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Abstract

This is a benchmark study, for valence excitation energies in the multilevel coupled cluster

(MLCC) framework. The information resulting from lower level of theory is used to generate

correlated natural transition orbitals (CNTOs) for the high level calculations by including

the information from both the singles and the doubles excitation vectors. The CNTOs are

included in the active space according to certain thresholds corresponding to the eigenvalues

of the orbitals. The MLCC results for valence excitation energies in the inactive space

are calculated using coupled cluster singles and doubles (CCSD), and the active space are

calculated using CCSD with perturbative triples (CC3). The errors relative to full CC3

depends on the thresholds. In general to obtain errors less than 10% on needs to include

approximately 60-70% of the orbital space for the investigated molecules.
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Sammendrag

Dette er en benchmark studie, for valens eksitasjons energier i multilevel coupled cluster

(MLCC) rammeverket. Informasjonen som er oppn̊add fra lavere grads teori er brukt til å

generere correlated natural transition orbitals (CNTOs) for høyere grads beregninger ved å

inkludere informasjon fra b̊ade de enkle og doble eksitiasjons vektorene. CNTO’ene inklud-

eres i det aktive rommet innenfor et sett av thresholds som korresponderer til egenverdiene til

orbitalene. MLCC resultatene for valens eksitasjons energiene i det inaktive rommet bereg-

nes med coupled cluster singles and doubles (CCSD), og det aktive rommet beregnes med

CCSD med perturbative tripletter (CC3). Feilene sammenlignet med full CC3 er avhengig

av hvilke thresholds som brukes. Generelt for å oppn̊a feil mindre enn 10% må det inkluderes

60-70% av orbitalrommet for de undersøkte molekylene.
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Chapter 1

Introduction

Coupled cluster (CC) has proven to be a successful model of electronic wave function theory

in terms of giving an accurate description of the molecular systems and it also gives a system-

atic framework for calculating molecular properties such as excitation energies accurately.

The coupled cluster model where the singles and doubles excitation operators are included

is called coupled cluster singles and doubles (CCSD). And the CC model where the singles,

doubles and triples excitation operators are included is called called coupled cluster singles,

doubles and triples (CCSDT) and so on. This constitutes the CC-hierarchy [7]. Furtermore

approximative models have been developed for each of these truncated CC models, where the

CC2 model is an approximative model of CCSD, and CC3 and CCSD(T) are approximative

models of the CCSDT model [30]. However, one of the drawbacks of the CC hierarchy is

the computational scaling with system size, and over the years much research has gone into

developing CC models with reduced computational scaling [15, 20, 28]. One way of accom-

plishing reduced computational scaling is exploiting the locality of electron correlation, and

a number of steps in this direction has been taken and seen further developments [13, 23, 29].

One of these resulting steps would be the development of the multilevel couple cluster model

(MLCC), where a specific area of the molecule is treated with high level of theory and the

rest of the molecule is treated with lower level of theory [25, 30].
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Pulay and Sæbø laid the foundation of local correlation methods [31], and also an important

early contribution were presented by Werner et al. in terms of developing a local coupled

cluster method [32]. There are also other ways of attempting to reduce the scaling in cor-

relation methods. Such methods include atomic orbital based CC [11], the natural linear

scaling approach [14], local CC using bump functions [34]. These methods use local occupied

HF orbitals, but they have not been able to apply local virtual HF orbitals, and as a conse-

quence projected atomic orbitals (PAOs) are used instead. An alternative which have been

presented to local correlation methods have been to parallize the CC method over multiple

nodes [9]. This has become a useful tool due to the advancements in supercomputers, but it

does not overcome the scaling obstacle.

A number of molecular properties are size-intensive, and size-intensive means that the prop-

erties depend only upon a specific area of the molecule. This is the fundamental idea behind

multilevel CC methods, where high level computation is carried out on a certain area of

the molecule, and the rest of the molecule is computed with lower level of theory. This

procedure is done by seperating the orbital space into two (or more) subspaces, where each

subspace is associated with an excitation manifold [25, 30]. In recent years the orbital space

in multilevel CC-theory has been divided in two, where the atoms in the molecule and their

corresponding atomic orbitals (AOs) are classified as either active or inactive. And Cholesky

decomposition of the diagonal elements of the Hartree Fock (HF) density matrix has been

used to determine the active and inactive spaces [30].

Excitation energies are used by experimentalists in spectroscopic techniques such as X-ray

absorption spectroscopy and UV-vis absorption spectroscopy [27]. The concept in absorption

spectroscopy is that a beam of radiation is focused on a sample and then the absorption of

the radiation as a function of the frequency or wavelength is measured due to the interaction

with the sample. The intensity varies as a function of the frequency, and this then constitutes

the absorption spectrum. An excitation energy refers to the energy required for an electronic
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transition from one orbital to another, where each orbital has a specific energy level [27].

We will consentrate on the five lowest valence excitation energies, and each of these energies

would correspond to a specific peak in the absorption spectrum. Absorption spectroscopy

is essential to identify electronic and molecular properties such as charge transfer, nature of

bonding, hybridization, chemical environment and site symmetry [12].

In recent time, CC models using natural transition orbitals (NTOs) have been developed

for calculating electronic transitions efficiently. Luzanov et al [24] introduced NTOs as a

compact orbital representation for the transition density matrix. Furthermore as an ex-

ample Baudin and Kristensen [8] use NTOs in combination with local occupied orbitals

and local virtual orbitals for the purpose of generating a reduced orbital space specific to

a particular transition where a CC calculation is carried out. The orbital space is further

optimized to make certain that the excitation energies that are obtained are determined

within a predefined precision [8]. We use a black box procedure, as described by Høyvik,

Koch and Myhre [15], for obtaining the active space in our multilevel CC calculations by

including the information obtained from the double excitation vector. The single and double

excitation information are obtained from the lower level of theory and then used to tailor

an active orbital space for the high level calculation. These resulting orbitals are referred

to as correlated natural transition orbitals (CNTOs). The eigenvalues corresponding to the

CNTOs provide a way of determining which orbitals that should be included in the active

space through a set of thresholds for the occupied and virtual orbital space. In the limit

of the thresholds equal to zero, the full orbital space is included in the active space, which

means the entire molecular system is then treated with high level of theory [15].

In this project valence excitation energies are studied, which are particularly used in UV-vis

absorption spectroscopy. The CNTOs are used within certain sets of thresholds to calcu-

late these valence excitation energies in the MLCC framework and compared with valence

excitation energies calculated with the full CC3 model.
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Chapter 2

Theory

2.1 The Schrödinger equation

The Born-Oppenheimer approximation says that because the nucleus is so much heavier then

the electrons moving around it, then the nucleus can be treated as stationary with respect

to the electrons moving around it. So the non-relativistic time-independent Schrödinger

equation, within the Born-Oppenheimer approximation, can be expressed as the following

equation [7]

H|Ψ
〉

= E|Ψ
〉

(2.1)

where |Ψ
〉

is the exact electronic wavefunction describing the system, E is the energy, and

H is the hamilton operator. The hamilton operator (here represented in atomic units) can

be expressed as

H = −1

2

Ne∑
i

∇2
i −

Ne∑
i

Nn∑
I

ZI
|ri −RI |

+
1

2

Ne∑
i 6=j

1

|ri − rj|
+

Nn∑
I 6=J

ZIZJ
|RI −RJ |

(2.2)

where Ne is the number of electrons, Nn is the number of nuclei, ZI is the atomic number

of nucleus I, RI is the coordinates of nucleus I, and ri is the coordinates of electron i. ∇2
i is

the Laplace operator which is defined as

4



∇2
i =

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)
(2.3)

With regards to the Schrödinger equation, it can only be solved analytically for one-

electron systems, but for larger systems approximative methods would have to be used when

solving the Schrödinger equation. While approximative methods are unable to solve the

problem accurately the solutions given will have a given accuracy. However for larger systems,

the exact solution within a given one-electron basis can be obtained by full configuration

interaction (FCI), which can be represented as a linear combination of all determinants as

expressed by the following equation

|FCI
〉

=
D∑

M=1

CM |M
〉

(2.4)

The expansion coefficients, CM , are found by using the variational principle. The variational

principle states that by choosing a ”trial wavefunction, (Ψtrial)” defined as

Ψtrial =
D∑
I=1

CIΦI (2.5)

that gives an expectation value for the energy that is as low as possible according to the

variational theorem that says:

< Ψtrial|Ĥ|Ψtrial >

< Ψtrial|Ψtrial >
≥ E0 (2.6)

Where E0 is the exact energy to the groundstate and the equality only holds if the trial

wavefunction is identical to the exact wavefunction for the groundstate. The variational

principle then states that the approximated energy found, is always larger or equal to the

exact energy (E0) [7].
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The number of determinants, D, has a factorial dependency with respect to the number

of spin orbitals, and the number of coefficients depend on the number of electrons and the

number of spin orbitals according to the binomial distribution as follows

NCn =
N !

n!(N − n)!
=

(
N

n

)
(2.7)

Where NCn represents the number of determinants for n-electrons and N spin-orbitals,

this makes the FCI model practically impossible to use on anything other then small systems

[35].

2.2 Hartree-Fock Theory

Hartree Fock [7] is based upon the variatonal principle, and also upon the assumption that

every electron moves in an average electrostatic field with respect to the otherNe−1 electrons.

HF is method in attempting to solve the schrödinger equation, where the Hamiltonian can

be seperated into a sum of one-electron hamiltonians (hi) for every electron, i, according to

the following formula

Ĥ =
n∑
i

ĥi (2.8)

But to satisfy the Pauliprinciple, which states that the total wavefunction must be antisym-

metric, it is written as a determinant

Ψ =
1√
Ne!

det|ϕ1(1)ϕ2(2)...ϕNe(Ne)| (2.9)

Where ϕ(i) = ϕi(
−→r i)σ(ms), and the spatial part is given by a linear combination of atomic

orbitals (AOs), ϕi =
∑

µCµiχµ.

In order to find the lowest energy, the variational principle and Lagrange multipliers method
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is applied on the expectation value for the energy, (E = <ψtrial|H|ψtrial>
<ψtrial|ψtrial>

), and then differen-

tiate with respect to the MO-coefficients. This leads to the following matrix equation

FC = εSC (2.10)

Where C is a matrix containing the MO-coefficients, S is the overlap matrix of AOs, ε

is a matrix containing all the orbital energies, and F is the Fock matrix. The F matrix

contains integrals where the fockoperator for every electron acts on the atomic orbital for

the respective electron. To illustrate this for electron 1, then the equation that must be

solved is

f̂1ϕa(1) = εaϕa(1) (2.11)

Where f̂1 is the fockoperator for electron 1, defined by the Coulumb operator, Ĵm, and the

exchange operator, K̂m, and the hamiltonian for electron 1, where j0 = e2

4πε0
, according to

the following equations

F̂ =
Ne∑
i=1

f̂i (2.12)

f̂1 = ĥ1 +
∑
m

[2 ˆJm(1)− ˆKm(1)] (2.13)

Ĵm(1)ϕa(1) = j0

∫
ϕ∗m(2)

1

r12
ϕa(1)ϕm(2)dτ2 (2.14)

K̂m(1)ϕa(1) = j0

∫
ϕ∗m(2)

1

r12
ϕm(1)ϕa(2)dτ2 (2.15)

So in order to solve eq 2.10 in practice, this is done iteratively, which means a set
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of MO-coefficients is guessed through a self consistent field (SCF) procedure, where the

MO-coefficients is first guessed and then equation 2.10 is solved iterativley until matrix C

converges [7, 35].

2.3 Electron correlation

Electron correlation [35] is defined as the difference between the exact energy, i.e., the energy

obtained by Full Configuration Interaction (FCI), and the HF energy, as shown in eq 2.16,

this energy corresponds to the motion of correlated electrons.

Ecorr = Eexact − EHF (2.16)

However practically we can only calculate these energies within a given basis, which is why

in a practical manner, the equation for electron correlation becomes:

Ebasis
corr = Ebasis

exact − Ebasis
HF (2.17)

Hartree-Fock is a model where the physical interpretation is that every electron moves in

an average electrostatic field with respect to the other Ne − 1 electrons. But looking at the

movement of the electrons in an average way is not good enough. Electron Correlation arises

from the desire to describe the detailed correlated motion of electrons as induced by their

instantaneous mutual repulsion. Because of the Variational principle that says the HF energy

will always be higher then the exact energy, then as a consequence the correlation energy

will be negative, Ecorr < 0. Electron correlation can be divided into two types of correlation,

dynamic and static correlation. Dynamic correlation is associated with capturing the effect

of instantaneous electron repulsion, such as for those electrons occupying the same spatial

orbital and thus have opposite spin. Static correlation is associated with small differences in

energy between different states and where more than one determinant is required to cover

the electronic structure. To describe static correlation models such as Multi-Configurational
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Self Consistent field (MCSCF), or other multi-reference methods, would have to be used.

But a model such as Coupled Cluster does a good job of describing dynamic correlation [35].

2.4 Møller-Plesset Second Order Correction (MP2)

An important observation is that Møller Plesset with first order correction is equivalent to

Hartree Fock because of the following relation

EHF = E
(0)
0 + E

(1)
0 (2.18)

However Møller Plesset that also includes second order correction is denoted as MP2, and

the energy expression for MP2 will then be

EMP2 = E
(0)
0 + E

(1)
0 + E

(2)
0 = EHF + E

(2)
0 (2.19)

Where E
(2)
0 is given as

E
(2)
0 = −1

4

∑
ijab

|〈ij||ab〉|2

εa + εb − εi − εj
(2.20)

It is important to point out that the second order correction to the energy will always give

a negative contribution to the energy.

MP2 is a very simple model with a very low computational cost which include electron

correlation. It is said that MP2 recover as much as 80-90% of the electron correlation [17].

In this thesis the MP2 method was only used for geometry optimization as also stated in

section 4.1.
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2.5 Coupled Cluster Theory

The fundamental idea in Coupled Cluster theory [7] is that the exact electronic wavefunc-

tion (Ψ) is related to a reference-wavefunction (Φ0) through an exponential operator, eT̂ ,

where T̂ is the Cluster operator, and the reference wavefunction is usually the Hartree-Fock

wavefunction (ΦHF ). This is shown through the following equations:

|Ψ >= eT̂ |ΦHF > (2.21)

eT̂ = 1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + ... =

∞∑
n=0

1

n!
T̂ n (2.22)

The effect of the operator T̂ is the sum of the effect of the one-electron excitation operator

T̂1, the two-electron excitation operator T̂2, and all the way up to the N-electron excitation

operator T̂N :

T̂ = T̂1 + T̂2 + T̂3 + ..+ T̂N (2.23)

The effects of the excitation operators are:

T̂1|ΦHF >=
∑
ia

tai |Φa
i > (2.24)

T̂2|ΦHF >=
∑
ijab

tabij |Φab
ij > (2.25)

And likewise for T̂3 all the way up to T̂N . Where tai is the single excitation amplitude, and tabij

is the double excitation amplitude etc. CC is equivalent to FCI when the clusteroperator T̂

contains all T̂1 to T̂N where n is the number of electrons in the system. The clusteroperator

is, in the case of FCC, equivalent to that of equation 2.23, but the clusteroperator, in the case
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of truncated CC, contains only specific exitation operators. For example the clusteroperator

for CCSD is T̂ = T̂1 + T̂2, and for CCSDT then T̂ = T̂1 + T̂2 + T̂3 etc.The CC wave function

for a given orbital basis satisfies the Schrödinger equation

Ĥ exp(T̂ )|ΦHF > = E exp(T̂ )|ΦHF > (2.26)

CC is not a variational method, so the energy and the amplitudes are determined rather

by subspace projections than by using the variational theorem. This is done by multiplying

eq. 2.26 from the left with exp(−T̂ ). The subspace projections are carried out with respect

to the HF state,
〈
ΦHF |, and the excited state determinants,

〈
µ|, which gives the following

equations for the energy and the amplitudes

〈
ΦHF | exp(−T̂ )Ĥ exp(T̂ )|ΦHF

〉
= E (2.27)

〈
µ| exp(−T̂ )Ĥ exp(T̂ )|ΦHF

〉
= 0 (2.28)

CC unlike HF is not variational, but CC is size-consistent. An important point regarding

the CC-method is that it is a post HF-method. It relieves some of the problems in the

HF-method due to electron correlation as shown in eq. Furthermore the CC-method is only

capable of giving a good description of dynamic correlation, but CC does not give a good

description of static correlation.

Another point is that CC is a size-extensive method, meaning that energies calculated vary

linearly with respect to the number of particles when the system size increases. As men-

tioned earlier CC, unlike HF, is not a variational method, and as a consequence the resulting
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electronic energy may be lower than the true energy.

ECC = EHF + Ecorr (2.29)

The standard CC models are expressed in terms of delocolized CMO’s, resulting in steep

computational scaling, meaning that they can only be used on small molecular systems.

However electron correlation is an example of a local effect, and for those effects that are

local, the scaling may be bypassed by expressing the correlated wavefunction in terms of a

set of local HF orbitals.

2.5.1 CC3

The CC3 model [10] and the CCSD(T) model are both approximations to the CCSDT model.

The advantage is that both CC3 and CCSD(T) shows a reduction in scaling, N7 as opposed

to N8, compared to CCSDT. The CCSDT state is defined as

|CCSDT
〉

= exp(T̂1 + T̂2 + T̂3)|HF
〉

(2.30)

The cluster amplitudes are determined by projecting the schrödinger equation onto the space

of single, double and triple excitations from the HF reference state, where i = 1, 2, 3. In

order to determine the CCSDT state the following equations must be solved

〈
µi|exp(−T̂1 − T̂2 − T̂3)Ĥexp(T̂1 + T̂2 + T̂3)|HF

〉
= 0 (2.31)
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Presenting a t1-similarity transformation, Õ = exp(−T̂1)Ôexp(T̂1), and the hamiltonian, Ĥ

then becomes

H̃ = exp(−T̂1)Ĥexp(T̂1) (2.32)

The singles and doubles equation for both CC3 and CCSDT are as follows

〈
µ1|[H̃, T̂2]|HF

〉
+
〈
µ1|[H̃, T̂3]|HF

〉
= 0 (2.33)

〈
µ2|H̃ + [H̃, T̂2] +

1

2
[[H̃, T̂2], T̂2]|HF

〉
+
〈
µ2|[H̃, T̂3]|HF

〉
= 0 (2.34)

Without external perturbations the equation determining the triples is

〈
µ3|F̂ , T̂3]|HF

〉
+
〈
µ3|[Û , T̂3]|HF

〉
= 0 (2.35)

Equations 2.33, 2.34, 2.35 define the CC3 energy in a system where there are no external

perturbations. The single and double excitations are included to an infinite order and the

triple excitations are determined pertubatively.

The Hamiltonian can be partitioned into two terms, the Fock operator (F̂ ) and the fluc-

tuation potential (Û).

Ĥ = F̂ + Û (2.36)

There are no approximations with regards to the treatment of single excitations, this is

because they act as orbital relaxation parameters. This results in the single amplitude being

treated to zeroth order in the fluctuation potential, while the triple excitations are treated

correctly to the second order. As mentioned before the CC3 model is a good approximation

to the CCSDT model as it reduces the computational scaling from N8 to N7. The CC3
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model then scales to the same order as CCSD(T), and CC3 has the same accuracy and

robustness as CCSD(T), however CC3 preforms better for calculations of time-independent

properties [10, 19].

2.5.2 Multi-level Coupled Cluster

The essential idea in the multi-level Coupled Cluster (MLCC) method is dividing the molec-

ular system into different subsspaces, and these subspaces are treated with different levels

of the CC hierarchy. For example in the MLCC3 model approach, the CC3 model is used to

describe the active part of the molecule and CCSD model is used for the rest of the molecule.

This approach then results in reduction in computational cost by treating the most impor-

tant part of the system with higher level of accuracy. A way of partitioning the system is

to divide it into an active and an inactive space, this can be done by assigning the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)

to the active space. Other ways of partitioning the system into active and inactive spaces

is by using Cholesky decomposition. Since MLCC3 treats only a small part of the molecule

with CC3, and the rest with CCSD, the computational scaling will be equal to CCSD, but

the accuracy is comparable to CC3 [25, 30]. Which is something that will be investigated

in this thesis, where valence excitation energies for different molecules computed by MLCC3

will be compared to the valence excitation energies computed with CC3.

MLCC is not so different from active space CC presented by Olsen and Köhn [21, 26],

but the difference is that MLCC can include several levels of theory, making it possible for

MLCC to gradually increase accuracy. In MLCC the Cluster operator, T̂ , is partitioned into

X̂ + Ŝ, resulting in the following equation

|CC
〉

= exp(T̂ )|ΦHF

〉
= exp(X̂ + Ŝ)|ΦHF

〉
(2.37)
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Both of the operators, X̂ and Ŝ, are associated with the subspace projections µX̂ and µŜ, in

the same manner as in eq. 2.28. The subspace projections with respect to µŜ are solved per-

turbatively for the amplitudes in the Ŝ operator, and the amplitudes for X̂ are determined

without approximations.

With regard to excitations involving only active orbitals, those excitations are classified as

internal (I), and these are included in X̂. Excitations involving both active and inactive or-

bitals are classified as semi-external (SE), and the excitations involving only inactive orbitals

are classified as external (E). Both the semi-external and external excitations are included

in Ŝ [25, 30]. An advantage here would be to completely take advantage of the fact that the

electron correlation is a local property by combining MLCC with localized orbitals, which

would result in a reduction in computational scaling and computational cost, making the

calculations more efficient.

2.5.3 Theoretical speedup

The most demanding terms in full CC3 scale as V 4O3, where V is the number of virtual

orbitals and O is the number of occupied orbitals in a full computation [15]. And this is

reduced to V V 3
AO

3
A in MLCC3, where VA is the number of active virtual orbitals and OA is

the number of active occupied orbitals. Furthermore the theoretical speedup factor is given

by

ηtheo =
( V ×O
VA ×OA

)3
(2.38)

In practice, a CCSD/CC3 calculation will rarely come close to the theoretical speedup factor

because the CCSD calculation scales as V 3O3 and usually dominates the calculations. And

ηtheo are usually on the same level as the contribution from the Ω vector [15], but in practice

there are other factors that would also dominate the calculation such as for example integral

transformation [25], making the calculations slower than what the theoretical speedup would

suggest [15]. The Ω vectors refers to the amplitude equations in the MLCC3 model, defined
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as [25]:

Ωµ1 = 〈µ1| exp(−X2)Ĥ exp(X2)|HF 〉+ 〈µ1|[H,T3]|HF 〉 = ΩCCSD
1 + 〈µ1|[H,T3]|HF 〉 = 0

(2.39)

Ωµ2 = 〈µ2| exp(−X2)Ĥ exp(X2)|HF 〉+ 〈µ2|[H,T3]|HF 〉 = ΩCCSD
2 + 〈µ2|[H,T3]|HF 〉 = 0

(2.40)

ΩµT3
= 〈µT3 |[Ĥ, T3] + [Ĥ,X2] + [[Ĥ,X2], X2] + [[Ĥ, T3], X2]|HF 〉 = 0 (2.41)

2.5.4 Correlated natural transition orbitals for MLCC models

Høyvik, Myhre and Koch [15] have presented a procedure for obtaining an automatic selection

of the active space in multilevel CC calculations. The procedure for generating these orbitals

which is called Correlated natural transition orbitals (CNTOs), is a black box procedure for

determining the active space where the high level treatment is carried out. The eigenvalues

of the diagonalization provides hierarchical route for which orbitals are to be included in

the orbital space. This results in the possibility of, rather than preselecting an active region

of the molecule, a threshold is used for which eigenvalues with corresponding orbitals to be

inlcuded. In the limit where the threshold is zero, the full orbital space is included in the

active space and the entire molecular system is treated with high level theory.

The excitation energies, in CC response theory, are usually determined as the eigenvalues of

the non-symmetric CC Jacobian. For example for excitation ω, we have

AR = ωR (2.42)
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where the CC Jacobian is defined as

Aµν =
∂Ωµ

∂tν
(2.43)

The right excitation vector R of equation 2.42 contains single and double excitation compo-

nents R1 and R2.

Then by using the excitation vector of equation 2.42 orthogonal transformation matrices

for the occupied and virtual orbitals may be generated which gives the CNTOs. The CN-

TOs are obtained by constructing and diagonalizing an occupied-occupied matrix, M, and

a virtual-virtual matrix, N, from the excitation vectors.

Mij =
∑
a

RaiRaj +
1

2

∑
abk

(1 + δai,bkδij)RaibkRajbk (2.44)

Nab =
∑
i

RaiRbi +
1

2

∑
ijc

(1 + δai,cjδab)RaicjRbicj (2.45)

Then the matrices M and N are diagonalized as

Mui = λoiui, i = 1, ..., nocc (2.46)

Nva = λvava, a = 1, ..., nvir (2.47)

Furthermore the normalization of the excitation vector gives
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∑
ai

RaiRai +
1

2

∑
aibj

(1 + δai,bj)RaibjRaibj = 1 (2.48)

Such that Tr(M) = Tr(N) = 1 and
∑

i λ
o
i = 1.0 and

∑
a λ

v
a = 1.0. The eigenvectors of M

and N make up the transformation matrices for the occupied and virtual space that generate

the CNTOs. With respect to which CNTOs to include in the active space of the MLCC

calculation, the sum of the eigenvalues is used. Ordering the orbitals with descending λoi

and λva to be included in the active space within given thresholds δo and δv.

1−
∑
i ∈ act

λoi < δo (2.49)

1−
∑

a ∈ act

λva < δv (2.50)

This thesis project will undertake an investigation of the preformance of the CNTOs in

MLCC computation of valence excitations.

2.6 Basis sets

One way of approximation involving almost all ab initio calculation methods is the use of

basis sets. Although it will not be an approximation if the basis set is a complete basis set,

because a complete set consist of an infinite number of basis functions, but that is impossible

to achive in practice. So in practice a finite basis set is used. It is common to represent a

molecular orbital (MO) as a function in an infinite coordinate system that is spanned by a

complete basis. And with respect to a finite basis set, then the only components of the MO

that is represented are those along the axis.

There are two types of basis functions that are most commenly used in ab initio calcula-

tions, Slater type orbitals (STOs) and Gaussian type orbitals (GTOs) [35]. The STOs have
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no radial nodes, radial nodes only occur when linear combinations of STOs are created.

An advantage is that they converge fast because of their exponential dependency. The dis-

advantage regarding STOs is that they cannot be used for calculations on three and four

centered or more centered two electron integrals. Because of this they are most often used

on atomic or diatomic systems where high accuracy is desired. GTOs have a r2 dependence

in the exponent which gives two disadvantages. Problem one is they have a zero slope at the

nucleus, where the STOs have a cusp, resulting in a problematic representation of proper

behavior near the nucleus. Problem two is the GTOs fall off too rapidly far from the nucleus

resulting in a poor representation of the tail. Because of these disadvantages with the GTOs

are the reason that more of them are needed to achieve the same level of accuracy as the

STOs. However, even if more GTOs are needed to achieve the same level of accuracy, their

integrals are fairly easy to compute, and because of that the GTOs are the preferred basis

functions in electronic structure calculations [35].

2.6.1 Basis set Classification

A minimal basis set contains just enough functions required to describe all the electrons of

neutral atoms, meaning one basis function is used to describe each atomic orbital [35]. Basis

sets can further be improved, where for example the basis functions can be doubled creating

a Double Zeta (DZ) type basis. And for a Triple Zeta basis set, the number of basis functions

are tripled and so on. Another possibility is to double the valence functions and keep the core

functions minimal, creating a split valence basis set. Higher angular momentum is needed if

electron correlation methods are being used. As stated in Section 2.3, there are two types of

electron correlation. The basis set needs functions of the same type and different exponents

to describe radial correlation. But the basis set needs functions with exponents of the same

magnitude for different angular momentum, to describe angular correlation.
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2.6.2 Correlation consistent basis sets

The purpose of correlation consistent (cc) basis sets, developed by Dunning et al. [18], is

to describe the correlation energy of the valance electrons. These basis sets are known as

cc-pVXZ (X = D,T,Q, 5, ..), for a polarized X-Zeta Gaussian basis set. The basis set can

be optimized further with one extra function that has a smaller exponent for each angular

momentum. And finally it is possible to add functions with large exponents, known as

tight functions, if the purpose is to recover the core-core and core-valence correlation energy,

and the acronym will then be cc-CVXZ (X = D,T,Q, 5, ..) [18, 35]. Since this thesis will

focus on valence excitation energies, then the basis sets that will be used in this thesis are

aug-cc-pVXZ (X = D,T,Q, 5, ..), where augmented functions have been added to the basis

sets cc-pVXZ. Augmented functions are diffuse functions, who’s purpose is to improve the

flexibility in the outer valence region. Specifically in this thesis, the basis set that will be

used is aug-cc-pVDZ, when calculating the valence excitation energies.
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Chapter 3

Molecules

In this section, a short introduction about each molecule will be presented. In this thesis is a

study involving four explosive molecules, NTO, fox-7, butanal which is an ordinary organic

molecule and 4-nitroaniline which is also an organic molecule involving charge transfer (CT)

excitation energies.
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3.1 NTO

3-Nitro-1,2,4-triazole-5-one (NTO), as shown in figure 2.1, was developed at Los Alamos

National Laboratory in 1983, and was found to have desireable characteristics such as high

energy release on docomposition, high detonation velocity and good thermal stability etc.

It has been characterized as a potential candidate for high energy density material (HEDM)

which is powerful and yet resistant to accidental and sympathetic initiation. NTO has a

lower shock sensitivity than TNT, and just as high explosive performance as RDX and

HMX, which are the most effective and widely used explosives today. NTO is unique among

military explosives in that it does not fall in traditional classes of explosives i.e. nitrates,

nitramine or nitroaromatics. NTO is acidic and could coordinate with metallic ions. Another

intresting feature of NTO is that there exist a possibility for inter or intra molecular hydrogen

bonding [36].

Figure 3.1: NTO
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3.2 Fox-7

Fox-7 (1,1-diamino-2,2-dinitroethylene, C2H4N4O4) has recently been an attractive molecule

for research into developing new energetic materials and explosives. Fox-7 is described as a

push-pull molecule with two electron donor amine groups (−NH2) and two electron with-

drawing nitro groups (−NO2) as shown in figure 2.4. It’s insensitivity behaviour can be

explained by it’s structure, where Fox-7 is stable partially due to the strong intra-molecular

hydrogen bonds between the nitro oxygen atoms and the amino hydrogen atoms, which is im-

portant for its ground and excited state properties. Furthermore compared to the presently

most widely used and powerful explosives RDX and HMX, Fox-7 yields the same number of

moles (0.0405) of gaseous product per gram of compound for the complete decomposition

reaction to CO2, N2, and H2O [37].

Figure 3.2: Fox-7
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3.3 Butanal

Butanal is an organic compound with molecular formula C4H8O. It is an aldehyde derivative

of Butane as shown in figure 2.6. It is flammable, colorless with acrid smell, mostly used as

an organic solvent.

Figure 3.3: Butanal
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3.4 4-Nitroaniline

4-Nitroaniline is composed of a benzene ring with a nitro group and an amino group bonded

to its benzene ring. It is a synthetic precursor to Pharmaceuticals, dyes and pesticides and

is a common wastewater contaminant. In high concentrations it can have a detrimental

environmental effect as it is a carcinogen [16, 22].

Figure 3.4: 4-Nitroaniline
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Chapter 4

Results and discussion

In this section, a description of the procedure used for investigating valence excitation ener-

gies for a set of thresholds for CNTOs using the MLCC3 model on six different molecules,

and the full CC3 model as a reference on four of the molecules. The results presented in

table 4.1-4.4 will be evaluated in terms of the average errors per molecule and the average

errors per excitation, and further compared with the percentage of active orbitals and the

theoretical speedup factors.

4.1 Computational details

The geometry of the molecules; Butanal, NTO, Fox-7 and 4-nitroaniline [1–4] were opti-

mized using the MP2 model with the cc-pVDZ basis set. The geometry optimizations were

preformed using the qchem 4.4 program [5, 33] and the valence excitation energies were pre-

formed with a local version of the DALTON program package [6]. The valence excitation

energies were calculated using with the CCSD, MLCC3 and CC3 methods for the four small-

est molecules; Butanal, NTO, Fox-7 and 4-nitroaniline. And for the two largest molecules

the energies were calculated using only the CCSD and MLCC3 method, because they were

too large for CC3.
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For the excitation energies calculated with the MLCC3 model, they were calculated for

a set of thresholds for δo and δv, in the ranges of 10−3 to 10−4 for δo and 10−3 to 10−5 for δv.

The basis set aug-cc-pVDZ was used on all four molecules for calculations involving valence

excitation energies. The valence excitation energies obtained using CNTOs and the MLCC3

model is presented in tables 4.1 - 4.4.

Tables 4.1 - 4.4 contain the results for NTO, fox-7, butanal, 4-nitroaniline. ∆(eV ) in table

4.1 - 4.4 is the average error in eV computed according to the formula

∆(eV ) =
1

5

5∑
i=1

|exc(i)− CC3(i)| (4.1)

where exc(i) is the energy in eV for excitation i within a corresponding threshold, and CC3(i)

is the CC3 energy of excitation i in eV.

The errors in each table denoted err.i, is the difference between the excitation energy for

excitation i (exc.i) and the CC3(i) energy, where i = 1, 2, 3, 4, 5, within a corresponding

threshold. And the values specified in parentheses, are the error in precentage with respect

to the CCSD-CC3 difference.
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4.2 The effects of δo and δv

4.2.1 Considering average errors per molecule

For all of these molecules we have computed the five lowest valence excitation energies.

Figure 4.1 shows the average errors per molecule relative to the CCSD-CC3 difference in

precentage (%).

Figure 4.1: Average errors per molecule for every thresholds relative to the CCSD-CC3
difference, the δo = 10−3/δv = 10−3 for butanal goes up to 99% and the δo = 10−4/δv = 10−3

threshold goes up to 86% for butanal.

Considering the results from figure 4.1, we see that both combinations of thresholds con-

taining δv = 10−3 give errors with far too high percentage compared to the CCSD-CC3

difference. We see in figure 4.1 that the results for butanal shows an average error of 99% for

the δo = 10−3/δv = 10−3 threshold and 86% for the δo = 10−4/δv = 10−3 threshold. These

are significantly large errors compared to the other molecules. There is no good explanation

as to why this has occured, and also taking into account that figure 4.2 does not show any

significantly less amount of active orbitals.
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Figure 4.2: Percentage of active orbitals relative to full space

From figure 4.2 we see that generally the same percentage of orbitals are inlcuded in the

active space for NTO, fox-7 and 4-nitroaniline for every threshold. But a little smaller per-

centage of orbitals are included in the active space for butanal for every thresholds. But this

does not explain the significantly large errors observed for butanal. Parhaps some systematic

errors occurred when running the calculations for butanal, for example that the system read

a wrong file, or that the information in a file is wrong. However we refer to ”future work

” in chapter 5, with respect to the calculations concerning butanal, where we suggest these

calculations be done again and double checked.

Furthermore by looking at table 4.1 we see that excitation number 2 and 4 for butanal

has errors over 100% compared to the CCSD-CC3 difference for the δo = 10−3/δv = 10−3

threshold, which should never happen. We should normally see an improvement in accuracy

as we increase the level of theory, and not a decline in accuracy. We can however conclude

that δv = 10−3 is generally too high for the virtual space. And because of the fact that

29



δv = 10−3 gives such poor results generally, we will exclude δv = 10−3 from further discus-

sions of our results, and have presented the same figures of average errors per molecule in

figure 4.3 without the δv = 10−3 thresholds.

Figure 4.3: Average errors per molecule for every thresholds in percentage (%), except
thresholds containing δv = 10−3.

Considering the results from figure 4.3, we see again that butanal has large errors for

thresholds containing δo = 10−3 compared to the other molecules, where the δo = 10−3/δv =

10−4 gives 22.3% average error and δo = 10−3/δv = 10−5 gives 18.1% average error for bu-

tanal. A reason for this can be that for these thresholds containing δo = 10−3 give somewhat

less amount of active orbitals for butanal than the other molecules as shown by figure 4.2.

We can then conclude that δo = 10−3 is too high for the occupied space for butanal. However

we observe a significant improvement in the errors for butanal as we tighten the threshold

for the occupied space from δo = 10−3 to δo = 10−4. For NTO, fox-7 and 4-nitroaniline

we observe good results for all the thresholds δo = 10−3/δv = 10−4, δo = 10−3/δv = 10−5,

δo = 10−4/δv = 10−4 and δo = 10−4/δv = 10−5, where they give an average error in the
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ranges from 1.2% for δo = 10−4/δv = 10−5 for NTO to 10.3% for δo = 10−3/δv = 10−4 for

fox-7.

The results in figure 4.3 show an increase in accuracy as we tighten the thresholds from

δo = 10−3/δv = 10−4 to δo = 10−4/δv = 10−5. This is to be excpected as we also increase

the precentage of active orbitals from from δo = 10−3/δv = 10−4 to δo = 10−4/δv = 10−5 as

shown in figure 4.2, especially for the occupied space which increases from 55% to 70% for

the active occupied orbitals for butanal.

With respect to butanal, we have to tighten the threshold to δo = 10−4/δv = 10−5 in

order to get an average error in the same precentage level as NTO, fox-7 and 4-nitroaniline.

Where δo = 10−4/δv = 10−5 gives an average error of 2.4% for butanal, 1.2% for NTO, 1.8%

for fox-7 and 2.6 % for 4-nitroaniline.

On the other hand δo = 10−4/δv = 10−4 gives an average error for NTO, fox-7 and 4-

nitroaniline on approximately the same level of percentage. Where the average error is 3.4%

for NTO, 3.1% for fox-7 and 3.3% for 4-nitroaniline. The figure 4.3 shows that the average

error for butanal deviates from this percentage level, where butanal shows an average error

of 6.4% for δo = 10−4/δv = 10−4, which is approximately double the value of error compared

to the values for NTO, fox-7 and 4-nitroaniline.

The same observation is seen with respect to butanal for the thresholds δo = 10−3/δv = 10−4

and δo = 10−3/δv = 10−5, where butanal shows approximately either double or triple the

value of average error compared to NTO, fox-7 and 4-nitroaniline. And when we also con-

sider the high theoretical speedup factor equal to 30 for δo = 10−3/δv = 10−4 for butanal

in figure 4.4, indicates the result for δo = 10−3/δv = 10−4 for butanal is too unreliable and

inaccurate in order to for example be able to support experimentalists.
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Figure 4.4: Theoretical speedup for thresholds without δv = 10−3 for NTO, fox-7, butanal
and 4-nitroaniline

Also by comparing the average errors for the thresholds δo = 10−3/δv = 10−5 and δo =

10−4/δv = 10−4 for butanal, we see that δo = 10−3/δv = 10−5 gives an average error of 18.1%

with a theoretical speedup factor equal to 10.2, and δo = 10−4/δv = 10−4 gives an average

error of 6.6% with a theoretical speedup factor equal to 14.4. So δo = 10−4/δv = 10−4 gives a

higher theoretical speedup factor with a lower average error compared to δo = 10−3/δv = 10−5

which gives a lower theoretical speedup with a higher average error. A reason for this would

be the different percentage of active orbitals, especially for the occupied space. Where

δo = 10−3/δv = 10−5 has 55% active occupied orbitals and 83.8% active virtual orbitals,

compared to δo = 10−4/δv = 10−4 which gives 70% active occupied orbitals and 58.7% ac-

tive virtual orbitals. This indicates that the level of accuracy in the average error is highly

dependent on the active occupied space. And it also indicates that its more worth looking

at δo = 10−4/δv = 10−4 threshold then the δo = 10−3/δv = 10−5 threshold. This observation

can be seen generally in figure 4.3 for NTO, fox-7 and 4-nitroaniline, where we see a good
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improvement in the average error when we go from δo = 10−3 to δo = 10−4.

As stated before we have to approach the δo = 10−4/δv = 10−5 threshold before we get

average errors per molecule which are accurate, reliable and on the same level of percentage.

Because for the other thresholds, the average errors varies more from molecule to molecule

and from threshold to threshold. But for δo = 10−4/δv = 10−5 the average error is more

consistent for each molecule. The theoretical speedup factor (figure 4.4) and the percentage

of active orbitals (figure 4.2) are also consistently on the same level for each molecule.But

this is not the case for the other thresholds. Which means there is no point in doing calcu-

lations with higher theoretical speedup, when the results varies from molecule to molecule

and also giving inconsistent and inaccurate average errors, which means those result are too

unreliable to for example support experimentalists.
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4.2.2 Considering average errors per excitation

Figure 4.5: Average errors per excitation for every thresholds relative to the CCSD-CC3
difference in percentage (%), except for thresholds containing δv = 10−3.

Considering the results in figure 4.5, the same trend is observed for each excitation, where

the results give more and more accurate errors, the tighter the thresholds become. And

this is due to the obvious reason, where the tighter the threshold means a larger amount

of the molecule is treated with higher level of theory so we would expect more and more

accurate results. However for thresholds containing δo = 10−3, we see excitation number 1

has the smallest errors, and the errors increase for excitation 2, and then decrease steadily

for excitation 3,4 and 5. But for thresholds containing δo = 10−4, we observe excitation 1

has the highest errors, and the average errors decrease steadily for exciation 2, 3 and 4, and

then increase a little for excitation 5. This could be due to the higher excitations being more

diffuse. However the errors are much larger for the δo = 10−3 thresholds compared to the

δo = 10−4 thresholds, so we would consider using δo = 10−4 to obtain accurate results for

the occupied space. We do not observe a significcant improvement in the average errors for

the virtual space when we go from δv = 10−4 to δv = 10−5, but a reasonable improvement is
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observed nonetheless. This is related to the higher amount of active orbitals included in the

virtual space when we go from δv = 10−4 to δv = 10−5 as shown by figure 4.2.

We see from figure 4.5 that the average errors per exciation for the threshold δo =

10−3/δv = 10−4 are in the ranges from 10.3% for excitation number 1 to 14.5% for excitation

number 2, where excitation 2 gives the highest percentage of average error for δo = 10−3/δv =

10−4. And for δo = 10−3/δv = 10−5 the average error ranges from 7.9% for excitation 1 to 12.2

% for excitation 2, where excitation 2 is the highest precentage of error for δo = 10−3/δv =

10−5. By considering the fact that from the previous section we observed that butanal

have a high average error for these thresholds compared to NTO, fox-7 and 4-nitroaniline,

and also by looking at table 4.1-4.4 we see that butanal generally shows higher percentage

of errors compared to NTO, fox-7 and 4-nitronaniline. By that reasoning butanal gives a

strong contribution to the average error per excitation, and NTO, fox-7 and 4-nitroaniline

generally show percentage of errors approximately on the same level with respect to each

other. Let us therefore look at a version of figure 4.5 without the contribution from butanal

as shown in figure 4.6.
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Figure 4.6: Average errors per excitation for every thresholds relative to the CCSD-CC3
difference in percentage (%), except for thresholds containing δv = 10−3 and the contribution
from butanal.

We now observe a significant difference in the average error per excitation from figure

4.5 to figure 4.6. For the threshold δo = 10−3/δv = 10−4, we observe a general decrease in

average error from 9.1% for excitation 1 to 4.5% for excitation 5, except for a deviation for

excitation 2 which has an average error of 14.5% and is approximately unchanged from figure

4.5. The same trend is observed for the δo = 10−3/δv = 10−5 threshold in figure 4.6, where

excitation 1 has an average error of 8.5% and it decreases to 3.5% for excitation 5, with

the exception of excitation 2 which shows an average error of 12.5% and is approximately

unchanged from figure 4.5. The reason that the average error is unchanged for excitation 2

for δo = 10−3/δv = 10−4 and δo = 10−3/δv = 10−5 is because NTO and fox-7 has a couple

of high percentage errors for excitation 2, as seen from table 4.2 and table 4.3. However for

the δo = 10−4/δv = 10−4 threshold, figure 4.5 shows that the average errors approaches a

consistent level of percentage for excitation 2-5 in the ranges from 3.5%-3.9%, and a little
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higher average error of 5.4% for excitation 1. Comparing figure 4.5 and figure 4.6 we can

see that butanal is the one driving up the average error in figure 4.5 for excitation 1 for

δo = 10−4/δv = 10−4. For the δo = 10−4/δv = 10−4 threshold in figure 4.6 the same trend

can be observed where for excitation 1-5 are consistently on the same level of average errors

in the ranges 2.4% -4.6%, and a little deviation for excitation 2 which shows an average error

of 4.6 %. The reason for the little increase in error from figure 4.5 to figure 4.6 for excitation

2 is because NTO has a relatively high percentage error as shown in table 4.2.

As for the δo = 10−4/δv = 10−5 threshold, it shows consistent average errors approximately

on the same level of percentage ranging from 1.5% - 2.78% for figure 4.5 and from 1.0%-2.5%

for figure 4.6. We generally see a significant improvement in accuracy when going from the

δo = 10−3 to δo = 10−4 for the occupied space, due to the increase in percentage of active

orbitals as stated before. And as mentioned before the average error per excitation converge

towards approximately the same level of percentage. This makes δo = 10−4/δv = 10−5 accu-

rate and reliable, just like we observed in the previous section.

We also genereally observe a decrease in average error, when going from δv = 10−4 to

δv = 10−5, this is because of the increase in active virtual orbitals as shown in figure 4.2.

But we observe a much larger improvement when going from δo = 10−3 to δo = 10−4 for the

occupied space. So the increase in active occupied orbitals seems to have the biggest impact

on the average errors both for the average errors per molecule and for average errors per

excitation.

We also observe that the theoretical speedup factor is around the same level for δo =

10−4/δv = 10−5 ranging between 3.8 for NTO to 4.9 for butanal, which results in average

errors around the same level, making these results reliable. But for the higher theoretical

speedup factors for the other thresholds, results in more inaccurate and inconsistent average

errors making those results unreliable, and so we can conclude that δo = 10−4/δv = 10−5 is
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an acceptable threshold.
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Chapter 5

Conclusion

In this thesis project, valence excitation energies in the multilevel coupled cluster (CC3/CCSD)

framework using correlated natural transition orbitals have been computed, and compared

to valence excitation energies calculated with the full CC3 model. The correlated natu-

ral transition orbitals are included in an active space using a threshold for the eigenvalues

corresponding to the orbitals. The calculated valence excitation energies from the MLCC3

model give both high and small errors compared to the full CC3 model. For example the

δo = 10−3/δv = 10−3 and δo = 10−3/δv = 10−3 thresholds give high average errors per

molecule of respectively 99% and 86% for butanal, 20% and 17% for NTO, 18% and 12%

for fox-7, and finally 31% and 26% for 4-nitroaniline. However using 10−4 as a threshold for

the active occupied orbitals and 10−5 as a threshold for the active virtual orbitals give accu-

rate results of, 1.2%-2.6% for average error per molecule and 1.5%-2.8% in terms of average

error per excitation, for the molecules used in this project. These accurate results are to be

expected considering, between 70% and 74% of the occupied orbitals and between 83%-88%

of the virtual orbitals are included in the active space. Which means a large percentage of

the molecule is included in the active space for the δo = 10−4/δv = 10−5 threshold. In gen-

eral to obtain errors less than 10% on needs to include approximately 60-70% of the orbital

space for the investigated molecules. Clearly the correlated natural transition orbitals are

appropriately adapted for electron transition in the valence region.
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Chapter 6

Future work

The calculations for butanal resulted in significantly large errors as shown by figure 4.1,

especially for thresholds containing δv = 10−3. There might have been some problems that

occured when running these calculations, for example that the program accidentally have

read a wrong file or a file contained wrong information. However these calculations should

be done again and double checked to confirm that these are the right or wrong energies.

Valence excitation energy calculations using the MLCC3 framwork for the molecules RDX

and TNT are still running, and these are to be included in the dataset when finished. Further,

it could be of interest to investigate the use of CNTOs for charge-transfer excitations.
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