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Abstract
Image generation with Artificial Neural Networks (ANNs) has been popular in
the last few years by using the knowledge about objects and structures to gen-
erate dreamlike images, applying smart filters or making images appear scary.
Although vivid and impressive, the generated images do not appear natural to a
human viewer. Training ANNs to generate better images is a hard problem to
solve with conventional machine learning techniques.

Generative Adversarial Networks (GAN) is a new approach that utilizes two
ANNs in one system. The first ANN is called the Discriminator and evaluates
the quality of generated images from the other neural network called the Gener-
ator. These two networks partake in an adversarial battle to improve their own
performance. The results of this battle is a model capable of generating new nat-
ural looking images based on unsupervised learning of an image dataset. GAN
have evolved considerably since its inception, but there are still open problems.

One such problem is how to objectively evaluate a GAN model. Image generation
has no fixed solution, and evaluating it is a difficult as evaluating other creative
works. One method allows for two GAN models to be compared by evaluating
each other. This method leverage the adversarial min-max aspect of GANs, by
having the Discriminator from one model classify generated samples from the
other, and vice versa. This thesis will propose a custom implementation of this
method that allows for comparison between two GAN models both overall and
throughout the learning process.

GANs have a reputation for being hard to train. One concrete problem is main-
taining the balance between the Generator and Discriminator. As for humans,
it is easier to rate the quality of images then it is to actually create them. A
good evaluator is necessary, but it must not out power the generative model.
Two main approaches will be explored to achieve a better balanced GAN model.
The first method makes guided alterations to the usually random input of the
Generator. The second method adds an additional Discriminator to the model.
Techniques based on both of these methods were shown to effectively guide the
training process and creating strong models that outperformed regular GANs
when compared with the previously mentioned evaluation metric.
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Sammendrag
Bruk av Kunstige Nevrale Nettverk (ANN) til kreative oppgaver som bildegenere-
ring har vært populært de siste årene. Nevrale nettverk kan bli trent på bildedata
til å lære seg repeterende mønstre og former som igjen kan brukes til å generere
nye bilder. Selv om disse bildene kan være både fargerike og slående, er det sjel-
dent noe tvil om at de er genererte eller i det minste behandlet av en datamaskin.
Nevrale nettverk har hovedsakelig blitt trent med data som inneholder et korrekt
svar for hvert datapunkt. Dette fungerer bra for oppgaver som gjenkjenning av
ansikter eller objekter i et bilde, men er svært vanskelig for kreative oppgaver
uten en klar fasit.

En ny teknikk innen nevrale nettverk kalt Generative Motstående Nettverk (GAN)
bruker et separat nettverk til å sammenligne genererte bilder med ekte bilder og
avgjør hvor naturlige de genererte bildene ser ut. Dette krever altså to nettverk:
Generatoren, som generere bilder, og Dommeren, som vurderer de genererte bil-
dene. Generatoren prøver å lure Dommeren til å tro de genererte bildene er ekte.
Dommeren prøver å ikke bli lurt. Hvert nettverk prøver å forbedre sine egne
egenskaper på bekostning av den andre. Denne kampen frem og tilbake kan tre-
ne Generatoren til å kan skape nye, realistiske eksempler basert på et eksisterende
sett med bilder.

GAN er en relativt ny teknikk og det er fortsatt åpne problemer. Et av disse
problemene er hvordan man objektivt kan bedømme kvaliteten til de genererte
bildene. Bildegenerering har ingen fasit og kan sammenlignes med bedømmelse
av kunst og andre kreative verk. Mange metoder er foreslått, men det fortsatt
ingen klar løsning. En metode går ut på å sammenligne to trente GMN-modeller
ved å la de bedømme hverandre. Denne avhandlingen vil implementere og videre-
utvikle denne teknikken for objektiv evaluering av det endelige resultatet sågar
delresultater underveis i læringsprosessen.

GAN har pådratt seg et rykte for å være vanskelig å trene. Et konkret problem er
at det blir en ubalanse i egenskapene til et av nettverkene, oftest Dommeren. I lik-
het med mennesker, er det oftest lettere å bedømme noe, enn å faktisk produsere
det selv. Likevel er en god Dommer nødvendig for å kunne gjengi treningsbildene,
så lenge den ikke overkjører Generatoren. Denne avhandlingen vil se nærmere på
to metoder som gjør jobben lettere for Generatoren uten å begrense Dommeren.
Generatoren baserer de genererte bildene på en liste med tilfeldige tall. Den første
metoden vil gjøre endringer av disse tallene for å styre hvordan modellen trenes.
Den andre teknikken vil utvide GAN med en ny Dommer og dermed hindre at
en blir for sterk. Konkrete teknikker basert på disse metodene ble testet gjennom
evalueringsmetoden beskrevet tidligere og begge resulterte i bedre modeller som
krevde mindre treningstid og var bedre balansert.
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1. Introduction
This chapter gives an introduction to the thesis. The motivation is the first part
of this chapter. The overall research goal of the project is then defined with three
research questions proposed based on it. The contributions and thesis structure
is covered next.

1.1. Motivation
Generative Adversarial networks (GANs) is a new technique within Deep Learn-
ing better suited for machine learning tasks without a fixed solution. GAN re-
search has rapidly increased in the last year as it has many appealing aspects
that are hard or not possible with existing techniques, such unsupervised learn-
ing and image generation. Yann LeCun, Director of AI Research at Facebook and
Professor, stated in 2016 that GAN was the advancement within Deep Learning
that he was the most excited about (LeCun and Bennett, 2016). A prominent
use case, and the focus of this thesis, is the way GANs can be trained to generate
new examples of real life images. New techniques will be explored to further
specialize and improve GANs for the task of image generation.

Using computers to generate images, such as a GAN system, falls under the
subject of Computational creativity. Defining what is creative is difficult as it
is highly subjective. For something to be classified as creative, it should be
surprising, novel and give some form of value to the observer (Boden, 1998).
Humans may have no trouble calling the drawing of a child creative, but have a
stronger bias against a creative computer system.

A GAN model consists of multiple Artificial Neural Networks (ANNs), a machine
learning technique inspired by the human brain. Using ANNs for computational
creative tasks has been prominent within the last few years with Mordvintsev
et al. (2015) demonstrating how Google’s Inception network, normally used to
classify objects in images, could use its deep knowledge of shapes and patterns to
generate vivid imagery (Figure 1.1), to interactive web based tools, games and
demos including Nightmare Machine1 which transforms uploaded images into

1http://nightmare.mit.edu/
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1. Introduction

dark and scary versions, and to Quick, Draw2 that tasks the users with drawing
certain objects while the artificial intelligence tries to guess which objects are
drawn. Many of these go viral and reach mainstream media.

The common approach to ANNs is to use a single network and train it with
labelled training data. This is called supervised learning as the model is expli-
citly told what output is correct for a given input. A drawback to supervised
learning is that it requires data with labeled output, often created by human
labour. Neural networks require thousands or even millions of elements for train-
ing, and supervised learning requires human labelling of each element. These
labels may not always be available or even feasible. Unsupervised learning, on
the other hand, is training without labels, which forces the learner to make its
own generalizations about the data.

Generating images can be done using tools like Google’s Deep Dream Generator3

and the previously mentioned Nightmare Machine. The generated images are
impressive; however, they look quite unnatural and artificial. This is not surpris-
ing as the networks are usually trained to maximise object recognition. Using a
statistical model to learn shapes and patterns in images lets the network get a
deep structural understanding. An example of how Google’s Inception network
(Mordvintsev et al., 2015) sees objects in images is depicted in Figure 1.2.
Training a network to generate more natural looking images is certainly possible,
but would be a hard problem to solve with conventional supervised learning,
requiring either a human to evaluate every generated image or creating a large
dataset with examples of good and bad images. Nightmare Machine uses a version
of the former, allowing online users to rate generated samples as either scary or
not scary.

The innovative approach with GANs is to replace the human evaluator with an
additional neural network. The concept of GAN was introduced by Goodfellow
et al. (2014) and utilizes two ANNs in a min-max game. The first network, the
generative model, is tasked with generating new samples, often images, based
on an existing set of samples. The second network, the discriminative model,
evaluates and judges whether the sample is from the dataset or synthesized by the
other model. The two networks partake in an adversarial zero sum min-max battle
to improve their own performance. In other words, the Discriminators ability to
separate real samples from the ones generated by the Generator. Meanwhile, the
Generator will generate images of improved quality to deceive the Discriminator.
Goodfellow et al. (2014) have the following causal description of GAN:

"The generative model can be thought of as analogous to a team of counterfeiters,
2 Google Quick Draw https://quickdraw.withgoogle.com/
3https://deepdreamGenerator.com/

2



1.1. Motivation

Figure 1.1.: Mordvintsev et al. (2015) demonstrated how the Inception ANN can
be used to detect features in everyday images. The result is vivid
and dream-like imagery. (Source: Mordvintsev et al., 2015. Used
under Creative Commons Attribution 4.0 International License.)

3



1. Introduction

Figure 1.2.: Random noise can be used to visualize how a neural network recog-
nizes objects. Examples generated by Mordvintsev et al. of vari-
ous objects using Google’s Inception network. (Source: Mordvintsev
et al., 2015. Used under Creative Commons Attribution 4.0 Interna-
tional License.)
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1.2. Goal and Research Questions

trying to produce fake currency and use it without detection, while the discrimin-
ative model is analogous to the police, trying to detect the counterfeit currency.
Competition in this game drives both teams to improve their methods until the
counterfeits are indistinguishable from the genuine articles." (Goodfellow et al.,
2014, p. 1)
GANs have evolved considerably since their inception. Architectural changes,
new techniques and more suitable dataset have specialised GANs towards image
generation and greatly increased the quality of the generated samples. Figure 1.3
displays examples of randomly generated faces generated by a modern GAN
(Radford et al., 2015). While many of the images are hard to distinguish from
real images, some far from perfect with unnatural features and shapes.
GANs have a reputation as being hard to train. The performance of the Dis-
criminator model should be kept in balance of the Generator; otherwise image
generation may not improve. Also, as with all computational creativity, it is hard
to quantitatively evaluate the quality of a generated sample. GAN is a relatively
new framework so problems are expected. This is what makes GAN such an
interesting area of research as new improvements are made continuously. This
thesis will research state-of-the-art and explore new techniques to help addressing
the mentioned problems with the overall goal of improving image generation.

1.2. Goal and Research Questions
G1 Explore and develop new techniques for Generative Adversarial Networks

specialized for image generation

The GAN framework is suitable for several kinds of machine learning problems.
The largest area of research has so far been with using GANs to generate images
based on unsupervised learning. This thesis will focus solely on using GANs for
image generation and further specializes GANs towards this task by developing
new techniques. Experiments will be conducted to document how these new
techniques influence and affect the quality of the generated images.

RQ1 How is performance affected by altering the input to be more favorable
towards the Generator model in a Generative Adversarial Network?

A problem with GAN is the problem of synchronizing the Generator and Discrim-
inator during training. The generative model is generally more difficult to train
then a Discriminator model. As a result of this, the Discriminators performance
is improving at a faster pace than the Generator which makes the Generator too
skilled at classifying the Generators generated samples. A suggested way of al-
tering this balance is modifying the otherwise random input to be more favorable
towards the Generator.
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1. Introduction

Figure 1.3.: Randomly selected samples generated with the DCGAN architecture
which specialized GAN towards image generation. The networks are
trained a dataset of celebrity faces. (Source: Radford et al., 2015.
With permission.)

6



1.3. Contributions

RQ2 In what way is performance of a Generative Adversarial Network model
impacted by adding additional, asymmetrically trained Discriminator mod-
els?

The fundamental difference of GAN compared to usual ANN is the use of two
networks in the same model. Adding additional neural networks is therefore a
logical next step and a growing area of research. Although there are many ways
of expanding the number of networks in a GAN, this thesis will focus on adding
additional Discriminators that are trained on different data .

RQ3 How can the performance of the suggested techniques related to RQ1 and
RQ2 be accurately measured and objectively evaluated?

Another problem with GANs is the difficulty of objectively evaluating the quality
of a trained model. This problem makes it hard to accurately measure the effect
of new techniques. The most obvious way, when dealing with image generation,
is to manually inspect the quality of the generated samples. This is possible
to some degree if the comparison is done between systems of widely different
quality, but is often too subjective if comparing similar models. A major area of
research with GANs is finding a metric that is able to objectively and universally
evaluate the quality of a model. This thesis will explore methods to evaluate the
techniques derived from RQ1 and RQ2.

1.3. Contributions
C1 Literary review of the current state-of-the-art of for GANs specialized for

image generation.

C2 Evaluation and discussion of various public and custom image datasets in
relation to unsupervised learning with GANs.

C3 SGAM: Custom memory efficient implementation of GAM for comparison
of two GAN models throughout the training process.

C4 New techniques for altering the Generative models’ input to give it at an
edge during training: SRN, IBNG and ABNS.

C5 GMAN-HD: Extends GAN with additional Discriminator past output from
the Generator.
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1. Introduction

1.4. Thesis structure
• Chapter 1 introduces the thesis and the project conducted as a part of it.

• Chapter 2 gives a brief overview of various smaller subjects and theory
that will be discussed throughout this thesis. The main part of the back-
ground chapter is introduction to the main subject of this thesis, Generative
Adversarial Networks.

• Chapter 3 offers a literary review of the state-of-the-art for GANs special-
ized for image generation.

• Chapter 4 details the system implementation and the hardware it runs
on.

• Chapter 5 describes the dataset and sources for data that may be used
for the experiments.

• Chapter 6 discuss the research question in regards to the related work.
From this discussion, custom techniques proposed to answer the research
questions.

• Chapter 7 presents the results of experiments conducted to the techniques
proposed in Chapter 6.

• Chapter 8, concludes the thesis and discusses the project in relation to
the project goal and research questions defined in Chapter 1.
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2. Background
This chapter will give a introduction to the necessary theory, technologies and
datasets that will be used or discussed throughout this thesis. Section 2.6 de-
scribes Generative Adversarial Networks (GANs), the main subject of this thesis.

2.1. Artificial neural networks

Artificial Neural Networks (ANNs) is a field within Artificial Intelligence (AI)
that takes inspiration from the human brain. A network consists of at least
two nodes, input and output, with weights between them. These weights are
adjusted to give the desired output when given an input. This is called training
the network.

A Convolutional Neural Network (CNN) is form of ANN that utilizes at least
one convolutional layer in its architecture. Convolution being a kind of linear
operation replacing general matrix multiplication. CNNs are mostly used in
conjunction with images as regular ANNs usually become too large to efficiently
train. CNNs commonly implements features such as pooling layers for image
down sampling and sparse connectivity to reduce the overall size of the network,
decreasing training time.

2.2. Parallelization and GPU-based calculations

Parallel computing is the concept of dividing a computational task into smal-
ler subtasks, using multiple processors to calculate each subtask simultaneously.
This is normally done on the central processing unit (CPU). Certain problems
can utilize the parallel nature of the graphics processing unit (GPU). This can
boost performance considerably as modern GPUs have thousands of cores com-
pared to CPUs having 2 to 8 cores. Neural networks are highly susceptible to
parallel programming as the training phase consists of updating thousands or
millions of weights independently of each other.
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2. Background

2.3. Frameworks
The software framework used or considered used for this thesis are described in
this section.

2.3.1. CUDA
CUDA1 is a platform for parallel computations using a modern GPU. The frame-
work enables developers to send code directly to the GPU. CUDA is a product
of NVIDIA and requires a GPU from them with specialized hardware known
a CUDA-cores. CUDA-cores are highly parallelized processors and the number
of cores ranges from about 500 on the lower end cards to several thousand on
the high-end ones. Machine learning frameworks can utilize CUDA through a
framework called cuDNN2, a library of low-level operations, implementing many
common features of ANN that help boost performance of deep neural networks
using GPU-based calculations. The framework is freely available, but a developer
account at NVIDIA is required.

2.3.2. Deep learning libraries
There exists many frameworks and libraries for deep learning. The most used
are all quite similar in that they are open-source, usually use Python to run
underlying C/C++ implementations for efficient calculations in parallel using
either CPU or GPU (through CUDA).

• TensorFlow3 is a popular open source library for deep learning. It is
developed by Google Brain, a research project in deep learning at Google.
TensorFlow runs on 64-bit versions of MacOS and Linux, servers and mobile
devices. TensorFlow includes native support for the most common features
of ANNs including activations functions and loss functions. Other core fea-
tures include tools for visualization and ability to utilize multiple GPUs
and CPUs automatically for parallel computations. GPU-calculations util-
ize CUDA with cuDNN. TensorFlow can be programmed using Python, C
and C++, with Python being the best documented and most used of the
three.

• Theano4 is another popular Python library for deep learning. Developed
at Université de Montréal to efficiently calculate large mathematical ex-
pressions like multi-dimensional arrays. It supports Linux, MacOS and

1https://www.nvidia.com/object/cuda_home_new.html
2https://developer.nvidia.com/cudnn
3https://www.tensorflow.org/
4http://deeplearning.net/software/theano/index.html
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2.4. Data

Name Size Annotations Resolution
CelebA 202,599 Name, description Variable
CelebA Aligned 202,599 Name, description 178x218
CAT 10,000 Facial features Variable
CIFAR-10 60,000 Objects 32x32
Flickr30k 31,783 Objects Variable
MNIST 60,000 Digit 28x28

Table 2.1.: Dataset summary

Windows. As with TensorFlow, Theano is programmed using Python and
supports CUDA.

• Torch5 is deep learning framework with focus on GPU-calculations. Torch
utilises CUDA and is programmed with the language LuaJIT. Torch is em-
beddable to mobile and maintained by scientists and engineers at Facebook,
Twitter and Google DeepMind.

• Keras6 is a high-level library that runs on top of either TensorFlow or
Theano. Keras makes modelling neural networks easier and more accessible.

2.4. Data
Machine learning is dependent on the dataset used for training. Assembling
datasets of high quality is expensive and time consuming. Using pre-existing
datasets created by others is therefore often preferred, but may not always be
possible. Section 2.4.1 introduced pre-existing datasets while Section 2.4.2 covers
potential sources for image data.

2.4.1. Public datasets
Public datasets are pre-existing datasets created by others. Figure 2.1 summar-
izes the mentioned datasets and its content. Chapter 5 will discuss the datasets
introduces in this section in further detail.

• CelebA (Large-scale Celeb Faces Attributes) (Liu et al., 2015) Dataset
is a collection of 202,599 facial images of 11,117 celebrities. The size of
the datasets results in multiple poses as well a large set of backgrounds.

5http://torch.ch/
6https://keras.io/
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2. Background

Each image is annotated with relevant attributes as well as the name of
the depicted person. CelebA is available in two editions; one with images
cropped and aligned and the other with original, in-the-wild images. Both
versions are relevant for this project. CelebA has become quite popular for
the use with GAN after Radford et al. used it with its DCGAN architecture
(Section: 3.1).

• MNIST (Mixed National Institute of Standards and Technology database)
(LeCun et al., 1998) has become a classic dataset for machine learning.
MNIST is a database of 70.000 labelled examples of handwritten digits.
Each image is of size 28x28 pixels and contains a single digit in the range
of 0 to 9. Being a popular dataset, MNIST is well suited for comparison
between papers.

• CAT (Zhang et al., 2008) The CAT dataset contains 10.000 images of cats.
Every images contains the face of a cat visible in frame with annotations
of where various facial features are located. Framing and depictions varies
between each image

• CIFAR-10 (Krizhevsky and Hinton, 2009) has become a popular dataset
for use in machine learning. The dataset is a labelled subset of the Tiny
Images Dataset (Torralba et al., 2008) and contains 60,000 images at a
resolution of 32x32. The resolution is quite low and the content is often
hard to make out.

• Flicrk30k (Young et al., 2014) is a dataset of 30,000 randomly collected
images from the social media site Flickr. All images are captioned with mul-
tiple textual descriptions about the content of the image as well as markings
for various objects in the image. The images vary widely in depiction as
well as physical properties like aspect ratio and resolution.

2.4.2. Data sources
The sources described here can potentially be used to create unique and custom
datasets that can be fine-tuned for each task-specific problem.

• Instagram7 is social network owned by Facebook. It lets users upload
either images or video to their account. The media content can be tagged
with information including location, user specified tags, known as a hashtag,
and a description. Users can also like an image and post comments. Ins-
tagram is primarily viewed through their mobile application, but all public
content is also available through their website. Publishing is only available

7https://www.instagram.com/
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2.5. Supervised and unsupervised learning

through the mobile application. Additionally, Instagram offers an Applic-
ation Program Interface (API) to let developers interact with Instagram’s
content through their own applications. Initially open for all developers,
the API now requires approval for full access to Instagram’s content. Ac-
cessing the API without approval is allowed, but the content is restricted
to a small subset of the developer’s own content.

• Flickr8 is web service for hosting images and video, owned by Yahoo!.
Like Instagram, images on Flickr are also tagged with relevant information.
Flickr offers a public API that enables developers to access most of the
features available through Flickr’s website9.

• Web crawlers are automated programs that roam the internet and collect
data as they crawl along. Web crawlers are therefore not single datasets
but rather an overall method to collect data. They can be used to collect
data not accessible through official sources such as a public API.

2.5. Supervised and unsupervised learning
Supervised and unsupervised learning are two different approaches to training
ANNs. With supervised learning, the datasets are explicitly labelled with the
correct output for that particular element. For instance, with MNIST, every
handwritten digit is labelled with the correct number. This is applicable to data
that can have the output directly mapped to the input. Unsupervised learning,
on the other hand, is where the training dataset is unlabelled, meaning the learner
is not told the correct output for a given input. This can be any type of data and
is used where the task of the computer is to find patterns in the data. ANNs have
for the most parts been trained using supervised learning, for instance, learning
to recognize elements in images.

8https://www.flickr.com/
9https://www.flickr.com/services/developer/
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2. Background

2.6. Generative Adversarial Network
Generative Adversarial Networks (GANs) were introduced in Chapter 1 and will
be more thoroughly detailed in this section. Section 2.6.1 describes some common
problems with GANs. One such problem is how to evaluate the output of GAN
which is covered in Section 2.6.2.

Goodfellow et al. (2014) introduced the concept of GAN which consists of two
feed-forward neural networks that train on a given dataset. The two networks
partake in a min-max, zero-sum two player game that enables the networks to
learn the data distribution of the training dataset.

• The task of the generative model G, often called the Generator, is to gen-
erate realistic data samples that approximate the training set. The goal
is to generate samples that the Discriminator cannot distinguish from real
samples from the dataset.

• The of the discriminative model D, often called the Discriminator, is to
rate whether an image is from the training dataset or a generated sample
by G. The goal is to correctly classify the samples and not get fooled by G.

Training of these networks occur simultaneously and can be described as a min-
imax game. The Discriminator is trying to maximize its own performance of
distinguishing between real and generated samples, while the Generator G is
maximizing its ability to generate samples that manage to fool the Discrimin-
ator. A more formal definition of GAN’s min-max game can be described with
the following function V :

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +Ez∼pnoise(z) [log(1−D(G(z)))] (2.1)

• x is a sample from the training dataset which has the probability distribu-
tion pdata

• z is a randomly generated noise sample from the distribution pnoise. This is
often a list of random numbers in range -1 to 1. See Figure 2.2 for examples.

• Ex and Ez indicates which data distribution the sample belongs to. The
Discriminator must classify that the sample belong to the expected dis-
tribution. In other words, Ex denotes the sample is a real image and Ez

denotes that the sample is generated.

• G(z) represents a sample generated by the Generator model G with noise
z as input.
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2.6. Generative Adversarial Network

Noise Z

Generator G

Generated sample Discriminator D

Evaluation

Training data

Visual output

Figure 2.1.: Overview of the GAN framework. GAN consist of two models, Gen-
erator G and Discriminator D. Both of these are CNNs, See Sec-
tion 2.1. G receives uniformly generated noise samplesZ as input.
Examples of such noise samples are shown in Figure 2.2. Z propag-
ates through the ANN and results in an image. Model D is trained
with images from the training set and generated images from G. It
is taught to rate real images 1 and generated images 0. G is trained
through feedback from D. G generates samples that D evaluates. The
results of this evaluation, which images were able to fool D, is used
to improve G. G is thereby never shown images from the training set
directly, only through evaluation from D.

• D(x) is the probability that the sample x is a real sample and not generated
by G

The strength of GAN lies in its ability to learn an arbitrary data distribution
with just unsupervised learning. This is a desirable feature as it does not require
costly labelled datasets. Conventional ANNs do generally not perform well with
unsupervised learning and GANs are therefore a popular area of research. One
use case for unsupervised learning is image generation.

The Discriminator D’s task is to rate images on how natural they appear and
output a scalar value. Ideally, an image from the training set, a real image,
should get a good rating while an image that is generated from G should get a
poor rating. During training, the Discriminator network is shown different images
from both the training set and samples from G and taught how it should rate
them. This is then used to adjust the weights and improve the Discriminator by
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2. Background

Figure 2.2.: Example of uniformly generated noise used as input to the generative
model in a GAN

slowly modifying what features are used to spot fake images. These adjustments
are supplied back to the Generator and in turn used to further improve image
generation. The Generator G generates its samples given an input Z, which is
generally an image consisting of randomly generated noise. The network will
try to recognize patterns in the noise and apply elements of previously seen
images, resulting in an image that should look natural. This process is shown in
Figure 2.1.

Goodfellow et al. (2014) highlight the potential for GAN as an image Generator
with samples generated after training on various datasets. Figures 2.3, 2.4 and 2.5
show randomly selected samples completely generated by unsupervised learning
with the MNIST dataset (Section 2.4.1), Toronto Face Dataset (TFD) (Susskind
et al.) and CIFAR-10 (Section 2.4.1), respectably. The rightmost column, yellow
boxes, shows the most similar sample from the training dataset. Comparing the
real images to the generated ones shows that GAN is not simply overfitting the
Generator to a single image, but rather matching overall features in the training
data. This is clearly visible by comparing the two last columns in Figure 2.4
and somewhat apparent in Figure 2.3 in the slight variations in the shape of the
digits.

2.6.1. General problems with GAN
Some of the more general unsolved problems with GANs will be presented in this
section and used throughout the rest of this thesis. With GANs being a relatively
new framework, there are still open problems to be solved.

Model balancing and synchronization

A problem with GANs is keeping the performance of the Discriminator and Gen-
erator models balanced during training. The Generator is generally harder to
efficiently train than the Discriminator. This can result in a situation where the
Discriminator eventually outpace the Generator. The Discriminator will in such
cases become too skilled at classifying the generated samples, which halts the
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2.6. Generative Adversarial Network

Figure 2.3.: Randomly selected samples generated by Goodfellow et al. using
the GAN framework. GAN trained with unsupervised learning on
the MNIST dataset (Section 2.4.1). The rightmost column, yellow
boxes, shows the most similar sample from the training dataset.
(Source: Goodfellow et al., 2014. With permission.)

Figure 2.4.: Randomly selected samples generated by GAN framework after un-
supervised training on the Toronto Face Dataset (Goodfellow et al.,
2014). GAN is able to learn the general concept of a human face and
generate new examples. The rightmost column, yellow boxes, shows
the most similar sample from the training dataset. (Source: Good-
fellow et al., 2014. With permission.)
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2. Background

Figure 2.5.: Random samples generated from the CIFAR-10 dataset with GAN
(Goodfellow et al., 2014). The rightmost column, yellow boxes, shows
the most similar sample from the training dataset. (Source: Good-
fellow et al., 2014. With permission.)

progression of the Generator. The main method of addressing this problem has
been to artificially limit the performance of the Discriminator. Goodfellow (2017)
is critical to this approach as a well-trained Discriminator is required to accur-
ately describe the probability density of the training data. Goodfellow (2017) still
admits this as a problem, but suggests other solutions should be applied instead.

Non-convergence and Mode collapse

GANs will seldom reach a point of convergence in the learning process. The
Generator and Discriminator will continue to increase their respective perform-
ance until the learning is terminated. This causes the generated samples to drift
after most of major learning has ceased. As this point, the quality of the images
will not improve, but drift through various alterations such as changing colour or
reintroducing past mistakes. This is called non-convergence, as defined in Good-
fellow (2017). Mode collapse is a problem caused by non-converge that occurs
when the Generator maps multiple inputs to the same output. The result of
this is generated images which share many of the same features and thereby look
similar.
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2.6. Generative Adversarial Network

Mode coverage

GAN trained through unsupervised learning has the potential of not capturing the
whole distribution of the training data. Im et al. (2016b) defines mode coverage
as this problem of not fully assigning probabilities to all distributions in the
training data. In other words, the Discriminator learns only a few of the many
depictions of an image dataset and thereby not correctly capturing the whole
dataset. A well performing Generator will not to alter its image generation as
long as it successfully fools the. The result of this is generated images that are
quite similar and only samples from a smaller part of the dataset.

Evaluation

GAN have no obvious method of quantitatively evaluating the quality of the
output. Assessing the quality of a generated image is hard, as there is neither a
fixed answer nor a Boolean score. A generated image will seldom be completely
unnatural nor natural, but have areas of both. Assessing the quality is also
highly subjective. Section 2.6.2 will discuss the problem further by detailing
some suggested evaluation metrics.

2.6.2. Evaluation metrics
Section 2.6.1 briefly introduced the problem of evaluating generative models such
as GANs. Evaluating GANs is still considered as an open problem, but there
are some problem-specific solutions described in this section. Theis et al. (2016)
discussed some the more popular evaluation metrics and concluded that both the
training and evaluation of a GAN should be modelled after the target application.

Log-likelihood

Using probabilistic based likelihood was originally proposed by Goodfellow et al.
(2014) to compare the learned probability function of the training data. Good-
fellow et al. did warn, however, that it was not suitable for data of higher
dimensions, such as images. A GAN model can generate samples of high quality
with poor likelihood and vice versa.

Nearest Neighbours and Image retrieval

The term Nearest Neighbour(NN) are a common definition for methods of cal-
culating the distance between two samples. Examples of NN algorithms include
Euclidean and Manhattan distance. NN can be used to evaluate GANs by com-
paring the pixel data of generated samples to the training datasets.
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2. Background

Durugkar et al. (2016a) creates a larger evaluation system where a separate CNN
finds the generated images that are most similar to images in the training dataset.
Two variations of NN are then used as an evaluation metric between the real image
and the retrieved images. Ledig et al. (2016) use GAN to upscale the resolution
of images and use nearest neighbour as one of the measures of comparing the
result to the training data. Theis et al. (2016) argues against using NN as an
evaluation metric as even a small shift in the images can drastically change the
distance.

Visual Turing Test

The Visual Turing Test is an adaptation of the famous Turing test for human
computer interactions. The regular Turing test is passed if a human is unaware
he is communicating with a computer. The visual Turing test is similarly passed
if a computer generated image is believed to be a real life image.

Salimans et al. (2016) used human annotators to assess the quality of their GAN.
Users were shown images either generated or from the training set, and tasked
with evaluating the images as either real or fake. Salimans et al. found this ap-
proach of evaluation less than desirable. Result were depended on the annotator
and their motivation. Feedback on their own performance, such as which images
were correctly classified or certain patterns to look for, made the annotators more
successful. Experimentation with image generation using the CIFAR-10 dataset
saw annotators correctly categorizing 78.7% of the images correctly as either real
or fake. However, Salimans et al. themselves were able to get over 95% accuracy
as they were more familiar with CIFAR-10 and GAN.

Object classification

Regular ANNs, and specifically CNNs, have become quite good at classifying
objects in an image. These networks are trained on a large set of labelled images.
When shown an image, the network will output which objects it believes is in
the picture and a percentage on the degree of confidence. These networks can be
used to evaluate the quality of the generated images from GAN.

Salimans et al. (2016) create an evaluation system using the pre-trained Incep-
tion (Szegedy et al., 2016) model to classify objects in every generated sample.
Inception is a large CNN trained to recognize certain objects and output what
degree of confidence it has about the object. Salimans et al. (2016) exploits this
by assuming generated images with clear objects are better. Secondly, the model
as a whole is evaluated by the number of different objects recognized. Variation
in the generated samples are preferred. Salimans et al. (2016) claim this approach
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2.6. Generative Adversarial Network

GAN 2

Discriminator D1

Generator G1 Generator G2

Discriminator D2

GAN 1

Figure 2.6.: Generative Adversarial Metric (GAM) method for comparing two
GANs (Im et al., 2016a). The Generator/discirmantor pair are ex-
changed between the two GANs. The better GAN is able to both
generated samples that decive the other while not being deceived
itself.

correlates well with their experimentation on human annotator as evaluations.
This approach does require a labelled dataset to train the evaluator network.

Generative Adversarial Metric

Generative Adversarial Metric (GAM) (Im et al., 2016a) is a method for compar-
ing GANs. GAM leverages the adversarial min-max aspect of GANs, by having
the Discriminator from one model classify generated samples from the other, and
vice versa. , Figure 2.6. The GAN with the least classification error may be the
best model. Im et al. (2016a) argue that the two Discriminator should also be
verified against actual training data to ensure that one model is not overfitted
more than the other. In other words, the two Discriminator must perform about
equal on the test dataset for GAM to elect the better GAN. Equation 2.2 and
Equation 2.3 show, respectivly, how the ratio of classification error for generated
samples and test data are calculated. The value of these are then used in Equa-
tion 2.4 to either select a winning GAN or a tie, depending on Equation 2.3.
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Im et al. (2016b) further expands GAM to work with their GAP system of mul-
tiple Generator/Discriminator pairs, Section 3.5. Improvements in generalization
resulted in the test ratio of Equation 2.3 failing when compared to other GANs.
To solve this, Im et al. (2016b) use either average error rate or select the worst
one across all the Discriminator.

Durugkar et al. (2016b) also created a variation of GAM to evaluate their GMAN
system consisting of multiple Discriminator, see Section 3.4.

rsample = ε(D1(G2(z)))
ε(D2(G1(z))) (2.2)

rtest = ε(D1(x))
ε(D2(x)) (2.3)

winner =


GAN 1 if rsample < 1 and rtest ' 1
GAN 2 if rsample > 1 and rtest ' 1
Tie otherwise

(2.4)

• x is a sample from the training dataset which has the probability distribu-
tion pdata

• z is a randomly generated noise sample from the distribution pnoise.

• Gy(z) represents a sample generated with noise z by Generator in GAN
model y. y = {1, 2}

• Dy(x) is the probability that the sample x is a real sample and not generated

• ε is the error rate of the Discriminator in the classification of images as real
or generated
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3. Related work
A literary study of the current state-of-the-art for Generative Adversarial Net-
works (GAN) related to image generation was conducted for this thesis and is
covered in this chapter.

3.1. Deep Convolutional Generative Adversarial
Networks

Deep Convolutional Generative Adversarial Networks (DCGAN) (Radford et al.,
2015) is an architecture that specializes GANs for image generation by applying
advances from Convolutional Neural Networks.

DCGAN also employs various other techniques that greatly improve the overall
quality of the generated images. Figure 3.1 shows a comparison of the gener-
ated samples from GAN and DCGAN compared to the original dataset. The
samples generated with DCGAN are both crisper and smoother than then the
ones generated by regular GAN.

DCGAN allows for unsupervised learning on images of higher resolution than
regular GAN. Radford et al. (2015) trained their network on a dataset containing
over three million images of bedrooms. The network was able to learn the general
patterns and from that generate new images that were not in the original dataset.
The result after five epochs, five full iterations through the training data, is shown
in Figure 3.2. Although low resolution, the images are distinctly looking like
bedrooms.

The third dataset Radford et al. used to train DCGAN was the CelebA dataset
(Section 2.4.1). Compared to the Toronto Face Dataset (Susskind et al.) used
with GAN, CelebA contains high resolution images in colour of celebrity faces.
The sharp and colourful samples generated with DCGAN (Figure 1.3, page 6) are
in stark contrast to the blurry, noisy and black and white images generated with
GAN (Figure 2.3, page 17). The images are far less noisy and much sharper with
accurate colour representation. The images in Figure 1.3 (page 6) are randomly
selected and as a result the quality of the images varies greatly.
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Figure 3.1.: Comparison between original MNIST dataset and images generated
with GAN (Goodfellow et al., 2014) and DCGAN (Radford et al.,
2015). Samples generated with GAN retain the overall shape of each
number, but the lines are quite fuzzy and blurry. DCGAN’s samples
on the other hand are arguably indistinguishable from the original
MNIST dataset. (Source: Radford et al., 2015. With permission.)

Figure 3.2.: Generated samples from DCGAN (Radford et al., 2015) after 5
epochs of training on bedroom dataset. (Source: Radford et al., 2015.
With permission.)
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3.2. Improved Techniques for Training GANs

DCGAN has become a popular architecture for GAN. Architectural features make
the network flexible and able to dynamically adjust to most kinds of input. The
same model that generated faces can also be trained to generate handwritten
digits and images of bedrooms without changing any parameters. The original
code used by Radford et al. is open source and there exist ports to most popular
ANN frameworks.Radford et al. (2015) list three main techniques that DCGAN
employs and that help improve the image generation: Batch normalization, the
all convolutional network, and sparse connectivity.

• Batch normalization (Ioffe and Szegedy, 2015) changes normalization
from a task that is executed once during pre-training and on the whole
dataset, to something that occurs at each iteration and only on a small
batch at a time. Normalization is a step in training of ANNs that usually
only occurs during the pre-processing of input data, before the training
phase. This technique makes the network less susceptible to unoptimized
parameters while also allowing for the use of much higher learning rates,
which allows for fewer iterations as well as higher degree of accuracy than
normal normalization. Regular normalization can still be applied during
pre-processing. Salimans et al. (2016) introduce virtual batch normalization
which normalizes the images during pre-processing to be better suited for
batch normalization later on.

• The all convolutional network (Springenberg et al., 2014) is an ap-
proach to convolutional neural networks that replaces the pooling layers,
used to down sample input images, with a pure convolutional layer. Regular
pooling layers are predefined to behave in a certain way, for instance, max-
pooling that is used to down sample an input by choosing its greatest value.
An all convolutional network is able to learn its own kind of down sampling
without being restricted by the initial architecture of the network. This
approach can be used by both the Generator and Discriminator network.

• Sparse connectivity (Goodfellow et al., 2016) is the concept of reducing
the number of connections within the network, eliminating fully connected
layers. This is also known as sparse connections, sparse weights and sparse
interactions. The benefits to this approach are fewer number of operations
as well as reduced memory consumption. The idea behind sparse connectiv-
ity is that not every pixel of an image is important on its own, but rather
the embodied shapes and patterns.

3.2. Improved Techniques for Training GANs
Salimans et al. (2016) improve GANs further by presenting new architectural
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features that they apply to unsupervised and semi-supervised learning. Sali-
mans et al. (2016) also introduced two of the evaluation metrics presented in
Section 2.6.2, object classification and visual Turing test. Three of the presented
techniques are detailed below:

• Feature matching (Salimans et al., 2016) alters how the Generator learns
new features. In regular GAN, the Generator trains by purely using the
outputs from the Discriminator. Feature matching changes this by making
the Generator learn features directly from the training data, and not the
Discriminator. The Discriminator is tasked with selecting the features that
are most important. Feature matching is way of addressing mode collapse
as the Generator must learn from the interior dataset. Experiments conduc-
ted with feature matching showed that it makes the networks more stable
during training and creates a more robust classifier, but not necessarily
more natural images (Salimans et al., 2016).

• Minibatch discrimination helps stabilize the Discriminator by letting
it handle images in batches rather than a single sample at a time. This
reduces the effect of mode collapse as the Generator is penalized for gen-
erating similar images. This forces the Generator to improve its samples
in a broader spectrum and results in better image generation. Salimans
et al. (2016) compare minibatch discrimination with feature matching and
conclude that minibatch discrimination converges more quickly resulting
in better images, but the resulting classifier is not as strong as one with
feature matching. It should be noted that these methods are not compat-
ible with each other because minibatch discrimination requires a regular
Discriminator.

• One-sided label smoothing softens the outputs from the Discriminator
to help balance the performance of the two models. When the Discriminator
is trained, it is explicitly told real images should be rated 1 and generated
samples should be rated 0. Original label smoothing softens these output
to values such as 0.9 and 0.1 respectively. Salimans et al. (2016) use a
variation called one-sided label smoothing which only softens the output of
real images as values other than 0 for generated samples cause problems.

3.3. Associative Adversarial Networks
Arici and Celikyilmaz (2016) argue that many of the problems related to the
training GAN, such as keeping the Discriminator and Generator synchronized
are partly caused by the difficulty of mapping flat randomly generated noise,
Generator input Z, and the training data. Arici and Celikyilmaz (2016) add an
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intermediate third neural network as link between the Discriminator and Gener-
ator. This additional network, a Restricted Boltzmann machine (RBM), samples
data from one of the intermediate hidden layers of the Discriminator to gener-
ate inputs to the Generator. This replaces the uniformly generated noise with
samples more similar to training data. Arici and Celikyilmaz (2016) trained their
system on CelebA and the third network was indeed able to learn the probabil-
istic model and generate samples based on it. The authors did not go into further
detail about how it affected image generation, although they mentioned it did
little to improve the learning gap between the Discriminator and Generator.

3.4. Generative Multi-Adversarial Networks
Durugkar et al. (2016b) created a GAN system known as Generative multi-
adversarial network (GMAN) with multiple, symmetrical Discriminator models
and a single Generator model. The Discriminators are instantiated with slightly
varying parameters, but are otherwise architecturally the same and trained in
similar fashion to regular GANs.
The training of the Generator on the other hand is somewhat different. Each
Discriminator evaluates and outputs its scores on the current generated sample.
The scores are processed through a selection metric before being used to train the
Generator. This process is shown in Figure 3.3. The selection metrics are divided
into two main categories, depending on the strictness of the Discriminators:

• A formidable adversary sets the Discriminators to maximize their own
performance by providing strict feedback to the lone Generator. A gener-
ated sample must please all the Discriminators to get a good rating.

• A forgiving teacher limits the Discriminator models to be more favour-
able towards the Generator model, addressing the GAN balance problem.
The feedback from the Discriminators are aggregated and averaged before
used with the Generator. In addition, the Generator is allowed to limit
the performance of the Discriminators if they become too strong, but is
incentivized to challenge itself.

Experiments were conducted with a GAN using the DCGAN architecture and
assessed with a variation of GAM (Section 2.6.2) adapted for multiple Discrim-
inator. Using the CIFAR-10 dataset, the GMAN trained using the Discriminator
as a forgiving teacher without Discriminator performance limitation was declared
the best performing model. Experiments using CIFAR-10 were verified with eval-
uation by object classification using Inception (Section 2.6.2). Using the MNIST
dataset saw GMAN with automatic Discriminator limitation outperform all other
variations.
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Figure 3.3.: Illustration on the training of the Generator in Generative multi-
adversarial network (GMAN) (Durugkar et al., 2016b). Each Dis-
criminator evaluates the samples generated by the Generator. A
selection metric will then assess and process the ratings before they
are used to train the Generator.

Overall, Durugkar et al. (2016b) found that all variations of GMAN required
fewer iterations of training to reach a point of high quality samples compared
to a regular single Discriminator GAN. Further, Durugkar et al. (2016b) claim
GMAN to be robust against mode collapse since the Generator must appease
multiple Discriminators.

3.5. Generative Adversarial Parallelization
Im et al. (2016b) argue that a single Generator/Discriminator pair is susceptible
to not learning the whole distribution of the training data and suggest using
multiple pairs as a way to address this problem.

Generative Adversarial Parallelization (GAP) is the resulting system of this as-
sumption, illustrated in Figure 3.4. GAP removes the usual tight connection
between Discriminator and Generator by randomly connecting pairs during train-
ing. Experiments show GAP to be robust against both mode coverage and mode
collapse considering the Generators must generate images that fool multiple Dis-
criminators. A single Discriminator can no longer overfit itself towards a single
Generator, but must evolve to learn the characteristic of all Generators, which
improves balance between models.
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Figure 3.4.: Illustration on the how GAP consist of multiple Discriminators and
Generators (Im et al., 2016b).

As the names implies, all models are trained in parallel using multiple GPUs.
GAP was implemented with either the DCGAN architecture or an alternate ar-
chitecture using recurrent neural networks. Evaluation was done with the adapt-
ation of GAM (Im et al., 2016a) mentioned in Section 2.6.2.

Im et al. (2016b) state that GAP strongly outperform regular implementations
and suggest images generated with GAP have slightly higher quality then those
generated using individual GANs.

3.6. Ensembles of Generative Adversarial
Networks

Durugkar et al. (2016a) experiments with using ensembles of GAN, multiple Dis-
criminator and Generator pairs. Durugkar et al. (2016a) express two main ob-
servations with GAN they want to address with ensembles. The first observation
can be connected to non-convergence and how the generated samples can change
appearance considerably from epoch to epoch while having the same quality. The
second observation is the concern that GAN will not accurately learn the whole
data distribution, the problem of mode coverage. Durugkar et al. (2016a) define
three variations:

• Standard Ensemble of GANs (eGANs) Train multiple GANs models,
Discriminator and Generator pairs, with varying initial parameters. One of
the GAN models are chosen at random when outputting a generated image.

• Self-ensemble of GANs (seGANs) Ensembles of GANs with equal ini-
tial parameters, but different number of training iterations. Exploits the
min-max aspect of GAN in that the networks never converge, but evolve
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and shift during training. Less computational expensive than eGAN as only
one model is trained from scratch.

• Cascade of GANs (cGANs) (Durugkar et al., 2016a) wanted to address
the problem of GAN not representing the whole data by creating a cascade
of GANs, separated by gates. Generated images that manage to fool the
Discriminator were passed down to the next GAN. The goal behind cGAN
was to address the second observation, of not representing the whole data
distribution.

The experiments were conducted on the CIFAR-10 (Section 2.4) with two en-
sembles in each variation. Durugkar et al. (2016a) evaluated the systems by
using an image retrieval system, described in Section 2.6.2. A second ANN was
used for the retrieval process with Euclidian distance used as the evaluation met-
ric. Each of the ensembles outperform regular GAN with eGAN and seGAN
being the best performers. Interestingly, seGAN performed slightly better than
eGAN while being less computationally expensive. The Euclidian distance was
40% lower with the use seGAN compared to regular GAN.

3.7. Learning from Simulated and Unsupervised
Images through Adversarial

Shrivastava et al. (2016) use GAN as a part of a larger machine learning system.
The task Shrivastava et al. wanted to solve was improving the realism while
maintaining annotated information of generated images. The overall goal was
to increase the size of training data for human computer interaction such as eye
tracking and gesture recognition of human hands.

The system consists of two parts, a simulator that generates synthetic images
with annotations, such as eye tracking data, and a refiner network that uses
GAN to improve the quality and maintaining the annotations. The simulator
creates images based on a labelled subset. The problem being that these images
are not realistic enough and contains artefacts. The refiner network uses GAN
and unsupervised learning to turn syntactic images into realistic training data
for a larger system.

Shrivastava et al. (2016) change the Discriminator to addresses the instability of
GAN and remove artefacts that are common in generated imagery. Firstly, local
adversarial loss which divides the Discriminator field of operations into smaller
local areas instead of the entire image. As with Im et al. (2016b), Shrivastava
et al. (2016) believe regular, single Discriminators may put too much emphasis
on only a few, strong features in the training images. This may lead to unwanted
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artefacts and similar looking images, mode collapse. Local adversarial loss ad-
dresses these issues by modifying the Discriminator to output multiple scores for
each image compared to the regular single score.

A history of previous images is used when updating the Discriminator. This is
done to stabilize the Discriminator and to not reintroduce previous artefacts, ad-
dressing the problems commonly related with non-convergence. During training,
the Discriminator is shown a mix of previous and current generated images from
the Generator. Shrivastava et al. (2016) replace half the current batch with pre-
vious images and randomly update half the buffer for each iteration of training.

Experiment show that using GAN to generate additional training data is a prom-
ising use case for GANs. Shrivastava et al. (2016) use the GAN system to create
a new dataset that is of a much larger size than the original. Using this dataset to
train a regular CNN on gaze estimation results reduce the error rate from 13.9%
to 7.8%.
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4. System
The overall system that will be used to conduct the experiments is described in
this chapter.

4.1. Machine learning framework
TensorFlow was chosen as the machine learning framework to use during the pre-
study. A preference towards Python as the main programming language elimin-
ated some of the possible choices of machine learning framework mentioned in
Chapter 2. At the time, both Theano and TensorFlow were comparable features-
wise. Previous experience with Theano left more to be desired. Theano was not
created with machine learning in mind and thus the documentation and built in
functions were unintuitive for this purpose. TensorFlow on the other hand, was
created specifically for this purpose, having built in support for most common
features related to ANNs. The documentation is also thorough and offers simple
and intuitive tutorials. The quality of the publicly available implementations of
GAN was eventually the biggest factor in selection TensorFlow as the framework
of choice.

4.2. Initial implementation
As mentioned in the previous section, the pre-study was initially open to different
choices of machine learning framework. Multiple open implementations of GAN
were researched before settling on a TensorFlow port of the Radford et al. (2015)
original implementation of DCGAN1. This implementation is continually updated
and used by many as a framework for their projects. This is understandable as the
code is well structured, highly configurable, has automatic tools for visualization
and built in support for running on custom datasets. This was the reasoning for
choosing it as a starting point for this project as well. At the start of this thesis,
other implementations were also researched such as the ones used by Salimans
et al. (2016), but neither one was as robust and flexible as TensorFlow port used.

1 Radford et al. (2015) implemented DCGAN in both Theano
(https : //github.com/Newmu/dcgan_code) and Torch (https :
//github.com/soumith/dcgan.torch
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The DCGAN architecture is used by most image related GANs including most
of the related work mentioned in 2.6 and is thus a good point of comparison.
The framework has been continually updated since the pre-study and support
the latest versions of TensorFlow.

4.3. Hardware
The systems at disposal at the beginning of the project were a MacBook Pro
running MacOS or a Windows desktop computer. The desktop computer was
considerably more powerful with more CPU cores, 3 times as much RAM and
most importantly a GPU from NVIDIA. However, as TensorFlow was not avail-
able on Windows at that time, the MacBook Pro was tested out first. Installing
TensorFlow and getting DCGAN to run was a trivial process. However, the per-
formance and training time was quite slow with only CPU calculations being
available. Using the MacBook Pro as the main system was an option, but not
preferred with the promises of GPU based parallelization. The next step was to
get TensorFlow running on the desktop computer. Some attempts were made at
running it under Microsoft Windows with a virtual machine. This was quickly
abandoned as it was uncovered that GPU calculation with this configuration was
impossible. The next step was then to create a partition and install Linux. It took
a few days with some missteps along the way, but was well worth it in the end.
Running TensorFlow and DCGAN with CPU was only slightly faster than on the
MacBook Pro. However, using the GPU saw an exponential increase in compu-
tational power and the training time per epoch was greatly reduced. It was clear
that this was the system configuration of choice. The computers specifications
is summarized in Table 4.1. Note that GPU-based calculations in TensorFlow is
limited by the 4GB of memory in the GPU. CPU-based calculations can use all
the system RAM.

4.4. GAN model architecture
The DCGAN architecture has arguably become the standard architecture for
GANs, especially concerned with image generation. This means that regular a
DCGAN is used as the baseline for comparison between the proposed techniques.
This will be the case for this thesis as well. The default configuration and architec-
ture of Kim’s TensorFlow implementation are therefor left unchanged. Figure 4.1
from Radford et al. (2015) shows the architecture of the DCGAN Generator.
Table 4.2 summarizes the most relevant settings. The proposed techniques will
alter the training process, but a kept as consistent as possible.
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System
OS Ubuntu 16.06

CPU
2x Intel Xeon E5640
8 physical core
16 with Intel’s hyperthreading

GPU GeForce GTX 960
4GB RAM, 1024 CUDA cores

RAM 23,5 GB

Software TensorFlow version 1.0
Python 3.5

Table 4.1.: Research machine specifications

Figure 4.1.: Overview of the generative model in a DCGAN architecture.
(Source: Radford et al., 2015. With permission.)

Learning rate 0.0002
Momentum term of AdamOptimizer 0.5
Image input dimensions 64x64
Image output dimensions 64x64
Image color channels 3
Generator Z-noise input size 100

Table 4.2.: DCGAN model specifications
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Layer Dimension
Discrimantor

Dimension
Generator

Input layer 64x64x3 100
Hidden layer 1 32x32x64 4x4x512
Hidden layer 2 16x16x128 8x8x256
Hidden layer 3 8x8x256 16x16x128
Hidden layer 4 4x4x512 32x32x64
Output layer 1 64x64x3

Table 4.3.: Discriminator and Generator model architecture

4.5. Minor framework changes
The implementation, as previously mentioned, is heavily based on Kim’s Tensor-
Flow port of DCGAN. There have been numerous changes to implementation that
will be described in the coming sections. The minor changes done to framework
will be listed in this section.

• Naming and organization — A problem from pre-study was that the original
framework overwrites file every time the framework is run. Output is saved
the same folder and with the same name. This was improved for this project
by automatically organize the generated samples in folder named after the
settings used. The generated samples also reflect these settings.

• Image files — The framework outputs a grid of generated samples at a fixed
interval. This showed how the quality of the images were progressive, but
were otherwise not that useful for analysis. To get a better understanding
and overview on the learning task, the generated samples are evaluated
with Discriminator to show their rating. These ratings are then printed on
the output file. Further, images from the training set are also added in to
better compare the generated images to the real one as well as showing the
evaluation of the real images.

• Analysis tools — Tools evaluate the performance of the Discriminator model
at fixed intervals throughout training. The Discriminator is evaluated by
classifying images from the training set and images generated by the Gen-
erator. The results are aggregated to better visualize the learning curve.

• Checkpoints — TensorFlow has a robust method for saving and restoring
past checkpoints of a model. The original framework would save check-
points based on number of iterations, overwrite past checkpoints and delete
older checkpoints if kept more than five. To consistently evaluate the mod-
els throughout the learning process, the framework was tweaked to save

36



4.5. Minor framework changes

checkpoint after every epoch of training and to never remove older check-
points. The checkpoints names are also named according to the settings
used.
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Chapter 2 introduced the publicly available datasets researched for this project.
This chapter will discuss potential sources of image for the creation of custom
datasets. Furthermore, all datasets public and custom datasets will be discussed
in context of using them to train a GAN system for image generation. Unsuper-
vised learning is highly dependent on the training dataset as this is the source of
all attained knowledge. The overall goal of this chapter is to highlight and dis-
cuss the characteristics of each dataset and how they may affect image generation
with GAN. To better help summarize, each dataset is custom rated according to
the difficulty of using it to train a GAN system. This is further explained in
Section 5.1. Table 5.2 sums up the selected dataset with details about the data
as well as the difficulty rating.

5.1. Difficulty Rating
Each dataset discussed in this chapter will have a custom rating of difficulty.
This rating reflects how well suited the images are for unsupervised learning with
GAN and are based on knowledge gathered through experimentation in the pre-
study. Generally, datasets with higher degree of similarity between images result
in higher quality. The number of images in the dataset is also important and
larger datasets are preferred. The rating has three classification: easy, normal
and hard. Table 5.1 summarizes each rating. The ratings are included to better
contextualize the results in Chapter 7, and clarify why results may differ between
various datasets. A dataset with a lower difficulty rating will probably result in
images of higher quality, but a more difficult dataset may better show the subtle
variations between techniques. The difficulty rating is hence also used to get an
even collection of datasets and not just the ones most suited for GAN.

5.2. Personal photos datasets
One of the first dataset tested during the pre-study was a set of about one thou-
sand personal images containing my face somewhere in the image. About 10%
of the dataset were taken in the same photoshoot. These images have my face
aligned centrally and with the same background. The dataset was used to train
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Difficulty Description
Easy Images are similar. Common framing, structure and features
Medium Images share many similarities, but framing and rotation varies
Hard The dataset contains images of varying subjects, objects and angels.

Table 5.1.: Description for difficulty rating of datasets

Dataset Size Annotations Resolution Rating
CelebA 202,599 Name,description Variable Easy
CelebA Aligned 202,599 Name, description 178x218 Easy
MNIST 60,000 Digit 28x28 Easy
CAT 10,000 Facial features Variable Medium
IKEA Original 7,383 None 250x250 Medium
IKEA (Augmented) 191,828 None 250x250 Medium
CIFAR-10 60,000 Objects 32x32 Hard
Flickr30k 31,783 Description Variable Hard

Table 5.2.: Summary of the datasets selected for use in this project.

a DCGAN model. The output is shown in Figure 5.1. The problems of mode
collapse and overfitting is clearly visible. The image in the lower right corner is
a copy of one of the training images, variations of this image is visible through-
out. The model is able to pick up similar features such as general features of the
human face. It was clear from this experiments that this dataset was not suited
for training as it was both too small and the images were too different.

5.3. Instagram datasets
A great deal of effort was spent during the pre-study to research the potential
for using images from Instagram as a source for training images. Instagram is a
large social image sharing network with billions of images tagged with relevant
metadata. Instagram does not have a public API where images can be down-
loaded through official channels.

The first attempt at assembling a dataset was done early in the pre-study. A
tool1 was used to download the uploaded images for a given profile. The tool was
used on my personal profile to create a small dataset of around 300 images. These

1https://github.com/rarcega/instagramscraper
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Figure 5.1.: Samples generated by DCGAN after training on personal images.

Figure 5.2.: Samples generated by DCGAN after training on images from per-
sonal Instagram account. DCGAN is not able to find any similarities
between the images and the models learning collapses.
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images vary widely in size, what they depict and the colours used. Results from
running this dataset on DCGAN were not good, shown in Figure 5.2. DCGAN
was not able to generalize and the model completely collapsed.

A larger dataset with more similar images was needed. The second attempt at
using Instagram as a source, used an unofficial downloader. A set of about 60,000
images were collected. The images were all tagged with the hashtag sunset This
dataset was never used during the pre-study as it was too hard to get running,
caused by various problems with the images. Even with better error-handling, a
large manual curation would most likely still be required. In addition, a manual
inspection of the images showed that many images were low resolution, poor
quality and hard to make out. Many were also randomly tagged and not relevant
to the search query. Instagram will for all of these reasons not be used as an
image source for this project. Other pre-existing datasets are more viable and
require less pre-processing and manual labour before use.

5.4. IKEA dataset
The IKEA dataset is a custom collection of product images for furniture from
IKEA’s website2. The problems of the previous datasets led to idea of using
the product images from the furniture retailer IKEA. IKEA offers thousands of
products with each product having images following the same guidelines. Every
product image shares the same composition with the product aligned centrally
and a white background. The images were collected by recursively web-crawling
IKEA’s website and downloading every available images. The data collection
was time consuming and required much manual effort. The crawler was prone to
random crashes and had to be restarted multiple times. This caused the dataset
to contain a great deal of duplicates as the crawler were unaware of previously
download images. The initial set contained some hundred thousand images with
various depictions and dimensions. This set was reduced to about 60.000 images
by removing the images of resolution other than 250x250.

A second manual curation effort using an automatic tool to remove all duplicates
and reduced the number of images from 60.000 to about 10.000. Testing this
dataset with DCGAN produced decent results, but ambiguous images showing
whole rooms or product images for textile and other fabrics severely degraded
the generated images. Some of images quite clearly depict furniture. The rest
of the images are harder to make out and consists mostly of noisy patterns. It
is believed that this was result of the training data, not the algorithm. Many of
the images in the set are for textiles which have mostly rectangular shaped boxes

2http://www.ikea.com/no/no/
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as product images. Figure 5.3 shows a generated sample by this dataset. Notice
the repeating images without the white background, around top left and bottom
right. These images are the results of a the previously mentioned ambiguous
images and images showing interior rooms not following the usual guidelines
with white background.

Another manual curation effort removed most of the ambiguous images with
mostly furniture remaining. The final dataset contains about 7.000 images. The
previous attempts at dataset collection proved that the size is important. It is a
known fact that machine learning prefers as much training training as possible.
The IKEA dataset share a common framing which makes is susceptible to aug-
mentations, artificially increase the size of the dataset by making slightly adjusted
copies of an original image. The white background greatly expands possible al-
terations as the object can be moved around the image. This can compensate for
the dataset relatively small size. The size of the dataset was artificially increased
by implementing pre-processing techniques that transforms the images slightly to
produce a larger dataset. These slight transformations are random and include
moving the products around, rotating, stretching and flipping the images. The
results from using the dataset with DCGAN are shown in Figure 5.3. The images
that were much sharper and cleaner than the previous iteration. Many of the
images resemble furniture, but the images are still simple to classify as generated.
The IKEA dataset is therefore rated at Medium difficulty.

5.5. Custom Flickr datasets
Flickr is social network for sharing images online. Like Instagram, Flickr has
billions of images uploaded by its users and has arguably a higher level of quality.
Unlike Instagram, Flickr offers a public API with full access to search tools and
metadata. Initially, Flickr was planned as source for training images for DCGAN.
Full access to search tools and metadata create datasets of various depictions.
The plans for creating such a tool were eventually dropped in favour of already
existing datasets, with the reasoning being that it would be too time consuming
as well as shifting the focus of attention away from the research goals.

5.6. Public datasets
The public datasets were introduced in Section 2.4.1. This section will briefly
discuss the difficulty of each dataset for use with GAN.

• CelebA — Preliminary result from the pre-study showed that the large
sample size in conjunction with the general similarity of human faces pro-
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Figure 5.3.: Samples generated with DCGAN on the first iteration of the custom
IKEA dataset of size 7.000.

duced decent looking images although the variety of poses occasionally res-
ulted in some less then desirable images. CelebA is for this reason rated at
easy difficulty.

• MNIST is a simple for modern machine learning algorithms and is there-
fore rated as easy.

• CAT — Framing and depictions varies between each image which may
result in some difficulties for DCGAN. This dataset is thereby rated at
medium difficulty.

• CIFAR-10 is consequently one of the harder ones to generate natural look-
ing images from, and earning a difficulty rating of hard. Still, it should be
helpful in showing the variations from the various techniques.

• Flicrk30k — The images vary widely in depiction as well as physical prop-
erties like aspect ratio and resolution. These properties may make the
dataset hard to generalize and is thus rated as a hard dataset.
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Figure 5.4.: Random samples from curated IKEA dataset with pre-processed
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This chapter will discus the research question in regards to the state-of-the-art
presented in Chapter 3, the system described in Chapter 4 and the training
data detail in Chapter 5. One ore more solutions is then proposed to answer
the research question. The proposed techniques will be tested and the results
presented in Chapter 7.

6.1. Generator input improvements
One of issues with GANs presented in Section 2.6.1 is the problem of synchron-
ising the performance of the generative model and discriminative model during
training. More specifically that the Discriminator may become too strong com-
pared to the Generator.

RQ1 was defined to explore the possibility of using guided alterations to the
input of the Generator, in turn making a strong model and hopefully create a
more balanced system.

RQ1 How is performance affected by altering the input to be more favorable
towards the Generator model in a Generative Adversarial Network?

6.1.1. Discussion
The main approach to counter an over powered Discriminator has been to use
artificial limitations, such as pausing the Discriminators training while the Gen-
erator continues. Although Goodfellow acknowledge this as a problem in Good-
fellow (2017), he urged not to not limit the Discriminator performance as a strong
Discriminator is required to accurately represent the data.

Durugkar et al. (2016b) proved Goodfellow suspensions, Section 3.4. The best
performing, at least for high resolution image data, was the forgivingteacher
model that aggregated the result of multiple Discriminators and without restrict-
ing their output.

The Associative Adversarial Network proposed by Arici and Celikyilmaz (2016)
also attempted to balance the performance by making the learning task easier
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for the Generator. Their assumption was that the issue was partly caused by the
difficulty of mapping flat noise samples to realistic output image. Their proposed
solution was by using a third neural network as a link between the Generator
and Discriminator. This approach is based log-likelihood which multiple times
has been discouraged with use on image data. Their approach also seems some-
what excessive and unnecessary since this associative network essentially acts
as a second Generator. Still, their initial assumption is interesting and worth
exploring further.

6.1.2. Proposed solution
The three techniques proposed in this section is based on a similar assumption
as the one proposed in Arici and Celikyilmaz (2016), the large distribution of the
Z noise is limiting the learning process of the Generator.

Static Reusable Noise

The discriminative model in a GAN allowed to focus its learning on training
dataset. The Generator is given the more difficult task of mapping a large,
almost infinite set of random noise samples to natural generated images. The
Discriminator will learn on the same images every iteration while the Generator
will seldom, if ever see the same input during training.

Static Reusable Noise (SRN) is a proposed technique reuse the noise samples
every epoch. The noise samples will therefore be familiar to Generator which
may better focus its effort at generating better images. The generated images
will be quite similar each epoch and the feedback from the Discriminator will still
be relevant during the next epoch.

The nosie samples are generated before training commences and is sampled
through seed. This enables the same noise to be reused during evaluation. Fig-
ure 6.1 illustrates the proposed technique.

Image Based Noise Generation

Image Based Noise Generation (IBNG) is a proposed techniques that gener-
ates noise samples for the Generator based on images from the training dataset.
Samples from the training set are first scaled down to the smaller size of the
noise data and then converted to black and white values in the range [−1, 1].
Figure 6.2 illustrates the three steps of the algorithm. Figure 6.3 and Figure 6.4
shows samples generated from the IKEA and CelebB datasets respectively.

IBNG is based on a similar assumption as the one proposed in Arici and Celikyil-
maz (2016). The overall solutions to problem are similar in that both replaces the
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Epoch 0

Epoch 1

Epoch n

. . .

. . .
Figure 6.1.: Static Reusable Noise (SRN) is a proposed technique reuses the oth-

erwise random input of the generative model in a GAN. The noise
samples are created once and reused every epoch.

regular noise with input more akin to the training data. IBNG is a simpler and
less computationally expensive compared to the Associative Network proposed
by Arici and Celikyilmaz (2016).

Audition Based Noise Selection

Audition Based Noise Selections (ABNS) use the Discriminator to select rep-
resentative generated samples to guide the training. ABNS is a pre-processing
technique that selects the noise to be used for training. Audition based noise
selections is based on an assumption that a strong Discriminator is able to ac-
curately select generated samples that provide the most feedback to Generator.

The techniques is called audition based as the technique auditions a large set of
noise samples where only a select few are chosen. The number of auditioned noise
samples is set by the variable audition size which is multiplied with the batch
size. For this thesis, audition size is set to 3 and 6.

A selection metric picks images based on their score and assembles a regularly
sized batch. This batch is used to train the system normally without any modi-
fications to the GAN model. The selection metric has two modes:

• Best will only pick the images that attained the highest rating with the
Discriminator.

• Mixed is used to give the Generator balanced feedback on its image gener-
ation. Mixed mode divides the batch in three and fills it with equal amounts
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Rescaled + black 
and white conversion

Rescaled to 10x10 
pixels

Original image

Figure 6.2.: Illustration on the process behind image based noise generation. Im-
ages from the training dataset are scaled down and converted to black
and white. The images are then used as input to the Generator.

Figure 6.3.: Examples of image based noise generation used on the IKEA dataset
to generated input to the Generator.

Figure 6.4.: Examples of image based noise generation used on the celebrity faces
from the CelebA dataset. The structure of the human face is clearly
visible on all four images.
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Generator Discriminator Selection metric

Figure 6.5.: Audition Based Noise Selection creates a large set of Z noise samples
and generated images based on them. The generated images are eval-
uated by the Discriminator. A metric selects the most representative
image such as only the best or mix between qualities. The noise used
to generated the selected images are then used to train the system
normally.

of images with the highest and lowest rating. The rest are randomly gen-
erated.
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6.2. Generative Multi-Adversarial Networks
Chapter 3 presented several proposed GAN models using additional ANNs. RQ2
was proposed to explore the use of GANs with additional discriminative models,
Generative Multi-Adversarial Networks (GMAN).

RQ2 In what way is performance of a Generative Adversarial Network model
impacted by adding additional, asymmetrically trained Discriminator mod-
els?

6.2.1. Discussion
Durugkar et al. (2016b) used multiple Discriminators against a single Generator
in their system. The evaluation from the Discriminators would either be aggreg-
ated or selected through a metric. Durugkar et al. (2016b) experimented with
the Discriminators being either strict or kind in their evaluation. They found
that the kinder model performed best which again indicates that the generative
and discriminant model should be balanced.

Im et al. (2016b) created a system of multiple GAN pairs that interchanged
during training. Im et al. (2016b) argued that their GAP system removed the
tight connection between a single Generator/Discriminator pair and reduces the
effect of problems such as mode coverage. Durugkar et al. (2016a) used ensembles
of GAN models for image retrieval. Tests on the CIFAR-10 dataset showed
that ensembles consisting of the same model at different epochs were able to
outperform regular GAN by 40%.

These papers showed that GANs with additional models is a promising evolution
for GANs and should be further explored. The discussed papers still maintain
most of tropes of regular GAN which leaves certain areas unexplored. Firstly,
all models are trained in the same way on the same data. The Discriminator is
trained with images from the training set and current images from the Generator.
Varying the training data may make the models focus on different aspects with
helps the model overall.

Models in GAP are interchanged at an interval of multiple iterations. This differs
from GMAN where the Generator is trained by multiple Discriminators each
iteration. Although Im et al. (2016b) argues this removes the tight connection
between models, it is easy to believe the models may quickly forget knowledge
from previous models in favour of the current opponent. This may halt the
learning process compared to multiple fixed opponents. The Generator in GMAN
must evolve to please multiple opponents which may create a much stronger model
overall.
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6.2.2. Proposed solution
Generative Multi-Adversarial Network with Historic Discriminator (GMAN-HD)
is a proposed GAN architecture with a second discriminative model. The ad-
ditional discriminative network is trained on a record consisting of previously
generated samples. GMAN-HD is inspired by the success of using additional
Discriminator networks as seen in Durugkar et al. (2016b), Im et al. (2016b).
The historical archive is inspired by the archive used by the Discriminator in
Shrivastava et al. (2016).

The historic archive is the same size as a regular batch. At each iteration, a
minimum of a quarter and up to one half of the archive is randomly replaced
with the best images selected through ABNS with audition size equal a regular
batch. The archive was originally much larger with images spanning the last
epochs. This did not perform well and the archive was changed to be more up to
date. The auditions size was kept low to increase performance. The Generator
is trained against both Discriminators each iteration. The regular Discriminator
is trained in usual fashion, but the Historic Discriminator is trained against the
training data and the images in the archive. The Historic Discriminator is never
shown the current output from the Generator.
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6.3. Evaluation metric
Section 2.6.2 introduced the problem of objectively evaluating GAN and described
some evaluation metrics used. Section 6.3.1 discusses the proposed metric from
Section 2.6.2 with respect to this project. Finally, Section 6.3.2 will detail the
selected evaluation metric and its custom implementation.

This thesis has to far described the system, the hardware it runs on and the
training data. This thesis is focused on GAN specialised with image generation
with two research question related to this topic. The final evaluation metric must
fit within the specification defined while at the same time help reach the project
goal and answer RQ3:

RQ3 How can the performance of the suggested techniques related to RQ1 and
RQ2 be accurately measured and objectively evaluated?

6.3.1. Discussion
Theis et al. (2016) concluded that both the training and evaluation of a GAN
model should be modelled after the target application which for this thesis is
image generation.

Using log-likelihoods as an evaluation metric for GANs were first introduced by
Goodfellow Goodfellow et al. (2014). However, as stated in both Goodfellow
et al. (2014) and Theis et al. (2016), log-likelihood is not suitable for evaluation
of higher dimensional data, such as image, and has largely been phased out as
GANs have evolved.

Similarly, using nearest neighbour algorithm to compare pixel data in images
was used by Durugkar et al. (2016a) and Ledig et al. (2016). Theis et al. (2016)
argued is was not sufficient and will not be used for this project.

Salimans et al. (2016) used human annotator to evaluate the quality of their
GAN. Conducting a visual Turing test would certainly be possible for this thesis.
It is however, expensive and time consuming to conduct human evaluation. The
tests conducted in Salimans et al. (2016) rated images as either fake or real.
This may not be accurate enough to pick up the slights variations of quality
between techniques. It is doubtful that the techniques proposed in this thesis
will impact the quality of image generation in such a way it is able to deceive a
human evaluator. Evaluation with human annotators will therefore not be the
main evaluation metric for this thesis, but some degree of human inspections may
still be necessary to detail some of the differences in the generated images.

Salimans et al. (2016) also used object classification to evaluate a GAN model.
This is a good approach for certain problems. It provides a consistent and object-
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ive score on the image quality of images. There are however two main concerns
related to this thesis. First of this approach requires a labelled dataset for com-
parison. Inception (Szegedy et al., 2016) is trained on CIFAR-10 so using this
dataset would work, but will otherwise limit the number of usable dataset con-
siderably. Secondly, using the Inception network is computation expensive and
it on the modest hardware. If used on other datasets, Inception requires the last
layers to be retrained.

Generative Adversarial Metric (GAM) (Im et al., 2016a) is a general method
for comparing two GANs. GAM does not directly evaluate the quality of image
generation, but compares two trained GAN models by evaluating each other. It
is however not perfect since it does not evaluate image quality compared to the
training dataset. As Salimans et al. (2016) encountered when comparing Feature
matching and Minibatch discrimination, certain techniques may create a better
classifier(Discriminators) without improving image quality.

Still, GAM is the best suited evaluation metric for this thesis and general frame-
work means that GAM can be customized to the desired task. The background
chapter mentions two implementations for GAM. Both of these are specialized
for GAM models with multiple Discriminators and will not be used.
Proposed solution

6.3.2. Proposed solution
Generative Adversarial Metric (GAM) (Im et al., 2016a) was selected as the main
evaluation metric for this thesis. GAM is a general framework for comparing two
GAN models.

The custom implementation of GAM is named Serial Generative Adversarial
Metric (SGAM). A high-level overview of SGAM is represented in Algorithm 1.
Serial refers to the fact that checkpoints of the GAN models are never loaded at
the same time, but one at time in series. The main reason behind this is memory
consumption. Keeping two models in memory at the same time requires double
the GPUmemory. The generated samples are stored in the systems main memory.
All experiments and evaluations are run on the same computer with relatively
low amount of GPU memory for such as task. Running the two models in series
is therefore a simple trick to guarantee there is always enough available GPU
memory. TensorFlow has built in support for saving and restoring checkpoints of
a previously trained model. Loading a model is done is generally quite efficient
and a fast process.

The simplicity of TensorFlow checkpoints is exploited further by evaluating mod-
els throughout the learning process. This requires the models to have checkpoints
saved after each epoch of training. SGAM load these checkpoints one epoch at a
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Figure 6.6.: This plot of the classification accuracy of the Discriminator on test
data shows some of the problem of evaluating GANs.

time to find the GAM result at that the time during training. The classification
accuracy is also averaged for each checkpoint which is used at the end to calculate
a global winner. Both the local and global results are saved to file for comparison
later on.

Implementing GAM through the equations in (Im et al., 2016a) resulted in an
unstable evaluation when tested on techniques proposed for this project. The
original formulas states that the classification error should be used. It is natural
to assume this means the amount of wrongly classified samples, for instance an
error rate of 0.1 means 10% on the images were classified wrong. For the test to
qualify, the ratio between the two GAN must be roughly equal to 1. Testing GAM
with this assumption however proved difficult as the error rate were generally so
low that the test fail. For instance, comparing two GANs achieving an error rate
of 0.01 and 0.001 will fail the test.

Attempts to stabilize GAM includes making the accuracy measure stricter and
drastically increasing the amount of images tested. It was also believed the global
averaging across multiple epochs would help. None of these methods helped
stabilized the metric. Even testing the exact same model against itself resulted
in GAM selecting one model as better one with a sample ratio of 0.8885.

The min max battle of GANs separates them from conventional ANNs. The
models are constantly evolving caused by the min-max battle. An example plot of
the classification accuracy on test data is shown in Figure 6.6 and is an argument
against a too strong test.
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The solution to this problem was simply to modify the equations to use classific-
ation accuracy and not the error. This helps stabilize the metric when error rates
are low, but still fails if the accuracies are too different. This change may not
be ideal for all projects and GAN models, but was necessary for having a stable
evaluation metric that worked with the models and data used in this project.

Using the classification accuracy requires the equations from Im et al. (2016a)
shown in Section 2.6.2 to be altered. The updated equations are shown in Equa-
tion 6.2, 6.3 and 6.4. Testing a trained GAN model against itself, using the
updated equations, resulted in a tie with a sample ratio of 1.0004.


correct if x = generated and D(z) < 0.5
correct if x = real and D(x) > 0.5
wrong otherwize

(6.1)

rsample = 1− ε(D1(G2(z)))
1− ε(D2(G1(z))) (6.2)

rtest = 1− ε(D1(x))
1− ε(D2(x)) (6.3)

winner =


GAN 1 if rsample > 1 and rtest ' 1
GAN 2 if rsample < 1 and rtest ' 1
Tie otherwise

(6.4)
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Define a test dataset, samplestest;
foreach epoch of training do

begin Load the corresponding checkpoint for GAN1
Find classification accuracy of D1 on test dataset;
Generate dataset samples1;

end
begin Load the corresponding checkpoint for GAN2

Find classification accuracy of D2 on test dataset;
Find classification accuracy of D2 on samples1;
Generate dataset samples2;

end
begin Load the corresponding checkpoint for GAN1 again

Find classification accuracy of D1 on samples2;
end
Calculate rtest (Eq 6.2) and rsample (Eq 6.3);
Use Eq 6.4 to decide local result;

end
Average the local classification accuracies;
Calculate rtest (Eq 6.2) and rsample (Eq 6.3);
Use Equation 2.4 decide global result;

Algorithm 1: Serial Generative Adversarial Metric (SGAM) algorithm
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The previous chapter introduced four main techniques proposed by this thesis:
Static Reusable Noise (SRN), Image Based Noise Generation (IBNG), Audition
Based Noise Selection (ABNS) and Generative Multi-Adversarial Network with
Historic Discriminator (GMAN-HD). The results of experimentation with these
techniques on three different will be presented, Section 7.2 and discussed, Section .
Section 7.3.

7.1. Experimental Setup
Experimental setup briefly describes the dataset used and the evaluation metric.

7.1.1. Data
The techniques will be trained on three datasets: CelebA and CIFAR-10, Sec-
tion 2.4, and the custom IKEA dataset, Section 5.4. The three remaining data-
sets, MNIST, Flickr30k and CAT, will not be used. MNIST is a simple dataset.
DCGAN is allready more than capable of using it. The Flickr30k and CATA
datasets were omitted because the variable image size and formats was too in-
consistent to train. ANNs require images to be of a fixed size. Automatic cropping
of the images from was inconsistent. The remaining three dataset represent the
three difficulty ratings and should be good enough to highlight the variations
between techniques.

7.1.2. Evaluation
Serial Generative adversarial metric (SGAM), see Section 6.3, is the main evalu-
ation metric. Each technique will be compared to against a default implement-
ation of DCGAN. The final output score will not the sole determining factor.
SGAM calculates local result after each epoch and the results of these will also
be a point of discussion. A technique may for instance be better during the early
epochs, but worse overall. Some manual inspection of the generated samples will
also be conducted to highlight some of the variations between techniques.
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To maintain a balance between performance and accuracy, the test accuracy and
sample accuracy are calculated by classifying 12,88 batches, equal to 200 batches.
The test dataset consists of image from the training data.

SGAM results

Figure 7.1 shows an example plot of a SGAM comparison. The test score is
solely based on the Discriminator ability to classify a set of real images as real.
The example plotted in Figure 7.1 shows that the test scores are comparable at
around 80% accuracy.

The sample score is the real point of comparisons, as it evaluates the actual
image generation of the two models. The sample score is the accuracy of a model
classifying the generated samples from the other model correctly as fake. The
sample score for GAN1 shows that it is able to correctly classify most of the
samples generated by GAN2. At the same time, GAN2 is only able to correctly
classify about half of the samples from GAN1. The rest is believed to be real
images. The better model is in this example GAN1 since it is able to both fool
the other model while not getting fooled itself. The Discriminator is taught
that images from the training set should be rated high and samples generated
from the Generator to be rated low. This means that all knowledge about the
characteristics of a generated images comes from the models Generator and the
sample score is therefore an indication on the quality of the models Generator as
well. A model with a lower samples score will have a worse Generator than the
other.

7.2. Results

The results of the experiments with of the four techniques proposed in Chapter 6
are presented in this section.

7.2.1. Static reusable noise

The SGAM results for comparing models trained with SRN against regular
DCGAN are shown in Table 7.1 and Table 7.2. The effect of SRN varied de-
pending on the dataset, but did not have a large effect on performance. Notice
that the model’s performance was not affected by whether random noise or the
noise used during training was used to generat samples.
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Figure 7.1.: The plots shows an example result from SGAM comparison between
GAN1 and GAN2. The classification accuracy on test data is compar-
able at around 80% for both models. GAN1 is however outperforming
GAN2.

CelebA

When trained on CelebA dataset, the model using SRN won both globally and
most local victorious. Figure 7.2 shows how SRN is performing slightly better
than DCGAN thoughts most of the epochs. Comparing the plotted test scores
shows that SRN is making the learning process more difficult for the Discrimin-
ator. This may indicate a stronger Generator.

CIFAR-10

CIFAR-10 trained with SRN performed worse overall, but won more local victor-
ies. Models trained using the CIFAR-10 dataset usually varies immensely and any
technique should make more an impact on the SGAM ratios. The local scores cal-
culated through SGAM are plotted in Figure 7.3 and shows the difficulty DCGAN
faces when training on the CIFAR-10 dataset. Neither models are consistently
able to classify samples from the other model during the first 20 epochs. The
large increase in accuracy occurs between epoch 15 and 25. The sample scores do
vary quite a bit, but are overall comparable. Interestingly, SRN appears to have
created a less overfitted Discriminator. Comparing the test scores shows that
SRN has overall worse accuracy and less renown peaks in performance. This
might indicate a better balance between the Discriminator and Generator.
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Table 7.1.: Global result from SGAM comparison between regular DCGAN and
DCGAN trained with Static Reusable Noise (SRN) on the three data-
sets. The parenthesis indicate whether the models were tested by
generating samples with random generated or the static noise used to
train the model.

Dataset Epochs GAN 1 GAN 2 rtest rsample Winner

CelebA 16 DCGAN SRNZ=random 0.9867 0.9981 SRNZ=random

16 DCGAN SRNZ=training 0.9875 0.9984 SRNZ=training

IKEA 22 DCGAN SRNZ=random 0.9981 4.5108 DCGAN
22 DCGAN SRNZ=training 0.9980 4.5106 DCGAN

CIFAR-10 50 DCGAN SRNZ=random 1.0026 1.0571 DCGAN
50 DCGAN SRNZ=training 1.0019 1.0556 DCGAN

IKEA

SRN did not perform well when trained on the IKEA dataset. Figure 7.4 shows
the scores plotted. The Discriminator appears to be too powerful and and is
quickly unable to correctly classify the samples generated from regular DCGAN.
This is noticeable by its sample score collapsing at epoch three and five.
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Figure 7.2.: SGAM scores for DCGAN versus SRN trained on the CelebA dataset.
Looking at the bottom plot, SRN is performing slightly better than
DCGAN thoughts most of the epochs. Comparing the test accuracy
in the second plot show that the scores do vary quite a bit. SRN has
more fluctuations while DCGAN is more stable.
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Figure 7.3.: The plots shows the performance of regular DCGAN and DCGAN
with SRN trained on the CIFAR-10 dataset. Performance is overall
comparable. Comparison of the sample score show SRN is limiting
the model during epochs 15 to 25.
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Figure 7.4.: SGAM scores for DCGAN versus DCGAN with Static Reusable
Noise (SRN) trained on the IKEA dataset. Model is clearly impacted
negatively by SRN as its sample scores collapses after 5 epochs.
SRNs ability to classify test data have more variation during the
first epochs, but are overall comparable to DCGAN.
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Table 7.2.: Local results from SGAM comparison between regular DCGAN and
DCGAN trained with Static Reusable Noise (SRN) on the three data-
sets. The variable Z denotes which input noise was used by the gen-
erative model to generate samples for the other model to judge.

Dataset Epochs GAN 1 GAN 2 Ties WinsGAN1 WinsGAN2

CelebA 16 DCGAN SRNZ=random 6 3 7
16 DCGAN SRNZ=training 6 3 7

IKEA 22 DCGAN SRNZ=random 1 20 1
22 DCGAN SRNZ=training 1 20 1

CIFAR-10 50 DCGAN SRNZ=random 11 14 25
50 DCGAN SRNZ=training 14 11 25

7.2.2. Image based noise generation
The results of comparing models trained with IBNG with regular DCGAN are
shown in Table 7.1 and Table 7.4. The results show that IBNG created a worse
model that was more overfitted to the training data. Each model was compared
with both random noise and noise generated with IBNG. Of the two, the familiar
noise of IBNG performed slightly better, but still worse than regular DCGAN.

CelebA

Using the CelebA dataset with IBNG resulted in a worse model. Comparison to
DCGAN is shown in Figure 7.5. IBNG is clearly limiting performance. The test
scores do fluctuate quite a bit, but are comparable.

CIFAR-10

CIFAR-10 has widely different images and as a result the noise samples are mostly
different as well. Using IBNG is essentially the same as SRN. Figure 7.6 shows
that both models perform about equal.

IKEA

The most interesting result was with models trained on the IKEA dataset, Fig-
ure 7.7. As with SRN, the sample score does eventually collapse. Images in IKEA
dataset have much common with each other. Using IBNG, this aspect is helpful
during the early epochs of training, but a curse later. During the first six epochs,
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Table 7.3.: Global result from SGAM comparison between regular DCGAN and
DCGAN trained with Image Based Noise Generation (IBNG) on the
three datasets. IBNG did not improve performance on any dataset.
This is indicated by every rsample being greater than one.

Dataset Epochs GAN 1 GAN 2 rtest rsample Winner

CelebA 18 DCGAN IBNGZ=random 0.9762 1.0101 DCGAN
18 DCGAN IBNGZ=training 0.9742 1.010 DCGAN

IKEA 20 DCGAN IBNGZ=random 0.9656 1.2667 DCGAN
20 DCGAN IBNGZ=training 0.9597 1.2203 DCGAN

CIFAR-10 25 DCGAN IBNGZ=training 0.9437 1.0473 DCGAN
50 DCGAN IBNGZ=random 0.9888 1.0239 DCGAN
50 DCGAN IBNGZ=training 0.9872 1.0083 DCGAN

the samples generated from the model trained using IBNG is superior and able
to correctly classify every sample from the regular DCGAN. The performance of
both models begins to align after about four epochs of training. Regular DCGAN
is able to stay at this performance level, but after ten epochs, IBNG begins to
fail at classifying the images from regular DCGAN. The model begins to collapse
as the Discriminator become too strong for the Generator. At the same time,
regular DCGAN has constantly improved and performing. The peak of both
sample scores at epoch 19 is interesting. The likely cause is that the Generator
trained IBNG are generating images of so poor quality regular DCGAN fails to
accurately classify them.

7.2.3. Audition Based Noise Selection

The results of the models trained using Audition Based Noise Selection (ABNS)
are shown in Table 7.5 and Table 7.6. The usual problems observed with IKEA
dataset occurred with ABNS as well. Otherwise, ABNS improved perfomance
somewhat for CelebA and considerably for CIFAR-10.

ABNS made the already computationally expensive training process even worse.
This limited the number of experiments conducted for CelebA and IKEA data-
sets. CIFAR-10 requires considerably less time and using this dataset was there-
fore prioritized.
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Figure 7.5.: Performance of regular DCGAN and DCGAN with IBNG trained on
the CelebA dataset. Comparing the samples scores show DCGAN
being the best model. IBNG isclearly limiting perfomance. The test
scores do fluctuate quite a bit, but are comparable.
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Figure 7.6.: Performance of regular DCGAN and DCGAN with IBNG trained on
the CIFAR-10 dataset. Comapring the samples score show that the
models are comparable. The model trained with IBNG do have more
distinct peaks. The test scores show IBNG creates more stable and
less overfitted Discirmantor compared to DCGAN.
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Figure 7.7.: Performance of regular DCGAN and DCGAN with IBNG trained on
the IKEA dataset. Model trained with IBNG is comparable DCGAN
during the first 11 epochs, but eventually fails to classify generated
samples. Such as collapse indicates an overpowered Discriminator.
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Table 7.4.: Local results from SGAM comparison between regular DCGAN and
DCGAN trained with Image Based Noise Generation (IBNG) on the
three datasets. The variable Z denotes which input noise was used by
the generative model to generate samples for the other model to judge.
Z is either generated at random, thereby most likely not observed
during training, or identical to the Z nose used during training

Dataset Epochs GAN 1 GAN 2 Ties WinsGAN1 WinsGAN2

CelebA 18 DCGAN IBNGZ=random 6 11 1
18 DCGAN IBNGZ=training 7 11 0

IKEA 20 DCGAN IBNGZ=random 3 10 7
20 DCGAN IBNGZ=training 3 11 6

CIFAR-10 25 DCGAN IBNGZ=training 3 8 0
50 DCGAN IBNGZ=random 15 15 20
50 DCGAN IBNGZ=training 12 18 20

CelebA

ABNS was able to improve performance slightly when trained on the CelebA
dataset. Both mixed and best mode won the global victory, but the local victories
were more divided. Figure 7.8 plots the results of the SGAM comparison between
ABNS in best mode and Figure 7.9 shows the result of mixed mode. Both were
trained with auditions size of 3 times the batch size of 64. ABNS-mixed3 is more
stable overall but ABNS-best3) is noticeable better during the first six epochs.
ABNS-mixed3 is still performing better than DCGAN during the early epochs.
The results after this point are more varied with regular DCGAN often being the
best performing model.

CIFAR-10

Training on CIFAR-10 was greatly improved with ABNS. The table shows that in-
creasing auditions size does incrase performance. All variations of ABNS severely
outperforms regular DCGAN. The results from SGAM when comparing best per-
forming model, ABNS-mixed6 against regular DCGAN are plotted in Figure 7.10.
Comparing samples scores reveal ABNS-mixed6 to severely outperform DCGAN
up until epoch 30. At this point DCGAN is slightly outperforming ABNS-mixed6.
Figure 7.11 shows randomly sampled output from both models at certain time
during training in correlation with Figure 7.10. The samples generated by ABNS-
mixed6 do appear to be more varied and have better details.
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Table 7.5.: Global result from SGAM comparison between regular DCGAN and
DCGAN trained with Audition Based Noise Selection (ABNS) on the
three datasets. The modes of ABNS are best which only selected
the best rated images and mixed which return a selection of various
qualities. The number indicates the audition size, how many samples
were analyzed.

Dataset Epochs GAN 1 GAN 2 rtest rsample Winner

CelebA 18 DCGAN ABNS-best3 1.0815 0.9989 ABNS-best3
15 DCGAN ABNS-mixed3 1.0690 0.9987 ABNS-mixed3

IKEA 8 DCGAN ABNS-mixed3 0.8715 1.7889 DCGAN
14 DCGAN ABNS-mixed6 0.9630 2.0341 DCGAN

CIFAR-10 40 DCGAN ABNS-best3 1.0053 0.9129 ABNS-best3
40 DCGAN ABNS-best6 1.0517 0.8508 ABNS-best6
50 DCGAN ABNS-mixed3 1.0054 0.7805 ABNS-mixed3
40 DCGAN ABNS-mixed6 0.9683 0.743 ABNS-mixed6
40 ABNS-mixed6 ABNS-mixed3 0.9215 0.9059 ABNS-mixed3
40 ABNS-best6 ABNS-mixed6 0.9215 0.9059 ABNS-mixed6

IKEA

Using ABNS with the IKEA dataset once again caused the Discriminator to
become overpowered. Neither of the two modes nor increasing the auditions size
was able to prevent the collapse. Figure 7.12 plots the results of ABNS in mixed
mode with auditions size of 3. The collapse is clearly visible at epoch four. . The
Generator does make some strong attempts a recuperating between epoch 6 and
10, but the strong Discriminator eventually regains total control. Inspecting both
the off balanced test ratio in Figure 7.5 and the plotted test score in Figure 7.12
does indicate the ABNS-mixed6 made the Discriminator more overfitted towards
the training data.
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Figure 7.8.: Comparison between DCGAN and ABNS-best3 trained on the
CelebA dataset. ABNS-best3 is successfully guiding the model dur-
ing the first six epochs of training but are otherwise more unstable the
regular DCGAN. Performance on test data is however more stable.
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Figure 7.9.: Comparison between DCGAN and ABNS-mixed3 trained on the
CelebA dataset. ABNS-mixed3 is better during the first 10 epochs
as seen by its samples score being higher than DCGANs’. Another
interesting observation is that the Discriminator trained with ABNS-
mixed3 is performing worse than DCGAN at classifying samples from
the training set. This is an indication that ABNS-mixed3 creates a
stronger Generator that puts up more a challenge for the Discrimin-
ator. The tenth epoch is when the two models performance begins
to align and coincidentally is when the tests score of model ABNS-
mixed3 begins to converge. The Discriminator of DCGAN has at this
point not converged and is now perfoing better then ABNS-mixed3.
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Figure 7.10.: The plots shows the comparison between DCGAN and ABNS-
mixed6 trained on CIFAR-10 datasets. The model trained with
ABNS-mixed6 is greatly outperforming DCGAN until epoch 29.At
this point, the models are comparable with regular DCGAN being
slightly better.The test scores are comparable although DCGAN has
larger drops inaccuracy. Figure 7.11 displays examples of generated
samples at certain parts of the training.
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4 10 15 23 40
Figure 7.11.: Randomly selected outputs from models from DCGAN(Left

columns) and DCGAn trained with ABNG-mixed6 (Right columns)
on the CIFAR-10 dataset.Reference. The numbers indicate the
number of epochs trained and correltases with events in Figure 7.10
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Figure 7.12.: The plots shows the performance of regular DCGAN versus ABNS-
mixed3 trained on the IKEA dataset. ABNS-mixed3 performs well
during the first 4 epochs. ABNS-mixed3 appears to create a stronger
Discriminator as seen by the the test score being noticable higher
during he first four epochs comapred to regulr DCGAN. During this
periode ABNS-mixed3 does perform better however this does not
last. After five epochs, the usual collapse of the Generator occurs. It
is believed that the Discriminator becomes to strong and outpower
the Generator.
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Table 7.6.: Global result from SGAM comparison between regular DCGAN and
DCGAN trained with Audition Based Noise Selection (ABNS) on the
three datasets. The modes of ABNS are best which only selected
the best rated images and mixed which return a selection of various
qualities. The number indicates the audition size, how many samples
were analyzed.

Dataset Epochs GAN 1 GAN 2 Ties WinsGAN1 WinsGAN2

CelebA 18 DCGAN ABNS-best3 7 4 7
15 DCGAN ABNS-mixed3 3 7 5

IKEA 8 DCGAN ABNS-mixed3 2 4 2
14 DCGAN ABNS-mixed6 1 11 2

CIFAR-10 40 DCGAN ABNS-best3 7 13 20
40 DCGAN ABNS-best6 11 7 22
50 DCGAN ABNS-mixed3 13 4 33
40 DCGAN ABNS-mixed6 7 14 19
40 ABNS-mixed6 ABNS-mixed3 4 8 28
40 ABNS-best6 ABNS-mixed6 6 17 17

7.2.4. Generative Multi-Adversarial Network with Historic
Discriminator

Generative Multi-Adversarial Network with Historic Discriminator (GMAN-HD)
performed well against regular DCGAN when train on CelebA and CIFAR-10.
GMAN-HD was also tested against models trained using ABNG. The results are
shown in Table 7.7 and Table 7.8. Note that only the main Discriminator was
used for SGAM comparisons.

IKEA dataset

Historic Discriminator did not perform well on IKEA dataset. The Discriminator
collapses after just two epochs of training. Still, the Generator and second Dis-
criminator does make some attempts at increasing performance. The sample ac-
curacy begins to rise at the eleventh epoch. The tests scores are similar. DCGANs
test score have a peak at epoch 16 while GMAN-HDs accuracy is stays close to
100% from epoch 10.
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Table 7.7.: Global results from SGAM comparison between regular DCGAN and
DCGAN trained with Multi-Adversarial Network with Historic Dis-
criminator on the three datasets.

Dataset Epochs GAN 1 GAN 2 rtest rsample Winner

CelebA 14 DCGAN GMAN-HD 1.0728 0.9980 GMAN-HD
14 ABNS-mixed3 GMAN-HD 0.9983 0.9989 GMAN-HD

IKEA 19 DCGAN GMAN-HD 0.9734 2.9231 DCGAN
8 ABNS-mixed3 GMAN-HD 1.207 1.7083 ABNS-mixed3
14 ABNS-mixed6 GMAN-HD 1.0289 1.5507 ABNS-mixed6

CIFAR-10 46 DCGAN GMAN-HD 1.0058 0.8194 GMAN-HD
40 GMAN-HD ABNS-best3 0.9964 1.2095 Histric
46 GMAN-HD ABNS-mixed3 0.9984 0.9222 ABNS-mixed3
40 GMAN-HD ABNS-mixed6 0.9610 0.9576 ABNS-mixed6

CelebA dataset

The results of training historic Discriminator on CelebA dataset resembles a mix
between ABNG in best mode and mixed mode. The sample score is constantly
above the score of DCGAN until a small peak at epoch 13.

CIFAR-10 dataset

Results from CIFAR-10 was interesting. The samples scores are almost identical
until epoch 10 when HDs score suddenly begins to rise. The score fluctuates for
some time before stabilizing at around 99.9% accuracy after 18 epochs. DCGAN
is not able to catch up until 10 epochs later and even then, HDs sample accuracy
is still higher. The test scores are similar throughout, but HD follows the same
patterns as with ABNS, creating weaker but more stable Discriminator.

7.3. Discussion

The results of the experiments have been now presented and will be discussed in
this section. It is clear from the experiments that the dataset used for training
had a large impact on the results. This discussion will therefore discuss the results
overall, Section 7.3.1, and then in relation to each dataset, Sections 7.3.2, 7.3.3
and 7.3.4.
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Figure 7.13.: GMAN-HD achieves higher classification accuracy throughout, with
the exception during epoch 13. The test score is clearly affected
during the first epochs.
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Figure 7.14.: GMAN-HD clearly improves the learning process. Comapring the
sample scores show GMAN-HD begins to converge on the dataset
after 11 epochs. Regular DCGAN does evuallty reach simialr per-
fomance, but requires more training. The sampels score after con-
vergence, midle plot, show GMAN-HD to still be perfoming better
and also beeing more stable. The test scores are mostly similar
througout.
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Figure 7.15.: GMAN-HD appears to create a stronger Discirmantor even faster.
The sample score of GMAN-HD collapses after only two epochs
compared to the usual five. The Generator does make some strong
attempts at improving performance as seen by the peaks at epoch
12 and 17.
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Table 7.8.: Local results from SGAM comparison between regular DCGAN and
DCGAN trained with Multi-Adversarial Network with Historic Dis-
criminator on the three datasets.

Dataset Epochs GAN 1 GAN 2 Ties WinsGAN1 WinsGAN2

CelebA 15 DCGAN GMAN-HD 4 1 8
14 ABNS-mixed3 GMAN-HD 7 2 5

IKEA 19 DCGAN GMAN-HD 1 17 1
8 ABNS-mixed3 GMAN-HD 4 2 2
14 ABNS-mixed6 GMAN-HD 1 7 6

CIFAR-10 46 DCGAN GMAN-HD 12 6 28
40 GMAN-HD ABNS-best3 13 18 9
46 GMAN-HD ABNS-mixed3 18 16 12
40 GMAN-HD ABNS-mixed6 6 25 9

7.3.1. Overall
SRN was a simple technique reused the same noise very epoch. SRN was able
to increase accuracy slightly on CelebA and CIFAR-10 during the earlier epochs
when most the learning occurs. SRN in its current form is not a recommended
technique but does highlight the potential for reducing the range of Generator
input to stabilize the learning process.

IBNG was a technique similar to SRN that generated the input noise from images
in the training set. The goal behind the technique was to make the learning task
easier for the Generator. IBNG had the opposite effect and created a too strong
Discriminator that was more overfitted towards the training data and performed
slightly worse than regular DCGAN. Although IBNG still cause the model to
collapse when trained on the IKEA dataset, the collapse occurred much later in
the training process than any of the other techniques.

ABNS was a more advanced and computationally expensive technique that task
the Discriminator to pick the most representable images to guide training. Using
ABNS when trained on CelebA performed similar to SRN. Experimenting with
larger auditions sizes may improve performance further. This is interesting as
SRN is a much more simple technique. ABNS was more successful on CIFAR-
10, a more difficult dataset. All variations of ABNS were able to drastically
increase performance. Testing on CIFAR-10 saw an increase in performance with
an increase in auditions size.

The final proposed technique added an additional Discriminator to the DCGAN
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architecture. This GMAN-HD Discriminator was trained on past, well rated
images from the Generator. While requiring less training time, GMAN-HD per-
formed better than the other techniques on the CelebA dataset, winning both
globally and almost all local victories. HD did also perform well on CIFAR-10
dataset, but was beat by some variations of ABNS.

While SRN and IBNG did perform well on under certain conditions, overall,
the techniques are too simple to warrant further use. Both of these technique
were proposed to help the Generator during training by putting limitations on
its input. This did to a lesser degree stabilized training during the early epochs,
but usually ended up limiting the model overall. ABNS had better success at
creating a stronger Generator as it does not limit the available range of the input.
ABNS showed that the learning process could be improved by maximize learning
each iteration. GMAN-HD achieved similar results on CIFAR-10 and CelebA.
The models trained with GMAN-HD was not as powerful as ABNS with larger
auditions sizes, but proved to be more stable against unaltered DCGAN.

7.3.2. CelebA dataset
The CelebA dataset rated as an easy dataset for use with GAN, Section ref-
sec:publicdatasetsDisucsusion. The dataset has a large number of images with
common features of a face centrally aligned in frame. Regular DCGAN is more
than able to learn these features through unsupervised learning. Figure 7.16 plots
the classification accuracy for the Discriminator model in regular DCGAN when
training on CelebA dataset. The accuracy converges after about four epochs of
training. Being an easy dataset made the proposed techniques have less of impact
on performance. Although small, three of techniques were able to consistently
improve performance on CelebA. The largest improvements were seen during the
early of epochs of training.
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Figure 7.16.: Classification accuracy for training data and samples from the gen-
erative model for regular DCGAN when trained on the CelebA data-
set. The accuracy converges after 5 epochs of training.

7.3.3. CIFAR-10 dataset
CIFAR-10 was the most convenient dataset used for the experiments. The dataset
has fewer images and lower resolution which requires less training time then the
other two datasets. CIFAR-10 was rated as a hard dataset in the previous chapter
and this proved accurate. Figure 7.17 shows how DCGAN struggles during the
early training phase and requires several dozen epochs of training before be able to
accurately classifying generated and real images correctly. With CIFAR-10 being
a harder dataset, some of the suggested techniques were better able to increase
performance when using it as training data. The simpler techniques of SRN and
IBNG did limit the performance somewhat. The more advanced techniques of
ABNG and MGAN with historic Discriminator were more successful.

7.3.4. IKEA dataset
The IKEA dataset was created during the pre-study. The dataset was rated at
medium difficult in the previous chapter, but using it for this experiments seems
to indicate it is a harder dataset than first anticipated. Regular DCGAN is able
to capture the white background and overall create quite sharp images. The
images do however never reach a point where they appear natural. This may
be caused the images having few consistent features among them except for the
white background. The dataset is also being artificially augmented to increase
its size. For this dataset, each original image was copied and slightly adjust 100
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Figure 7.17.: Classification accuracy for training data and samples from the gen-
erative model for regular DCGAN when trained on the CIFAR-10
dataset. CIFAR-10 is a hard dataset which is noticeable by the
accuracy requiring about 20 epochs of training before the peaks
consistently reach close to 100% accuracy.

times which may impact learning in some way. Figure 7.19 plots the classification
accuracy of the Discriminator when regular DCGAN is trained on the dataset.
Notice that the DCGAN requires about five to seven epochs of training before
reaching 100% accuracy.

None of the proposed techniques were able to consistently improve the models
trained on the IKEA dataset. Every attempt ended with the models sample
score eventually collapsing. The collapse occurs after about five to seven epochs
which correlates with Discriminator performance of Figure 7.19. This collapse
was surprising and conflicting with the results of the other datasets. Interestingly,
it was only the sample score of the afflicted model that collapse, the test score
was usually high. The sample score of the other model, evaluating the generated
images from the afflicted model, was usually above 90%.

Figure 7.18 shows samples generated with ABNS and shows samples generated
before and after the collapse. The number next to each sample represent the
rating of the models Discriminator. Rating above 50 is believed to be real images
and rating under is believed to be generated. At epoch 4 the performance of the
Discriminator and generates is well balanced. The Generator is able generated
decent samples that often fool the Discriminator. These images provide valuable
feedback on how to improve further. At epoch six, the Discriminator has become
too strong as seen by all rating being below 50 and most even being below 30.
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It should be noted that this sort of collapse does occur on occasion with other
datasets, but that is only between a single iteration. A strong Discriminator
halts the learning of the Generator as none of its improvements is able to fool the
Generator. It is reasonable to believe a strong Discriminator should result in high
sample score. In fact, the opposite is true. The Discriminator is only taught how
generated samples should look from its own Generator. A strong Discriminator
leads to a poor Generator which produces low quality samples. The Discriminator
is taught that these low quality samples represents all generated samples. This
is of course not the case when shown samples from another model with better
balanced models. These samples will have much higher quality than those of its
own Generator and thus believe they to be real. This causes the collapse.

The analysis of the results seems to indicate an unbalanced and overpowered
Discriminator to be the root of the problem. Training on the IKEA dataset is a
delicate process. The images in the IKEA dataset appears to be easier to learn
for the Discriminator then the Generator. All the suggested techniques ended up
make the task easier for the Discriminator. After about five epochs of training,
the Discriminator has become so skilled at its task of separating training data
from generated samples the Generator is unable to progress.
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Figure 7.18.: The figure shows the problem of unbalanced GAN model with
where the discriminative model is outperforming the generative
model. The samples are generated by DCGAN with ABNS-mixed3
on the IKEA dataset during epoch 4 and 6. The number next to
each sample represent the rating of the models Discriminator. Rat-
ing above 50 is believed to real images and rating under is believed
to be generated. This is the same model compared in Figure 7.12
and showcases the model at its peak, epoch 4, and bottom, epoch 5.
During epoch 4, the performance of the Discriminator and generates
is well balanced. The Generator is able generated decent samples
that often fool the Discriminator. These images provide valuable
feedback on how to improve further. At epoch 6 however, the Dis-
criminator has become too strong for the Generator to progress.
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Figure 7.19.: Classification accuracy for training data and samples from the gen-
erative model for regular DCGAN when trained on the IKEA data-
set. The model requires 5 epochs of training before the peaks begin
to reach 100% accuracy.
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8. Conclusion and Future
Work

Section 1.2 defined one Project Goal and three Research Questions (RQ). This
chapter will answer the RQs and discuss to what degree the Project Goal have
been reached, Section 8.1. Section 8.2 will define future work.

8.1. Conclusion
This section will make attempts at answering the research questions through the
work conducted for this thesis. The last section discuss the project in relation to
the Project Goal.

8.1.1. Research Question 1
RQ1 How is performance affected by altering the input to be more favorable

towards the Generator model in a Generative Adversarial Network?

Three main techniques were proposed based on RQ1. Each make guided modific-
ations the otherwise random input of the generative model to make the learning
task easier.

Reusing the input of the Generators through Static Reusable Noise was a simple
technique which did affect the performance during training in a positive, albeit
minor, way. The noise was only repeated once every epoch of training which may
be too infrequent. Still, tests using Image Based Noise Generation showed that
making the input too similar only limits the model.

The most promising of the three suggested was Audition Based Noise Selection
(ABNS). This technique allows the Discriminator to select representable noise
samples that help guides training. Experiments conducted with difficult dataset
showed that ABNS was able to guide the training through the most difficult parts
of learning. ABNS had less effect on simpler dataset. Comparison between reg-
ular models showed that ABNS makes for a Discriminator that is overall weaker
but more stable.
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The three techniques show that guided alterations to the input of the Generator
has the potential of increasing performance throughout the learning process, but
not overall. Regularly trained GAN models were eventually able to reach similar
performance on all datasets.

8.1.2. Research Question 2
RQ2 In what way is performance of a Generative Adversarial Network model

impacted by adding additional, asymmetrically trained Discriminator mod-
els?

Expanding GAN with additional ANNs is a popular area of research. The com-
mon approach so far has been to add identical additional networks with slightly
varying parameters. RQ2 was proposed to examine the effect of GAN models
were the models have varying training data. The suggested Generative Multi-
Adversarial Network with Historic Discriminator (GMAN-HD) was the resulting
model of this question. The two Discriminators in GMAN-HD are trained separ-
ately and on different data, thereby asymmetric. The Historic Discriminator is
trained on previous well rated output from the Generator.

GMAN-HD creates a model that outperform regular GAN models on multiple
datasets. The Discriminators are more stable and less overfitted towards the
training data. The largest gap in performance was seen early when most of
learning occurs.

8.1.3. Research Question 3
RQ3 How can the performance of the suggested techniques related to RQ1 and

RQ2 be accurately measured and objectively evaluated?

Properly evaluating the quality of a GAN model is difficult s there is no fixed
solution to unsupervised learning. Multiples methods were researched and dis-
cussed. Generative Adversarial Metric (GAM) (Im et al., 2016a) was chosen as
the main evaluation metric. GAM leverages the adversarial min-max aspect of
GANs. The Discriminator from one model classify generated samples from the
other, and vice versa.

Serial Generative Adversarial Metric (SGAM) is a concrete implementation of
GAM that addresses some of the problems uncovered when using it for this
thesis. SGAM compares the two models both overall and after epoch of training.

SGAM, and GAM, is not a perfect evaluation metric suitable for all projects.
SGAM is not capable of directly evaluate image quality compared to the training
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data set. A model may produce superior images compared to another model,
but the images may look unrealistic to a human evaluator. Likewise, SGAM
evaluates every image individually and is therefore unable to evaluate the mode
coverage, range of generated samples. To evaluate the local results, SGAM re-
quires checkpoints of past models to be saved and that they are easily retrieved.
This was especially designed for use with TensorFlow, but not available for all
Deep Learning frameworks. This makes SGAM less universal. With Tensor-
Flow, the checkpoints do require some deal of available storage, especially with
additional networks. The storage limitation might not always be ideal.

Nevertheless, SGAM was used to accurately and consistently compare the tech-
niques developed for answering RQ1 and RQ2. The local result was easily plotted
which was a helpful tool when discussing the results.

8.1.4. Project Goal
The research goal of this thesis was presented in Chapter 1:

G1 Explore and develop new techniques for Generative Adversarial Networks
specialized for image generation

The three research questions were defined to reach this goal. Each question led
to the exploration and development of at least one concrete technique.

RQ1 asks how performance is altered by making alterations to the input of the
generative model. Three techniques were suggested to answer this question. Two
of these were too simple and should not be researched further. The third tech-
nique, ABNS, was able to reduce training time on more difficult training sets.
The technique did not improve performance overall and was quite computation-
ally expensive.

GMAN-HD was proposed to answer RQ2 and explores the field of Multi-GANs,
models with multiple Generator and/or Discriminators. GMAN-HD adds a
second Discriminator that is trained on differently compared to a conventional
Discriminator. GMAN-HD creates a strong model that was shown to outper-
form conventional GANs. Performance was increased overall and throughout
the learning process. GMAN-HD is comparable to ABNS while requiring less
computationally power.

RQ3 asks how to properly evaluate techniques related to RQ1 and RQ2. SGAM is
a custom implementation of the GAM (Im et al., 2016a) for comparing the quality
of two models. Makes it possible to evaluate the effect of concrete techniques,
both overall and during training.
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8. Conclusion and Future Work

A total of five techniques were explored and tested for this thesis. While two of
them should not be used further, the rest are promising additions to the field of
Generative Adversarial Networks. The conclusion is that the Project Goal has
been met.

8.2. Future Work
Covered in this Section is ideas for further exploring the work conducted during
this thesis.

8.2.1. Verify results on different datasets
The experiments showed how much the training set affected the results. ABNS
and GMAN-HD saw the largest increase in performance on the most difficult
dataset tested, CIFAR-10. The results should be verified on other datasets as
well. ABNS and GMAN-HD helps guide the learning process which may enable
even more difficult datasets be used with GANs.

8.2.2. Experiment with larger auditions sizes for ABNS
ABNS is used every iteration to select the noise for further training. Any increase
in auditions size will therefore results in longer training time. The experiment
showed a positive correlation between auditions size and performance. Increasing
the auditions size on more powerful hardware is a logical next step.

8.2.3. Expanding GMAN-HD
Using two asymmetrically trained Discriminators was shown to increase perform-
ance and create a more stable model. GMAN-HD was just one concrete imple-
mentation of this method. Further experimentation should be conducted with an
increasing the number of models. Using additional models requires more memory
to store the network’s weights, but the computationally expensive ABNS could
be exploited to output images of varying quality during the same run, thereby
keeping training time reasonable.
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Appendices
A. Example of images generated with GAN
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Appendices

Figure A.1.: Randomly selected output from unaltered DCGAN trained on the
CelebA dataset)
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A. Example of images generated with GAN

Figure A.2.: Randomly selected output from unaltered DCGAN trained on the
CIFAR-10 dataset)
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Appendices

Figure A.3.: Randomly selected output from unaltered DCGAN trained on the
IKEA dataset)
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A. Example of images generated with GAN

Figure A.4.: Randomly selected output from ABNS-mixed3 trained on the
CelebA dataset)
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Appendices

Figure A.5.: Randomly selected output from ABNS-mixed6 trained on the
CIFAR-10 dataset)
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A. Example of images generated with GAN

Figure A.6.: Randomly selected output from ABNS-mixed6 trained on the IKEA
dataset)

105



Appendices

Figure A.7.: Randomly selected output from GMAN-HD trained on the CelebA
dataset)
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A. Example of images generated with GAN

Figure A.8.: Randomly selected output from GMAN-HD trained on the CIFAR-
10 dataset)
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Appendices

Figure A.9.: Randomly selected output from GMAN-HD trained on the IKEA
dataset)
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