
Air controller scheduling at Avinor

Torgeir Woldstad Skogen

Master of Science in Computer Science

Supervisor: Magnus Lie Hetland, IDI
Co-supervisor: Jan Hallvard Larsen, Avinor

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Assignment text
Avinor is in charge of the air traffic in Norway. Their work schedule needs to meet
the demands at any time. This thesis relates to some problems in this scheduling.
The goal is to implement a module that solves these problem. In particular, the
chosen scheduling problems are about assigning shifts to controllers and assigning
the air space sectors to controllers.

With rules regarding the duration of a shift, as well as the duration of work
and break periods within the shift, the schedule must meet the forecasts for the
demand throughout the day. Ideally the plan includes as few shifts as possible,
and there will not be more time spent on break than necessary.

Controllers want to work in as many different sectors as possible, to ensure
they stay relevant in all sectors - as traffic patterns, rules and regulations differ
between sectors. Ideally, there should only be small changes to sector assignment
during working periods. After breaks, the controllers can get a completely new set
of sectors to work in.

Abstract
The air space in Norway is controller by Avinor. This work is done by air traffic
controllers, who operate under strict rules regarding how this work is carried out.
This has implications on how long they can work and how many breaks they need.

In this paper, I present problems related the planning of this work, as well as a
proposed algorithm for each one. The first of this is scheduling shifts for one day
to meet the given demands, which indicate how many controllers are required to be
working at each time. The second problem is to assign sectors of air space to shifts,
such that the air space is covered. How sectors are assigned changes similarly to
demands, and ideally, controllers work in stable combinations of sectors. Lastly,
the given demands are forecasts, and to have an appropriate schedule when the
demands are different from expected, the schedule usually use upper estimates for
demands. In cases where the demands are lower, it is desired to have a plan for
which controllers should get breaks.

The first two of these problems are solved using branch and bound searches
and the last one is solved using a greedy algorithm. For the first one, the complex-
ity is high, so branch and bound does not seem to be an ideal solution strategy,
while for the second one it seems much more promising. The greedy solution to
the third problem has a short running time, but does not guarantee an optimal
solution.

Sammendrag
Luftrommet i Norge er kontrollert av Avinor. Dette arbeidet blir gjort av flyvele-
dere, som opererer under strenge regler angående hvorden dette arbeidet blir gjort.
Dette har konsekvenser angående hvor lenge de kan jobbe og hvor mange pauser
de trenger.

I denne oppgaven presenterer jeg problemer relatert til planleggingen av denne
jobben, så vel som forselåtte algoritmer til hvert problem. Det første av disse pro-
blemene er å planlegge skift for en dag om gangen, slik at den gitte etterspørselen
blir møtt. Det andre problemet er å tildele sektorer av luftrommet til flyvelederne,
slik at hele luftrommet er dekket. Måten sektorene fordeles forandrer seg i løpet
av dagen sammen med etterspørselen. Ideelt sett jobber flyvelederne i så stabile
kombinasjoner av sektrorer som mulig. Til slutt, den gitte etterspørselen består
av forhåndsestimater, og for å ha fornuftige planer i de tilfellene hvor den reelle
etterpørselen spriker med estimatene, så er det vanlig å bruke høye estimater. For
å håndtere lavere etterspørsel blir det planlagt hvilke skift som får ekstra pauser.

De første to av disse problemene har blitt løst ved bruk av branch and bound
søketeknikken, og den siste er løst med en grådig algorithe. For det første pro-
blemet er kompleksiteten høy, slik at branch and bound virker å være en for treg
løsningsstrategi. Det andre problemet virker på den andre siden virker som et bed-
re egner problem å løse med denne typen algorithe. Den grådige løsningen på det
tredje problemet har lav kjøretid, men garanterer ikke en optimal løsning.

Contents

1 Introduction 1
1.1 Avinor . 1

2 Problems 3
2.1 Shift assignment . 3
2.2 Sector assignment . 5
2.3 Bystander problem . 6

3 Implementation 7
3.1 Shift problem . 7
3.2 Sector problem . 10
3.3 Bystander problem . 12

4 Problem solution 13
4.1 Shift Assignment . 13
4.2 Sector assignment . 17
4.3 Bystander assignment . 24

5 Discussion 27
5.1 Shift Assignment . 27
5.2 Sector Assignment . 31
5.3 Bystander problem . 33

6 Conclusion 35
6.1 Further work . 36

Chapter 1

Introduction

1.1 Avinor

Responsible for 45 state-owned airports in Norway, Avinor is a limited company
owned by the state. The company is organized under the Norwegian Ministry of
Transport and Communications.In addition to the airports themselves, Avinor is
operates control towers, control centers and other technical infrastructure for safe
air navigation.[1]

This thesis relates to the operation of control towers, specifically to schedul-
ing of air traffic controllers. Before starting, three problems were presented, each
relating to separate parts of the schedule. In the first problem, there are given de-
mands that specify how many controllers are needed at each time during the day,
in blocks of a given duration. Also given are rules about how much each con-
trollers can work, including the duration of breaks periods and work periods. The
goal is then to optimize the schedule for a full day so that as few controllers are
needed. The second problem is to assign sectors of the air space to the controllers.
Until the next break, the set of sectors each controller is responsible for should
change as little as possible. Related to this problem, there are situations where it
is beneficial to have plans for both optimistic and pessimistic estimates for the de-
mands, as a result a related problem is to determine which shifts should be given
time off when the demands are closer to the low estimates. The last problem is to
assign shifts to employees. This problem has a longer time span, and is ultimately
where one really discovers how many employees must be part of the staff to meet
the requirements related to how much time off each employee needs before they
can work another shift, and other requirements like which time of day the em-

1

2 CHAPTER 1. INTRODUCTION

ployees need to work. The focus of this thesis is the first two of these problems.
This is because their complexity seems to be lower than the third, which means
that exploring solution strategies will be more likely to yield results that can be
useful.

Chapter 2

Problems

2.1 Shift assignment

Diving a full 24 hour day into equal segments, e.g. 30 minutes, The goal of this
problem is to create a schedule of shifts, where there are a sufficient number of
shifts that are scheduled to work at each segment. Table 2.1 has a list of parameters
that can be part of the input to this problem.

3

4 CHAPTER 2. PROBLEMS

Element Description
Demand List of necessary shifts for each segment
Duration Specifies the minimal and maximal dura-

tion of shifts
On Specifies the minimal and maximal dura-

tion of work periods
Off Specifies the minimal and maximal dura-

tion of break periods
Night Details about night shifts, when they start,

end, how many normal shifts can overlap
them and for how long

Admin Details about admin shifts, when they can
happen, how much normal work they can
include

Ideal Shift Length The ideal duration of shifts
Unpopular times List of segments that should be avoided as

a time to start a shift
Padding List of segments where there should be a

given number of shifts on break
Overstaffing Whether to allow more staff than neces-

sary
Run time Specifies how long the algorithm is al-

lowed to run, in total and after improving
the solution

Prearranged List of ready shifts to be included in the
schedule

Table 2.1: Shift problem parameters

Due to strict rules, there are regulations on shifts regarding work schedules
for air traffic controllers. This manifests itself in the input in terms of rules for
duration of the overall shift, as well as breaks and work periods. On average, the
shift duration should be about the same as other jobs. Night shifts have no breaks
and last from about 10pm to 6am, so schedules include the night shifts started on
the previous day. An overlap from night shifts into day shifts, or vice versa, can be
allowed. What this means, is that a given number of shifts last into the next period.
The purpose of this is to allow controllers to brief each other about the situation.
For problems that are hard to optimize, some shifts can be converted into so called

2.2. SECTOR ASSIGNMENT 5

admin time. What this means is that after doing regular work for a given number
of segments, the rest of the shift consists of office work. This work is not related
to the problem, it is just a way to avoid excessive breaks or having more than the
required number of controllers. Admin time can only happen after normal work,
because it is important that the controllers have a clear state of mind when on
duty, and it might be confusing to work with future rules and regulations in the
office and then translate into working with the current ones. The given demands
are estimations of actual demands, and sometimes it it necessary to have people
ready to work if the need arises. This is done via the padding, which specifies that
a given number of workers should be on break at the times specified.

The goal of the problem is to find a schedule that uses as few shifts as possi-
ble. Furthermore, efficiency should be as high as possible, which means to avoid
longer breaks than necessary. The shift durations should be as close to the ideal
as possible. Overstaffing should be avoided if it is allowed. Shifts that start early,
should be short. Additionally, it is preferred to avoid having multiple shifts start
working periods at the same time. If they do, there will be more noise in the con-
trol center as a result of having multiple people coordinate the exchange of work
duties.

2.2 Sector assignment
For all units of work defined in the schedule from the shift assignment the worker
will be assigned one or multiple sectors of air space. Sectors are administrative
units of the air space, controlled from the control center. The schedule must al-
ways cover all of the sectors. For the interests of this thesis, the sectors are already
grouped together in combinations, and for each time slot in the schedule, there is a
given configuration, which specifies which combinations are to be used. The input
for this problem consists of this information about the configurations, as well as
the work schedule. Furthermore, the input specifies for each sector, any potential
qualifications the controllers need to have for them to be allowed to control that
sector.

As long as controllers do not have breaks, they should continue working in the
same sectors to the highest degree possible. It is not allowed to go from working
in one combination directly into some other combination that has none of the
same sectors as the first combination. Shifts should have as few qualifications as
possible. This is achieved by avoiding placing sectors with different qualifications
in the same shift. The reason for this is that some controllers do not have all the

6 CHAPTER 2. PROBLEMS

qualifications, but they still have a need to work in as many sectors as possible
to stay refreshed on the rules and regulations that apply there. By scheduling the
same qualifications to the same shifts, the number of different shifts each worker
can be assigned to is kept as high as possible. Additionally, after breaks, the
sectors should be different from before the break. This reduces repetitiveness and
allows the controllers to work in multiple sectors in the same shift.

2.3 Bystander problem
There can be varying estimates for the demands to the given problems. One way
to deal with this is to use so called bystanders. This means that controllers who
have been assigned work can be classified as bystanders. They are effectively
given a break, but could get called in to work. The coordinator at the given time
can use this schedule to know who to call in and who can be given a break if the
level of demand is different from what was expected.

Input to this problem is a schedule outputted from the sector assignment as
well as lists of high estimates and low estimates for how many workers are needed
for each time slot. From this, there is a given number of workers that should be
assigned as bystanders. Ideally, bystanders are assigned to the same worker for
consecutive time slots when possible. The end of or start of working periods is
also the best time to be assigned as bystander, because assigning bystanders in
the middle of a working period would create the hassle of changing sector assign-
ments more times than otherwise necessary. Lastly, shifts that are longer or closer
to the middle of the day are also good candidates for the bystander assignment.

Chapter 3

Implementation

As part of the scheduling done at Avinor, they use computer systems to aid in the
creation of plans. The system responsible for solving scheduling problems, such
as ones discussed here, is written using the programming language called Java.
Because of that, the algorithms that have been developed are written in Java. The
input to the problems comes in the form of a string in JSON format. [2] This
allows for a high degree of generality.

3.1 Shift problem

The problem is solved using a branch and bound algorithm. [3] A recursive func-
tion is used to solve the problem after choices have been made. There is a score
associated with the solution, to indicate how well it satisfies the goal of the opti-
mization, and whether it is a legal solution. In the context of this implementation,
a choice is defined in the creation of a shift. The shifts are planned in chronologi-
cal order, which means that for each time unit of the problem, and for the duration
of the shift, it needs to be scheduled as working time, or break time. Ending the
shift is another option that mus be evaluated as part of these choices. In cases
where a working period or break period is required to be longer than one unit of
time, there is no choice other than to let these working periods or breaks last for at
least their minimal duration. As such, there is not necessarily a choice to be taken
for all time slots for each shift. If at some time slot, all the shifts in the schedule
have been assigned to something, but there is still unsatisfied demand, then a new
shift is created. This is not a choice. However, in the case where overstaffing is
allowed, then it is considered a choice to open a new shift.

7

8 CHAPTER 3. IMPLEMENTATION

The score for the solution is built along with the solution itself. The concept
of branch and bound is to have an optimistic bound for how good the solution can
potentially be. In the case where the solution built so far has a worse score than the
best solution that has been found, then no further evaluation of that sub-problem
is necessary. The scoring mechanism is adding a penalty score based on different
properties, and the goal is to find a solution that has the lowest possible score.
An important property for the scoring mechanism is that the score can only grow.
This means that the score can be used as a lower bound for the best possible score
of the given sub-problem.

The first thing this implementation does is to assign the night shifts at the end
of the day. Normally it would assign shifts with chronological starting times, but
this is an optimization that helps the branch and bound algorithm. Due to the
number of total shifts being the most important goal of optimization, there is a big
score factor associated with opening new shifts. The night shifts are always going
to be added, and there is little to no choices to be made regarding night shifts.
If these shifts had been assigned last, that would have meant that a relatively big
but mandatory part of the final score is added at the end. When the algorithm has
found a solution with a given number of shifts, and is evaluating other schedules
with the same number of shifts, that could be more optimal due to higher efficiency
etc, it should not be necessary to only discover that the solution is worse after the
final night shift is added to the score. This is why the night shifts at the end of the
day are defined first.

The main body of the recursive function is a for loop which iterates over the
time slots of the problem. For reasons we will come back to, the first time slot is
given as an argument to the function. It iterates until it reaches the point where
only night shifts are allowed to work. This is defined as the start of the night
shift plus the duration of the overlap between day shifts and night shifts. Should
the problem include any prearranged shifts, those that start at the given time are
added to the schedule at the beginning of this loop body. Then there is a while
loop, which runs for as long as there are are shifts that have been created, but not
assigned anything at the given time. These shifts are iterated over, and they are
checked for what they can do. If a shift cannot do anything at the given time, then
the problem is in an invalid state, and the function can return with an invalid result,
which means that it return the biggest possible value for the int datatype. If the
shift is only allowed to do one thing, then it can be scheduled to do that right away,
along with any similarly forced options for subsequent time slots. Otherwise, a
choice has to be made. The choice that is being made is done on the shift which
has the fewest options.

3.1. SHIFT PROBLEM 9

When making a choice, for each option, a duplicate of the problem object is
created, This duplicate of the problem is acted upon instead of the problem given
as a function argument. The given shift is scheduled according to the option that
is currently evaluated. Then, if the shift has none or one option for any subsequent
time slots, this is taken care of right away. Then the recursive function is called
with the given candidate as input. The score built up for the problem is another
function argument. The function will return the score given to the best solution to
the problem given all the decisions made up to that point. If this value is lower
than the best score found, then it needs to be stored. The best found score is
the last function argument. If the current score of any problem is higher than
the best score, then that current problem can be ignored, either by returning or
continuing the relevant loop. Since relaxing all the options includes solving the
rest of the problem, the function is done after this has been done, and can return
the relevant score. The actual best solutions is kept by letting the problem given
as an argument inherit all the relevant information from the one that produced the
best score.

However, there is more to this. In cases where all the shifts have been assigned
to something, but there is still demand that has not been met, new shifts must
be opened. Furthermore, if the problem fails because the demand could not be
met, and it is a time where new shifts can not be opened, either because it is too
close to the end of the day, or because it is a time specified as an unpopular start
time, in those cases it might be necessary to open shifts that cause overstaffing
immediately. This is another type of choice. The options here are the number of
such extra shifts to be opened. The highest demand throughout the day is used as
an upper bound. This is still within than for loop over the time slots, and this is
the absolute last decision to be made about that time slot, so when the function is
called recursively from this point, the function needs to move on to the next time
slot. This is achieved by the function argument that specifies where the for loop
starts. After the for loop, the only thing left to do is to check that any remaining
shifts that are identified as not being ended, are allowed to end.

To keep track on the score used to evaluate the solution at any point during
execution, the current score is passed as an argument. The argument variable is
used directly in the code to keep track on any additions. When evaluating choices,
each candidate starts with the current score, and any additions to the score based
on the choice taken is kept in a separate variable, which is passed to the recursive
function. The scores themselves are a combination of different factors. With the
most weight, is the number of shifts. This weight is added every time a new shift is
added to the schedule. Overstaffing is penalized with a smaller weight, however,

10 CHAPTER 3. IMPLEMENTATION

bigger overstaffing of bigger sizes are penalized more. The weight is multiplied
by the sum of the squares of the overstaffing. The algorithm does this during the
schedule creation by adding the nth term from equation 3.1 when opening a shift,
or scheduling work to some shift results in the number of shifts with work at the
given time is n bigger than the demand at that time.

a2 =
a∑

n=1
(2n − 1) (3.1)

To avoid having multiple working periods starting at the same time, a check is
made before opening a new shift or assigning work to shifts that did have break or
could have had break previously. If the assignment of work in this action means
there will be more than one working period starting at that time, the corresponding
weight is added to the score. To avoid letting early shifts get long, after any shifts
gets assigned anything, the algorithm checks if it is an early shift, which means
that it starts at 7am or earlier, which is typically an hour after the end of the
night shift. If the duration of such shifts have been increased to above the median
allowed shift duration, increase of the duration shift beyond this is multiplied
with the corresponding weight and added to the score. To optimize for efficiency,
which means to avoid breaks, each unit of break added to the schedule a weight
to the score, this is the lowest weight.

3.2 Sector problem
This problem is also solved using a branch and bound algorithm. In this problem,
the choices that represent branching paths in the search space are the choices
regarding which combination of sectors are assigned to which shift. Because shifts
are not allowed to do completely replace the sectors they are assigned to from one
time slot to the next, the search space can be reduced by quickly eliminating illegal
assignments.

The function, which is recursive, has a for loop that iterates over all the time
slots in the schedule. There is a while loop which repeats itself as long as the num-
ber of combinations that are unassigned is greater than one. Because when there
is only one unassigned combination, that combination can be trivially assigned to
the only shift that does not have a combination assigned to it for that time slot. Of
course that is assuming that this assignment is legal. To make actual choices, the
algorithm iterates over all pairs of shifts and combinations, to evaluate the number
of sectors that are different between the combination assigned to on the previous

3.2. SECTOR PROBLEM 11

slot and the candidate combination. Shifts that did not work during the previous
time slot are skipped in this part. Whichever pair has the lowest difference will
be greedily used, but only if the difference is lower than a given number, like
three sectors. When combinations are imagined as sets of sectors, this difference
is equal to the size of the symmetric difference between these sets. However, if
the size of the intersection of the sets is equal to zero, which means the sets are
disjoint, then the difference is said to be infinity. This is a property that is used be-
cause complete change is not allowed. Notice that in cases where the difference is
zero, which means, the same combination is used two times in a row, if the worker
that was assigned that to that combination previously, and continues to work, they
must also be assigned with that combination in the following time slot. This is
repeated until no more pairs have a low enough difference. The function is called
recursively to solve the rest of the problem given each possible assignment of the
first combination.

The scoring system for this problem uses three factors. For each assignment,
there is a potential value that is added to the score. Any new qualifications that get
added to the shift will result in a score increase. Which means, if the combination
that is being assigned includes any sectors where qualifications are required, if any
of those qualifications have not already been added to the shift, then the number of
qualifications is increasing with this assignment. The penalty from qualifications
is using a harmonic sum, see equation 3.2. This means that each subsequent new
qualification gives a smaller increase to the score. The score for this problem is
a floating point number because of this. The other parts of the score depend on
whether the shift was working during the previous time slot or not. If they were
then the difference in sectors discussed earlier is used. Otherwise, a similarity
of sectors is used. These concepts are opposites of each other. The point is that
after breaks, the shift should be assigned different sectors that differ from those
they were assigned to before the break. If they continue working, they should
ideally continue working in the same sectors. Each of these parts of the score are
multiplied by respective weights. Before any assignments take place, the score
adjustment is calculated, which is used for checking if the assignment is legal,
and if the new score is higher than the best score.

N∑
n=1

1
n

(3.2)

12 CHAPTER 3. IMPLEMENTATION

3.3 Bystander problem
Bystanders are assigned using a greedy algorithm. For each time slot, bystanders
may be necessary. If they are, they are assigned according to four parameters. If
the shift was assigned as bystander during the previous time slot, then this shift is
most likely going to be selected as a bystander. Next, if that time slot on the shift
is right next to a break, then that is the second highest priority. Should there be a
demand for bystanders to be assigned for the all the time slots until the shift has a
break, then there is considered to be a break next to the work unit that is potentially
converted to bystander time. The first two factors exists so that the work does not
get more fragmented than otherwise required. Should someone get a work period
interrupted by bystander time in the middle, they would have to coordinate the
change of sector combinations one more time than otherwise necessary. The last
two factors are the shift duration and distance to midday. The distance to midday
is calculated using the middle of the shift and comparing that to the middle of the
whole schedule. Longer shifts are more preferable, and then shifts closer to the
middle of the day are used to break ties.

Chapter 4

Problem solution

In essence, a solver module has been created, which can solve three kinds of
problems. Two of them are solved using branch and bound algorithms, while the
third is solved using a greedy algorithm. In this section, examples of solutions to
given problem instances are presented.

4.1 Shift Assignment
A small and simple problem that can be used to demonstrate the problem is pre-
sented as follows.

• Demands: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

• Duration

– Min: 12

– Max: 18

• Work period duration

– Min: 2

– Max: 4

• Break period duration

– Min: 2

13

14 CHAPTER 4. PROBLEM SOLUTION

– Max: 3

• Night Shift

– Morning

∗ End: 12
∗ Overlap: 1
∗ Count: 1

– Evening

∗ Start: 44
∗ Overlap: 0
∗ Count: 0

• Overstaffing: false

This problem has been solved using the following parameters for penalties.

• Number of shifts: 1000

• Overstaffing weight: 100

• Stagger weight: 10

• Early shift too long weight: 10

• Break weight: 1

Note that since the problem input specifies that overstaffing is not allowed, the
corresponding weight is irrelevant for this instance.

Figure 4.1: Shift schedule solution

Figure 4.1 shows the solution to the problem. This solution has a score of
7020, and the algorithm terminated after about 17 seconds. In the process of

4.1. SHIFT ASSIGNMENT 15

finding this solution, which is the most optimal one, 15 other valid solutions were
also found, with scores ranging from 8240 to 7021.

Changing the input, such that working periods are allowed to last between one
and four units of time, instead of two and four like specified above, changes the
performance of the algorithm. The solution is the same. Now, instead of 15 other
solutions, the algorithm discovered 12 other solutions before finding the best one,
and the worst of these has a score of 8130, which is a better solution than the
first one found previously. All that really means is that in the order the algorithm
makes choices, there is a solution where a shift has a working period that lasts for
only one time unit, which has a better score than the the first valid solution that is
found using the same search order, but when the only difference is that working
periods need to be at least two units long. However, another important fact about
this change of the input, is that the running time was longer. With this input, the
algorithm spent about 55 minutes before terminating.

An alternative change to the input has similar results, this time allowing over-
staffing while the work periods remain constrained to be at least two units long.
A total of 19 valid solutions were found, where the best one is still the same one
presented earlier. The first one has a score of 8430. Also worth noting is that
the second solution has a score of 8241, which at first glance looks very similar
to the score that the first version of this problem got, the score is only one point
higher. However, that does not mean that the solution is similar. The fact that
the first problem found when avoiding overstaffing had a better score means that
this solution, as well as the one with the score of 8340, contain overstaffing. The
running time for this input was around 95 minutes.

As we can see from this experimentation with the input parameters, even a
small problem can increase in complexity by orders of magnitude. For reference,
some of the problem instances Avinor deals with can have two to three times as
high demand during the day compared to this example. This means that the num-
ber of shifts required in those schedules might be multiplied by similar factors.
For big problems, this algorithm will take an unreasonable amount of time to fin-
ish, and thus it would be more appropriate to use other solution strategies.

16 CHAPTER 4. PROBLEM SOLUTION

Figure
4.2:Sectorassignm

entsolution

4.2. SECTOR ASSIGNMENT 17

4.2 Sector assignment
Figure 4.2 shows the solution given from the sector assignment problem for a
particular input set. The input to this problem includes a shift schedule which
corresponds to the output with work and break times indicated. In the output,
break times are indicated in the same way as time slots outside of the shift. The
rest of the input concerns the sector set and configurations. The sectors in the
sector set are identified using the following numbers. For this problem, each sector
has its own qualification.

• 9

• 10

• 11

• 12

• 13

• 14

• 15

• 16

• 17

• 20

• 21

• 22

The sectors are grouped together in combinations, which are grouped together
in partitions. All sectors are present in exactly one combination within each par-
tition. The partition can be represented as follows.

• C1

– ALLO

∗ 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22

18 CHAPTER 4. PROBLEM SOLUTION

• C2

– 9T2EB

∗ 9, 10, 11, 12, 20, 21

– 3T7S

∗ 13, 14, 15, 16, 17, 22

• C3

– 9T2EB

∗ 9, 10, 11, 12, 20, 21

– 34

∗ 13, 14

– 567S

∗ 15, 16, 17, 22

• C30

– 9T2

∗ 9, 10, 11, 12

– 3T7

∗ 13, 14, 15, 16, 17

– OEBS

∗ 20, 21, 22

• C40

– 9T2

∗ 9, 10, 11, 12

– 34

∗ 13, 14

– 567

∗ 15, 16, 17

– OEBS

4.2. SECTOR ASSIGNMENT 19

∗ 20, 21, 22

• C4W0

– 902

∗ 9, 10,12

– 3467

∗ 13, 14, 16, 17

– 5

∗ 11, 15

– OEBS

∗ 20, 21, 22

• C5WS

– 902

∗ 9, 10, 12

– 3467

∗ 13, 14, 16, 17

– 15

∗ 11, 15

– OEB

∗ 20, 21

– OS

∗ 22

• C5S

– 9T2

∗ 9, 10, 11, 12

– 34

∗ 13, 14

– 567

20 CHAPTER 4. PROBLEM SOLUTION

∗ 15, 16, 17

– OEB

∗ 20, 21

– OS

∗ 22

• C5W0

– 902

∗ 9, 10, 12

– 34

∗ 13, 14

– 67

∗ 16, 17

– 15

∗ 11, 15

– OEBS

∗ 20, 21, 22

• C6WS

– 902

∗ 9, 10, 12

– 34

∗ 13, 14

– 67

∗ 16, 17

– 15

∗ 11, 15

– OEB

∗ 20, 21

4.2. SECTOR ASSIGNMENT 21

– OS
∗ 22

The input indicates at which times each partition is to be used, this is indicated
on the output displayed on figure 4.2. When solving this problem, the algorithm
parameters are as follows: Weight for qualification contribution is 10, the weight
for the difference in sector in subsequent work slots is 10, and the weight for
similarity before and after a break is one. The maximum difference for which the
algorithm will make the greedy choice is three.

The algorithm terminated after about one second. The given solution was the
15th solution found by the algorithm, and it has a score of 676.326118326118.
Meanwhile, the first valid solution had a score of 753.0559163059161. Because
all the sectors have exactly one qualification on them, the number of qualifications
required by each shift in such a solution is equal to the number of unique sectors
the shift has been assigned throughout the schedule. Table 4.1 has a rundown of
how many qualifications each shift has in this solution.

Shift Qualifications
0 12
1 8
2 7
3 6
4 7
5 9
6 4
7 5
8 9
9 5

10 7
11 7
12 12
13 9
14 6
15 12

Table 4.1: Number of qualifications for each shift

Reducing the threshold for the greedy choice to one, such that the only assign-
ments that are chosen greedily are those that have exactly the same combinations

22 CHAPTER 4. PROBLEM SOLUTION

as the preceding ones, changes both the running time and the solution. Now, the
optimal solution has a score of 673.1158008658006, and this is now the 61st valid
solution found by the algorithm. The first one had a score of 906.2622655122653.
The algorithm terminated after about 35 seconds.

4.2. SECTOR ASSIGNMENT 23

Fi
gu

re
4.

3:
Im

pr
ov

ed
Se

ct
or

as
si

gn
m

en
ts

ol
ut

io
n

24 CHAPTER 4. PROBLEM SOLUTION

Figure 4.3 shows the new schedule. The difference stem from an early choice
that was made differently, which propagated through the schedule by swapping
corresponding combinations. In particular, in the time slot where the partition
C3 is used, the shifts that ere assigned with the combinations 34 and 567S have
had their assignments swapped. Note how in the third shift, in the last working
period, in the new schedule, the combination changes from 3456 to 567 instead
of 34. The latter of which has a difference of two, and would have been chosen
with the more forgiving threshold for the greedy choice. The difference in terms
of score in the new schedule, is that it receives about 6 points more in terms of
qualifications and one point more in terms of sector similarity. In terms of sector
difference, it receives 10 points less, which in total accounts for the about three
points lower score compared to the first alternative. If the greedy threshold is set
to two instead, the same solution would still be found, but in about four seconds,
and the algorithm would have found 21 other solutions before the most optimal
one.

4.3 Bystander assignment
The input to the bystander problem is effectively the output schedule from the
sector assignment problem, along with arrays which hold information about how
many shifts that should get their work converted into bystander time. Figure 4.4
shows the solution to one such problem. The creation of this solution took about
60 milliseconds.

4.3. BYSTANDER ASSIGNMENT 25

Fi
gu

re
4.

4:
So

lu
tio

n
to

by
st

an
de

ra
si

gn
m

en
t

26 CHAPTER 4. PROBLEM SOLUTION

Chapter 5

Discussion

5.1 Shift Assignment

Complexity

The search space for this problem is very big. As an example, we can examine
a typical problem instance. The shifts are required to have a duration between
12 and 18 slots, work periods are required to last between two and four slots and
breaks are required to last either two or three slots.

Ideally the shift should be as efficient as possible, which means that it should
have as many units of work as possible relative to the number or break units. It
should not be hard to see that for shifts that last between 12 and 16 slots, they
are required to have at least four slots of break. Furthermore, in shifts longer than
16, there can not be more units of work than 12, which is already possible for a
shift with a duration of 16. Effectively, since efficiency is to be optimized, the
longest shifts only happen in the interest of adjusting the working periods to fit
the schedule, not to allow more work. Meanwhile, shifts with durations between
12 and 16 can increase the efficiency in cases where this allows fewer shifts to be
used. Tables 5.1, 5.2, 5.3 and 5.4 are examples of shifts with a minimal number
of break units for different shift durations.

x x x x x x x x

Table 5.1: Example of 12 duration schedule with four break units

27

28 CHAPTER 5. DISCUSSION

x x x x x x x x x x x x

Table 5.2: The only 16 duration schedule with four break units

x x x x x x x x x x x x

Table 5.3: Example 1 of 18 duration schedule with six break units

x x x x x x x x x x x x

Table 5.4: Example 2 of 18 duration schedule with six break units

A shift with a given duration and a given number of break periods can be
scheduled in many different ways. Table 5.5 is an illustration of this for shifts of
duration 12 with two breaks. In essence, the shift is incomplete, and there are still
some units of work and break that can be distributed. The working periods that can
be expanded are marked with ? and the breaks that can be expanded are marked
with %. Each working period can only hold up to three more units of work. And
the slots for breaks can only hold one additional break unit. In this schedule, seven
time units are mandated, and the rest need to filled in around those. Between five
and eleven units must be added.

x ? ? ? % x ? ? ? % x ? ? ?

Table 5.5: Possibilities of 12 duration schedule with two breaks

This problem can be generalized as the following. Given n unique bins each
with a capacity ci, how many ways are there to distribute k balls between these
bins. Note that bins are allowed to have separate capacities, which is useful in
our case because both work periods and break periods have variable durations.
This can be solved using dynamic programming.[4] Given a list of capacities, and
a number of units to distribute among those capacities, the number of ways to
achieve this can be solved recursively by placing each possible number of units
into the last container, and then for each of these possibilities, the problem is
solved recursively with the corresponding reduction of the number of units and the
sub-list of the capacities that excludes the last one. The result is the sum of each
of these recursive sub-problems. The default cases of the problem are as follows:
First, if the number of units to be distributed is equal to zero, then the answer is

5.1. SHIFT ASSIGNMENT 29

one. Second, if the sum of capacities in the containers is less than the number
of units to distribute, then the answer is zero. Third, if the sum of capacities is
equal to the number of units, then the answer is one. Fourth, if there is only one
container, then the answer is one. If none of these apply, then the answer uses
recursion. Dynamic programming is used to compute and store the solution to all
sub-problems before they are used. In my specialization project that I worked on
during the fall of 20161, the same problem was a central piece of the computation.
Through experimentation, it was shown that the number of configurations in this
problem scales exponentially in terms of the number of bins.

Table 5.6 is used for this purpose to find the number of ways to schedule a
shift with two breaks. Because seven units are spent on the structure of having
two breaks, the shift has a remaining number of units ranging from five to 11 that
can be spent on additional work units or break units. What that means is that
in the presented table, there are multiple cells that hold numbers of legal shift
configurations. The cells in the rightmost column in the rows labeled 5 through
11 each hold numbers of unique legal shifts. In other words, there are a total of
174 ways to structure a shift with the given rules that has two break periods. Of
course there are ways to have more breaks in a shift, which means that to solve
the problem for all shift configurations, the table must be extended. Note that
when expanding for one more break period, additional time units get bound to
the structure of the shift, so fewer units can be used in legal shifts. When there
are three breaks, the rows in which the legal shifts reside are 2 through 8. Which
would equal up to 1314. For four breaks, the number is 1132. And finally for five
breaks, the number is 73. So in total, there are 2693 ways to schedule one shift.

1Project title: Solving Thrill Digger, a version of Minesweeper

30 CHAPTER 5. DISCUSSION

Units work break work break work
0 1 1 1 1 1
1 1 2 3 4 5
2 1 2 5 8 13
3 1 2 7 12 25
4 0 1 7 14 38
5 0 0 5 12 46
6 0 0 3 8 46
7 0 0 1 4 38
8 0 0 0 1 25
9 0 0 0 0 13

10 0 0 0 0 5
11 0 0 0 0 1

Table 5.6: Dynamic programming table

As if the number of shift structures was not enough, we must also take into
consideration the starting time of the shift. In simple term, the shift can be sched-
uled in all the different ways it can be structured, and it can start at any legal
starting time. Besides the times of day reserved for night shifts, and any potential
times defined as unpopular, most of the schedule remains open as starting time for
each shift. Granted, any shift will only start on the first slot where there is demand
for more work. So to define a shift completely, we we have to look at the remain-
ing demand to set the starting time and then shape the shift. Unless the demand is
low enough, there is a high degree of freedom for each shift. The complexity of
creating a full schedule must be said to be exponential in terms of the number of
the number of shifts that are necessary. The base of this exponential would be the
number of shift structures, which can already be said to be exponential in terms of
the number of periods the shift consist of, where this expression in turn uses the
number of options for the periods as the base.

In terms of spatial complexity, the algorithm duplicates the partial solutions
for every choice. This means that when the algorithm search is in one particular
place in the search tree, all the parent nodes in the tree will hold a copy. At most,
the number of copies that need to be stored in memory at the same time will be
equal to the maximal depth of the search tree. The height of a tree is logarithmic
in terms of the number of nodes. Since we have established that the number of
nodes scales exponentially, then the height of the tree scales linearly.

5.2. SECTOR ASSIGNMENT 31

Algorithm properties
Although overstaffing is generally allowed, it is an undesired property and most
optimal solutions do not feature overstaffing. Disallowing overstaffing completely
is an option that is allowed through the problem input, and doing so might change
both the solution to the problem, and the search space. For the outlined algorithm,
doing so reduces the search space significantly. By pruning choices that lead to
any overstaffing immediately, the algorithm does not need to search deep enough
to accumulate the score required to see that the overstaffing was not desired, al-
ternatively it start searching for the more optimal solutions earlier. If the solver
is given limited running time, then for complicated problems, there might not be
enough time to find solutions without overstaffing, so allowing it in those cases
would be a possible way to produce any solutions.

Other algorithms might not see the same benefit of disallowing overstaffing.
In local search algorithms, one finds a feasible solution, and then perform a series
of improvements until a local optimum has been found. Restricting the search
space for such an algorithm is going to increase the difficulty of finding a first
feasible solution, and reduce the feasible neighborhood.

5.2 Sector Assignment

Complexity
The algorithm used to solve the sector assignment problem also scales exponen-
tially, it is similar to the algorithm that solves the shift assignment problem. How-
ever, the number of choices is different. Since the input to the sector assignment
includes the output of the shift assignment, one can say that the complexity of the
sector assignment exists within the provided shift schedule. Again, the complex-
ity scales exponentially in terms of the number of choices that need to be made. A
choice happens in two cases. The most prominent one is when two or more work-
ing periods start at the same, which is what is called stagger in the shift assignment
problem. The other opportunity for choices to appear is when a sector combina-
tion is split during the working period to which it has been assigned. Effectively,
when a controller is working with one combination, then if that controller is work-
ing during the next time slot as well. Then if the sector configuration that is used
at that time has combinations such that the sectors the controller was working with
placed in more than one combination, then this controller is allowed to work in
any of these combinations.

32 CHAPTER 5. DISCUSSION

The algorithm has a parameter that allows the second type of choice to be
taken in a greedy fashion depending on sector difference. This can be used to
shrink the search tree, at the possible expense of solution quality. Effectively, as
long as there are choices that are better than a given level of quality, the best of
these are are chosen greedily. How much this impacts the complexity depends on
the sector configurations in the input. If the combinations change often between
time slots, then the problem is harder.

Staggered starting of work periods are defined from the shift schedule. The
presented algorithm deals with these by exploring all possibilities. At any point
in the schedule where n working periods start at the same time, there are n! as-
signments to these assuming that all other shifts can get combinations assigned to
them using the greedy algorithm. So in terms of the problem complexity, stagger
has an exponential contribution. Luckily, stagger is already a property that should
be avoided when possible due to how it affects the working environment of the
controllers. This means that the complexity of the problem is kept to a minimum.

Because sectors are assigned to the same schedule that was produced dur-
ing shift assignment, and because these problems are part of the same problem
pipeline, it is natural to compare their complexities. The choices in scheduling
shifts can be said to happen at all time slots during shifts where the current pe-
riod is greater than or equal to the minimum duration and less than the maximum
duration for that kind of period, where the periods can be either working peri-
ods or break periods. Meanwhile, in the sector assignment problem, the choices
can most prominently be attributed to the places in the schedule that have stag-
ger, which only happens at the start of work periods specifically, and include more
than one shift at a time. Substantial change in sector configuration can also lead to
choices happening that include shifts in the middle of their working periods. As a
result, the schedule has more opportunities for choices during the shift assignment
phase rather than in the sector assignment phase. There is a factorial term in the
complexity of the sector assignment problem. However, in comparison with the
shift scheduling problem, this is likely only going to contribute for schedules with
particularly large staffing demands. While for the shift assignment problem, the
duration of the schedule remains the most important factor. This duration is more
likely to change in terms of the resolution of the schedule rather than the actual
duration of 24 hours, which has implications on the number of possible lengths of
each variable period of the shift.

5.3. BYSTANDER PROBLEM 33

5.3 Bystander problem
The algorithm used to solve the bystander problem is greedy, which means that
the solution is not guaranteed to be the best solution. However, to find a more
optimal solution, one would have to define what that means. In using a greedy
algorithm, one performs the choice which in isolation is the best one. That is,
if the entire problem consisted of that choice, that choice would be the optimal
solution. However, that can lead to a less optimal of the entire problem. As an
example, the algorithm might choose to assign a bystander slot to the very last
working slot of some shift, based on the fact that this would not be in the middle
of a working period and the shift might be longer and closer to the middle of the
day when compared to the other shifts. However, when there is also a bystander
which needs to be assigned on the subsequent time slot, there might not be any
shifts which can get this bystander slot without it being placed in the middle of
a working period. If the first of these bystander slots were instead assigned to a
shift that is just starting their work periods, then those two bystander slots could
be assigned to the same shift, which is considered as good. Additionally, that
assignment would then not be in the middle of a working period, which is also
good. However, to properly define the best solution, there are many more cases
that must be prioritized.

34 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion

In this thesis, I have presented three problems in the work scheduling pipeline
at Avinor and algorithms that can solve them. These problems, called shift as-
signment, sector assignment and bystander assignment are related to each other
because the output from one of these problems feeds into the next as input.

Shift assignment deals with structuring a schedule of shifts to meet given de-
mands that vary throughout the day. There are also given rules to how shifts look,
both in general and in terms of when they start during the day. A solution to this
problem using a branch and bound algorithm has been presented. This is a solution
strategy that is guaranteed to the find the most optimal solution if the algorithm
has enough time to terminate. However, due to the complexity of this problem,
the algorithm is likely to take too long to finish for bigger problem instances.

Sector assignment matches shifts with sectors of the air space such that all the
sectors are covered at all times during the schedule. With the partitioning of the
sectors being defined in the input to the problem, the main task in this problem
is to decide which shift gets which combination of sectors. When a shift has
been assigned to work in consecutive time slots, the shift must be assigned similar
combinations such that the change is kept small. After breaks, the shift shift
should be assigned to different sectors from before, but the third point is that most
shifts should require as few qualifications as possible, qualifications being tied
to the sectors. This problem is also solved using a branch and bound algorithm.
In this case, the complexity seems much more promising, which indicates that
branch and bound is a better fit for this problem.

Bystander assignment is about having schedules for multiple scenarios. The
demands given to earlier problems are predictions, which might turn out to not be
accurate. Therefore it is relevant to plan for change in demands. Typically this

35

36 CHAPTER 6. CONCLUSION

happens by planning for high estimates for demands, and then assigning some
shifts with so called bystander time. This means that whoever is on that shift is
given break time, but can get called in to work if necessary. To solve this problem,
a greedy algorithm has been used. This is a type of algorithm that gives a solution
much quicker, but is not guaranteed to give an optimal solution.

6.1 Further work
The scoring mechanism for all of the algorithm can potentially be improved upon
as Avior learns more about how the algorithms perform. Both in terms of the
parameters like the weights given to different parts of the score, but there is also
room to add or remove parts, as well as changing how they work.

Shift assignment
To enhance the performance of this algorithm, there are a couple of possible av-
enues. One option is to change the search order, not only in the presented struc-
ture, but instead of making decisions in chronological order, is is possible com-
plete each shift before defining the next. By doing it this way, it would be possible
to explore options for each shift in an order that is determined to be as optimal as
possible. For example, it would be possible to explore all the options where the
time spent on breaks in each shift is minimal before exploring local solutions that
are less optimal. Next, it would be possible to front load more of the score. For
example, the minimal number of break units in a shift is defined purely from the
input, so any shift essentially contributes with this number number of break units
by virtue of being a shift in the schedule. Once it it clear that an additional shift
is necessary, this has implications on how many break units in total the schedule
must have. Front loading information like this means that the effect of the branch
and bound can be increased, since information that is not unique to one branch is
discovered before the branching happens.

Sector assignment
This branch and bound algorithm also has the potential of front loading more in-
formation. When the partitions for subsequent time slots include the same sector
combination that was assigned to a shift that is also working during those subse-
quent time slots, that assignment can be done straight away. This has the potential

6.1. FURTHER WORK 37

of saving some computation, because decisions are made in chronological order,
one such stretch of the same combinations could be interrupted by a choice regard-
ing another shift. However, unlike in the first algorithm, this only saves duplicate
work, and will not help prune solutions faster. The reason is that when shifts are
assigned with the same combination as the preceding time slot, there is no penalty
occurring.

Another opportunity would be in regards to the greedy parameter. Maybe
running the algorithm first with a setting where more choices are made greedy,
then after that run finishes, using the found score and a more strict threshold in
another run, maybe time could be saved.

Bystander assignment
Like discussed earlier, this problem is solved using a strict greedy algorithm that
uses a hierarchy of the desired solution qualities. To find better solutions, one
option would be to implement a scoring system and solve this problem using a
branch and bound algorithm as well. Additionally, the algorithm used for this
problem is also running in chronological order. After the algorithm has found a
solution, it would be possible to perform a local search which looks for stretches
of bystander time that can be combined, which would mean that bystander time
that was assigned early based on shift duration and how close it is to the middle
of the day, those bystander slots can instead be assigned to the same shifts that are
assigned bystander time at later times.

38 CHAPTER 6. CONCLUSION

Bibliography

[1] Avinor, about the company. https://avinor.no/en/corporate/
about-us/the-avinor-group/about-the-company. Accessed:
2017-05-10.

[2] Ben Smith. Beginning JSON. Apress, 2015.

[3] L. G. Mitten. Branch-and-bound methods: General formulation and proper-
ties. Operations Research, 18(1):24–34, 1970.

[4] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1 edition, 1957.

39

