculation throughout the test sequence.

This gives a somewhat inaccurate curve as the specimen dimension change with deforma-

tion. To account for the constant change in specimen dimensions and relate F and and L to

the incremental dimensions, Equations 2.8 and 2.9 can be used to transform the engineer-

ing stresses and strains to true stresses and strains. The derivation of these equations can

be found in Appendix A.1. Both curves are shown in Figure 2.4. Equations 2.8 and 2.9 are

only valid until necking. After reaching σU T S , the specimen deforms locally and constantly

updating the dimensions becomes impossible.

σ = s(1+e) (2.8)

ε = ln(1+e) (2.9)

A constitutive approximation for the true stress-strain curves is the Ramberg-Osgood re-

lation, which may be presented as Equations 2.10 and 2.11[58]. The linear elastic part of the

curves may be described solely through the Young’s modulus E , as shown in Equation 2.10.

The plastic region, however, is approximated through the three parameter relation given in

Equation 2.11, where K is a material dependent constant and n is the strain-hardening ex-

ponent. These equations have been used when creating material input for the simulation

scheme, as presented in Section 4.1.1.

ε = σ

E
(2.10)

ε =K (σ
E
)

n
(2.11)
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2.4 Yield Criteria

Subjecting a specimen to uniaxial stress in tensile testing allows for determining the yield

strength as a single scalar value. However, in most cases, materials are subject to complex

three-dimensional loading conditions, which are best described by a stress tensor. This is

called a triaxial stress state, and is shown in Figure 2.5. The stress tensor can be expressed by

a 3x3-matrix as shown in Expression 2.12[25]. Due to conservation of angular momentum,

the tensor is symmetric, also indicated in Expression 2.12. The strain state of a material

under triaxial loading can be expressed by a tensor as well. The strain tensor is described by

a symmetrical 3x3-matrix, equal to the one for stress.

Figure 2.5: Components of stress in three dimensions.

⎡⎢⎢⎢⎢⎢⎢⎣

σxx τx y τxz

τy x σy y τy z

τzx τz y σzz

⎤⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎣

σxx τx y τxz

τx y σy y τy z

τxz τy z σzz

⎤⎥⎥⎥⎥⎥⎥⎦
(2.12)

The general three-dimensional stress state consists of three unequal principal stresses

acting at a point. Principal stresses are found when the stress tensor is rotated so that all

shear-components, τi j , are zero. If all three principal stresses are equal, the stress state is

called hydrostatic and the resulting stress in the material can be calculated from the av-

erage of the three principal stresses, i.e. σh = (σ1+σ2+σ3)/3[25]. To incorporate this in the

expression for a three-dimensional stress state, the stress tensor can be split into two com-

ponents: the hydrostatic stress tensor and the deviatoric stress tensor, as seen in Equation

2.13. The hydrostatic stress tensor involves only pure tension or compression and induces

volume change in the material, while the deviatoric stress tensor constitutes distortions.

⎡⎢⎢⎢⎢⎢⎢⎣

σxx τx y τxz

τx y σy y τy z

τxz τy z σzz

⎤⎥⎥⎥⎥⎥⎥⎦
=

H ydr ost ati c
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎣

σh 0 0

0 σh 0

0 0 σh

⎤⎥⎥⎥⎥⎥⎥⎦
+

Devi ator i c
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎣

σxx −σh τx y τxz

τx y σy y −σh τy z

τxz τy z σzz −σh

⎤⎥⎥⎥⎥⎥⎥⎦
(2.13)

The stress state of a material can be related to its yield strength by reducing the complex

three-dimensional loading condition to a single scalar number, enabling direct comparison

with the yield strength during simple tension. A mathematical relationship as such must
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fulfill the following terms:

• Yielding under a situation of combined stresses can be related to some particular com-

bination of principal stresses.

• Pure hydrostatic pressure does not cause yielding in a continuous solid, i.e. the hydro-

static stress component does not influence the yield stress. Yield strength is dependent

only on the deviatoric stresses.

• The yield criterion must be independent of the choice of axes for an isotropic material,

i.e. it must be an invariant function.

• The yield criterion must be a function of the invariants of the stress deviator[25].

M.T. Huber proposed a yield criteria in 1904[33], but received little attention until R. von

Mises re-proposed it in 1913[77]. The von Mises yield criteria, also called the J2 flow rule,

states that yielding will occur when the second invariant of the stress deviator, J2, exceeds

some critical value, as seen in Equation 2.14. The relationship between the constant k and

yield stress, σy s , was found to be k = σy s/√3 at the onset of yielding. The second invariant

of the deviatoric stress tensor can be expressed through the terms of the stress tensor by

Equation 2.15.

J2 = k2 (2.14)

J2 =
1

6
[(σxx −σy y)2+(σy y −σzz)2+(σzz −σxx)2]+σ2

x y +σ2
y z +σ2

zx (2.15)

Combining Equation 2.14, 2.15 and the expression for k, gives the von Mises yield crite-

rion as expressed by Equation 2.16[25].

σV M = 1√
2
[(σxx −σy y)2+(σy y −σzz)2+(σzz −σxx)2+6(τ2

x y +τ2
y z +τ2

xz)]
1/2

(2.16)

The von Mises stress, also called equivalent stress, σe , can be used to determine whether

or not a material will yield by comparing it to the material’s yield strength. The onset of

yielding is when σV M =σy s[25].

2.4.1 Yield Surface

In a three-dimensional space with the axes aligned with the principal stresses, Equation 2.16

can be represented by an open cylinder oriented at equal angles to the axes. The cylinder

wraps around an axis given by the hydrostatic stress component. This is the von Mises yield

surface, shown in Figure 2.6.
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Figure 2.6: The von Mises yield surface in principal stress coordinates circumscribes a cylin-

der with radius
√

2
3σy s around the hydrostatic axis.

A yield surface can be viewed as a map in a three-dimensional stress space which distin-

guishes non-yielding regions from flowing regions. A particularly useful yield surface is the

π-plane, the projection down the line corresponding to pure hydrostatic stress. The stress at

any point in the stress space can be regarded as the sum of the stress state at the correspond-

ing point on the π-plane and the hydrostatic stress. For the von Mises criterion, the π-plane

is a circle with radius
√

2
3σy s .

The yield surface indicates the onset of yielding under a certain state of stress. A state of

stress which gives a point inside the cylinder represents elastic behaviour, while a point out-

side the cylinder indicates yielding. As plastic deformation occurs the yield surface expands

outwards, maintaining its geometric shape[5][25].

2.4.2 Stress Triaxiality

Stress triaxiality, or the triaxiality of the stress state, is simply given by the ratio between

hydrostatic stresses and the von Mises equivalent stress, as presented in Equation 2.17 where

σ1, σ2 and σ3 are the principal stresses. Plastic deformation of a ductile material under

loading results in void growth and coalescence. The damaged region, where necking occurs

and voids grow and coalesce, has stress in three directions, even if the specimen is subject to

a uniaxial load.

T = σh

σe
=

1
3(σ1+σ2+σ3)

1√
2

√
(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2

(2.17)

The triaxial stress state promotes void growth, hence constitutive equations that account

for damage, such as the Gurson model, must be able to describe the effect of triaxiality[14].

The Gurson model is explained in Section 3.1. Stress triaxiality relates the stresses that are

not responsible for plastic flow to the ones that are. The hydrostatic stresses do not cause
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plastic deformation, while the von Mises equivalent stress expressed as the square root of

the second invariant of the deviatoric stress, is responsible for plastic flow, as explained in

Section 2.4.

2.5 Fracture in Metals

Fracture can generally be defined as the separation of a solid body into two or more parts un-

der the action of a load. This load will be distributed in the solid body as stresses, which may

build up and cause failure. From a phenomenological point of view, fracture may be divided

in two separate stages, crack initiation and crack propagation or crack growth. The relative

importance of these stages define the fracture type. Brittle fracture occurs when crack initia-

tion is the critical stage, and ductile when propagation/growth is prominent. From a mech-

anistic point of view, brittle fracture is related to cleavage, while ductile fracture is linked to

void nucleation, growth and coalescence[72].

2.5.1 Cleavage Fracture

Cleavage fracture is characterized by rapid, unstable crack growth. A material may only fail

by cleavage if the stresses ahead of the crack front exceed the cohesive strength of the mate-

rial. Materials that fail by cleavage are brittle, meaning that the plastic flow is restricted[5];

it is energetically favourable to create two new surfaces rather than undergo plastic defor-

mation. The abrupt breaking of atomic bonds without plastic deformation leaves a sharp,

smooth fracture surface with river markings in the direction of crack propagation originat-

ing from the crack initiation site.

As brittle fracture may be characterized by a stress limit, it occurs without warning, and

must therefore be avoided at all costs. The tendency for brittle fracture is inversely propor-

tional to temperature, indicated through the temperature dependant transition from ductile

to brittle fracture, further discussed in Section 2.6.

2.5.1.1 Cleavage Fracture Initiation

Initiation of cleavage fracture is influenced by a number of factors, such as:

• Second phase particles

• Grain size

• Temperature dependency of yield stress

Second phase particles are suitable initiation sites for cracks. These particles can crack

under the influence of high stresses or plastic strains in the surrounding matrix, initiating

micro-cracks. These micro-cracks, called Griffith-cracks, may propagate through the mate-

rial if the stresses ahead of the crack tip are sufficient. The presence and concentration of
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brittle particles, such as M-A constituents, play a major role in the fracture characteristics

of steel. If a given particle is round and produce a penny-shaped micro-crack, the fracture

stress, σ f will be given by Equation 2.18, where E is Young’s modulus, γp is the required plas-

tic work to create new fracture surfaces, ν is Poisson’s ratio and C0 is the particle diameter[5].

σ f =
√

πEγp

(1−ν2)C0
(2.18)

Grain size influences the transition from ductile to brittle behaviour. Smaller grains shift

the transition temperature down, as well as increase ductility and yield strength of the mate-

rial. Consequently, for large grain sizes, cleavage is more readily initiated. N.J. Petch showed

that the transition temperature is proportional to ln 1√
d

[54]. This is related to crack initia-

tion at dislocation pile-ups as discussed in Section 2.2.2. Smaller grain sizes lead to fewer

dislocation pile-ups, ultimately reducing the local stress concentration. Grain size refine-

ment does not only increase the yield strength, but also σ f . A decrease in grain size implies

an increase in grain boundary area, which leads to smaller grain boundary carbides and thus

higherσ f [5]. In fine-grained steels, the critical event for cleavage initiation may be the prop-

agation of a microcrack across the first grain boundary it encounters. In such cases, Equation

2.18 is updated to Equation 2.19, originally proposed by Griffith. In Equation 2.19, γg b is the

plastic work per unit area required to propagate into adjacent grains and d is the average

grain diameter[5].

σ f =
√

πEγg b

(1−ν2)d
(2.19)

Yield stress decreases with increasing temperature. This is due to the temperature de-

pendency of dislocation velocity in a material. With decreasing temperature, initial dislo-

cation propagation travel with increased velocity[12][43]. This will ultimately increase the

probability dislocation coalescence, which, as discussed in Section 2.2.2, may lead to the

formation of a crack nucleus.

2.5.2 Ductile Fracture

Ductile fracture is defined as failure occurring with a certain degree of measurable plastic

deformation. From the micro-mechanism point of view, ductile failure in metals is often

linked to ductile crack growth which is the result of nucleation, growth and coalescence of

microvoids. When the voids coalesce in an unstable manner, the material will fail by tearing

instability (rapid ductile crack growth) or plastic collapse (all over structural instability)[5].

Ductile fracture is also a process of breaking atomic bonds. Ductile failure always involves

void or crack coalescence at some level. There are, however, situations where failure is es-

sentially coalescence controlled and situation where macroscopic plastic instability governs.

In notched or precracked specimen, failure by coalescence is dominating.

The material is said to be in a damaged state when the mechanisms of void growth, dis-
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tortion and coalescence operate. This pertains to both initially crack-free specimen as well

as in front of a crack tip. As the individual mechanisms proceed, damage accumulates un-

til either a crack initiates, a pre-existing crack propagates or plastic instability occurs. An

important, generally neglected aspect of ductile failure is failure without considerable void

growth. It is likely that for high strength steels, failure is governed by linkage of crack-like

voids. This mechanism is not picked up by computational micro-mechanical models, and

poses challenges for analytic modelling[3].

The process of void nucleation, growth and coalescence is shown in Figure 2.7. For nu-

cleation and growth, plastic deformation is homogeneous throughout the material matrix,

whereas it localizes at the onset of coalescence. In the following sub chapters each individual

mechanism is described in detail.

Figure 2.7: a) Void nucleation, b) strain localized between voids after growth, c) intervoid
necking, d) void coalescence. Adapted from [5].

2.5.2.1 Void Nucleation

C.F. Tipper[72] established that metals fracture prematurely due to void formation at second-

phase particles in the matrix. Goods and Brown[28] reviewed the phenomenon and ad-

dressed both homogeneous and heterogeneous void nucleation. Under certain conditions

voids may form homogeneously in the material matrix. In regions with high dislocation den-

sity and high strain, cavities may form by vacancy condensation. This idea was challenged

by Balluffi et al.[10], who showed that the vacancy concentration generated during deforma-

tion would never reach a high enough value to nucleate cavities homogeneously without the

presence of a cavity nuclei of a reasonable size. Homogeneous void nucleation may happen

in regions of high dislocation density in front of a growing crack. The material has lost its

ability to work harden, and in conjunction with the stress triaxiality at the crack tip, localized

deformation happens. As the crack grows and new surface area is formed, plastic relaxation

occurs allowing dislocations running into the crack to open into cavities[28]. In locations

with high dislocation density, pinned or immobile dislocations may act as barriers for glid-

ing dislocations. The dislocations may pass these obstacles by climbing, inducing a net flow

of vacancy diffusion towards itself ultimately resulting in cavity nucleation.

Under heterogeneous nucleation, second-phase particles and grain boundaries play an

important role. First it is important to distinguish between the mechanism and the mode of

cavitation. The mechanism defines the micromechanics of material transport resulting in a
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cavity, i.e. diffusion or plasticity. The mode defines the driving force of the transport, either

grain boundary sliding or growth in the bulk of the grain under remote stresses. The role of

grain boundaries has been thoroughly investigated[13][18][42][59]. At intermediate temper-

atures and lower strain rates, the primary mode of deformation is grain boundary sliding.

The nucleation of cavities is independent of temperature during sliding, indicating that it is

the matrix displacement rather than the vacancy production and diffusion that determines

nucleation[28]. If the grain boundary sliding meets an obstacle, this can be modelled as a

dislocation pile-up. Gifkins[26] proposed a nucleation model that combined grain boundary

sliding and bulk deformation. If a blocked slip band stops dislocations at a grain boundary,

high tensile stresses may form due to sliding of the grain boundary. The boundary may sep-

arate enabling the dislocations within the slip band to run into the cavity nucleus, resulting

in a stable cavity.

Second phase particles are viewed as the most important factor concerning ductile rup-

ture. Lindley et.al.[69] demonstrated that it was not the magnitude of applied stress that

determines the cavity initiation, but the local deformation state at the interaction between

the particle and matrix. There are two mechanism for void nucleation, decohesion between

the particle and the material matrix or cracking of the particle as presented in Section 2.1.2.

Equiaxed particles generally suffer decohesion while irregularly shaped particles fail by in-

ternal fracture[28].

2.5.2.2 Void Growth

Rice and Tracey[61] proposed a void enlargement law of an isolated void in a perfectly plas-

tic matrix. Equation 2.20 shows the law, where α is a numerical factor, r is the void radius

given by r1+r2+r3/3, r0 is the initial void radius, σh is the hydrostatic stress, σe is the effective

(von Mises) stress and εeq is the equivalent (von Mises) strain. Becker et al.[57] later studied

void growth in sintered iron, motivating important choices in micro-mechanical parameters

entering the Gurson model.

ln( r

r0
) =α∫

εeq

0
exp (1.5σh

σe
)dεp

eq (2.20)

More recently, the growth of artificially inserted voids has been studied through tomogra-

phy. Under uniaxial tension, voids concentrate stress and initially elongate at roughly twice

the speed of the specimen. The voids also grow laterally at a speed commensurate with the

increase in stress triaxiality. At a ratio of lateral void-diameter to void-spacing of about one

third, the kinetics of growth change drastically due to localization of plastic flow in the lig-

aments. This has been further studied by Pardoen et al.[52], Koss et al.[17], and Bezerga et

al.[1]. The common finding was that the onset of a macroscopic crack in a notched specimen

was at a porosity level of about 0.01. This is quite large considering a typical initial void vol-

ume fraction of about 10−4 for structural metals and mean void enlargement ratios in excess

of 4-5[3].
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An important aspect for engineering alloys is to consider the possibility of coexistence

of continuous void nucleation and void growth. Structural material usually contain several

nucleation sites that may initiate at different times. Situations where nucleation occurs at

separate scales pose serious challenges for modelling void nucleation, growth and coales-

cence within conventional continuum mechanics.

2.5.2.3 Void Coalescence

There are several modes of void coalescence depending on the plastic flow characteristics

and microstructure of the material as well as the loading condition. The physics of coales-

cence has long been obscure, and while some aspects are still unclear, the phenomenon has

been documented through empirical observations[3]. There are three commonly observed

coalescence modes, internal necking of the void ligaments, void sheeting, and necklace co-

alescence.

Void impingement, described by internal necking of the void ligaments what hypothe-

sized by Cottrell[21] and later rationalized by Thomason[70]. After an amount of void growth,

the intervoid matrix will loose its load bearing capacity. Deformation will localize in these

areas, ultimately resulting in necking of the matrix between voids. As the material fails, the

voids link together and form a crack. Internal shearing of the void ligaments may cause dis-

tant cavities to coalesce due to localized shearing. The result is local failure by void sheeting

where voids nucleate and develop in narrow bands of secondary voids[22]. Primary voids

nucleate from second phase particles, and grow as the material is plastically deformed. At

higher levels of stress/strain, smaller particles will nucleate secondary voids. Voids from the

larger particles will link together with the smaller, secondary voids, and the material path

between the two void distributions will look like sheets, hence the name void sheeting[47].

Necklace coalescence happens when voids link together along their length. This is thought

to be favourable to ductility, although it could result in delamination[56].

2.5.2.4 Ductile Crack Growth

After a microcrack has been formed, a plastic zone develops at the crack tip and the tip

blunts. As described in Section 2.7.1, large normal stresses develop at the crack tip favouring

nucleation of voids at second phase particles. The size of the highly stressed zone, hence

the opening of the crack, must be large enough to encompass void nucleation sites. A zone

of high stress triaxiality concurrently develops at a distance roughly equal to the crack tip

opening where plastic strains become large. This region favours void growth. When the

voids get large enough and the distance from the crack tip small enough, plastic localization,

i.e. necking, occurs and a coalescence mechanism joins the crack tip and the adjacent void,

similar to the mechanism between two voids[3]. Depending on the initial volume fraction of

voids in the material, as well as their size and the strain hardening capacity of the material in

question, four different coalescence scenarios are distinguished based on experimental and
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numerical studies. They are all shown in Figure 2.8.

Multiple void interaction mechanism happens at sufficiently high porosity. The voids

are closely spaced and grow at roughly the same rate. The voids interact with each other,

including the ones farther from the crack tip, resulting in higher growth rate for voids. Coa-

lescence between several voids and the crack tip starts simultaneously generating multiple

void coalescence[75].

Void by void coalescence mechanism is the most common mechanism for metallic al-

loys. These alloys tend to have initial void volume fractions smaller than 10−2, meaning that

the voids do not interact. The void nearest the crack tip grows alone before coalescing with

the crack tip. As the crack grows, the voids are one by one absorbed[60].

Shear coalescence in the fracture process zone yield a void by void coalescence process

in a zig-zag pattern at the crack tip in low hardening steels[19][44][49]. This is detrimen-

tal to the fracture toughness as shear localization involves less plastic work than a full void

growth/coalescence mechanism.

Diffuse damage zone describes scenarios that do not fit with the three previous mech-

anisms. If the fracture process zone at the crack tip contains a large amount of very small

voids, these may be viewed as a damage volume element inside a specimen, rather than ad-

jacent to a crack tip. The first coalescence may not occur with the crack tip, but rather in

the damage volume. Some metals could exhibit a diffuse damage zone mechanism at crack

initiation and transition into one of the other three mechanism during crack propagation.

This is associated with the change of crack tip stress and strain fields, which has important

consequences for the ductile-to-brittle transition[3].

Figure 2.8: a) multiple void interaction, b) void by void coalescence, c) zig-zag void by void
coalescence, d) diffuse damage zone.

2.5.3 Fracture in CGHAZ

Several studies on the fracture surface of a CGHAZ specimen have been performed in the

recent years, especially concerning fracture mechanisms and the effect of temperature. J.H.

Chen et al. published a paper in 1984[41] studying the fracture surface and crack appearance

in a weld simulated steel at room temperature and at the temperature of liquid nitrogen



2.5. FRACTURE IN METALS 19

(−196°C ). They concluded that there are two different patterns of fracture induced by the M-

A constituents in the CGHAZ: rupture (ductile crack growth) and cleavage (brittle fracture).

At room temperature, the studied fracture surface showed that the majority of cracks nu-

cleated at the boundaries between the M-A constituents and the ferrite matrix. The ferrite

matrix will yield easily at this temperature, but the M-A constituents are hard and unduc-

tile, and will not deform. This creates an amplification of stress in the matrix causing large

amounts of strain, which will result in breaking of the M-A constituent or debonding, induc-

ing microcracks in the matrix. The damage mechanism leading to crack initiation (shearing

of the M-A particle vs decohesion) is dependent on local stress and strain rate[2]. Due to

heavy strain and deformation of ferrite, the microcracks grow to voids during deformation.

With further deformation, the main crack is formed and propagated by coalescence of voids

due to internal necking, ultimately leading to rupture of the specimen. The studied fracture

surface showed that slip bands, localized bands of plastic deformation, stopped in front of

M-A constituents, and deep hole dimples formed by coalescence of several smaller holes[41].

At the temperature of liquid nitrogen, the fracture surfaces showed clear signs of cleav-

age, with river patterns indicating re-initiation of the crack at grain boundaries. The cleavage

fracture facet at the origin of fracture showed that all streaks pointed to a M-A constituent,

making it obvious that cleavage fracture was induced by the constituent. The M-A con-

stituents have two effects on the stress distribution in the matrix: it will create a stress am-

plification and form a triaxial stress state ahead of itself. This is further discussed in Section

2.7.1. Since the ferrite will not deform easily at this temperature, it will not be able to relieve

the stresses and will therefore cleave. When the crack is formed, it will push the stress con-

centration ahead, inducing new microcracks that will link to the main crack eventually re-

sulting in a brittle cleavage fracture[41]. P. Mosheni et al.[51] found that cleavage cracks may

also be initiated in the matrix between two M-A constituents due to residual phase transfor-

mation stresses and overlapping stress concentrations.

J.H. Chen et al.’s study was later supported by S. Lee et al.[63] and A. Lambert-Perlade

et al.[2]. S. Lee et al. tested specimen at −80°C , and observed that the crack propagated

as a number of microcracks connected in a zig-zag pattern, rather than by the connection

of voids. As the M-A constituents are brittle, they will break and form a crack that acts as

so-called Griffith crack when external stresses are applied, meaning that they will cleave at

a certain threshold stress level. The paper also showed that the void nucleation strain in

the CGHAZ is very low due to the premature void nucleation or brittle fracture at M-A con-

stituents, confirming their role in the degradation of the CGHAZ[63].

The paper by A. Lambert-Perlade et al. supported the findings that the fracture surface

depends on temperature. The number of cracking events before final fracture increases with

test temperature. For higher temperatures, stable ductile crack propagation preceded final

fracture.
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Figure 2.9: Ductile to brittle transition with temperature. From [5].

2.6 The Ductile to Brittle Transition

From previous sections it is obvious that the fracture mode of a material is temperature de-

pendent. The studies presented in Section 2.5.3 show that low temperatures correspond to

cleavage fracture, whereas the material behaves in a ductile manner at higher temperatures.

It has been established that steel undergoes a ductile-to-brittle transition over a temperature

range, corresponding to increased material toughness with rising temperature[5][16][54].

The temperature where the transition happens is called the ductile-to-brittle transition tem-

perature, shown in Figure 2.9. At sufficiently low temperatures, the material is brittle and

will exhibit low fracture toughness values. These values gradually increase as the behaviour

of steel shifts towards ductile. At high enough temperatures, the steel is completely ductile

and will have a high fracture toughness. At intermediate temperatures, however, a transition

regime exits. Both brittle and ductile fracture modes are present. Any factor contributing to

embrittlement of the steel, such as M-A constituents, prohibited plastic flow, flaws or cracks,

will raise the ductile-to-brittle transition temperature, which is problematic for service in

Arctic climates.

To account for all variables in a brittle fracture, Cottrell reformulated Equation 2.3 to

Equation 2.21. The derivation is shown in Appendix A.2. Equation 2.21 can be seen as as

summary of the ductile-to-brittle transition where σi is the resistance to dislocation move-

ment, ky and ks express the grain boundary condition to strength, G is the shear modulus,

and β expresses the overall ratio of shear to normal stress; for a notch, β ≈ 1/3. ky and ks are

related through ky =mks , where m expresses the average normal-to-shear stress ratio in the

slip plane[25][45].

(σi d 1/2+ky)ks ≥Gβγs (2.21)
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If the left side of Equation 2.21 is larger than the right side, a microcrack may form, but

not grow[25], and the material will fail by cleavage when the local stresses reach a critical

value. The temperature dependency of the parameters in Equation 2.21 is indicative of a

transition temperature from ductile to brittle fracture. Any factor that increases σi , ky or d ,

or decreases γs will increase the material’s tendency for brittle failure. Hence, the transition

temperature is dependent on grain size, the resistance to propagation of slip, the surface

energy and the stress triaxiality, given by β[45].

As σi is proportional to the yield strength, shown in Equation 2.4, a high value of fric-

tional resistance will lead to brittle fracture since high stresses must be reached before yield-

ing occurs[25]. The transition temperature’s dependency on the frictional stress may be ex-

pressed through the temperature dependency of plastic deformation and flow. As the yield

strength of a material increases with decreasing temperature, the stresses required for plastic

deformation are higher at lower temperatures[55]. The contribution from plastic deforma-

tion will depend on the number of available slip systems and the number of mobile dislo-

cations at the tip of the crack [25]. Von Mises’ criterion for plasticity in a metal states that

at least five independent slip systems are necessary for a polycrystal to undergo a homoge-

neous deformation[78]. This has to some extent been applied to explain low temperature

brittle characteristics when the number of slip systems is restricted. Brittleness may, how-

ever, be encountered in polycrystals that fulfill Von Mises criterion due to barriers of plastic

flow, such as grain boundaries, M-A constituents and microcracks, especially when disloca-

tion mobility is constrained[73].

Since fracture is defined as the separation of a solid, the fracture surface energy, γ, should

be investigated. For cleavage fracture, where crack nucleation is the critical step, the appro-

priate value of γ is the true elastic surface energy, γs[45]. If crack propagation is the critical

step, as for ductile fracture, an effective surface energy, γe , must be considered. Gilman[27]

proposed γe = γsρ/a0, where ρ is the crack tip radius and a0 is the equilibrium atomic spac-

ing. If plastic deformation is restricted by low temperatures, and blunting cannot occur, ρ

will be small, reducing γe . The right side of Equation 2.21 will decrease and the material will

be more susceptible for brittle failure as the temperature declines.

Both ductile and brittle fracture mechanisms initiate through the presence of micro-

cracks or other defects in the material, which nucleate as a result of plastically induced stress

or strain concentrations. The distinction between the modes must be the manner in which

the crack propagates[54]. Ductile crack growth is dependent on plastic strain in the intervoid

matrix which is only possible with unrestricted plastic flow. The nature and distribution of

plastic flow and slip in the material is expected to have major influence on the stress or strain

at fracture. Susceptibility to cleavage fracture is generally enhanced by almost any factor that

increases the yield strength, such as low temperature, strain rate and a triaxial stress state[5].

The underlying mechanism of the temperature dependence of toughness can evidently not

be separated from the mechanisms of plastic flow. At the macro scale, this affects energy

dissipation before fracture, i.e. the fracture toughness. At the micro scale, the flow stress de-
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pendency of temperature might affect conditions for void nucleation[28] as well as the rate

of growth and coalescence[47].

2.7 Fracture Mechanics

The occurrence of brittle fracture of normally ductile materials demonstrated the need for

better understanding of the mechanisms of fracture. This lead to the evolution of the field

fracture mechanics, which quantifies the relationship between material properties, stress

levels, flaw sizes and shapes, and crack propagation mechanisms. This section is dedicated

to some fundamental principles of the mechanics of fracture.

2.7.1 The Amplified Stress Field

The measured fracture strength for most materials is significantly lower than the one derived

from theoretical calculations of atomic bonding energies. This inconsistency is based in the

presence of microscopic flaws or cracks present in all solid materials. As mentioned in Sec-

tion 2.1.2, the flaws produce an amplified or concentrated stress field at their interface with

the material matrix, making them detriment to the fracture strength. This is demonstrated

in Figure 2.10, which shows a stress profile over a cross section containing an internal crack

of length 2a. Figure 2.10 shows that the magnitude of the localized stresses decrease with

distance from the crack. At far removed positions, the stress is the applied stress σapp .

Figure 2.10: Schematic stress profile demonstrating the stress amplification at the crack tip.

The amplification of the local stress is dependent on the orientation and geometry of the

crack. For some configurations it is possible to derive expressions for the local stresses in the

material. Irwin [37], Sneddon [66], Westergaard [81] and Williams [82] were among the first

to publish such solutions. In a polar coordinate system with the origin at the crack tip, the

local stress field in any linear elastic cracked body is given by Equation 2.22, where σi j is the

stress tensor, k is a constant, fi j is a dimensionless function of θ for the leading term, Am is

the amplitude and g m
i j is a dimension function of θ in the m-th term[5].
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σi j = ( k√
r
) fi j (θ)+

∞

∑
m=0

Amr
m
2 g m

i j (θ) (2.22)

Equation 2.22 shows that the solution for any given configuration contains a leading term

proportional to 1/√r , which approaches ∞ as r approaches zero. This is a description of the

stress singularity in front of the crack tip. An issue with the local stress asymptote at r = 0 is

that the material should in theory fracture for any applied load as the local stresses near the

crack tip far exceed the critical fracture stress. This is, obviously, not the case, and needs to

be treated, as described in Section 2.7.2.

2.7.2 The Stress Intensity Factor

The stress intensity factor K , often denoted with the mode of loading, i.e. K I , K I I or K I I I ,

is a scaling factor that relates the 1/√r -singularity to the mode of loading. It is convenient

to replace k in Equation 2.22 with the stress intensity factor given by Equation 2.23, which

allows for updating Equation 2.22 to Equation 2.24 for all modes.

K I = k
√

2π (2.23)

lim
r→0

σ
(I)
i j = K I√

2πr
f
(I)

i j (θ) (2.24)

The stress intensity factor is essentially a description of the amplitude of the crack-tip

singularity. In other words, the stresses and strains near the crack tip are proportional to

K I [5]. Thus, K I can be viewed as a scaling factor. Another important characteristic of K I is

that it defines the crack tip conditions. This means that if K I is known, it is possible to solve

all components of stress, strain and displacement as functions of r and θ. This has made K I

one of the most important concepts in fracture mechanics.

K I can be related to the applied load and specimen dimensions through Equation 2.25,

where F is the load, B is the depth of the specimen and W is the width. f ( a
W ) is a dimension-

less constant that depends of the geometry and mode of loading. For a singe-edge notched

bend test, as described in Section 2.8.2, f ( a
W ) is given by Equation 2.26, where S is the dis-

tance between the applied loads[8].

K I =
F

B
√

W
f ( a

W
) (2.25)

f ( a

W
) =

3 S
W

√
a

W

2(1+2 a
W )(1− a

W )3/2
[1.99− a

W
(1− a

W
){2.15−3.93( a

W
)+2.7( a

W
)

2
}] (2.26)

The effect of cracks and flaws is more extensive in brittle than in ductile materials. Plastic

deformation will ensue when the maximum stress exceeds the yield strength in a ductile
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material. Consequently, the stress distribution will be more uniform in the vicinity of the

crack or flaw, and the fracture strength goes down. Yielding and stress redistribution does

not happen in brittle materials.

Using principles of fracture mechanics, it is possible to show that the critical stress, σc ,

required for crack propagation in a brittle material is described by Equation 2.27, where E

is the Young’s Modulus, γs is the specific surface energy and a is one-half the length of an

internal crack[16]. This equation is similar to Equations 2.18 and 2.19.

σc =
√

2Eγs

πa
(2.27)

To relate the critical fracture stress the fracture toughness of the material, the critical

stress intensity factor can be used. K I c shows the material’s resistance to brittle fracture

when a crack is present[5][16]. K I c is given by Equation 2.28 where ac is the critical crack

length and σc is the critical remote stress[5].

K I c =σc
√
πac (2.28)

The fracture toughness of a material describes the ability to resist brittle fracture. Brittle

materials do not have appreciable plastic deformation in front of an advancing crack, and

are thus vulnerable to cleavage. These material have low K I c -values, while ductile materi-

als have high fracture toughness values[32]. The basis for the derivation of K I c is Equation

2.22 which accounts for stresses in a linear elastic material. Consequently, K I c is not a valid

fracture toughness parameter for materials that exhibit ductile behaviour. They are in the

range of elastic-plastic fracture mechanics, and need other parameters to the describe frac-

ture toughness.

2.7.3 CTOD and CMOD

The crack-tip opening displacement, CTOD, was first defined by Wells[79][80]. Wells discov-

ered that the fracture surfaces of a fracture test specimen moved apart prior to fracture as a

result of plastic deformation and blunting at the crack tip. This is shown in Figure 2.11. The

degree of blunting is proportional to the fracture toughness of the material, and can thus

be used as a fracture toughness parameter. Since the CTOD accounts for plastic crack-tip

conditions, it is a valid elastic-plastic fracture mechanics parameter.

The CTOD relates to the stress intensity factor, K I , through Equation 2.29, where m is

a dimensionless constant equal to 1 for plane stress and 2 for plane strain, σy s is the yield

stress and E ′ is the plane stress or plane strain-dependent Young’s Modulus of the material.

For plane stress conditions, E ′ = E , but for plane strain, E ′ is given by Equation 2.30, where υ

is the Poisson’s ratio, which relates axial and transversal strains in the material.

C T OD =
K 2

I

mσy sE ′
(2.29)
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Figure 2.11: Displacement and blunting of the crack tip.

Figure 2.12: Hinge model for notched three-point bend specimen.

E ′ = E

1−υ2
(2.30)

For macro-sized specimen it is common practice to determine CTOD from measure-

ments of the crack-mouth opening displacement, CMOD. The calculation of CTOD is based

on a hinge model of a three-point bend specimen. The specimen is assumed to be divided

into two parts, divided by the notch, and rotate about a hinge point, shown in Figure 2.12.

This method is known from both literature and standards[5][36].

CTOD can be calculated from Equation 2.31, where the two components are displayed

in Equation 2.32. The first term of Equation 2.32 is the elastic part and relates to elastic

fracture toughness K I . The second term is the plastic term, and uses specimen dimensions

presented in Figure 2.12, where z is the distance of knife edge measurement point from the

notched edge on the specimen, in this thesis equal to 0, and rp is a rotational factor assumed

to be 0.4.

C T OD =C T ODel ast i c +C T ODpl ast i c (2.31)

C T OD =
K 2

I (1−υ2)
2σy sE

+
rp (W −a0)C MOD

rpW +0.6a0+ z
(2.32)
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2.7.4 Crack-Tip Constraint

Constraint may be viewed as a material’s inhibition to plastic flow. As explained in Section

2.7.1, stresses and strains are increased in the presence of a crack tip. This causes high strain

gradients to develop in the local region. The highly strained region is constrained by the

surrounding material, which causes triaxial stress states that in turn complicates stress anal-

yses, as well as influences crack growth and fracture behaviour. The triaxiality of stresses

at the crack tip will to a lesser extent be dissipated through plastic flow, and therefore be

available to enhance material degradation. This elevates local stress, making it easier for the

material to reach its critical fracture stress[4][39][40]. To quantify this restrain on plastic flow

in a flawed material, the ratio of the actual load at plastic collapse for a flawed structure over

the ideal plastic load limit of an unflawed material body, is frequently used.

Constraint level is greatly dependent on factors such as specimen geometry, crack lo-

cation relative to external boundaries, material thickness, type and magnitude of applied

load and stress-strain properties of the material[40]. Deeper notched specimen have more

crack tip constraint than specimen with longer ligaments. Growing cracks, which is a result

of plasticity, influence constraint by shortening the crack ligament. The plastic zone at the

crack-tip will at higher deformation levels merge with the global plasticity in the specimen,

ultimately causing a significant loss of constraint. The stress-strain properties influence con-

straint through the plastic zone at the crack tip. For a given applied stress, this zone will be

larger for a lower strength material, which will result in constraint relaxation[4][39].

Constraint is obviously not a material parameter, but greatly dependent on many outside

factors. The purpose of studying this is to find appropriate methods to characterize crack-

tip stress-strain fields in a specimen so that the fracture toughness results can be transferred

between geometries, crack sizes and types, and loading conditions[38]. The transferability

of material toughness is a key issue in the field of fracture mechanics when it comes to assess

structural integrity of components.

2.8 Testing

In order to determine characteristic material parameters as well as fracture mechanics pa-

rameters, material testing is necessary. In the following section two important test methods

and their applications are described: the tensile test and the stress-strain curve, and the frac-

ture toughness test and the R-curve.

2.8.1 Tensile Testing

Tensile tests are designed to obtain specific material parameters, such as σy s , σU T S and E .

This is done by subjecting a tensile specimen, as shown in Figure 2.13, to controlled uniaxial

tension until failure. During testing, the specimen is fastened in the shoulders and slowly ex-

tended until fracture. An extensometer is fastened to the gage to measure its elongation. The



2.8. TESTING 27

stress-strain curve can be obtained from the applied tensile force and the increase in gage

length, both normalized with respect to the specimen dimensions, as descibed by equations

in Section 2.3.2. The benefit of plotting stress and strain rather than load and elongation is

that the curve will give material characteristics independent of specimen dimensions.

A typical tensile test specimen is shown in Figure 2.13. The shoulders are enlarged for

gripping, and the gage section is reduced relative to the remainder of the specimen in order

to ensure that deformation and failure will be localized in this region. The size limit given to

the transformation area, x, is to ensure that this section does not constrain the deformation

in the gage area.

The stress-strain curve is discussed in Section 2.3.

Figure 2.13: A tensile test specimen

2.8.2 Fracture Toughness Testing

A fracture toughness test is designed to measure the crack growth resistance in a material.

There are five types of specimens permitted in the ASTM E-1820 standard[8], one of which

is the single-edge-notched bend (SENB) specimen used in this thesis and shown in Figure

2.14. The specimen is made from a rolled plate. As engineering steels seldom are homoge-

neous, the rolling direction has influence on the result. Some directions may for instance

require less energy for crack propagation than others, and keeping track of this is important

for accurate fracture toughness testing. When the specimen has been cut with the right di-

mensions from the rolled plate, a notch is machined in the specimen edge. From the notch

a fatigue precrack has to be made. These cracks are produced through cyclic loading of the

specimen. The cyclic loading produces a crack with a small crack tip radius and a small plas-

tic zone at the tip. The crack will thus not influence the material properties and the fracture

toughness test will be accurate.

Figure 2.14: A single-edge-notched bend specimen. From [5]
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The data extracted from the SENB tests for this thesis is the force-CMOD curves. The

force is relatively easy to extract as most set-ups are equipped with load cells. The elongation,

CMOD, is measured through a clip. The clip attaches to the mouth of the crack through

its cantilever beams which are equipped with strain gages that measure an applied voltage.

Deflection of the beams results in change in the voltages which can be related to the opening

of the crack mouth. The output is the force-CMOD curve for the material in question, from

which material toughness parameters, such as K I or CTOD, can be calculated. Determining

the crack extension can be done by cracking open the specimen and examining the fracture

surface in an optical microscope. From these values, the material’s fracture resistance curve

can be plotted.

2.8.2.1 R-curves

A method to illustrate stable and unstable crack growth is through a fracture resistance curve,

also called R-curve. These are made with crack extension after initiation∆a on the x-axis and

a fracture toughness parameter such as K I , C T OD or J on the y-axis. The R-curve illustrates

the manner of crack growth as well as the materials resistance to further crack growth, and

implies that a material’s fracture toughness may change with crack extension.

The shape of the R-curve is dependent on material behaviour. A brittle material will have

a flat R-curve, the materials resistance is constant with crack growth. When the stresses in

the material reach a critical value corresponding to a critical value of K I , C T OD or J , rapid,

unstable crack growth will initiate, ultimately resulting in fracture.

When ductile behaviour is involved, however, the shape of the R-curve differs. Growth

and coalescence of microvoids, which accounts for ductile crack growth, is associated with

a rising R-curve[5]. This is due to the change in size of the plastic zone at the crack tip.

It increases as the crack extends, making each successive increment of crack extension re-

quire more energy than the preceding increment in order to drive the crack farther. The re-

sult is that the fracture resistance curve of a ductile material increases with increasing crack

growth[5][65]. An example of an R-curve is shown in Figure 2.15.

As shown in Figure 2.15, the fracture resistance curve gives a complete description of the

fracture behaviour of a material. The material will start with a small amount of crack growth

due to blunting. In this region the R-curve is nearly vertical. At the onset of stable crack

growth, indicated through the initiation toughness, C T ODC , in Figure 2.15, the material at

the crack tip will fail locally and the crack will grow. Finally, a steady-state is reached. The

fields around the crack tip will move congruently along the crack ligament at constant re-

mote loading. This is denoted C T ODSS
C in Figure 2.15. The slope of the R-curve at a given

amount of crack growth after initiation indicates the stability of the growth. A steep R-curve

is indicative of stable crack growth in the material as energy is increasingly required in order

to maintain crack growth[5][65]. Another configuration that may occur is when the crack

growth resistance decreases locally. The load does not follow the decreasing C T ODR and

the crack propagates in this range until it arrests again. This is according to ASTM E-1290
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Figure 2.15: An example of an R-curve. Adapted from [34].

termed as a pop-in[9].

The R-curve of a material is greatly dependent on the geometry of the tested specimen.

As mentioned in Section 2.7.4, different configurations give different constraint levels. The

crack-tip process zone, which affects the fracture toughness, is reliant on the state of con-

straint that prevails in different geometries. Crack growth resistance decrease with increas-

ing crack depth, i.e. shallow notched specimen that have low constraint levels will exhibit a

steep R-curve after crack initiation[39].

For single-edge notched bend specimen, as described in Section 2.8.2, the region below

the hinge point will have a compressive stress field. This tends to produce additional con-

straint, flattening the R-curve. For deep notched specimen, the hinge point is closer to the

crack-tip, and the effect from the compressive field will be more prominent. As the crack

grows and the ligament decreases, the compressive field approaches the crack-tip, increas-

ing the constraint in the process zone[4]. SENB specimen will yield conservative fracture

toughness values for the tested material.
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This section describes the material models that constitute the basis for the simulations

in the thesis work. There are two models used, the Gurson model which accounts for duc-

tile crack growth through void nucleation, growth and coalescence, and the RKR-criterion

which is a stress criterion for brittle fracture. The background and theory of both models are

described here, while the implementation to the modelling scheme is given in Chapter 4.

3.1 The Gurson Model

Gurson attempted to develop a constitutive theory to describe the whole ductile fracture

process[30]. He did, however, only manage to describe the first deformation phase of duc-

tile fracture, the homogeneous deformation phase with void nucleation and growth. The

proposed constitutive theory contains a yield criteria and a flow rule to incorporate the role

of hydrostatic stress in yield and void growth. The theory also contains elements as void

nucleation, hardening behaviour and a ductile fracture criterion.

The Gurson model builds on the work of Rice and Tracey(1969), who related the change

in the shape of a void to stress triaxiality and plastic strain [61]. The Rice and Tracey model

is based on a single spherical void in an infinite perfectly plastic medium, and is thus not

able to take into account interaction between voids, nor predict ultimate failure. A sepa-

rate failure criterion must be applied to characterize void coalescence. The Rice and Tracey

model predicts failure when the void growth ratio has reached a critical value assumed to

be a material parameter[5]. Since the Rice and Tracey model is applied as a post-processing

calculation, there is no coupling between plasticity and damage.

Gurson’s model accounts for the coupling between plasticity and damage. This was done

through the analysis of plastic flow in a porous medium assuming continuum behavior. The

effect of the voids is averaged throughout the material, and their presence is accounted for

through their influence on the global flow behavior. Gurson presented a yield function that

reflected the softening effect of the voids[30].

The original Gurson yield surface had the issue of only being able to predict complete loss

of load carrying capacity when the void volume fraction had reached 100%. This ultimate

value corresponds to the complete disappearance of material, which is impossible. The yield

function was later modified by Tvergaard [74] to avoid the issue of complete material loss.

The modified yield function is presented in Equation 3.1.

Φ(q,σ, f ) =
σ2

V M

σ2 +2 ⋅q1 ⋅ f ⋅cosh(3q2σm

2σ
)−1−(q1 ⋅ f )2 = 0 (3.1)

In Equation 3.1, f is the current void volume fraction, q1 and q2 are constants introduced

30
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Figure 3.1: The cluster nucleation model and the characteristic parameter f0. From [89]

by Tvergaard, with values of 1.5 and 1, respectively [74], σm is the mean normal stress, σV M

is the von Mises stress, andσ is the flow stress of the matrix material. Setting the void volume

fraction, f , to zero, gives the conventional von Mises yield model. The term σm
σV M

accounts

for the stress triaxiality as discussed in Section 2.4.2

Since the Gurson model uses a yield function dependent on the void volume fraction

in the material, both void nucleation and growth are essential parameters. Void nucleation

may be stress or strain controlled. Of these two, strain controlled is preferred as it is easier

to handle in the finite element implementation of the Gurson model. The mathematical

presentation of strain controlled nucleation is shown in Equation 3.2, where fε is the void

nucleation intensity, and εp is the equivalent plastic strain.

d fnucl eati on = fε ⋅(εp)dεp (3.2)

Three different models for nucleation exist. In this thesis, the cluster nucleation model

has been used and is thus the only one described. For further reading on the other nucleation

models see e.g. [86] or [89]. For the cluster nucleation model, the assumption is that all

voids are nucleated at the beginning of plastic deformation. The corresponding parameter

is called initial void volume fraction, f0, and is shown in Figure 3.1.

For void growth in the Gurson model, a homogenization process is used [5][86]. This

means that the volume fraction of voids for each load increment will be summed and ho-

mogenized as one single void before the next load increment, as shown in Figure 3.2. Be-

cause of incompressibility of the matrix material and the requirement of a volume preserving

plastic flow of the matrix material, the growth rate of existing voids can be described through

Equation 3.3 where εp is the plastic strain tensor and I is the second-order unit tensor, oth-

erwise known as the Kronecker delta, δi j .

d fg r ow th = (1− f )dεp ∶ I (3.3)

The Gurson model cannot in itself predict void coalescence. However, Tvergaard and

Needleman[76] introduced a modification to the yield function in Equation 3.1 that accounts

for final material failure. This modification is in Equation 3.4, where fF is the void volume

fraction at final fracture and f ∗u = 1/q1.
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Figure 3.2: Homogenization of voids.

f ∗ =
⎧⎪⎪⎨⎪⎪⎩

f for f ≤ fc

fc − f ∗u − fc
fF− fc

for f > fc
(3.4)

Equation 3.4 implies that before coalescence, both the void volume fraction and the de-

crease of load carrying capacity follow the Gurson model without adjustment. However,

when a critical void volume fraction, fc , has been reached, the Gurson model assumes co-

alescence through an artificially accelerated void growth, f ∗, after which the load carrying

capacity drops rapidly. The void volume fraction at final failure, fF implies that the load

carrying capacity has vanished, and can be calculated from fF = 0.15+2 f0[89].

3.1.1 Thomason’s Plastic Limit Load Model

The Gurson model is able to simulate void nucleation and growth as well as the post-coalescence

response of the material. It is, however, not able to predict the coalescence itself. As dis-

cussed in Section 2.5.2, ductile crack growth and fracture consists of two distinct phases,

the homogeneous phase with void nucleation and growth and the localized phase with void

coalescence. Thomason argued that the two deformation modes are in competition, and

that the shift from the homogeneous deformation phase to the localized deformation phase

could be described by a plastic limit load model[71]. The base of this model is that both de-

formation modes are dilatational, meaning that the plastic deformation results in change of

the material volume. The prevailing deformation mode will be the one that at the moment

requires less energy. The condition for shift of deformation mode is thus given by Equation

3.5.

σ
homog eneous
1 =σlocal i zed

1 (3.5)

In Equation 3.5,σhomog enous
1 corresponds to the applied maximum principal stress at the

current yield surface. This value is independent of the void volume fraction. It is, however,

important to note that the plastic limit load itself is dependent on the void geometry. For

a material without voids, the plastic limit load is infinite [86]. When the void volume frac-

tion is small σlocal i zed
1 , which characterizes the localized deformation, is high, as shown in

Figure 3.3. This means that the material will deform homogeneously throughout the ma-

trix. As the voids grow, the capacity of the material to resist intervoid necking decreases until

it reaches the plastic limit load where deformation localizes through intervoid necking, i.e.

coalescence[71]. The deformation modes are shown in Figure 3.4.
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Figure 3.3: Competiton of the two deformation models.

Figure 3.4: Homogeneous and localized deformation. From [88]

To define the plastic limit load stress, Thomason proposed an equation incorporating

stress and strain dependent void evolution. For a 2D plane strain problem, the limit is given

by Equation 3.6, where r is the void radius and R is the dimension of the artificial unit cell.

These are given by Equations 3.7 and 3.8, respectively, and shown in Figure 3.4

σ1

σ
< 0.3

r/R−r
+0.6, no coalescence

σ1

σ
= 0.3

r/R−r
+0.6, coalescence starts

(3.6)

r =
√

f

π
eεxx+εzz (3.7)

R =R0eεxx (3.8)

In Equations 3.7 and 3.8, εxx and εzz are components of the strain tensor, R0 is the ini-

tial value of R and f is the current void volume fraction. The equations are based on the

coordinate system in Figure 3.4.
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3.1.2 The Complete Gurson Model

The plastic limit-load model from Thomason’s completed the Gurson model. The new fail-

ure criterion makes the Gurson model capture the complete ductile fracture process of void

nucleation, growth and coalescence. An overview of the complete Gurson model, that con-

tains both the adjustments from Tvergaard and the plastic limit load model by Thomason is

presented below.

The homogeneous yield function by the Gurson model from which the maximum principal

stress at a material point can be calculated.

Φ(q,σ, f ) = σ2
e

σ2 +2q1 f cosh(3q2σm

2σ
)−1−(q1 f )2 = 0

Nucleation and growth of voids for the cluster nucleation model with parameter f0.

d fnucl eati on = fε (εp)dεp

d fg r ow th = (1− f )dεp ∶ I

Void coalescence criterion from Thomason’s limit load model for a 2D plane strain case.

σ1

σ
< 0.3

r/R−r
+0.6, no coalescence

σ1

σ
= 0.3

r/R−r
+0.6, coalescence starts

where r =
√

f
πeεxx+εzz and R =R0eεxx .

After coalescence, the material response is given by Tvergaard and Needleman’s modifica-

tion, where fc is the material response at coalesence.

f ∗ =
⎧⎪⎪⎨⎪⎪⎩

f for f ≤ fc

fc − f ∗u − fc
fF− fc

for f > fc

3.2 The RKR-Criterion

Ritchie, Knott and Rice(1973) introduced a simple model for cleavage failure by relating frac-

ture stress to fracture toughness. In doing so, they also solved the singularity problem dis-

cussed in Section 2.5.1 and explained why steels do not spontaneously fracture upon the

application of a minimal load. Their model is referred to as the RKR-criterion and suggests

that cleavage failure will occur when the stresses ahead of the crack tip exceed a critical value,

σ f , over a characteristic distance, xc .[5][62]

Since cleavage cracks propagate in an unstable manner when the local stresses ahead of

the crack tip,σy y , exceeds the critical value,σ f , using this as a failure criterion seems natural.
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Figure 3.5: Fracture stress over a characteristic distance. Adapted from [5]

Ritchie, Knott and Rice related the macroscopic fracture toughness of a body containing a

sharp pre-crack to the local fracture criterion. This was done by examining the temperature

dependency of K I c in specimen where σ f is known. The 1√
r

dependency of K ensures that

the cleavage stress level is exceeded locally at the crack tip before fracturing, making a size-

scale criterion in addition to the value of σ f crucial, as shown in Figure 3.5.

Ritchie, Knott and Rice found that for unstable crack growth to happen, the applied ten-

sile stress must be sufficient to initiate a crack at a grain boundary as well as propagating

it to the next grain boundary. In other words, σy y must exceed σ f over at least one grain

diameter[62].

Stresses ahead of a sharp crack intensify very close to the crack tip, and hence, crack

initiation can occur at the first grain boundary that is roughly one grain diameter from the

crack tip. For unstable fracture, σy y must exceed σ f over at least another grain diameter.

This makes the total characteristic distance approximately equal to two grain diameters. The

characteristic distance can be regarded as the limiting value of x necessary for unstable crack

growth.
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This chapter outlines the work conducted in the thesis. The material is presented along

with the methods for implementing its properties into the finite element model, also pre-

sented here. The work flow along with the incorporation and determination of material

model parameters are discussed.

4.1 Material

The material investigated in this work is a weld simulated CGHAZ 420MPa steel. SINTEF

performed tensile tests of the steel to obtain the mechanical characteristics presented in

Table 4.1 along with the chemical composition. The steel was weld simulated with a cooling

rate of ∆t8/5 = 5 seconds to achieve a coarse grained heat affected zone and tensile tests were

performed at three temperatures: room temperature (21°C ), 0°C and −60°C . The yield stress

and ultimate tensile stress for these tests are shown in Table 4.2.

Table 4.1: Material characteristics and chemical composition.

Mechanical characteristics

Young’s Modulus
[GPa]

Yield stress
[MPa]

UTS
[MPa]

Poisson’s ratio

208 450 549 0.3
Chemical composition [%w t]

C Si Mn Cu Ni CE
0.09 0.19 1.54 0.28 0.72 0.42

Table 4.2: Yield stress and UTS at different temperatures for the weld simulated steel.

Temperature
Yield stress

[MPa]

UTS
[MPa]

σy s

σU T S

21°C 667 889 0.7503
0°C 676 901 0.7503
−60°C 697 961 0.7253

4.1.1 Determining the Flow Curves

The plastic flow curves for the weld simulated steel was needed in the simulation. To obtain

this, nominal stress-strain curves (s = f (e)) for all temperatures were found through tensile

testing. These are presented in Figure 4.1. This data was implemented in Microsoft Excel and

used to determine the input data for the simulations. Equations 2.8 and 2.9 were used to find

36
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Figure 4.1: Engineering stress-strain for three temperatures.

Figure 4.2: True stress-strain for three temperatures.

true stress (σ) and true strain (ε), respectively. The true stress-strain curves are presented in

Figure 4.2.

The finite element implementation of the Gurson model uses the true plastic flow curve

as material input. However, the number of data points from a tensile test far exceeds the

necessary number for a computational implementation. A constitutive approximation for

the true plastic flow curves was needed to obtain true stresses for desired true strains. The

Ramberg-Osgood equations, Equations 2.8 and 2.9, was used for this. To determine the con-

stants K and n, an optimization scheme in Microsoft Excel was used. A linear ln-ln-plot of

the true plastic flow curve was plotted, to which least-squares was used to find the closest

fit from the Ramberg-Osgood equation. The value for n was found to be 0.082. The input

data was later updated to achieve a hardening exponent of 0.1. The fit from the optimization

scheme for all temperatures is shown in Figure 4.3. The curves marked Out put show the

data points implemented in ABAQUS. The Out put-curves deviate from the experimental

curves at higher strains due to the updated hardening exponent value of 0.1.
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(a) Room temperature, 21 °C (b) 0 °C

(c) −60 °C

Figure 4.3: Material fitting by optimizing the Ramberg-Osgood equation.

4.2 The Finite Element Model

The finite element model used in this thesis was made in ABAQUS CAE. Due to the symmetry

of a hinged three-point bend specimen, only one half of the specimen needed to be modeled.

This was made as a two-dimensional, deformable shell with unit thickness. The half-model’s

dimensions are presented in Table 4.3 and shown in Figure 4.4a. For bending specimen, the

distance between the applied loads should be equal to 4W , which gives the length of S[8].

Table 4.3: CAE-model dimensions.

W
[mm]

a
[mm]

a
W S

[mm]

Length
[mm]

Crack-tip mesh size
[mm2]

10 5 0.5 20 40 0.05x0.1

Figures 4.4a and 4.4b show the boundary conditions of the model. The arrow corre-

sponds to the applied load, which was modeled as displacement at the arrow tip. On the

bottom right side, the model is constrained making it unable to follow the displacement,

forcing it to bend. The crack ligament in the model is also constrained, which is equivalent
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(a) Dimensions. (b) Material section. (c) Mesh.

Figure 4.4: Dimensions, material selection, boundary conditions and mesh of the model.

Figure 4.5: Mesh in the crack region.
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to applying a symmetry condition to the cracked face of the model. These boundary condi-

tions give the desired bending during simulation.

The Gurson model simulation results are strongly affected by the material’s plastic strain

distribution, and boundary conditions need to be set in the way so that the model deforms

without energy loss due to deformation of the regions where the boundary conditions are

applied. Figure 4.4b shows material sections of the model. The blank region is the weld sim-

ulated 420MPa steel described in Section 4.1, and the coloured region indicates elastic ma-

terial. These elastic regions were applied to avoid excessive deformation and consequently

energy loss in the regions. The finite element mesh is shown in Figure 4.4c. The strain sensi-

tivity of the Gurson model indicates that the correct mesh size must be used. This is further

discussed in Section 4.4.3.2. At the crack tip, where the strain gradient is strong, this is es-

pecially important. For this thesis, a mesh size of 0.05x0.1mm2 at the crack tip was chosen

based on values from literature[86]. The mesh in the crack tip region is shown in Figure 4.5.

All elements are four-node plain strain elements (CPE4).

4.3 The Modeling Work Flow

From the ABAQUS CAE model, an input-file (.inp) for the ABAQUS solver was made. This was

updated with the temperature dependent true plastic flow curves, described in Section 4.1.1

and the Gurson parameters, f0 and fc . The Gurson model itself was implemented through a

user subroutine, UMAT. This is further described in Section 4.4. The input file and the UMAT

was then fed into the ABAQUS solver and the simulation run. From this, force-CMOD curves

from the simulations could be plotted and compared to the ones from the fracture tough-

ness testing done by SINTEF. The Gurson parameters were fitted by trial and error from the

fit of the force-CMOD curves at 21°C . When the force-CMOD-curves from the simulations

were satisfactory, a Python-script developed by SINTEF could be run on the output file (.dat)

from ABAQUS. From this, values for ductile crack growth and CTOD were extracted and R-

curves were plotted in Microsoft Excel. A linear fit to the R-curves for the three different

temperatures (21°C , 0°C and −60°C ) was found in Excel, which gave an equation for CTOD

as a function of ∆a. This enabled the possibility of plotting CTOD for different ∆a-values

over the temperature range to show the ductile-to-brittle transition captured by the com-

plete Gurson model. The results are presented in Section 5.3.1.

To implement brittle failure, the RKR-criterion was used. This was applied as a post-

processing calculation on the results from the Gurson simulations with the fitted Gurson

parameters. In the ABAQUS .odb-file, a path was defined along the crack ligament. The

stresses perpendicular to this path, the opening stresses, were found and plotted as a func-

tion of distance from the crack tip in Microsoft Excel. The simulation from −60°C was used

as a basis for the RKR-criterion. A critical distance, xc , was estimated from which the critical

stress, σc , was found from the increment of highest force in the simulation. The same frac-

ture criterion was used for all temperatures. The first increment where the opening stress
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field at the crack-tip med the RKR-criterion was found for 0°C and 21°C . From the Python-

script, the ductile crack growth and CTOD values for these increments could be found, and

incorporated in the ductile-to-brittle transition curves. This is further described in Section

4.5.

Figure 4.6: The work flow

4.4 Implementing the Gurson Model

The Gurson model is derived from a local approach to fracture, which allows for a physically-

based description of fracture incorporating the three stages of ductile rupture used to de-

scribe the damaged process zone. The model consists of constitutive equations coupling

plasticity and damage, referred to as continuum damage mechanics. The damage is consid-

ered as an internal state variable in the continuum mechanics model, it evolves with and is

coupled to the stress and strain field. The essential feature of accumulated damage in the

continuum is the strain-softening. Increased damage leads to a strong decrease in the load

bearing capacity in the material. When it reaches a critical value, the material point looses

its load bearing capacity, mathematically representing a crack[46]. With finite element tools,
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deformation and failure can be predicted with high accuracy by means of material dam-

age constitutive models. The models are, however, prone to strain and damage localization,

making them strongly mesh size dependent[11]. This is further discussed in Section 4.4.3.2.

The Gurson model was implemented in ABAQUS as a material user subroutine, UMAT.

A UMAT defines a constitutive material model that is not part of the ABAQUS library. The

UMAT requires input material data and state-dependent variables. In this thesis, these are

the true plastic flow curves and the Gurson parameters.

This following subsections are dedicated to the computer implementation of the Gurson

model. First, the general algorithm for plasticity simulation is explained. Further, the section

discusses difficulties with the Gurson model implementation and how these have been over-

come. Lastly, the scheme for determining the input parameters required in the constitutive

equations is presented.

4.4.1 Return Mapping Algorithms

The basis for plasticity algorithms is that the underlying material models predict a marked

change in material behaviour once the stress reaches a critical value, the yield stress. In

simulations involving plasticity, return mapping algorithms are central. All such algorithms

work in the same way. A trial stress is computed by assuming an entire time step is elas-

tic, and compared to the yield surface of the material. If the trial stress falls inside the yield

surface, the assumption is correct and the equilibrium equations are trivially solved by per-

forming elastic calculations to find the final stress. If the predicted trial stress falls outside

the yield surface, implying that plastic deformation occurred, the algorithm recognizes that

the tentative assumption of elasticity is incorrect. The algorithm returns the correct updated

stress by projecting the trial stress back to the yield surface.

For typical numerical applications, the incremental stress (and internal parameters, such

as the Gurson parameters), and strain rate are presumed to be known at the beginning of

each time step. The desired output of the calculation is the rate at which the stress (and

the internal parameters) change in response to the applied strain. An increment is elastic

if the strain would return to its initial state at the beginning of the increment if the stresses

were also to be released back to their initial state. Alternatively, the interval of deformation

is plastic and associated with irreversible structural changes in the material.

4.4.2 Numerical Gurson-based model

The challenge with the Gurson model is that it accounts for microscopic void growth, which

leads to macroscopic dilatational flow. Correspondingly, the yield surface changes with dam-

age as it does not depend on the von Mises stress, σe , alone, but also the hydrostatic stress,

σh . This makes computer implementation complicated. For all numerical schemes used for

analysis of elasto-plastic problems, implementing constitutive equations governing material

behaviour is inevitable. For elasto-plastic material models, there exists no one-to-one rela-
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tionship between stress and strain after yielding. In the elastic region, stresses and strains

are related through the Young’s modulus, but in the plastic, hardening range, the use of an

elasto-plastic stiffness matrix (tangent moduli) with an integration scheme for determining

the stresses at integration points, is imperative to ensure convergence of numerical methods.

In 1985, J.C. Simo et al.[64] proposed the use of a consistent tangent moduli for the J2

model with a closest-point projection algorithm for the yield surface. The consistent tan-

gent moduli is consistent with the numerical integration algorithm, and may also be called

linearization moduli. The paper showed that the choice of consistent tangent moduli is de-

pendent on the iteration scheme adopted, and that it governs the convergence rate of the

iterative scheme.

Before 1985, the continuum tangent moduli was frequently used with an Euler forward

integration algorithm. This moduli is derived from continuum rate equations that enforce

the consistency condition that the stress point upon yielding must remain on the yield sur-

face if no unloading occurs. The implication of this is that the stress increment can be calcu-

lated explicitly from any given increment of strain by using the continuum tangent moduli.

The continuum moduli for J2 models can be found in [64]. This requires an explicit integra-

tion algorithm, such as the Euler forward algorithm.

Porous material models, such as the Gurson model, deviate from the J2 model by exhibit-

ing dependence on hydrostatic pressure upon yielding. Finite element methods for model-

ing the behaviour of such materials is not straightforward. The task of formulating a re-

turn mapping algorithm and obtaining linearization moduli consistent with the algorithm

for pressure-dependent models is laborious. Thus, Euler forward integration algorithms

based on continuum elasto-plastic moduli may still be used. This, however, requires very

small time steps to avoid numerical instability[83]. ABAQUS[35] presented an Euler back-

ward integration scheme for generalized plasticity models together with an expression for

the linearization tangent moduli consistent with the algorithm. According to this scheme,

two matrix inversion, where at least one matrix is asymmetrical, must be performed to ob-

tain the consistent tangent moduli. Aravas[6][7] presented a better and more generalized

Euler backward integration scheme with an equation for calculating the consistent tangent

moduli. The equation still requires a matrix inversion.

Z. Zhang[85] published a paper in 1995 studying the possibility of computer implemen-

tation of the Gurson-based model with all three mentioned algorithms in mind:

• Euler forward integration algorithm based on the continuum elasto-plastic moduli

• ABAQUS’ Euler backward integration scheme with an expression for the consistent

tangent moduli

• Aravas’ Euler backward integration scheme with an equation for calculating the con-

sistent tangent moduli

The study showed that the convergence behaviour of the first integration scheme using
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the continuum elasto-plastic moduli was unacceptably poor at relatively large strain incre-

ments. For the two other integration schemes, numerical problems appeared during matrix

inversion as it was not possible. Z. Zhang presented a method for deriving an explicit expres-

sion for the consistent tangent moduli by decomposing stress increments into hydrostatic

and deviatoric components to account for the pressure-dependency of the material upon

yielding. The general consistent tangent moduli forms in [6] and [35] were derived used cou-

pled stress-strain relations. Decomposing the return mapping process, enabled the possibil-

ity of deriving the consistent tangent moduli for general pressure-dependent constitutive

models for the hydrostatic and deviatoric stress components separately. The great advan-

tage of this is that no matrix inversions are needed to obtain the consistent tangent moduli.

The complete Gurson model was implemented into ABAQUS through an Euler backward al-

gorithm with an equation for the consistent tangent moduli as proposed by Z. Zhang in [85].

4.4.3 Determining the Gurson Parameters

The input material data and state-dependent variables required for the Gurson-simulation

are the true plastic flow curves and the Gurson parameters, the initial void volume fraction,

f0 and the critical void volume fraction, fc . A non-uniqueness problem arises when fitting

two parameters, there exits a good fit for the force-CMOD curves for an infinite amount of

pairs[86][87]. However, as the Gurson model itself does not constitute any failure criterion

for void coalescence, it cannot determine the value of fc itself. The new failure model by

Thomason partly solves this issue. As the void coalescence in the plastic limit-load model is

determined by a physical mechanism, and not by a single value, fc becomes a by-product of

the coalescence prediction. Thus, the critical void volume fraction can be seen a material’s

response at coalescence[87]. The material failure is solely controlled by the initial parameter,

and f0 can be uniquely determined by comparing numerical and experimental results.

4.4.3.1 Parametric Study of the Gurson Parameters

The true plastic flow curves were incorporated as explained in Section 4.1.1. The Gurson pa-

rameters were found by fitting the force-CMOD curves from simulation to the experimental

ones for room temperature. This temperature was chosen as the Gurson model predicts duc-

tile crack growth and failure, and the material is expected to behave in a ductile manner at

room temperature. The Gurson parameters were studied individually. First fc was kept con-

stant at 0.2, while f0 was varied. An initial value for f0 was chosen from literature at 0.0013.

This gave an adequate fit for the curves at room temperature, and the chosen f0 value was

0.0014.

For the lower temperatures, the simulated curves with f0 = 0.0014 did not fit well with

the experimental data. At 0°C , the material is expected to have some ductile crack growth

before failing in a brittle manner. The Gurson model is not able to predict brittle failure, and

will therefore not capture this. The simulation overpredicts the loss of load bearing capacity
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of the material after the onset of plasticity. The material is expected to have lower rates of

void growth and coalescence due to restricted plastic flow. The Gurson model, however,

forces void induced ductile crack growth and will thus predict a rapid decline of load bearing

capacity.

At −60°C , the material is completely brittle, and the Gurson model will not capture cor-

rect material behaviour. The material will cleave before plastic flow is initiated, and, conse-

quently, before void growth and coalescence has started. The Gurson model will not capture

the cleavage fractures and therefore simulate void ductile crack growth even at this temper-

ature.

The study of the critical void volume fraction, fc , was executed in the same manner, f0

was kept constant at 0.0014 and fc varied. As expected, different fc values did not change the

force-CMOD curve, confirming that material failure is solely controlled by f0, enabling this

parameter to be uniquely determined. The initial void volume fraction was kept temperature

independent, so that the only temperature dependency of the simulation came from the

plastic flow curves.

By fitting only one value, another problem arises. Since the Gurson model can simulate

different void nucleation models with different initial parameters, each one of them can be

fitted to the experimental force-CMOD curve. The problem lies in determining the correct

void nucleation model. A ductility diagram, which related fracture strain and stress triaxiality

(different depth notches) is proposed for this purpose[86][87][89]. The curvature of these

curves differ between the nucleation modes, and the correct nucleation mode can thus be

determined. This has not been done in the thesis. Only one nucleation mode, as mentioned

in Section 3.1, has been studied and fitted to the experimental data.

4.4.3.2 Mesh Sensitivity

The strain sensitivity of the Gurson model, mentioned in Section 4.2, is not surprising as

strain is directly related to the material softening from the damage growth. The void volume

fraction controls the material softening, and is calculated at the integration points of the el-

ements in the model. Void coalescence at the crack tip is a discontinuous process and the

length of each crack growth step determines the material’s resistance to crack extension. The

implication is that a minimum volume of material must be involved for crack initiation to be

reached. The constitutive equations in the Gurson model is formulated for individual crack

points, making it difficult to incorporate the length scale necessary to account for softening.

The pragmatic solution to this is to specify the size in the analysis directly, by incorporat-

ing the mesh size, lc , as a material parameter, as done by Tvergaard and Needleman[48].

As the length scale is related to crack resistance, it will influence the R-curves obtained from

simulation. The mesh size used in this thesis, 0.1mm in the crack growth direction, is chosen

based on values from literature and gave a satisfactory fit. Additionally, the void volume frac-

tion is localized in only one layer of integration points due to localization. Damage happens

in only one element layer, meaning that if the damage zone is wider, in the case of a coarse
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Figure 4.7: Brittle fracture criterion.

mesh, the results will differ from the ones obtained with a narrower mesh. In this thesis, the

damage zone width is 0.05mm. The mesh size dependency can be solved by using non-local

fracture models, but that is out of the scope of this thesis.

4.5 Implementing the RKR-Criterion

The RKR-criterion was implemented as a post-processing routine. A Gurson analysis of the

two-dimensional half single-edge notched bending specimen at −60°C was run and the in-

crement corresponding to the highest force from the force-CMOD curve of the specimen

with the second lowest CTOD at cleavage was found. This specimen was chosen based on

the BS 7910 standard[15], which dictates that the characteristic value is the equivalent to the

lowest of three cleaved specimen. The experimental data presented in Section 5.1, show that

specimen number 4, has the characteristic value. The force-CMOD curve for this specimen is

presented in Figure 5.2, which shows that the highest force-value is 9kN . This corresponds

to a material reaction force of 450N/mm in the ABAQUS simulation. From this force incre-

ment, the opening stress at the crack tip as a function of distance along the crack ligament

was extracted. This served as the basis for fitting the RKR-criterion. As the criterion predicts

cleavage, −60°C was chosen as a basis due to the brittle characteristics of the material at this

temperature.

4.5.1 Determining the RKR Parameters

The RKR parameters that needed to be determined were the critical stress,σc , and the critical

distance, xc . Ideally, the critical distance should be determined from the microstructure.

It is supposed to correspond to roughly two grain diameters, as discussed in Section 3.2.

However, in this thesis, the critical distance has been viewed as a material fitting parameter

from which the critical stress can be found. Once the critical distance was chosen, the critical

stress was estimated to be the lowest value of stress that worked over the entire characteristic

distance at the increment. This is shown in Figure 4.7. The opening stress, denoted σ22 in

Figure 4.7 corresponds to the second principal stress, as described in Section 2.4.
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A parametric study of xc was executed as this value predicts the entire fracture criterion.

The results are presented in Section 5.4.2. Since the criterion was fitted from the same incre-

ment, the critical stress increases with decreasing critical distance. The criterion was kept

constant over the temperature range from −60°C to room temperature. For 0°C and room

temperature, the first increment with an opening stress at the crack tip that fit the fracture

criterion fitted at −60°C was found. Brittle fracture was predicted to occur at this increment.

From the Python script developed by SINTEF, the CTOD values from the increment could be

found and used to plot the ductile-to-brittle transition for the steel.
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5.1 Experimental data

SINTEF performed fracture toughness tests to be used as a basis for the simulation scheme.

Single-edge-notched specimen with cross section 10x10mm2 of the material described in

Section 4.1 was used. Electrical discharge machining (EDM) was used to acquire the desired

crack depth, making the crack-to-width ratio 0.5. Liquid nitrogen was used to perform tests

at 0°C and −60°C .

Figure 5.1: Measuring ductile crack growth.

During bending, the applied force and CMOD of the specimen was monitored. The test

was stopped either after cleavage occurred or after the specimen reached a desired CMOD

value. After this, the specimen was cracked open and studied in an optical microscope. Duc-

tile crack growth was measured through the following procedure, shown in Figure 5.1 pictur-

ing the cross-section of a test specimen. At nine points along the initial crack, the EDM crack

length, denoted a0 in Figure 5.1, was measured. From the same nine points, the total crack

growth, a0+∆a, was measured from which the ductile crack growth,∆a could be found. The

ductile crack growth was averaged through Equation 5.1, where the numbers 1 to 9 refer to

the placement along the initial crack as indicated in Figure 5.1.

∆aav g =
∆a1+∆a9

2 +∆a2+∆a3+∆a4+∆a5+∆a6+∆a7+∆a8

8
(5.1)

The monitored CMOD was used to calculate the corresponding CTOD through the equa-

tions presented in Section 2.7.3. For each test temperature, six parallels were run to different

CMOD values, yielding different values of average ductile crack growth and CTOD that could

48
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be plotted as a fracture resistance curve (R-curve) for the material at the given temperature.

The experimental R-curves are shown in Figure 5.3. The force-CMOD curves for all temper-

atures are shown in Appendix B.

Figure 5.2: Experimental force-CMOD curve for specimen 4 at −60°C . The arrow indicates
the point where ∆a-values for caluclation has been found.

The experimental data needed to be analyzed. For some specimen, brittle fracture or

a pop-in occurred before unloading. Ductile crack growth was measured after the fracture

toughness test was finished, which means that the crack growth at the ultimate force value is

unobtainable. An example is shown in Figure 5.2 where the legend Calculations implies the

force- and CMOD-values used for calculating CTOD. The crack growth, which is also used

in calculations, has been measured from the point in Figure 5.2 indicated by the arrow. This

means that the wrong ∆a-value is used in calculations of CTOD, which affects the R-curves.

For the lower temperatures, such as −60°C , the measured ductile crack growth is very

small. Specimen 4 corresponds to a CTOD-value 0.076mm and ∆a-value 0.07mm, shown

in Table 5.1. This is a small amount of ductile crack growth, and the difference in the calcu-

lated CTOD-values will not be greatly affected. At room temperature, all the specimens are

unloaded and thus not affected by this. At the intermediate temperature, 0°C , the material

is expected to have significant ductile crack growth before possibly a brittle fracture might

occur. The underlying idea for the model is to capture the change from ductile crack growth

to brittle failure, and especially in the intermediate regions capture ductile crack growth be-

fore a brittle failure occurs. Taking this into account when analyzing results is important.

The specimen expected to overestimate CTOD based on wrong ∆a-values are marked with

arrows in Figure 5.3. These are the specimen that have cleaved.

The calculated CTOD from experiments was used to create a ductile-to-brittle transition

curve for the material. This is shown in Figure 5.4, where empty squared markers indicate

that the specimens fractured, while the cross markers indicate that the specimens have been
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Figure 5.3: Experimental CTOD-∆a-curves for all temperatures. The arrows show the speci-
mens whose fracture toughness is not calculated with the correct ∆a-value.

unloaded. This clearly shows the embrittlement of the material at lower temperatures and

the change of fracture toughness, as discussed throughout Section 2.6. At room temperature

all specimen have been unloaded, indicating ductile behaviour. At 0°C , three specimen have

been unloaded and three have undergone cleavage. Some of the cleaved specimen show

relatively high CTOD-values which indicates that there has been ductile crack growth prior

to the cleavage fracture. Other specimen have cleaved at an early stage in the testing pro-

cess. The scatter in this region may be due the heterogeneous distribution of second phase

particles or orientation of the cleavage grains with respect to the crack tip, which will make

some of the specimen more susceptible to cleavage fracture. The large specimen size makes

it impossible to achieve equal material characteristics at the machined crack tip, and the het-

erogeneous nature of steel, especially in the CGHAZ, will result in scattered results. However,

the trend shows that the material is more brittle at 0°C than at room temperature. For −60°C

the scatter is small. The material is expected to be completely brittle at this temperature and

will suffer cleavage at low CTOD values. Some of the specimen have been unloaded at this

temperature in order to obtain the fracture resistance curve.
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Figure 5.4: Experimental ductile-to-brittle transition curve. Empty squared markers indicate
that the specimens fractured, while the cross markers indicate that the specimens have been
unloaded.

Table 5.1: Experimental CTOD and ∆a-values. F=fracture, U=unloading.

RT 0°C −60°C

#
CTOD
[mm]

∆a
[mm]

Mode #
CTOD
[mm]

∆a
[mm]

Mode #
CTOD
[mm]

∆a
[mm]

Mode

17 0,259 0,22 U 9 0,205 0,23 U 1 0,111 0,07 F
19 0,538 0,89 U 10 0,318 0,39 F 2 0,094 0,08 U
20 0,368 0,51 U 11 0,353 0,47 U 3 0,052 0,05 F
21 0,458 0,77 U 12 0,101 0,08 F 4 0,076 0,07 F
22 0,134 0,09 U 13 0,133 0,11 U 5 0,042 0,03 U
23 0,190 0,19 U 14 0,175 0,17 F 6 0,110 0,06 U
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5.2 Evaluation of Model Requirements

To investigate if the ductile-to-brittle transition could be captured solely by changing tem-

perature and constraint, and not simulating material softening, CAE-models with crack-

to-width ratios of 0.51 and 0.52 were made. This corresponds to ∆a values of 0.1mm and

0.2mm, respectively. The simulations were run without the Gurson model, thus not account-

ing for void growth and coalescence induced ductile crack growth. The simulations were de-

pendent only on the temperature dependent flow curves of the material and the change in

constraint due to the set crack growth values of 0.1mm and 0.2mm. The opening stresses

for each temperature and crack growth were found from simulation and normalized with

the temperature dependent yield stress. The result is shown in Figure 5.5. The crack growth

pushes the normalized stresses upwards. This is in line with theory as crack growth will in-

crease triaxiality and constraint, pushing the stress field upwards.

Figure 5.5: Opening stress normalized by temperature dependent yield stress.

For the same value of ∆a the normalized stress falls on roughly the same line for each

temperature, indicating that the opening stress can be related to the yield stress through

only one parameter, K , as shown in Equation 5.2. K will be dependent on crack growth.

σ22

σy s
=K ∣∆a (5.2)

K is proportional to ∆a, which means that higher amounts of crack growth will give

higher values of σ22. The increased constraint should give increased stress-values. This,

however, also means that for a high temperature, e.g. 21°C , where the material should be

ductile and exhibit large amounts of crack growth, the opening stress will be very large as it

is proportional to∆a. This is not correct as the material will soften due to plasticity at higher
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temperatures, which in turn will relax the stress field. A single stress-based fracture criterion

will capture constraint effects from the set crack propagation, but not material softening

effects. To accurately show the ductile-to-brittle transition, the model must capture both.

Hence, the brittle stress criterion must be used in combination with a material softening

model, such as the complete Gurson model.

The experimental line in Figure 5.5 has been extrapolated from experimental crack growth

values. At −60°C , there is a negligible amount of ductile crack growth, and the ∆a value has

been set to zero. At 0°C there is roughly 0.1mm ductile crack growth. The crack growth

at 21°C has been set to 0.5mm. The last point has been extrapolated from the simulations

for 0.1mm and 0.2mm. Although the experimental line accounts for both crack growth and

temperature, the difference in the normalized opening stress is still small. An issue is that

the opening stress at 21°C is higher than for the other temperatures, which, as previously

discussed, contradicts theory. This proves that accounting for material softening is crucial

when showing the ductile-to-brittle transition.

5.3 Ductile Tearing: The Gurson Model

The Gurson model simulates the material’s loss of load bearing capacity as voids grow in

the matrix. As this constitutes damage and possibly ductile tearing, the Gurson parameters

have been fitted from the temperature where the material is expected to exhibit most ductile

characteristics. In this thesis, the highest temperature is room temperature, thus used for

fitting. A parametric study of the Gurson parameters, f0 and fc , and the hardening exponent,

n, was conducted by the author prior to this thesis. This is discussed in Section 4.4.3. The

initial void volume fraction, f0, was found to be 0.0014. The critical void volume fraction, fc

was found to not influence results. The hardening exponent was found to be 0.1. The mesh

size, lc was chosen from literature, and not changed as the results were satisfactory. All input

parameters were kept constant throughout the temperature range from 21°C to −60°C . The

temperature was only incorporated through the plastic flow curves, as described in Section

4.1.1.

5.3.1 R-curves

From the Gurson simulation R-curves for all three temperatures (21°C , 0°C , −60°C ) were

plotted as described in Section 4.3. The results are presented in Figures 5.6. At room tem-

perature, Figure 5.6a, the simulated R-curves fits well with the experimental results. As the

Gurson model constitutes ductile crack growth and the steel is expected to be ductile at this

temperature, a good fit was expected. Also the Gurson parameters were fitted at this temper-

ature. The Gurson model is able to capture both the correct CTOD value and corresponding

∆a values at room temperature.

The f0-value was kept constant for the whole simulated temperature range. Tempera-
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ture was only incorporated through the plastic flow curves. The yield strength of a material

increases with decreasing temperature, and according to Section 2.6, all factors increasing

yield strength will embrittle the material. The Gurson model was not expected to capture

the brittle characteristics of the material, making the fit from simulations worse at lowered

temperatures. Figure 5.6b shows the fracture resistance curve from the Gurson simulations

along with the experimental data points for 0°C . The model clearly deviates from the exper-

imental values, as expected.

For −60°C , the results from simulation do not fit the experimental data points, as shown

in Figure 5.6c. The material is expected to be completely brittle at this temperature, and the

Gurson model will therefore not be valid at this point.

The Gurson model is not able to predict ductile crack growth of less than 0.1mm and

CTOD of less than ≈ 0.2mm. All simulated curves in Figures 5.6 origin at these values. In the

model, void growth starts at the crack tip, but the first complete failure occurs at a distance

equal to the mesh size to the initial crack tip. Rupture of a material point corresponds to

full loss of load-bearing capacity. The stresses are zero regardless of deformation and the

consistent tangent matrix is also null. As the loss of load bearing capacity is manifested as

softening in a volume element, the first crack growth will be equal to the element size. In this

thesis, a mesh size of 0.1mm has been used in the crack ligament in the direction of crack

growth, which explains why the model is unable to predict ∆a-values below this. Before the

first element is recognized as crack growth, the crack tip has blunted and the CTOD has reach

a value of ≈ 0.2mm.

When comparing the simulated curves, the temperature dependency incorporated through

the plastic flow curves yield lower CTOD-values for all∆a-values at lower temperatures. The

R-curve becomes less steep as the temperature is lowered. This is in line with theory. A brittle

material will have a flat R-curve as the materials resistance is constant with crack growth. For

−60°C , where the material is brittle, the R-curve should be flat as discussed in Section 2.8.2.1.

This is impossible to achieve with the Gurson model as it forces plasticity and cannot detect

brittle characteristics.

5.3.2 Ductile-to-Brittle Transition

From the simulated R-curves, the ductile-to-brittle transition predicted by the Gurson model

could be plotted. A linear trend line fitted to the simulated R-curves in Microsoft Excel was

used to obtain equations with CTOD as a function of ∆a for all three temperatures. This

was used to obtain CTOD-values for the same∆a-values at all temperatures, which could be

plotted as a ductile-to-brittle transition curve. The results of this are shown in Figure 5.7.

The Gurson model clearly overpredicts CTOD-vales at both 0°C and −60°C . This is ex-

pected, as the R-curves for these temperatures are also overpredicted. In addition, the lowest

value of ductile crack growth used for the Gurson model is 0.1mm, and non of the specimen

at −60°C have undergone such an amount of ductile crack growth. It is therefore impossi-

ble for the Gurson model to fit at this temperature. At room temperature (21°C ), however,
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(a) Room temperature, 21 °C

(b) 0 °C

(c) −60 °C

Figure 5.6: Gurson model fit for all three temperatures.
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Figure 5.7: The ductile to brittle transition captured by the Complete Gurson model. Empty
squared markers indicate that the specimens fractured, while the cross markers indicate that
the specimens have been unloaded.

where the Gurson model has been fitted, the CTOD- and corresponding ∆a-values should

fit the experimental ones shown in Table 5.1. The Gurson-line for 1mm ductile crack growth

predicts a CTOD at room temperature of 0.591mm. The closest experimental data point

is from specimen 19, which has a CTOD of 0.538mm and ∆a of 0.89mm. The specimen

numbers and corresponding CTOD and ∆a-values are shown in Table 5.1. It is not unlikely

that a specimen with 1mm ductile crack growth will have CTOD of approximately 0.591mm.

For 0.5mm ductile crack growth, the Gurson model predicts a CTOD of 0.373mm. The line

hits the experimental data point for specimen 20, which has CTOD and ∆a of 0.368mm and

0.51mm, respectively. This is a very good fit.

At lower ∆a-values, however, the Gurson model struggles. The line for 0.1mm ductile

crack growth predicts a CTOD of 0.199mm. This hits just above the data point for specimen

23, which has a CTOD-value of 0.190mm and 0.19mm ductile crack growth. The ductile

crack growth from experiments at this point is double the amount from the Gurson model.

The Gurson model predicts crack growth as complete loss of load bearing capacity of an

element, making he first increment of∆a correspond to the mesh size, which is 0.1mm. The

crack tip has blunted sufficiently before the first increment has lost its stress bearing capacity

for the model to predict a CTOD of 0.199mm with the first crack growth. The R-curve for

21°C in Figure 5.6a shows that the Gurson model does not fit for low values of ∆a, which

corresponds with deviation in the ductile-to-brittle transition for low crack growth values.

A prediction for the DBT for ∆a = 0mm is also shown in Figure 5.7. The Gurson model

simulates ductile rupture, and at ∆a = 0mm, the CTOD value predicted is solely from blunt-

ing. The model predicts 0.155mm blunting at 21°C , which is an overestimation of the exper-

imental blunting value at 0.09mm. The onset of coalescence induced ductile crack growth
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is delayed in the simulation, which might indicate that other coalescence mechanisms that

void by void coalescence happen in the material, for instance sheeting coalescence as de-

scribed in Section 2.5.2.4. The CGHAZ contains many second-phase particles that might nu-

cleate voids continuously during deformation, resulting in accelerated crack growth. These

problems have not been investigated in this thesis work, and are known problems in all con-

tinuum material models. The Gurson model predicts the correct fracture toughness at higher

∆a-values. The void nucleation and coalescence mechanisms in the model should be fur-

ther investigated. The DBT for ∆a = 0mm goes down for higher temperatures. This is solely

a consequence of the linear approximation of the simulated R-curves at different tempera-

tures.

5.4 Brittle Failure: The RKR-Criterion

The RKR-criterion is a simple stress-based criterion for cleavage fracture. According to Sec-

tion 2.5.1, cleavage fracture occurs when some stress threshold is reached, which is what

the RKR-criterion captures. The stress needs to work over some limit distance in order for

the RKR-criterion to predict cleavage. This solves the singularity-issue presented in Section

2.7.1. According to Section 2.6, the steel is expected to be brittle at lower temperatures, thus

−60°C has been used for fitting the RKR-criterion. The BS 7910 standard dictates that the

second lowest cleaved specimen should be used as the characteristic value[15]. This corre-

sponds to specimen 4, which has a CTOD of 0.076mm.

5.4.1 Effect of the Gurson Model

The RKR-criterion is applied as a post-processing routine, enabling the possibility to study

the effect of the Gurson model on the brittle fracture criterion. The criterion was applied to

simulations run both with and without an underlying Gurson model. To capture the differ-

ence, a large xc value of 240µm was required for the criterion to be met at 21°C . This corre-

sponds to a low critical stress value, 2225MPa. For the simulations run without the Gurson

model, ductile crack growth was not allowed to happen. The stress field at the crack tip was

solely dictated by the difference in the plastic flow curve at the different temperatures, and

not by changing constraint due to a growing crack. For 0°C and room temperature, the stress

field at the crack tip was relaxed through bulk plasticity. For low values of xc , which corre-

sponds to high values of σc , the RKR-criterion was not met for higher temperatures. The

simulation for 0°C would meet the cleavage criterion for lower values of xc than room tem-

perature. This corresponds with theory, as the material should gradually exhibit more ductile

behaviour as temperature is raised and thus require crack propagation to achieve constraint

sufficient to push the crack-tip stress field to meet the fracture stress criterion.

The comparison between the RKR-criterion alone and the combined model is shown in

Figure 5.8. Both the RKR-criterion alone and the combined RKR-Gurson model have been
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Figure 5.8: The ductile to brittle transition captured by the RKR-criterion alone and in com-
bination with the Gurson model.

fitted from the same point at −60°C , thus showing the same CTOD value for this tempera-

ture. At 0°C , the yield strength is relatively high and ductile crack growth is to some degree

prohibited by the material’s restriction to flow. The crack tip constraint will push the stress

field upwards, and it will be energetically favourable for the material to cleave rather than

release the stresses through deformation. Both models will thus predict the same value of

CTOD for this temperature. The low critical stress value obtained from the large xc -value

will not require change in constraint for the stress based criterion to be met at 0°C .

For room temperature, the Gurson model changes the predicted CTOD value. The ductile

characteristics of the material at this temperature mean that the stresses at the crack tip will

more readily be released through plastic deformation, resulting in ductile crack growth. As

the crack grows, the constraint changes and the stress field at the crack tip will be elevated,

ultimately reaching the brittle fracture criterion. Ductile crack growth will open the original

crack tip and give higher CTOD-values than for a model incorporating only fracture stress as

a criterion. However, the fracture criterion should ideally never be met at this temperature,

as the material is not brittle. Constraint should be relaxed as the plastic zone at the crack tip

merges with global plasticity, resulting in plastic collapse. The RKR-criterion, being a brittle

fracture criterion, will not predict this, and cleavage will be predicted when the criterion is

met. Ideally the CTOD at room temperature obtained from the combined model should be

above all unloading points in Figure 5.4. This would correspond to the absence of cleavage

found in all fracture mechanical tests performed at this temperature.
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5.4.2 Parametric Study of the Critical Distance

It was found that the stress based RKR-criterion had to be coupled with the Gurson model

to obtain CTOD values from the combined model at higher temperatures. Determining a

correct xc and corresponding σc was necessary, as well as performing a parametric study to

investigate their effect on the ductile-to-brittle transition curve. The critical distance should

ideally be determined from microstructure, but has in this thesis been implemented as a

fitting parameter. As a first estimate, a critical distance of 60µm was used. This was based on

the underlying theory of the RKR-criterion presented in Section 3.2, where xc is estimated to

be about two grain diameters. In CGHAZ, an average grain diameter of 30µm is often found,

which gave the starting point for xc at 60µm.

As described in Section 4.5.1, the critical distance gives the critical stress. The different

stresses obtained from different distances are shown in Table 5.2, which show that smaller

distances give higher stresses. As all fracture criterion are fitted from the same stress field

at the same increment from simulation, this is expected. The stress peak becomes narrower

towards its top, thus the distance between equal stresses is smaller for higher values of stress.

Table 5.2: RKR-criterion for different values of xc .

xc [µm] 240 120 60 50 40 30
σc [MPa] 2225 2365 2400 2404 2408 2411

The parametric study of the critical distance, xc , is shown in Figure 5.9. As the fracture

criterion is fitted from −60°C , all criteria hit the same point for this temperature. The effect

of the variation of critical distance becomes more prominent as the temperature increases.

At 0°C , all CTOD values are in the range of 0.08−0.12mm. As discussed in previous section,

crack growth will change the crack tip constraint and the triaxiality of stresses. The peak

opening stress will increase with crack depth, generating higher values of equivalent plastic

strain. The distribution of stress triaxiality will be lowered, ultimately resulting in higher

fracture toughness values for larger crack sizes. The low variation of CTOD for 0°C shows that

the material exhibits some brittle characteristics. As discussed in Section 2.6, the material

will cleave when it is more energetically efficient than energy dissipation through plastic

deformation. Hence, the RKR-criterion will be met before substantial ductile tearing has

occurred at this temperature.

For room temperature (21°C ), however, the resulting CTOD varies with critical distance,

shorter distance gives higher CTOD-value. Shorter distance corresponds to higher criti-

cal stress, which implies that the SENB specimen must undergo a certain amount of crack

growth to achieve constraint sufficient to push the stress field far enough upwards to meet

the RKR-criterion. CTOD values increase with increasing crack growth, giving higher fracture

toughness values for lower critical distance. Figure 5.9 show that the CTOD value converges

as the critical distance is shortened. Table 5.2 shows that for xc -values between 50µm and

30µm, the difference in σc is small. It is reasonable to believe that all these cleavage criteria
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Figure 5.9: Parametric study of xc for the RKR-criterion.

are met at the same increment in the simulations, making the obtained CTOD value equal

for the three last criterion the same. The criterion with xc at 30µm and corresponding σc at

2411MPa was chosen as the brittle fracture criterion competing with the damage induced

ductile crack growth from the Gurson model.

5.5 Combined Model: Gurson + RKR

In summary, the model for simulating the transition from completely brittle to completely

ductile behaviour using the Gurson model in combination with the RKR-criterion as de-

scribed in Sections 4.4 and 4.5 has the following constitutive parameters:

• elastic parameters, E and υ

• yield curve (power law: σy s , n)

• initial void volume fraction, f0

• mesh size, lc

• critical distance, xc

• critical stress, σc , found from the critical distance

The constitutive parameters can be identified as follows:

1. Tensile tests at temperature in the ductile-to-brittle transition range

(a) Determine Young’s modulus, E , Poisson’s ratio, υ and σy s .
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Table 5.3: Constitutive parameters for the combined Gurson-RKR model.

T
[°C ]

E
[GPa]

υ σy s

[MPa]

n f0 lc

[mm]

xc

[µm]

σc

[MPa]

21
210 0.3

667
0.1 0.0014 0.1 30 24110 676

-60 697

(b) Determine the true stress-strain curve and establish the Ramberg-Osgood power

law parameters (n and K ) to find material input data for the simulation.

2. Fracture toughness tests at temperatures in the ductile-to-brittle transition range

(a) Determine f0 by trial and error of fitting simulated force-CMOD curves to exper-

imental ones in the ductile regime.

(b) Verify the chosen mesh size by fitting fracture resistance curves.

(c) Determine the characteristic fracture resistance value in the brittle regime.

3. Brittle region

(a) Find the increment in simulation that corresponds to the characteristic value and

determine xc and σc .

5.5.1 Ductile-to-Brittle Transition

The constitutive parameters for the model used in this thesis are shown in Table 5.3. The

RKR-criterion has been fitted from −60°C and the Gurson model from 21°C . It was de-

termined that a stress criterion alone could not show the ductile-to-brittle transition, but

needed an underlying model that accounted for ductile softening of the material. Figure

5.10 shows how the combined Gurson-RKR model captures the change of material behaviour

with temperature. Ductile tearing from the experimental results is plotted along with the re-

sults from the simulations, which clearly shows the difference in behaviour over the temper-

ature range. At −60°C there is nearly no ductile tearing. This increases with the temperature,

at 0°C there is roughly 0.09mm ductile tearing and at 21°C there is 0.1mm tearing. This

clearly shows that the material is more ductile at higher temperatures. The simulated curve

account for this behaviour as the predicted fracture toughness increase with temperature.

As mentioned in Section 5.4.1, the CTOD-value obtained from the combined model should

ideally lie over all experimental unloading points at 21°C to account for the lack of cleavage

at this temperature. The model predicts cleavage at a CTOD 0.376mm, which is still under-

estimates the findings from the experimental results. The experimental data clearly show

that there are no cleavage fractures at this temperature.

A competing criterion is needed to establish whether the material undergoes cleavage or

not. From the simulations, CTOD from the increment corresponding to maximum force for
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Figure 5.10: The change of material behaviour captured by the combined Gurson-RKR
model. Experimental CTOD values and RKR+Gurson results refer to the principal axis, while
the measured ∆a-tearing values refer to the secondary axis.

the characteristic value from experiments can be found. This can be plotted along with the

combined model’s prediction of DBTT. If the CTOD at maximum force lies under the Gur-

son+RKR curve, then the material has not undergone cleavage. The results are presented in

Figure 5.11. The Gurson model forces plasticity for all temperatures, and will therefor over-

predict CTOD at maximum force for both −60°C and 0°C . At 21°C , however, the maximum

CTOD from the simulation is 0.193mm, which corresponds well with the experimental value

at 0.187mm.

Figure 5.11: Competing criteria for DBT.
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Following the RKR+Gurson curve from −60°C until it crosses the CTOD at maximum

force curve at roughly 5°C , and then following the latter curve gives the ductile-to-brittle

transition as predicted by the combined model. The result is shown in Figure 5.12. The

model fits well at both −60°C and 21°C , which is expected as these temperatures have been

used for calibration. The intermediate region is where the results are interesting. The exper-

imental results at 0°C are scattered, and determining the characteristic value is not straight-

forward. The lowest cleavage fracture toughness value at this temperature is 0.101mm. An-

other specimen has been unloaded at a CTOD value of 0.133mm, which indicates that the

lowest cleaved CTOD value is too conservative to be representative for the material. The sec-

ond lowest cleavage fracture toughness is at 0.175mm, which is significantly higher than the

lowest cleavage fracture toughness value. The model should hit in between these two val-

ues, which it does at a cleavage fracture toughness of 0.117mm. The conservative predicted

value indicates that the combined Gurson+RKR model overestimates the brittleness of the

material at intermediate temperatures as well as at the upper shelf, 21°C .

Figure 5.12: The thick, black line shows the ductile-to-brittle transition predicted by the
combined Gurson-RKR model.

Incorporating temperature changes solely through the plastic flow curve might not be

sufficient to show the correct ductile-to-brittle transition for the steel. At −60°C , the results

are only affected by xc and σc as the material is completely brittle. These values are fitted

from this temperature, making it possible to choose the fracture toughness value predicted

by the combined model. For 21°C , the brittle fracture criterion should never be met, and the

fracture toughness is solely determined by f0 and lc , which are fitted from the same temper-

ature. The intermediate region takes into account all material parameters. Figure 5.12 shows

that the cleavage fracture criterion is met too early at 0°C . The model should predict more

ductile crack growth and, consequently, higher fracture toughness at this temperature. The



64 CHAPTER 5. RESULTS AND DISCUSSION

possible temperature dependency of the Gurson model parameter, f0 should therefore be

investigated.

5.5.2 Criticalities of the Combined Model

Although the combined Gurson-RKR model is able to predict a conservative ductile-to-brittle

transition for the selected steel, there are some issues with the simulation scheme and the va-

lidity of the results. There are a total of eight constitutive parameters needed for the scheme:

E , υ, σy s , n, f0, lc , xc and σc . Half of these, namely E , υ, σy s and n, can be found from

material testing. The remaining four parameters have to be fitted from simulations.

The initial void volume fraction, f0, can be uniquely determined from force-CMOD curves.

This, however, assumes that all voids are nucleated simultaneously at the onset of plasticity

and that no voids are nucleated after this. The material is seen as an assembly of cells of

equal size that all contain a single void that grows under deformation. This might not be the

right nucleation model for the material. The CGHAZ contains second-phase particles that

serve as nucleation sites, which is not accounted for by the nucleation model. Additionally,

other microstructural effects such as shape and distribution of voids can only be taken into

account through calibration to experimental results, rather than through their physical im-

pact on the material. This is a known problem in continuum mechanics models. The initial

void volume fraction, f0, should in theory be the same for all temperatures since the same

material is simulated. However, growth and coalescence is not the same over the tempera-

ture range. The model does not account for this other than through limitation of plastic flow

as temperature decreases, and an investigation of the possible temperature dependency of

the parameter is required for further development.

The length scale, lc is incorporated as a material parameter. The main problem with

this is that the mesh size served two purposes: i) it geometrically represents the cracked

parts and the direction of crack propagation and ii) it represents the materials characteristic

length controlling crack extension. These functions, determining both crack growth and its

resistance, are somewhat contradicting. The mesh size should in theory be related to the

mean inclusion or void distance, but has rather been used to fit fracture resistance curves,

which makes it possible to obtain any desired fracture resistance curve.

A third challenge with the model is the determination of the critical distance, xc , and the

critical stress, σc , for the RKR-criterion. Cleavage initiation is described by dechoesion or

breaking of a second-phase particle, the propagation of the formed mircrocrack in the grain

and through the next grain boundary. Grain size is the relevant length scale for the RKR-

criterion. The critical distance has in this thesis been viewed as a material fitting parameter

independent of microstructure. This enables the possibility of adjusting the RKR-criterion to

fit as desired, without considering the material in question. The issue that arises is that the

predicted fracture toughness is not uniquely determined, and can be adjusted as required.

The combination of these issues implies that the model itself is unstable and inaccurate.

It is not difficult to simulate the ductile-to-brittle transition when both the Gurson model



5.5. COMBINED MODEL: GURSON + RKR 65

and the RKR-criterion can be adjusted to give desired output. It is questionable whether the

model can predict DBTT for other materials without the need of similar adjustments, and

consequently extensive material testing. To be able to predict the ductile-to-brittle transition

for a material to avoid cost inefficient lab-based research, the model needs to be further

developed.



6 | Conclusion

An attempt to determine a simulation scheme covering the whole range of the ductile-to-

brittle transition of steel from completely brittle to completely ductile, has been made. The

upper shelf region that constitutes ductile behaviour has been modelled by the complete

Gurson model, which accounts for void growth and coalescence induced softening and rup-

ture. The lower shelf with brittle characteristics has been simulated by the RKR-criterion,

a cleavage stress criterion. The ductile model has been fitted from experimental results at

21°C , where the steel in question is completely ductile, while the RKR-criterion has been fit-

ted to experimental results from −60°C , where the steel is completely brittle. Experimental

data from 0°C , which is in the intermediate region where the steel exhibits both ductile and

brittle characteristics, have been used as verification of the modelling scheme.

The investigation of whether changing constraint and temperature would be sufficient to

show the ductile-to-brittle transition through solely a stress based fracture criterion revealed

that implementing a model that accounts for material softening was necessary to simulate

the full transition regime. The change in constraint linked to crack growth will elevate the

stress field at the crack tip. In the upper shelf the stresses need to be dissipated into plastic

flow for ductile tearing, and for this reason, not accounting for material softening leads to

severe underestimation of the fracture resistance.

The combined Gurson-RKR model was found to predict cleavage for all temperatures in

the ductile-to-brittle transition curve, even at the upper shelf. A competing criterion was

needed to establish whether the material underwent cleavage at the predicted fracture resis-

tance value or if the fracture resistance corresponded to that from the highest applied force

in the experiments. The results showed that the change from cleavage to maximum force

occurred at approximately 5°C . The combined model is able to capture the change of frac-

ture mechanism over the temperature range with the temperature dependent plastic flow

curves as the only temperature adjustment in the model. The results, however, show that the

combined model still over accounts for brittleness in the material. An investigation of the

temperature dependency of the Gurson parameter f0 is a necessary step to further develop

the model.

The determination of the constitutive parameters for the combined model proved to

be problematic. There are two length scales involved in the model that ideally should be

linked to microstructure and inclusion density. These have rather been used as material fit-

ting parameters, which indicates that the simulated ductile-to-brittle transition curve is not

uniquely determined. The transition curve can be adjusted as required, and does not give

a representative presentation of the DBT as it is. The model needs to be further developed

in order to accurately predict the full transition from ductile to brittle behaviour in other

material than the one treated in this thesis.
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A | Derivation of Equations

A.1 Equations 2.8 and 2.9

Engineering strain from tensile testing is defined as:

e = ∆L

L0
(A.1)

True stress can be found through the following equation.

ε =∫
dL

L0
= ln( L

L0
) (A.2)

Inserting L = L0+∆L gives the following:

ε = ln(L0+∆L

L0
) = ln(L0

L0
+ ∆L

L0
) (A.3)

Inserting A.1 gives:

ε = ln(L0

L0
+e) = ln(1+e) (A.4)

True stress from tensile testing is defined as:

σ = F

A
(A.5)

This can be rewritten as:

σ = F

A
× A0

A0
= F

A0
× A0

A
(A.6)

where F
A0

is the engineering stress, s. The material volume is constant, which gives

A0L0 = AL (A.7)

Inserting this into Equation A.6 gives

σ = s × L

L0
= s × L0+∆L

L0
(A.8)

Inserting Equation A.1 gives

σ = s(1+e) (A.9)
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A.2 Equation 2.21

Cottrell[20] and Petch[54] derived an energy balance for crack nucleation in the presence of

slip. This can be expressed as:

σF nb =βγs (A.10)

The displacement, nb may be expressed through:

nb ≅ (τ−τi)
G

d (A.11)

where G is the shear modulus. The friction stress, τi , in polycrystals deforming by slip only

can be determined by the following relation between flow stress and grain size:

τy = τi +ksd−1/2 (A.12)

where ks is a constant describing the grain boundary contribution to strength. Substituting

Equation A.12 into Equation A.11 gives:

nb = ksd 1/2

G
(A.13)

Further substituting Equation A.13 into Equation A.10 gives the following condition for crack

nucleation at yield stress, i.e σF =σy :

σy ksd 1/2 ≥βGγs (A.14)

Substituting Equation 2.4 into Equation A.14 gives the following equation for energy balance:

(σi d 1/2+ky)ks ≥βGγs (A.15)

The constants from Equations 2.4 and A.12 have the following relationship, ky =mks , where

m is a factor relating the average normal-to-shear stress ratio in the slip plane. This must not

be mistaken for β which relates to the overall stress state[25][45].



B | Experimental Force-CMOD Curves

Figure B.1: Experimental force-CMOD curves for room temperature.
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Figure B.2: Experimental force-CMOD curves for 0°C .

Figure B.3: Experimental force-CMOD curves for −60°C .



C | Risk Assessment

Figure C.1: Risk assessment for the master’s thesis.
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Hovedoppgave ved 
IMM 

våren 2003 

Master Thesis 

at IPM 

Spring 2017 

 Modelling the 
transition from ductile 
to brittle behaviour in 

steel 

Ingrid Holte 

Supervisor: Odd Magne Akselsen  

Background 
25% of the world’s undiscovered oil and natural gas resources are 
believed to be located in the northern areas of the world. The 
exploration of these remote areas will, due to the harsh climate 
conditions, require better materials than available today. The 
ductile to brittle transition curve shows the steel’s behaviour’s 
dependency on temperature. At the low temperatures of the 
Arctic, -60oC, the heat affected zone and weld metal will become 
brittle. This makes the risk of brittle fracture a primary concern 
for steel structures installed in the Arctic.  
 

Objective 
The overall objective of the assignment 
is to model the transition from ductile 
to brittle behavior in steels for low 
temperature applications. 

Procedure 
To model ductile crack growth at higher 
temperatures, the Gurson model is used in 
ABAQUS. The modelling work flow is 
shown to the right, where the scope has 
been to adjust Gurson-parameters to fit 
simulated F-CMOD curves to the 
experimental ones. From this, CTOD-Δa curves can be 
predicted and used to plot the ductile-to-brittle transition 
curve. The low temperature brittle failure will be 
incorporated through the RKR-criterion. This criterion 
relates fracture stress to fracture toughness and will be applied as a post-
processing calculation. The goal is to simulate a fracture process that initiates as 
ductile crack growth, but ultimately fails by cleavage.  

Figure D.1: The A3-poster presented at the start of the semester.

Hovedoppgave ved 
IMM

våren 2003

Master Thesis

at IPM

Spring 2017

A Combined Gurson-
RKR Model for the 

Ductile to Brittle
Transition in Steel

Ingrid Holte

Supervisor: Odd Magne Akselsen

Background
25% of the world’s undiscovered oil and natural gas resources are
believed to be located in the northern areas of the world. The
exploration of these remote areas will, due to the harsh climate
conditions, require better materials than available today. The
ductile to brittle transition curve shows the steel’s behaviour’s
dependency on temperature. At the low temperatures of the
Arctic, the heat affected zone and weld metal will become brittle.
This makes the risk of brittle fracture a primary concern for steel
structures installed in the Arctic.

Objective
The overall objective of the assignment is to model the transition from ductile to brittle behavior in 
steels for low temperature applications.

Procedure
The Gurson model accounts for void
growth and coalescence induced
damage and ductile crack growth. This
has been simulated in ABAQUS. The
RKR criterion is a brittle fracture stress
criterion, and has been applied as a
post-processing routine on the Gurson
simulation. The ductile to brittle
transition captured by the combined
model is shown to the right. The
Gurson model has been fitted fracture
toughness tests at 21oC and the RKR
criterion from -60oC. The intermediate
region shows the predicted CTOD
values from the combined model.

Figure D.2: The A3-poster presented at the end of the semester.

79


	Problem text
	Abstract
	Sammendrag
	Preface
	Introduction
	Theoretical Background
	Heat Affected Zone
	Coarse-Grained HAZ
	M-A Constituents

	Deformation
	Dislocations and Slip
	Cracking Due to Dislocations

	Stress-Strain Curve
	Physical Interpretation
	Mathematical Approach

	Yield Criteria
	Yield Surface
	Stress Triaxiality

	Fracture in Metals
	Cleavage Fracture
	Cleavage Fracture Initiation

	Ductile Fracture
	Void Nucleation
	Void Growth
	Void Coalescence
	Ductile Crack Growth

	Fracture in CGHAZ

	The Ductile to Brittle Transition
	Fracture Mechanics
	The Amplified Stress Field
	The Stress Intensity Factor
	CTOD and CMOD
	Crack-Tip Constraint

	Testing
	Tensile Testing
	Fracture Toughness Testing
	R-curves



	Material Models
	The Gurson Model
	Thomason's Plastic Limit Load Model
	The Complete Gurson Model

	The RKR-Criterion

	Computational Implementation
	Material
	Determining the Flow Curves

	The Finite Element Model
	The Modeling Work Flow
	Implementing the Gurson Model
	Return Mapping Algorithms
	Numerical Gurson-based model
	Determining the Gurson Parameters
	Parametric Study of the Gurson Parameters
	Mesh Sensitivity


	Implementing the RKR-Criterion
	Determining the RKR Parameters


	Results and Discussion
	Experimental data
	Evaluation of Model Requirements
	Ductile Tearing: The Gurson Model
	R-curves
	Ductile-to-Brittle Transition

	Brittle Failure: The RKR-Criterion
	Effect of the Gurson Model
	Parametric Study of the Critical Distance

	Combined Model: Gurson + RKR
	Ductile-to-Brittle Transition
	Criticalities of the Combined Model


	Conclusion
	Bibliography
	Derivation of Equations
	Equations 2.8 and 2.9
	Equation 2.21

	Experimental Force-CMOD Curves
	Risk Assessment
	A3 Posters

