
Evolving artificial neural networks for
cross-adaptive audio effects

Iver Jordal

Master of Science in Computer Science

Supervisor: Gunnar Tufte, IDI
Co-supervisor: Øyvind Brandtsegg, IM

Department of Computer Science

Submission date: January 2017

Norwegian University of Science and Technology

i

Abstract

Cross-adaptive audio effects have many applications within music technology, including for

automatic mixing and live music. Commonly used methods of signal analysis capture the

acoustical and mathematical features of the signal well, but struggle to capture the musical

meaning. Together with the vast number of possible signal interactions, this makes manual

exploration of signal interactions difficult and tedious. This project investigates Artificial

Intelligence (AI) methods for finding useful signal interactions in cross-adaptive audio effects.

A system for doing signal interaction experiments and evaluating their results has been

implemented. Since the system produces lots of output data in various forms, a significant

part of the project has been about developing an interactive visualization tool which makes it

possible to evaluate results and understand what the system is doing. The overall goal of the

system is to make one sound similar to another by applying audio effects. The parameters

of the audio effects are controlled dynamically by the features of the other sound. The

features are mapped to parameters by using evolved neural networks. NeuroEvolution of

Augmenting Topologies (NEAT) is used for evolving neural networks that have the desired

behavior. Experiments show that this approach is successful.

Contents

Abstract . i

1 Introduction 3

2 Background Information 7

2.1 Genetic Algorithms . 7

2.2 Artificial Neural Networks . 8

2.3 Neuroevolution . 9

2.4 NeuroEvolution of Augmenting Topologies (NEAT) 9

2.5 Multi-Objective Evolutionary Algorithms . 9

2.6 Audio Feature Extraction Tools . 10

2.7 Audio Effects . 10

2.7.1 Modified Hyperbolic Tangent . 10

2.7.2 Low-Pass Filter . 11

2.7.3 Band-Pass Filter . 12

2.7.4 Amplitude Modulation . 12

2.7.5 Bit Reduction . 13

2.7.6 Chorus . 13

2.8 Audio Processing Tools . 14

2.9 Specialization Project . 14

2.9.1 Output Activation Functions . 15

2.9.2 Fitness Functions . 15

2.9.3 Automatic Feature Selection . 19

iii

iv CONTENTS

3 Methods and Implementation 21

3.1 Evolving Neural Networks . 21

3.2 Implementation . 22

3.2.1 Performance . 22

3.2.2 Neuroevolution Routine . 23

3.2.3 Input Standardization . 25

3.2.4 Parameter Mapping . 25

3.2.5 Audio Effects . 25

3.2.6 Data Augmentation . 26

3.2.7 Live Mode . 26

3.3 Visualization . 27

4 Experiments and Discussion 33

4.1 General Configuration . 34

4.2 Experiment 1 . 35

4.2.1 Configuration . 35

4.2.2 Results and Evaluation . 35

4.3 Experiment 2 . 36

4.3.1 Configuration . 36

4.3.2 Results and Evaluation . 38

4.4 Experiment 3 . 39

4.4.1 Configuration . 40

4.4.2 Results and Evaluation . 41

4.5 Experiment 4 . 42

4.5.1 Configuration . 42

4.5.2 Results and Evaluation . 43

4.5.3 Neuroevolution Analysis . 44

4.6 Experiment 5 . 48

4.6.1 Configuration . 48

4.6.2 Results and Evaluation . 51

CONTENTS 1

5 Conclusion 55

5.1 Future Work . 56

Acknowledgments . 58

Bibliography 59

A Open Source Toolkit 65

B Neuroevolution Application Dependencies 67

C JavaScript Libraries Used in Interactive Visualization Application 69

D Paper Published in Proceedings of the 2nd AES Workshop on Intelligent

Music Production 71

Chapter 1

Introduction

For decades, music technology has made music more appealing by applying audio effects,

which are processing techniques that alter audio so that it sounds different. For example,

one common audio effect in rock music is distortion on the electric guitars, which will make

them sound “fuzzy” instead of “clean”. Some audio effects become more appealing when their

parameters are changed over time. For example, there is the auto-wah effect, which essentially

is a peaking filter, which amplifies a specific frequency and cuts off other frequencies. The

volume of the input is used to dynamically control the cutoff frequency of the filter. When

the cutoff frequency is swept from low to high, it sounds like “wah”, hence the name auto-

wah. The auto-wah effect is an example of an adaptive audio effect (Verfaille et al., 2006).

Since meaningful interactions between musical elements can make music more interesting and

appealing, cross-adaptive audio effects were invented. In this class of audio effects, parameters

are dynamically informed by features of other sounds. In the 1960s, Stockhausen presented

one of the first cross-adaptive audio effects in his composition “Hymnen” (Moritz, 2003),

where he, amongst other things, modulated the rhythm of one anthem with the harmony of

another anthem. Sidechain compression is a more recent example of a cross-adaptive audio

effect. In that technique, the amplitude of one sound controls the gain reduction parameter in

the compressor that is applied to a different sound. In electronic music, sidechain compression

is often used to let the volume of the bass drum turn down the volume of the bass synth.

This is done to avoid conflicts between the bass drum and the bass synth, and also provides

a pulsating, rhythmic dynamic to the sound (Colletti, 2013). Further, cross-adaptive audio

3

4 CHAPTER 1. INTRODUCTION

effects have been used in algorithms for mixing multichannel audio (Reiss, 2011) and voice-

controlled synthesizers (Cartwright and Pardo, 2014). Generally, cross-adaptive audio effects

can be applied in a wide range of research fields, including live music performance and audio

mastering. Current research at the Music Technology department at Norwegian University of

Science and Technology aims at exploring radically new modes of musical interaction in live

music performance. In 2015, Øyvind Brandtsegg presented a toolkit for experimenting with

signal interaction. This toolkit enables one to find musically interesting signal interactions

by empirical experimentation. However, this can be tedious due to the vast number of

combinations. Also, while most low-level audio features are mathematically and acoustically

well defined, it’s hard to use them for musically interesting cross-adaptive audio effects. One

often needs to combine several audio features in complex ways. An audio feature can be

linked to any effect parameter, and the mapping function can be anything. A setup can have

many instruments, lots of audio effects, and the ordering of the effects may vary. Indeed,

Brandtsegg’s suggestions for future work includes “practical and musical exploration of the

technique, and the mapping between sound features and effects controls”. As cross-adaptive

audio effects are relatively uncharted territory, methods to evaluate various cross-couplings

of features have not been formalized. There is a need for a tool that can help efficiently

search for useful mappings in those huge search spaces. That was the spark of this project.

In practice, a music performance that uses cross-adaptive audio effects can be a very

complex, dynamic system with many signal interactions. However, to limit the scope and

complexity of the problem, this project will study signal interactions between only two sounds

at a time: an input sound and a target sound. A single audio effect is applied to the input

sound. The parameters of this effect are dynamically informed by features from the target

audio. The goal of the tool implemented in this project is to make interesting mappings

from target audio analysis to audio effect parameters. Brandtsegg (2015) suggested that

machine learning can be useful in this context. Generally, for a machine learning problem

to be well-defined, a performance measure is needed. A good performance measure would

be “how appealing does it sound?”. However, what generally sounds appealing to humans

is tacit knowledge and cannot be simply described mathematically (Schmidhuber, 2009).

Because there are no good objective measures of what a good cross-adaptive audio effect is,

5

an assumption has been made in this project: If a cross-adaptive audio effect makes features

of one sound audible in the other sound, then it is considered interesting. Therefore it has

been decided that the objective of the system in this project should be to make the input

sound similar to the target sound.

Figure 1.1: Cross-adaptive audio effect signal flow with two audio streams: input audio and
target audio

Figure 1.1 roughly illustrates the signal flow in a cross-adaptive audio effect. The input

sound is fed into an audio effect, and out comes the output audio. The parameters of the

audio effect are controlled dynamically by the output of the mapping function, which is a

function that maps n-dimensional vectors (audio features) to m-dimensional vectors (effect

parameters). The audio features are obtained by analyzing the target audio. Artificial

neural networks are suitable as mapping function, as they can approximate a wide variety

of continuous functions (Hornik, 1991). Backpropagation (Werbos, 1982; Lecun et al., 1998)

is an efficient algorithm for training neural networks (i.e. finding a set of useful weights for

it), but it requires target values for the output nodes to compute error signals. Since no sets

of target values were available for this project, and there is generally no good way of telling

exactly how the mapping affects the resulting sound, it makes sense to use evolutionary

computation to train the neural networks instead. That is feasible because it is possible to

construct a fitness function that returns a score based on how similar two sounds are. All

in all, this project is about developing a toolkit that explores evolutionary computation in

6 CHAPTER 1. INTRODUCTION

various ways to evolve artificial neural networks that act as mappings in cross-adaptive audio

effects.

As the developed system has many components and deals with lots of numbers in the

form of audio features, neural network weights, audio effect parameters, output sounds and

fitness values, it’s hard to understand what the system really does. To alleviate this, a signif-

icant part of the project has been about developing a comprehensive interactive visualization

system as a part of the toolkit. One motivation for this is that one cannot improve the

optimization process if one does not know where it fails. It was also made in order to make

the toolkit more human-understandable and to make evaluation of results more efficient.

The thesis is structured as follows: Chapter 2 provides background information on genetic

algorithms, neural networks, audio processing and the main areas of study in the specializa-

tion project that this master’s thesis builds on. Chapter 3 describes how neural networks

and neuroevolution are applied in the toolkit developed in this project. Chapter 4 contains

descriptions of each experiment, the results obtained and discussion. Chapter 5 concludes

the thesis and mentions further work.

Chapter 2

Background Information

2.1 Genetic Algorithms

Genetic algorithms (Goldberg, 1989; Bäck, 1996) are iterative algorithms that can approxi-

mate solutions to optimization problems. In such problems, one usually doesn’t know how

to construct a good solution, but it is possible to measure how good a solution is. The

methods used in genetic algorithms are inspired by Darwin’s principle of natural selection.

In the algorithm, a population of individuals is simulated through generations of “life”. Each

individual is a candidate solution to the optimization problem. The fittest individuals, as

determined by a fitness function, are the individuals that are most likely to survive and re-

produce (either asexually or sexually). Individuals that are deemed less fit are more likely to

die young, and do not get to pass their genes on to future generations. During reproduction,

crossover and mutation occurs. Crossover is a genetic operator that combines two parents to

produce an offspring. Mutation is a genetic operator that alters an individual slightly. The

whole process is roughly illustrated by figure 2.1.

7

8 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.1: Genetic algorithm cycle

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are systems of interconnected “neurons”, or nodes (Caudill,

1987). A connection from a node A to a different node B means that the activation level

of node A influences the activation level of node B based on the numerical weight of the

connection. The activation level of a node is calculated by adding up all incoming signals to

that node and running that number through the node’s activation function. An ANN can

be thought of as a function that transforms n-dimensional vectors to m-dimensional vectors.

Figure 2.2 illustrates a simple neural network and the inner workings of one of the nodes.

Figure 2.2: To the left: Illustration of a small neural network with one hidden layer. To the
right: Illustration of a hidden node with sigmoid activation function

2.3. NEUROEVOLUTION 9

2.3 Neuroevolution

Neuroevolution is a technique that uses evolutionary algorithms to train artificial neural

networks. It differs from supervised learning algorithms such as backpropagation in that it

does not require a set of correct input-output pairs. Instead, only a performance measure

(fitness function) is needed.

2.4 NeuroEvolution of Augmenting Topologies (NEAT)

NEAT (Stanley and Miikkulainen, 2002) is a neuroevolution technique that evolves neural

networks with genetic algorithms. Not only the weights of the ANN are evolved, but also the

structure. The NEAT approach begins with a feed-forward approach with input nodes and

output nodes that are fully connected. The ANN can then grow larger by having nodes and

links added to it. NEAT can also remove nodes and links.

2.5 Multi-Objective Evolutionary Algorithms

As real-life problems often have more than one objective, there is a need for ways to deal

with multiple objectives effectively. A multi-objective evolutionary algorithm (MOEA) is an

algorithm for solving mathematical optimization problems involving more than one objective

function to be optimized simultaneously (Veldhuizen and Lamont, 2000). One well-known

algorithm of this kind is Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al.,

2002). In this algorithm, the performance measure is based primarily on rank and secondarily

on crowding distance. Rank is calculated by running the fast non-dominated sort algorithm.

This algorithms assigns a rank to each individual. If the rank of individual A is better than

the rank of another individual B, it means that A dominates B. Individual A dominates B if

both the following conditions are true:

• The solution A is no worse than B in all objectives.

• The solution A is strictly better than B in at least one objective.

10 CHAPTER 2. BACKGROUND INFORMATION

Crowding distance is a way to measure how crowded the search space around the indi-

vidual is. Crowding distance is quantified by forming a cuboid with the nearest neighbours

as vertices, and then taking the average of the side lengths of the cuboid. Large crowding

distances are encouraged because it preserves diversity in the population (Deb et al., 2002).

2.6 Audio Feature Extraction Tools

Audio feature extraction is the process of computing a compact numerical representation

that can be used to characterize a segment of audio. Low-level features such as spectral

centroid and Mel-Frequency Cepstral Coefficients (MFCC) (Mermelstein, 1976; Logan, 2000)

are computed directly from the audio signal, frame by frame. A frame is a slice of audio and

can consist of for example 1024 samples. In an audio signal with sampling rate 44.1 kHz, the

duration of such a frame would be approximately 23 ms.

Audio features can be used in many different ways, such as music information retrieval

and musical genre classification. In this project, they are used for similarity measures and for

controlling the parameters of audio effects. Four audio feature extraction tools were used in

this project: Aubio (Brossier, 2003), Essentia (Bogdanov et al., 2013), LibXtract (Bullock,

2007) and Csound (Fitch et al.).

2.7 Audio Effects

Audio effects are processing techniques that alter audio so it sounds different. The following

subsections describe the audio effects used in this project.

2.7.1 Modified Hyperbolic Tangent

Modified hyperbolic tangent is a waveshaping function that can model the characteristics of

analog distortion, and especially tube distortion (GDSP Online Course, 2014c). Modified

hyperbolic tangent differs from hyperbolic tangent in that one can model the positive and

the negative slopes differently. This distortion effect makes the sound “fuzzier” by adding

harmonic components. Figure 2.3 illustrates an example of this.

2.7. AUDIO EFFECTS 11

mtanh(x) =
eax − e−bx

ecx + e−dx

Figure 2.3: Harmonic frequency components are added to a 440 Hz sine wave by applying a
modified hyperbolic tangent function

2.7.2 Low-Pass Filter

A low-pass filter attenuates high frequencies and retains low frequencies unchanged (Dodge

and Jerse, 1997). It can be used to make a sound “darker” or “smoother” in timbre. A

resonant low-pass filter is a low-pass filter that has a peak in the response curve at the cutoff

frequency, as illustrated by figure 2.4. This quality can be used to boost a single tone in

a sound with a rich frequency spectrum. The width of the resonant peak is described by a

parameter called Q. As Q increases, the resonance becomes more pronounced.

12 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.4: Frequency response of a resonant low-pass filter with various Q values

2.7.3 Band-Pass Filter

A band-pass filter rejects frequencies outside a given range (Dodge and Jerse, 1997). This

filter has two parameters. Center frequency (denoted by f0 in figure 2.5) defines the center

of the frequency range. Bandwidth (denoted by B in figure 2.5) defines how broad or narrow

the frequency range is.

Figure 2.5: A diagram that illustrates the frequency response of a band-pass filter and defines
its bandwidth

2.7.4 Amplitude Modulation

The amplitude modulation effect multiplies the sound signal with a unipolar sine wave that

oscillates between 0 and 1. When the frequency of the sine wave is low (< 20 Hz), one can

2.7. AUDIO EFFECTS 13

hear that the amplitude is being brought up and down, as in tremolo (Serafin, 2007). With

higher frequencies there is instead an effect on the timbre of the sound. The modulator

generates a set of frequency sidebands, as illustrated in figure 2.6

Figure 2.6: Frequency spectrum plot of a 2 kHz sine wave modulated with a 1 kHz unipolar
sine wave

2.7.5 Bit Reduction

The bit reduction effect reduces the number of bits used to represent a sample (GDSP Online

Course, 2014a). Each sample amplitude value is rounded to a number of discrete steps. This

introduces a particular kind of distortion, also called quantization noise.

Figure 2.7: A high fidelity sine wave quantized to 3 bits per sample. By Hyacinth, CC BY-SA
3.0, https: // commons. wikimedia. org/ w/ index. php? curid= 30716342

2.7.6 Chorus

The chorus effect delays the input signal by a short delay time (usually in the range 20-

50 ms) and mixes it with the dry input signal (GDSP Online Course, 2014b). The delay

time is variable and usually controlled by a Low-Frequency Oscillator (LFO), as illustrated

https://commons.wikimedia.org/w/index.php?curid=30716342

14 CHAPTER 2. BACKGROUND INFORMATION

by figure 2.8. This may create an impression of multiple voices playing or singing the same

thing.

Delay X +

+

LFO

Time
+ offset

Figure 2.8: Signal flow in a chorus effect

2.8 Audio Processing Tools

Audio processing is the alteration of audio signals, typically through audio effects. One

popular audio processing tool is Csound (Fitch et al.). This is both an audio programming

language and a program that runs Csound code. The Csound program takes in a text file of

code. This code is executed by the Csound program. The output is sound that is directed

to either an audio interface (live) or to a file (non-real-time processing). Csound is used by

musicians and composers, typically in experimental electroacoustic music. Traditionally, it

has been an offline tool, due to lack of computational power. Today, computational power is

sufficient for Csound to run in real-time, so it can be used in live settings such as concerts

and sound installations. Csound can not only run on desktop computers, but can also be

used as audio processing engine in mobile applications for the operating systems Android

and iOS.

2.9 Specialization Project

This master’s thesis is a continuation of the author’s specialization project. The preliminary

experiments in the specialization project were found to be successful. This led to a published

paper in the proceedings of the 2nd AES Workshop on Intelligent Music Production1. This

1http://www.aes-uk.org/forthcoming-meetings/wimp2/#proceedings

http://www.aes-uk.org/forthcoming-meetings/wimp2/#proceedings

2.9. SPECIALIZATION PROJECT 15

paper is included in appendix D. The author also presented his findings in a 15-minute talk

at this event.

The following subsections will summarize some of the main areas of study in the experi-

ments in the specialization project.

2.9.1 Output Activation Functions

Three different output activation functions (used in the output nodes of the neural networks)

were compared. Sigmoid was found to be better than linear and sine in most cases (see figure

2.9).

Figure 2.9: Average fitness over 20 runs

2.9.2 Fitness Functions

Five fitness functions were compared. Figure 2.10 shows how well they scored on average on

the similarity measure (local similarity).

16 CHAPTER 2. BACKGROUND INFORMATION

Local Similarity

The local similarity fitness function is based on the average euclidean distance between the

feature vector of the target sound and the output sound in the k frames of the two sounds.

Function LOCAL_SIMILARITY(target, individual):

total_euclidean_distance = 0

for each k in range(num_frames):

A = target.get_feature_vector(k)

C = individual.get_feature_vector(k)

total_euclidean_distance += EUCLIDEAN_DISTANCE(A, C)

avg_euclidean_distance = total_euclidean_distance / num_frames

return 1 / (1 + avg_euclidean distance)

where EUCLIDEAN DISTANCE is d(p, q) =
√

(q1 − p1)2 + (q2 − p2) + ... + (qn − pn)2

Multi-Objective Optimization

This fitness function is inspired by NSGA-II (Deb et al., 2002). It incorporates two measures:

rank and crowding distance. These are concepts taken directly from the NSGA-II paper, and

they are then used in a math expression that satisfies these two constraints that are used in

NSGA-II:

• rank(A) > rank(B) =⇒ fitness(A) > fitness(B)

• rank(A) = rank(B),CD(A) > CD(B) =⇒ fitness(A) > fitness(B)

where CD stands for crowding distance

The ranks of the individual are calculated by doing non-dominated sort. Crowding dis-

tance is computed between individuals in a given rank. The multi objective fitness function

works like this:

Function MULTI_OBJECTIVE(target, individuals):

for individual in individuals:

CALCULATE_OBJECTIVES(individual, target)

2.9. SPECIALIZATION PROJECT 17

fronts = FAST_NON_DOMINATED_SORT(individuals)

for rank in fronts:

CALCULATE_CROWDING_DISTANCE(fronts[rank]) # assigns individual.crowding_distance

for individual in fronts[rank]:

individual.fitness = 1.0 / (rank + (0.5 / (1.0 + individual.crowding_distance)))

Function CALCULATE_OBJECTIVES(individual, target):

individual.objectives = {}

for feature in similarity_features:

individual.objectives[feature] = EUCLIDEAN_DISTANCE(

target.analysis[feature],

output.analysis[feature])

Pseudocode for FAST NON DOMINATED SORT and CALCULATE CROWDING DISTANCE can be

found in the NSGA-II paper (Deb et al., 2002).

Hybrid

While NSGA-II is good at optimizing for non-dominated individuals, these individuals may

be extreme tradeoffs and therefore not necessarily feasible solutions in practice. In order to

reward good tradeoffs more, the author developed the hybrid fitness function. This fitness

function returns the average of MULTI OBJECTIVE and LOCAL SIMILARITY.

Novelty Search

Novelty search (Lehman and Stanley, 2008) ignores the objective and optimizes for novelty

instead. The reason that this may work well is that in some problems the intermediate steps

to the goal do not resemble the goal itself. When it comes to implementation, MultiNEAT

has novelty search built-in, but Python bindings for it are missing, so the author could

not use it in his Python application. However, novelty search can be implemented on top

of most evolutionary algorithms, by using a fitness function that rewards novelty (Lehman

and Stanley, 2015), so that is what the author did. First, each individual needs to be

represented as a vector that describes its characteristics. This vector is constructed by

18 CHAPTER 2. BACKGROUND INFORMATION

concatenating all audio feature series of the individual. The implemented fitness function

assigns high fitness values to the individuals that have long euclidean distances from the 3

nearest neighbours, where the neighbours are individuals that have been evaluated earlier.

The very first population gets random fitness values, because there are no earlier individuals

to measure distance from.

Mixed

This fitness function is simple: For each generation, one of the following fitness functions

is chosen randomly and applied: local similarity, multi-objective, hybrid, novelty. The idea

behind this fitness function is to create a dynamic fitness landscape, where the individuals

that get good scores from all fitness functions have the greatest chance of survival over time.

Figure 2.10: Best individual on average over 20 runs, with 20 generations for each run

2.9. SPECIALIZATION PROJECT 19

2.9.3 Automatic Feature Selection

When dealing with high-dimensional input data, the number of weights in a fully connected

neural network becomes quite large. Clean and useful combinations of all the input signals can

be hard to evolve. To deal with this situation, one can use Feature Selective NeuroEvolution

of Augmenting Topologies (FS-NEAT) (Whiteson et al., 2005). This NEAT variation starts

with just a few connections and gradually adds/removes connections.

In an experiment with noise for input sound and a sine sweep for output sound, FS-NEAT

was found to perform better than classic NEAT. This experiment had 68 audio features as

input. Classic NEAT would typically evolve a very noisy parameter control, so the output

sounds became glitchy and not very musically interesting. FS-NEAT has been found to

deal with the high-dimensional input more effectively, as it selected only a few of the audio

features that were useful for getting high fitness values. Figure 2.11 shows fitness values with

NEAT and FS-NEAT in the described experiment.

Figure 2.11: Fitness values in runs with NEAT and FS-NEAT, aggregated from 20 runs with
each configuration.

Chapter 3

Methods and Implementation

3.1 Evolving Neural Networks

There are several ways to map sound analysis to effect parameters. The initial idea was a

modulation matrix, where each effect parameter becomes a linear combination of the audio

features. This idea was quickly iterated upon. Why not use an artificial neural network?

An artificial neural network can do the same as a modulation matrix (when the ANN has

linear activation functions and no hidden layers), but it can also do more. A neural network

can have hidden nodes with various activation functions, which makes more complex signal

interactions possible. This widens the scope, and allows for learning higher-level features,

such as “the snare and the bass drum are hit simultaneously”.

NEAT (Stanley and Miikkulainen, 2002) is suggested as a technique for evolving neural

networks. This is a technique which evolves not only the weights of the neural network,

but also the topology, i.e. the number of nodes and the connections between the nodes.

HyperNEAT, a technique that is based on NEAT, has been used with great success in a

project called Picbreeder (Secretan et al., 2008) and later with some success in a project called

SoundBreeder (Ye and Chen, 2014). The purpose of those projects were to evolve visually

and aurally appealing art, respectively. Since both those two projects and this project are

within the field of creative computation, the hypothesis is that NEAT or HyperNEAT will

work well in this project.

21

22 CHAPTER 3. METHODS AND IMPLEMENTATION

3.2 Implementation

Csound has been selected to be the audio processing tool in this project because it is actively

used by students and lecturers in the Music Technology department at NTNU. Since Csound

interoperates nicely with Python, and Python is a popular language for artificial intelligence

(AI) applications, that was the language of choice for the neuroevolution application. Fur-

ther, it has been decided that the application should be written in a style compatible with

both Python 2 and 3, for the sake of compatibility with various Python libraries. Also, it

should work on both Windows and Ubuntu. This way, experiments can not only run on

Windows desktop computers, but also on Ubuntu instances in the cloud. The most impor-

tant dependency is MultiNEAT (Chervenski and Ryan), which is one of Kenneth Stanley’s

recommended neuroevolution libraries (Stanley, 2015). It features several neuroevolution

algorithms, including NEAT, FS-NEAT and HyperNEAT. It is written in C++, but it has

Python bindings, so it is fit for this project. Further, the audio features extraction tools

selected for this project are Aubio, Essentia and LibXtract, which are all free open source

software written in a compiled language. A link to the author’s implementation of the toolkit,

which is open source, is included in appendix A. A complete list of dependencies is included

in appendix B.

3.2.1 Performance

A. Eldhuset has previously implemented a program that uses Csound in signal interaction

experiments with genetic algorithms. He concluded that his implementation was slow, taking

around 5 seconds per individual (Eldhuset, 2015). Hence an experiment with a population

size of 20 and 20 generations would take approximately half an hour. The author has analyzed

the weaknesses of Eldhuset’s approach and come up with a number of techniques to alleviate

performance issues:

• Use a templating engine to generate Csound files. It writes csound code to different

files, one for each individual in the population. This allows many Csound instances to

be run in parallel.

3.2. IMPLEMENTATION 23

• While a Csound instance runs, it does not have to communicate with another program

(a host) via an API. All data needed for the run, including effect parameter values over

time, are included inside the csd file

• Use dedicated, compiled audio feature extraction tools such as Aubio instead of Csound

for audio feature extraction

• Use the standard streams (stdout) instead of file I/O in audio feature extractors that

support this

• Let the host program, Csound and audio feature extractors write files to a RAM disk

to avoid slow disk I/O activity

• Use the concept of pipelining to shorten critical paths and enable more parallelism

• Sensible handling of duplicate individuals: when two or more individuals are equal (i.e.

their neural networks are equal), evaluate only one of them, and apply the same result

to the identical individuals

Incorporating all these techniques, the author’s implementation spends around 0.11 sec-

onds on average per individual, given that the dist lpf effect and the aubio mfcc analyzer

is used, the duration of the input sound is 7 seconds, and that the program is run on a

modern, high-end laptop with two CPU cores. Hence an experiment with population size

20 and 20 generations may take approximately half a minute. If the input sound is shorter,

the experiment will run even faster. This is exploited in Experiment 1, where over a million

individuals are processed, so fast performance is really useful.

3.2.2 Neuroevolution Routine

The neuroevolution program is called from the command line, with a number of arguments

for configuring the experiment. The program then performs roughly these steps:

1. Check sanity of arguments

2. Analyze input sound file and target sound file

24 CHAPTER 3. METHODS AND IMPLEMENTATION

3. Initialize a population

4. For each generation, evaluate all individuals, write their data to json files and then

advance to the next generation

The evaluation of an individual (illustrated by figure 3.1) involves several operations:

1. An artificial neural network is created from the genotype of the individual

2. All feature vectors of the target sound are run through the neural network

3. The neural outputs are scaled to appropriate ranges for the various audio effect param-

eters

4. Csound runs the input sound through the audio effect that is controlled by the audio

effect parameters

5. The resulting sound is run through the audio feature extraction tool(s)

6. The audio features are standardized with the same mean and variance as in the stan-

dardization of the target sound audio features

7. The audio features of the target sound and the output sound are used in the fitness

function

8. The resulting fitness value is assigned to the individual.

Figure 3.1: Flowchart for the evaluation of an individual

3.2. IMPLEMENTATION 25

3.2.3 Input Standardization

To make the audio features suitable as input to a neural network, they need to be scaled. A

simple, but good technique is to standardize them by is subtracting the mean and dividing

by the standard deviation (Sarle, 2014). For each audio feature there is one sequence of

numbers for the input sound and another sequence for the target sound. The mean and

standard deviation for an audio feature is calculated from the input sound’s sequence for

that feature concatenated with the target sound’s sequence for that feature. This mean and

standard deviation is then used in all further input standardization. This gives the series

the quality of being centered around zero and having a standard deviation of 1 with respect

to the input sound and the target sound. Additionally, to avoid extreme values, values are

clipped to the range [-4, 4].

3.2.4 Parameter Mapping

The output of the neural network is in the range [0, 1], due to the sigmoid activation function

in the output layer. These normalized values need to be scaled and skewed appropriately

for each effect parameter. The author has used the same mapping function as in Cabbage

(Walsh, 2008), a GUI framework for Csound, where slider values are mapped from 0 to 1 to

the target range by the following function:

f(x) = mmin + (mmax −mmin) ∗ elog(x)/s

Where mmin and mmax are the endpoints of the target range and s is the skew factor.

The default skew factor is 1, which will yield a linear mapping. A skew factor of 0.5 will

cause the mapping function to output values in an exponential fashion. This is useful for

effect parameters such as cutoff frequency.

3.2.5 Audio Effects

In the toolkit, audio effects are included as text files containing Csound code. Each effect

also has a corresponding file that lists the parameters of the effect and their range. This

makes it easy to add new Csound effects to the toolkit. The toolkit uses a templating

26 CHAPTER 3. METHODS AND IMPLEMENTATION

system for generating Csound files, and this makes it possible to combine several audio

effects into one larger audio effect with one or more layer of parallel audio effects, as tested in

experiment 5. The implementation of the various audio effects used in this toolkit are based

on trusted sources: The distortion effect with resonant low-pass filter is based on the source

code of Brandtsegg (2015)1 while the rest is based on source code of NTNUs online course

in Digital Signal Processing (DSP) ear training2. These implementations have been selected

in consultation with the author’s co-supervisor, Brandtsegg.

3.2.6 Data Augmentation

Data augmentation is implemented as a python module that takes in a sound and creates

a Csound file that repeats the sound multiple times with some variations and outputs the

resulting audio to a new file. Each repetition of the sound has a unique combination of gain

and playback speed. The playback speed and gain are sampled from a gaussian distribution

centered around 1. The standard deviation of this gaussian distribution is configurable. To

prevent clipping (samples out of bounds due to high gain values), a limiter is applied. Other

ways to augment sound, such as adding reverb or distortion, can be easily implemented.

3.2.7 Live Mode

The toolkit includes a python module that can create a Csound file from an individual in

an experiment. This Csound file includes an audio analyzer and a neural network that can

run on live audio streams, so it can be used in live performances. It can also run in offline

mode, to speed up computation when live mode is not needed. This is used in experiment 3

to apply evolved cross-adaptive audio effects to unseen data (i.e. sounds that were not used

during training).

1https://github.com/Oeyvind/interprocessing
2https://github.com/gdsp/gdsp/

https://github.com/Oeyvind/interprocessing
https://github.com/gdsp/gdsp/

3.3. VISUALIZATION 27

3.3 Visualization

In very early versions of the neuroevolution program, the author found it hard to evaluate all

the data produced during experiments. Therefore an interactive web application for visualiz-

ing results was developed. This tool has been very important for being able to understand the

strengths and weaknesses of the neuroevolution program during development and research.

When the author gained a good understanding of the inner workings and the output of the

neuroevolution program, he was able to improve the weak points of the implementation.

The visualization system is a single-page web application written in AngularJS, with

various JavaScript libraries for visualizing data. For a complete list of JavaScript libraries

that were used in the web application, see appendix C. The application server is written

in NodeJS. The neuroevolution program writes data after each generation, and the NodeJS

server listens for these data updates. Whenever new data is available, the updated data is

sent via WebSockets to the web application, which then updates its views. The four following

figures are screenshots of the web application. Figure 3.2 shows a line chart that visualizes

the progress of the GA over the generations. Figure 3.3 shows a stacked area chart that

visualizes the number of individual in each NEAT species over the generations. The fitness

histogram in figure 3.4 visualizes the fitness distribution in the population of the generation

selected by the interactive slider.

28 CHAPTER 3. METHODS AND IMPLEMENTATION

Figure 3.2: Fitness plot

3.3. VISUALIZATION 29

Figure 3.3: Species plot

30 CHAPTER 3. METHODS AND IMPLEMENTATION

Figure 3.4: Fitness histogram for the selected generation

3.3. VISUALIZATION 31

Figure 3.5: Visualization of data about an individual

32 CHAPTER 3. METHODS AND IMPLEMENTATION

Figure 3.5 shows various data visualizations related to the individual selected by the

interactive slider. Here are brief explanations of the different parts:

• A: The interactive slider is for selecting a specific individual in the population of the

selected generation. The interface below it updates whenever a different individual is

selected.

• B: Neural network visualization with edge colors according to weight. Light color means

small magnitude while strong color means large magnitude. Red means positive weight

while blue means negative. It is possible to click a node to see a list of exact values for

ingoing and outgoing weights.

• C: Select which sound and corresponding data series to visualize.

• D: Audio player with waveform visualization. Useful for playing back the output sound

of the selected individual.

• E and F: Horizon charts for visualizing neural input and neural output, respectively.

Horizon charts make better use of vertical space than standard area charts, allowing

one to see many more metrics at-a-glance. Larger values are overplotted in successively

darker colors, while negative values are offset to descend from the top. When hovering

over these charts with the mouse pointer, series labels disappear and a rule with values

at the hovered time step is shown. The horizon charts are aligned with the audio player.

• G: Shows the effect(s) and its parameters. While playing the audio, the knob positions

are animated according to the way they were controlled in order to produce the output

sound.

Chapter 4

Experiments and Discussion

Five experiments have been conducted in an attempt to find good ways to use neuroevo-

lution for finding useful mappings from audio features to audio effect parameters. In each

experiment, different neuroevolution configurations are compared to find what works better.

Due to the random nature of genetic algorithms, results vary from run to run. To deal with

this, each configuration gets multiple runs (with different Pseudo Random Number Generator

(PRNG) seeds), and results from the runs are aggregated and presented in various figures.

Table 4.1 shows a rough overview of the experiments.

Table 4.1: Overview of experiments

Experiment Description

1 Find a good combination of mutation rate and crossover rate

2 Find a good value for structural mutation parameters

3 Apply data augmentation to the target sound, and see if the result gen-

eralizes better

4 Compare sets of audio features used in the fitness function. Analyze data

from the neuroevolution process.

5 Compare networks of audio effects with individual audio effects.

33

34 CHAPTER 4. EXPERIMENTS AND DISCUSSION

4.1 General Configuration

Table 4.2 shows the parameters used unless otherwise stated in individual experiments. The

table is not exhaustive. A number of NEAT parameters were left at their respective default

values1, set by Chervenski and Ryan, the authors of MultiNEAT.

Table 4.2: General experiment configuration

Parameter Value

Population size 20

Add neuron probability 0.01

Remove neuron probability 0.01

Add link probability 0.01

Remove link probability 0.01

Elite fraction 0.1

Survival rate 0.25

Allow clones Yes

Selection method Tournament selection

Hidden activation function Hyperbolic tangent

Output activation function Sigmoid

Effect parameter low-pass filter cutoff frequency 50 Hz

Fitness function Local similarity

1https://github.com/peter-ch/MultiNEAT/blob/master/src/Parameters.cpp#L42

https://github.com/peter-ch/MultiNEAT/blob/master/src/Parameters.cpp#L42

4.2. EXPERIMENT 1 35

4.2 Experiment 1

In this experiment, the aim is to find good values for crossover rate and mutation rate.

4.2.1 Configuration

Table 4.3: Experiment configuration

Parameter Value

Number of generations 20

Target sound Drum loop

Input sound White noise

Effect Distortion and resonant low-pass filter

Audio features mfcc 0, mfcc 0 derivative, mfcc 1

Number of runs 150 per configuration

4.2.2 Results and Evaluation

Figure 4.1 shows that one should avoid using a high mutation rate and a low crossover rate.

Instead, one of the combinations inside the red region should do well. Bear in mind that the

differences between pure yellow and lime green are small in this region, and that these small

differences are not statistically significant. The variance could be reduced with more runs,

but due to computational time, the number of runs per configuration was limited to 150.

The yellow spot is probably a good configuration, albeit not necessarily the best. Mutation

rate = 0.6 and crossover rate = 0.7 are used in the following experiments.

36 CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.1: The red region drawn on top of the heat map indicates the set of configurations
deemed good

4.3 Experiment 2

4.3.1 Configuration

In this experiment, the aim is to find a good value for parameters related to structural

mutation:

• Add node probability

• Remove simple node probability

• Add link probability

4.3. EXPERIMENT 2 37

• Remove link probability

Four different configurations will be tested: p = 0.01, p = 0.03, p = 0.09, p = 0.27 where

p is the value assigned to the four structural mutation parameters.

Table 4.4: Experiment configuration

Parameter Value

Number of generations 50

Target sound Drum loop

Input sound White noise

Effect Distortion and resonant low-pass filter

Audio features mfcc 0, mfcc 0 derivative, mfcc 1

Number of runs 300 per configuration

38 CHAPTER 4. EXPERIMENTS AND DISCUSSION

4.3.2 Results and Evaluation

Figure 4.2: Box plot of fitness values in the 50th generation for each configuration

The median values in figure 4.2 are not solid evidence that one configuration is better than

another. However, figure 4.3 shows that while all series converge to roughly the same average

fitness value, p = 0.01 yields the highest rate of convergence. In fact, as p becomes larger,

the rate of convergence declines. This might mean that the problem at hand is best solved

with few or no hidden nodes. An alternative interpretation is that hidden nodes are useful,

but that they slow down the search for the ultimate individual, due to increased complexity.

In accordance with Occam’s razor, the preferred choice is p = 0.01, as it produces the neural

networks with the simplest structures (Mitchell, 1997).

4.4. EXPERIMENT 3 39

Figure 4.3: Line chart showing the average fitness values in each generation

4.4 Experiment 3

When using an evolved cross-adaptive audio effect in a live performance, a performer may

want to use it in an expressive way. For example, if the performer is a drummer, he/she

can vary the intensity of the drum hits. For the cross-adaptive audio effect to handle this, it

needs to be trained on all the different intensities of the drum hits. If an extensive recording

is available, that is fine. However, if the available target sound is short or lacks sufficient

variation, one can harness the concept of data augmentation to create artificial variations of

that sound. If one uses that sound instead, the evolved effect will typically be more capable

of dealing with the generated variations. This experiment is about testing the author’s

implementation of data augmentation and the ability to apply evolved cross-adaptive audio

40 CHAPTER 4. EXPERIMENTS AND DISCUSSION

effects to unseen sounds.

4.4.1 Configuration

Table 4.5: Experiment configuration

Parameter Value

Number of generations 20

Target sound (training) Drum loop with bass drum, snare drum, clap and

hihat (figure 4.4)

Target sound (validation) Snare roll (rapid snare drum hits) with ascending

pitch and amplitude (figure 4.4)

Input sound White noise

Effect Distortion and resonant low-pass filter

Audio features Root Mean Square (RMS) and spectral centroid

Number of runs 40 per configuration

4.4. EXPERIMENT 3 41

Figure 4.4: Waveform of training sound (top) and validation sound (bottom)

The augmented variant of the training sound was created by repeating the sound 8 times,

with variations in playback speed and gain for each repetition. The playback speed and gain

are obtained by sampling from a gaussian distribution with standard deviations of 0.3 and

0.5, respectively.

Runs with three different target sounds (training sound, augmented training sound and

validation sound) will be compared. The resulting effects are applied to the validation sound,

and fitness values are measured. The neural networks trained on the validation sound are of

course expected to be yield the highest fitness scores when tested on the validation sound.

That configuration is included for comparison, as an upper bound estimate.

4.4.2 Results and Evaluation

Figure 4.5 shows that neural networks trained on an augmented variant of the training sound

generalize better than neural networks trained on the nonaugmented training sound. In other

words, the resulting audio effects becomes better at dealing with nuances of the situations in

the training sound. There’s a trade-off, however: Training on an augmented sound requires

more computational time because there’s more data to process. This may not be a problem,

because training can be done before live performance starts.

42 CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.5: Box plot of validation fitness values in final generation. The labels on the x-axis
indicate which sound was used as target sound.

4.5 Experiment 4

4.5.1 Configuration

In this experiment, the aim is to compare two different collections of audio features used in

the similarity measure:

• Configuration A: RMS, pitch and spectral centroid

• Configuration B: RMS, pitch, spectral centroid and bark bands

4.5. EXPERIMENT 4 43

Table 4.6: Experiment configuration

Parameter Value

Number of generations 500

Target sound Sine wave, 440 Hz

Input sound White noise

Effect Band-pass filter with up to 10x post gain

Number of runs 20 per configuration

4.5.2 Results and Evaluation

Since fitness functions were different in these two configurations, the fitness values are not

directly comparable. Instead, the results were evaluated by manually listening to the output

sounds. In the first configuration, the results were fairly bad: All of the sounds were too

noisy, and the author failed to perceive the tone. However, in terms of spectral centroid

and amplitude, the sounds were a good match. In order to transform noise into a sine, the

bandwidth of the band-pass filter has to be very narrow. A narrow filter would have lowered

the overall amplitude of the sound. This would have been deemed bad by the fitness function,

hence the genetic algorithm did not effectively explore that area in the solution space. Also, a

narrow filter would not have yielded any improvements in the similarity in spectral centroid

and/or pitch. Therefore, the typical solution has a broad bandpass filter, albeit with an

appropriate center frequency. See in figure 4.6 that the peak frequency of the typical output

sound matches well the peak frequency of the target sound.

The results in the second configuration, were much better. The author could hear a

clear tone in all 10 output sounds. There was still some noise in most sounds. The author

believes that the solutions would have improved with more generations, because the fitness

was typically still increasing towards the 500th (last) generation. One of the output sounds

featured vibrato (varying pitch over time), due to a noisy input being mapped to the center

44 CHAPTER 4. EXPERIMENTS AND DISCUSSION

frequency parameter. This could probably have been alleviated by adding the derivative of

the pitch as a dimension in the fitness function, so the unwanted vibrato would be punished

more severely by the fitness function.

Figure 4.6: Spectrum plots, created in Audacity R© with hanning window of size 8192

The takeaway from this experiment is that

• the collection of features used for similarity measures has a high impact on the result

• bark bands are useful when used in the similarity measure

4.5.3 Neuroevolution Analysis

In this subsection, one of the runs in configuration B will be analyzed, to get a better

understanding of how NEAT works in practice, and to identify some things that can be

improved upon.

4.5. EXPERIMENT 4 45

In this experiment, the effect parameters do not have to be dynamically controlled over

time. A static value for each effect parameter (bandwidth, center frequency and post gain)

would have been an optimal solution. However, in figure 4.8, we see that the NEAT algorithm

actually makes use all three input nodes (RMS, pitch and spectral centroid) as well as the

constand bias node. The reason for this is that these three inputs do not vary much in the

course of the sound, because the features of the sound that was analyzed (sine, 440 Hz) do

not vary much over time (see the horizon chart in figure 4.7). Consequently, these three

nodes act like a bias node with some noise.

Figure 4.7: Horizon chart visualizing the three neural inputs over time

46 CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.8: Neural network visualizations

4.5. EXPERIMENT 4 47

Another interesting fact is that the number of hidden nodes in the best individual tends

to increase over the generations, even though these hidden nodes are not needed to get an

optimal solution in this experiment. Any constant value can be sent to the output node

without having to go through hidden nodes. This is another example of NEAT not finding

the optimal solution. Having many hidden nodes hurts evolvability, because an arbitrary mu-

tation on a complex individual is less likely to yield an improvement than the same operation

on a simpler individual with fewer hidden nodes. Some form of regularization (punishment

for more complex neural networks) could alleviate the problem. Another way to deal with

this problem in experiments that do not require hidden nodes is setting AddNodeProbability

to zero.

Figure 4.9 shows a line chart of max fitness and average fitness. The max fitness does

not increase in every generation. This is due to the random nature of the mutations. As the

iterative process approaches convergence, jumps in max fitness become smaller and smaller.

Figure 4.9: Fitness plot

48 CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.10: Species chart with max fitness overlay

A total of 54 different species were created during the 500 generations of neuroevolution

(see figure 4.10). There is no obvious correlation between jumps in max fitness and the death

of existing species or the emergence of new species. This makes sense, as competition happens

only within species, and species are given time to improve their structure before competition

with the rest of the population occurs. The figure also illustrates that the number of species

in any given generation is well regulated. The concept of dynamic compatibility threshold

in NEAT strives to ensure that the number of species stays within bounds (Stanley and

Miikkulainen, 2004).

4.6 Experiment 5

4.6.1 Configuration

This experiment is about combining several audio effects in serial and parallel. The idea is

that this allows for altering the sound in more ways than with only a single audio effect. This

may yield improvements in fitness compared to using a single audio effect. The hypothesis is

that the genetic algorithm could be adept at choosing what effects to use and how to combine

4.6. EXPERIMENT 5 49

them. This experiment will study two different effect networks, illustrated by figure 4.11 and

4.12. From now on, these two configurations will be referred to as “1 layer” and “2 layers”,

respectively. To find out how well these effect networks perform, they will be compared to

runs with individual audio effects.

The effect mix values in one layer are determined by the output of the softmax function

(4.1), also called the normalized exponential function. This makes the sum of effect mixes in

one layer equal to one. It also lets the neural network easily “choose” one single audio effect

to dominate at any given time, but mixing multiple audio effects is also within reach.

softmaxi(a) =
exp ai∑

exp ai
(4.1)

am

bandpass

bitreduce

dist_lpf

chorus

X

X

X

X

X

+ gain

softmax

Figure 4.11: Signal flow in the “1 layer” configuration

50 CHAPTER 4. EXPERIMENTS AND DISCUSSION

am

bandpass

bitreduce

dist_lpf

chorus

X

X

X

X

X

+ gain

softmax

am X

+ gain

softmax

bandpass X

bitreduce X

dist_lpf X

chorus X

gain X

mix mix

Figure 4.12: Signal flow in the “2 layers” configuration

Table 4.7: Experiment configuration

Parameter Value

Number of generations 500

Population size 40

Target sound Drum loop

Input sound White noise

Audio features for neural input mfcc 0, mfcc 0 derivative, mfcc 1

Audio features for similarity measure mfcc 0, mfcc 0 derivative, mfcc 1 and

bark bands

Number of runs 20 per configuration

4.6. EXPERIMENT 5 51

4.6.2 Results and Evaluation

Figure 4.13: Aggregated fitness values

52 CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.14: Box-and-whisker plot of fitness values in the last generation

As illustrated by figure 4.13 and 4.14, three of the audio effects (amplitude modulation,

chorus and bitreduce) achieve bad scores when used individually. The reason is that they

are not able to shape/filter the noise in a desirable manner. This makes sense, as these three

audio effects typically make the sound “richer”. The band-pass filter and low-pass filter are

more useful in this experiment, because they can filter the wide spectrum of the input sound

(white noise) to something that sounds more like the target sound (drums). Hence low mix

values for am, chorus and bitreduce are expected in the “1 layer” and the “2 layers” runs.

Indeed, when inspecting the mix values in the best runs, we find that bandpass and dist lpf

are used much (see figure 4.15 and 4.17). However, we also find that chorus and bitreduce are

used for representing the snare drum (the rightmost part). In the sound illustrated by figure

4.15 the mix values change rapidly at one point, and this gives the snare drum a flutter-like

texture and creates the illusion of a short echo. The waveform of this sound can be seen in

4.6. EXPERIMENT 5 53

figure 4.16.

While the algorithm may have found out which effects are not useful, it has not found

out how to use the useful effects in a good way. Note that dist lpf alone yields better results

than 1 layer. Theoretically, both 1 layer and 2 layers could produce solutions as good as

those with dist lpf, but that typically does not happen, at least not with the same number

of generations.

One key takeaway from this experiment is that one should only use audio effects that

are known to be useful in the context of the experiments. Adding unfitting audio effects

to an audio effect network makes the search space larger and has a negative impact on the

convergence rate. In other words, to get good results with effect networks, let a human expert

create the audio effect structure.

Here are some ideas that could be applied to improve the results of audio effect networks:

• Perform pre-training on the parameters of the various audio effects separately. Then

freeze those neural networks and train the mix of the output from the effects when they

are used in parallel.

• The assumptions behind softmax mix values might be suboptimal. Using independent

mix values, i.e. without any normalization, might yield better results.

• Use Cartesian Genetic Programming (CGP) to automatically evolve networks of inter-

connected audio effects.

Figure 4.15: Mix values for each effect in the best result from the runs with 1 layer

54 CHAPTER 4. EXPERIMENTS AND DISCUSSION

Figure 4.16: Waveform of the best output sound from the runs with 1 layer

Figure 4.17: Mix values for each effect in the best result from the runs with 2 layers

Chapter 5

Conclusion

It has been shown that using neuroevolution for finding useful mappings in cross-adaptive

audio effects is feasible. This is good because finding these signal mappings by empirical

experimentation can be tedious and hard due to the vast number of combinations.

Several fitness functions have been developed and compared. Based on qualitative eval-

uations, the hybrid variant, that is a combination of local euclidean distance and NSGA-II-

inspired multi-objective optimization, has been found to yield the best results. Furthermore,

in experiments with high-dimensional spaces, FS-NEAT has been proven to do better than

NEAT, because FS-NEAT chooses only a few useful connections rather than a fully connected

neural network.

A comprehensive toolkit has been developed during the course of the project. The toolkit

includes an interactive visualization tool that makes it possible to evaluate results and un-

derstand the neuroevolution process. The toolkit has lots of configuration options, enabling

a flexible platform for experimentation. It is open source, has documentation and can be

used in future research within the field of cross-adaptive audio effects.

While an evolved cross-adaptive audio effect may perform well on the combination of the

input sound and the target sound it was trained on, it is also desirable to be able to success-

fully apply the effect to other sounds. In particular, this is useful in live performances where

audio effects are applied to unseen sound. When training data is scarce, data augmentation

can be applied to evolve cross-adaptive audio effects that perform better on unseen sound

that deviates from the training sound. Audio effects produced by the toolkit can be used in

55

56 CHAPTER 5. CONCLUSION

live performances, thanks to the implementation of audio analysis, audio effects and artificial

neural network that can run on live audio streams in Csound.

5.1 Future Work

As stated in the introduction, current research at the Music Technology department at Nor-

wegian University of Science and Technology aims at exploring radically new modes of musical

interaction in live music performance. This project is a good start, but there is still a lot

to be explored. For example, it would be interesting to try other audio effects than the six

audio effects used in this project. Also, it does not have to be effects. It can also be sound

generators, such as synthesizers or sword sound emulators, with parameters. For example,

a foley artist can imitate a sword sound with his mouth, then evolve parameters that make

the sword sound generator produce a sound like that. This relates to the work of Cartwright

and Pardo (2014). While their project is based on interactive, iterative refinement through

user-provided relevance feedback, neuroevolution can automate that process to save time.

That could make foley sound production easier and less time-consuming.

More work can also be done on combining multiple audio effects into one composite audio

effect. In experiment 5, layers of parallel audio effects were tested, and the results were not

better than the best effect used individually. However, this does not mean that composite

effects are generally bad. There are lots of techniques to be explored that might improve

composite effects. For example, one could use Cartesian Genetic Programming (CGP) to

automatically evolve the topology of effect networks.

Picbreeder (Secretan et al., 2008) and Soundbreeder (Ye and Chen, 2014) had success

with HyperNEAT, which is one variant of NEAT that has not been tried in this project.

HyperNEAT might be able to produce better results than NEAT in this project, but probably

only in experiments where the input nodes and output nodes have some sort of geometrical

meaning (Whiteson and T. van den Berg, 2013).

While live mode is implemented and technically works, it has not been tried by music

performers yet. There is much work to be done on finding the role of evolved cross-adaptive

audio effects in live performances. For example, one has to find out which instruments interact

5.1. FUTURE WORK 57

with each other’s cross-adaptive effects and which audio effects are musically interesting and

appealing. Other potential issues, such as latency and audio feedback, also need to be dealt

with.

The author imagines that methods developed in this project could be used for master-

ing/mixing music and also for novel crossfading in DJ mixing software. However, that would

require smart methods for dealing with long sounds (several minutes). This project has only

dealt with short sounds (up to 16 seconds) so far. When dealing with longer sounds the

author sees two challenges: 1) Computational time and 2) A long sound might have several

very different parts, and the evolved neural network might have trouble dealing well with all

of them. One possible solution to these challenges is to chop the long sound into a few short

audio segments that represent the different parts of the sound well and then run the pro-

gram on each audio segment. When applying the resulting neural networks on new sounds,

the program can automatically fade between the evolved artificial neural networks based on

similarity with the various audio segments they were trained on.

58 CHAPTER 5. CONCLUSION

Acknowledgments

I express gratitude towards my supervisors Øyvind Brandtsegg and Gunnar Tufte for guid-

ance and valuable feedback during this project. I would also like to the Department of

Computer and Information Science, NTNU for providing me with a Linux Virtual Machine

to run experiments on. Thanks to students at the office and my girlfriend for supporting

me and listening to my ramblings about sounds and genetic algorithms. Thanks to Sigve S.

Farstad for valuable feedback. Lastly, I would like to thank contributors to the various open

source software and libraries that have been used throughout the project.

Bibliography

Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolution strategies, evo-

lutionary programming, genetic algorithms. Oxford Univ. Press, New York.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon,

J., Zapata, J. R., and Serra, X. (2013). Essentia: An audio analysis library for music

information retrieval. In ISMIR ‘13, pages 493–498.

Brandtsegg, Ø. (2015). A toolkit for experimentation with signal interaction. In Proceedings

of the 18th International Conference on Digital Audio Effects (DAFx-15), pages 42–48.

Brossier, P. (2003). Aubio, a library for audio labelling. Retrieved January 8, 2017, from

http://aubio.org/.

Bullock, J. (2007). LibXtract: A lightweight library for audio feature extraction. In Proceed-

ings of the International Computer Music Conference.

Cartwright, M. and Pardo, B. (2014). SynthAssist: Querying an audio synthesizer by vocal

imitation. In Proceedings of the ACM International Conference on Multimedia - MM ’14.

doi:10.1145/2647868.2654880.

Caudill, M. (1987). Neural networks primer, part I. AI Expert, 2(12):46–52.

Chervenski, P. and Ryan, S. MultiNEAT neuroevolution library. Retrieved January 8, 2017,

from http://www.multineat.com/.

Colletti, J. (2013). Beyond the basics: Sidechain compression. Re-

trieved January 10, 2017, from http://www.sonicscoop.com/2013/06/27/

beyond-the-basics-sidechain-compression/.

59

http://aubio.org/
http://www.multineat.com/
http://www.sonicscoop.com/2013/06/27/beyond-the-basics-sidechain-compression/
http://www.sonicscoop.com/2013/06/27/beyond-the-basics-sidechain-compression/

60 BIBLIOGRAPHY

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation IEEE

Trans. Evol. Computat., 6(2):182–197. doi:10.1109/4235.996017.

Dodge, C. and Jerse, T. A. (1997). Computer music: synthesis, composition, and perfor-

mance. Schirmer Books.

Eldhuset, A. W. (2015). Experiments in using genetic algorithms to find parameters for

adaptive audio effects. Unpublished specialization project, Norwegian University of Science

and Technology.

Fitch, J. P., Lazzarini, V., Yi, S., Gogins, M., et al. Csound: Sound and music computing

system. Retrieved January 8, 2017, from http://csound.github.io/.

GDSP Online Course (2014a). Bitreduction. NTNU, Department of Music, Music Technol-

ogy. Retrieved January 9, 2017, fromhttp://gdsp.hf.ntnu.no/lessons/1/4/.

GDSP Online Course (2014b). Chorus. NTNU, Department of Music, Music Technology.

Retrieved January 9, 2017, from http://gdsp.hf.ntnu.no/lessons/14/53/.

GDSP Online Course (2014c). The modified tanh() function. NTNU, Department of Music,

Music Technology. Retrieved January 9, 2017, from http://gdsp.hf.ntnu.no/lessons/

3/18/.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.

Addison Wesley, Massachusetts.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4(2):251–257. doi:10.1016/0893-6080(91)90009-t.

Lecun, Y., Bottou, L., Orr, G. B., and Müller, K. (1998). Efficient backprop. Lecture Notes

in Computer Science Neural Networks: Tricks of the Trade, pages 9–50. doi:10.1007/3-

540-49430-8 2.

http://csound.github.io/
from http://gdsp.hf.ntnu.no/lessons/1/4/
http://gdsp.hf.ntnu.no/lessons/14/53/
http://gdsp.hf.ntnu.no/lessons/3/18/
http://gdsp.hf.ntnu.no/lessons/3/18/

BIBLIOGRAPHY 61

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems through

the search for novelty. In Proceedings of the Eleventh International Conference on Artifi-

cial Life (ALIFE). Retrieved January 8, 2017, from http://eplex.cs.ucf.edu/papers/

lehman_alife08.pdf.

Lehman, J. and Stanley, K. O. (2015). Novelty search users page. Retrieved January 8, 2017,

from http://eplex.cs.ucf.edu/noveltysearch/userspage/.

Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. Retrieved January

8, 2017, from http://musicweb.ucsd.edu/~sdubnov/CATbox/Reader/logan00mel.pdf.

Mermelstein, P. (1976). Distance measures for speech recognition, psychological and instru-

mental. Pattern recognition and artificial intelligence, 116:374–388.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Moritz, A. (2003). Stockhausen hymnen introduction. Retrieved January 8, 2017, from

http://home.earthlink.net/~almoritz/hymnenintro.htm.

Reiss, J. D. (2011). Intelligent systems for mixing multichannel audio. In 2011 17th Inter-

national Conference on Digital Signal Processing (DSP). doi:10.1109/icdsp.2011.6004988.

Sarle, W. (2014). Comp.ai.neural-nets FAQ, part 2 of 7: Learning section - should I nor-

malize/standardize/rescale the data? Retrieved January 8, 2017, from http://www.faqs.

org/faqs/ai-faq/neural-nets/part2/section-16.html.

Schmidhuber, J. (2009). Simple algorithmic theory of subjective beauty, novelty, surprise,

interestingness, attention, curiosity, creativity, art, science, music, jokes. Retrieved January

10, 2017, from http://people.idsia.ch/~juergen/sice2009.pdf.

Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., and Stanley, K. O.

(2008). Picbreeder: Evolving pictures collaboratively online. In Proceeding of the Twenty-

sixth Annual CHI Conference on Human Factors in Computing Systems - CHI ’08.

doi:10.1145/1357054.1357328.

http://eplex.cs.ucf.edu/papers/lehman_alife08.pdf
http://eplex.cs.ucf.edu/papers/lehman_alife08.pdf
http://eplex.cs.ucf.edu/noveltysearch/userspage/
http://musicweb.ucsd.edu/~sdubnov/CATbox/Reader/logan00mel.pdf
http://home.earthlink.net/~almoritz/hymnenintro.htm
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
http://people.idsia.ch/~juergen/sice2009.pdf

62 BIBLIOGRAPHY

Serafin, S. (2007). Modulation synthesis: ring modulation and amplitude modulation. Aal-

borg University Copenhagen. Retrieved January 9, 2017, from http://media.aau.dk/

~sts/ad/modulation.html.

Stanley, K. O. (2015). NEAT software catalog. Retrieved January 8, 2017, from http:

//eplex.cs.ucf.edu/neat_software/#NEAT.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting

topologies. Evolutionary computation, 10(2):99–127. doi:10.1162/106365602320169811.

Stanley, K. O. and Miikkulainen, R. (2004). Competitive coevolution through evolutionary

complexification. Journal of Artificial Intelligence Research, 21:63–100. Retrieved January

12, 2017, from https://www.jair.org/media/1338/live-1338-2278-jair.pdf.

Veldhuizen, D. A. and Lamont, G. B. (2000). Multiobjective evolutionary algo-

rithms: Analyzing the state-of-the-art. Evolutionary computation, 8(2):125–147.

doi:10.1162/106365600568158.

Verfaille, V., Zolzer, U., and Arfib, D. (2006). Adaptive digital audio effects (a-

DAFx): A new class of sound transformations. IEEE Transactions on Audio, Speech

and Language Processing IEEE Trans. Audio Speech Lang. Process., 14(5):1817–1831.

doi:10.1109/tsa.2005.858531.

Walsh, R. (2008). Cabbage, a new GUI framework for Csound. Retrieved January 8, 2017,

from http://lac.linuxaudio.org/2008/download/papers/7.pdf.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In System

modeling and optimization, pages 762–770. Springer. doi:10.1007/bfb0006203.

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R., and Kohl, N. (2005). Automatic

feature selection in neuroevolution. In Proceedings of the 2005 Conference on Genetic and

Evolutionary Computation - GECCO ’05. doi:10.1145/1068009.1068210.

Whiteson, S. and T. van den Berg (2013). Critical factors in the performance of Hyper-

NEAT. In Proceedings of the Genetic and Evolutionary Computation Conference, pages

http://media.aau.dk/~sts/ad/modulation.html
http://media.aau.dk/~sts/ad/modulation.html
http://eplex.cs.ucf.edu/neat_software/#NEAT
http://eplex.cs.ucf.edu/neat_software/#NEAT
https://www.jair.org/media/1338/live-1338-2278-jair.pdf
http://lac.linuxaudio.org/2008/download/papers/7.pdf

BIBLIOGRAPHY 63

759–766. Retrieved January 15, 2017, from https://pdfs.semanticscholar.org/2a57/

a47f53eebe41d5d5d11aa626e91ab65892c0.pdf.

Ye, J. and Chen, S. (2014). SoundBreeder with MultiNEAT. Retrieved January 8, 2017,

from https://www.cs.swarthmore.edu/~meeden/cs81/s14/papers/AndyLucas.pdf.

https://pdfs.semanticscholar.org/2a57/a47f53eebe41d5d5d11aa626e91ab65892c0.pdf
https://pdfs.semanticscholar.org/2a57/a47f53eebe41d5d5d11aa626e91ab65892c0.pdf
https://www.cs.swarthmore.edu/~meeden/cs81/s14/papers/AndyLucas.pdf

Appendix A

Open Source Toolkit

The toolkit that has been implemented in this project is open source and available at

https://github.com/iver56/cross-adaptive-audio

This includes software for doing neuroevolution on sounds as well as the software for

visualizing the experiments. The readme file includes:

• Detailed instructions for how to install the project and all dependencies on Windows

and Ubuntu

• User manual with example commands for getting started

65

https://github.com/iver56/cross-adaptive-audio

Appendix B

Neuroevolution Application

Dependencies

Table B.1: Dependencies

Name Description

Jinja2 A general purpose templating language. Useful for generating csd files

that are fed into Csound.

six, futures Makes the Python application compatible with both Python 2 and

Python 3

whichcraft A tool that can check which programs are installed on the computer.

Used for starting Node.js correctly on both Ubuntu and Windows.

natsort Natural sorting. Used for showing audio features in the correct order.

nose A tool for running all the automated tests in the project

statistics A package that can calculate various statistics, for example standard

deviation, of data series.

numpy A package for scientific computing. Used for computing gradients and

euclidean distance.

Continued on next page

67

68 APPENDIX B. NEUROEVOLUTION APPLICATION DEPENDENCIES

Table B.1 – continued from previous page

Name Description

matplotlib A 2D plotting library. Used for creating various plots for this report.

MultiNEAT A portable neuroevolution Library written in C++. It has Python bind-

ings.

Sonic Annotator

with Vamp plugin

LibXtract

Sonic annotator takes in a set of audio files, runs them through the

specified vamp plugin and outputs the results. LibXtract is a library for

audio feature extraction.

Aubio MFCC A tool that takes in a single audio file and calculates and outputs MFCC

coefficients for each frame

Essentia music ex-

tractors

A tool that takes in a single audio file, calculates a large set of audio

features and writes the resulting data to a file

Csound A sound and music computing system. Csound can be given a piece

of Csound code that describes how to process audio, and then Csound

processes the audio accordingly. In this project, Csound is used for A)

applying audio effects with effect parameters that vary over time and B)

calculating audio features.

Appendix C

JavaScript Libraries Used in

Interactive Visualization Application

Table C.1: JavaScript libraries

Name Description

NodeJS Used for serving the application and pushing results to the application

via websockets whenever new data becomes available

AngularJS Application framework that makes it easy to build Single-Page Applica-

tions

Angular-material User Interface (UI) Component framework. Makes it easy to add UI

elements, such as buttons and sliders, that look nice and have great

usability.

Color-brewer Various sets of colors that are useful for visualizing data

Cubism Time series visualization in the form of horizon charts, which reduce

vertical space without losing resolution. This is useful when there are

many variables to visualize simultaneously in a limited vertical space.

n3-line-chart Used for line charts and histograms. Is nicely integrated with AngularJS

and features some useful interactions. Depends on D3.js

Continued on next page

69

Table C.1 – continued from previous page

Name Description

NVD3 Chart components for D3.js. Used for creating stacked area chart (species

plot)

Debounce, limit Used for throttling the refresh rate of computationally demanding actions

Sigma Used for visualizing neural networks. Features zooming, panning and

rotating.

Wavesurfer Works as an audio player that also visualizes the waveform of the sound

that is played. The user can click on the waveform to seek to that

position.

jQuery Makes it easier to do Document Object Model (DOM) manipulation

Appendix D

Paper Published in Proceedings of the

2nd AES Workshop on Intelligent

Music Production

71

Proceedings of the 2nd AES Workshop on Intelligent Music Production, London, UK, 13 September 2016

EVOLVING NEURAL NETWORKS FOR CROSS-ADAPTIVE AUDIO EFFECTS

Iver Jordal, Øyvind Brandtsegg and Gunnar Tufte

Norwegian University of Science and Technology
iver56@hotmail.com, oyvind.brandtsegg@ntnu.no, gunnart@idi.ntnu.no

ABSTRACT

In cross-adaptive audio effects, effect parameters are dynami-
cally informed by features of sounds other than the sound that
is processed by the effect. Cross-adaptive audio effects can be
applied in a wide range of research fields, including live mu-
sic performance and audio mastering. Toward a toolkit for
signal interaction we present a system that can exploit dy-
namic audio parameters of signal sources to control effect pa-
rameters, and thereby dynamically process audio. The vast
number of possible combinations of parameters makes em-
pirical experimentation tedious and unfeasible for live perfor-
mance. Artificial Intelligence (AI) methods, herein Genetic
Algorithms (GAs) and Artificial Neural Networks (ANNs),
are exploited to find parameters for useful signal interactions
in cross-adaptive audio effects. An experimental approach
is taken to combine GAs and ANNs to control the audio ef-
fect parameters of one sound (input) by extracting audio fea-
tures from another audio source (target) as to process the in-
put to sound as close to the target as possible. Such results are
shown to be feasible by using evolved ANNs.

1. INTRODUCTION

The problem of extracting audio features for control of ef-
fect parameters is here defined to two problem domains; the
extraction and selection of audio/signal features and the map-
ping of such features to control parameters for audio effects.
That is a selection of features from the source audio stream,
mapping process to control the effects that can manipulate the
target audio stream toward a signal that include sought audio
properties. The system presented is part of the development
of a toolkit for experimentation with signal interaction [1]

To handle the mapping of features to effect parameters an
evolved ANN is used. The chosen neural network is based on
NeuroEvolution of Augmenting Topologies (NEAT) [2]. The
architecture of the ANN in a NEAT approach allow evolution,
e.g. a Genetic Algorithm [3], to define weights and topology
of the network. Further, the training of the network is based
on performance, i.e. fitness, instead of supervised learning,
e.g. backpropagation [4].

The set of audio features for extraction is predefined, i.e.
the evolved network exploits favorable features within the
available feature set. The audio effect is also predefined.

To explore the possibility of exploiting AI methods to-
ward cross-adaptive audio effects, a system for conducting

and evaluating signal interaction experiments has been im-
plemented. As a test case the system is set to make one sound
similar to another by applying audio effects controlled by ex-
tracted audio features.

Analysis of
target audio

Audio effectInput audio

Mapping
(ANN)

Output
audio

low-level features

effect
parameters

Figure 1: Cross-adaptive audio effect process with two audio
streams: input audio and target audio

Figure 1 roughly illustrates the system setup. The low-
level features are extracted audio features from the target sound.
The features are mapped by the evolved ANN to effect param-
eters that are used to manipulate the input audio. The output
audio is the result of effects applied to the input audio.

The system described produces large amounts of data in
various forms, including audio features, effect parameters and
output sounds. To handle the data for evaluation, an interac-
tive visualization tool was made to make it easier to evaluate
results and understand what the system is doing. The system
and the visualization tool are open source and available on
GitHub1.

2. EXPERIMENTS AND RESULTS

The presented experiment’s target goal was to make white
noise sound like a drum loop with snare drum and bass drum.
The selected and applied audio effect was distortion and res-
onant low-pass filter. The audio features used were spec-
tral centroid and the first two Mel-Frequency Cepstral Co-
efficients (MFCC). Audio features were calculated for each

1https://github.com/iver56/cross-adaptive-audio

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Proceedings of the 2nd AES Workshop on Intelligent Music Production, London, UK, 13 September 2016

frame of 512 samples. The set of features in one frame is the
feature vector for that frame. The fitness function used in the
experiment was

1/(1 + e) (1)

where e is the average euclidean distance between fea-
ture vectors of the target sound and the corresponding feature
vectors of the output sound. This means that fitness values
are between 0 and 1. The population size was 20, the mu-
tation rate was 0.25 and the crossover rate was 0.75. The
experiment was run 20 times, with different Pseudo-Random
Number Generator seed for each run. The fitness values were
aggregated and are shown in Figure 2. Some of the sounds
produced have been published in the project’s blog2.

Figure 2: This plot shows the fitness (from expression 1) of
the best individual in each generation. Below are waveforms
of A) the input sound (white noise), B) the target sound (drum
loop) and C) an output sound

3. FUTURE WORK

Future work may address the following:

• Conduct experiments with other audio effects. Let a
genetic algorithm decide which audio effects to apply.

• Develop methods for dealing with long and complex
sounds, such as music with many instruments.

2http://crossadaptive.hf.ntnu.no/index.php/2016/06/27/evolving-neural-
networks-for-cross-adaptive-audio-effects/

• Make the system work on live audio streams, with pre-
trained neural networks.

• Explore possible applications, such as mixing/mastering
and novel sound effects.

• Experiment with other audio features. Use machine
learning techniques to create high-level features.

• Implement the system on a Field-programmable gate
array (FPGA) or other parallel computing environments
for the sake of decreasing computational time. This
may make it possible to train useful neural networks in
seconds, making the system more flexible in live per-
formances

4. CONCLUSION

Output sounds from the system demonstrate that it is possible
to make white noise sound like a drum loop by applying a
cross-adaptive audio effect. It also proves that NEAT can train
a neural network to work as a musically interesting mapping
from a set of audio features to a set of audio effect parameters.
A comprehensive toolkit has been developed. It includes an
interactive visualization tool that makes it easier to evaluate
results and understand the neuroevolution process.

5. REFERENCES

[1] Ø. Brandtsegg, “A toolkit for experimentation with sig-
nal interaction,” in Proceedings of the 18th International
Conference on Digital Audio Effects (DAFx-15), 2015,
pp. 42–48.

[2] K. O. Stanley and R. Miikkulainen, “Evolving neu-
ral networks through augmenting topologies,” Evol.
Comput., vol. 10, no. 2, pp. 99–127, Jun. 2002.
http://dx.doi.org/10.1162/106365602320169811

[3] D. Goldberg, GENETIC ALGORITHMS in search opti-
mization & machine learning. Addison Wesley, 1989.

[4] P. J. Werbos, Applications of advances in nonlinear
sensitivity analysis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1982, pp. 762–770. ISBN 978-3-540-39459-
4. http://dx.doi.org/10.1007/BFb0006203

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

	Abstract
	Introduction
	Background Information
	Genetic Algorithms
	Artificial Neural Networks
	Neuroevolution
	NeuroEvolution of Augmenting Topologies (NEAT)
	Multi-Objective Evolutionary Algorithms
	Audio Feature Extraction Tools
	Audio Effects
	Modified Hyperbolic Tangent
	Low-Pass Filter
	Band-Pass Filter
	Amplitude Modulation
	Bit Reduction
	Chorus

	Audio Processing Tools
	Specialization Project
	Output Activation Functions
	Fitness Functions
	Automatic Feature Selection

	Methods and Implementation
	Evolving Neural Networks
	Implementation
	Performance
	Neuroevolution Routine
	Input Standardization
	Parameter Mapping
	Audio Effects
	Data Augmentation
	Live Mode

	Visualization

	Experiments and Discussion
	General Configuration
	Experiment 1
	Configuration
	Results and Evaluation

	Experiment 2
	Configuration
	Results and Evaluation

	Experiment 3
	Configuration
	Results and Evaluation

	Experiment 4
	Configuration
	Results and Evaluation
	Neuroevolution Analysis

	Experiment 5
	Configuration
	Results and Evaluation

	Conclusion
	Future Work
	Acknowledgments

	Bibliography
	Open Source Toolkit
	Neuroevolution Application Dependencies
	JavaScript Libraries Used in Interactive Visualization Application
	Paper Published in Proceedings of the 2nd AES Workshop on Intelligent Music Production

