
A support system for student exchange
An exploration of course comparison, and the

design of a system aiding student counselors

working with exchange

Magnus Lund
Andreas Røyrvik

Master of Science in Informatics

Supervisor: Rune Sætre, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

The goal of this thesis is to propose a system for student counselors

working with exchange students, and study its usefulness. The project

aims to define the requirements for such a system, and to explore the

possibility of automatically determining course similarity based on the

metadata available.

To identify the requirements, a questionnaire was sent out to student

counselors and interviews were conducted with potential users of the

system. Based on findings from the data generation methods, a paper

prototype of the proposed system was developed. The requirements

of the system were derived from the results of testing the paper pro-

totype. Based on these requirements, a prototype of the system was

developed.

This prototype was tested on potential end users of the system, with

interviews concluding the usability study. To evaluate the quality of

the functionality for automatically determining course similarity, a set

of courses already approved by student counselors were fed into the

system, and the output was compared.

The results are promising, especially regarding the usefulness of the

system.

i

ii

Sammendrag

Målet med denne oppgaven er å foreslå et system for studieveiledere

som jobber med utveksling, og studere systemets nytteverdi. Formålet

med prosjektet er å definere krav (requirements) til hvordan et slik sys-

tem bør være, samt utforske muligheter for å automatisk anslå likheten

mellom fag basert på tilgjengelig metadata.

I første omgang ble en spørreundersøkelse sendt ut til studieveiledere,

og intervjuer satt opp med potensielle brukere av systemet. Basert på

funnene fra disse datagenereringsmetodene, ble en papirprototype av

systemet utviklet. Kravene for systemet ble utledet basert på resultatene

av testing av papirprototypen. Med utgangspunktet i disse kravene, ble

til slutt en softwareprototype utviklet.

Denne prototype ble testet på potensielle brukere av systemet, der det til

slutt ble gjennomført intervjuer for å avgjøre nytteverdi og brukbarhet.

For å demonstrere kvaliteten på funksjonaliteten for automatisk sam-

menligning av fag, ble fag allerede godkjent av studieveiledere matet

inn i systemet, og resultatene sammenlignet.

Resultatene fra prosjektet er lovende, spesielt i forhold til nytteverdien

av det foreslåtte systemet.

iii

iv

Preface

This thesis was written by Magnus Lund and Andreas Røyrvik during

the autumn of 2016 and spring of 2017. It is the final delivery for the

Master of Science degree in Informatics at the Department of Com-

puter Science at the Norwegian University of Science and Technology

(NTNU) in Trondheim, Norway.

We would like to thank the project supervisor Rune Sætre for his guid-

ance and input throughout the project.

Trondheim, June 1, 2017

v

vi

Contents

Abstract i

Sammendrag iii

Preface v

List of Figures x

List of Tables xv

Glossary xviii

Acronyms xix

1 Introduction 2
1.1 Motivation . 2

1.2 Research questions . 4

1.3 Contributions . 4

1.4 Thesis structure . 5

2 Research method 6
2.1 Interview . 8

2.2 Questionnaire . 8

2.3 Prototype . 9

2.3.1 Paper prototype . 9

2.3.2 Software prototype . 11

vii

viii CONTENTS

3 Prestudy 12
3.1 Questionnaire . 12

3.1.1 Distribution and response 13

3.1.2 Results from questionnaire 13

3.2 Interviews . 15

3.3 Summary of questionnaire and interviews 15

3.3.1 NTNU . 16

3.3.2 Universities in general . 18

3.4 Similar systems . 19

3.5 Theory . 19

3.5.1 Vector space model . 20

3.5.2 Term weighting . 21

3.5.3 Document preprocessing 22

4 Architecture and design 26
4.1 Stakeholders and concerns . 26

4.1.1 Student . 26

4.1.2 Student counselor . 27

4.1.3 Lecturer . 27

4.1.4 System maintainer . 28

4.1.5 University . 28

4.2 Paper prototype . 28

4.2.1 Design of the paper prototype 28

4.2.2 Evaluation of the paper prototype 30

4.3 Architectural requirements . 31

4.3.1 Functional requirements 31

4.3.2 Quality requirements . 34

4.3.3 Business requirements . 39

4.4 Selection of Architectural Views 39

4.4.1 Logical View . 40

4.4.2 Development View . 41

4.4.3 Process View . 42

4.4.4 Physical View . 43

ix CONTENTS

5 Implementation 46
5.1 Backend . 46

5.1.1 Database . 46

5.1.2 Django . 48

5.1.3 API . 50

5.2 Frontend . 52

5.2.1 React . 52

5.2.2 React Boilerplate . 53

5.2.3 Redux and Saga . 53

5.3 Client-server relationship . 55

5.3.1 Authentication . 55

5.3.2 Communication . 55

5.4 Data collection . 57

5.4.1 Dataset from NTNU . 58

5.4.2 Dataset from another university 59

5.5 Curriculum . 59

5.6 Course dependency tree . 60

5.6.1 Dependency graph . 60

5.6.2 Graph visualization . 60

5.7 Course comparison and similarity analysis 61

5.7.1 Stop word removal . 62

5.7.2 Stemming . 62

5.7.3 Index term selection . 64

5.7.4 TF-IDF and cosine similarity calculation 64

6 Results 66
6.1 Requirement results . 66

6.1.1 Functional requirements 66

6.1.2 Quality requirements . 68

6.2 Course similarity results . 68

6.3 Evaluation of prototype . 73

7 Conclusion 76
7.1 Conclusion . 76

x CONTENTS

7.2 Limitations of the current solution 77

7.3 Future work . 77

Bibliography 80

Appendix A Setup 83
A.1 Backend . 83

A.2 Frontend . 84

Appendix B API documentation 85

Appendix C Questionnaire 88
C.1 Questions . 89

C.2 Results . 92

Appendix D Paper prototype 99

Appendix E Screenshots of the final system 108

List of Figures

1.1 The original project proposal by Rune Sætre 3

2.1 Research processes, as modelled in Researching Information Sys-

tems and Computing [Oates 2006] 7

2.2 Research process . 8

2.3 ISO 9241-210 - Human-centred design for interactive systems [ISO

2010] . 10

3.1 Systems used today . 14

3.2 Course curriculum - degree of usefulness 14

3.3 The vector space model [Manning, Raghavan, and Schütze 2008] . . 20

3.4 Log term frequency . 21

3.5 Inverse Document Frequency . 22

3.6 TF-IDF . 22

4.1 Paper prototype: Overview of a course 29

4.2 Paper prototype: Course comparison 30

4.3 Logical view . 41

4.4 Development view . 42

4.5 Process view: Approving a course relation 43

4.6 Physical view . 44

5.1 ER Diagram of final prototype . 47

5.2 Screenshot of API . 52

5.3 System communication . 57

5.4 Parser process . 59

xi

xii LIST OF FIGURES

5.5 Dependency visualization for TDT4120 61

5.6 A sample of the steps in the Porter suffix-removal algorithm 62

5.7 Example of words before and after being processed by the Porter

algorithm . 63

5.8 TDT4120 course description . 63

5.9 Document after stop word removal and stemming 64

5.10 Document after index term selection 64

C.1 The questionnaire . 91

C.2 Results (1) . 92

C.3 Results (2) . 93

C.4 Results (3) . 94

C.5 Results (4) . 94

C.6 Results (5) . 95

C.7 Results (6) . 95

C.8 Results (7) . 96

C.9 Results (8) . 97

C.10 Results (9) . 98

D.1 Frontpage . 99

D.2 Course details: General . 100

D.3 Course details: Curriculum . 101

D.4 Course details: Similar courses . 102

D.5 Find similar courses . 103

D.6 Find similar courses results . 104

D.7 Compare courses . 105

D.8 Compare courses - description . 106

D.9 Compare courses - curriculum . 107

E.1 Course list . 109

E.2 Course details . 110

E.3 Course details - curriculum . 110

E.4 Course details - similar courses . 111

E.5 Course details - approved courses 111

xiii LIST OF FIGURES

E.6 Search for similar courses on a given university 112

E.7 Result of search . 112

E.8 Compare courses . 113

E.9 Example of a large, generated dependency tree. Note that these are

both required and optional course dependencies 114

xiv LIST OF FIGURES

List of Tables

4.1 U1: Easy to learn system features and start managing courses 35

4.2 U2: User satisfaction . 36

4.3 M1 - Batch add courses and universities 37

4.4 M2 - Modify courses and course relations 37

4.5 M3 - Modify comparison algorithm 38

4.6 I1: Easy to collect course data from external APIs 39

6.1 Functional requirements covered in prototype implementation . . . 67

6.2 Functional requirements covered in prototype implementation . . . 68

6.3 NTNU Gjøvik comparison results 70

6.4 University of California comparison results 71

6.5 Comparison with and without curriculum 72

6.6 Non-similar courses . 73

B.1 Endpoints for Books . 85

B.2 Endpoints for Courses . 86

B.3 Endpoints for University . 87

xv

xvi LIST OF TABLES

List of source code listings

1 Example model . 49

2 Register example model in admin 49

3 Example Serializer . 50

4 Example Viewset . 51

5 TF-IDF computation using Scikit-learn 65

xvii

Glossary

course curriculum Refers to all textual documents part of the curriculum of a

given course.

course dependency A course dependency is a relationship where course A is a

prerequisite needed in order to take course B. Course B is then said to be

dependent on course A.

course link An undirected link between two courses, confirming that they have

been approved as similar enough to be regarded as equivalent.

course metadata Refers to all structured data available about a given course.

student counselor An academic employee, usually affiliated with a specific de-

partment, responsible for helping students choose what courses to take, either

abroad or domestic.

xviii

Acronyms

API Application Programming Interface.

CSS Cascading Style Sheets.

IDF Inverse Document Frequency.

IDI Department of Computer Science (Institutt for Datateknologi og Informatikk).

JSON JavaScript Object Notation.

MVC Model-View-Controller.

NLTK Natural Language Toolkit (for Python).

NTNU Norwegian University of Science and Technology.

ORM Object-Relational Mapping.

SQL Structured Query Language.

TF Term Frequency.

TF-IDF Term Frequency-Inverse Document Frequency.

UI User Interface.

UUID Universally Unique Identifier.

WSGI Web Server Gateway Interface.

xix

1 Acronyms

Chapter 1

Introduction

In 2015 it was decided that the Norwegian University of Science and Technology

(NTNU) would merge with Aalesund University College, Gjøvik University Col-

lege and Trondheim University College [NTNU merging with HiAls HiG and HiST

2016]. As a result of this the new university was, at the beginning of this project,

reworking its organizational structure to accommodate for the merge. That includes

going through the study programs of the old university and university colleges, in or-

der to find overlapping courses [NTNU merge FAQ 2016]. Having multiple courses

with the same syllabus is redundant, and these could be merged into one course.

The university merge was initiated in January 2016.

After the merge, the new NTNU offered over four thousand courses for its students

[NTNU list of subjects 2016]. Some courses will likely be similar to each other.

These courses needs to be evaluated manually; an enormous job which takes a con-

siderable amount of time and resources.

1.1 Motivation

The motivation behind this work is based on a thesis suggestion (Figure 1.1) made

by Rune Sætre at the Department of Computer Science (IDI) at NTNU.

2

3 CHAPTER 1. INTRODUCTION

Now that NTNU has merged with HiST, HiGjøvik or HiÅlesund we should

look at how the different courses offered at all these institutions overlap or

complement each other. And to make the job easier, for student exchange

and collaboration, a useful IT tool should be made.

Suggested functionality for the tool:

• It should be possible to make a map of how the different classes depend

on each other, within a specified field of study.

• It should be possible to calculate how many percent two classes from

the same or different institutions overlap with each other.

• A scalable algorithm should be made to intelligently calculate the over-

lap between classes based on textual descriptions, including keywords,

curriculum, bullet points, etc.

Figure 1.1: The original project proposal by Rune Sætre

When NTNU merged with the colleges previously mentioned, many new and po-

tentially similar courses were added to the course catalogue. The initial goal of

this project was to help departments compare the new courses from the old uni-

versity colleges. The departments needed to map which courses at NTNU that

corresponded to the courses taught at the old colleges.

The idea was to create a system that kept track of all courses at the newly merged

university. Within that system, counselors and administrative employees at differ-

ent departments could compare, and find similar courses within the course cata-

logue.

During the initial research phase, it was discovered that the process of comparing

and keeping track of course similarity, is a common use case for counselors working

with student exchange as well.

Because the situation of the merge at NTNU is temporary, and the system proposed

would only be useful in a transitional period, it was decided to pivot the project

towards exchange studies instead.

4 CHAPTER 1. INTRODUCTION

From the information presented, we wish to design, implement and evaluate a pro-

totype of a system that can be used by student counselors to compare, and keep

track of similar courses at other universities and colleges.

The goal of the system is to help increase the efficiency of exchange counseling,

for both students, counselors and lecturers. We want to achieve this by reducing the

amount of manual work done when aiding students that are considering traveling

abroad on exchange studies.

If the creation of such a system is successful, it might also solve the need for a

course comparison system at NTNU.

1.2 Research questions

During this project, we hope to achieve advances in the knowledge of what digital

tools are required in order for student counselors to work more efficiently. We will

do this by investigating the digital needs of student counselors, and look at what

the requirements of the proposed system proposed should be. The research of this

paper will address the following research questions:

• RQ1: What are the requirements for a digital tool for counseling potential

exchange students, and is there a need for such a system?

• RQ2: To what extent would it be possible to automate the process of deter-

mining course similarity?

Throughout this project, we will use NTNU as an example university. The require-

ments of the system will be derived based on data collected from counselors at this

university.

1.3 Contributions

The main contributions of this project will be a set of requirements for a system that

helps student counselors keep track of courses and course relations, an architectural

5 CHAPTER 1. INTRODUCTION

proposition for the system, and a software prototype of that system. In addition, this

project will contribute with survey data on the needs student counselors have for a

digital tool.

1.4 Thesis structure

This section contains a brief overview of the thesis structure.

• Chapter 1: Introduction presents the motivation behind the thesis, the re-

search questions and its contributions.

• Chapter 2: Method presents the research methods, research process and the

approach taken for data collection and analysis.

• Chapter 3: Prestudy consists of two parts; a section about findings, includ-

ing results from the conducted questionnaire, and a section where concepts

from the literature are presented.

• Chapter 4: Architecture and Design explains the architectural planning of

the system. Presents the project’s stakeholders and defines the architectural

requirements (functional requirements, quality requirements and business re-

quirements). The chapter also contains details about the design and evaluation

of the paper prototype.

• Chapter 5: Implementation gives details about how the prototype was built,

and how the various requirements detailed in Chapter 4 were met. The chapter

explains the various parts of the system, and how they interact.

• Chapter 6: Results describes the results from testing and evaluating the pro-

totype.

• Chapter 7: Discussion and conclusion concludes the project based on the

results, and gives recommendations for future work.

Chapter 2

Research method

This chapter describes the research methods used in this project, and the reasoning

behind choosing them. Furthermore, it will discuss the data generation methods

chosen, and how the data from these methods will be analyzed.

Using the model of the research process defined by [Oates 2006], the research

method design and creation was chosen as the research strategy. The model can

be seen in Figure 2.1, where the selected methods are highlighted. Based on the

defined research questions, an IT artifact which can be used by student counselors

will be developed. A questionnaire will be designed and conducted to get a better

understanding of the problem domain. This will give us quantitative data for anal-

ysis. Additionally, interviews will be conducted with potential users of the system.

This will produce qualitative data. Using more than one data generation method

is called method triangulation [Oates 2006]. These two data generation methods

combined can help us verify the findings. Data gathered will be analyzed, and used

in the process of designing a paper prototype.

6

7 CHAPTER 2. RESEARCH METHOD

Figure 2.1: Research processes, as modelled in Researching Information Systems

and Computing [Oates 2006]

The research process of the project is summarized in Figure 2.2. The design and

creation iteration will be completed twice: first for the paper prototype, and then

for the software prototype. The project will consist of four iterations, completed in

consecutive order:

1. Prestudy: Interviews and Questionnaire

2. Design and Creation: Paper prototype

3. Design and Creation: Software prototype

4. Final evaluation

8 CHAPTER 2. RESEARCH METHOD

Figure 2.2: Research process

2.1 Interview

To learn more about the subject area, interviews were conducted with student coun-

selors. The purpose of research interviews is to explore experiences, views and

beliefs of individuals on specific matters [Gill et al. 2008]. It was decided to con-

duct unstructured interviews because they have the advantage of not being scripted

to the same degree as structured interviews. This allows the interviewer to explore a

topic by letting the interview subject talk freely based on open ended questions. Un-

structured interviews are well suited where very little are known about the subject

area [Gill et al. 2008].

2.2 Questionnaire

In order to validate the concept of the suggested system, and to get a better overview

of the situation today, a questionnaire was created. A questionnaire is a research

instrument for the collection of data [Oppenheim 2000]. In its simplest form it is

a list of questions that are to be filled out by respondents. The resulting data are

used to create an understanding of the population which the respondents are a part

of [Wohlin et al. 2000]. For example, by asking 50 students of a particular course

what they think about the lectures, the opinion of the entire class of 200 students

can be assessed.

Collecting data through a questionnaire has both advantages and disadvantages. It’s

9 CHAPTER 2. RESEARCH METHOD

an easy and cost effective tool to reach a large amount of respondents in a short

period of time. Collected data can be used for quantitative analysis. Compared to

e.g. conducting interviews with relevant subjects, it is a time saving tool. However,

one must also be aware of the disadvantages related to questionnaires as a tool for

data collection. There is no way of verifying the truthfulness of a respondent, how

much thought they have put into their answers and whether they have misinterpreted

the questions [Wright 2005].

The questionnaire used in this paper was designed to be as short and concise as

possible, in order to maximize the amount of replies. Questionnaires with a large

number of questions are tiresome to fill out, and might affect data quality [Wohlin

et al. 2000].

More details about the questionnaire is presented in Section 3.1.

2.3 Prototype

2.3.1 Paper prototype

Paper prototyping is a well-established method of designing, testing, communicat-

ing and improving user interfaces [Snyder 2003]. The method allows developers

to validate a suggested design before implementing it. Problems with the design

will quickly be identified by running usability tests with end users. In a usability

test, the test subjects are given a set of tasks they should solve. The test is done

entirely by using the paper prototype, where the test subject interacts with it as they

would with a full-fledged system. The tasks should be focused around exploring

how users interact with the parts of the system that the tester wants to learn more

about. A good task covers questions important to the success of the product, and

should have a reasonably narrow scope and a clear end point [Snyder 2003].

10 CHAPTER 2. RESEARCH METHOD

Figure 2.3: ISO 9241-210 - Human-centred design for interactive systems [ISO

2010]

The design process followed while planning the system is formalized in ISO 9241-

210 - Human-centred design for interactive systems [ISO 2010], as shown in Figure

2.3. The standard describes an iterative process that focuses on communication

with the end user throughout all design phases and iterations. This entails active

involvement of the end user in order to get an understanding of their needs, what

problem the system will solve for them, and in what environment the system is to

be used. This is called the context of use.

The process was initiated with the questionnaire, and subsequent interviews, as

a tool for understanding the context of use. Furthermore, a list of requirements

were sketched based on the results. Based on the requirements derived from the

questionnaire and interviews, a paper prototype of the system was created. More on

this in Section 4.2. Evaluation of the paper prototype with end users concluded the

11 CHAPTER 2. RESEARCH METHOD

first iteration of the process.

Evaluation of the paper prototype

To evaluate the paper prototype, a set of tasks were designed, which covered the

most important functionality of the prototype. Test subjects were presented with the

tasks, and asked to attempt to solve them. Feedback from the test subjects, and how

they solved the tasks were used in the next iteration of the research project. Section

4.2.2 contains more information about the evaluation of the paper prototype.

2.3.2 Software prototype

When the iterative process of designing and evaluating the paper prototype was con-

cluded, the process of implementing the software prototype was initiated. Chapter

5 describes this process in detail.

Evaluation of the software prototype

After the software prototype was implemented, it was evaluated by test subjects

through interviews and a usability test. Chapter 6 contains results of this software

prototype evaluation.

Chapter 3

Prestudy

This chapter will first give an overview of the questionnaire and its results. Sec-

ondly, it will present a summary of findings derived from the questionnaire and

interviews, that are relevant in order to understand the architecture of the system

proposed in Chapter 4. Lastly, it covers the theoretical knowledge necessary to

understand the technical implementation of the prototype.

3.1 Questionnaire

The finished questionnaire consisted of nine questions. The questions were directed

to assess how much work the counselors spend each week on course comparison,

how they store and maintain that information today, and to what extent they felt

the proposed system would make their work flow more efficient. The full list of

questions can be viewed in Appendix C.

The student counselors that were added as recipients to the questionnaire, were

found in a list of counselors maintained by the university1.

The article contains shortcuts to every faculty’s list of student counselors. The ques-

tionnaire was created using Google Forms2, which is a free tool for survey creation

1https://innsida.ntnu.no/wiki/-/wiki/Norsk/Studieveiledning (as of April 29, 2017)
2https://docs.google.com/forms/ (as of May 06, 2017)

12

13 CHAPTER 3. PRESTUDY

and gathering of results.

The questionnaire was sent out with instructions on how to fill it out, along with

an introduction to the research project and how their answers would help it going

forward. At the end of the questionnaire, the participants could leave their email if

they were interested in providing additional feedback before, during and after the

development of the system.

3.1.1 Distribution and response

The questionnaire was distributed to a total of 44 student counselors from 21 differ-

ent departments and five different faculties at NTNU (Faculty of Natural Sciences,

Faculty of Engineering, Faculty of Medicine Health Sciences, Faculty of Humani-

ties, and Faculty of Information Technology and Electrical Engineering). The dis-

tribution of the questionnaire was divided into two iterations. The first iteration

included 25 recipients. Due to a low response rate it was decided to send the ques-

tionnaire to an additional 19 recipients. A total of 17 responses (≈ 39% response

ratio) were recorded.

3.1.2 Results from questionnaire

This section presents selected findings from the questionnaire. The full set of results

can be viewed in Appendix C.

How does your organization store documentation about subjects taken by students
during exchange semesters, for example which NTNU course best correspond to
a course from another university?
An interesting find is that approximately 31% of respondents state that they do not

store documentation about the similarity of exchange courses and their equivalent

on NTNU (Figure 3.1). This indicates that there is room for improvement, and that

a system like the one proposed in this project might be of use for student coun-

selors.

14 CHAPTER 3. PRESTUDY

1 2 3 4 5

Other

Not saved

Own system

Text document

Wiki

5

3

4

1

3

Student counselors

Figure 3.1: Systems used today

To what degree would a tool that automatically compares courses based on their
curriculum make your work day more efficient? 16 out of 17 respondents state that

a system which automatically compares courses based on their curriculum would

make their work day more efficient to some degree or to a large degree (Figure

3.2).

0 1 2 3 4 5 6 7 8 9 10 11 12

To a small degree

To some degree

To a large degree

1

11

5

Student counselors

Figure 3.2: Course curriculum - degree of usefulness

15 CHAPTER 3. PRESTUDY

In general, the results of the questionnaire suggests that there may be a need for a

digital tool when counseling potential exchange students. Even though the process

of comparing courses might not be as time consuming as first assumed, the survey

results indicate that there is a need for centralizing the information of courses that

have already been evaluated.

Based on the feedback from the questionnaire, the first draft of the architectural

requirements was created. These are described in Section 4.3.

3.2 Interviews

From the questionnaire, seven student counselors left their contact information for

further participation to the project. Interviews were scheduled with two of them,

with the following pre-planned talking points:

The interviews aimed to explore the following subjects:

• The process of finding relevant courses for student exchange on another uni-

versity

• The process of approving courses that students wishes to take while on ex-

change

• Current digital tools for student counselors

• The usefulness of the proposed system

• How, and if, student counselors share information about approved courses

with colleagues

The findings from the interviews are presented in Section 3.3.

3.3 Summary of questionnaire and interviews

This section will present findings that contributed to creating the requirements for

the system. It will first describe collected information relevant for designing a pro-

16 CHAPTER 3. PRESTUDY

totype that works at NTNU. Secondly, it will discuss findings that are related to the

design of a prototype that works with other universities as well. The source of these

findings are interviews with student counselors, and information available online

[Innsida 2017].

3.3.1 NTNU

Exchange process

In order to derive requirements for a system that can help student counselors, it is

important to understand how the process of guiding exchange students works today.

If a student wants to study abroad, the process is as follows:

1. The student needs to decide what university they want to study at, and what

courses they want to take. The selected courses should correspond to the ones

they would have taken at NTNU the same semester(s).

2. The courses that the student decides on needs to be approved by NTNU. The

student counselor contacts the lecturer of each corresponding NTNU course,

to make sure that the courses the student has decided on are valid substitute

courses.

3. When all courses are approved, the student is ready to travel.

4. During the exchange, it often happens that the courses the student got ap-

proved are unavailable, or in some other way not possible to take. The stu-

dent is then responsible for finding a suitable replacement. When the student

returns from the exchange, the student counselor contacts the lecturers of the

corresponding courses that the student could not participate in, and ask them

to review the suggested replacement course.

5. When all courses are approved, the process is complete, and the student re-

ceives the same amount of credits as they would during a normal semester.

17 CHAPTER 3. PRESTUDY

Student exchange at NTNU

NTNU has a goal of having 40% of its students traveling abroad on exchange studies

[Kommunikasjonsavdelingen 2014]. During the period of 2010-2013, 30% of its

students traveled abroad.

There exists many different solutions at NTNU today for keeping track of relations

between courses at two universities. These relations will hereby be referred to as

course links.

Among the systems that are used by counselors stating that they use a structured sys-

tem, wiki solutions and Ephorte3 are the most popular ones. All systems discovered

during the prestudy are maintained manually, i.e. no data is collected automatically.

A common problem by storing course links in a software system, is that the links

become outdated. It is therefore important to note the date when the course link was

approved by the lecturer. If the course link is suspected to be outdated, the student

counselor has to contact the lecturer to get the link re-approved.

Common metrics used by student counselors to determine if courses might be sim-

ilar include course descriptions4, course level5, credits6 and curriculum.

To determine course level, some counselors draws graphs of which courses a student

needs in order to take a certain course, e.g. what introductory course a student need

to take in order to be able to take a certain intermediary course. These types of links

will hereby be referred to as course dependencies. Creating such graphs is often

done with pen and paper, and can be a time consuming process.

NTNU has its own database for keeping track of how many credits a semester at

NTNU corresponds to at another university. This system is referred to as GNAG7,

and is maintained by the Office of International Relations8 at the university.

3https://www.evry.com/no/bransjer-og-tjenester/tjenester/forretningslosninger/ecm/ephorte/ (as

of May 16, 2017)
4usually found in the course catalogue
5an attribute used to describe if a course is introductory, intermediary or advance
6a number that describes how comprehensive the course is
7https://www.ntnu.no/international/studentweb/gnag/gnag.htm (as of May 16, 2017)
8https://www.ntnu.edu/international (as of May 16, 2017)

18 CHAPTER 3. PRESTUDY

Having a system that keeps track of approved course links may also be beneficial

for students searching for course to take during their exchange. As mentioned in

Section 3.3.1, students are responsible for finding suitable courses during their ex-

change semester. The proposed system can improve this process, by letting students

easily see what courses have already been approved by student counselors.

3.3.2 Universities in general

This section is based on interviews with student counselors, and research of other

universities online.

The prestudy has not found any universities that do not provide a description of the

courses they have in their catalogue online. Many universities also offers APIs for

course information. The data quality of these APIs differs greatly, and not all of

them are public.

Credits given for a course are in no way standardized between universities. If

courses are to be considered equivalent by student counselors, the number of cred-

its of the courses in question needs to be approximately the same (relative to the

number of credits at their university).

Curriculum and course data

In order to make course comparison as accurate as possible, the curriculum of a

given course was considered as a source of information. In the context of this paper,

curriculum will refer to all textual documents part of the curriculum of a given

course.

The first issue of using curriculum as a basis for calculating course similarity, is that

information about a course’s curriculum is hard to find. Few universities have open

and maintained overviews of their curriculum. Another issue is getting the content

of a given book. Most books costs money, and the prestudy has not uncovered any

data sources that would allow the proposed system to analyze contents of books for

free.

19 CHAPTER 3. PRESTUDY

Some of the books indexed by Google Books9 can be browsed without paying,

and some had their most frequent keywords listed. However, this service was not

regarded as a viable data source for this project. Most publishers keep table of

contents of their books openly available in their web stores. Table of contents can

be seen as a summary of the contents of a book, which may be suitable for the

experimental curriculum comparison functionality.

In addition to curriculum, course metadata should be used when comparing courses.

In this context, metadata will refer to all structured data available about a given

course. The findings in the previous sections suggest that course descriptions and

other textual descriptions are important factors when evaluating course similari-

ties.

3.4 Similar systems

In the early stages of the prestudy, research was conducted in order to discover any

systems that are similar to the system proposed in this paper. No such system has

been discovered.

3.5 Theory

In this project, we will work with substantial amounts of course metadata, such as

course descriptions and curriculum. The software prototype should support both

comparison of courses and searching for similar courses. This section explains key

concepts from the field of information retrieval that are relevant for this project. In-

formation retrieval is an area of Computer Science focused on retrieving documents

from a document collection that satisfies an information need [Manning, Raghavan,

and Schütze 2008].
9https://books.google.com (as of May 18, 2017)

20 CHAPTER 3. PRESTUDY

3.5.1 Vector space model

The vector space model is an algebraic model for representing documents and

queries as vectors. These vectors should capture the relative importance of a doc-

ument’s individual terms, i.e. they should be assigned some weight. More on this

in Section 3.5.2. Documents and queries are represented as t-dimensional vectors,

where t is the total number of index terms. A consequence of this vector representa-

tion is the loss of word order. E.g. the documents "Mary is quicker than John" and

"John is quicker than Mary" are identical. This is called the bag of words model

[Manning, Raghavan, and Schütze 2008].

Given a collection of document vectors and/or query vectors, it is possible to rep-

resent them in a common vector space. The cosine of the angle between any two

vectors is a measure of their similarity. This is known as the cosine measure. Figure

3.3 shows the cosine similarity of two documents: sim(d1,d2) = cosθ

The vector space model is a well established information retrieval model, first intro-

duced by the SMART system developed in the 1960s. It allows for partial matching

and ranking of results.

Figure 3.3: The vector space model [Manning, Raghavan, and Schütze 2008]

21 CHAPTER 3. PRESTUDY

3.5.2 Term weighting

Not all terms are equally useful for describing the contents of a document. In infor-

mation retrieval systems, documents are indexed, and index terms are given weights.

Index terms that will describe the document contents should be given higher weights

than terms which are not useful in describing the same content. Common term

weighting schemes include term frequency and inverse document frequency, as de-

scribed below.

Term frequency

The frequency fi j of a term is simply how many times it occurs in a document.

However, the relevance of the term does not increase proportionally with its fre-

quency. There are several variants for weighting term frequency (TF). The simplest

ones are the binary variant (assigns 1 to TF if the term is present, 0 if not), and the

raw variant (uses the occurrence count directly). The latter approach is problematic

because the importance of a term does not scale linearly with the number of occur-

rences. Applying a logarithmic scale to term frequency will dampen the effect of

terms that have high frequencies [Baeza-Yates and Ribeiro-Neto 2011]. Figure 3.4

shows the formula for log term frequency, where fi, j is the raw term frequency for

term i in document j.

t fi, j =

1+ log2 fi, j fi, j > 0

0 otherwise
(3.1)

Figure 3.4: Log term frequency

Inverse Document Frequency

The document frequency d ft of a term t is defined to be the number of documents

where t occurs. Common words in a document collection are not good discrimina-

tors (i.e. a characteristic which enables documents to be distinguished from each

other), while terms that occurs in few documents are often more useful [Manning,

22 CHAPTER 3. PRESTUDY

Raghavan, and Schütze 2008]. In other words, the document frequency indicates

how little important a term is. For measuring a word’s importance, we can invert the

document frequency. This is called the Inverse Document Frequency (IDF). Thus

the IDF of rare words are high, and the IDF of common words are low. IDF weights

provide a foundation for term weighting schemes and are used by almost any mod-

ern information retrieval system [Baeza-Yates and Ribeiro-Neto 2011]. IDF is de-

fined as follows, where N is the total number of documents in the collection and ni

is the number of documents where the term ti occurs.

id fi = log
N
ni

(3.2)

Figure 3.5: Inverse Document Frequency

TF-IDF

We now combine the term frequency and inverse document frequency. This re-

sults in a weighting scheme where the weight of a term increases to the number of

occurrences, but is offset by the frequency of the term in the document collection

[Manning, Raghavan, and Schütze 2008]. Terms that occur in virtually all doc-

uments are given the lowest weight, while terms that occur frequently in a small

number of documents are given high weights [Salton and Buckley 1988]. Very rare

terms like typos and foreign words are given low weights. Figure 3.6 shows the

formula for TF-IDF.

T FIDFt,d = t ft,d× id ft (3.3)

Figure 3.6: TF-IDF

3.5.3 Document preprocessing

Document preprocessing consists of five stages, as described in [Baeza-Yates and

Ribeiro-Neto 2011]:

23 CHAPTER 3. PRESTUDY

1. Lexical analysis

2. Elimination of stop words

3. Stemming

4. Selection of index terms

5. Construction of thesauri

Lexical analysis (tokenization): The goal of the tokenization step is to determine

the words of the document. Punctuation marks and whitespace are usually treated

as word separators. Letter casing can be removed, but in some IR-systems it is vital

to keep casing. After the lexical analysis step is finished we are left with an array

of words.

Stop words: Stop words are words that appear very frequently in a document col-

lection. They are usually of little value when searching, as they are not good dis-

criminators [Baeza-Yates and Ribeiro-Neto 2011]. We are interested in extracting

the most descriptive terms. Prepositions, articles and conjunctions are typical stop

words. Removal of stop words can be done based on a predefined word list, or by

removing the top n percentage of the most common words.

By using TF-IDF weighting, most stop words will be ignored because of their high

frequency, but will clutter the vector making the computation time longer and more

memory intensive. It is typical to obtain a compression of the index of 40% or more

by removing stop words [Baeza-Yates and Ribeiro-Neto 2011].

Stemming: A stem is the portion of a word that is left after the removal of its affixes.

For example, by removing the suffix in the words connection and connected, we are

left with the stem connect. Stems are thought to be useful for information retrieval

purposes, as they reduce variants of the same root word into a common base word.

Stemming comes in many different forms, with affix removal being the most widely

used [Baeza-Yates and Ribeiro-Neto 2011].

24 CHAPTER 3. PRESTUDY

Index term selection: Not all terms are equally useful for describing the contents

of a document. Instead of using a full text representation, where all terms in a

document are used, the most descriptive and important terms can be selected. In a

library system, index terms are often selected manually by experts. In other systems,

a more automatic approach must be taken. A simple approach is to consider the

terms with the highest TF-IDF values as index terms.

Thesauri: A thesaurus is a precompiled list of important terms in a domain, and

for each of these terms, a set of related words or synonyms.

25 CHAPTER 3. PRESTUDY

Chapter 4

Architecture and design

This chapter explains the architectural requirements that were derived from the find-

ings in the previous chapter. It will first describe the stakeholders of the system.

Secondly, it will describe the design and implementation of the paper prototype, fol-

lowed by a discussion of the architectural requirements for the software prototype.

Lastly, it will describe the most important architectural views of the system.

4.1 Stakeholders and concerns

A stakeholder is anyone having an interest in a given project. People affected by a

software system are not limited to those using it, but everyone involved in maintain-

ing, testing, operating, developing and paying for the system [Rozanski and Woods

2011]. Each of these groups have their own concerns about the system. The remain-

der of this section presents the stakeholders of the project, and their concerns.

4.1.1 Student

The student will use the system to browse courses before choosing which courses to

take during the exchange. Consequently, the student will mostly be concerned with

what the system offers in terms of usability and having a database that is as complete

26

27 CHAPTER 4. ARCHITECTURE AND DESIGN

and up to date as possible. Students want a system that is easy to use. They also do

not want to run into bugs or errors which can ruin their experience.

4.1.2 Student counselor

The student counselor will use the system to keep track of courses and relations

between courses. This includes:

• Keeping course relations up to date

• Keeping track of courses that have previously been approved as equivalent to

courses on other universities

• Adding new courses and course relations

The counselor is also responsible for contacting the relevant lecturer when a new

course relation is suggested by a student. The counselor inherits the concerns of the

student, as they are also users of the system. In addition, a system that is easy to use

would reduce the workload for the counselor, because students would require less

help to find courses.

4.1.3 Lecturer

The lecturer is responsible for reviewing curriculum. They ensure that a course

relation to a course on another university is only approved if their similarity is sat-

isfactory. Because the lecturer should be contacted by the counselor when a new

course need to be reviewed, the lecturer will most likely not use the system directly.

The lecturer’s concern is that the system is available and easy to use, so that students

does not contact them, but rather use the system and contact the counselor for any

enquiries.

28 CHAPTER 4. ARCHITECTURE AND DESIGN

4.1.4 System maintainer

The system maintainer will be responsible for ensuring that the system runs as it

should. They will also be responsible for importing new universities through APIs,

spreadsheets and other data sources. The maintainer wants a system that is easy to

maintain, modify and with a good interface for running import scripts.

4.1.5 University

The university is interested in having a work flow that is as streamlined and effi-

cient as possible. The administration want a system that is cheap and easy to main-

tain, and that reduces the cost of approving courses for students traveling abroad.

The university is also concerned with reaching their goal of sending at least 40%

of its students on exchange for one or two semesters [Kommunikasjonsavdelingen

2014].

4.2 Paper prototype

This section describes the design and evaluation of the paper prototype.

4.2.1 Design of the paper prototype

Balsamiq1 is a software tool for rapidly mocking up graphical user interfaces, and

was used to create the prototype. This section presents two important prototype

pages: the course overview page, and the compare courses page. The entire paper

prototype can be found in Appendix D.

Figure 4.1 shows the overview page for a course. It contains all the information

about a course that the user needs. The metadata included here is based on feedback

from potential users (as presented in Section 3.3). The image on the right hand side

of the page is the course dependency tree.

1https://balsamiq.com (as of 26 April, 2017)

29 CHAPTER 4. ARCHITECTURE AND DESIGN

Figure 4.1: Paper prototype: Overview of a course

Figure 4.2 shows the course comparison view. Users can compare courses side

by side, and get a similarity suggestion. If the user is logged in as an admin, the

’Approve’-button is visible.

30 CHAPTER 4. ARCHITECTURE AND DESIGN

Figure 4.2: Paper prototype: Course comparison

4.2.2 Evaluation of the paper prototype

As previously mentioned, the questionnaire contained a field where the subjects

could leave their contact information if they wanted to contribute further in the

development of the system. Paper prototype tests were conducted with two student

counselors.

When meeting with the test subjects, they were presented with a printed out ver-

sion of the paper prototype. They were then given a series of five tasks. The

tasks presented were based on what was seen as the most important system re-

quirements:

1. Look up the course TDT4120: Algorithms and Data Structures

2. Find the curriculum for TDT4120: Algorithms and Data Structures

31 CHAPTER 4. ARCHITECTURE AND DESIGN

3. Check if there exists an approved replacement for TDT4120: Algorithms and Data

Structures at University of Waterloo

4. Find the suggested similarity of TDT4120: Algorithms and Data Structures and

CS341: Algorithms

5. Approve the course CS341: Algorithms from University of Waterloo as a valid re-

placement for TDT4120: Algorithms and Data Structures

The test subjects had no problems solving the tasks. However, they missed func-

tionality for directly comparing two courses. Some important course meta data was

also omitted. After all test sessions were completed, the data that had been collected

was analyzed, and a new iteration of the system requirements were created.

4.3 Architectural requirements

In this section, we describe the functional requirements, quality requirements, and

business requirements that are regarded as having the most significant impact on the

system architecture.

Throughout this section, a student counselor and anyone that needs to make modi-

fications to the underlying data, is defined as an admin.

4.3.1 Functional requirements

This section contains the functional requirements (FR) derived from the findings

covered in the prestudy.

General

The most fundamental part of the system is the ability to store and access course

information. For the system to be a success, it must support basic administration of

courses and universities.

32 CHAPTER 4. ARCHITECTURE AND DESIGN

FR 1: The system should keep track of courses belonging to a univer-

sity

FR 1.1 The system should display relevant course information

FR 1.2 Admins should be able to create courses

FR 1.3 Admins should be able to edit courses

FR 1.4 Admins should be able to make notes on a course

FR 2: The system should support multiple universities

FR 2.1 Admins should be able to create universities

FR 2.2 Admins should be able to edit universities

Computing similarity

The prestudy found that most student counselors thought a system for aiding them

in comparing courses would be useful, to some extent. The following requirements

are derived from the feedback:

FR 3: The system should be able to assist users in determining the

similarity of two courses

FR 3.1 The system should be able to calculate the similarity

of two courses based on their respective metadata

FR 3.2 Users should be able to search for similar courses to

any given course

33 CHAPTER 4. ARCHITECTURE AND DESIGN

Searching and browsing

NTNU’s course database consists of over four thousand courses. A feature for

searching, filtering and browsing the course database is therefore important.

FR 4: The system must allow users to search through all courses in the

database

FR 4.1 Courses must be searchable

FR 4.2 Courses must be browsable

Authentication

The authentication requirements are not directly acquired through feedback from

student counselors, but are more implicitly acquired through understanding the im-

portance of data quality in this system. Not everyone should have access to manip-

ulate data.

FR 5: The system should support user login

FR 5.1 Admins should be able to log in with their university

account

FR 5.2 Admins should be able to log out

Course link administration

Keeping track of approved course links will be the most important feature in this

system. To replace the different old solutions discovered during the prestudy, the

system will have to fulfill the following requirements:

FR 6: Admins should be able to approve course links

34 CHAPTER 4. ARCHITECTURE AND DESIGN

FR 6.1 Admins should be able to create new course links

FR 6.2 Admins should be able to remove course links

Course dependencies and dependency management

Keeping track of course dependencies was discovered as a feature many student

counselors would appreciate. The following requirements regarding course depen-

dencies were derived:

FR 7: The system should keep track of the dependency between courses

FR 7.1 Admin should be able to add new course dependencies

(prerequisites)

FR 7.2 Admin should be able to remove course dependencies

FR 7.3 The system should be able to visually represent all

course dependencies for a given course

FR 7.4 The system should be able to differentiate between re-

quired and optional course dependencies.

4.3.2 Quality requirements

Quality requirements, often referred to as non-functional requirements, are require-

ments that specifies criteria that can be used to judge how a system operates, rather

than specific behaviors [Bass 2012].

This section describes the quality attributes selected for this system, along with their

requirements. Quality attributes refers to the qualification of requirements, rather

than concrete functional requirements [Bass 2012]. All quality requirements are

derived from the findings covered in the prestudy.

35 CHAPTER 4. ARCHITECTURE AND DESIGN

Usability

The usability attribute is about how easy it is for users to perform what they want

to with the functionality that the system provides, and how satisfied they are with it

[Bass 2012].

Usability was chosen as a quality attribute because it is important that student coun-

selors are satisfied with the functionality of the system. If they are not satisfied, they

won’t use it. In this system, the student counselors are the main data providers. If a

student counselor doesn’t use it, the system loses some of its value.

Quality attributes of type usability are prefixed with the letter U.

U1: Easy to learn system features and start managing courses

In order for the system to be a success, it must be easy to get started. Users should

not have to use a lot of time learning to know the system before using it.

Source of stimulus Student counselor

Stimulus Visits website

Artifacts System

Environment Runtime

Response The user has logged in and learned all the main features of

the system

Response measure Within 10 minutes of experimentation

Table 4.1: U1: Easy to learn system features and start managing courses

U2: User satisfaction

If users don’t see the value of the system, they won’t continue using it. For the

system to work as intended, it is imperative that as many student counselors as

possible uses it as their primary course database. It is therefore important that users

36 CHAPTER 4. ARCHITECTURE AND DESIGN

are satisfied with the system. It should also avoid frustrating the user with non-

intuitive user interface (UI).

Source of stimulus Student counselor

Stimulus Tries the system for the first time

Artifacts System

Environment Runtime

Response The user evaluates the system after 30 minutes of usage

Response measure Gives an overall impression rating higher than 7 out of 10

Table 4.2: U2: User satisfaction

Modifiability

The modifiability attribute is about the cost of change to a system, in the form of

work hours and complexity [Bass 2012]. This attribute was chosen mainly because

the prestudy showed that student counselors already have a lot of course information

stored in spreadsheets and similar solutions. To make the transition over to a new

system easier, it must be possible to batch import course data from such sources.

Modifiability was also chosen because of the experimental nature of course com-

parison. It should be easy to substitute the comparison module with another one, as

more knowledge is gained on the subject.

Quality attributes of type modifiability are prefixed with the letter M.

M1: Batch add courses and universities

If a university wants to start using the system, it should be easy to import course

information for all courses at that university.

37 CHAPTER 4. ARCHITECTURE AND DESIGN

Source of stimulus Developer

Stimulus Add spreadsheet of approved course relations to database

Artifacts Data / Code

Environment Runtime

Response Courses added and are visible in frontend

Response measure 2 hours (excluding parsing spreadsheet)

Table 4.3: M1 - Batch add courses and universities

M2: Modify courses and course relations

An important feature of the proposed system is the functionality of keeping track

of course relations. Maintaining these links must be easy and efficient for student

counselors.

Source of stimulus Student counselor

Stimulus Approve link between two courses

Artifacts Data

Environment Runtime

Response Course relation is added and is visible in frontend

Response measure Less than 1 minute

Table 4.4: M2 - Modify courses and course relations

M3: Modify comparison algorithm

The course comparison algorithm in this project is experimental. In order to make

improvements to the algorithm, it should be decoupled from the rest of the code,

and easy to replace.

38 CHAPTER 4. ARCHITECTURE AND DESIGN

Source of stimulus Developer

Stimulus Replace comparison algorithm

Artifacts Code

Environment Design time

Response Change made and tested

Response measure 3 hours

Table 4.5: M3 - Modify comparison algorithm

Interoperability

The interoperability attribute is about the extent of which two or more systems can

exchange meaningful information between each other [Bass 2012]. The attribute

was chosen because data stored in this system very likely will be useful for other

systems as well.

Quality attributes of type interoperability are prefixed with the letter I.

39 CHAPTER 4. ARCHITECTURE AND DESIGN

I1: Easy to collect course data from external APIs

It should be easy to extract data from the system.

Source of stimulus Developer

Stimulus Create a new system that uses the course API as a data

source

Artifacts Code

Environment Design time

Response New system can use course data from API

Response measure 2 hours

Table 4.6: I1: Easy to collect course data from external APIs

4.3.3 Business requirements

The primary business requirement for this system is that the university improves

and streamlines its process of approving courses before students travel abroad. This

can significantly improve the way student counselors work today by reducing time

spent for both counselor and lecturer.

4.4 Selection of Architectural Views

Software architecture deals with design of the high-level structure of a software sys-

tem, and the abstraction and decomposition of this design. The 4+1 architectural

view model is a model for describing the architecture of a software system. The

model is the result of a proposal to organize the description of a system’s architec-

ture using several views, each one addressing a specific set of concerns [Kruchten

1995]. A view is a representation of an entire system from different perspectives.

40 CHAPTER 4. ARCHITECTURE AND DESIGN

Each of the views in the "4"-part of the model represents the system from the view-

point of different stakeholders. These four views are the following:

1. Logical view

2. Process view

3. Physical view

4. Development view

This section describes these four views in light of the architecture of the system. The

"+1" part of the model is the scenario view. The scenario view describes sequences

of interactions between processes and between objects. It contains instances of

general use cases which describes the most important requirements. Its purpose is

to identify the architectural elements of a system, and to validate an architectural

design. The view is redundant with the other four views, hence the "+1" [Kruchten

1995]

4.4.1 Logical View

The logical view supports the functional requirements. It focuses on addressing the

end user’s concerns about the system supporting all the desired functionality. The

resulting view is a representation of the system at module or class level. Figure

4.3 shows the logical view for the proposed system. The frontend will have four

views, where all views are designed to lead the user to the CourseDetails view,

where most of the course functionality resides. CourseDetails will have four tabs,

each containing different types of course information.

41 CHAPTER 4. ARCHITECTURE AND DESIGN

Figure 4.3: Logical view

4.4.2 Development View

The development view focuses on the software module organization of the devel-

opment environment [Kruchten 1995]. It describes the architecture that supports

the development process. The stakeholders of the view are software developers and

testers [Rozanski and Woods 2011].

Figure 4.4 shows the system’s development view. The server (backend) will rely on

Python and Django, while the client (frontend) uses JavaScript/React (see Chapter

5). The client and server will communicate over HTTP using REST.

42 CHAPTER 4. ARCHITECTURE AND DESIGN

Figure 4.4: Development view

4.4.3 Process View

A process is a group of actions that together form an executable unit. The process

view attempts to capture the significant processes in the system. The stakeholders

of the process views are the system integrators and developers.

Figure 4.5 shows the process view (in the form of an activity diagram) for approving

a course relation, which is an architectural important process in the system. After

logging in to the system, the user finds one of the two courses in the new course

relation. In the tab containing approved courses, the user searches for the other of

the two course in the new course relation. If that course already exist, the user can

simply click to create the course relation. If that course does not exist, the user first

creates it, and then creates the course relation.

43 CHAPTER 4. ARCHITECTURE AND DESIGN

Figure 4.5: Process view: Approving a course relation

4.4.4 Physical View

The physical view attempts to capture the mapping of software to hardware. The

view focuses on non-functional requirements related to the stability of the sys-

tem, such as availability, reliability and performance. The view is also concerned

with representing the physical connections and separation of nodes in the system

[Kruchten 1995]. The stakeholders of the physical view are system maintainers and

technical administrators.

Figure 4.6 shows the physical view of the system. The client and the server com-

municates with each other over HTTP. Both of them also communicates with the

university authentication system over HTTP. The server comunnicates with the

database over SQL.

44 CHAPTER 4. ARCHITECTURE AND DESIGN

Figure 4.6: Physical view

45 CHAPTER 4. ARCHITECTURE AND DESIGN

Chapter 5

Implementation

This chapter presents how the architecture described in the previous chapter was

implemented. The implementation of the software prototype is split into two sepa-

rate applications - a backend application and a frontend application. The frontend

application is the part that users interact with directly. Backend is the server-side ap-

plication, and is concerned with storing and processing data. The backend is based

on Python1, and the frontend is written in JavaScript2.

5.1 Backend

5.1.1 Database

The system uses PostgreSQL3, a relational SQL database. Figure 5.1 shows an ER

diagram of the schema used in the final prototype. Because of the rapid development

of the prototype, it has throughout the project been attempted to keep the data as

normalized and decoupled as possible. This has made the models easy to edit and

extend.
1https://www.python.org/ (as of April 2, 2017)
2https://www.javascript.com (as of April 2, 2017)
3https://www.postgresql.org/ (as of May 22, 2017)

46

47 CHAPTER 5. IMPLEMENTATION

Figure 5.1: ER Diagram of final prototype

The models are split into two applications (see Section 5.1.2 on the Django frame-

work), where the Courses application is seen as the core application. Relationships

between applications (e.g. foreign keys) are designed to only go one way. This en-

tails that no application can have both incoming and outgoing relations to another

application.

The core model within the course application is the Course model. It has an UUID

[RFC 4122 2005] as its primary key. Additionally, it has a composite key [Elmasri

and Navathe 2016] consisting of university and course_id, where course_id is the

ID that the course is referred to in the course catalogue. The course model also

contains some optional metadata fields, prefixed with "meta_". These fields are

omitted from the ER diagram for brevity, but can be found in the source code of the

prototype.

48 CHAPTER 5. IMPLEMENTATION

5.1.2 Django

Django4 is an open-source Python web framework that was chosen for its maturity,

high modularity and heavy focus on reusability. It is built on the MVC pattern, and

splits its modules into what is referred to as applications.

The project consists of three applications:

• Courses - contains everything related to courses and universities

• Books - contains everything related to curriculum and text analysis

• API - is the foundation for the API, connecting it to the views of the other

applications

Django has many features that allows for rapid development of a prototype. This

section will briefly discuss the most important features that are relevant for this

project.

Django ORM and migrations

Django comes with its own built in Object-Relational Mapping (ORM) [O’Neil

2008]. This allows the developer to perform database operations in Python, without

having to think about the underlying SQL. Additionally, Django has support for

automatic database migrations, making it easy to change the database schema.

Admin panel

In order for the Django ORM to work, a model of the schema must be specified. An

example of such a model can be seen in Listing 1.

4https://www.djangoproject.com (as of April 5, 2017)

49 CHAPTER 5. IMPLEMENTATION

1 class University(models.Model):
2 name = models.CharField(max_length=50)
3 short_name = models.CharField(max_length=10, unique=True)

Listing 1: Example model

Based on this model, Django can automatically generate an admin panel where

users can list all objects, create new objects, and edit or delete existing objects.

This is done by adding the following lines:

1 @admin.register(University)
2 class UniversityAdmin(admin.ModelAdmin):
3 list_display = (’name’, ’short_name’,)

Listing 2: Register example model in admin

The automatically generated admin panel proved incredibly useful throughout the

implementation, because data manipulation and retrieval could be done without

having to interact with the database through code or SQL statements.

Management commands and shell

The system created in this project relies on its content in order to be considered

useful by its users. This content is largely decentralized today, scattered throughout

different spreadsheets and wiki solutions at different faculties and departments. It

must therefore be easy to add large amounts of data through scripts (Section 4.3.2).

Django allows developers to create custom scripts that can be run through the com-

mand line interface (CLI). These scripts have access to the same environment as

the actual server, making it easy to create web scrapers that collects data from other

sources, such as the IME Course API [IME API 2017].

50 CHAPTER 5. IMPLEMENTATION

5.1.3 API

Django REST Framework5 is a Python package for building RESTful APIs [Richard-

son and Ruby 2008] in Django.

The package allows for rapid prototyping of APIs, by using the Django Model as a

foundation for endpoint generation. An example can be seen in Figure 3:

1 class UniversitySerializer(serializers.ModelSerializer):
2 class Meta:
3 model = University
4 fields = (’id’, ’name’, ’short_name’,)

Listing 3: Example Serializer

The viewset in Figure 4 automatically generates API endpoints for creation, dele-

tion, editing and retrieval of model instances. The serializer specifies which fields

to display, and how those fields are validated. All data is serialized and deserialized

as JSON6. The framework also supports permission handling, as can be seen in the

same viewset.
5http://www.django-rest-framework.org/ (as of April 3, 2017)
6http://www.json.org/ (as of April 3, 2017)

51 CHAPTER 5. IMPLEMENTATION

1 class UniversityAPIViewSet(viewsets.ModelViewSet):
2 queryset = University.objects.all()
3 serializer_class = UniversitySerializer
4

5 def get_permissions(self):
6 if self.action in (’list’, ’retrieve’):
7 self.permission_classes = []
8 else:
9 self.permission_classes = [IsAuthenticated,

AdminAccessPermission]↪→

10 return super(UniversityAPIViewSet, self).get_permissions()
11

12 def get_object(self):
13 queryset = self.get_queryset()
14 pk = self.kwargs[self.lookup_field]
15 try:
16 uuid.UUID(pk)
17 obj = get_object_or_404(queryset, pk=pk)
18 except ValueError:
19 obj = get_object_or_404(queryset, short_name=pk)
20

21 self.check_object_permissions(self.request, obj)
22 return obj

Listing 4: Example Viewset

Documentation of a viewset is automatically generated, and is browsable through

any of its own endpoints. A screenshot from the documentation can be seen in

Figure 5.2.

52 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Screenshot of API

5.2 Frontend

5.2.1 React

React7 is a JavaScript frontend library for building user interfaces, developed by

Facebook. It was chosen because of its active community, and component based

philosophy.

The component based structure made it easy to create modular, reusable compo-

nents, something that allowed for rapid prototyping. Because of the active com-

munity, common components are available in support libraries. An example of this

7https://facebook.github.io/react/ (as of April 3, 2017)

53 CHAPTER 5. IMPLEMENTATION

is React-Bootstrap8, a wrapper for the Twitter Bootstrap framework9. Bootstrap

comes with components used to build the Graphical User Interface (GUI) of the

application, such as a CSS grid (i.e. rows and columns), tables, buttons and modals.

This is useful for fast prototyping.

5.2.2 React Boilerplate

In order to quickly get started creating the prototype, React Boilerplate10 was cho-

sen as a foundation for the code base. React Boilerplate takes care of all necessary

configuration, letting the developer quickly get started with the development. Part

of the boilerplate is Webpack11, a module bundler that minifies the code, transpiles

it from JSX12 to ES513, and outputs a small set of files that can be deployed to a

server as static files. The minification allows the code do be downloaded to the

client faster. The transpilation allows the development to be done in JSX, a useful

JavaScript abstraction when working with React.

5.2.3 Redux and Saga

Redux14 is a state container for JavaScript frontend applications that eases the task

of creating systems that behave consistently. This entails managing the global state

of the application, allowing components to share state. Together with Saga15, a

library for handling side effects and assist with asynchronous behaviour, it handles

the global state and data flow throughout the application.

The project is separated into components and containers. Components are simple

reusable components with no global state, while containers are more advanced com-

8https://react-bootstrap.github.io (as of May 11, 2017)
9http://getbootstrap.com/ (as of May 11, 2017)

10https://github.com/react-boilerplate/react-boilerplate (as of May 11, 2017)
11https://webpack.github.io (as of April 3, 2017)
12https://facebook.github.io/react/docs/introducing-jsx.html (as of April 3, 2017)
13http://www.ecma-international.org/memento/TC39.htm (as of April 3, 2017)
14http://redux.js.org (as of April 3, 2017)
15https://redux-saga.js.org/ (as of May 22, 2017)

54 CHAPTER 5. IMPLEMENTATION

ponents connected to the Redux store. Each container consists, in addition to the

actual component, of the following files:

• actions.js: Actions are events that when dispatched, triggers a state change.

An example of an action is LOAD_COURSES, which changes the state of the

application, so that it starts loading courses from the API. All actions relevant

to the container resides in this file.

• reducers.js: While actions describe an event that happens, the reducer de-

scribes how the state changes when a given action is triggered. For example,

if the LOAD_COURSES action is triggered, loading_courses should be set

to true. This file keeps track of state changes triggered by the container’s

actions.

• sagas.js: Sagas are responsible for all side effects and asynchronous be-

haviour within the container. An example of a saga, is one that watches when

the LOAD_COURSES action is triggered (side effect), and starts the API call

that actually loads the courses. All sagas relevant for the container resides in

this file.

• constants.js: All actions have a type attribute which uniquely identifies them

and which they are referred to by, e.g. LOAD_COURSES. To avoid hard

coding these references, they are specified as constants. All such constants

are specified in this file.

• selectors.js: Selectors makes it easier to load data from the Redux data store.

A component that triggers the LOAD_COURSES action, might want to sub-

scribe to the current value of loading_courses and courses (the actual courses)

in the data store. Instead of selecting each of them manually, the selector cre-

ates an abstraction layer that returns a set of values in the data store which are

relevant to each other. In this case loading_courses and courses. All selectors

that are relevant of the container resides in this file.

55 CHAPTER 5. IMPLEMENTATION

5.3 Client-server relationship

This section describes how the client-server architecture proposed in Chapter 4 was

implemented in the prototype. It will first describe how authentication has been im-

plemented, before summarizing how the frontend and backend interacts with each

other.

5.3.1 Authentication

To ensure that only authorized users are able to manipulate data in the database,

the prototype incorporated Dataporten16 as the authentication system. Dataporten

is a OAuth 2.017 service created by Uninett18. By default, the service allows de-

velopers to configure a login for anyone with an educational account in Norway,

but its architecture is designed to also support other institutions. This entails that

a university in e.g. South Africa can start using Dataporten as a login service, by

integrating with Dataporten as a login provider. Uninett is also working on integrat-

ing Dataporten with eduGAIN19, a service for authentication and authorization for

educational federations internationally.

5.3.2 Communication

The frontend and the backend are integrated with Dataporten in two separate ways.

The backend is registered as an API Gatekeeper20, which means that it is registered

as a data source available to Dataporten clients21. The frontend is registered as a

client.

Figure 5.3 illustrates how the frontend and the backend communicates with each

other. This is what happens when an authenticated user creates a new course in the

16https://docs.dataporten.no (as of May 23, 2017)
17https://oauth.net (as of May 23, 2017)
18https://www.uninett.no (as of May 23, 2017)
19https://www.geant.org/Services/Trust_identity_and_security/eduGAIN (as of May 24, 2017)
20https://docs.dataporten.no/docs/apigatekeeper (as of May 24, 2017)
21https://docs.dataporten.no/docs/gettingstarted (as of May 24, 2017)

56 CHAPTER 5. IMPLEMENTATION

frontend:

1. The request to the API is triggered by a Saga.

2. The frontend does not communicate directly with the API, but uses a proxy

provided by Dataporten. This proxy strips the OAuth token of the client, and

provides the API with a temporary token on behalf of the user. The proxy can

also be configured to only allow authenticated requests.

3. When the request reaches the backend, Apache handles the request and passes

it to the API through WSGI22.

4. Django runs the request through all of its middleware, including a custom

Dataporten middleware. This middleware collects the token provided by the

proxy, and makes a request to the Dataporten Groups API using this token23.

This API returns all groups that the user is part of, i.e. what university the

user belongs to, and which faculties and departments it is part of.

5. If the user belongs to the admin group predefined in the Django configuration

file, the requests proceeds, and the course is created.

6. Django returns a Response to Apache via WSGI, which in turn sends that

response through the proxy to the client. The asynchronous Saga resolves,

the the GUI in the client reflects the changes made on the server.

22http://wsgi.readthedocs.io/en/latest/what.html (as of May 24, 2017)
23https://docs.dataporten.no/docs/groups/ (as of May 24, 2017)

57 CHAPTER 5. IMPLEMENTATION

Figure 5.3: System communication

5.4 Data collection

This section describes the process of acquiring a data foundation for the application.

The project relies on having course data from at least two different universities in

order to fully test all the functionality in the prototype. In addition to using NTNU

58 CHAPTER 5. IMPLEMENTATION

as an example university, the University of Waterloo24 will be used as a proof of

concept to test the course link and comparison functionality. Both universities offers

well-documented APIs, which allows for easy data collection.

5.4.1 Dataset from NTNU

The Faculty of Information Technology and Electrical Engineering (IE) at NTNU

offers an API with course data [IME API 2017]. In order to structure the data

the way we wanted (see ER diagram in Figure 5.1), a web parser was created to

fetch data from the API. An overview of the parser can be seen in Figure 5.4. The

parser works by fetching one course from the API at a time. For each course,

it saves the required data, like course code, course description, credits etc. The

course metadata also contains the fields required previous knowledge and recom-

mended previous knowledge. Unfortunately, these fields does not simply contain a

list of course codes, but an unstructured text. When encountering these fields, the

parser uses a regular expression (regex) to extract course codes from the unstruc-

tured text. A CourseRelation is created to represent a dependency link between the

courses.

Course codes at NTNU uses the format [2-4] characters + [2-6] numbers. This

regex can be replaced when using the parser on other APIs.

24https://uwaterloo.ca (as of May 18, 2017)

59 CHAPTER 5. IMPLEMENTATION

Figure 5.4: Parser process

5.4.2 Dataset from another university

University of Waterloo offers an API with all the required course metadata [The

University of Waterloo Open Data API 2017]. A modification of the NTNU parser

were used to gather the data. Only the regex and some of the field names were

changed.

5.5 Curriculum

Functional requirement FR 3 states that the system should support comparison of

courses based on metadata. Web scrapers for getting data about textbooks were

created in order to meet this functional requirement. Textbooks from the publishers

O’Reilly and Person were supported in the prototype, as a proof of concept. The

process of curriculum comparison is detailed in Section 5.7.

60 CHAPTER 5. IMPLEMENTATION

5.6 Course dependency tree

5.6.1 Dependency graph

Several different methods were considered when constructing the relationship that

describes how courses depends on each other, for example how a student needs to

take an introductory course to algorithms before he takes an advanced algorithms

course. The conclusion from this research was to implement this relationship as a

Directed Acyclic Graph (DAG) [Cormen et al. 2009].

A DAG was chosen because of its main attributes:

• The direction of the relationship matters (course A is required in order to take

course B)

• A parent course can never be a child of any of its descendants, as this would

create an endless loop of pre-requisite courses. The relationships must there-

fore be acyclic (if course A is required in order to take course B, course B

cannot be required in order to take course A)

5.6.2 Graph visualization

PlantUML25 was chosen to visually represent course dependencies. This is a lan-

guage that allows users to create UML diagrams. The backend generates a course

dependency tree by fetching it from the database, building the courses and their re-

lationships with PlantUML on the fly. When the PlantUML text string is completed,

the string is encoded and returned to the client as a link to the PlantUML API. This

API decodes the string, and generates the graph as an SVG.

An example of a PlantUML graph, can be seen in Figure 5.5.

25http://www.plantuml.com (as of May 24, 2017)

61 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Dependency visualization for TDT4120

5.7 Course comparison and similarity analysis

This section describes the implementation of the functionality for finding similar

courses and comparing courses. This includes preprocessing course metadata, ap-

plying TF-IDF weighting and using the vector space model to finally calculate sim-

ilarity. The theory behind the information retrieval concepts implemented here, are

described in detail in Section 3.5.

Scikit-learn is an open-source collection of tools for data mining, data analysis and

machine learning26. It provides state-of-the-art Python implementations of many

widely used machine learning algorithms. These are available through an easy-to-

use interface [Pedregosa et al. 2011]. In this project, Scikit-learn has been used to

compare courses, and to search for similar courses given a course as input. This

have been achieved by using the framework’s text preprocessing technology, and

Term Frequency-Inverse Document Frequency (TF-IDF) implementation [Scikit-

learn: Feature extraction documentation 2016].

Natural Language Toolkit (NLTK) is a collection of libraries for working with hu-

man language27. The platform is written in Python, and contains tools for natural

language processing. NLTK’s library for stemming has been used in this project

[Bird, Klein, and Loper 2009]. More details about this is presented in this Section

5.9.
26http://scikit-learn.org (as of May 11, 2017)
27http://www.nltk.org (as of May 11, 2017)

62 CHAPTER 5. IMPLEMENTATION

5.7.1 Stop word removal

Scikit-learn filters out words from a predefined list of stop words. The list contains

309 very common words, like a, at, the and for, and words that do not carry any

meaning28.

5.7.2 Stemming

The implementation features usage of the Porter algorithm. The Porter algorithm is

a well-established suffix removal algorithm [Baeza-Yates and Ribeiro-Neto 2011].

The algorithm applies a series or rules to the words based on a suffix list. Figure 5.6

shows a few examples of suffix removal steps applied by the algorithm.

s→ φ

sses→ ss

f ulness→ f ul

Figure 5.6: A sample of the steps in the Porter suffix-removal algorithm

The algorithm checks if the input word ends with the suffix on the left side of the

equation. By going through its entire list of possible suffixes and performing the

appropriate replacements, the finished terms are all in their base form. The longest

sequence of letters that matches the suffix is used.

28http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words (as of May 11, 2017)

63 CHAPTER 5. IMPLEMENTATION

cats→ cat

stresses→ stress

hope f ulness→ hope f ul

Figure 5.7: Example of words before and after being processed by the Porter algo-

rithm

In the implementation, the PorterStemmer module from NLTK was used. Figure 5.8

shows the course description for TDT4120 Algorithms and Data Structures. This

course description will be used to illustrate the document preprocessing steps.

Methods for analyzing the efficiency of algorithms, divide and conquer tech-

niques, recursive solution methods. Methods for ordering, searching and

sorting. Data structures for efficient retrieval of data, dynamic programming

and greedy algorithms. Data structures for implementing graphs and net-

works, as well as methods for traversals and searches. Algorithms for finding

the best path(s) and matchings, spanning trees and maximum flow. Theory

of problem complexity. Algorithms are expressed in a language independent

fashion.

Figure 5.8: TDT4120 course description

From this it is possible to choose a number of descriptive terms that well represents

what is taught in the course: algorithms, efficiency and methods to name a few. Ide-

ally, any course that contains these index terms should be a good match. However,

if another course has a description containing the index terms algorithm and effi-

cient, no match would be made for these terms. This is where a stemmer is useful.

Applying the Porter algorithm to the description gives the result shown in Figure

5.9. Stop word removal has also been applied in this example.

64 CHAPTER 5. IMPLEMENTATION

method analys effici algorithm divid conquer techniqu recurs solut method

method order search sort data structur effici retriev data dynam program

greedi algorithm data structur implement graph network method travers

search algorithm find best path match span tree maximum flow theori prob-

lem complex algorithm express languag independ fashion

Figure 5.9: Document after stop word removal and stemming

5.7.3 Index term selection

Scikit-learn was also used in the index term selection stage of text preprocessing.

By supplying the max_ f eatures = n argument to the class used for TF-IDF com-

putation, only the top n terms (sorted by TF-IDF value) will be considered in the

comparison. These n terms will effectively act as index terms.

Using max_ f eatures = 10 selects the terms shown in Figure 5.10. Experiments

were made to decide what value to use for n. A set of courses with confirmed simi-

larity (credit reduction) were compared. The results showed that setting max_ f eatures=

None yielded the most consistently good results. None means that all features

should be considered.

algorithm data effici method network np problem search structur techniqu

Figure 5.10: Document after index term selection

5.7.4 TF-IDF and cosine similarity calculation

The TF-IDF computation is done by the TfidfVectorizer class. Listing 5 shows an

extract of the implementation for finding similar courses.

Line 9 passes in the entire document collection, and results in a weighted document-

term matrix. The matrix is used in line 12 to calculate the cosine of the angle be-

tween the base course and the other courses. A one-dimensional matrix is the result

65 CHAPTER 5. IMPLEMENTATION

of this calculation, where the n-th element is the similarity of the base course and

the n-th course. In this example, a rank of the top 20 similar courses are retrieved,

as seen at line 15.

1 # Initialize
2 vect = TfidfVectorizer(
3 stop_words=’english’,
4 analyzer=’word’,
5 max_features=20,
6)
7

8 # Learn vocabulary and idf. Return term-document matrix
9 tfidf = vect.fit_transform(all_courses_content)

10

11 # Do vector space model calculations
12 result_vector = (tfidf * tfidf.T).A[base_course_index]
13

14 # Get indexes of top n results
15 top_results_indexes = sorted(range(len(result_vector)),
16 key=lambda i: result_vector[i])[-n+1:]

Listing 5: TF-IDF computation using Scikit-learn

The process of preprocessing the document collection and computing TF-IDF, is

expensive and time consuming. Django’s caching module has therefore been used

actively to increase performance and decrease server load.

Chapter 6

Results

This chapter contains the results yielded from the implementation and testing of the

prototype. Firstly, it goes through the list of functional and quality requirements,

describing the status of each. Secondly, it will describe the performance and results

of the course similarity algorithm. Lastly, it will summarize the findings derived

from the final round of usability testing and interviews.

6.1 Requirement results

This section gives an overview of which functional and architectural requirements

were covered, and which were not implemented. The requirements that were not

covered will be discussed in detail.

6.1.1 Functional requirements

Figure 6.1 gives an overview of the status of each functional requirement after the

implementation of the prototype. Two requirements were not implemented, and one

requirement requires further elaboration:

66

67 CHAPTER 6. RESULTS

FR Implemented Comment

FR1 Partially 1.4 was not implemented due to time constraints

FR2 Partially

2.2 was not implemented in the frontend. Super

admins can however edit universities via Django

Admin

FR3 Yes -

FR4 Yes -

FR5 Yes* See details below

FR6 Yes -

FR7 Yes -

Table 6.1: Functional requirements covered in prototype implementation

FR1.4: Functionality for adding notes to courses was not added due to time con-

straints. This is still a requested feature from several student counselors, and some-

thing that should be implemented if the actual system is developed.

FR2.2: Allowing admins to edit universities was left out of the prototype due to

time constraints. As noted in the table, it is still possible to edit universities through

the Django admin panel.

FR5.1: It can be argued that this requirement would be better suited as a quality

requirement, as it is possible to support this requirement to a certain degree (e.g.

70% of all universities). As mentioned in Section 5.3.1, Dataporten was chosen

when implementing this requirement. This solution solved the problem for NTNU,

and supports a large part of the universities word wide through eduGAIN1. Because

eduGAIN is open to other federations (i.e. universities) joining, this requirement is

still regarded as successfully implemented.

1https://technical.edugain.org/status.php (May 27, 2017)

68 CHAPTER 6. RESULTS

6.1.2 Quality requirements

Only half of the quality requirements established in Section 4.3.2 are regarded as

successful. Figure 6.2 illustrates the status of reach requirement:

QR Success Comment

U1 Yes -

U2 Yes -

M1 No Not tested

M2 Yes -

M3 No Not tested

I3 Yes
This was tested when implementing

the frontend of the prototype

Table 6.2: Functional requirements covered in prototype implementation

M1 was not tested due to time constraints. It is worth noting that data from two dif-

ferent APIs were loaded into the database through scripts during implementation of

the prototype. On both occasions, this was done within the given response measure

of the requirement.

M3 was not tested due to time constraints. During the development of the proto-

type, parts of the algorithm was changed on several occasions. Changing the entire

algorithm was never needed.

6.2 Course similarity results

This section will present how the course comparison functionality of the system

was tested, as well as results from these tests. In order to evaluate how accurate the

course similarity suggestions are, lists of courses that have already been approved

by a student counselor will be used. The lists used in this section are available from

69 CHAPTER 6. RESULTS

the wiki page on exchange, maintained by student counselors at IDI2. The wiki

page contains lists of course pairs, where one is a NTNU course and the other is an

exchange course. This will serve as a baseline for evaluating the performance of the

course similarity functionality.

Table 6.3 shows a set of courses from NTNU Gjøvik (left column), and their ap-

proved counterpart at NTNU (middle column). Only courses with sufficient data

foundation were included in the tests. The right column shows the similarity sug-

gestion made by the comparison algorithm. The comparison does not include cur-

riculum. The testing yielded mostly good results, with five out of seven comparisons

suggesting over 50% similarity. Based on the results from this test, we assume that

50% similarity is a good threshold for assuming that two courses are similar.

To attempt to explain why the bottom two comparisons yielded a low percentage

suggestion, their metadata was manually evaluated. It was discovered that the

courses IMT3441 and TDT4145 have little in common based on their course de-

scription and learning goals. TDT4145 is a course with focus on database theory,

while IMT3441 is more of a "hands-on" practical course. The similarity suggestion

of 38.69% might be reasonable. The same can be said for IMT4751 and TTM4135,

which have considerable differences. It is worth noting that both these course pairs

are entered into the wiki article with a credit reduction.
2https://www.ntnu.no/wiki/pages/viewpage.action?pageId=78024468 (as of May 25, 2017)

70 CHAPTER 6. RESULTS

Course A Course B
Suggested
similarity

IMT2243

Software Engineering

TDT4140

Software Engineering
82.53%

IMT2282

Operating Systems

TDT4186

Operating Systems
75.30%

IMT1082

Objectoriented Programming

TDT4102

Procedural and Object-Oriented

Programming

67.73%

IMT2021

Algorithmic Methods

TDT4120

Algorithms and Data Structures
61.11%

IMT2521

Network Administration

TTM4100

Communication, Services, Network
53.00%

IMT3441

Database and application

administration

TDT4145

Database Management Systems
38.69%

IMT4751

Wireless communication security

TTM4135

Information Security
26.18%

Table 6.3: NTNU Gjøvik comparison results

Table 6.4 shows the results from testing the course comparison functionality on

courses from University of California. Course descriptions, learning goals and any

available metadata were manually entered into the system. Again, the results were

satisfactory, with the lowest similarity suggestion at 49.55% and an average of ap-

proximately 62%.

71 CHAPTER 6. RESULTS

Course A Course B
Suggested
similarity

ECON 173A

Financial Markets

TIØ4145

Corporate Finance
74.94%

ECON 106

Microeconomics

TIØ4117

Microeconomics
66.74%

CS 420.1

Fundamentals of Information System Security

TTM4135

Information Security
65.44%

MAE 119

Introduction to Renewable Energy

TEP4175

Design of a Wind Turbine
56.10%

MGMT 497.610

Developing a Business Plan

TIØ4250

Entrepreneurship
49.55%

Table 6.4: University of California comparison results

As mentioned in Chapter 5, the system has functionality for using curriculum as a

component in the comparison. However, finding the curriculum a course is using is

not trivial, and is often not available for non-students. Testing of this functionality

was therefore limited. Three course pairs where both courses had available curricu-

lum lists were found. Table of contents of the books were used in the testing. The

results shows that the comparison actually returns a lower similarity score without

curriculum, than it does with.

72 CHAPTER 6. RESULTS

Course A Course B
Without

curriculum
With

curriculum

CS420.1

Fundamentals of

Information System Security

TTM4135

Information Security
65.40% 49.51%

CS 151C

Design of Digital Systems

TDT4240

Software Architecture
50.72% 30.77%

INFR08014

Object-Oriented

Programming

TDT4100

Object-Oriented

Programming

51.59% 50.89%

Table 6.5: Comparison with and without curriculum

To verify that the comparison functionality does not report any false positives, a

number of tests on courses that are not similar were ran. The courses were selected

by going over their curriculum and available metadata, and verifying that they have

little or nothing in common. Table 6.6 shows the results of the tests. At most, a

suggested similarity of 4.3% were reported. The results were satisfactory, and no

false positives were given.

73 CHAPTER 6. RESULTS

Course A Course B
Suggested
similarity

TEP4100

Fluid Mechanics

TTT4145

Radio Communications
4.30%

AE302010

Business economics

TDT4120

Algorithms and Data Structures
3.12%

TKP4110

Chemical Reaction Engineering

TDT4240

Software Architecture
2.57%

IB204112

Road construction

ANT1101

Ancient History
0.55%

FY1001

Mechanical Physics

PSY1014

Social Psychology I
0.48%

TMA4100

Calculus 1

AFR2850

Modern African History
0.30%

JAP0502

Japanese II

MA2401

Geometry
0.10%

Table 6.6: Non-similar courses

6.3 Evaluation of prototype

To evaluate the software prototype, interviews were set up with two student coun-

selors and one employee from the Office of International Relations at NTNU. The

first part of the interview was a usability test, where the subjects were explained

the purpose of the system, and then presented with the same tasks as in the paper

prototype test (see Section 4.2.2). The second part was an unstructured interview,

with the following prearranged questions:

• What is your impression of the system?

• Would you use it?

74 CHAPTER 6. RESULTS

• What must be done to get your colleagues to use it?

The overall impressions from the subjects were positive. They all stated that the

system would require little or no improvements before being ready to use. One

of the student counselors stated that the system also would be useful for students

searching for courses to take, because they would be able to browse courses previ-

ously approved at the university they are researching. All subjects stated that they

thought colleagues would be interested in using it. The interviews did however un-

cover some shortcomings of the system. Below is a list of improvements suggested

by the subjects:

Course relation comments: Two of the subjects pointed out that it should be pos-

sible to comment on a course relation, in addition to commenting on courses. There

is often a reasoning behind why a course link gets approved, and this is useful in-

formation for other counselors as well.

Course relation cardinality: It was pointed out that course relations are not neces-

sarily a 1-1 relation. Often due to credits mismatch, there might not be a course at

university A that can be counted as similar to a course on university B. The course

relation should therefore be changed to 1-n.

More detailed course dependency tree: The current tree shows all courses that

a given course depends upon. Often, a course C is only dependent upon one of a

group of courses A or B. This should be incorporated into both the database and the

graphical representation of the dependency tree.

More options when searching for similar courses: Both student counselors men-

tioned that it would be useful with a more detailed search, when searching for sim-

ilar courses. Students often know which country they want to study in, so it would

be useful to filter on similar courses by country.

Credits conversion: As mentioned in Section 3.3.1, NTNU has a database (GNAG)

for keeping track of how many credits a semester at a foreign university is worth,

in order to be able to compare them with semesters at NTNU. This allows them to

75 CHAPTER 6. RESULTS

compare the number of credits of a foreign course with a course at NTNU. It was

suggested to add support for automatically calculating the number of NTNU credits

of a given foreign course.

Integrate with the Office of International Relations’ database: The last sug-

gestion was to incorporate the system with the Office of International Relations’

database over approved courses.

Chapter 7

Conclusion

7.1 Conclusion

This project has identified that there is a need for a digital tool for counseling po-

tential exchange students, and explored what those needs are. Through interviews

and a questionnaire we have collected relevant data to support this statement. Fur-

thermore, the project has collected data in order to properly derive the requirements

for such a system. Based on these requirements, a working prototype has been

created.

The testing shows that the functionality for automatically determining course simi-

larity yielded good results. Automating the process of course comparison is possi-

ble, but the accuracy of the results are not perfect. False negatives and false positives

will occur occasionally. The similarity suggestions should be used as a basis for de-

termining similarity, and not as a solution. The use of curriculum in the comparison

process should be further researched.

As such we consider the project to be successful, and hope that it can be useful for

student counselors in the future.

76

77 CHAPTER 7. CONCLUSION

7.2 Limitations of the current solution

This section describes limitations of the prototype and the research project.

Real world usage: In order for student counselors to start using the system, all their

existing data have to imported. Although the system has a well-defined interface

for importing data from APIs, spreadsheets and other data sources, the amount of

work that needs to be put into this transition might not be for everyone. Student

counselors might feel that the overhead of getting started with the system is too

much.

Prototype performance: The prototype exhibits problems with performance as the

amount of data grows.

Survey breadth: A sample size of 17 respondents might not be enough to repre-

sent the entire population of student counselors. The system requirements and the

resulting prototype are to a large degree based on the knowledge acquired from the

respondents.

7.3 Future work

There is still work to be done before the system can be considered complete. The

feedback gathered from the interviews in Section 6.3 should be formalized into

additional requirements, and implemented. Additionally, the following features

should be considered:

Performance improvements: Searching for courses will scale poorly as the course

database grows. Indexing courses by their course_id and name should improve

this. A task queue should be considered for running resource intensive tasks such

as preprocessing of courses.

The algorithm that generates the course dependency tree should be rewritten to re-

duce its runtime. The algorithm grew in complexity during the development of the

prototype, and is currently performing poorly for large trees. This is largely due to

a suboptimal implementation of transitive reduction (i.e. remove transitive course

78 CHAPTER 7. CONCLUSION

dependencies), where it should be possible to reduce the runtime to O(V (V +E)).

This should be researched and implemented.

Implement with other groups: In parallel with this project, two other projects

with the same student counselors as this project have been worked on. All projects

were related to each other, where one of them specialized in course comparison.

That project has been conducted by Audun Liberg (NTNU). The results from the

research has not yet been published, but should be studied when complete.

Usability improvements: Even though all usability requirements were successfully

supported, there are still improvements that should be done to the user interface.

Generally, the design should be reworked to be more consistent and user friendly

than the current implementation.

79 CHAPTER 7. CONCLUSION

,,

Bibliography

NTNU merging with HiAls HiG and HiST (2016). URL: http://www.ntnu.edu/

ntnu-merges-with-university-colleges (visited on 05/05/2016).

NTNU merge FAQ (2016). URL: https://www.ntnu.no/fusjon/faq (visited on

05/05/2016).

NTNU list of subjects (2016). URL: https://www.ntnu.no/studier/emner

(visited on 05/05/2016).

Oates, Briony J (2006). Researching Information Systems and Computing. SAGE

Publications Inc.

Gill, P. et al. (2008). “Methods of data collection in qualitative research: interviews

and focus groups”. In: British Dental Journal, pp. 291–295.

Oppenheim, A. (2000). Questionnaire design, interviewing and attitude measure-

ment. Continuum.

Wohlin, Claes et al. (2000). Experimentation in Software Engineering: An Introduc-

tion. Norwell, MA, USA: Kluwer Academic Publishers. ISBN: 0-7923-8682-5.

Wright, Kevin B. (2005). “Researching Internet-Based Populations: Advantages

and Disadvantages of Online Survey Research, Online Questionnaire Author-

ing Software Packages, and Web Survey Services”. In: Journal of Computer-

Mediated Communication 10.3, pp. 00–00. ISSN: 1083-6101. DOI: 10.1111/j.

80

http://www.ntnu.edu/ntnu-merges-with-university-colleges
http://www.ntnu.edu/ntnu-merges-with-university-colleges
https://www.ntnu.no/fusjon/faq
https://www.ntnu.no/studier/emner
http://dx.doi.org/10.1111/j.1083-6101.2005.tb00259.x
http://dx.doi.org/10.1111/j.1083-6101.2005.tb00259.x

81 BIBLIOGRAPHY

1083-6101.2005.tb00259.x. URL: http://dx.doi.org/10.1111/j.1083-

6101.2005.tb00259.x.

Snyder, C. (2003). Paper Prototyping: The Fast and Easy Way to Design and Refine

User Interfaces. ITPro collection. Morgan Kaufmann. ISBN: 9781558608702.

URL: https://books.google.no/books?id=YgBojJsVLGMC.

ISO (2010). ISO 9241-210:2010. International Organization for Standardization.

URL: https://www.iso.org/standard/52075.html.

Innsida (2017). Utenlandsstudier. URL: https://innsida.ntnu.no/utenlandsstudier

(visited on 05/26/2017).

Kommunikasjonsavdelingen (2014). NTNUs internasjonale handlingsplan. URL:

http://www.ntnu.no/documents/10137/981312606/internasjonal-

handlingsplan-ntnu.pdf/ (visited on 04/11/2017).

Manning, Christopher, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduc-

tion to Information Retrieval. Cambridge University Press.

Baeza-Yates, Ricardo and Berthier Ribeiro-Neto (2011). Modern Information Re-

trieval: The Concepts and Technology behind Search. second. Addison-Wesley

Professional.

Salton, Gerard and Christopher Buckley (1988). “Term-weighting Approaches in

Automatic Text Retrieval”. In: Inf. Process. Manage. 24.5, pp. 513–523. ISSN:

0306-4573. URL: http://dx.doi.org/10.1016/0306-4573(88)90021-0.

Rozanski, N. and E. Woods (2011). Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. second. Addison-Wesley Pro-

fessional.

Bass, Len (2012). Software Architecture in Practice. Addison-Wesley Professional.

http://dx.doi.org/10.1111/j.1083-6101.2005.tb00259.x
http://dx.doi.org/10.1111/j.1083-6101.2005.tb00259.x
http://dx.doi.org/10.1111/j.1083-6101.2005.tb00259.x
http://dx.doi.org/10.1111/j.1083-6101.2005.tb00259.x
https://books.google.no/books?id=YgBojJsVLGMC
https://www.iso.org/standard/52075.html
https://innsida.ntnu.no/utenlandsstudier
http://www.ntnu.no/documents/10137/981312606/internasjonal-handlingsplan-ntnu.pdf/
http://www.ntnu.no/documents/10137/981312606/internasjonal-handlingsplan-ntnu.pdf/
http://dx.doi.org/10.1016/0306-4573(88)90021-0

82 BIBLIOGRAPHY

Kruchten, Philippe (1995). “The 4+1 View Model of Architecture”. In: IEEE Softw.

12.6, pp. 42–50. ISSN: 0740-7459. DOI: 10.1109/52.469759. URL: http:

//dx.doi.org/10.1109/52.469759.

RFC 4122 (2005). URL: https://tools.ietf.org/html/rfc4122 (visited on

03/21/2017).

Elmasri, Ramez and Shamkant B. Navathe (2016). Fundamentals of Database Sys-

tems, Global Edition. Global. Pearson Education Limited. ISBN: 9781292097619.

O’Neil, Elizabeth J. (2008). “Object/Relational Mapping 2008: Hibernate and the

Entity Data Model (Edm)”. In: Proceedings of the 2008 ACM SIGMOD Interna-

tional Conference on Management of Data. SIGMOD ’08. Vancouver, Canada:

ACM, pp. 1351–1356. ISBN: 978-1-60558-102-6. DOI: 10 . 1145 / 1376616 .

1376773. URL: http://doi.acm.org/10.1145/1376616.1376773.

IME API (2017). URL: http://www.ime.ntnu.no/api/ (visited on 02/15/2017).

Richardson, Leonard and Sam Ruby (2008). RESTful web services. " O’Reilly Me-

dia, Inc."

The University of Waterloo Open Data API (2017). URL: https://uwaterloo.

ca/api/ (visited on 02/20/2017).

Cormen, Thomas H. et al. (2009). Introduction to Algorithms, Third Edition. 3rd.

The MIT Press. ISBN: 9780262033848.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12, pp. 2825–2830.

Scikit-learn: Feature extraction documentation (2016). URL: http://scikit-

learn.org/stable/modules/feature_extraction.html#tfidf-term-

weighting (visited on 04/15/2017).

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural Language Processing

with Python. 1st. O’Reilly Media, Inc. ISBN: 9780596516499.

http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
https://tools.ietf.org/html/rfc4122
http://dx.doi.org/10.1145/1376616.1376773
http://dx.doi.org/10.1145/1376616.1376773
http://doi.acm.org/10.1145/1376616.1376773
http://www.ime.ntnu.no/api/
https://uwaterloo.ca/api/
https://uwaterloo.ca/api/
http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting

Appendix A

Setup

This document describes how to set up the applications. The project consists of two

applications; a frontend application and a backend application.

The project requires that the following system dependencies are installed:

• Python 3.5

• Node.js

• Virtualenv

A.1 Backend

1. Create and activate a Virtualenv:

$ virtualenv -p /usr/bin/python3.5 env

$ source env/bin/activate

2. Install dependencies:

$ pip install -r requirements.txt

3. Copy the dev-template.env template file to .env

4. Run database migrations:

$ python manage.py migrate

83

84 APPENDIX A. SETUP

5. Populate database:

$ python manage.py loaddata coursedump.json booksdump.json

6. Start server:

$ python manage.py runserver

7. To create a admin superuser:

$ python manage.py createsuperuser

Visit the admin panel at: http://localhost:8000/admin

A.2 Frontend

1. Install dependencies:

$ npm install

2. Start the client:

$ npm start

3. The frontend application can be reached at: http://localhost:3000

Appendix B

API documentation

The RESTful methods provided by the API are listed here.

Resource Path Method Result

Books /books GET Returns all books

Books /books/{id} GET Returns the book with the

specified id

Books /books/{id1}/compare/{id2} GET Returns the similarity of

books with id1 and id2

Table B.1: Endpoints for Books

85

86 APPENDIX B. API DOCUMENTATION

Resource Path Method Result

Courses /courses GET Returns all courses

Courses /courses/{id} GET Returns the course with

the specified id

Courses /courses/{id1}/compare/{id2} GET Compares course with

id1 and course with id2,

and returns comparison

data

Courses /courses/{id}/find_similar GET Returns a ranked list of

similar courses

Courses
/courses/{id}/find_similar/

{uni_name}
GET Returns a ranked list of

similar courses, limited

to university with name

uni_name

Courses
/courses/{id1}/

add_prerequisite/{id2}
POST Add course with id2 as

a prerequisite for course

with id1

Courses
/courses/{id1}/

remove_prerequisite/{id2}
DELETE Remove course with

id2 as a prerequisite for

course with id1

Courses /courses/{id1}/approve/{id2} POST Approve course with

id1 as a verified similar

course as course with id2

Courses
/courses/{id1}/

remove_approve/{id2}
DELETE Remove approval of

course with id1 as a

verified similar course as

course with id2

Courses /courses/search/?q={text} GET Search for course with

name or course_code text

Table B.2: Endpoints for Courses

87 APPENDIX B. API DOCUMENTATION

Resource Path Method Result

Books /books GET Returns all books

Books /books/{id} GET Returns the book with the

specified id

Books /books/{id1}/compare/{id2} GET Returns the similarity of

books with id1 and id2

Table B.3: Endpoints for University

88

89 APPENDIX C. QUESTIONNAIRE

Appendix C

Questionnaire

C.1 Questions

90 APPENDIX C. QUESTIONNAIRE

91 APPENDIX C. QUESTIONNAIRE

Figure C.1: The questionnaire

92 APPENDIX C. QUESTIONNAIRE

C.2 Results

This section contains the results from the questionnaire. 17 study counselors an-

swered the questionnaire.

What kind of counseling best describes what you are working
with?

0 1 2 3 4 5

Other

General

Specific field of study

Exchange

Technical

4

6

3

4

0

Number of student counselors

Figure C.2: Results (1)

93 APPENDIX C. QUESTIONNAIRE

How many hours a week do you spend comparing courses?

0-2 hours 3-8 hours More than 8 hours

0

5

10

13

4

0

N
um

be
r

of
st

ud
en

tc
ou

ns
el

or
s

Figure C.3: Results (2)

How does your organization store documentation about subjects
taken by students during exchange semesters, for example which
NTNU course best correspond to a course from another univer-
sity?

94 APPENDIX C. QUESTIONNAIRE

1 2 3 4 5

Other

Not saved

Own system

Text document

Wiki

5

3

4

1

3

Student counselors

Figure C.4: Results (3)

To what degree would a tool that illustrates required prerequisite
knowledge for courses make your work day more efficient?

3 4 5 6 7 8 9 10

To a small degree

To some degree

To a large degree

4

10

3

Student counselors

Figure C.5: Results (4)

95 APPENDIX C. QUESTIONNAIRE

To what degree would a tool that automatically compares courses
based on their curriculum make your work day more efficient?

0 1 2 3 4 5 6 7 8 9 10 11 12

To a small degree

To some degree

To a large degree

1

11

5

Student counselors

Figure C.6: Results (5)

Course comparison: On a scale from 1 to 5, how important is
course descriptions when comparing two courses?

1 2 3 4 5

0

2

4

6

8

10

12

0 0 0

5

12

A
nt

al
lv

ei
le

de
re

Figure C.7: Results (6)

96 APPENDIX C. QUESTIONNAIRE

Course comparison: On a scale from 1 to 5, how important is it
that the courses have equal prerequisite requirements?

1 2 3 4 5

2

3

4

5

6

2

3

6

4

2

A
nt

al
lv

ei
le

de
re

Figure C.8: Results (7)

97 APPENDIX C. QUESTIONNAIRE

Course comparison: On a scale from 1 to 5, how important is
course curriculum when comparing two courses?

1 2 3 4 5

0

2

4

6

8

10

0
1

5

10

1

A
nt

al
lv

ei
le

de
re

Figure C.9: Results (8)

98 APPENDIX C. QUESTIONNAIRE

Course comparison: If you compare courses based on other pa-
rameters than those given above, please specify what they are and
how important they are.

Figure C.10: Results (9)

Appendix D

Paper prototype

Figure D.1: Frontpage

99

100 APPENDIX D. PAPER PROTOTYPE

Figure D.2: Course details: General

101 APPENDIX D. PAPER PROTOTYPE

Figure D.3: Course details: Curriculum

102 APPENDIX D. PAPER PROTOTYPE

Figure D.4: Course details: Similar courses

103 APPENDIX D. PAPER PROTOTYPE

Figure D.5: Find similar courses

104 APPENDIX D. PAPER PROTOTYPE

Figure D.6: Find similar courses results

105 APPENDIX D. PAPER PROTOTYPE

Figure D.7: Compare courses

106 APPENDIX D. PAPER PROTOTYPE

Figure D.8: Compare courses - description

107 APPENDIX D. PAPER PROTOTYPE

Figure D.9: Compare courses - curriculum

108

109 APPENDIX E. SCREENSHOTS OF THE FINAL SYSTEM

Appendix E

Screenshots of the final system

Figure E.1: Course list

110 APPENDIX E. SCREENSHOTS OF THE FINAL SYSTEM

Figure E.2: Course details

Figure E.3: Course details - curriculum

111 APPENDIX E. SCREENSHOTS OF THE FINAL SYSTEM

Figure E.4: Course details - similar courses

Figure E.5: Course details - approved courses

112 APPENDIX E. SCREENSHOTS OF THE FINAL SYSTEM

Figure E.6: Search for similar courses on a given university

Figure E.7: Result of search

113 APPENDIX E. SCREENSHOTS OF THE FINAL SYSTEM

Figure E.8: Compare courses

114 APPENDIX E. SCREENSHOTS OF THE FINAL SYSTEM

Fi
gu

re
E

.9
:E

xa
m

pl
e

of
a

la
rg

e,
ge

ne
ra

te
d

de
pe

nd
en

cy
tr

ee
.N

ot
e

th
at

th
es

e
ar

e
bo

th
re

qu
ir

ed
an

d
op

tio
na

lc
ou

rs
e

de
pe

nd
en

ci
es

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Motivation
	Research questions
	Contributions
	Thesis structure

	Research method
	Interview
	Questionnaire
	Prototype
	Paper prototype
	Software prototype

	Prestudy
	Questionnaire
	Distribution and response
	Results from questionnaire

	Interviews
	Summary of questionnaire and interviews
	NTNU
	Universities in general

	Similar systems
	Theory
	Vector space model
	Term weighting
	Document preprocessing

	Architecture and design
	Stakeholders and concerns
	Student
	Student counselor
	Lecturer
	System maintainer
	University

	Paper prototype
	Design of the paper prototype
	Evaluation of the paper prototype

	Architectural requirements
	Functional requirements
	Quality requirements
	Business requirements

	Selection of Architectural Views
	Logical View
	Development View
	Process View
	Physical View

	Implementation
	Backend
	Database
	Django
	API

	Frontend
	React
	React Boilerplate
	Redux and Saga

	Client-server relationship
	Authentication
	Communication

	Data collection
	Dataset from NTNU
	Dataset from another university

	Curriculum
	Course dependency tree
	Dependency graph
	Graph visualization

	Course comparison and similarity analysis
	Stop word removal
	Stemming
	Index term selection
	TF-IDF and cosine similarity calculation

	Results
	Requirement results
	Functional requirements
	Quality requirements

	Course similarity results
	Evaluation of prototype

	Conclusion
	Conclusion
	Limitations of the current solution
	Future work

	Bibliography
	Appendix Setup
	Backend
	Frontend

	Appendix API documentation
	Appendix Questionnaire
	Questions
	Results

	Appendix Paper prototype
	Appendix Screenshots of the final system

