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Adaptive Observer for Nonlinearly Parameterised
Hammerstein System with Sensor Delay - Applied

to Ship Emissions Reduction
Kræn V. Nielsen, Mogens Blanke and Lars Eriksson

Abstract—Taking offspring in a problem of ship emission
reduction by exhaust gas recirculation control for large diesel
engines, an underlying generic estimation challenge is formulated
as a problem of joint state and parameter estimation for a
class of multiple-input single-output Hammerstein systems with
first order dynamics, sensor delay and a bounded time-varying
parameter in the nonlinear part. The paper suggests a novel
scheme for this estimation problem that guarantees exponential
convergence to an interval that depends on the sensitivity of the
system. The system is allowed to be nonlinear parameterized
and time dependent, which are characteristics of the industrial
problem we study. The approach requires the input nonlinearity
to be a sector nonlinearity in the time-varying parameter.
Salient features of the approach include simplicity of design and
implementation. The efficacy of the adaptive observer is shown
on simulated cases, on tests with a large diesel engine on test bed
and on tests with a container vessel.

Index Terms—Nonlinear control systems, joint state and pa-
rameter observer, sensor delay.

I. INTRODUCTION

THIS paper considers observer design for a class of
systems where a bounded time-varying parameter enters

the model nonlinearly. The motivation for this problem is a
case of emission reduction for large diesel engines, where
accurate estimation of gas composition in the scavenging air
path of the engine is essential. The dynamics of this problem
are described by a nonlinear model that is nonlinearly param-
eterized, time-varying and includes sensor delay. Literature
mainly deals with systems of two kinds: are linear in the
unknown parameters; have contributions from time dependent
inputs and unknown parameters that enter in a simple affine
manner in the system equations. The emission control problem
at hand does not belong to either of these categories but is
a nonlinear parameterized Hammerstein system with time-
varying elements. The paper suggests a parameter and state
estimation solution for this problem.

An overview of nonlinear observer design methods was
presented by [1] who also defined a terminology to distinguish
between adaptive observers and joint state and parameter
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observers. An early approach for joint state and parameter ob-
server design for nonlinear systems was to apply an Extended
Kalman Filter augmenting the state vector by the unknown
parameters. This approach has problems with divergence and
bias as shown in [2], who also suggested a solution for
linear systems. Extension to a class of nonlinear systems was
done in [3], but still for problems that were linear in the
parameters. Gradient based estimators for affine systems were
treated in numerous articles and in textbooks, including [4].
For nonlinearly parameterized systems, [5] showed that the
gradient methods are insufficient and can lead to divergence
in observers, and a min-max problem design was introduced
to ensure global stability. In the present paper a guarantee of
exponential convergence is essential to ensure robustness of
the estimator candidates as the method is to be rolled out on
a large industrial scale.

Nonlinearly parameterized perturbations were studied for a
large class of nonlinear systems in [6], who also presented a
stepwise design. This method was combined with a high-gain
observer in [7] to generalise the design to output feedback.
[8] used an observer design framework known as Immersion
& Invariance for nonlinearly parameterised systems, under a
monotonicity constraint, by adding nonlinear dynamic scaling,
the purpose of which was to avoid solving partial differential
equations. An uncertainty-set-based algorithm for parameter
estimation was presented in [9]. This algorithm included
estimates of the parameters and of the maximal set of feasible
parameters. In case of nonconvex problems, the algorithm
was shown capable of detecting if a local minimum was
reached instead of a global one. This and most other results
in literature apply to systems that fulfill some convexity or
monotonicity requirements. [10] overcame this by combining
traditional observer design with explorative search for part of
the parameter vector. Yet another extension was presented in
[11] who used virtual update laws in the design of observers
where the parameter estimates include direct terms from the
measurements. This facilitated implementation of update laws
that are dependent on time derivatives of measurements with-
out explicitly calculating the derivatives. Off-line estimation
for multiple-input single-output (MISO) Hammerstein models
were treated in [12] where the suggested approach was shown
to be superior to linear methods for a chemical distillation
process and a heat exchanger. The iterative approach of [13]
was used for estimating the parameters of both the nonlinear
and the linear parts. A recursive identification method was
analyzed by [14]. A state observer for an extended Hammer-
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stein model of an engine test bench was presented by [15].
Parameter estimation of Hammerstein systems was treated in
e.g. [16] and [17] but also these works addressed off-line
identification rather than real-time estimation. In contrast, [18]
presented adaptive control and real-time parameter estimation
for a certain class of Hammerstein systems where the nonlinear
part is linear in the unknown parameters.

This text first motivates the industrial estimation challenge
from which a generic model and an estimation problem
is formulated. The paper then presents both a parameter
estimator and a joint state and parameter observer design
for MISO Hammerstein models with first order dynamics and
sensor delay. An adaptive observer is suggested that estimates
the state and a time-varying parameter of the nonlinear part.
Explicit calculation of derivatives is avoided by using virtual
update laws inspired by [11]. Exponential convergence bounds
and minimum convergence rates1 are derived for the observer
errors. The parameter error converges at least exponentially
to the bounds of the time-varying parameter. A benefit of the
suggested observer is shown to be the simplicity of design, of
implementation and of tuning. Formal proofs for convergence
and error bounds are included in the paper on conditions
of fairly weak requirements on the nonlinear part of the
Hammerstein model. Whereas an analytical analysis on the
effect of disturbances has not been performed, the application
to a real world problem demonstrates the performance of the
method.

The paper first introduces the industrial case of marine
emission reduction by exhaust gas recirculation in Section
II and generalizes the underlying oxygen estimation problem
to be one of estimating state and parameter in a nonlinear
parameterized first order MISO Hammerstein system with
sensor delay. An adaptive observer solution is then suggested
in Section IV along with derivation of bounds and minimum
convergence rates for the observer errors. The design is
favorably compared to an existing but far more complex design
from [7] in Section V and a simulation example follows in
Section VI. The suggested observer is then applied to a high
fidelity simulation of a large marine diesel engine, and to data
from marine prime mover diesels on a test bed and at sea.
The results show that the suggested approach is solid and yet
simple to implement and therefore has the potential to become
enabling technology in estimation based control of emissions
from large two-stroke diesel engines.

II. THE OXYGEN ESTIMATION PROBLEM IN EMISSION
CONTROL

Increased environmental concern has lead the International
Maritime Organization to restrict the emissions from marine
diesel engines [20]. The Tier III standard, that applies to
vessels built after 1st of January 2016, severely restricts NOx
emission in specified NOx Emission Control Areas (NECAs).
The North American coastal area is such a NECA and the
North Sea and Baltic Sea are expected to become NECAs
[21]. The Tier III standard specifies a reduction by a factor of

1Definition 5.10 in [19].
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Fig. 1. Airflow of turbocharged diesel engine with high-pressure Exhaust Gas
Recirculation (shown in red).

four compared to the Tier II standard, thus requiring significant
modifications to the engines.

NOx formation in a diesel engine mainly occurs during
combustion where high temperatures lead to reactions between
nitrogen and oxygen, known as the Zeldovich mechanism
[22]. One method of decreasing NOx formation is to install
an Exhaust Gas Recirculation (EGR) system to increase heat
capacity and decrease oxygen availability in the combustion.
The result is lower peak combustion temperatures and thus
less NOx formation. A simplified overview of the airflow of a
high pressure EGR system is shown in Figure 1. The speed of
the EGR blower is used to regulate the amount of low oxygen
exhaust gas that is recirculated to the scavenge receiver. Fixed
gain feedback control is used to reach a setpoint for scavenge
receiver oxygen fraction (Osr). The pressure, temperature and
gas composition of the scavenge receiver necessitates a gas
extraction system in order to reliably measure Osr. The gas
extraction results in a measurement delay of about 20 seconds.
In steady running conditions the feedback controller performs
adequately in spite of this delay but in some engine loading
transients Osr drops excessively and the lack of oxygen causes
formation of thick black smoke for more than half a minute.
This is not acceptable as excessive soot formation might
damage the engine and since loading transients frequently
occur during maneuvering close to ports where visible smoke
is restricted.

As EGR systems have only recently been added to marine
two-strokes, most literature in EGR control applies to four-
stroke automotive engines, where EGR is often accompanied
by a variable-geometry turbocharger. High-fidelity modeling
of such a system was treated in [23] and controller design
in [24], [25], [26] and recently [27]. Reduction of smoke in
loading transients on marine diesel engine by sophisticated
control of a variable-geometry turbocharger was seen [28] but
this system lacked exhaust gas recirculation. Modeling and
observer design for intake manifold oxygen fraction of a diesel
engine with EGR was treated in [29] where a Luenberger-like
adaptive observer also estimated the fuel blend level.

High fidelity simulation models of the airflow of a marine
engine with high pressure EGR were presented in [30], [31]
and [32]. SISO control methods for a linearized version of such
a model were investigated in [33] where it was found difficult
to achieve both performance and robustness. The high-fidelity
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model from [32] is used in Section VII for validation of the
observer. A simpler, control-oriented model (COM) of Osr
was also proposed in [34] and [32] where it was shown to
represent the most essential dynamics. The COM is a first
order Hammerstein model (1) with molar fuel flow ṅf , molar
EGR flow ṅegr and turbocharger speed ωtc as inputs.

τȮsr = −Osr+Oa−
(1 + y

4 (Oa + 1))ṅf ṅegr

(θβ(ωtc) + y
4 ṅf )(θβ(ωtc) + ṅegr)

(1)

The model includes ambient oxygen fraction Oa, ratio of
hydrogen to carbon in the fuel y and a mixing time constant τ
as parameters. The product θβ(ωtc) represents the compressor
flow where

β(ωtc) = (1− φ)
ωtc

1000 rad/s
+ φ

( ωtc
1000 rad/s

)2
(2)

and φ is a constant. As the compressor flow model is empirical
and represents a substantial simplification of the physics
involved in the process, the parameter θ is expected to vary
slightly depending on operating region and conditions but stay
within an interval (θ(t) ∈ [θ̄−κ; θ̄+κ]). The parameters θ̄ and
κ depend on the engine layout and are not necessarily known
a priori.

The delay of the gas extraction system (∆t) is included in
the model as

Osrm(t) = Osr(t−∆t) (3)

where Osrm is the measured scavenge oxygen fraction avail-
able to the controller.

A nonlinear parameter estimator of θ for the COM was
proposed in [34] but it did not consider the sensor delay,
time-variance of θ and convergence bounds were not found.
An observer for Osr is desired in order to compensate for
the delay, which impedes the EGR controller during engine
loading transients.

III. A GENERIC SYSTEM MODEL

The observer design proposed in this paper applies to MISO
Hammerstein systems with sensor delay of the following form

τ ẋ(t) = g(θ(t), u(t))− x(t) (4a)

y(t) = x(t−∆t) (4b)

θ̄ − κ ≤ θ(t) ≤ θ̄ + κ (4c)

where x ∈ Dx is a system state within Dx ⊂ R, u : [0,∞)→
Du is a vector of known signals within Du ⊂ Rp, g : Dθ ×
Du → Dx is referred to as the input nonlinearity, τ is a known
positive time constant and ∆t is a known time delay of the
measurement y ∈ Dx. g(θ(t), u(t)) is assumed to be piecewise
continuous in t. The time dependency of signals is explicitly
expressed when needed.
θ(t) is a time-varying parameter bounded within an interval

θ(t) ∈ [θ̄−κ; θ̄+κ], κ ≥ 0. θ̄ defines the middle of the interval
and κ is the possible deviation from θ̄. It is not necessary
to know the parameters θ̄ and κ. Theorem 1 shows that the
parameter estimate of the proposed observer will converge to
the interval [θ̄ − κ; θ̄ + κ].

The input nonlinearity is required to satisfy a sector con-
dition with respect to the parameter estimate error. With
estimation errors denoted as x̃ = x̂ − x, θ̃ = θ̂ − θ and
g̃(θ, θ̃, u) = g(θ + θ̃, u)− g(θ, u), the condition can be stated
as

Property 1: Sector Nonlinearity
The function g̃(θ, θ̃, u) is a sector nonlinearity in θ̃:

∀θ̃,∃ρ, ∃γ > 0 : γθ̃2 ≤ g̃(θ, θ̃, u)θ̃ ≤ ρθ̃2.

It can be inferred from Property 1 that g̃(θ, θ̃, u) is mono-
tonically increasing in θ̃. If g is continuously differentiable
this property is satisfied if ∂g

∂θ has positive bounds.

IV. ESTIMATOR DESIGN

Definition 1: A parameter estimator for the system defined
by (4) is

θ̂(t) = k ·
(
τy(t) +

∫ t

0

y(t)− g(θ̂(t), u(t−∆t)) dt

)
(5)

where k > 0.
Theorem 1: Let the estimator defined by (5) be used for

estimating the time-varying parameter θ(t) of the system
defined by (4). If Property 1 is fulfilled, then θ̃(t) is bounded
by the relation

|θ̂(t)− θ̄| ≤ κ+
(
|θ̂(0)− θ̄| − κ

)
e−kγt (6)

Proof of Theorem 1: Differentiating (5) with respect to
time

˙̂
θ(t) = k ·

(
τ ẏ(t) + y(t)− g(θ̂(t), u(t−∆t))

)
(7)

Using (4b) we get
˙̂
θ(t) = k ·

(
τ ẋ(t−∆t) + x(t−∆t)− g(θ̂(t), u(t−∆t))

)
(8)

From (4a), τ ẋ(t−∆t)+x(t−∆t) = g(θ(t−∆t), u(t−∆t)),
hence

˙̂
θ(t) = k ·

(
g(θ(t−∆t), u(t−∆t))− g(θ̂(t), u(t−∆t))

)
= −kg̃(θ(t−∆t), θ̂(t)− θ(t−∆t), u(t−∆t)) (9)

The proof now splits into three cases, depending on the size
of θ̂.

i) As a first case, assume that the estimate is above the
interval (θ̂ ≥ θ̄ + κ).

As θ̄ + κ ≥ θ and g̃(θ, θ̃, u) is monotonically increasing in
θ̃, equation 9 can be converted to the differential inequality

˙̂
θ(t) ≤ −kg̃(θ(t−∆t), θ̂(t)− (θ̄ + κ), u(t−∆t)) (10)

From Property (1) we get
˙̂
θ(t) ≤ −kγ(θ̂(t)− (θ̄ + κ))⇔ (11)

˙̂
θ(t)− (θ̄ + κ) ≤ −kγθ̂(t) (12)

According to the Comparison Principle as seen in [35], the
solution to the differential inequality (12) is bounded by the
solution to the corresponding differential equation, thus

θ̂(t)− (θ̄ + κ) ≤
(
θ̂(0)− (θ̄ + κ)

)
e−kγt ⇔ (13)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 4

θ̂(t)− θ̄ ≤ κ+
(
θ̂(0)− θ̄ − κ

)
e−kγt (14)

As θ̂ ≥ θ̄ we get∣∣∣θ̂(t)− θ̄∣∣∣ ≤ κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt (15)

which proves (6) for the first case.
ii) In the second case, assume that the estimate is below the

interval (θ̂ ≤ θ̄ − κ).
As θ̄ − κ ≤ θ and g̃(θ, θ̃, u) has positive sensitivity to θ̃,

equation 9 can also be converted to the differential inequality

˙̂
θ(t) ≥ −kg̃(θ(t−∆t), θ̂(t)− (θ̄ − κ), u(t−∆t)) (16)

From Property (1) we get

˙̂
θ(t) ≥ −kγ(θ̂(t)− (θ̄ − κ))⇔ (17)

˙̂
θ(t)− (θ̄ − κ) ≥ −kγθ̂(t) (18)

Application of the Comparison Principle again leads to

θ̂(t)− (θ̄ − κ) ≥
(
θ̂(0)− (θ̄ − κ)

)
e−kγt ⇔ (19)

θ̂(t)− θ̄ ≥ −κ+
(
θ̂(0)− θ̄ + κ

)
e−kγt (20)

Since θ̂ ≤ θ̄ we get∣∣∣θ̂(t)− θ̄∣∣∣ ≤ κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt (21)

which proves (6) for the second case.
iii) The third and last case where the estimate is inside the

interval obviously also fulfills (6).
As |θ(t)− θ̄| ≤ κ, a consequence of Theorem 1 is that the

absolute value of the parameter estimation error will converge
toward 2κ or less without overshoot and with a minimum
convergence rate of kγ.

Definition 2: A joint state and parameter observer for the
system defined by (4) is

˙̂x =
1

τ

(
g(θ̂(t), u(t))− x̂

)
(22a)

θ̂(t) = k ·
(
τy(t) +

∫
y(t)− g(θ̂(t), u(t−∆t)) dt

)
(22b)

where k > 0.
Theorem 2: Let the observer defined by (22) be used for

observing the state x and the parameter θ of the system defined
by (4). If Property 1 is fulfilled, then x̃ is bounded by (29).

Proof of Theorem 2: The differential equation of the state
estimate error is

τ ˙̃x = τ ˙̂x− τ ẋ = −x̂+ g(θ̂(t), u(t)) +x− g(θ, u(t))⇔ (23)

τ ˙̃x = −x̃+ g̃(θ(t), θ̃(t), u(t)) (24)

From Property 1 we get

−ρ
∣∣∣θ̂(t)− θ∣∣∣ ≤ g̃(θ(t), θ̃(t), u(t)) ≤ ρ

∣∣∣θ̂(t)− θ∣∣∣ (25)

Furthermore, from Theorem 1,∣∣∣θ̂(t)− θ∣∣∣ ≤ ∣∣∣θ̂(t)− θ̄∣∣∣+ κ ≤ 2κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt
(26)
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Fig. 2. Overview of the signal paths of the joint parameter and state observer.
The parameter estimator uses the inputs and the sensor signal, whereas the
observer only uses inputs and estimated parameter.

Combining (25) with (26) leads to two differential inequalities

g̃(θ(t), θ̃(t), u(t)) ≥ −ρ
(

2κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt)
(27a)

g̃(θ(t), θ̃(t), u(t)) ≤ ρ
(

2κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt)
(27b)

Inserting these into (24)

τ ˙̃x ≥ −x̃− ρ
(

2κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt) (28a)

τ ˙̃x ≤ −x̃+ ρ
(

2κ+
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ) e−kγt) (28b)

Using the Comparison Principle once again allows us to solve
the differential inequalities

x̃(t) ≥ −2ρκ+(x̃(0) + 2ρκ) e−
t
τ −η

(
e−kγt − e− t

τ

)
(29a)

x̃(t) ≤ 2ρκ+ (x̃(0)− 2ρκ) e−
t
τ + η

(
e−kγt − e− t

τ

)
(29b)

where

η =
ρ
(∣∣∣θ̂(0)− θ̄

∣∣∣− κ)
1− kγτ

(30)

Thus |x̃(t)| will converge to 2ρκ or lower with a minimum
exponential convergence rate λ equal to the rate of the slowest
converging term. Therefore λ = min(kγ , 1

τ ).

Figure 2 shows an overview of the signal paths when
combining control object and sensor with the joint state and
parameter observer.

Note that the observer also can be applied to systems where
the input nonlinearity has negative sensitivity to parameter
estimation errors, opposite to what is specified in Property
1. This is achieved by inverting the sign of the parameter
estimator equation. Consider as an example a system on the
form (4) with

g(θ, u) = −θ · (u2 + 1) (31)

The nonlinearity can be rewritten by defining ψ = −θ to

gψ(ψ, u) = ψ · (u2 + 1) (32)

Now gψ() fulfills Property 1 and ψ can be estimated according
to Definition 1

ψ̂(t) = k·
(
τy(t) +

∫ t

0

y(t)− gψ(ψ̂(t), u(t−∆t)) dt

)
(33)
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As gψ(ψ, u) = g(θ, u) we get

θ̂(t) = −k ·
(
τy(t) +

∫ t

0

y(t)− g(θ̂(t), u(t−∆t)) dt

)
(34)

Thus for systems with negative sensitivity to parameter errors
the sign of the parameter estimator should be switched.

The choice of observer gain k depends on the application.
A high gain leads to fast convergence but also challenges the
observer with regards to robustness to model inaccuracy and
noise. As the observer has a direct gain from measurement to
parameter estimate the observer might not be suited for control
objects with significant sensor noise.

Note that when θ(t) is constant, κ = 0 and the observer
errors converge exponentially to zero.

V. COMPARISON

The strength of the design presented here is the simplicity of
the estimator for the case of the MISO Hammerstein system.
This is in contrast to the design presented by [6] that solves
the parameter estimation problem for a wider class of systems
with a more complex estimator. For comparison, the design
presented by [6] is applied to the problem solved by the
parameter estimator from Definition 1. That is, estimating
the parameter θ of the system (4). The resulting parameter
estimator is2

ż = −kφ
(
φ̂− 1

τ
y(t)

)
− 1

τ

∂g

∂θ
(θ̂, u(t−∆t))

· kθ
(
τ φ̂− g(θ̂, u(t−∆t))

)
(35)

φ̂ = z + kφ
y(t)

τ
+

1

τ
g(θ̂, u(t−∆t)) (36)

˙̂
θ = kθ

(
τ φ̂− g(θ̂, u(t−∆t))

)
(37)

The difference in complexity is clear when comparing to
Definition 1. The estimator from [6] requires online calculation
of ∂g

∂θ , an additional internal state z and an additional tuning
parameter. An exponentially converging upper bound of |θ̃|
was derived in [6], but it depends on the selection of a
Lyapunov function and does not rule out the possibility of
overshoot.

VI. SIMULATION EXAMPLE

This section demonstrates the efficacy of the observer with
a simple simulated example. The nonlinear part, g(θ, u), of
the system is defined as

g(θ, u) = θ · (u2 + 1) (38)

Taking the partial derivative with respect to θ leads to

∂g(θ, u)

∂θ
= u2 + 1 (39)

For |u(t)| ≤ 2 the system fulfills Property 1 with γ = 1 and
ρ = 5. Theorem 2 facilitates the design of a joint state and
parameter observer with errors that converge exponentially.

2Design choice for ˙̂
θ is based on (9).
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Fig. 3. Simulation of the observer applied to a simple system. The errors
converge within the bounds and the state estimate is not delayed like the
measurement. The observer performance is similar to that of the more complex
parameter estimator (θ̂comp) from Section V.

The system and the observer are simulated with τ = 1 s,
∆t = 2 s, k = 0.1, θ = 1, u(t) = 2 sin(πt6 ) and , θ(t) = 1 +
0.1 sin(πt), thus θ̄ = 1 and κ = 0.1. The simulated observer
errors are shown in Figure 3 along with the calculated bounds.
The parameter estimate starts updating after 2 seconds as it
needs a recording of the input signals with a length equal to the
delay. The bottom plot compares the state to the measurement
and the estimate. Figure 3 also shows the performance of the
parameter estimator (θ̂comp) from Section V simulated with
similar gains. There is no significant performance difference
between the two parameter estimates in this example.

VII. ADAPTIVE OBSERVER FOR OXYGEN ESTIMATION

The joint state and parameter observer is applied to the
EGR system by defining state, measurement and inputs as,
respectively

x = Osr , y = Osrm , u =
[
ṅf ṅegr ωtc

]T
(40)

and the input nonlinearity of the Hammerstein model as

g(θ, u) = Oa −
(1 + y

4 (Oa + 1))ṅf ṅegr

(θβ(ωtc) + y
4 ṅf )(θβ(ωtc) + ṅegr)

(41)

The values of ρ and γ are found as the limits to

∂g

∂θ
=
(

1 +
y

4
(Oa + 1)

) ṅf ṅegrβ (2β + y
4 ṅf + ṅegr

)(
θβ + y

4 ṅf
)2

(θβ + ṅegr)
2

(42)

These limits depend on the possible combinations of inputs
which are difficult to determine. Conservative values can be
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calculated by defining independent intervals for the inputs. For
a typical engine this approach results in limits of the order
ρ = 10−3, γ = 10−5. With an estimator gain of 100 (as used
in the experiments) this leads to a convergence bound with a
time constant of 15 minutes. This is considered as a theoretical
result that guarantees convergence in worst-case rather than
an indicator of expected performance, as all simulations and
experiments show much faster convergence. A combination of
inputs that results in γ = 10−5 (and thus slow convergence)
only exists for short intervals as the inputs to the COM are
not independent in the physical system.

The following sections show the observer applied to EGR
systems with increasing levels of realism. As the observer has
more than enough time for initial convergence during the fixed-
input EGR startup phase, our main focus is engine loading
transients where the observer has to be robust against model
inaccuracy and variations of θ.

A. Results from control-oriented model

The joint state and parameter observer is first applied to a
simulation of the control-oriented EGR model. The scenario
is an engine loading transient with subsequent adjustment of
turbocharger speed and EGR flow. The value of θ is changed
in a step, to illustrate the convergence bounds. Figure 4 shows
the results. θ(t) is constant after the step at 50 seconds,
so the observer errors converge to zero. The convergence
bound for this period is shown in Figure 4. With respect
to the oxygen fraction, the observer is able to produce a
reasonable instantaneous estimate of the simulated state during
the loading transient in spite of the change of θ.

B. Results from high-fidelity simulation

The observer is now applied to a simulation of the high-
fidelity model of the full air path of a marine diesel engine
with high pressure EGR presented in [32]. This model includes
more complex dynamics than the COM and thus challenges
the observer robustness. As before the scenario is a load
transient, but in this case θ, the turbocharger speed and the
EGR flow are simulated by the model. The EGR blower speed
is adjusted after the transient. Figure 5 shows the results. The
transition through the operating region makes the simulated
θ change. The parameter estimate fluctuates slightly during
the first part of the transient and travels outside the interval
to which θ(t) belongs. This is due to the small differences in
dynamics between the COM and the high-fidelity model which
are not accounted for in the convergence proofs. As before the
observer is able to estimate the oxygen fraction without delay
and with reasonable accuracy during the transient.

The high-fidelity model depends on turbine and compressor
maps for flow calculation. These maps only cover pressure
conditions present in the upper half of the engine load re-
gion. Research into extrapolation of the model to low load
conditions is still ongoing. Most of the problematic loading
transients occur in the lower half where auxiliary blowers aid
the turbocharger compressor in maintaining scavenge pressure.
The validity of the joint state and parameter observer in the
low load region is tested experimentally.
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Fig. 4. Results from application of the joint state and parameter observer to
a simulation of the control-oriented EGR model.
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Fig. 5. Results from application of the joint state and parameter observer to
a simulation of a high-fidelity model of a diesel engine airpath.

C. Results from engine test bed

The observer is experimentally validated by applying it
to data recorded from an engine test bed, in this case the
4T50ME-X large two-stroke engine situated in engine designer
MAN Diesel & Turbo’s Diesel Research Center in Copen-
hagen. Figure 6 shows the result of applying the observer to
a load ramp in the lower half of the load range. In this region
θ is higher as the auxiliary blowers increase the flow. Small
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Fig. 6. Results from application of the joint state and parameter observer to
an engine load ramp performed on an engine test bed.

fluctuations occur in the parameter estimate, but the observer
is able to predict the measurement with reasonable accuracy
in spite of the auxiliary blowers.

D. Results from vessel

The final validation is carried out by applying the observer
to an example of the unfortunate scenario that it is meant
to alleviate. The dataset in question stems from the 4500
TEU container vessel Maersk Cardiff, operating in the South
China Sea. When moving at steady state at approximately 10%
engine load, the bridge performed an engine speed setpoint
step. Engine load peaked at 43% during the transient and
stabilized at about 27%. The slow response of the EGR
controller led to a severe drop in Osr from 16% to 12%
with subsequent oscillations. This drop resulted in formation
of thick black exhaust smoke for more than 45 seconds.

Results from application of the observer is shown in Figure
7. The vessel engine is approximately 3 times larger than
the test bed engine, and θ scales similarly. The observer is
challenged by the extreme scenario and the input transients,
especially in EGR flow, propagates to θ̂. It is difficult to de-
termine whether the fluctuating behavior of θ̂ is due to model
inaccuracy or whether it represents actual transient behavior
of θ(t). In any case, the state observer is able to predict
the Osr drop 20 seconds before the sensor, with acceptable
accuracy. The EGR controller would benefit significantly from
this information in order to decrease the EGR flow during the
transient and thus avoid unacceptable smoke formation.

VIII. CONCLUSIONS

Designs for both a parameter estimator and a joint state
and parameter observer were presented along with derivation
of exponentially converging bounds on state and parameter
errors. A simulation example illustrated the performance of
the resulting observer and it the complexity was favorably
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Fig. 7. Results from application of the joint state and parameter observer to
an engine speed setpoint step performed on a vessel operating at sea.

compared to the method of [7]. It was shown that while
the suggested approach applies to a more narrow class of
systems, the present design is simpler and provides better
knowledge about error behavior. Application of the observer
to a high-pressure exhaust gas recirculation system for large
two-stroke diesel engines at test bed and at sea showed that
the suggested method is a promising candidate to become
enabling technology for estimator-based control of exhaust
gas recirculation, and thereby a cornerstone in order for large
marine diesel engines to meet strict emission requirements in
NOx and soot formation.

If the proposed method is used in contexts where bounded
but unknown disturbances are present, an assessment needs to
be made of the effects of unknown disturbances on the quality
of the estimates.
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