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Abstract

In this paper we consider fully homomorphic encryption based on the learning with errors

problem. We present the problem as introduced by Oded Regev in 2009 and explain a

simple public key cryptosystem based on it. We show how the scheme can be modified to

be more suitable for homomorphic operations, and introduce bootstrapping, using the ideas

proposed by Craig Gentry in 2009. Finally we examine bootstrapping techniques proposed

by Chilotti et al. in 2016, which is the main topic of this paper.
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Chapter 1

Introduction

In most of the history of cryptography, users have been concerned only with sending and

receiving messages securely. Then, during the late 20th century, computers became preva-

lent and storing data encrypted became just as important as sending it encrypted. This

new usage created, in turn, a desire for a new property of the encryption schemes: homo-

morphism. We say that an encryption scheme is homomorphic if it allows some procedure

Eval satisfying:

- it takes a function f and some ciphertexts c1, . . . , ck as input

- it outputs a valid ciphertext c

- if each ci is a fresh encryption of µi and the function f belongs to some set of permitted

functions, then c is an encryption of f(µ1, . . . , µk).

The two assumptions in the last line requires some explaining. The limitation on which

functions are permitted is required because each ciphertext contains a certain amount of

noise, which masks the plaintext. Then, homomorphic operations increase this noise, so

evaluating a very complex function could increase the noise by so much that a decryption

would give the wrong plaintext. Hence, the set of permitted functions would only contain

functions simple enough to not increase the noise by too much. A fresh ciphertext is one that

is output from the encryption function rather than a result of a homomorphic operation.

This requirement exists because if one uses the result of an evaluation in a new evaluation

then the noise may already be so large that even simple functions cannot be evaluated

homomorphically and give a decryptable result.

Naturally, a lot of interest lies in removing the two limitations described above. In

fully homomorphic encryption (FHE) one can evaluate arbitrarily complex functions and

use the resulting ciphertexts as input in new evaluations, in an arbitrarily deep circuit.
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The first fully homomorphic encryption scheme was introduced by Craig Gentry in 2009[1].

This was accomplished by employing a technique he called bootstrapping, namely evaluating

the decryption algorithm homomorphically. The result is a new encryption of the same

plaintext, which “looks more like” a fresh encryption.

More precicely, the bootstrapping procedure is used to reset the noise to some fixed

level, such that more operations can be performed without pushing the noise outside the

decryptable range. In order for this to work, the decryption algorithm clearly needs to be

simple enough to be able to evaluate homomorphically without introducing too much noise.

Because of this, Gentry looked for encryption schemes with simple decryption algorithms,

and ended up with lattice-based encryption. A lot of work have been done after Gentry’s

first publication to make more efficient schemes, and many of the attempts also focus on

lattices.

Another mathematical problem, called learning with errors (LWE) was introduced in

2009 by Oded Regev[2]. This problem is concerned with finding solutions to so-called

equations with errors, where the error in each equation is unknown, but satisfies a known

probability distribution. I turns out that the problem shares some properties with some

hard-to-solve lattice problems, and is suitable for use in encryption.

After its introduction, a lot of work has been done with LWE to design homomorphic

encryption schemes, both with and without bootstrapping. The scheme we consider in this

paper was introduced by Gentry, Sahai and Waters[3], and we look at a bootstrapping proce-

dure called FHEW[4] with improvements by Chillotti, Gama, Georgieva and Izabachène[5].

1.1 Overview

We start out in the next chapter by introducing some notation and definitions needed to

follow the paper. These are mainly from basic algebra as well as probability theory and

some specific lattice problems. Chapter 3 follows by introducing the LWE problem as well

as details on the GSW encryption scheme and a short discussion on the security of LWE

based schemes. Chapter 4 gives a brief overview of the bootstrapping procedure of FHEW

to serve as an appetizer for the improvements whic we present in chapter 5.
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Chapter 2

Preliminaries

This chapter introduces some notation and some important concepts for the rest of the

paper. We include some important concepts of algebra and probability theory, as well as

some specific probability distributions and lattice problems.

2.1 Basic notation and definitions

The real torus R/Z will be denoted T. This is the set of real numbers modulo 1. Further,

we define TN [X] = R[X]/(XN + 1) mod 1, and R = Z[X]/(XN + 1). Denote by B the set

{0, 1}. For any ring R we let Mp,q(R) denote the set of (p× q)-matrices with entries in R.

Over Z and R we use the standard norms, ‖ · ‖p and ‖ · ‖∞. For P ∈ T[X], we let

‖P (X)‖p mean the norm of the coefficient vector of P . Similarily, for P ∈ TN [X], ‖P‖p is

the norm of the unique representative of degree less than N .

For x ∈ Tk, we write ‖x‖p = minu∈x+Zk(‖u‖p), although this is not an actual norm on

Tk. However, for x ∈ Tk, ‖x‖p represents the norm of the representative of x in which all

coefficients are in (−1/2, 1/2]. Similarily for a polynomial a ∈ TN [X], we define ‖a‖p as the

p-norm of a’s representative in T[X] with degree less than N and coefficients in (−1/2, 1/2].

2.2 Some probability theory

A probability distribution on a set A is a function φ : A→ [0, 1] such that
∑

x∈A φ(x) = 1

or
∫
A
φ(x) dx = 1. A probability space is a pair (A, φ) where A is a set and φ is a probability

distribution on A. When the meaning is clear, we may use probability distributions and

probability spaces interchangibly.
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Let φ1, φ2 be probability distributions defined on some space A. The statistical distance

between φ1 and φ2 is given by

∆(φ1, φ2) =
1

2

∫
A
|φ1(x)− φ2(x)|dx

if A is continuous and

∆(φ1, φ2) =
1

2

∑
x∈A
|φ1(x)− φ2(x)|

if A is discrete.

This distance function satisfies the triangle inequality, that is

∆(φ1, φ3) ≤ ∆(φ1, φ2) + ∆(φ2, φ3)

for any distributions φ1, φ2, φ3 defined on the same domain. Another important fact about

the statistical distance, is that it cannot increase by applying any function to the two

probability distributions. That is,

∆
(
f(φ1), f(φ2)

)
≤ ∆(φ1, φ2).

We say that a distribution φ on the torus T is concentrated if its support is contained

in a ball of radius 1
4 , except with negligible probability. For such a distribution, we define

its variance as Var(φ) = minx̄∈T
∫
T φ(x)|x − x̄|2 dx and its expectation E(φ) as the value

of x̄ obtaining this minimum. This definition and the following lemma are analog to those

presented by Chilotti et al. in [5].

Lemma 2.1. Let φ1, φ2 be independent, concentrated distributions on either T,Tk, or

TN [X]k and e1, e2 ∈ Z, such that φ = e1φ1 + e2φ2 is also concentrated. Then, E(φ) =

e1E(φ1) + e2E(φ2) and Var(φ) ≤ e2
1Var(φ1) + e2

2Var(φ2).

2.3 The Gaussian distribution

Next follow some definitions and results regarding the Gaussian distribution, which is com-

monly used to sample the error terms in the LWE problem. Most of the content in this

section is found in [2].

Let ρσ denote the Gaussian function, given by

ρσ : Rn → (0, 1) ; x 7→ e−π‖x/σ‖
2

.

Then νσ = ρσ/σ
n is a probability density function on Rn and can be sampled by sampling

n independent standard normal variables and multiplying each by σ. For a countable set

A ⊂, define

ρσ(A) =
∑
x∈A

ρσ(x),
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and similarly for νσ. Then, the discrete Gaussian probability density function is given by

DA,σ : A→ R ; x 7→ ρσ(x)

ρσ(A)
.

Note that this is actually a density function, since the division normalizes the function to

sum to 1.

For any vector c ∈ Rn we can define the shifted Gaussian function ρσ,c(x) = ρσ(x− c).

For sufficiently small c, the following lemma limits the amount by which ρσ,c differ from ρσ.

Lemma 2.2. For σ, t, l > 0 and x,y ∈ Rn with ‖x‖ ≤ t, ‖x− y‖ ≤ l,

ρσ(y) ≥ (1− π(2lt+ l2)/σ2)ρσ(x)

Proof. Using the fact that e−z ≥ 1− z, we get

ρσ(y) = e−π‖y/σ‖
2

≥ e−π(‖x‖/σ+l/σ)2 = e−π(‖x‖/σ2+(l/σ)2)ρσ(x) ≥ (1−π(2lt+ l2)/σ2)ρσ(x).

We say that a distribution φ is σ-subgaussian if its tails are bounded by the Gaussian

function with parameter σ. That is, P(|φ| ≥ x) ≤ 2ρσ(x). The following result from [5],

here presented without proof, tells us that a subgaussian distribution with sufficiently small

parameter must be concentrated.

Lemma 2.3. Let φ be a distribution on T,Tk, or TN [X]k where each coefficient is σ-

subgaussian. If σ ≤ 1/
√

32 log(2)(λ+ 1), then at most a fraction 2−λ of the distribution’s

mass is outside the interval [−1/4, 1/4].

For β > 0, let Ψβ : T → [0, 1] be the distribution on the torus generated by sampling

νσ (in one dimension) and reducing modulo 1, with σ = β/
√

2π. This distribution has

probability density function given by

Ψβ(r) = νσ(A), where A =

∞⋃
k=−∞

{r + k}.

An important property of this distribution is that a small change in the parameter β changes

the distribution by a very small amount.

Lemma 2.4. Let 0 < α < β ≤ 2α. Then

∆(Ψα,Ψβ) ≤ 5

2

(
β

α
− 1

)
.
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Proof. Recall that ∆(f(φ1), f(φ2)) ≤ ∆(φ1, φ2) for any function f and pair φ1, φ2 of distri-

butions. With f(x) = x mod 1, we get

∆
(
Ψα,Ψβ

)
= ∆

(
f
(
να/
√

2π

)
, f
(
νβ/
√

2π

))
≤ ∆

(
να/
√

2π, νβ/
√

2π

)
.

We can scale the parameters, setting α = 1, β = 1 + ε for some 0 < ε ≤ 1. The statistical

difference between these normal distributions is

∆

(
ν 1√

2π
, ν 1+ε√

2π

)
=

1

2

∫ ∞
−∞

∣∣∣∣ν 1√
2π

(x)− ν 1+ε√
2π

(x)

∣∣∣∣dx =
1

2

∫ ∞
−∞

∣∣∣∣e−πx2

− 1

1 + ε
e
− πx2

(1+ε)2

∣∣∣∣dx
≤ 1

2

(∫ ∞
−∞

∣∣∣∣eπx2

− e−
πx2

(1+ε)2

∣∣∣∣dx+

∫ ∞
−∞

∣∣∣∣1− 1

1 + ε
e
− πx2

(1+ε)2

∣∣∣∣dx
)

=
1

2

∫ ∞
−∞

∣∣∣∣e−πx2

− e−
πx2

(1+ε)2

∣∣∣∣dx+
ε

2

=
1

2

∫ ∞
−∞

∣∣∣e−π(1−1/(1+ε)2)x2

− 1
∣∣∣ e− πx2

(1+ε)2 dx+
ε

2

Further, since 1 ≥ e−z ≥ 1− z for any z ≥ 0,∣∣∣e−πx2(1−1/(1+ε)2) − 1
∣∣∣ = 1− e−πx

2(1−1/(1+ε)2)

≤ 1−

(
1− πx2

(
1− 1

(1 + ε)2

))
= πx2

(
1− 1

(1 + ε)2

)
≤ 2επx2

where the last inequality follows from the Macclaurin expansion. Thus,

∆ (Ψ1,Ψ1+ε) ≤
ε

2
+

1

2

∫ ∞
−∞

∣∣∣e−πx2(1−1/(1+ε)2) − 1
∣∣∣ e− πx2

(1+ε)2 dx

≤ ε

2
+

∫ ∞
−∞

επx2e
− πx2

(1+ε)2 dx =
ε

2
+
ε(ε+ 1)3

2

≤ 5

2
ε =

5

2

(
β

α
− 1

)
.

2.4 Some (hard) problems on lattices

Since lattice problems have been extensively studied for a long time, we are more confident

in the hardness of some well-known lattice problems than the LWE problem, which was

introduced comparatively recently. We therefore base security of encryption schemes using

LWE on a reduction from some of these lattice problems to LWE. Before we introduce these,

we need basic definitions concerning lattices.
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A lattice Λ in Rn is the set of all integer combinations of some set of n linearly in-

dependent vectors. This set of vectors is a basis for the lattice, although any lattice has

infinitely many basis sets. We let λ1(Λ) denote the length of the shortest nonzero vector

in Λ. Further, λk is the infinum of numbers λ such that there exists a set of k non-zero,

linearly independent vectors with length less than λ.

The main lattice problem on which we choose to base security is the shortest independent

vectors problem (SIVP), which is concerned with finding short, linearly independent vectors

in a given lattice.

Definition 2.5 (SIVPγ). An instance of SIVPγ is given by an n-dimensional lattice Λ and

an approximation factor γ. The solution is any set of n linearly independent vectors of

length at most γλn(Λ).

This problem has been studied extensively and is generally considered to be hard to

solve[6], for high enough lattice dimensions.

Another problem we consider is the Discrete Gaussian Sampling problem (DGS). To solve

the problem, given a lattice, one would have to sample the discrete gaussian distribution

on the lattice, with parameter determined by some function ϕ of the lattice. This problem

is useful for us because we will base security of LWE on the hardness of this problem, and

then reduce solving SIVP to solving DGS.

Definition 2.6 (DGSϕ). An instance of DGSϕ is given by an n-dimensional lattice Λ and

a number r > ϕ(Λ). The desired output is a sample from DΛ,r.

2.5 Logic gates and circuits

A logic gate is essentially an implementation of some boolean function. That is, given one or

more boolean values as input, the gate outputs a boolean value corresponding to the result

of the function. A logic gate is essentially equivalent to a mathematical operation modulo

2, and these will be used interchangibly. A circuit is a tree of logic gates, where the leaves

take boolean input, send their output to the gates one level closer to the root and so on,

until the root gives output.

A logic gate is said to be functionally complete if any boolean expression can be repre-

sented using a circuit consisting of only that type of gate. The NAND-gate is the inverted

AND-gate, that is

NAND(x1, . . . , xn) =

0 if x1 = x2 = · · · = xn = 1

1 otherwise
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The NAND-gate is paticularly useful since it can be used in circuits to emulate any

combination of boolean gates. We state this more formally in a lemma.

Lemma 2.7. The NAND-gate is functionally complete.
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Chapter 3

Learning with errors

In this chapter we introduce the encryption scheme on which the bootstrapping procedure

we want to examine is used. To this end, we start by introducing the LWE problem, before

explaining how it can be used for encryption. Finally, we present a brief overview on security

of LWE based encryption.

3.1 The problem

Learning with errors is a problem concerning a system of “equations with errors”, introduced

by Oded Regev in 2009[2]. Given vectors ai and b = (b1, . . . , bk), the LWE problems are

about the existence of some vector s such that

ai · s = bi + εi,

where each εi is chosen according to some known probability distribution χ, centered around

0.

Definition 3.1. Let n be a positive integer and let α > 0 be a noise parameter. Further,

let s be a secret vector chosen uniformly at random from some bounded set S ⊂ Zn. We

denote by DLWE
s,α the probability distribution on Tn × T obtained by choosing a uniformly

at random from Tn, choosing ε according to a probability distribution with mean 0 and

standard deviation α, and returning (a, b) = (a,a · s + ε).

The definition is focused on LWE samples over the real torus T, since this is the focus of

the presentation in [5], to which we give the greatest attention in this thesis. However, the

problem can be formulated over other algebraic structures, such as Zq or any polynomial
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ring. When the problem is formulated over polynomial rings, it is often referred to as

ring-LWE.

Building on this, we consider two different LWE problems:

Search LWE Given a number of pairs (a, b) chosen according to DLWE
s,α , find s.

Decision LWE Given a number of pairs (a, b) chosen according to either DLWE
s,α or the

uniform distribution on Tn × T, decide from which distribution it is drawn.

It is the hardness of these problems which will be fundamental for the security of the

encryption schemes we consider later. Clearly, with α = 0 (and thus ε = 0) both problems

are trivially solvable by Gaussian elimination. In addition to the parameter α, the algebraic

structure on which which we work affects the hardness. Naturally, the hardness increases

with the dimension n.

3.2 Designing a simple encryption scheme

In the simple encryption scheme which will be presented shortly, we make use of TLWE

samples, which can vary between regular- and ring-LWE. We use the definition presented

in [5], based on generalizations of LWE introduced in [7].

Definition 3.2 (TLWE samples). Let k ≥ 1 be an integer, N a power of 2, and α ≥ 0 be

a parameter. A TLWE secret key s ∈ BN [X]k is a vector of k polynomials in ZN [X] with

binary coefficients. The message space of TLWE samples is TN [X]. A (fresh) sample of

a message µ with noise parameter α under key s is an element (a, b) ∈ TN [X]k × TN [X],

where b ∈ TN [X] has Gaussian distribution DTN [X],α around µ+ s · a.

Based on TLWE, we introduce a simple public key encryption scheme.

Key Generation sk : s
R←− BN [X]k; pk : (ai, bi)

m
i=1 ← DLWE

s,α .

Encryption For each bit µi in a message µ, choose a subset S ⊂ {1, . . . ,m} uniformly at

random. Then set ci ← (
∑
j∈S aj ,

1
2µi+

∑
j∈S bj). The ciphertext is c = (c1, . . . , cM ).

Decryption For each pair ci = (ai, bi) in a ciphertext, calculate bi − s · ai. If this is closer

to 0 than to 1/2, set µi = 0. Otherwise, µi = 1. The decryption is µ = µ1, . . . , µM .

Solving the search LWE problem is equivalent to finding the secret key of the scheme,

given a number of ciphertexts. Semantic security of the scheme is equivalent to desicion

LWE. To investigate correctness of decryption, we have to consider the statistical distribu-

tion of a and b.
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Definition 3.3. Let c = (a, b) be a TLWE sample under secret key s. We define the phase

of the sample as ϕs(c) = b− s · a.

We will sometimes omit the key and write ϕ(c). Note that the decryption calculation is

exactly fnding the phase of each TLWE sample in the ciphertext. If the noise parameter α

was 0, the phase would be exactly equal to 0 or 1/2. To show that decryption still works

when α > 0, we show some more properties of the phase.

Lemma 3.4. The phase function is linear over TN [X]k+1.

Lemma 3.5. The phase function is (kN+1)-lipschitzian in the ∞-norm. That is, ‖ϕs(c1)−
ϕs(c2)‖∞ ≤ (kN + 1)‖c1 − c2‖∞

The lipschitzianity is especially useful for allowing approximations, since two samples

close to each other will also have phases that are close to each other.

We continue by defining some statistics on a TLWE sample. Note that while these

functions are well-defined, they are in general not possible to compute or approximate in

practice.

Definition 3.6. Let c ∈ TN [X]k+1 be a random variable. We say that c is a valid TLWE

sample if there exists s ∈ BN [X]k such that the distribution of the phase ϕs(c) is concen-

trated. Further, define:

- the message msg(c) = E[ϕs(c)],

- the error Err(c) = ϕs(c)−msg(c),

- the variance of the error, Var(Err(c)) = Var(ϕ(c)),

- ‖Err(c)‖∞, the maximum amplitude of the error.

Note that as long as the error term ε is taken from a distribution with mean 0, the

message of a TLWE sample is exactly the message that is encrypted.

3.3 A more homomorphic scheme

We now wish to present a tweaked scheme, which will allow a fairly deep circuit to be

evaluated homomorphically. The scheme was introduced by Gentry, Sahai, and Waters[3].

In order to do so, however, we need to first define a few helpful operations, which will make

homomorphic operations easier. Note that in this scheme we use LWE over Zq.

Let a,b be vectors of dimension k over Zq, and let l = blog2 qc + 1 and N = k · l.
Then, BitDecomp(a) = (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) is the binary decomposition of
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a. That is, ai,j is the jth bit of the binary representation of the ith element of a. Its inverse

is given by

BitDecomp−1(a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1) =

 l−1∑
j=0

2ja1,j , . . . ,

l−1∑
j=0

2jak,j

 .

Note that this function is also well-defined on non-binary vectors. Further, let Flatten(a′) =

BitDecomp(BitDecomp−1(a′)), for N -dimensional a′. Clearly, when a′ is a binary vector,

Flatten(a′) = a′. In a sense, Flatten(a′) and a′ encode the same information, even when a′

is non-binary. This can be demonstrated after introducing a new operation, Powersof2(·):

Powersof2(b) = (b1, 2b1, . . . , 2
l−1b1, . . . , bk, . . . , 2

l−1bk),

where b = (b1, . . . , bk). Now, 〈Flatten(a′),Powersof2(b)〉 = 〈BitDecomp−1(a′),b〉 = 〈a′,Powersof2(b)〉.

For each of these functions, define its operation when applied to a matrix to be the

matrix formed by operating on each row. Using these operations, we are able to take

an LWE secret key and ciphertext and make sure they have some useful properties. In

order to make operations on ciphertexts less costly, we want the ciphertext vectors to have

binary entries. We need to make sure decryption still works, so we need a corresponding

transformation of the secret key. Hence, we use Flatten and Powersof2, respectively, on the

ciphertext and secret key. The full description of the scheme is thus:

Setup(1λ, 1L): Choose a modulus q of κ(λ, L) bits, lattice dimension parameter n(λ, L)

and error distribution χ(λ, L). Also choose a parameter m(λ, L) = O(n log q). Let

params = (n, q, χ,m) and l = blog qc+ 1 and N = (n+ 1)l.

SecretKeyGen(params): Sample t
R←− Znq . Let s ← (1,−t1, . . . ,−tn) ∈ Zn+1

q and output

sk = v = Powersof2(s).

PublicKeyGen(params, sk): Generate a matrix B
R←− Zm×nq and vector e ← χm. Set b =

B · t + e. Set A = [b|B] and publish the public key pk = A.

Enc(params, pk, µ): To encrypt a message µ ∈ Zq, sample R
R←− BN×m and output ciphertext

C = Flatten(µ · IN + BitDecomp(R ·A)) ∈ ZN×Nq .

Dec(params, sk, C): Observe that the first l coefficients of v are 20, . . . , 2l−1, exactly one of

which is in (q/4, q/2]. Let i be such that vi ∈ (q/4, q/2] and consider Ci, the ith row

of C. Compute xi ← 〈Ci,v〉 and output µ′ ← bxi/vie.

MultConst(C,α): To multiply ciphertext C ∈ ZN×Nq by a constant α ∈ Zq, set Mα ←
Flatten(αIN ) and output Flatten(Mα · C).
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Add(C1, C2): Output Flatten(C1 + C2).

Mult(C1, C2): Output Flatten(C1 · C2).

Consider first the decryption, defined by the matrix-vector product

C · v = Flatten(µ · IN + BitDecomp(R ·A)) · v = (µ · IN + BitDecomp(R ·A)) · v

= µ · v +R ·A · s = µ · v +R · [b|B] ·
[

1

−t

]
= µ · v +R · (B · t + e−B · t)

= µ · v +R · e.

When actually performing the decryption, we use only the ith row of C and compute

xi = Ci · v, which is the ith entry in C · v, i.e xi = µvi + Ri · e. Recall that R has only

binary entries, so the error has magnitude

|Ri · e| ≤ ‖e‖1.

Thus, when computing µ′ = xi
vi

, the distance from the original plaintext µ i at most ‖e‖1vi
.

Recall that i was chosen such that vi ∈
(
q
4 ,

q
2

]
. Then, by chosing χ such that ‖e‖1 < q

8 with

overwhelming probability, we have

|µ− µ′| < q/8

q/4
=

1

2
.

Thus, rounding µ′ to the closest element in Zq yields the correct decryption. However, this

result depends on the distribution χ from which we draw the error vector e. Clearly, this

choice also impacts security, which we will examine closer in the next section. Note also

that in order to allow homomorphic operations, we need to find a tighter bound. Otherwise,

any non-trivial operation would risk increasing the error by too much.

Knowing that encryption and decryption works is a good first step, but we also want

to be able to do homomorphic operations. To that end, consider what happens to the

decryption of the result of the operations listed above:

MultConst(C,α) · v = Flatten(αIN · C) · v = αIN · v · µ+ αIN ·R · e

= αµ+ αR · e.
Here, the error is multiplied at most by N .

For adding two ciphertexts, the scheme obviously works since (C1+C2)·v = C1 ·v+C2 ·v.

The error term will also become the sum of the error terms.

The multiplication of cipertexts is given by

Mult(C1, C2) · v = Flatten(C1 · C2) · v = C1 · C2 · v

= C1 · (µ2v + e2) + µ2(µ1v + e1) + C1 · e2

= µ1µ2 · v + µ2e1 + C1 · e2.

13



Here we see that the error of the product depends not only on the old errors, but also on

the encrypted version of one message, and the plaintext of the other. The ciphertext C1

contributes at most a factor of N , since it is a binary matrix. The plaintext µ2 on the other

hand, could potentially lead to an increase of factor up to q. This observation leads to a

wish to restrict the plaintext space to a much smaller one. One could for example restrict

the plaintext space to {0, 1}.

When restricting the plaintext space to {0, 1}, the operations one would like to evaluate

can be expressed as boolean circuits. Recall that any boolean operation can be described

using only NAND-gates. Hence, we only need a homomorphic NAND-operation to evaluate

any circuit. We define it as NAND(C1, C2) = Flatten(IN −C1 ·C2). The decryption is then

NAND(C1, C2) · v = (IN − C1 · C2) · v = (1− µ1µ2) · v − µ2 · e1 − C1 · e2.

3.4 Security of LWE based encryption

When we are now going to examine the security of these LWE based encryption schemes,

we must first note that applying transformations such as BitDecomp and its inverse does

not affect security. Indeed, if an adversary has access to a ciphertext C then he can trivially

comput BitDecomp(C) and vice versa. Hence, we can assume without loss of generality that

only matrices A and C, but without usage of these operations, are made public.

Then, observe that the matrix C is exactly a matrix of LWE ciphertexts under secret

vector s. Hence, finding s from knowledge of C and A is equivalent to solving search

LWE, and deciding if C is a ciphertext or random matrix is equivalent to decision LWE.

Consequently, the encryption scheme is secure if the LWE problems are computationally

infeasible.

Since LWE is a relatively new and unstudied problem, and since its hardness is difficult

to prove directly, we would like to establish a security reduction from some other problem,

with an established computational infeasibility. Due to the rather close relationship between

LWE and lattices, it is natural to base security on the hardness of certain lattice problems.

In this paper, we look at a quantum reduction first published by Regev[2]. For more

discussion on the security of LWE based encryption, the interested reader is encouraged to

look at [8],[9],[10].

The security reduction by Regev is supported by the following two lemmas, here pre-

sented without proofs.

Lemma 3.7. There exists an efficient algorithm that, given any n-dimensional lattice Λ

and r > 22nλn(Λ), outputs a sample from a distribution within statistical distance 2−Ω(n)

14



of DΛ,r.

Lemma 3.8. Let ε = ε(n) be a negligible function, α = α(n) ∈ (0, 1) be a real number and

p = p(n) ≥ 2 be an integer. Assume we have access to an oracle W that solves LWEp,Ψα

given a polynomial number of samples. Then, there exists a constant c > 0 and an efficient

quantum algorithm that, given any n-dimensional lattice Λ, a number r >
√

2pηε(Λ), and

nc samples from DΛ,r, produces a sample from DL,r
√
n/(αp).

With these lemmas, we are finally ready to prove the main security reduction from LWE

to DGS.

Theorem 3.9. Let ε = ε(n) be a negligible function of n, p = p(n) some integer, and

α = α(n) ∈ (0, 1) be such that αp > 2
√
n. If there exists an oracle W which solves LWEp,Ψα

given a polynomial number of samples, then there exists an efficient quantum algorithm for

solving DGS√2nηε(Λ)/α.

Proof. The input to the algorithm is an n-dimensional lattice Λ and a number r >
√

2nηε(λ)α.

Let ri = r · (αp/
√
n)i. The algorithm starts by producing nc samples from DΛ,r3n where c is

the same as in Lemma 3.8. By Lemma 3.7, these samples can be efficiently generated. Now,

by Lemma 3.8, we can use the nc samples from DΛ,ri to produce samples from DΛ,ri−1
, for

i = 3n, 3n − 1, . . . , 1. Having done this, we output one of the samples from DΛ,r1 and we

are done.

Assuming this DGS problem is infeasible for the lattice dimension and statistical param-

eter we use, the theorem tells us that LWE is hard. In order to convince ourselves that this

is the case, we could use the following lemma, also by Regev.

Lemma 3.10. Under the assumptions of theorem 3.9, there exists a polynomial time reduc-

tion from SIVPÕ(n/α) to DGS√2nηε(Λ)/α.

The hardness of SIVPγ depends on the parameter γ. For large values, the problem is

easy since the bound on the length of the vectors to be found is very loose. For γ = Õ(n/α),

the problem is naturally harder for larger α. This is in agreement with intuition: LWE

gets harder when the errors in the equations are allowed to be large. As long as γ is

sub-exponential, however, the problem seems to be unsolvable in polynomial time[6].
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Chapter 4

Previous bootstrapping

techniques

The idea of bootstrapping a homomorphic encryption scheme was introduced by Gentry in

his doctoral thesis in 2009[1]. The tecnique is used to transform a somewhat homomorphic

scheme into a fully homomorphic one by evaluating the decryption algorithm homomorphi-

cally, thereby reducing the error. Naturally, the procedure requires the evaluator to have

access to an encryption of the secret key, so security of the scheme relies on the assumption

that knowing such an encryption isn’t enough to break the scheme. This seems like a rea-

sonable assumption in most cases, as the encrypted secret key is just another ciphertext, but

there exist situations where this is not the case[11]. We can avoid this potential weakness,

however, by encrypting the secret key in a slightly different encryption scheme than the one

it is itself a key for.

4.1 Homomorphic NAND and refreshing

In order to get a sense of the bootstrapping of LWE-based encryption, we take a look at

FHEW, a homomorphic encryption scheme proposed by Ducas and Micciancio[4]. For the

interested reader, information on other ideas for bootstrapping of LWE based schemes are

availible in [3],[12],[10].

The idea is to take binary messages µi ∈ {0, 1} and let the error distribution χ be such

that the error of a ciphertext is less than q/16, except with negligible probability. Recall

that this can be achieved by using a σ-subgaussian distribution and scaling the sample by
q
4 , for σ ≤ 1/

(√
32 log(2)(λ+ 1)

)
and sufficiently large λ.
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To accomplish this, we use a slight variation of the scheme presented in the previous

chapter. The LWE problem is considered over some ring Zq, and the message space is still

B. The encryption function is then given by

E(µ) =

(
a,a · s +

µq

2
+ ε

)
∈ Zn+1

q .

Within this framework, we can compute the NAND of two ciphertexts (ai, bi) = Enc(µi)

as follows:

(a, b) = HomNAND((a1, b1), (a2, b2)) =

(
−a1 − a2,

5q

8
− b1 − b2

)
.

This resulting ciphertext then satisfies

b− a · s =
5q

8
− a1 · s−

µ1q

2
− ε1 − a2 · s−

µ2q

2
− ε2 + (a1 + a2) · s

=
5q

8
− q

2
(µ1 + µ2)− (ε1 + ε2)

which in turn gives

b− a · s− q

2
(1− µ1µ2) =

5q

8
− q

2
− (ε1 + ε2) =

q

8
− (ε1 + ε2).

Hence, (a, b) is an encryption of 1− µ1µ2 = NAND(µ1, µ2) with error bound

Err(a, b) ≤
∣∣∣∣q8 − (ε1 + ε2)

∣∣∣∣
∞
≤ q

8
+

q

16
+

q

16
=
q

4
.

Since we need an error bound of q
16 in the input to HomNAND, we need to refresh, or

bootstrap, this ciphertext before we can do another NAND-operation. That is, we need

another operation which takes a ciphertext with error bounded by q
4 and produces a new

ciphertext, encrypting the same message, with error bounded by q
16 .

In order to implement this refreshing function, the same principle as in Gentry’s orig-

inal bootstrapping procedure is used. Namely, one uses an encryption of the secret key s

and homomorphically evaluates the decryption calculation on the noisy ciphertext and the

encrypted key. Here, however the key is not generally encrypted under the same encryption

scheme as the one in which we perform homomorphic operations.

In this case, we compute

b2(b− a · E(s))/qe mod 2

where E(·) denotes encryption under this scheme.

We will not go into detail on this, which is just meant to illustrate the idea before we

start with the detailed procedure in the next chapter.
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Chapter 5

On improving the bootstrapping

In order to make the bootstrapping step more efficient, we will allow approximations in

the calculations. We go back to thinking of ciphertexts as TLWE samples on the torus.

Naturally, these approximations introduce a greater amount of noise, but they also improve

running time and memory requirements of the bootstrapping procedure[5]. In this chapter

we take a closer look on TLWE samples and introduce the TGSW sample which is essentially

a matrix of TLWE samples. We also introduce an algorithm which decomposes a TLWE

sample into a short vector of integer polynomials. Using these tools, we will introduce a

new homomorphic product which we will then use between the encrypted secret key and a

noisy ciphertext. We finish the chapter with some analysis of this bootstrapping procedure

as well as defining the operations of some of the basic boolean gates.

5.1 A new homomorphic product

Before we can look at the improved bootstrapping procedure, we have to define a new,

external product between ciphertexts. To facilitate this, we first introduce a gadget decom-

position. A gadget is a tool we use to make the algorithm work, in this case a matrix on
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this form:

h =



1/Bg · · · 0
...

. . .
...

1/Blg · · · 0
...

. . .
...

0 · · · 1/Bg
...

. . .
...

0 · · · 1/Blg


∈Mp,k+1(TN [X]). (5.1)

When we run a decomposition algorithm with gadget h and TLWE sample v as input,

the output should be a short vector u such that u · h ≈ v. We allow approximation, and

important properties of the decomposition algorithm are its quality and precision. These

values limit the output’s length and distance from the exact, respectively.

Definition 5.1 (Approximate Gadget Decomposition). Let h ∈ Mp,k+1(TN [X]). We say

that Dech,β,ε(v) is a valid decomposition algorithm on the gadget h with quality β and

precision ε if, for any TLWE sample v ∈ TN [X]k+1, it outputs a vector u ∈ R(k+1)l,

satisfying the following:

- ‖u‖∞ ≤ β,

- ‖u · h− v‖ ≤ ε, and

- if v is uniformly distributed in TN [X]k+1, then E[u · h− v] = 0.

As mentioned, in this paper we will always use a gadget on the form presented in equation

(5.1). Thus, h will always refer to this in the rest of the text. Now we will present an

algorithm which we then will show is a valid decomposition algorithm on h, given the right

parameters.

Algorithm 5.2 Gadget decomposition of a TLWE sample

Input: a TLWE sample (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k+1

Output: A vector [e1,1, . . . , ek+1,l] ∈ R(k+1)l

1: For each ai, let ai,j ∈ T be such that ai =
∑N−1
j=0 ai,jX

j . Set āi,j equal to the closest

multiple of 1
Blg

to ai,j .

2: Decompose each āi,j uniquely as
∑l
p=1 āi,j,p

1
Bpg

where each āi,j,p ∈ [−Bg/2, Bg/2).

3: for i = 1 to k + 1 do

4: for p = 1 to l do

5: ei,p =
∑N−1
j=0 āi,j,pX

j

6: return (ei,p)i,p
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Lemma 5.3. Let l, Bg ∈ N, β = Bg/2, and ε = 1/(2Blg). Then, Algorithm 5.2 is a valid

Dech,β,ε on the gadget h.

Proof. Let v = (a1, . . . , ak, b = ak+1) ∈ TN [X]k+1 be a TLWE sample given as input

to algorithm 5.2, with corresponding output u = [e1,1, . . . , ek+1,l]. By construction, each

coefficient of ei,j is at most Bg/2 (in absolute value), so ‖u‖ ≤ Bg/2 = β.

Let εdec = u ·h−v. Then, εdeci,j =
∑l
p=0 ei,p ·

1
Bpg
−ai,j = āi,j −ai,j , for all i ∈ [1, k+ 1]

and j ∈ [1, l]. Since āi,j is defined as the multiple of 1/Blg closest to ai,j , surely |āi,j−ai,j | ≤
1/(2Blg) = ε. Thus, εdec has a concentrated distribution when v is uniformly distributed.

To verify it is zero-centered, let f be the function from T to T which rounds an element x

to its closest multiple of 1
Blg

and let g be defined g(x) = 2f(x) − x on the torus. If ai,j is

uniformly distributed, then

E(εdeci,j) = E(ai,j − f(ai,j)) = E(g(ai,j)− f(g(ai,j))) = E(f(ai,j)− ai,j) = −E(εdeci,j).

Hence, the expectation of εdec is 0.

We now know, thanks to lemma 5.3, that we are able to decompose a TLWE sample into

a short vector, with a certain degree of precicion. The decomposition makes calculating on

encrypted data more efficient, while the approximation introduces a small amount of noise.

The external product we are pursuing uses both the decomposition of an TLWE sample

and another type of sample, called TGSW. A TGSW sample is, loosely speaking, a matrix

where each row is a TLWE sample. More precisely, it is the sum of a multiple of h and a

matrix, each row of which is a homogeneous TLWE sample.

Definition 5.4 (TGSW sample). Let l and k ≥ 1 be two integers and h the gadget in

equation 5.1. We say that C ∈ M(k+1)l,k+1(TN [X]) is a fresh TGSW sample of µ ∈ R/h⊥

if C = Z+µ ·h, where all rows of Z ∈M(k+1)l,k+1(TN [X]) are homogeneous TLWE samples

with equal noise parameter. The polynomial µ is the message of C, denoted msg(C), and

the noise parameter of C is said to be the same as the noise parameter of the TLWE samples

in Z.

Since a TGSW sample is a matrix where each row is a TLWE sample, it inherits some

useful properties of these TLWE samples. As mentioned, for example, it has the same noise

parameter as the TLWE samples it contains. Unsurprisingly, TGSW samples also permit

the same linear operations as TLWE. In particular, the phase and error are both linear when

defined as vectors of phases and errors of TLWE samples.

Definition 5.5. Let A ∈M(k+1)l,k+1(TN [X]) be a TGSW sample. The phase of A, denoted

ϕs(A), is defined as the vector of phases of each of the (k + 1)l TLWE samples in A.

Correspondingly, the error Err(A) is a vector of the errors of the TLWE samples in A.
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We are now equipped with all we need to introduce and analyze the operation we wish

to use as a homomorphic product between a noisy ciphertext and an encrypted key. Recall

that the decryption operation involves a product between ciphertext and key, and hence

this is what we perform homomorphically in the bootstrapping.

Definition 5.6 (External product). We define the product � as

A� b = Dech,β,ε(b) ·A.

Theorem 5.7 (Worst-case external product). Let A be a valid TGSW sample of a message

µA and let b be a valid TLWE sample of a message µb. Then A � b is a TLWE sample

for message µA · µb. and ‖Err(A � b)‖∞ ≤ (k + 1)lNβ‖Err(A)‖∞ + ‖µA‖1(1 + kN)ε +

‖µA‖1‖Err(b)‖∞. If ‖Err(A� b)‖∞ ≤ 1/4, then A� b is a valid TLWE sample.

Proof. Since A = TGSW(µA), we have A = ZA + µA · h where ZA is a TGSW encryption

of 0. Similarly, b = zb + (0, µb), where zb is a TLWE encryption of 0.

Let u = Dech,β,ε(b) ∈ R(k+1)l. Then

A� b = u ·A = u · ZA + µA · (u · h).

It follows from definition 5.1 that u · h = b + εdec for some ‖εdec‖∞ ≤ ε. Thus,

A� b = u · ZA + µA · (b + εdec) = u · ZA + µA · εdec + µA · zb + (0, µA · µb).

The phase is then given by

ϕs(A� b) = u · Err(A) + µA · ϕs(εdec) + µA · Err(b) + µAµb.

Taking the expectation, we get msg(A � b) = 0 + 0 + 0 + µAµb, so Err(A � b) = ϕs(A �

b)− µAµb.

Then, the lipschitzianity of the phase implies

‖Err(A� b)‖∞ = ‖ϕs(A� b)− µAµb‖∞

≤ ‖u · Err(A)‖∞ + ‖µA · ϕs(εdec)‖∞ + ‖µA · Err(b)‖∞

≤ (k + 1)lNβηA + ‖µA‖1(1 + kN)‖εdec‖∞ + ‖µA‖1ηb.

The theorem gives us an upper bound on the amplitude of the error after performing

the external product, i.e a worst case estimate of the error. The next corollary tells us more

about the realistic case by giving a bound on the variance of the error.

21



Corollary 5.8 (Average-case external product). Under assumptions in Theorem 5.7 and

assuming all error coefficients are independent, it holds that

Var(Err(A� b)) ≤ (k + 1)lNβ2Var(Err(A)) + (1 + kN)‖µA‖22ε2 + ‖µA‖22Var(Err(b)).

Proof. Let ϑA = Var(Err(A � b)) = Var(ϕs(ZA)) and ϑb = Var(Err(b)) = Var(ϕs(zb)).

Similarliy as in the proof of theorem 5.7, we get

Err(A� b) = u · Err(A) + µA · ϕs(εdec) + µA · Err(b).

Lipschitzianity and independence of errors gives

Var(Err(A� b)) ≤ Var(u · Err(A)) + Var(µA · ϕ(εdec)) + Var(µA · Err(b))

≤ (k + 1)lNβ2ϑA + (1 + kN)‖µA‖22ε2 + ‖µA‖22ϑb.

5.2 New bootstrapping procedure

In this section, we wish to use the external product to speed up the bootstrapping presented

earlier. We also present key switching, a procedure to optimize further, and decrease the

size of the bootstrapping key.

The first techique we present is to extract an LWE sample from a TLWE sample. We

do this by first making a vector of the coefficients of the TLWE key, known as KeyExtract.

We then extract the coefficients of the polynomials in the TLWE sample.

Definition 5.9 (TLWE extraction). Let (a′′, b′′) be a TLWEs′′(µ) sample with key s′′ =

(s′′1 , . . . , s
′′
k) ∈ Rk. We define KeyExtract(s′′) as the integer vector

s′ =
(
coefs(s′′1(X)), . . . , coefs(s′′k(X))

)
∈ ZkN

where coefs(·) extracts a vector of polynomial coefficients. Further, we define SampleExtract(a′′, b′′)

as the LWEs′ sample (a′, b′) ∈ TkN+1 where

a′ =
(
coefs(a′′1(1/X)), . . . , coefs(a′′k(1/X))

)
and b′ = b′′0 is the constant term of b′′.

Next follows a technical lemma about the properties of key- and sample extraction.

Lemma 5.10. Let s′ = KeyExtract(s′′) and (a′, b′) = SampleExtract(a′′, b′′). Then

- ϕs′(a
′, b′) equals the constant term of ϕs′′(a

′′, b′′),
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- msg(a′, b′) equals the constant term of msg(a′′, b′′),

- ‖Err(a′, b′)‖∞ ≤ ‖Err(a′′, b′′)‖∞, and

- Var(Err(a′, b′)) ≤ Var(Err(a′′, b′′)).

Definition 5.11. Let s′ ∈ {0, 1}n′ , s ∈ {0, 1}n, γ ∈ R, t ∈ N. A key switching secret

KSs′→s,γ,t is a sequence of fresh LWE samples KSi,j ∈ LWEs,γ(s′i·2−j) for i ∈ [1, n′], j ∈ [1, t].

Algorithm 5.12 Key-switching procedure

Input: A LWE sample (a′ = (a′1, . . . , a
′
n′), b

′) ∈ LWEs′(µ), a switching key KSs′→s where

s′ ∈ {0, 1}n′ , s ∈ {0, 1}n and a precision parameter t ∈ N.

Output: a LWE sample LWEs(µ).

1: for i = 1 to n′ do

2: Let ā′i be the closest multiple of 1
2t to a′i.

3: Binary decompose each ā′i =
∑l
j=1 ai,j · 2−j such that ai,j ∈ {0, 1}

4: return (0, b′)−
∑n′

i=1

∑t
j=1 ai,j · KSi,j

Lemma 5.13 (Key switching). Let (a′, b′) ∈ LWEs′(µ), where s′ ∈ {0, 1}n′ and let η′ =

‖Err(a′, b′)‖∞. Then, algorithm 5.12 with (a′, b′) and a keyswitching key KSs′→s,γ,t as input,

outputs an LWE sample (a, b) ∈ LWEs(µ) with ‖Err(a, b)‖∞ ≤ η′ + n′tγ + n′2−(t+1).

Proof. From the assumptions in the lemma, we get

ϕs(a, b) = ϕs(0, b
′)−

n′∑
i=1

t∑
j=1

ai,jϕs′(KSi,j) = b′ −
n′∑
i=1

t∑
j=1

ai,j(2
−js′i + Err(KSi,j))

= b′ −
n′∑
i=1

ā′is
′
i −

n′∑
i=1

t∑
j=1

ai,jErr(KSi,j) = b′ −
n′∑
i=1

a′is
′
i −

n′∑
i=1

t∑
j=1

ai,jErr(KSi,j) +

n′∑
i=1

(a′i − ā′i)s′i

= ϕs′(a
′, b′)−

n′∑
i=1

t∑
j=1

ai,jErr(KSi,j) +
n′∑
i=1

(a′i − ā′i)s′i.

Recall that msg(a, b) = E(ϕ(a, b)). By algorithm 5.12, line 2 we get that |a′i − ā′i| < 2−(t+1)

and that the expected difference is 0. Hence, the expected value of the last sum on the

right-hand side is 0. Consequently, msg(a, b) = msg(a′, b′). Further

‖Err(a, b)‖∞ = ‖ϕ(a, b)−msg(a, b)‖∞ ≤ η′ + n′tγ + n′2−(t+1).

Definition 5.14 (Bootstrapping key). Let s ∈ Bn, s′′ ∈ BN [X]k and α be a noise parameter.

A bootstrapping key BKs→s′′,α is a sequence of n TGSW samples {BKi}ni=1 where BKi ∈
TGSWs′′,α(si).
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Algorithm 5.15 Bootstrapping procedure

Input: A LWE sample (a, b) ∈ LWEs,η(µ), a bootstrapping key BKs→s′′,α, a keyswitch key

KSs′→s,γ where s′ = KeyExtract(s′′), two fixed messages µ0, µ1 ∈ T
Output: A LWE sample LWEs,ν

(
µ0 if ϕs(a, b) ∈

(
− 1

4 ,
1
4

)
;µ1 otherwise

)
1: Let µ̄ = µ1+µ0

2 and µ̄′ = µ0 − µ̄
2: Let b̄ = b2Nbe and āi = b2Naie for each i ∈ {1, . . . , n}
3: Let testv := (1 +X + · · ·+XN−1) ·X− 2N

4 · µ̄′ ∈ TN [X]

4: ACC←
(
X b̄ · (0, testv)

)
∈ TN [X]k+1

5: for i=1 to n do

6: ACC← [h + (X−āi − 1) · BKi] � ACC

7: Let u := (0, µ̄) + SampleExtract(ACC)

8: return KeySwitchKS(u)

Theorem 5.16 (Bootstrapping theorem). Let h and Dech,ε,β be the gadget and decom-

position function as in definition 5.1. Let s ∈ BN [X]k and let α, γ be noise amplitudes.

Finally, let BK = BKs→s′′,α be a bootstrapping key and let s′ = KeyExtract(s′′) ∈ BkN and

KS = KSs′→s,γ,t be a keyswitching secret.

Given (a, b) ∈ LWEs(µ) for µ ∈ T, two fixed messages µ0, µ1, algorithm 5.15 outputs a

sample in LWEs(µ
′) such that

µ′ =

µ0 if |ϕs(a, b)| < 1
4 − δ

µ1 if |ϕs(a, b)| > 1
4 + δ

where δ is the cumulated rounding error from line 2 in the algorithm. (Note that δ = 0 if

each coefficient of (a, b) is a multiple of 1/(2N) and δ is at most (n+ 1)/(4N).)

Further, let v be the output of the Bootstrapping Procedure. Then

‖Err(v)‖∞ ≤ 2n(k + 1)lβNα+ kNtγ + n(1 + kN)ε+ kN2−(t+1).

Proof. Clearly, after line 1 of the algorithm, µ̄ + µ̄′ = µ0 and µ̄ − µ̄′ = µ1. By defining

ϕ̄ = b̄−
∑n
i=1 āisi mod 2N , we get∣∣∣∣ϕ− ϕ̄

2N

∣∣∣∣ = b− b2Nbe
2N

+

n∑
i=1

(
ai −

b2Naie
2N

)
si ≤

1

4N
+

n∑
i=1

1

4N
≤ n+ 1

4N
.

If each coefficient of (a, b) is a multiple of 1/(2N), then ϕ = ϕ̄/(2N). In any case, |ϕ −
ϕ̄/(2N)| < δ.

Further, the test vector testv is defined such that for all p ∈ [0, 2N ], the constant term

of Xp · testv is µ̄′ if p ∈ (−N/2, N/2) and −µ̄′ otherwise.
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Now, consider the loop on lines 5 and 6. At the start of the loop, ACC contains a

trivial ciphertext, so (ACC) =
(
X b̄ · testv

)
and ‖Err(ACC)‖∞ = 0. During iteration i,

let Ai = h +
(
x−āi − 1

)
· BKi. This is a TGSW-sample of a message X−āisi with noise

‖Err(Ai)‖∞ ≤ 2‖Err(BKi)‖∞. Thus

msg(ACCi) = msg(Ai � ACCi−1) = msg(Ai) ·msg(ACCi−1)

= X−āisi ·
(
Xb−

∑i−1
j=1 ājsj · testv

)
,

and

‖Err(ACCi)‖∞ ≤ (k + 1)lNβ‖Err(Ai)‖∞ + ‖msg(Ai)‖1(1 + kN)ε+ ‖msg(Ai)‖1‖Err(ACCi−1)‖∞

≤ (k + 1)lNβ2‖Err(BKi)‖∞ + (1 + kN)ε+ ‖Err(ACCi−1)‖∞.

By induction on i, this proves that after step n, the following holds:

msg(ACC) = Xb−
∑n
j=1 ājsj · testv

‖Err(ACC‖∞ ≤
n∑
j=1

(
2(k + 1)lNβ‖Err(BKj)‖∞ + (1 + kN)ε

)
.

After line 7, the message of u is equal to the constant term of of the message of ACC,

that is Xϕ̄ · testv. Recall that this is µ̄′ if ϕ̄ ∈ [−N/2, N/2] and −µ̄′ otherwise. Hence, if

ϕs(a, b) ∈ [−1/4 + δ, 1/4− δ), then msg(u) = µ̄′ and if not, then msg(u) = −µ̄′.

Finally, since KeySwitch doesn’t change the message and SampleExtract doesn’t add to

the noise,

msg(v) = msg(u)

‖Err(v)‖∞ ≤ ‖Err(u)‖∞ + kNtγ + kN2−(t+1).

The bottom line of the theorem is that we can take an LWE ciphertext with a message

in T and a bootstrapping key, and using the procedure of algorithm 5.15 we obtain a new

ciphertext with fixed error bound. In the LWE ciphertext we interpret a message greater

than 1
4 (in absolute value) as 1 and a message less than 1

4 as 0, allowing us to evaluate

boolean operations.

5.3 Circuits and gates

Now we will define simple operations to evaluate several of the most common gates homo-

morphically. For ciphertexts c1, c2, each with message either 0 or 1/4 we define:

- HomNOT(c1) = (0, 1
4 )− c1
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- HomAND(c1, c2) = Bootstrap
((

0,− 1
8

)
+ c1 + c2

)
- HomNAND(c1, c2) = Bootstrap

((
0, 5

8

)
− c1 − c2

)
- HomOR(c1, c2) = Bootstrap

((
0, 1

8

)
+ c1 + c2

)
- HomXOR(c1, c2) = Bootstrap

(
2 · (c1 − c2)

)
.

Here, Bootstrap(c) denotes the output of the bootstrapping procedure of algorithm 5.15

with input c and with µ0 = 0, µ1 = 1
4 . We illustrate the correctness by considering the

HomNAND procedure. If both c1 and c2 encode 0, then c̃ = Bootstrap
((

0, 1
8

)
− c1 − c2

)
will have message 5

8 , and if one of the inputs have message 0 and the other 1
4 , then c̃ has

message 3
8 . If both of the inputs have messages 1

4 , then the result will have message 1
8 . Thus,

since the error is smaller than 1
8 , |ϕ(c̃)| > 1

4 if and only if NAND(msg(c1),msg(c2)) = 1.

Analog reasoning demonstrates the correctness of the rest of the homomorphic operations.

With this structure, any boolean circuit could be turned into one using only the gates

mentioned above, and then evaluated homomorphically. The bootstrapping procedure is

the only potential bottleneck for the efficiency of evaluating such a circuit.

An implementation of the scheme can be found at https://github.com/tfhe/tfhe1.

The implementation makes use of a fast fourier transform (FFT)-alogrithm, such at FFTW[13].

Using this implementation, a bootstrapping takes less than 0.1 seconds on a standard per-

sonal computer.

1Made by the authors of [5]. Requires a C++11 compiler as well as a fast fourier transform (FFT)

processor.
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