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Summary

In this thesis we have investigated the association between summary variables from the
General Movement Toolbox (GMT), and cases of abnormal fidgety movements (FMs) and
cerebral palsy (CP). The GMT-software calculates summary variables from video record-
ings of infants movements, based on changes of pixel-values between video frames. In
previous studies, low values of the variable for variations in the centroid of motion (Csd)
have shown to predict both normal FMs and no CP. However, these results were carried
out for small datasets, consisting of only Norwegian infants.

Here, we have used data from 693 infants with a total of 798 video recordings from
Norway, USA and India. We have use both a frequentist approach with the glmer()-
function from the lme4-package and a Bayesian approach with INLA-package, for pre-
diction of FMs in R. Due to repeated measurements, we used a mixed effects logistic
regression model with random intercepts, with the Csd variable as covariate. We have
also used the same variable in a logistic regression model for prediction of CP. For both
models we found the same association as in previous studies, but the effect of Csd on the
occurrence of normal FMs varied between countries. To investigate the stability and the
uncertainty of the frequentist FM-model for different number of repeated measurements, a
simulation study was performed. The results showed that having many observations with-
out repeated measurements could cause unstable results with large confidence intervals for
the estimated coefficients. However, for only two or more repeated measurements the es-
timated coefficient values were much more stable and the size of the confidence intervals
were reduced considerably.

In the search for a better model for predictions of CP, we included several GMT-
variables and other available variables, and used the Lasso method for variable selection.
The results here showed that it was in fact the y-direction of theCsd variable that was asso-
ciated with the occurrence of CP, but also the mean value in the y-direction of the centroid
of motion, mean and standard deviation variables of the area of motion and the standard
deviation of the quantity of motion. Inclusion of other available variables increased the
model fit a bit. The gender and an indication variable for extreme preterm infants were
selected in the model. In addition, the length of the video recordings were accounted for.
However, statistical inference, in the form of bootstrapping and the multi sample-splitting
method, showed that only the mean value of the centroid of motion in y-direction had a
statistically significant association with the occurrence of CP.
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Sammendrag

I denne oppgaven har vi undersøkt assosiasjonen mellom oppsummerende variabler fra
the General Movement Toolbox (GMT) programvaren, og tilfeller av unormale ”fidgety”
bevegelser (FMs) og cerebral parese (CP). GMT-programvaren beregner oppsummerende
variabler fra videoopptak av bevegelsene til spedbarn, basert på endringer i pixelverdier
mellom bildene i videoopptaket. I tidligere studier har lave verdier av variabelen for vari-
asjonen i massesentret av bevegelsene (Csd) vist seg å predikere både normale FMs og
ingen CP. Disse studiene ble imidlertid utført på små datasett, kun bestående av norske
spedbarn.

Her har vi brukt data fra 693 spedbarn med totalt 798 video opptak, fra Norge, USA og
India. Vi har brukt både en frekventistisk metode med glmer()-funksjonen i lme4-pakken
og en Bayesiansk metode med INLA-pakken, for prediksjon av FMs i R. På grunn av
repeterte målinger brukte vi en blandet effekts logistisk regresjonsmodell med et tilfeldig
skjæringspunkt, med Csd som kovariat. Vi brukte også samme variabel i en logistisk
regresjonsmodell for prediksjon av CP. Vi fant samme assosiasjon som i de tidligere stu-
diene, men effekten av Csd på forekomsten av normale FMs varierte mellom landene. For
å undersøke stabiliteten og usikkerheten for den frekventistiske FM-modellen for ulikt an-
tall kvadraturpunkt, utførte vi en simuleringsstudie. Resultatene her viste at mange obser-
vasjoner uten repeterte målinger kunnne føre til usabile resultat og store konfidensintervall
for de estimerte koeffisientene. For kun to eller flere repeterte målinger, ble imidlertid de
estimerte verdiene for koeffisientene mye mer stabile og størrelsen på konfidensinterval-
lene ble betraktelig redusert.

For å finne en bedre modell for prediksjon av CP, inkluderte vi mange av GMT-
variablene og andre tilgjengelige variabler, og brukte Lasso-metoden for variabelseleksjon.
Resultatene her viste at det var y-retningen av Csd variabelen som var assossiert med CP,
men også gjennomsnittsverdien i y-retning av massesenteret for bevegelse, gjennomsnitts-
og standardavviks-variabelene for arealet av bevegelsene, samt standardavviket for meng-
den bevegelse. Inkludering av andre tilgjengelige variabler ga en litt bedre tilpasning av
dataene enn ved kun GMT-variablene. De inkluderte variablene her var variabelen for
kjønn og en indikasjonsvariabel for ekstremt tidligfødte. I tillegg ble det justert for lengden
av videoopptakene. Imidlertid viste statistisk inferens, i form av bootstrapping og multi
sample-splitting, at bare gjennomsnittsverdien av massesentet av bevegelsene i y-retning
hadde en statistisk signifikant assosiasjon med forekomsten av CP.
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Chapter 1
Introduction

Cerebral palsy (CP) is one of the most common causes of childhood physical disability,
and occur in 2-2.5 per 1000 children (Yarnell and O’Reilly (2013), Oskoui et al. (2013)).
An early detection can have a positive effect on the motor development of the child with CP
(Blauw-Hospers and Hadders-Algra, 2005), and may reduce later daily life problems. A
method for assessing the young nervous system, called the General Movement Assessment
(GMA) has shown good results in predicting cerebral palsy at an early stage. Especially
the absence of fidgety movements (FMs) have shown to predict CP with high sensitiv-
ity and specificity (Prechtl et al., 1997). As there are few trained clinicians to perform
the GMA-analysis, computer-based methods can be applied. In this thesis, we consider
a computer-based method for assessing the young nervous system, called the General
Movement Toolbox (GMT). This program analyses video recordings of infants by their
movements, based on changes of pixel-values between frames. The toolbox returns sev-
eral summary measures, where each summary measure is one value per child (Adde et al.,
2010).

In this thesis, we use GMT-summary variables from 798 video recordings of 693 in-
fants, to predict normal FMs and CP. Since some of the infants have repeated measure-
ments, we use a mixed effects logistic regression model with random intercepts to predict
the FMs. For these data, we consider both a frequentist approach with the glmer()-function
from the lme4-package in R (Bates et al., 2015), and a Bayesian approach, using the INLA-
package in R (Rue et al., 2009). In addition, we perform a simulation study for the frequen-
tist approach, to investigate whether small numbers of repeated measurements per infant
could cause uncertain estimates. To predict CP, we remove the repeated measurements,
and use a logistic regression model for the 693 infants. Then, we include several of the
GMT-variables and other available variables in the model, and use the Lasso method for
variable selection.

Since this thesis is a continuation of a project from autumn 2016, parts of the theory
in the thesis are based or inspired by the work from the project. These are Section 2.1 and
2.2 in Chapter 2, and Section 3.1, 3.2 and 3.4.1 in Chapter 3.

We start this thesis by explaining details about the diagnosis of cerebral palsy and the
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Chapter 1. Introduction

framework for the GMA- and GMT-methods in Chapter two. In this chapter, we also
describe the data used for the analysis in the thesis, before we present the aim of the thesis.
Then, in Chapter three, we go into details of the statistical methods used to model the
data. Here, we first consider the methods for prediction of cerebral palsy. We start by
presenting the well known logistic regression model, and methods for model evaluations.
Then we consider the Lasso method for variable selection in the logistic regression model.
In the final part of this chapter, we present the mixed effects logistic regression model with
random intercepts, and look at both a frequentist and a Bayesian approach for estimating
the model.

In Chapter four, we present the results from the model fitting, starting with the models
for the FMs. Here, we also introduce the simulation study with results. Then, in the final
part of Chapter four, we present the results from the CP-models. Here, we first present the
results from the model which is similar to the ones for the FM-responses, before we look
at the results from the variable selection using the Lasso method, with and without the
other available variables. Next, in Chapter five, we conclude and discuss the results, and
compare them to previous studies. Finally, we point out improvements for further work in
Chapter 6.
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Chapter 2
Background

Cerebral palsy (CP) describes a group of permanent disorders of the development of move-
ments that occur in the developing fetal or infant brain (Rosenbaum et al., 2007). The
damage can occur during pregnancy, delivery, the first month, or less commonly in early
childhood (Yarnell and O’Reilly, 2013). The abnormal gross and fine motor functioning
can lead to difficulties with walking, eating, coordinated eye movements, articulation of
speech and other musculoskeletal functions (Rosenbaum et al., 2007). Being born preterm
(born <37 weeks’ of gestation) or with a very low birth weight (weighing <1500 g/<32
weeks’ of gestation) or extreme low birth weight (< 1000 g/<28 weeks’ of gestation) is as-
sociated with significant motor impairment (de Kieviet et al., 2009), and as many as 5-15%
of infants with a very low birth weight develop CP, (Veelken and Just (2013), Sellier et al.
(2016), Platt et al. (2007), Oskoui et al. (2013)). Extreme preterm infants (born before 28
weeks’ gestation) are born during a period of active brain development and maturation,
placing them at an extremely high risk of brain injury (Stephens and Vohr, 2009).

We start this chapter by describing methods for diagnosing CP, for which we will focus
on the computer-based method called The General Movement Toolbox. Then the dataset
used for analysis in this thesis is described, before the aim of the thesis is introduced.

2.1 Diagnosing cerebral palsy
Before the age of 36 months, the motor capacity is not easily assessed, as it is not fully
developed. The diagnose of CP before this age might therefore be difficult and misleading.
Most of the false positive tests are done before the age of 18 months due to confusion with
other neurodevelopmental disorders (Bosanquet et al., 2013).

Even though the CP diagnosis is permanent, an early detection can give earlier and
closer follow up of the child, and can give relief to parents of children unlikely to develop
CP. The brain‘s ability to adapt and change it‘s structure and functions is called the plas-
ticity of the brain (McLellan et al., 2011). The plasticity of the brain is at its highest during
the first two years, and decrease gradually thereafter (de Graaf-Peters and Hadders-Algra,
2006). It has been shown that intervention may be most efficient when the plasticity of the
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brain is high (Heineman and Hadders-Algra (2008) with references), and an early detec-
tion of brain impairment is therefore crucial. An earlier follow up and training program
can have a positive effect of the motor development of the child with CP (Blauw-Hospers
and Hadders-Algra, 2005), in particular through prevention of limb contractions (Lind-
ström and Bremberg, 1997), and might make a difference in the child’s ability to handle
everyday challenges. In addition, an early detection of CP gives the parents more time for
adjustment and preparation.

”It has been shown that spontaneous motility is an excellent marker for neural dysfunc-
tion caused by brain impairment” (Einspieler and Prechtl, 2005), which normally would
not become evident and clinically manifested for years (Darsaklis et al., 2011). A method
called ”General Movements Assessment” developed by Heinz F. R. Prechtl is a known
diagnostic tool for the functional assessment of the young nervous system, and has shown
good results in predicting CP at an early stage (Prechtl et al., 1997).

2.1.1 General Movements Assessment

General movements (GMs) are gross movements which involve the entire body. They are
recognized by the variable sequence of arm, leg, neck and trunk movements which varies
in speed, intensity and force with a gradual beginning and end. They include rotations
along the axis of the limbs and slight changes in the direction of the movement. The fluent
and elegant movements give the impression of complexity and variability (Prechtl, 1990).
GMs have turned out to be an effective measure for the functional assessment of the young
nervous system. They are complex, occur frequently, and last long enough to be observed
properly (Einspieler and Prechtl, 2005).

Already at nine to twelve weeks postmenstrual age, the nervous system of a human
fetus develops a large variety of movement patterns. Movements such as GMs, stretching,
yawning and breathing are included, and they do not change their form after birth, inde-
pendently of when the birth occurs. In this way, one can easily assess the functionality
of the young nervous system through observations of GMs. The GMs are separated into
different phases from early fetal life until the first half year post term, as shown in Figure
2.1, where each phase has it’s own characteristics (Einspieler and Prechtl, 2005).

Fetal and Preterm GMs

From week nine up to term age, the GMs are referred to as Fetal and Preterm General
Movements. These GMs may have large amplitudes and are often of fast speed (Hopkins
and Prechtl, 1984).

Writhing movements

During term age and up to two months post term, the GMs are characterized by small-
to-moderate amplitude and speed, typically in an elliptic form. This phase of GMs is
referred to as writhing movements and may appear ”awkward and ungrateful” (Hopkins
and Prechtl, 1984).
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2.1 Diagnosing cerebral palsy

Figure 2.1: Developmental course of general movements, with inspiration from Einspieler and
Prechtl (2005).

Fidgety movements

The next phase of GMs appears at six to nine weeks post term and disappears at 18 to 20
weeks post term age. These movements are referred to as Fidgety Movements (FMs) and
differs from writhing movements by their rounded and elegant movements of the entire
body. ”Fidgety movements are small movements of moderate speed and variable accel-
eration, of neck, trunk and limbs, in all directions, continual in the awake infant, except
during fussing and crying” (Einspieler et al., 2004). They appear smooth, as arms and
fingers move smoothly with full flex and extent, and their wrists rotates (Hopkins and
Prechtl, 1984). At the end of the first half year, FMs gradually disappear and intentional
and antigravity movements starts to dominate (Einspieler and Prechtl, 2005).

During the FMs period, one can classify the movements as normal or abnormal. There
exists two methods for classification of abnormal and normal FMs with slightly different
classification categories and terminology; the Prechtl’s approach and the Hadders-Algra
approach (Adde, 2010). We will focus on Prechtl’s approach, since the GMA observers in
the studies from which we have our data, are trained and certified in this approach.

The FMs are classified as normal if FMs are present. According to Prechtl’s approach,
the presence of FMs are categorized in three groups. Continual FMs (++) when the FMs
occur frequently with only short pauses, intermittent FMs (+) when the FMs occur often,
but with longer pauses than for continual FMs, and sporadic FMs (+-) when there are some
occurrence of FMs, but only sporadic.

The classification of abnormal FMs, includes both abnormal and absent FMs. Abnor-
mal FMs (Exagg.) are defined as present FMs, but the movements are greatly or moder-
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Normal FMs Abnormal FMs
Old ++, +, +− −, Exagg
New ++, + +−, −, Exagg

Table 2.1: New and old Prechtl’s approach for classification of normal and abnormal FMs, where
the FMs are categorized as continual, (++), intermittent, (+), sporadic, (+−), absent, (−), and
exaggerated (Exagg).

ately exaggerated with respect to amplitude and speed. If FMs are not observed at all in
the period 9 to 20 weeks post-term, they are classified as absent (-).

We call the above method Prechtl’s ”old” approach. The ”new” Prechtl’s approach
separates from the old by including sporadic FMs in the category of abnormal FMs. The
old and new Prechlt’s approach are shown in Table 2.1 for different categories of FMs.

It has been shown that abnormal and absent FMs increase the risk of development of
neurological impairment. Particularly, the absence of FMs has been shown to be highly
predictive of CP, while normal FMs are associated with normal neurological outcome (Ein-
spieler and Prechtl, 2005).

A previous study (Spittle et al., 2009) showed that both GMA and magnetic resonance
imaging (MRI) had a sensitivity of 100 % when predicting the development of CP by the
age of 12 months in preterm infants. A MRI is expensive, require highly skilled personnel
and is not available for everyone. GMA however, is non-expensive, requires only a video
camera and a trained person to analyze the video. A limitation of GMA is that there are few
trained clinicians to analyze the video. Unexperienced clinicians, as well as experienced
clinicians, working alone have a risk of drifting away from the GMA standards over time
(Adde et al., 2009). Because of this, computer-based methods can be very useful tools for
the clinician, and can perhaps be used without trained personnel to give earlier identifica-
tion of infants unlikely or likely to develop CP. It only requires someone to perform the
video recording within the requirements, and then computer-based methods can analyze
the video for the child’s movements. In this way, the clinicians get an objective second
opinion, which will hopefully contribute to a higher accuracy for identifying infants with
or without CP.

2.1.2 Computer-based video analysis

There exist several computer-based methods for assessing movements from infants at high
risk of neurological and motor impairments (Marcroft et al. (2015) and references therein).
The computer-based methods can be separated into two categories; i) using motion cap-
turing systems; and ii) traditional color cameras. Using the motion capturing system, the
limb movements can be tracked indirectly by the 3D system or directly through body-worn
sensors. The body-worn sensors seem to be a promising application for prediction of ab-
normal movement patterns, but it has not yet been applied to a sample size large enough
to do sensitivity and specificity analysis.

The 3D motion capturing system has shown good results in separating healthy infants
from high risk infants. However, the method is both computationally and cost expensive,
and is more adaptable to a research environment than a clinical environment. For tradi-
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(a)

(b)

Figure 2.2: Setup for the video recording (b) and a snapshot (a) of cropped a video recording. (Lars
Adde, St.Olavs Hospital/NTNU, Trondheim, with approval)

tional color cameras analysis, the price is considerably smaller than for a motion capturing
system, and the set up is easier. An easier set up allows for usage of the method outside
the clinical or research environment, and the method can be applied in a more natural en-
vironment for the infant, for example at home. In this project, we will use data from a
video-based method, called the General Movement Toolbox.

General Movement Toolbox

This section is mostly based on the article by Adde et al. (2009). The General Movement
Toolbox (GMT) is a software solution using video recordings of young infants to study
their general movements. It has been customized from the open source software ”The
Musical Gesture Toolbox” (MGT), developed by Jensenius et al. in 2004 for studying
music-related movements.

The infants are placed on a standard mattress and video recorded with a stationary
digital video camera placed above them for typically 3-10 minutes. The GMT-software
processes the video file and analyses the movements of the infant. The infants, wearing
a diaper and a body, must be awake, active and in a comfortable state (non-crying and no
pacifier) and lying on their back, for the analysis to work properly. The videos recordings
are trimmed to typically 3-5 minutes length to ensure the correct state of the infant. All
videos are also cropped so that only the image only consist of the infant on the mattress.
Figure 2.2a shows the setup for video recording, while Figure 2.2b shows a snapshot of
the cropped video recording.

7
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Each second of the video recording typically consists of 25 images. One cropped im-
age typically consists of M = 320 times N = 240 pixels, and each pixel has a value
between 0 and 255 (8 bits) that represents the intensity (Adde, 2010). A motion image
is calculated from the change in pixel values between two following frames, as shown in
Figure 2.3. In the motion image the pixels have values 0 or 1, where 0 is black and repre-
sents no movements between the images, and 1 is white and represents movement. Hence,
the white pixels are the active pixels. In this way, all the movements in the video are cal-
culated from the motion image. The GMT uses this to calculate plots called motiongrams
and several summary variables that summarizes the movements into one value for each
child. Analyzing the motiongrams and the summary variables, one can see the amount,
variation and location of the movements. The motiongrams and three of the summary
variables are described below.
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Figure 2.3: Visualization of calculation of the motion image. Each square represents a pixel in the
frame that consists of 3x3 pixels. No change between frames is represented as black in the motion
image, while change is displayed as white.

Motiongram

A motiongram is a plot representing the motion image over time. Using an x-y coordinate
system on the motion image, one can take an average pixel value in both x and y-directions.
A horizontal motiongram calculates the averages of pixel values in the x-direction, such
that one gets a matrix with dimension M×1 where M is the number of pixels in the y-
direction and the entries in the matrix are the corresponding average of the pixel values in
the x-direction. Plotting these matrices against time, movements of the upper body can be
seen in the upper part of the y-axis and movements from the lower part of the body can be
seen in the bottom. A vertical motiongram uses the average pixel value in the y-direction
and shows the movements on the left and right side of the body.

Examples of horizontal and vertical motiongrams are shown in Figure 2.4. Using both
motiongrams, one gets an indication of both the amount and the location of the movements
over time. From the horizontal motiongram in Figure 2.4a one can see that there are more
movements in the upper part of the body than in the lower part. The vertical motiongram
in Figure 2.4b shows that the infants’ movements on the left and right side seem to be
mostly symmetric.
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(a)

(b)

Figure 2.4: Examples of (a) a horizontal motiongram where time is running along the x-axis and
vertical movements along the y-axis, and (b) a vertical motiongram where time is running along the
y-axis and horizontal movements along the x-axis. (Lars Adde, St.Olavs Hospital/NTNU, Trond-
heim, with approval).

Quantity of motion, Q

The quantity of motion, Q, is defined as the sum of all active pixels in the motion image
divided by the total number of pixels in the image (n = M ×N ). Hence,

Q =

∑n
i pi
n

, where pi =

{
1 if pixel i is white
0 if pixel i is black.

Plotting this variable against time gives an indication of amount of movements over time.
To get one measure per child, the mean value Qmean, the maximum value Qmax and the
standard deviation Qsd are calculated and used as summary variables.

Centroid of motion, C

The centroid of motion, C, measures the centre of all movements in the motion image for
each frame. It is the spatial centre for the active pixels in the motion image and can be
thought of as the centre point for the movements of the infant. This variable is given in the
x- and y-direction (Cx, Cy), so we have the Euclidian distance C =

√
C2
x + C2

y . To get
just one summary value from this, one could calculate at the mean from all motion images
in the x- and y-direction (Cxmean, Cymean) and the Euclidian distance between them,

Cmean =
√
C2
xmean + C2

ymean. The standard deviations, Csd, Cxsd, Cysd, can also be
calculated, where Cxsd, Cysd are the standard deviation for their corresponding vector Cx
and Cy , and Csd is the Euclidean metric between them, Csd =

√
C2
xsd + C2

ysd.
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Variable Description
Q Quantity of motion
Qmean mean
Qsd standard deviation
C Centroid of motion
Cxmean mean in x-direction
Cymean mean in y-direction
Cxsd standard deviation in x-direction
Cysd standard deviation in y-direction
Csd standard deviation
A Area of motion
Amean mean
Asd standard deviation
Hmean mean height of motion
Wmean mean width of motion
Hsd standard deviation of height of motion
Wsd standard deviation of width of motion

Table 2.2: Important summary variables given by the GMT-toolbox.

Area of motion (A)

The area of motion A is a measure of the area of which the infant is moving. The height
H is the difference between the largest and smallest y-value for the active pixels in the
motion image, and the width W is the corresponding value in x-direction. The area, A is
then the height times the width. This measure is calculated for each motion image, and
Amean is the mean value of the area from all the motion images, while Asd is the standard
deviation. Mean and standard deviation for the height and width are also calculated and
are denoted as Hmean, Wmean, Hsd and Wsd.

Table 2.2 gives an overview of the mentioned GMT-variables which will be used in the
next chapters.

2.1.3 Previous studies

It has been shown in previous studies (Adde et al., 2009) that among all the obtained
variables from the GMT-analysis, it is the variability of the centre of motion, Csd, that is
the most precise at predicting FMs, with both high sensitivity and high specificity. A low
Csd imply a stable spatial centre in the motion image and seem to correlate with both the
presence of FMs and non-development of CP (Adde et al., 2010). The interpretation of
this result can be explained in the following way: A stable centroid of motion may reflect
the ongoing stream of small movements in the whole body as a system, described in the
GMA methodology as FMs, and a stable centroid of motion gives a low value for Csd.

The previous studies using the GMT-analysis have been performed on small samples
from St.Olavs University Hospital in Norway. This goes for all computer-based methods
presented in the article by Marcroft et al. (2015). They have been tested on small sample
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sizes with mostly too few infants with neurologic brain impairment, to be reliable. Even
though many of the methods indicate promising results, they have yet to be tested on larger
datasets.

2.2 Data
In this project, we use data based on projects at St.Olavs University Hospital Trond-
heim/NTNU, Norway. The data, consisting of infants at a high risk of developing CP,
have been collected from three different countries at different times. Parts of the data have
been analyzed in previous studies (Adde et al. (2009), Adde et al. (2010), Adde et al.
(2016)), but only when considering infants from the same country. The results from these
studies conclude that low values of the Csd variable from the GMT-software are associ-
ated with normal FMs and no CP, and that normal FMs are associated with a normal motor
development.

2.2.1 Design
Seven hospitals from three different countries; Norway, USA and India, received a suitcase
including a standard mattress, a video camera and standard equipment to place the video
camera in the correct height above the infant. Infants with high risk of developing CP
(described in the article by Adde et al. (2007)) were video filmed at ten to 18 weeks post
term age, when FMs should be present. All the infants had one recording taken, some had
two or more, and the recordings were sent to Trondheim, Norway for further analysis. In
Trondheim, the GMT-software was used on the video recordings to analyze the movements
of the infants. In addition, three physiotherapists worked in pairs to do a GMA analysis on
all the recordings. The GMT analysis were done in the period 2012-2013, and in February
2017 all participating infants had CP status registered between 18 months to four years of
age.

A total of 879 video recordings of 754 infants from seven hospitals have been taken in
the period from 2009 to 2013. In Norway there were 155 participants from four different
hospitals: University hospital of North Norway (Tromsø) (n = 12), St.Olavs University
Hospital (Trondheim) (n = 90), University Hospital in Oslo (Rikshospitalet) (n = 45)
and Levanger Hospital (Levanger) (n = 8). From USA there were 276 participants from
two hospitals in Chicago: Lurie Children’s Hospital of Chicago (LCH) (n = 150) and
Chicago University Hospital (UOC) (n = 122). In India, there were 327 participants from
Christian Medical College, Vellore, Tamil Nadu.

2.2.2 Participants
From the total of 754 infants two moved out of their country, two died at age six and eight
months, two dropped out of the studies and one was unavailable for follow up. In addi-
tion, the GMT analysis was not performed on all video recordings, in fact 73 recordings
are registered without GMT analysis. When removing those without the GMT analysis,
the remaining number of infants is 693 with a total of 798 video recordings. Figure 2.5
illustrates the remaining number of participants from the different countries. The infants
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were video recorded at mean twelve weeks post term age (sd=1.54) and the mean length
of the recordings are four minutes and 19 seconds (sd=one minute, four seconds). Most
infants have one video recording taken, some infants from Norway and USA have two or
more.

Figure 2.5: Number of participating infants from different hospitals.

Norway USA India Total
N n(%) 149 (21) 255 (37) 289 (42) 693
Gender
Male n(%) 91 (61) 132 (52) 147 (51) 370 (53)
Female n(%) 58 (39) 123 (48) 142 (49) 323 (47)

Birth weight mean(sd) 2026 (1353) 1724 (1154) 1277 (186) 1603 (992)
Gestational age mean(sd) 33 (6.38) 31 (5.96) 32 (2.34) 32 (4.95)
Neurologic outcome
CP n(%) 25 (16.78) 18 (7.06) 3 (1.04) 46 (6.64)
Non-CP n(%) 124 (83.22) 237 (92.94) 286 (98.96) 647 (93.36)

Table 2.3: Background variables and neurological outcome for the participants in each country.
Percentage for gender and neurological outcome are given within the countries.

Table 2.3 shows some of the background information for the remaining participants
from each country. The number of video recordings done for each infant in each hospital
are shown in Table 2.4. Both tables have excluded the participants with missing CP di-
agnosis and GMT analysis. Table 2.3 shows that among the 693 participating infants, 46
(6.6%) have developed CP. In Norway, there are 25 out of the 149 (16.8%) participants
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with CP, in USA, there are 18 out of 256 (7%) participants with CP and in India there are
only three out of 289 (1%) participants with CP.

Number of video recordings
1 2 3 4 Total Number of infants

Tromso 11 0 0 0 11 11
St.Olavs 28 62 0 0 152 90
Rikshospitalet 15 25 0 0 65 40
Levanger 1 2 3 2 22 8
Norge 55 89 3 2 250 149
LCH 139 0 0 0 139 139
UOC 112 4 0 0 120 116
USA 251 4 0 0 259 255
India 289 0 0 0 289 289
Total 595 93 3 2 798 693

Table 2.4: Number of video recordings taken per infant, total number of recordings and number of
infants in each city and summed up in each country.

We see from Table 2.4 that only in Levanger there have been more than two video
recordings per infant. In Levanger, the infants were recorded at two dates, and at each
date, two video recordings should have been performed. The recordings are separated
by lifting the infant and laying it down only seconds after. Hence, there should have been
four recordings for all participants in Levanger, but we see that some are not in our data for
different reasons that we will not look into. Summarizing all recordings done in Norway,
we see that most infants have two recordings, but many have only one. In USA there
are only four infants with two recordings while 251 infants have only one recording. In
India all infants have been recorded only once. In total, we see that 595 infants have one
recording, 93 infants have two, three infants have three and only two infants have four
recordings.

2.2.3 Fidgety movements and General Movements Toolbox-variables
The pairwise correlations of the GMT-summary variables are visualized in Figure 2.6. The
figure shows that some of the variables are highly correlated. In addition to the expected
correlations between Cxmean, Cymean and their Euclidean distance Cmean, and between
Cxsd and Cysd and their Euclidean distance Csd, also the the height and width variables,
H,W , are correlated with each other and the area variables, A. In addition, Qmean is
correlated with Qsd and the mean variables for the height, the width and the area.

The data for FMs and the GMT-summary variables are shown in Table 2.5 for both
cases of the neurological outcome, separated by countries. The table shows that only one
of the infants with normal FMs developed CP, and only a few of those with intermittent or
sporadic FMs developed CP. Among the 89 recordings of infants with absent FMs, 43 of
the recordings were of infants that developed CP, which corresponds to 48.3%.

When looking at the GMT-summary variables it is important to notice that in India
there are only three recordings of infants with CP. Looking at the values in Table 2.5 and
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Figure 2.6: Pairwise correlation plot of the GMT-summary variables visualized by a) colors and b)
numbers.

Norway USA India Total

CP No CP CP No CP CP No CP CP No CP
(n= 42) (n= 208) (n= 19) (n= 240) (n= 3) (n= 286) (n= 64) (n= 734)

FMs
Exagg n(%) 0 (0) 4 (100) 0 (0) 5 (100) 0 (0) 5 (100) 0 (0) 14 (100)

- n(%) 28 (68.3) 13 (31.7) 14 (37.8) 23 (62.2) 1 (9.10) 10 (90.9) 43 (48.3) 46 (51.7)
-+ n(%) 2 (10.5) 17 (89.5) 1 (4.55) 21 (95.5) 1 (3.57) 27 (96.4) 4 (5.80) 65 (94.2)
+ n(%) 11 (6.96) 147 (93.0) 4 (2.50) 158 (97.5) 1 (0.541) 184 (99.5) 16 (3.17) 489 (96.8)

++ n(%) 1 (3.57) 27 (96.4) 0 (0) 33 (100) 0 (0) 60 (100) 1 (0.826) 120 (99.2)
Quantity of motion

Qmean (×103) mean(sd) 7.72 (5.38) 8.13 (4.58) 9.00 (5.32) 10.1 (5.13) 2.42 (1.58) 8.03 (4.58) 7.85 (5.37) 8.72 (4.86)
Qsd (×103) mean(sd) 13.4 (6.75) 10.7 (6.02) 10.5 (4.07) 11.3 (3.98) 4.14 (1.17) 9.18 (3.19) 12.1 (6.27) 10.3 (4.50)

Area of motion
Amean (×10) mean(sd) 1.82 (0.738) 2.00 (1.25) 2.02 (0.965) 2.27 (0.780) 0.862 (0.432) 1.83 (0.792) 1.84 (0.826) 2.02 (0.958)
Asd (×10) mean(sd) 1.33 (0.387) 8.33 (7.25) 1.28 (0.291) 1.50 (0.376) 1.00 (0.095) 1.33 (0.30) 1.30 (0.356) 3.37 (38.6)

Hmean (×10) mean(sd) 4.27 (1.01) 4.46 (0.938) 4.08 (1.31) 4.29 (0.927) 2.34 (1.21) 3.72 (1.04) 4.12 (1.17) 4.12 (1.03)
Hsd (×10) mean(sd) 2.39 (0.416) 2.09 (0.901) 2.02 (0.395) 2.09 (0.392) 2.15 (0.042) 2.08 (0.337) 2.27 (0.432) 2.09 (0.569)

Wmean (×10) mean(sd) 3.38 (1.06) 3.62 (1.05) 3.88 (1.40) 4.40 (1.07) 2.04 (1.10) 3.79 (1.18) 3.46 (1.22) 3.94 (1.16)
Wsd (×10) mean(sd) 1.93 (0.553) 1.77 (1.02) 2.02 (0.395) 2.09 (0.392) 2.15 (0.042) 2.08 (0.337) 1.97 (0.497) 2.00 (0.640)
Centroid of motion

Cxmean (×10) mean(sd) 4.75 (0.603) 5.05 (0.533) 4.81 (0.554) 4.82 (0.610) 5.55 (0.476) 5.11 (0.632) 4.80 (0.600) 5.00 (0.611)
Cymean (×10) mean(sd) 5.95 (0.736) 5.48 (0.682) 5.98 (0.577) 5.75 (0.657) 6.26 (0.050) 5.61 (0.751) 5.97 (0.673) 5.62 (0.709)
Cmean (×10) mean(sd) 7.63 (0.720) 7.48 (0.575) 7.69 (0.566) 7.53 (0.636) 8.37 (0.313) 7.62 (0.691) 7.69 (0.676) 7.55 (0.644)
Cxsd (×10) mean(sd) 1.04 (0.265) 0.919 (0.260) 1.13 (0.189) 1.18 (0.329) 1.12 (0.161) 1.24 (0.303) 1.07 (0.241) 1.13 (0.329)
Cysd (×10) mean(sd) 1.43 (0.329) 1.25 (0.265) 1.36 (0.320) 1.25 (0.274) 1.37 (0.116) 1.31 (0.294) 1.41 (0.32) 1.27 (0.280)
Csd (×10) mean(sd) 1.79 (0.349) 1.57 (0.298) 1.78 (0.338) 1.73 (0.374) 1.78 (0.165) 1.81 (0.356) 1.78 (0.336) 1.72 (0.360)

Table 2.5: The number of cases and percentage within the countries for FMs, and mean and standard
deviations of the GMT-variables of the 798 video recordings. FMs are categorized in absent (−),
sporadic (−+), intermittent (+), continual (++) and exaggerated (Exagg).

the histograms for the GMT-variables in Figure 2.7 and Figure 2.8, it is not easy determine
which of the variables that stands out, as most of the histograms seem to have the same
shape for both CP and no CP, and the mean values in Table 2.5 seems quite similar between
groups. The mean values for the variablesQmean,Amean,Asd,Hmean andCxmean in the
table are lower for the CP group than for the no CP group. However, only the histograms
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2.2 Data

for Qmean, Amean and Wmean shows some small differences between the groups, while
the histograms for the other mentioned variables are very similar between groups.

For the variables Hsd, Cymean, Cmean, Cysd and Csd, the mean values in the table are
higher for the CP group than for the no CP group. The histograms for all these except Hsd

shows that there are more recordings with higher values of these variables in the CP group
than in the no CP group.

Looking at the histograms for the area variables, we see that there are some outliers in
the no CP group. These are most easily seen in the histograms for Amean, Asd, Hsd and
Wsd. These outliers correspond to two video recordings of different infants. The outliers
are most extreme for the Asd variables, where they take the values 69.7 and 78.4. The
outlier values have been noticed and checked in previous studies, but no clear answer to
why these values differ that much from the other values has been found.
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Figure 2.7: Histograms of the mean and standard deviation values for the quantity of motion (Q),
area of motion (A), height of motion (H) and width of motion (W). The two outliers for the area-
variables has been removed in the third row in the corresponding histograms.

As all the GMT-variables are calculated from the number and locations of the pixel
changes in the motion image, one would expect that the infants‘ area would have an ef-
fect on these variables. The trunk area of the infants in the recordings are also registered
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Figure 2.8: Histograms of the mean and standard deviation values for the centroid of motion vari-
ables.

through the GMT-software, with mean value 400 cm2 (sd= 71.6 cm2). Looking at Fig-
ure 2.9, there seems to be some small dependency between some of the GMT-variables,
mostly the area variables, and the trunk area. However, in general there are not much
dependency between the variables and the trunk area, so we consider the GMT-variabels
without normalizing for trunk area, throughout the thesis.

2.3 Aim of the thesis
In this thesis, the main goal is to develop statistical methods for prediction of CP for high
risk infants, using one or several GMT-variables. Since FMs has been used as a surrogate
measure for CP, we start by predicting normal FMs using a mixed effects logistic regres-
sion model and the data described above with 798 observations. We refer to these data as
the FM-data. Since the FM-statuses are classified based on human judgement, it might
include wrong classifications. In this thesis, however, we assume that the FM-statuses
given in the dataset are the correct ones. A previous study showed that low variations in
the centroid of motion were associated with normal FMs (Adde et al., 2009), on a dataset
consisting of 82 Norwegian infants with a total of 132 recordings. We will investigate if a
dataset consisting of infants from three different countries, Norway, USA and India, give
the same association between Csd and FMs. In addition, we are interested in differences
between the countries, and will see if the effect of Csd on the occurrence of normal FMs
varies between countries.

In the project in the autumn 2016, we found that the frequentist method using the
lme4-package in R gave strange results for these data. We present these results with the
frequentist approach, but we also consider a Bayesian approach for modeling these data, to
see if this method give more reasonable results. In addition, we will perform a simulation
study to investigate if increasing the number of repeated measurements give more stable
results with less uncertainties for the frequentist approach.

Then, we turn to the prediction of CP. Using CP as outcome, we remove repeated
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2.3 Aim of the thesis

recordings such that each infant only have one recording, and we can model the data using
logistic regression. We refer to these data as the CP-data. A previous studies by Adde
et al. (2010) showed that low values of Csd are associated with not having CP, but this was
found on a dataset consisting of only 30 Norwegian infants. Here, we look for the same
association using data of infants from the three different countries, and we will investigate
if there is a different effect of Csd on the occurrence of CP for the different countries.

Finally, we consider several GMT-variables and other available variables to see if we
can find a model that is better at predicting CP. In this part of the analysis, we use the
Lasso method to investigate which of the variables that are associated with having CP and
give the best model for prediction of CP. For statistically inference of the Lasso estimates,
we consider both bootstrapping and the multi sample-splitting method for calculations of
p-values and confidence intervals for the variables.
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Figure 2.9: Scatter plots of the GMT-variables against trunk area of the infants. For the area of
motion variables (A, H, W), the outliers have been removed.
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Chapter 3
Statistical methods

In this chapter we present statistical methods for modeling and model evaluation of binary
data. We start by presenting some well known theory for logistic regression, by presenting
the logit model and estimation, and the likelihood ratio test for the regression coefficients.
Then we look into methods for model evaluation and diagnostic tests. These methods will
be applied also for the models presented later in the chapter. Then, we look into methods
for variable selection, with focus on the Lasso method for logistic regression models.

In the final section of the chapter, we turn to mixed effects logistic regression mod-
els. We start the section by looking into the method for estimating the regression coeffi-
cients using a frequentist approach. Then, we introduce Bayesian theory and look into the
Bayesian approach for estimation of the regression coefficients, using the the Integrated
Nested Laplace Approximation (INLA).

3.1 Logistic regression
This section is mostly based on the Lecture Notes on Generalized Linear Models (Rodrı́guez,
2007). In a generalized linear model with binary outcome, the response takes only two val-
ues, yi = {0, 1}. This type of model is also called a logistic regression model. Assuming
independent variables, the model takes the form

yi ∼ Bernoulli(πi) for i = 1, 2, ..., n,

where all observations y1, ..., yn are independent and each take value 1 with probability
πi. The Bernoulli distribution has a density on the form

f(yi;πi) = πyii (1− πi)1−yi for yi = 0, 1,

with expectationE(yi) = πi and variance V ar(yi) = πi(1−πi). The parameter, πi, is the
probability of yi being 1 and (1−πi) is the probability of yi being 0. Since the probability
πi should depend on the covariate vector xi and be within the interval [0, 1], the logit link
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Chapter 3. Statistical methods

function is used on πi to make it a linear function of the covariates. The link function is a
one-to-one continuous differentiable function and the logit link is given by

logit(πi) = β0 + xi
Tβ,

where xi is a vector of covariates, β0 is the intercept and β is a vector of regression
coefficients. The quantity ηi = β0 + xi

Tβ is often referred to as the linear predictor. The
logit function is given by

logit(πi) = log(
πi

1− πi
)

and hence,
πi

1− πi
= exp(β0 + xi

Tβ). (3.1)

Solving for πi gives the form

πi =
exp(β0 + xi

Tβ)

1 + exp(β0 + xi
Tβ)

. (3.2)

Equation (3.1) is the probability of the observation yi being 1, divided by the probability
of yi being 0, and is called the odds for observation yi. In a logistic regression model, the
regression coefficient βj represents the change in the logit of πi for each unit change for
the covariate xij . By changing the j’th covariate by one unit, the odds will be multiplied by
exp(βj). In this way, this is a multiplicative model, and the coefficient exp(βj) represents
the odds ratio for the j’th covariate. The interpretation of the odds ratio is that the odds for
yi = 1 is exp(βj) times larger for an observation xij + 1 than the odds for an observation
xij .

3.1.1 Estimation
For simplicity, we denote the regression coefficients {β0,β} for β. To estimate the re-
gression coefficients, maximum likelihood estimation is used. The likelihood, L, for n
independent Bernoulli observations is the product of the density functions. Hence,

L(β) =

n∏
i=1

πyii (1− πi)1−yi ,

where πi is given in Equation (3.2). The log likelihood is then,

logL(β) =

n∑
i=1

(
yi log(πi) + (1− yi) log(1− πi)

)
=

n∑
i=1

(
yi(β0 + βTxi)− log(1 + eβ0+β

T xi)
)
. (3.3)

The regression coefficients are found by maximizing the likelihood for β. There are no
analytic solution when solving for β, and the expression must be solved numerically. In
the glm-function in R, the regression coefficients are found by the iterative method called
Iterative Re-weighted Least Squares (IRLS) (R Core Team, 2014). This method works in
the following way.
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3.1 Logistic regression

1. Given the current estimate β̂, the linear predictor η̂i = xT
i β̂ and the fitted values

µ̂i = logit−1(η̂i) are calculated.

2. These values are used to calculate the dependent variable z with elements

zi = η̂i +
yi − µ̂i

µ̂i(1− µ̂i)
,

and the diagonal matrix W with weights

wii = µ̂i(1− µ̂i).

3. Then, the weighted least square estimates are given by

β̂ = (XTWX)−1XTWz

where X is the matrix of covariates with the first row consisting of ones.

4. Go back to 1.

This algorithm runs until the difference between the current and previous estimate, β̂new−
β̂old, is small enough, and gives the maximum likelihood estimator.

The estimated covariance matrix for the regression coefficients is given by

cov(β̂) = (XTWX)−1,

where W is the diagonal matrix with weights evaluated in the last iteration. The diagonals
of the covariance matrix are the variances of the coefficients, σ̂2

β̂j
, j = 0, 1, 2, ....

For large sample sizes, n, the law of large numbers says that β̂j is approximately
normally distributed with mean βj and variance σ̂2

β̂j
, β̂j ∼ N (βj , σ̂

2
β̂j

). Hence, to test the
significance of the estimated coefficients, a Z-test can be used. A Z-test tests the hypothesis

H0 : βj = 0 vs H1 : βj 6= 0,

where βj is the coefficient for covariate j. Assuming H0 is true, the Z-statistic is given by

Z =
β̂j
σ̂β̂j

,

and is standard normally distributed with mean 0 and variance 1. A p-value for Z less than
the chosen significance level, often 0.05, leads to rejection of the hypothesis and implies
that the coefficient βj is significant and that covariate xj has a significant effect on the
response.
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3.1.2 Confidence intervals
The estimated probabilities, π̂, are found by replacing the coefficients in Equation (3.2)
with the estimated coefficients. In order to estimate the confidence intervals of the proba-
bilities, the standard errors of the linear predictor, η̂ = logit(π̂) must be calculated. As the
estimated linear predictor is a linear combination of the estimated regression coefficients
β̂ that are normally distribution, also the estimated linear predictor is normally distributed.
The confidence interval of the estimated probabilities is then given by

exp(η̂ ± zα/2ŜE(η̂))

1 + exp(η̂ ± zα/2ŜE(η̂))

where
ŜE(η̂) =

√
V ar(Xβ̂) =

√
XTV ar(β̂)X

which can be written on the form

ŜE(η̂i) =

√√√√V ar(β̂0) +

N∑
k=1

(x2ikV ar(β̂k) + 2xikCov(β̂0, β̂k)) + 2

N∑
k 6=l

xikxilCov(β̂k, β̂l).

The confidence interval of the odds ratio is found through the confidence interval of
the covariate. For large sample sizes, a 95% confidence interval for βj is given by β̂j ±
1.96 · σ̂β̂j . Then, the confidence interval for the odds ratio for βj is given by (exp(β̂j ±
1.96 · σ̂β̂j )).

3.1.3 Likelihood ratio test
To investigate if one or more of the covariates are significant effects in the model, a like-
lihood ratio test (LRT) can be used. A LRT compare two nested models, based on the
difference between their deviances, and test the hypothesis

H0 : β′ = 0 vs. H1 : β′ 6= 0,

where β′ is a vector containing a subset of the regression coefficients which we want to
test. The null hypothesis states that all the regression coefficients contained in β′ are
equal to zero, while the alternative hypothesis states that one or more of the regression
coefficients in β′ are unequal to zero. The likelihood ratio is given by

λ =
L(β̂small)

L(β̂large)
,

where β̂small denote the vector of maximum likelihood estimators for the model where all
the regression coefficients in β′ are equal to zero, and β̂large is vector for the maximum
likelihood estimators for the model where all the regression coefficients in β′ are unequal
to zero. For large sample sizes, −2 log λ is approximately χ2-distributed with degrees
of freedom equal to the difference in number of regression coefficients between the two
models.
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3.2 Model evaluation and diagnostic tests

The deviance for a model with estimated coefficients β̂ is given as

D(β̂) = −2 log
L(β̂)

L(saturatedmodel)
,

where L(saturatedmodel) is the likelihood for the saturated model. When comparing the
deviances for the larger and smaller model, the likelihoods for the saturated model cancels
and we have that

χ2 = −2 log λ = D(β̂small)−D(β̂large) = −2
(

logL(β̂small)− logL(β̂large)
)

which for large sample sizes n is approximately χ2-distributed with the difference in num-
ber of parameters as degrees of freedom. If the p-value for χ2 is less than the significance
level, the null hypothesis is rejected and the LRT indicate that the coefficient(s) should be
included in the model.

3.2 Model evaluation and diagnostic tests
After having chosen and fitted the model, one is often interested in the accuracy of the
model. Here, we consider methods for validation of the model and some measures for
the model accuracy, in terms of diagnostic test, Brier score and ROC-curves. We start by
describing a diagnostic test for binary data.

A diagnostic test can be used to investigate how well the model predicts the true data
(Lydersen, 2012). We call the results from the model fit for the ”test results” and the true
outcome for the individuals for ”disease status”. For a binary test with two possible disease
statuses, there are four possible outcomes. For a positive test, the test can either be true
positive, if the individual is diseased, or false positive, if the individual is not diseased.
The same applies for a negative test, which has the two options; true negative and false
negative. Table 3.1 shows the possible combinations for the test results and the disease
status.

Test results
Disease Status Positive (T=1) Negative (T=0) Total
Diseased (D=1) True positive (a) False negative (b) a+b
Non-diseased (D=0) False positive (c) True negative (d) c+d
Total a+c b+d a+b+c+d

Table 3.1: Possible outcomes of a diagnostic binary test with binary disease status.

The sensitivity and specificity of a test are the probabilities that the test results will
give the true disease status of the individual. Hence they are direct properties of the test,

Sensitivity = P (Positive test|Diseased) = P (T = 1|D = 1),

and
Specificity = P (Negative test|Non-diseased) = P (T = 0|D = 0).
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Chapter 3. Statistical methods

Using Table 3.1, the sensitivity and specificity of the test can be estimated by

Sensitivity =
a

a+ b
,

and

Specificity =
d

c+ d
.

Receiver Operating characteristic Curve and Area Under Curve

As the estimated outcome of a logistic regression is a probability for yi = 1, one need to
determine a cutoff value for which the probability for yi = 1 indicate a positive test. If the
estimated probability is below the cutoff value, the predicted value is 0, while an estimate
above or equal to the cutoff value, the predicted value is 1. One can compute the sensitivity
and specificity for every possible cutoff value. A plot of these sensitivities as a function of
1− specificity is called a receiver operating characteristic curve (ROC). The area under the
ROC-curve (AUC) is a measure of the test’s ability to distinguish between the diseased and
the not diseased. If the AUC is equal to 1, the ROC curve would go as straight lines from
(0,0) up to (0,1) and further to (1,1), and we would have a perfect diagnostic test. Table 3.2
shows a general rule for strength of discrimination for different AUC values, which can be
used to determine how well the test, and hence model, performs and to compare tests.

AUC Strength of discrimination
0.5 No discrimination
0.7− 0.79 Acceptable
0.8− 0.89 Excellent
0.9− 1.0 Outstanding

Table 3.2: General rule for strength of discrimination for different AUC values, (Lydersen, 2012).

Briers score

The Brier score is a popular tool in medical research for assessment and comparison of
binary predictions (Rufibach, 2010). It is defined as,

B =
1

n

n∑
i=1

(yi − π̂i)2,

where yi is the true observed outcome and π̂i is the estimated probability for yi = 1.
The Brier score is hence a mean square difference between the observed outcome and the
predicted probability for the outcome. Comparing two binomial models in terms of Brier
scores, the best model is the one with the lowest Brier score.
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Cross validation

An internal validation of the estimated model is found by first fitting the model with a
dataset, and then use the model to predict the outcomes in the same dataset. In this way,
the same dataset is used for model fitting and model evaluation.

To have an external validation of the estimated model, cross validation can be applied.
The dataset is divided into a set of test sets and training sets. A model is estimated based
on the training sets and this model is used to predict the outcomes of the test sets. In this
way, the model is validated on an external dataset. For a logistic regression model, the
probabilities for yi = 1 of the test set is predicted by the model based on the training set,
and the predicted probabilities of the test set can be compared to the true outcomes.

In our analysis, k-fold cross validation and leave-one-out cross validation will be con-
sidered. A k-fold cross validation randomly divide the dataset into k folds. A model is
estimated using the k − 1 sets as training sets, and external validation is performed on the
remaining k’th set. This is done repeatedly for all k, such that all the sets are used in the
external validation exactly once. This is an advantage for small sample sizes.

A leave-one-out cross validation is similar to the k-fold cross validation, dividing the
data into n folds. This method estimates a model using n − 1 of the n observations, and
test the model on the remaining observation. This is repeated until all observations have
been predicted. In this way, all the data are externally validated and the model is estimated
with a large amount of the available data, which is also an advantage for small sample
sizes.

To compare models, the external validated data can be used for calculations of sensi-
tivity and specificity, ROC-curves with corresponding AUC-values and Brier scores. The
values for each of the evaluation methods can be used for model comparison in order to
select the best model.

3.3 The Least Absolute Shrinkage and Selector Operator
(Lasso)

Next, we look into methods for variable selection. We start by shorty presenting some
methods for regression and variable selection, before we look into the method of the Least
Absolute Shrinkage and Selector Operator (the Lasso). For simplicity, we start by de-
scribing the methods for linear models, before we look into details of the Lasso method
for logistic regression models. At the end of the section, we consider methods for model
evaluation for the Lasso model.

3.3.1 Overview of methods for variable selection and model estima-
tion

Suppose that the data y1, ..., yn are independent realizations from a normal distribution,
Y ∼ N (η, σ2I), with mean η and covariance matrix σ2I. Suppose further that we have
data on p predictors x1, ...,xp which takes values xi1, ..., xip for the i’th unit. Assuming
that the expected responses are linear functions of these predictors, the linear predictor
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takes the form

ηi = β0 +

p∑
j=1

βjxij , i=1,...,n

for some unknown regression coefficients β0, ..., βp. When observing the data (x1, y1),
..., (xn, yn), the most popular estimation method for the regression coefficients is the least
squares method (Hastie et al., 2001), where one minimizes the residual sum of squares,

RSS(β) =

n∑
i=1

(yi − ηi)2 =

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2

= (y −Xβ)T (y −Xβ).

Assuming that X is of full rank, the least square estimates that minimizes the RSS are
given by the unique solution

β̂ = (XTX)−1Xy.

If X is not of full rank, then XTX is singular, and the least square estimates β̂ are no
longer unique.

When n � p the least square estimates tend to have low variance and bias, and give
a good fit to the model, provided that the true relationship between the response and the
predictors is approximately linear (James et al., 2013). However, when n is not much
larger than p, there can be large variability in the least square fit, and the fitted model
might prone to overfitting and perform poorly when predicting future observations. Also,
when p > n, there are no longer unique least square estimates, the model will almost
surely overfit the data, the variance is infinite and the method can not be used.

Another problem with the least square estimates are the complex interpretation of the
model, if it includes many variables. Often, many of the variables are not associated with
the response, and are irrelevant in the model. The least square estimates are unlikely to
estimate some coefficients to zero, and hence, all variables are included in the model. To
exclude the irrelevant or nearly irrelevant variables, their coefficients can be set equal to
zero.

Fortunately, there are methods that overcome these problems of least square estimates.
Below we shortly describe three popular methods that avoids either problems with model
fitting when p > n and/or inclusion of irrelevant variables in the model.

• Best-Subset Selection: For each k ∈ {1, ..., p}, the method finds the subset of size
k with the smallest residual sum of squares. Among these p chosen subsets, the
method chooses the one with the best tradeoff between bias and variance. AIC,
adjusted R2 and deviance are popular selection criteria. One problem with the best
subset selection is the that there are 2p possible subsets. Then, when p is large there
will be an enormous amount of possible sets, which will slow down the algorithm.
Take for example p = 20. This will give over one million possibilities. Having
p = 30 there will be more than one billion possibilities. Another problem is that the
larger the search space, the higher is the chance of finding models that look good in
the test sets, but not for future datasets.
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• Stepwise selection: A less computationally demanding method than best subset is
the method of the stepwise selection. This method explore a far more restricted set
of models. In forward stepwise selection, one starts with only the intercept in the
model and sequently add variables that improves the fit of the model. In this way,
the k variables included in the k’th model will also be included in the k+ l’th model
for all l ≥ 1. Hence, the search space is reduced for each added variable. Backward
subset selection is similar to the forward method, but starts with all p variables, and
sequently remove the variables that have less impact on the fit. Both forward and
backward subset selection have

∑p−1
k=0(p − k) possible sets, so with k = 20 there

are only 221 subsets. In both methods, least squares are used to fit the subsets, so
for high dimensions where p > n, only the forward selection method is possible,
but then the estimates are not unique.

Even though stepwise selection method is computationally more efficient than best
subset, the stepwise methods have some disadvantages. The first problem is that
the solutions are not unique for p > n for the forward selection, while they do
not exist for backward selection. In addition, the p-values for the coefficients do
not take into account the multiple testing, so they can not be fully trusted (Finos
et al., 2010). Another problem with the methods is that it might not give the best
model. One could have that the variables added early in the algorithm might not
be that important when other variables are included. Since the stepwise selection
is a discrete process, it often suffer from large variances of the estimates and hence
doesn’t reduce the prediction error in the full model. Shrinkage methods, however,
are continuous processes, and doesn’t suffer that much from high variability (James
et al., 2013).

• Shrinkage: Shrinkage methods uses all p variables to fit the model, but a penalty
term is added to the expression that is to be minimized. By adding the penalty term,
the model forces some coefficients towards zero, which has the effect of reducing
the variance of the predicted values. For p > n, the least square estimates does not
yield a unique solution, whereas the shrinkage methods performs well by trading off
a small increase in bias for a large decrease in variance (Hastie et al., 2001). There
are two popular shrinkage methods: the Ridge regression and the Lasso regression,
where the Ridge regression estimates can be shrunken towards zero and the Lasso
regression estimates can be shrunken to exactly zero. Hence, the Lasso regression
also performs variable selection.

In the following section we describe the Lasso regression method in detail. Since we
are interested in finding out which GMT-variables that are important in the prediction of
cerebral palsy, the Lasso is a suitable method, as the variables that are not important are
shrunken to zero and makes the important variables stand out.

3.3.2 The Lasso

In the Lasso regression, a shrinkage penalty is added to the residual sum of squares, im-
posing a penalty on the size of the parameters. The Lasso coefficients βLλ are the ones that
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minimizes the quantity

1

2n

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj | =
1

2n
RSS + λ

p∑
j=1

|βj |, (3.4)

where
∑p
j=1 |βj | is the `1 penalty and λ ≥ 0 is the tuning parameter, to be determined

separately (Hastie et al., 2015). The tuning parameter controls the impact of the two terms
in Equation (3.4), where the RSS-term is small when the model fits the data well, and
the shrinkage penalty λ

∑p
j=1 |βj | is small when the coefficients are close to zero. The

Lasso regression differs from the Ridge regression by the `1 penalty, where Ridge uses
the `2 =

∑p
j=1 β

2
j penalty. For sufficiently large values of λ, the `1 penalty shrinks

some coefficients to be exactly zero, while for Ridge regression they are shrunken towards
zero, but never exactly to zero. In this way, the Lasso regression also performs variable
selection.

An equivalent formulation of Equation (3.4) is

minimize
β

{ 1

2n

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2
}

subject to
p∑
j=1

|βj | ≤ s. (3.5)

For Ridge regression, the constraint is now
∑p
j=1 β

2
j ≤ s2. Figure 3.1 illustrates the dif-

ferences between the Ridge and the Lasso regression for p = 2. For only two parameters,
the constraints are |β1| + |β2| < s for the Lasso coefficients and β2

1 + β2
2 < s2 for the

Ridge coefficients. These form a diamond and circle in the figure, while the ellipsis are
constant values for the RSS. As the ellipsis expand from the least square estimates β̂, the
RSS increases. Equation (3.5) indicate that the Lasso and Ridge coefficients estimates are
given by the first point the ellipsis meets the constraint. Due to the corners of the diamond
at the axis, the ellipse will often intersect with the axis, which corresponds to a coeffi-
cient being exactly equal to zero. This is not the case for the circle, where the estimated
coefficients will be exclusively non-zero. For larger values of p, the dimension of the dia-
mond and amount of corners increase, but the methodology holds. For p larger than 2, the
intersection can take place in several corners.

When λ → ∞, the impact of the shrinkage penalty grows, and all the Lasso coeffi-
cients will be exactly zero. When λ = 0, the Lasso regression model includes all the p
predictors and the estimated coefficients are identical to the least square estimates (Hastie
et al., 2015). In order to determine the value for the tuning parameter, one can apply k-fold
cross validation. For a range of λ values, a model is fitted in the training set to obtain the
Lasso coefficient estimates β̂

L

λ , and the fitted model is used for model validation in the test
set. This results in k model validations for each value of λ in the given range. For each
value of λ, one can calculate the mean prediction accuracy and standard errors from the
mean (Hastie et al., 2015). We use the notation λmin for the value of the tuning parameter
giving the model with the ”best” model validation, i.e. largest prediction accuracy, and
λ1se as the smallest value of the tuning parameter yielding the model which is within one
standard error of the best model. The latter could be useful when the two models appears
to be almost equally good, and one could choose the simplest model.

For models with highly correlated variables, the Lasso tend to pick only one of the
correlated variables, and shrink the coefficients of the other correlated variables to zero
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Figure 3.1: Estimation for the Lasso regression (left) and Ridge regression (right) for p = 2. The
solid blue lines represent the constraint regions |β1|+ |β2| < s and β2

1+β
2
2 < s2 respectively, while

the red ellipses are the contours of the residual-sum-of-squares function. The point β̂ describes the
least-squares estimate. The figure is copied with approval from Hastie et al. (2001).

(Friedman et al., 2010). The Ridge however, is known to shrink the coefficients of the
correlated variables toward each other. Hence, correlated variables are allowed to borrow
strength from each other in Ridge, while only one of the variables are chosen in the Lasso.

In the setting where the number of parameters are larger than the number of observa-
tions, p > N , the Lasso solution can only include N nonzero coefficients. Hence, if there
are one million variables in a model, but only 100 observations, the Lasso solution can not
include more than 100 nonzero coefficients.

Estimation of the Lasso coefficients

Let’s first consider the case where we only have one predictor x1 and samples {(x1i, yi)}ni=1.
We consider the standardized predictor zi, which is standardized such that 1

n

∑n
i=1 xi = 0

and 1
n

∑n
i=1 x

2
i = 1. Then, the Lasso coefficient estimate is the one that solves

minimize
β

{ 1

2n

n∑
i=1

(yi − ziβ)2 + λ|β|
}
.

Simple differentiation with respect to β and putting the expression equal to zero, gives the
Lasso coefficient estimate,

β̂L =


1
n 〈z,y〉 − λ if 1

n 〈z,y〉 > λ
1
n 〈z,y〉+ λ if 1

n 〈z,y〉 < −λ
0 if 1

n |〈z,y〉| ≤ λ
(3.6)

where 〈z, y〉 = zT y =
∑n
i=1 ziyi. The notation in Equation (3.6) can be written as

β̂L = Sλ(
1

n
〈z, y〉).
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The operator
Sλ(x) = sign(x)(|x| − λ)+

is called the soft-tresholding operator, and shrinks its argument x towards zero by the
amount λ and is set to zero if |x| ≤ λ (Hastie et al., 2015).

Next, we consider a method for solving the Lasso problem for multiple predictors,
called Cyclic Coordinate Descent. For this method, one repeatedly cycle through the pre-
dictors j = 1, ..., p in a arbitrary order, but with the same order in each cycle. At the j’th
step, the coefficient βj is updated by minimizing the objective function

1

2n

n∑
i=1

(yi −
∑
k 6=j

xikβk − xijβj)2 + λ
∑
k 6=j

|βk|+ λ|βj |,

while holding all other coefficients β̂k 6=j fixed at their current value. Letting the partial
residuals take the form r

(j)
i = yi −

∑
k 6=j xikβ̂k, the outcomes from the current fit are

removed for all predictors except the j’th. Then, the update for each β̂j can be written as

β̂j = Sλ(
1

n
〈xj , r(j)〉).

Equivalently, letting the full residuals take the form ri = yi−
∑p
j=1 xij β̂j , the update can

be written as
β̂j = Sλ(β̂j +

1

n
〈xj , r〉).

This is done repeatedly in a cycling manner, updating each of the predictor in the model
in every cycle (Hastie et al., 2015).

3.3.3 The Lasso for logistic regression models
Until this point, we have only been considering linear regression models for the Lasso.
Now, we will consider the Lasso method for generalized linear models, with focus on
logistic regression. For a generalized linear model, the Lasso solution is found by mini-
mizing the negative log likelihood along with the shrinkage penalty,

minimize
β0,β

{
− 1

n
L(β0,β;y,X) + λ||β||1

}
,

where L is the log likelihood function of the generalized linear model with outcomes y,
coefficients β and covariates X. For a logistic regression model, the log likelihood is given
in Equation (3.3), and the Lasso coefficients are the ones that solves,

minimize
β0,β

{
− 1

n

n∑
i=1

(
yi(β0 + xi

Tβ)− log(1 + eβ0+xi
Tβ)
)

+ λ||β||1
}
. (3.7)

The glmnet-package in R uses cyclic coordinate descent also when solving general-
ized linear models. One sufficient condition is that the function being minimized is con-
tinuously differentiable and strictly convex in each coordinate (Hastie et al., 2015). For
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the Lasso solution of a generalized linear regression, this is fulfilled, as the negative log
likelihood function is continuous, differentiable and convex and the shrinkage penalty is
convex. The algorithm for finding the Lasso solutions consist of three loops, where the
outer loop decrement λ. Since the log likelihood in Equation (3.7) is a concave function of
the parameters, a iterative reweighted least squares can be used to maximize it. This leads
to a quadratic objective function of the form,

`Q(β0, β) = − 1

2n

n∑
i=1

wi(zi − β0 − xi
Tβ)2 + C(β̃0, β̃),

where zi = β̃0 + xi
T β̃ + yi−p̃i(xi)

p̃i(xi)(1−p̃i(xi))
is the current observation, p̃i(xi) is the current

estimate for P (Y = 1|X = xi), wi = p̃i(xi)(1 − p̃i(xi)) and C is a constant. With the
current value of λ with corresponding current parameters (β̃0, β̃), the quadratic approxi-
mation `Q is computed in the middle loop. Then, in the inner loop, the coordinate descent
is used to solve the problem

minimize
β0,β

{
− `Q(β0,β) + λ||β||1

}
.

Using a warm start up on a fine grid values for λ, generally makes the quadratic approxi-
mation very accurate, and few iterations are required for convergence.

For a logistic regression model, one can consider several decision rules for selecting
the value of λ that gives the best model fit from the cross validations. In this thesis, we
focus on three decision rules: binomial deviance, misclassification error and AUC-values.
The binomial deviance for the current λ value with the corresponding Lasso estimates β̂

L

λ

is given by

Dλ(β̂
L

λ ) = −2 log
L(β̂

L

λ )

L(saturated model)
.

Using the binomial deviance as decision rule, we seek the tuning parameter with corre-
sponding Lasso estimates that minimizes the binomial deviance. This value for the tuning
parameter is denoted λmin.

Another option is to choose the best model based on the misclassification error. The
fitted model is used to predict values for the outcomes y in the test set, and the number
of misclassifications are counted based on a 0.5 cutoff. The best model is the one with
the lowest misclassification error, and the value of the tuning parameter that gives the best
model is denoted λmin.

Also the AUC-value can be used as a decision rule for the cross validation of the model.
Using this, one is interested in the model that gives the largest AUC-value for the test set,
and we denote λmax for it’s corresponding tuning parameter.

3.3.4 Validation of the Lasso model
In addition to the predictive ability of the selected model, one are often interested de-
termining the statistical strength of the included variables. Based on the adaptive nature
of the estimation process, one can not easily assess p-values and confidence intervals for
the variables (Hastie et al., 2015). Here, we describe two methods for making statistical
inference of the variables: Bootstrapping and Multi sample-splitting.
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Bootstrapping

Nonparametric bootstrapping is a method that can be used on the Lasso solution to asses
the sampling distribution of the Lasso estimate β̂

L

λ (Hastie et al., 2015). Assuming that the
n observations {(xi, yi)}ni=1 are independent and identically distributed by the cumulative
distribution function F , a bootstrap sample is defined to be a random sample of size n
from the empirical distribution function F̂n that puts mass 1/n to each data point (xi, yi).
A bootstrap sample is hence obtained by drawing n samples with replacement from the
data. For each bootstrap sample, one can calculate the Lasso estimate β̂

L

λ , and repeating
this process B times, one can use the B bootstrap samples to make inference about the pa-
rameters. In this thesis, we use the bootstrap samples to evaluate the number of times each
coefficient for the variable is estimated to a non-zero value, and we look at the boxplots of
their estimated values.

Multi sample-splitting

Multi sample-splitting is a method for constructing hypothesis tests and confidence inter-
vals for regression parameters in a high dimensional setting, and are described in Dezeure
et al. (2015). Here, we will not go into the details about the method, but only give a short
description of the method.

The idea is to split the sample into two equal halves, I1 and I2, and use I1 for model
selection. The selected variables are gathered in Ŝ(I1) and the covariates for the selected

variables from the second half, X(Ŝ(I1))
I2

, is used for constructing p-values. In this thesis,
we use the Lasso for variable selection. When testing H0,j : β0

j = 0 for j ∈ Ŝ(I1), we
obtain the p-values, Pt−test,j , from the t-test when assuming Gaussian errors. Then, the
raw p-value for the j’th variable is defined by,

Praw,j =

Pt−test,j based on YI2 ,X
(Ŝ(I1))
I2

, if j ∈ Ŝ(I1)

1, if j /∈ Ŝ(I1).

To correct the p-values for multiple testing, a Bonferroni corrected p-value for H0,j is
given by

Pcorr,j = min(Praw,j · |Ŝ(I1)|, 1).

These adjusted p-values control the familywise error rate in multiple testing.
The procedure above is referred to as the single sample-splitting procedure. A problem

with this approach is that the choice of sample splits can lead to wildly different p-values.
To overcome this problem, the above procedure can be run B times, to obtain a collection
of p-values for the j’th hypothesis H0,j ,

P
[1]
corr,j , ..., P

[B]
corr,j for j = 1, ..., p

An aggregation to a single p-value Pj is obtained by defining an empirical γ-quantile with
0 < γ < 1,

Qj(γ) = min(emp. γ-quantile{P [b]
corr,j/γ; b = 1, ..., B}, 1).
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Then, the aggregated p-value is obtained by choosing a properly scaled γ-quantile in the
range (γmin, 1). Hence, the aggregated p-values are given by,

Pj = min
(

(1− log(γmin) inf
γ∈(γmin,1)

Qj(γ), 1
)

for j = 1, ..., p. (3.8)

The multi sample-splitting can easily be applied for generalized linear models, using
the Lasso method for generalized linear models in the variable selection and constructing
the p-values from the asymptotically distribution of the maximum likelihood estimator.
The rest of the procedure is similar as described above.

Confidence intervals from the multi sample-split method for linear models are con-
structed based on the duality with the p-values from Equation (3.8). This method is ex-
plained in detail in Dezeure et al. (2015). Here, we only focus on confidence intervals for
generalized linear models. The calculations of confidence intervals for these models are
not described in Dezeure et al. (2015), so we have found the details by reading the R-code
for the multi sample-split function. The R-code showed that for all other than linear mod-
els, the confidence intervals are calculated in a simpler manner. First, all the B confidence
intervals are set to (−∞,∞). Then for each loop, variable selection and model fitting is
performed as described above. For a logistic regression model, the model with the selected
variables is fitted as in Section 3.1.1 and the confidence intervals for the variables in the
model is calculated as in Section 3.1.2. Selecting a significance level of 0.95, the multi
sample splitting returns confidence intervals with lower and upper limit 1.3% and 98.8%
respectively. For the variables that were not chosen in the given loop, the confidence in-
terval for this loop is still (−∞,∞). Then, based on all B loops, the median value of
the confidence intervals for each variable is returned. In this way, for generalized linear
models, the returned p-values from the function are adjusted for multiple testing, while the
returned confidence intervals are not.

3.4 Mixed effects logistic regression with random inter-
cepts

Now, we turn to statistical methods for modeling binary data with repeated measurements.
In our data, we have repeated measurements for some of the infants, which we can model
using mixed effects logistic regression with random intercepts. We start by describing
the model, before we consider the frequentist approach for estimating and testing the re-
gression coefficients in the model, as well as predictions and odds ratios for the mixed
effect logistic regression model. Then, we look at some Bayesian theory for estimating the
regression coefficients, before we describe the method for the Integrated Nested Laplace
Approximation (INLA) in details. At the end of the chapter, we look at the Bayesian
approach using INLA for predictions and odds ratios for mixed effect logistic regression
models.

A mixed effects logistic regression model is similar to a logistic regression model, but
it includes random effects. The repeated measurements within a cluster, like hospitals,
countries or individuals, might be more equal to one another than two measurements for
two different clusters. Due to this, one can not assume that all observations are inde-
pendent, as for a logistic regression (Rabe-Hesketh and Skrondal, 2012). However, when
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adding random intercepts to the model, the observations for individual j in different oc-
casions i are independent, given the covariates and the random intercept. Adding random
intercepts to the model gives the following conditional logit probability

logit(πij) = β0 + xT
ijβ + ζj

with

πij = P (yij = 1|ζj) =
exp(β0 + xT

ijβ + ζj)

1 + exp(β0 + xT
ijβ + ζj)

(3.9)

where i is the i’th measurement within individual j and ζj is the random intercept for
individual j. The parameter πij is the probability of observation yij being equal to 1,
and xij is the vector of covariates. The fixed intercept, β0, is the mean intercept for all
individuals, and the random intercept ζj is particular for the individual j. The random
intercepts ζj ∼ N (0, ψ2) are assumed to be independent and identically distributed across
individuals and independent of the covariates xij . Given ζj and xij , the responses yij , i =
1, ..., nj and j = 1, ..., n for individual j with observation i, are independently Bernoulli
distributed. Hence, a mixed effects logistic regression model with random intercepts takes
the form

yij |πij ∼ Bernoulli(πij)

logit(πij) = β0 + xT
ijβ + ζj

ζj ∼ N (0, ψ2).

3.4.1 Frequentist approach

The marginal likelihood is the joint probability of all responses for all individuals given
the covariates,

L(β, ψ) =

N∏
j=1

P (y1j , ..., ynjj |xij ,β, ψ), (3.10)

where β includes the intercept β0. When the model includes random intercepts ζ, the
responses are conditionally independent given the random intercept ζj and the covariates
xij . Hence, the joint probability for the responses yij for individual j, given the ran-
dom intercept and covariates, is the product of conditional probabilities for the individual
responses,

P (y1j , ..., ynjj |xij , ζj) =

nj∏
i=1

P (yij |xij , ζj) =

nj∏
i=1

π
yij
i (1− πi)1−yij .

Using the expression for πij given in Equation (3.9), we find after some calculation that

P (y1j , ..., ynjj |xij , ζj) =

nj∏
i=1

[exp(β0 + xij
Tβ + ζj)]

yij

1 + exp(β0 + xijTβ + ζj)
.
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To obtain the marginal joint probability for the responses, not conditioning of the random
intercept, the random intercept can be integrated out,

P (y1j , ..., ynjj |xij) =

∫ ∞
−∞

P (y1j , ..., ynjj |xij , ζj)φ(ζj ; 0, ψ2)dζj ,

where φ(ζj ; 0, ψ2) is the normal density for the random intercept, with mean 0 and vari-
ance ψ2. This integral doesn’t have a closed form solution, and must be approximated
numerically. In the glmer()-function in the lme4-package in R (Bates et al., 2015), the
approximation is performed using an adaptive Gauss-Hermite approximation. Details
about the Gauss-Hermite quadrature points and locations are described in Süli and Mayers
(2003). In this thesis we focus on why we can approximate the integral using adaptive
Gauss-Hermite approximation, based on Rabe-Hesketh et al. (2005).

Transforming the integration limits with vj = ζj/ψ, one get the standard normal den-
sity for vj and the integral takes the form

P (y1j , ..., ynjj |xij) =

∫ ∞
−∞

1√
2π
e−

v2j
2

nj∏
i=1

[exp(β0 + xij
Tβ + vjψ)]yij

1 + exp(β0 + xijTβ + vjψ)
dvj .

Now, since this integral can be expressed on the form
∫
exp(−x2)f(x)dx it can be ap-

proximated numerically using Gauss-Hermite quadrature,

∫ ∞
−∞

φ(vj)P (y1j , ..., ynjj |xij , vj)dvj ≈
R∑
r=1

wrP (y1j , ..., ynjj |xij , vr = er), (3.11)

where
√
πwr and er/

√
2 are the weights and locations of the r’th point of the Gaussian

quadrature, and R is the number of quadrature points.The method is exact whenever f(x)
is a polynomial of degree less than 2R− 1.

A problem can occur when the function being integrated has sharp peaks. Using adap-
tive Gauss-Hermite quadrature can be an improved approximation in this situation. In the
adaptive method, the properties of the integrand φ(vj)P (y1j , ..., ynjj |xij , vj) in (3.11)
are taken into account. Using that the integrand is a product of a prior distribution for vj ,
φ(vj), and the joint probability of the responses given vj , P (y1j , ..., ynjj |xij , vj), which
can be thought of as a likelihood, the integrand can be used as a posterior distribution. As-
suming large cluster sizes, nj , and that the prior and the likelihood are positive and twice
differentiable, the Bayesian central limit theorem states that the posterior density can be
approximated by a normal distribution (pages 142-143 in Carlin and Louis (1996)).

If µj and τ2j are the mean and variance of the posterior density, one would therefore
expect that the ratio φ(vj)P (y1j , ..., ynjj |xij , vj)/g(vj ;µj , τ

2
j ) would be well approxi-

mated by a low degree polynomial, where g(vj ;µj , τ
2
j ) is a normal distribution with mean

µj and variance τ2j . Then, letting the integral take the form

∫ ∞
−∞

g(vj ;µj , τ
2
j )
(φ(vj)P (y1j , ..., ynjj |xij , vj)

g(vj ;µj , τ2j )

)
dvj
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and changing the integration limits to zj = (vj − µj)/τj , it can be approximated by

R∑
r=1

qjrP (y1j , ..., ynjj |xij , αjr),

using Gauss-Hermite quadrature. The quadrature weights and locations are now given by

qjr =
√

2πτj exp(e2r/2)φ(µj + τjer)pr.

αjr = µj + τjer (3.12)

The quadrature weights and locations are found through an iterative approach where
solving Equation (3.12) with starting values µ(0)

j = 0 and τ (0)j = 1. The k’th iteration is
given by

P (y1j , ..., ynjj |xij)(k) =

R∑
r=1

q
(k−1)
jr P (y1j , ..., ynjj |xij , α

(k−1)
jr ),

µ
(k)
j =

∑R
r=1 α

(k−1)
jr q

(k−1)
jr P (y1j , ..., ynjj |xij , α

(k−1)
jr )

P (y1j , ..., ynjj |xij)(k)

τ
(k)
j =

√√√√∑R
r=1(α

(k−1)
jr )2q

(k−1)
jr P (y1j , ..., ynjj |xij , α

(k−1)
jr )

P (y1j , ..., ynjj |xij)(k)
− (µ

(k)
j )2,

and the procedure runs until convergence.
When the integrals are approximated for all individuals j, the expressions can be in-

serted in Equation (3.10) to find the likelihood. The log likelihood can be maximized
numerically with respect to β and ψ to find the estimated coefficients of the model.

The advantage of adaptive quadrature against ordinary quadrature is illustrated in Fig-
ure 3.2. Using adaptive quadrature, the weights are located directly under the integrand, as
opposed to ordinary quadrature, where they are located under the prior density. The draw-
back of using quadrature rules to approximate the integral is that the algorithm might be
very slow and can fail to converge when not using sufficiently number of quadrature points.
Also, the approximation or a normal distribution for the posterior distribution might not
be correct when nj is too small.

Likelihood ratio test for random intercepts

The likelihood ratio test (LRT) can be used to investigate if random intercepts should be
included in the model. Testing the random intercepts ζ, the hypothesis is the following,

H0 : ψ2 = 0 vs. H1 : ψ2 > 0,

where ψ2 is the variance for the random intercept. This test is equivalent to testing the
hypothesis H0 : ζj = 0 for all j. The difficulty here is that the test statistic −2 log λ is not
χ2-distributed with one degree of freedom under H0, because the null hypothesis is on the

36



3.4 Mixed effects logistic regression with random intercepts

Figure 3.2: Prior (dotted curve) and posterior (solid curve) densities together with the quadrature
weights (bars) for ordinary and adaptive quadrature, from Rabe-Hesketh et al. (2005) with approval.

boundary of the parameter space since ψ2 ≥ 0. One can prove that the correct asymptotic
sampling distribution is a 50:50 mixture of a χ2

0-distribution, which is a spike at 0, and a
χ2
1-distribution (Self and Liang, 1987). Due to this, the correct p-value for the test can be

obtained by dividing the p-value obtained by the LRT with one degree of freedom by two.
A p-value less than the significance level leads to the rejection of the hypothesis, and the
random intercepts should be included in the model.

Prediction

The probability πij for yij = 1 given in Equation (3.9), is the conditional or subject spe-
cific probability. When doing predictions for πij , given the covariates, one can either look
at the predicted subject specific probability or the predicted population averaged proba-
bility (Rabe-Hesketh and Skrondal, 2012). For predictions of the outcome for new data,
we look at the population averaged predicted probabilities. Using the obtained estimated
coefficients from the fitted model and the covariates for the new data, the population aver-
aged predicted probabilities are found by averaging out the unknown random intercept for
the new data with numerical integration,

π̂ij =

∫
P̂ (yij = 1|xij, ζj)φ(ζj ; 0, ψ̂2)dζj

=

∫
exp(xT

ij β̂ + ζj)

1 + exp(xT
ij β̂ + ζj)

φ(ζj ; 0, ψ̂2)dζj .

Hence, the predicted probabilities for the new observations are based on the population
average. Note that these are not equal to to the predicted probabilities when setting the
random intercept to zero.

π̂ij 6=
exp(xT

ij β̂ + 0)

1 + exp(xT
ij β̂ + 0)

. (3.13)

When the true outcome is known or if the new observation is part of a cluster with
estimated values, one can consider the subject specific probabilities in the prediction. For
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these data, the random intercept has been estimated in the model fit and are considered
known. Then, the predicted probabilities are found though simple calculations using the
estimated coefficient values and the estimated random intercept, together with the covari-
ates,

π̂ij =
exp(xT

ij β̂ + ζ̂j)

1 + exp(xT
ij β̂ + ζ̂j)

.

The subject specific probabilities describe the probability of yij = 1 within the clus-
ter j. Examples can be participants within hospitals, where the probabilities describe the
the probability for participant i having a disease within hospital j. On a population level,
we would interpret the population averaged probabilities as the probability that partici-
pant i have the disease, regardless of the hospital. For our analysis, the clusters are the
participants, and there are repeated measurements within the participants. Since we are in-
terested in making predictions for recordings from new participants, we will in this thesis
only consider the population averaged probabilities.

Using the predict function in the lme4-package in R, one can choose between the
predicted population averaged and the predicted subject specific probabilities. However,
it turns out that for population averaged probabilities, the function does not integrate out
the random intercept (Pavlou et al., 2015), it just let the random intercept be equal to zero.
Hence, it returns the probabilities in Equation (3.13). In lack of better prediction methods,
we will show these predicted probabilities in the results, but we can not interpret them as
population averaged probabilities.

Odds ratio for the mixed effects logistic regression model

When interpreting the odds ratios for a mixed effects logistic regression model with ran-
dom intercepts, one should note that these are subject specific odds ratios, while the odds
ratios for a logistic regression model are population averaged odds ratios. To see this, we
look at the odds for observation yij ,

πij
1− πij

= exp(β0 + xij
Tβ + ζj).

Now, given that the random intercepts is constant and increasing covariate xijk by one
unit, we have that

πij
1− πij

= exp(β0 + xij
Tβ + βk + ζj)

= exp(β0 + xij
Tβ + ζj)exp(βk).

Given that the random intercept is constant, the odds increase by exp(βk) as for a logistic
regression model. Hence, the subject specific odds ratio is exp(βk) for a unit increase in
xijk.

The confidence interval for the odds ratio must also be interpreted as subject specific,
but the calculations are similar. The estimated coefficients for the fixed effects are normally
distributed for large cluster sizes nj , also in the mixed effect logistic regression model, and
the fixed effects are independent of the random intercept. Hence, the confidence interval
for the subject specific odds ratio is calculated in the same way as for a logistic regression
model.
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3.4 Mixed effects logistic regression with random intercepts

3.4.2 Bayesian approach

Until this point, we have been looking at the frequentist approach for doing inference.
Now, we turn to the Bayesian approach. The Bayesian approach differs from the frequen-
tist approach by treating the parameters of interest as random variables instead of fixed
quantities. In this way, one consider the parameter distribution, not just it’s value (Car-
lin and Louis, 1996). In a frequentist approach, one starts with a hypothesis, say θ = 0
and calculates the probability of observing the outcome of the data when the hypothesis is
true. In a Bayesian setting, one specifies a prior distribution of the parameter of interest,
say p(θ) and uses the observed data to update the prior, yielding the posterior distribution
p(θ|y); the distribution of the parameter, given the observed data. Most of the following
theory in this section is based on the book by Blangiardo and Cameletti (2015).

Bayes theorem

The well known Bayes theorem was introduced already in the 18th century by Thomas
Bayes,

P (B|A) =
P (A|B)P (B)

P (A)
.

More generically, if we letB1, ..., BK be a set of mutually exclusive and exhaustive events,
meaning that one of the event must occur and several events cannot occur simultaneously,
we have that

P (Bi|A) =
P (A|Bi)P (Bi)∑K
i=1 P (A|Bi)P (Bi)

.

The application of Bayes theorem to observable events is uncontroversial and well es-
tablished. Having observable events where the probabilities are frequencies of observed
events, one can easily use Bayes theorem to calculate a value for the probability of interest.
When applying it in Bayesian inference, we do calculations on probability distributions.

Bayesian inference

In this setting, we are interested in some parameters θ. Without observing the data, we
have some prior beliefs about the parameters, and assume that they follow the the distri-
bution p(θ), which is called the prior distribution. The observed data y are assembled in
the likelihood function

L(θ) = p(y|θ),

which specifies the distribution of the data y given the parameters θ. Using Bayes theorem,
we define the posterior distribution for parameter θ given the data y as

p(θ|y) =
p(y|θ)p(θ)

p(y)

where p(y) is the marginal distribution of the observed data y. Since the marginal distri-
bution of the observed data does not depend on θ, the posterior distribution is proportional
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to the product of the likelihood and the prior,

p(θ|y) ∝ p(y|θ)p(θ).

Hence, the posterior distribution contains information about the unknown parameter when
having observed the data y.

Hierarchical models

In some cases, one could have that the distribution of the parameters θ depends on some
hyperparameters φ. These hyperparameters can follow a distribution p(φ). Having differ-
ent levels of the data, one could specify the model as a hierarchical model with three levels
as follows:

• Level 1: y|θ,φ ∼ p(y|θ,φ)

• Level 2: θ|φ ∼ p(θ|φ)

• Level 3: φ ∼ p(φ).

Applying Bayes theorem on a three-level hierarchical model, the posterior distribution is
given by

p(θ,φ|y) ∝ p(y|θ,φ)p(θ|φ)p(φ).

Point estimation and credible intervals

For simplicity, lets go back to considering the two-level model. Having the posterior den-
sity p(θ|y), one can make statistical inference about the parameters of interest. Location
estimates such as the the posterior mean

E(θ|y) =

∫
θf(θ|y)dθ,

the posterior mode
Mod(θ|y) = arg max

θ
f(θ|y),

and the posterior median

θM ⇒
∫ θM

−∞
f(θ|y)dθ =

∫ ∞
θM

f(θ|y)dθ = 0.5,

can be calculated. Also, the credible interval

(θL, θU )⇒
∫ θU

θL

f(θ|y)dθ = 1− α,

can be calculated. Note that the interpretation of a Bayesian credible interval is different
from a frequentist confidence interval. A credible interval indicate that the parameter θ lies
within the interval with probability 1 − α. A confidence interval, however, suggests that,
if we do the same experiment a large number of times, the true parameter value θ would
fall out of the interval α% of the time.
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Choice of prior

To be able to make inference and calculate these location estimates, a nice expression for
the posterior is preferable. As the posterior is proportional to the likelihood and the prior,
the choice of prior plays an important role in the distribution of the posterior.

According to Blangiardo and Cameletti (2015), there are two important aspects when
selecting a prior. First, the type of distribution and second, the amount of information
available provided through the hyperparameters. Knowing some quantities of the parame-
teres, e.g. if it is a fraction, positive or symmetric, there is often a ”natural” candidate for
the type of distribution. When choosing a prior such that the posterior distribution belong
to the same family as the prior, the prior is called a conjugate prior. Having conjugate pri-
ors is convenient, as the posterior distribution and it’s hyperparameters are known. When
knowing the distribution, the summary statistics and other convenient quantities of interest
are easy to calculate. Table 3.3 shows a list of the likelihood, the posterior and the prior
for some conjugate models.

Likelihood Conjugate prior Posterior distribution
y|p ∼ Bin(n, p) p ∼ Be(α, β) p|y ∼ Be(α+ y, β + n− y)
y|λ ∼ Po(eλ) λ ∼ Ga(α, β) λ|y ∼ Ga(α+ y, β + e)
y|λ ∼ Exp(λ) λ ∼ Ga(α, β) λ|y ∼ Ga(α+ 1, β + y)
y|µ ∼ N (µ, σ2)∗ µ ∼ N (ν, τ2) µ|y ∼ N ((A)−1( xσ2 + ν

τ2 ), (A)−1)
y|σ2 ∼ N (µ, σ2)∗∗ σ2 ∼ IGa(α, β) σ2|y ∼ IGa(α+ 1

2 , β + 1
2 (x− µ)2)

∗ : µ known.
∗∗ : σ2 known.
A = 1

σ2 + 1
τ2

Table 3.3: Likelihood, prior and posterior distributions for some conjugate models.

Having chosen the distribution of the prior, the hyperparameters should be specified
such that the distribution gives the desired amount of information. Depending on the
amount of information, the prior could be informative or non-informative, relative to the
likelihood (Box and Tiao, 1992). Non-informative priors are appealing in models where
there is little prior information on the values of the parameter. They contain little informa-
tion about the parameters besides its’ range, such that the posterior distribution is decided
mostly by the data. Non-informative priors are also called flat priors. Let’s consider an
example. Assume that we have binomial data and wants to assig a prior to the probability
parameter p. A non-informative prior here would be π(p) ∼ Unif(0, 1), which assign
probability 1 to all values in the interval [0,1].

The major drawback of a non-informative prior is that it is not invariant for trans-
formations of the parameters (Blangiardo and Cameletti, 2015). When transforming the
parameters, the prior would not be flat any more. There are several rules proposed to make
the prior not affected by the transformation, but a small problem with these priors is that
most of them are improper, i.e. does not integrate to 1, which could lead to improper
posteriors. To avoid these problems for non-informative priors, one could approximate a
non-informative prior using a prior which is not non-informative on the entire parameter
space. These type of priors are called vague priors and avoid the problems with impropri-
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ety. Examples of vague priors areN (0, 106) and Gamma(0.01,0.01), which are often used
as priors for regression parameters and the inverse of the variance.

An informative prior, however, assign different probabilities for different values in the
range. Typically, these priors are based on previous findings or expert opinions. Using very
informative priors, the posterior distribution will typically be closer to the prior distribution
than to the likelihood. For a non-informative prior, the posterior would typically be closer
to the likelihood, as it is mostly influenced by the data. Figure 3.3 shows examples of
the posterior distribution when using an informative prior (a) and a non-informative prior
(b). For the informative prior, with the mean has been centered between 0.2 and 0.4, one
can see that the posterior distribution is affected by the prior, while in the non-informative
case, the posterior is almost equal to the likelihood.

0.0 0.2 0.4 0.6 0.8 1.0

Beta(9,20)

0.0 0.2 0.4 0.6 0.8 1.0

y=38, n=50

0.0 0.2 0.4 0.6 0.8 1.0

Beta(47,32)

(a) Informative prior

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,1)

0.0 0.2 0.4 0.6 0.8 1.0

y=38, n=50

0.0 0.2 0.4 0.6 0.8 1.0

Beta(38,13)

(b) Non-informative prior

Figure 3.3: Prior (top panel), likelihood (middle panel) and posterior distribution (bottom panel) for
an informative prior and a non-informative prior.

We have seen how the posterior change with the prior, but the posterior is also affected
by the amount of information in the data. This is easily seen on log scale where,

log(p(θ|y)) = c+ log(L(θ)) + log(p(θ)),

where c is a constant. Hence, if there is much information in the data, the posterior will
be affected mostly by the likelihood. If there is little information in the data, the posterior
would be more affected by the prior. To check how much information our data gives us,
one could compare the posterior and prior distributions for different priors.
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Challenges with the Bayesian approach

The use of priors is the most debated aspect of Bayesian statistics, (Carlin and Louis
(1996), Blangiardo and Cameletti (2015), Box and Tiao (1992)). Inclusion of current
knowledge is of course popular, as it would give strength to the result. On the other hand,
it is feared that inclusion of other data besides the observed ones leads to biased results.
Due to this, it is recommended that the posterior distribution is presented for different
priors. In a medical setting, Adamina et al. (2009) recommended that the priors presented
include skeptical, neutral and optimistic priors. An example of an optimistic prior is when
testing the treatment effect of a disease. An optimistic prior for the probability of the
treatment effect would be centered around a value for the probability corresponding to a
high treatment effect.

We have seen that using conjugate priors give nice expressions for the posterior, as it
can easily be calculated. However, conjugate priors are often not available. Some likeli-
hoods, like for generalized linear regression models, does not have conjugate priors. For
these models and other models where there are no conjugate priors, one needs to rely
on simulation or approximation methods to do Bayesian inference about the parameters.
Markov Chain Monte Carlo (MCMC) is a popular simulation method for making Bayesian
inference (Blangiardo and Cameletti, 2015), but if the involved distributions are complex
and there are large amount of data, the simulations can become computationally intensive
and time consuming. In this thesis, we consider an approach by Rue et al. (2009) which
has turned out to be both accurate and time efficient.

3.4.3 Bayesian inference using the Integrated Nested Laplace Approx-
imation (INLA)

The INLA-algorithm is a deterministic algorithm designed for doing Bayesian inference
on latent Gaussian models. A latent Gaussian model is a subclass of structured additive
regression models, where the response yi is assumed to come from an exponential family,
and the mean µi is linked to a structural additive predictor ηi through the link function
g(·), such that g(µi) = ηi. The linear predictor account for effects of various covariates
for the response on the form

ηi = g(µi) = α+

nβ∑
k=1

βkzji +

nf∑
γ

fγ(uγ,i) + εi for i = 1, ..., n.

Here, the β’s represents the effect of covariates z, the fγ(·)’s are unknown functions for
covariates u, and the ε’s are the unstructured error terms. The applications for this type of
model are very flexible due to the many different forms of the unknown functions fγ(·),
such as smooth and non-linear effects of the covariates, time trends, seasonal effects, ran-
dom effects and temporal and spatial effects (Blangiardo and Cameletti, 2015). One of the
most useful features of this type of model is that the effects can easily be added or removed
from the model, while the model framework and computations stay the same.

All the latent, non-observable components can be collected in the latent field θ =
{η, α,β, f1, f2, ...}with dimension n, which is typically very large (102−105) (Rue et al.,
2016). Letting the latent field be controlled by the K hyperparameters, φ = (φ1, ..., φK),
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and assuming that the responses are conditional independent, given the latent field and the
hyperparameters, a hierarchical model can be applied here. Level 1 is the likelihood

Level 1: y|θ, φ ∼
n∏
i=1

p(yi|θi,φ),

where each data point yi is connected to only one element, θi of the latent field. Assuming
Gaussian priors for all the components in the latent field, the joint distribution of the latent
field is also Gaussian and hence, θ is a latent Gaussian field. Assuming a latent Gaussian
field with mean 0 and precision matrix Q(φ), level 2 takes the form

Level 2: θ ∼ N (0,Q−1(φ)) = (2π)−n/2|Q(φ)|1/2exp
(
− 1

2
θTQ(φ)θ

)
,

where | · | denotes the matrix determinant. The hyperparameters in level 3 account for the
variability and strength of dependence of the parameters in the latent field, and can take
any distribution,

Level 3: φ ∼ p(φ).

Now, the joint posterior density of θ and φ is given by

p(θ, φ|y) ∝ p(φ)p(θ|φ)p(y|θ,φ)

= p(φ)p(θ|φ)

n∏
i=1

p(yi|θi,φ)

= p(φ)|Q(φ)|1/2exp
(
− 1

2
θTQ(φ)θ

) n∏
i=1

exp(log(p(yi|θi,φ)))

= p(φ)|Q(φ)|1/2exp
(
− 1

2
θTQ(φ)θ +

n∑
i=1

log(p(yi|θi,φ))
)
. (3.14)

One main assumption when using INLA is that the latent field θ is a Gaussian Markov
Random Field (GMRF), meaning that in addition to being Gaussian, the latent field must
also be conditionally independent. Then, θi and θj are conditionally independent given the
remaining elements θ−ij . A very useful consequence of this is that the precision matrix
of the latent field gets very sparse, and calculations with sparse matrices can be very fast.

The idea in Bayesian inference is to use the posterior distribution

p(θ, φ|y) ∝ p(y|θ,φ)p(θ|φ)p(φ)

to approximate the posterior marginals, p(θi|y) and p(φj |y) directly. The marginals are
given by

p(θi|y) =

∫
p(θi,φ|y)dφ =

∫
p(θi|φ,y)p(φ|y)dφ, and

p(φj |y) =

∫
p(φ|y)dφ−j .
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Thus, we need to perform two tasks: i) Compute p(φ|y) from which all the relevant
marginals p(φj |y) can be obtained, and ii) Compute p(θi|φ,y) which is needed to com-
pute the marginal posteriors p(θi|y). In MCMC sampling, these marginals are computed
through simulations, which can be a time-consuming process when the expressions are not
that nice. The INLA-algorithm uses Laplace approximations to construct nested approxi-
mations,

p̃(φj |y) =

∫
p̃(φ|y)dφ−j , and

p̃(θi|y) =

∫
p̃(θi|φ,y)p̃(φ|y)dφ, (3.15)

where p̃(φ|y) is the the approximated posterior distribution for the hyperparameters and
p̃(θi|φ,y) is the approximated posterior marginals for the latent field. These integrations
are solved using numerical integration, which is possible when the dimension of φ is
small (typically ≤ 6) (Rue et al., 2009). Hence, there are two main assumptions when
using INLA: i) The latent field must be a GMRF, and ii) The number of hyperparameters
must be small.

Laplace approximation

Before stating the method and steps of INLA, we pause to look at the Laplace approxima-
tion of a integral over the function f(x). Let’s assume that we are interested in computing
the integral on the form ∫

f(x)dx =

∫
exp(log f(x))dx.

Using a second order Taylor expansion centered around the mode x∗, we have that∫
f(x)dx ≈

∫
exp
(

log f(x∗) +
(x− x∗)2

2

∂2 log f(x)

∂x2

∣∣∣∣
x=x∗

)
dx

= exp(log f(x∗))

∫
exp(− (x− x∗)2

2σ2
∗

))dx,

where σ2
∗ =

[
− ∂2 log f(x)

∂x2

∣∣∣∣
x=x∗

]−1
. Hence, the integrand is normally distributed with

mean x∗ and variance σ2
∗, so evaluating the integral

∫
f(x)dx on the interval (α, β) gives

approximately ∫ β

α

f(x)dx ≈ f(x∗)
√

2πσ2
∗(Φ(β)− Φ(α)),

where Φ(·) is the cumulative density function for a Normal(x∗, σ2
∗).
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Computation of p(φj |y)

Returning to the approximations of the marginals, we begin with task i); computing p(φj |y).
Applying Bayes theorem on the posterior, we have that

p(φ|y) =
p(θ, φ|y)

p(θ|φ,y)
=
p(y|θ, φ)p(θ, φ)

p(y)

1

p(θ|φ,y)

∝ p(y|θ, φ)p(θ|φ)

p(θ|φ,y)
.

Now, the numerator consist of only known terms. The denominator however, is unknown.
For the INLA-method, if the denominator is not Gaussian, a Laplace approximation is
used to approximate it by a Gaussian distribution. Using the expression for the posterior
given in Equation (3.14), we have that

p(θ|y,φ) ∝ exp
(
− 1

2
θTQ(φ)θ +

n∑
i=1

log(p(yi|θi,φ))
)

≈ (2π)−n/2|P(φ)|1/2exp
(
− 1

2
(θ − µ(φ))TP(φ)(θ − µ(φ))

)
,(3.16)

where P(φ) = Q(φ)+diag(c(φ)) andµ(φ) is the location of the mode (Rue et al., 2016).
The vector c(φ)) is a vector of the i second derivatives of the negative log likelihoods with
respect to θi, evaluated at the mode. This approximation turns out to be accurate since
p(θ|φ,y) appears to be almost Gaussian as θ is a GMRF (Blangiardo and Cameletti,
2015). Hence, the approximated posterior distribution for the hyperparameters becomes

p̃(φ|y) =
p(y|θ, φ)p(θ|φ)

p̃(θ|y,φ)

∣∣∣∣
θ=θ∗(φ)

, (3.17)

where θ∗(φ) is the mode for a given φ and p̃(θ|y,φ) is the Gaussian approximation in
Equation (3.16). Now, since the dimension of φ is low, the marginals φi|y can be derived
directly from Equation (3.17).

Computation of p(θi|y)

The next task is to approximate the posterior marginals for the latent field. This task is
more complicated because of the usually large dimension of the latent field θ. There are
two challenges when approximating the posterior marginals for the latent field in Equa-
tion (3.15) (Rue et al., 2016). First, when the dimension of φ is less than 2, classical
numerical integration is applied, without too much computational cost. However, then
the dimension is large, a standard numerical integration over φ has a computational cost
which is exponential in the dimension of φ. To perform the integration without a large
computational cost, integration points on a sphere around the center is used. Details are
explained in Rue et al. (2016). This is the default approach in INLA, and is shown to bal-
ance the computational cost and accuracy well. Other methods can be chosen to increase
the accuracy, but at the expense of computational costs.

The second challenge is to approximate p(θi|φ,y) for a subset of all i = 1, ..., n. Due
to the large dimension of θ, a standard application of the Laplace approximation will be too
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3.4 Mixed effects logistic regression with random intercepts

demanding. The default approach in INLA is called the simplified Laplace approximation.
This method computes a Taylor expansion around the mode of the Laplace approximation,

log(p(θi|y,φ)) ≈ −1

2
θ2i + bi(φ)θi +

1

6
ci(φ)θ3i . (3.18)

In this way, a linear and a cubic correction term is provided to the Gaussian approxima-
tion. Matching a skew-Normal distribution to Equation (3.18), the linear term provides a
correction term for the mean, and the cubic term provides a correction for the skewness.
Hence, the posterior marginal for the latent field in Equation (3.15) is approximated by a
mixture of skew-Normal distributions.

In this thesis, we use the INLA approach for fitting a mixed effect logistic regression
model. For the analysis, we use the INLA-package in R, which uses the method described
above to calculate posterior distributions for the regression coefficients. It has been shown
that the INLA method is fast and accurate when fitting mixed logistic regression mod-
els with random intercepts, but the results depend on the choice of prior distribution, in
particular in small samples (Grilli et al., 2015).

Prediction in the Bayesian approach

Once the model parameters are specified and derived, one are often interested in the
model’s ability to predict the outcomes y. Suppose that a model has been fitted using
the observed outcomes y. Then, assuming that both a new occurrence y∗ and the previ-
ous observations y are realizations from the distribution of Y , which is governed by the
parameters in the latent field θ, the predictive distribution p(y∗|y) is given by

p(y∗|y) =
p(y, y∗)

p(y)

=

∫
p(y∗|θ)p(y|θ)p(θ)dθ)

p(y)
by exchangeability

=

∫
p(y∗|θ)p(θ|y)p(y)dθ

p(y)
applying Bayes theorem

=

∫
p(y∗|θ)p(θ|y)dθ.

Hence, the observed responses are used to update the uncertainty of the model into the
posterior distribution p(θ|y), which is used to do inference about the new occurrence y∗

(Blangiardo and Cameletti, 2015).
In the INLA-package, the predictions can be computed together with the model fit.

Letting the data consist of the observations y and missing values for the new occurrences,
the INLA-function uses the previous observations to predict posterior distributions for the
new outcomes. In order to perform a leave-one-out cross validation, one can in each loop
set the observed value in the test set to missing, and let the model predict its posterior
distribution.
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Odds ratio for the Bayesian approach with binary outcomes

When using the Bayesian approach for fitting a model with repeated binary outcomes, one
could also be interested in the odds ratio for the variables in the model. In the frequen-
tist approach, the subject specific odds ratio is calculated from the estimated value for the
coefficients. For the Bayesian approach, we consider posterior distributions of the coeffi-
cients, not just a single value. However, one can obtain the posterior distribution for the
subject specific odds ratio by transformation. Then, one could find the median or mode
value and the credible interval for the posterior distribution of the subject specific odds
ratio.
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Chapter 4
Results

In this chapter, we present the results when fitting models for both the CP-data and the
FM-data. Since FMs has been used as a surrogate measure of the CP-status before one is
able to diagnose CP, we start with the results for prediction of FMs. As prediction of CP is
the main goal of this thesis, we will only consider the model with Csd as covariate, since
it has shown good results for prediction of FMs in a previous study (Adde et al., 2009).

First, we look at the results from the frequentist approach, using the glmer()-function
from the lme4-package in R. Then, we show the results from a simulation study where
we investigate if adding more repeated measurement give more stable results than for the
original data. Finally, we look at the results from the Bayesian approach, using the INLA-
package in R to fit the model.

Then we turn to the prediction of CP in Section 4.2. In this section, we first look
at the results when fitting a model using the Csd variable for prediction of CP. Then,
we consider the Lasso method for variable selection among the GMT-variables, and first
present the results when fitting the CP-data using the Lasso and then from a Lasso model
including other available variables as well. Finally, we evaluate the uncertainty of the
Lasso estimates, using the bootstrap and the multi sample-splitting method. The R-code
used for the simulation study, the INLA-analysis, the bootstrapping and the multi sample-
splitting are shown in Appendix C- F.

4.1 Prediction of fidgety movements
First, we consider the fidgety movements (FM) data. The FMs are categorized into a binary
response on the form

FM =

{
1 if the FMs are normal
0 if the FMs are abnormal.

In this thesis, we have only considered the old Prechtl’s classification approach for having
normal or abnormal FMs, as only the group of absent FMs in Table 2.5 included many
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cases of CP. As mentioned in Section 2.1.1, the old classification approach is given by

FMs =

{
1 if the FMs are ++,+ or +-
0 if the FMs are - or exaggerated.

Again, we remind the reader that we assume that the classifications in the dataset are the
correct ones, even though they are based on human judgement. Previous studies (Adde
et al., 2009) has shown that the Csd variable is associated with having normal FMs. Here,
we investigate this association on a larger dataset including infants from three different
countries, when differences between countries are taken into account.

Statistical model for the fidgety movements data
As the response is binary, a logistic regression model can be applied to fit the data. How-
ever, among the 693 participating infants, 98 infants have two, three or four repeated
measurements. For an infant with repeated measurements, both the FMs outcome and the
Csd value can vary, but one would expect that these values are more alike within each
participant than they are between participants. Hence, one can not assume that all the
observations are independent of each other, as in a logistic regression model. Using in-
stead a mixed effects logistic regression model with random intercepts, the observations
for participant j are independent, given the covariates and the random intercept.

When including the participants’ countries in the model, one could argue that also the
variable for country should be a random effect in the model, as the observations within
each country is more alike than between countries. However, only three countries are
represented in our data and adding country as a random effect could cause an uncertain
estimation of the variance between countries.

Letting country be a factor variable in the model with dummy variables Norway,
USA and India, the model with Norway as the reference takes the form

FMij ∼ Bernoulli(πij)
logit(πij) = β0 + ζj + β1Csd,ij + β2USAij + β3Indiaij

+ β4Csd,ijUSAij + β5Csd,ijIndiaij

ζj ∼ N (0, ψ2), (4.1)

where ij denotes the observation i = 1, 2, 3 or 4 for participant j, and πij is the prob-
ability that observation i for participant j is classified as normal FMs. The dummy
variables USAij and Indiaij are equal to zero if the observation is from a Norwegian
infant, USAij = 1, Indiaij = 0 if the observation is from an American infant and
USAij = 0, Indiaij = 1 if the observation is from an Indian infant. Adding interac-
tions between Csd and the countries allows the effect of Csd on the occurrence of normal
FMs to vary between countries.

Figure 4.1 gives an interpretation of the coefficients in the model. For this model,
all observations have a common intercept, β0, and a subject specific intercept, ζj . If the
observation is from a Norwegian infant, the logit probability for having normal FMs will
be β0 + ζj when Csd is zero and increase linearly by β1 for increasing Csd values. For
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4.1 Prediction of fidgety movements

Figure 4.1: Logit probability for having normal FMs against Csd with randomly chosen values for
the coefficients.

American infants, β2 is added to the intercept, and the logit probability for having normal
FMs increase linearly by β1 +β4 for increasing Csd values. Similarly for an Indian infant,
the intercept is β0 + ζj + β3 and the logit probability for having normal FMs increase
linearly by β1 + β5 for increasing Csd values.

To be certain that we don’t have complete separation of our data, we look at the spread
of the normal and abnormal FMs. Table 4.1 shows that even though there are few cases of
abnormal FMs compared to normal FMs. However, all the countries have observations of
both cases, and troubles due to complete separation of data should not be an issue here.

Norway USA India Total
FM= 1 205 217 273 695
FM= 0 45 42 16 103

Table 4.1: Frequency of normal and abnormal FMs for different countries.

4.1.1 Frequentist result for the fidgety movements data

When fitting the logistic mixed effects model, the glmer()-function in R is used. The num-
ber of quadrature points used to approximate the integral in Equation (3.11) can be chosen
manually in the specifications of the function. The default value is 1, which corresponds
to the Laplace approximation. Values larger than 1 corresponds to the adaptive Gauss
Hermite approximation, and larger values are supposed to produce greater accuracy in the
approximation at the expense of speed. The value 0 corresponds to a simpler and faster,
but less exact form for the parameter estimation

Running the glmer()-function with the model from Equation (4.1), the FM-dataset and
number of quadrature points = 0, 1, 10, 20, ..., 100 gives the following warnings at 10 and
30 quadrature points:
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• For 10 quadrature points: Warning messages:
1: In checkConv(attr(opt, ”derivs”), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
2: In checkConv(attr(opt, ”derivs”), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 1 negative eigenvalues

• For 30 quadrature points:Warning message:
In checkConv(attr(opt, ”derivs”), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.0292726 (tol = 0.001, component 1)

Hence, the method seems to not converge to stable estimates when using 10 and 30 quadra-
ture points. Figure 4.2 shows the estimated log likelihoods and standard deviation for the
random intercept, ψ̂, when using glmer(), plotted against the chosen number of quadrature
points. One can see that the estimated standard deviation for the random intercept, ψ̂,
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Figure 4.2: Estimated log likelihood and standard deviation for the random intercept, ψ, for different
number of quadrature points using the glmer()-function in R.

varies between 0 and 40 for different number of quadrature points. Especially for 1,10 and
30 quadrature points, the estimated value differs a lot from estimated values for different
number of quadrature points. Using 40 quadrature points or more, the method seems to
find stable estimated results as both the estimated log likelihood and ψ̂ seems to have the
same estimated value for increasing number of quadrature points.

To investigate if the random intercept is needed in the model, a LRT for the random in-
tercept has been performed. The test statistic−2 log λ was calculated to 28.5, correspond-
ing to a p-value less than 0.001. Hence, the random intercept is statistically significant at
a 5% significance level and should be included in the model.

Table 4.2 shows the hierarchical ANOVA-table for the variables in the FM-model. For
the calculation of the ANOVA-table, a model without the interaction was fitted using 60
quadrature points, after doing the same analysis of quadrature points as for the full model
(figure not shown). The same is done for the model without the country and interaction
variables, and here the quadrature points analysis showed that 80 quadrature points were
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needed (figure not shown). Table 4.2 shows that both the country variable and the interac-
tion between Csd and country are statistically significant at a 5% level, and should hence
be included in the model. Hence, there are both differences between the logit probability
of having normal FMs between countries, and there are differences in the effect of Csd on
the occurrence of normal FMs for the different countries.

Coefficient Log likelihood Resid. Df χ2 Df p-value
Csd -283.8 795
Country -271.5 793 24.7 2 < 0.001
Csd:Country -266.3 791 10.3 2 0.006

Table 4.2: ANOVA-table with LRT for the mixed effects logistic regression model.

The results when running the glmer()-function with 50 quadrature points are shown in
Table 4.3, together with the results when fitting the data with ordinary logistic regression,
ignoring the within-subject correlation. Norway is used as the reference country. We see

Fixed effects Logistic regression
Estimate Std. Error p-value 95% CI Estimate 95% CI

Intercept 11.9 3.61 < 0.001 (4.86, 19.0) 6.01 (3.92, 8.11)
Csd -42.8 17.7 0.015 (-77.5, -8.22) -26.7 (-38.5, -14.9)
USA -4.79 3.81 0.209 (-12.3, 2.68) -3.77 (-6.39, -1.15)
India -10.3 4.78 0.031 (-19.7, -0.946) -5.92 (-9.28, -2.56)
Csd:USA 32.4 21.9 0.139 (-10.5, 75.4) 23.3 (8.58, 37.9)
Csd:India 83.0 30.6 0.007 (22.9, 143) 42.6 (23.0, 62.1)
Random effects:

Variance St.Dev.
Intercept 25.9 5.09

Table 4.3: Left: Estimated coefficients, standard error, p-values form the Z-test and confidence
intervals when fitting the mixed logistic regression model to the data using the glmer()-function with
50 quadrature points. Right: Estimated coefficients and confidence intervals when fitting a logistic
regression model to the data.

that the estimated coefficients for the fixed effects in the FM-model are similar to the esti-
mates from the logistic regression model, but are more extreme. In addition, the estimates
seem quite uncertain with very large confidence intervals, compared to the estimates and
confidence intervals of the logistic regression model.

From Table 4.3, we see that there is no statistically significant difference between
American and Norwegian infants for having normal FMs. However, there is a statistically
significant difference between Indian and Norwegian infants. For Norwegian infants, the
effect of Csd on the occurrence of normal FMs is statistically significant at a 5% level,
where increased Csd values corresponds to decreased logit probability for having normal
FMs. The effect of Csd on the occurrence of normal FMs are not statistically significant
different between American and Norwegian infants, but it is for Indian infants compared
to Norwegian infants. To investigate the differences in the effect of Csd on the occurrence
of normal FMs for American and Indian infants, and to test the effects for each country

53



Chapter 4. Results

without comparing to Norwegian infants, we formulate three hypothesis,

1) H0 : β1 + β4 = 0, vs. H1 : β1 + β4 6= 0

2) H0 : β1 + β5 = 0, vs. H1 : β1 + β5 6= 0

3) H0 : β4 − β5 = 0, vs. H1 : β4 − β5 6= 0.

The first one test if there is an effect ofCsd for the occurrence of normal FMs for American
infants. The second tests the same for Indian infants, while the third tests if there is a
difference in effects of Csd on the occurrence of normal FMs for American and Indian
infants.

Letting L be the matrix on the form,

L =

0 1 0 0 1 0
0 1 0 0 0 1
0 0 0 0 1 −1


and letting β̂ be a vector of the estimated coefficients, (β̂0, ..., β̂5)T , we have that

Lβ̂ =

β̂1 + β̂4
β̂1 + β̂5
β̂4 − β̂5

 and Cov(Lβ̂) = LCov(β̂)LT

Plugging in our estimated values, we have that

Lβ̂ =

−10.4
40.1
−50.6

 Cov(Lβ̂) =

 192 −32.2 225
−32.2 522 −554
225 −554 779


This shows that the logit probability for having normal FMs decrease with increasing Csd
values for American infants, while it increase for Indian infants. In addition, we see that
there is a quite large difference between the effect ofCsd on the occurrence of normal FMs
between American and Indian infants.

Denoting a = Lβ̂ and b = diag(Cov(Lβ̂)), we can use the Z-test to test the three
hypothesis formulated above,

Zi =
ai√
bi

for i = 1, 2, 3.

Using the estimated values, we find that all three hypothesis are rejected at a 5% signifi-
cance level. Hence, the effect of Csd on the occurrence of normal FMs is not statistically
significant for American infants or for the Indian infants. In addition, the third test shows
that even if there is a large difference between the effect of Csd on the occurrence of nor-
mal FMs between American and Indian infants, the effect is not statistically significant at
a 5% significance level.

Transformation of these values into subject specific odds ratios are shown in Table 4.4
for a 0.1 increase of Csd.

54



4.1 Prediction of fidgety movements

OR 95%CI
Norway 0.014 (0.0004, 0.440)

USA 0.353 (0.023, 5.36)
India 55.4 (0.629, 4881)

Table 4.4: Subject specific odds ratios and confidence intervals for the effect of Csd on the occur-
rence of normal FMs for a 0.1 increase in Csd for all three countries.

Validation of the model

As mentioned in Section 3.4.1, in this thesis, we only consider the population averaged
probabilities. However, the predict function in the lme4-package does not integrate out the
random intercept before it returns the predicted probabilities, it only sets the random inter-
cepts equal to zero. In lack of better methods for calculating the correct population average
probabilities, we have chosen to present the ones returned from the predict function in the
lme4-package, but we will be careful when interpreting them.

The predicted probabilities for having normal FMs are shown in Figure 4.3 for both
the internal and the external validation of the model. A leave-one-out cross validation
has been performed for the external validation. The green points represents infants with
normal FMs while the blue points represents infants with abnormal FMs. The figure shows
that there are small differences between the internal and external validation. The predicted
probabilities for having normal FMs, π̂ij , are in general quite high, and there are no clear
separation between the values of π̂ij for the recordings of infants with normal FMs and the
recordings of the ones with abnormal FMs. Only for Norwegian infants, there are some
recordings that have values of π̂ij less than 0.9, and it seems that most of these are in fact
the ones recording infants with abnormal FMs.
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Figure 4.3: Predicted probabilities for having normal FMs for recordings of infants with normal
FMs (green) and recordings of infants with abnormal FMs (blue) from the internal (a) and the exter-
nal (b) validation of the mixed effects logistic regression model with random intercepts.
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The ROC-curves and the AUC-values for both the external and internal validation are
shown in Figure 4.4. The internal AUC-value is 0.701, while the external AUC-values is
0.666. The external AUC-value corresponds to a strength of discrimination which is below
acceptable, according to Lydersen (2012). Calculation of the Brier score for the external
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Figure 4.4: ROC-curves and AUC-values for the internal and external validation of the mixed effects
logistic regression model with random intercepts.

validated data for this model, gives a value of 0.125. Again, we remind the reader that
these values are calculations not from the population average probabilities, but from the
probabilities where the random intercepts have been to zero for all measurements.

When performing sensitivity and specificity, one must determine a cutoff for which the
predicted probabilities for having normal FMs lager than this value corresponds to having
normal FMs. Normally, 0.5 is a reasonable value for the cutoff, but for this model most of
the predicted probabilities for having normal FMs are almost equal to one. Hence, deciding
a reasonable cutoff for this model is difficult and the values for sensitivity and specificity
could be misleading. Therefore, we will not consider the sensitivity and specificity for this
model or for any of the other models presented in this chapter.

4.1.2 Simulation study for fidgety movements data
In Figure 4.2, we saw that there were unstable results for the estimated coefficients, us-
ing different number of quadrature points in the glmer()-function. In addition, Table 4.3
showed that there large confidence intervals for the estimated coefficients. To investigate
if increasing the number of repeated measurements could lead to more stable and certain
estimates, we perform a simulation study.

The theory from Section 3.4.1 tells us that the normal approximation of the posterior
density is only valid for large cluster sizes, i.e. many observations within each participant.
In our data, most of the participants have only been observed once. Only 93 participants
have two observations and only five participants have three or four observations. Hence,
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the approximation of a normal distribution might not be valid in for our data. In addition,
estimating a variance for the random intercepts might be difficult when there are many
infants with only one repeated measurement. To investigate the uncertainty of few repeated
measurements, the glmer()-function has been run for four different datasets, where the
number of repeated observations varies. At the most, there are four repeated observations,
which might not correspond to large cluster size, but we will investigate if the results gets
better when increasing the cluster size.

In this simulation study we consider four cases of different datasets used to fit the
mixed effect logistic regression model from Equation (4.1). All case datasets are based
on the FM-dataset, where Csd and the countries are the explanatory variables, and FMs
is the binary outcome. The datasets differ by the number of repeated observations for
the participants. When the case data includes more repeated measurements than in the
original dataset, new Csd values have been supplemented by creating new values for these
participants. How these values has been created are described below the specifications of
the cases.

• In case 1, all the participants have either one or two recordings. The third and fourth
recording from the original data have been removed. Hence, 595 participants have
a cluster size nj = 1 and 98 participants have a cluster size nj = 2.

• In case 2, all the participants have two recordings. This dataset is similar to the case
1 dataset, but a second recording has been created for those with only one recording
in case 1. Hence, all 693 participants have cluster size nj = 2.

• In case 3, all the participants have three recordings. The dataset is similar to the
case 2 dataset, but the third recording for participants with three or four recordings
have been included from the original dataset. All other third recordings are created.
Here, all 693 participants have cluster size nj = 3.

• In case 4, all the participants have four recordings. The dataset is similar to the case
3 dataset, but the fourth recording for participants with four recordings have been
included from the original dataset. All other fourth recordings are created. Here, all
693 participants have cluster size nj = 4.

In case 2 there were drawn 595 values of Csd, such that every participant has two
values of Csd. Figure 4.5a shows the association between the first and second recording
from the original dataset. The figure indicate that there is a linear association between the
two repeated values of Csd for a participant. Due to this relationship, a second value of
Csd was created based on the linear regression model on the formCsd2 = β0+β1Csd1+ε,
where ε is normally distributed with mean zero and variance σ2

csd. The parameters in the
model were estimated based on the 98 participants with two observed values ofCsd. Then,
for the participants with only one recording, the second observation of Csd was created by
adding noise to the predicted values, Ĉsd2,i = β̂0 + β̂1Csd1,i + êi, where êi are drawn for
a normal distribution with mean 0 and variance σ̂2

csd.
The dataset in case 3 was based on the data from case 2. In addition, the observed third

values of Csd and 688 created values of Csd were added to the data. The created values
were obtained through a linear model of the first and second repeated measurements, where
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Figure 4.5: Figure (a) shows the association between values ofCsd from the first and second record-
ing for 98 participants with two observed values of Csd. Figure (b) shows the predicted second val-
ues (green) plotted against the true first vales, together with the original values for the 98 participants
(blue).

the second repeated measurements were used as covariates to predict the third 688 ones.
The dataset in case 4 was obtained in the same way, adding the two observed forth values of
Csd and creating 691 new observations. Also here, the linear model for the first and second
repeated measurements were used, and the third observations were used as covariates for
prediction of the 691 fourth values of Csd.

For each case, 1000 iterations were performed. In each iteration, the following algo-
rithm was run.

1. Find πjj from Equation (4.1), using xij from the case dataset, the estimated
regression coefficients, β̂, from the logistic regression model (Table 4.3) and
the random intercept ζj drawn from N (0, ψ2 = 52).

2. Draw n values of yij ∼ Bernoulli(πij) where n is the number of observations
in the case.

3. Estimate the regression coefficients in the model (4.1) using glmer() with
0,1,10,20,30,40,50,60,80 and 100 quadrature points.

As one would expect that the estimated coefficients in the mixed effects model are not
that different from the coefficients of the ordinary logistic regression model, the regression
coefficients β̂’s in step 1 are set to be equal to the estimated coefficients when fitting the
original data with a logistic regression model. These values are shown in Table 4.3. Note
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that these regression coefficients are used in all four cases. The choice of the standard
deviation for the random intercept, ψ = 5, is based on Figure 4.2, where the estimated
values for ψ are approximately 5 for each of the models using more than 30 quadrature
points.

The plots of the 1000 estimated coefficients, log likelihoods, number of warnings and
number of errors for different number of quadrature points when using glmer() to estimate
the FM-model, are shown for each case in Appendix A. In all the cases, there are on aver-
age simulated 66% normal FMs, and 34% abnormal FMs (step 2). Comparing the 10 000
(1000 simulations × 10 different values for the number of quadrature points) simulated
log likelihoods to the log likelihood of the models without the random intercept, the null
hypothesis that the random intercept was not needed in the model was rejected by the LRT
for all the 10 000 simulations, in all four cases.

Figure 4.6 shows the number of warnings and errors for each number of quadrature
points for all cases. It turns out that only in case 1, there are errors when estimating the
coefficients. The number of warnings are highest for case 1, for all number of quadrature
points, and are in fact highest using 10 quadrature points. There are some warnings in all
the cases, but most of them happen when the number of quadrature points used is equal
to 1, which is the Laplace approximation. The figure shows that when using the Laplace
approximation, the number of warnings are reduced with increasing number of repeated
measurements. However, using more than 1 quadrature points, the number of warnings
reduces considerably. An interesting point for case 1, is that for increasing number of
quadrature points, the number of warnings reduces, but the number of errors increases.
In fact, when using 100 quadrature points in case 1, there were four errors in the 1000
simulations.
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Figure 4.6: The number of warnings and errors in the 1000 simulations plotted against the number
of quadrature points for all cases.

In general for all the estimated variables in case 1, the median and the 25th and 75th
percentile seems to stay at the same values for more than 20 quadrature points. However,
there are many outliers from the whiskers, where many of them take extreme values com-
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Figure 4.7: Estimated coefficients from case 1 for all the chosen number of quadrature points for
the Csd variable and the variable for the interaction between Csd and USA.

pared to the median. Figure 4.7 shows the values for the estimated coefficients for Csd
and the estimated coefficients for the interaction between Csd and USA. The values for
the estimated coefficient for Csd, β̂1, vary between -100 and 50. The values for the esti-
mated coefficient for the interaction between Csd and USA, β̂4, varies between -300 and
700. In addition, the estimated standard deviation for the random intercept, ψ, have large
outliers. Figure 4.8 shows the estimated values for ψ for all the cases. In case 1, the value
of the outliers for ψ̂ seems to increase for increasing number of quadrature points. The
largest value is 120 while the median value is 5, when considering at the estimated values
for more than 20 quadrature points.

For all other cases, the estimated values for all the variables seems stable for more than
20 quadrature points, and the plots are similar to the one for the standard deviation of the
random intercept in Figure 4.8 Even though these cases consist of more data, there is a
considerably difference in the outliers values for the first case and case 2-4. Only when
using 1 quadrature point (the Laplace approximation) there are large variations and many
outliers. However, for case 2, 3 and 4, the estimated values in each iteration are almost
identical for more than 20 quadrature points with much less extreme outliers than for case
1.

Table 4.5 shows that the median values and 25th and 75th percentiles are quite equal
for all cases when using 50 quadrature points. The intervals between the 25th and the 75th
percentile are large, which means that there are large variations in the estimated values. In
addition, the table shows that the size of the intervals are reduced with increased number
of repeated measurements.

As the median values seem to be quit stable for more than 20 quadrature points, most
of the estimated values can be trusted for all coefficients. However, due to the extreme
outliers in case 1, when having only one or two repeated observations, one could be un-
fortunate and get an estimated value that is very different from the ”true” value. When
increasing the cluster sizes such that all participants have two repeated observations, the
outliers disappear for more than 20 quadrature point, and these results are less uncertain.
Hence, using more than 20 quadrature points to estimate the model gives trustable results
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Figure 4.8: Estimated values for the standard deviation of the random intercept, ψ, from the simu-
lations shown for all the four cases.

in most cases, but for small cluster sizes one should be aware that the estimated values can
be far off the ”true” value.

4.1.3 Bayesian approach for fitting the fidgety movements data
Now, we consider a Bayesian approach for fitting the FM-model in Equation (4.1), using
the INLA-package in R. The latent field is given by θ = {η,β, f(ζ)}, where η is a vector
of the linear predictors, β is a vector of the fixed regression coefficients and f(ζ) = ζ
is the function for the random intercept. We assign Gaussian priors to all the coefficients
in the latent field and assume that they are conditionally independent. In a hierarchical
form, our model with j = 1, ..., 693 participants and i = 1, .., nj repeated measurements,
nj ∈ {1, 2, 3, 4}, takes the form

Level 1: y|θ, φ ∼
N∏
j=1

( nj∏
i=1

[exp(β0 + xTijβ + ζj)]
yij

1 + exp(β0 + xTijβ + ζj)

)
,

Level 2: θ|φ ∼ N (0, Q(ψ)),

Level 3: φ ∼ p(φ),

where θ is the latent Gaussian field, Q(φ) is the precision matrix for the latent field, and
φ is the hyperparameter for the precision of the random intercept, φ = 1/ψ2. Hence,

61



Chapter 4. Results

Case 1 Case 2 Case 3 Case 4
Log Likelihood -475 -708 -939 -1146

(-483, -468) (-720, -693) (-958, -918) (-1170, -1123)
ψ 5.1 5.0 5.0 5.0

(4.2, 6.7) (4.6, 5.4) (4.7, 5.3) (4.8, 5.3)
Intercept 6.2 6.0 6.0 6.0

(4.6, 8.4) (4.5, 7.6) (5.0, 7.1) (5.2, 7.0)
Csd -4.1 -3.8 -3.8 -3.8

(-6.4,-1.8) (-5.7, -1.9) (-5.0, -2.6) (-4.9, -2.8)
USA -6.2 -5.8 -6.0 -5.9

(-8.7, -3.9) (-7.8, -4.1) (-7.3, -4.7) (-7.0, -4.8)
India -28 -27 -27 -27

(-39, -18) (-36, -17) (-33, -21) (-32, -22)
Csd:USA 25 23 23 23

(12, 39) (12, 35) (16, 30) (17, 30)
Csd:India 45 42 43 42

(32,60) (32, 54) (35, 51) (36, 49)

Table 4.5: Median and 25th and 75th percentiles for estimated coefficient values for all cases when
using 50 quadrature points.

we need to specify the distribution of the hyperparameter and the precision matrix for the
latent field. For the fixed effects β, we assign a non-informative prior for the intercept and
vague priors for the fixed effects, with mean and precision as follows:

• Intercept: N (0, 0)

• βi : N (0, 0.1) for i = 2, ..., 6.

For the specification of the hyperparameter, we use three different priors which has been
proposed in the paper by Grilli et al. (2015). These are vague Gamma priors;

• a popular with distribution Ga(0.001,0.001),

• Fongs prior with distribution Ga(0.5, 0.0164), and

• the default prior for the INLA-package with distribution Ga(1, 0.0005).

Here, the first parameter is the shape and the second is the rate for the Gamma probability
density function. The first prior is a popular choice in Bayesian analysis (Grilli et al.,
2015) and is the default in the BUGS-software. For simplicity, we call this the ”Popular”
prior. The second, which we have chosen to call ”Fongs” prior, is a prior proposed by Fong
et al. (2010). The last one is the default prior of INLA, and we refer to it as ”Default”.
Figure 4.9 shows the density of these three priors. One can see that the default prior is very
flat, the popular prior is also flat, but with a peak close to zero, and that the prior proposed
by Fong et al. (2010) is a weakly informative prior, placing more weight near zero.

Using this model, both criteria for using INLA are met; i) The latent field is a GMRF
and ii) the number of hyperparameters is small, in fact, there is just one hyperparameter.
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Figure 4.9: Density of the three different priors for the precision of the random intercept.

The output after having run INLA consists of marginal distributions for the parameters and
hyperparameters. Using this, one could calculate summary variables such as the posterior
mean, median and standard deviations, and credible intervals.

Figure 4.10 shows the density of the posterior marginals for the regression coefficients
for the fixed effects when using default priors for the fixed effects and the three different
priors on the precision of the random effect. The figure shows that there are small differ-
ences in the posterior marginals for the fixed effects when applying different priors for the
precision of the random intercept. The mode of the posterior marginal distributions seems
to be equal for different priors of the precision of the random intercept, but the distribution
seems to be most narrow for the default, a bit wider for the prior proposed by Fong et al.
(2010) and the widest for the popular prior.

Looking at the posterior distribution for the precision of the random intercept in Fig-
ure 4.11, one can see that the choice of prior has a greater effect on the posterior marginals
for the precision of the random intercept than for the fixed effects. The popular prior and
the prior proposed by Fong et al. (2010) seems to give quite similar posterior distributions
for the precision of the random effect, but the popular prior gives a steeper posterior dis-
tribution. Both have their posterior mode close to 0.5. The default prior gives a posterior
distribution which is close to zero everywhere, with a small peak near zero, but the mode
is in fact near 0.5. One can see that the posterior when using the popular prior and the
prior proposed by Fong et al. (2010) differs much from the prior distributions, while the
posterior when using the default prior is close to the prior distribution. Hence, the poste-
rior is highly affected by the prior, which tells us that there is little information about this
parameter in the data. We see that the popular prior and Fongs prior, which are vague pri-
ors, gives quite similar posteriors that differs from the priors. For the default prior, which
is a flat prior, the posterior is almost similar to the prior.

Based on the similar mode values and the similar posteriors for the fixed effects, it
seems that the choice of prior for the precision of the random intercept doesn’t matter that
much. Hence, we can choose any of them without too much effect on other parts of the
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Figure 4.10: Density for the posterior marginals for the fixed effects. The fixed effects have default
priors while the precision of the random intercept have three different priors; Fongs prior, a popular
choice and the default.
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Figure 4.11: Posterior marginal distributions for the precision of the random effect plotted together
with their prior distribution for all three priors. Figure (b) is a zoomed version with smaller values
of the y-axis from figure (a).
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model, so we use the popular prior Ga(0.001, 0.001) as the prior for the precision of the
random intercept in the following analysis.

Next, we look at the posterior marginals for the fixed effects plotted against their priors.
Figure 4.12 shows that for most of the posterior marginals, the likelihood updates the prior
information, such that the posterior marginals differs from the prior distribution. However,
for the interaction variables, Csd·USA and Csd·India, the shape of the posteriors are very
similar to the shape of the priors, but we see that the likelihoods have updated the mode
for the posterior distributions. Hence, there are much information in the likelihood of the
data for most of the variables, but for the interaction variables, the prior information seems
to affect the posteriors the most.
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Figure 4.12: Posterior marginals for the fixed effects plotted together with their prior distributions.

The results from the Bayesian model are summarized in Table 4.6. Comparing this
table to Table 4.3, showing the results from the frequentist approach using the glmer()-
function, we see that the estimated coefficients for this model are quite different. The
values here are of the similar magnitude, but they are less extreme than for the ones in
Table 4.3. The credible intervals for this model are narrower than the confidence intervals
in the model where the glmer()-function has been used, which corresponds to more certain
estimates. In fact, the estimated values for the fixed effects and credible intervals are more
equal to the ones from the logistic regression model than to the estimates from the glmer()-
model. To get an indication of the differences in values for the precision of the random
intercept in both analysis, one of the values must be inverted. Inverting the mode from the
INLA-analysis, we find that the variance is 1/0.49 = 2.04, which is quite different from
the variance for the random intercept in the glmer()-model which is 25.9.

Transforming the posterior mode values into subject specific odds ratios are not that

65



Chapter 4. Results

Fixed effects
Mode Mean 95% CredInt

Intercept 5.87 6.05 (3.88, 8.58)
Csd -24.0 -24.4 (-37.6, -12.07)
USA -3.05 -3.06 (-5.88, -0.242)
India -5.12 -5.15 (-8.61, -1.76)
Csd:USA 19.5 19.6 (3.68, 35.5)
Csd:India 39.5 38.8 (20.2, 60.4)
Random effects:

Mode Mean 95% CredInt
Precision for Intercept 0.49 10.5 (0.179, 65.2)

Table 4.6: Estimated mode, mean and 95% credible intervals for the posterior marginals when using
INLA to fit the model with the popular prior for the precision of the random intercept and default
priors for the fixed effect.

straight forward as in the frequentist analysis. The effects of countries can not be added
as easily here, since the values here are not estimates, but summary measures from the
posterior marginal distributions. To find the subject specific odds ratio for the Csd variable
for American and Indian infants, the model has to be run again with these countries as
references, and we look at the value for the mode of the exponential-transformed Csd
posterior. Doing this, the subject specific odds ratios for the occurrence of normal FMs by
a 0.1 increase in Csd are shown in Table 4.7 together with their credible intervals.

Norway USA India
Mode Csd -24.0 -4.29 12.0

OR 0.09 0.65 3.3
95% CredInt ( 0.023, 0.295) (0.236, 1.70) (0.820, 15.8)

Table 4.7: Mode, subject specific odds ratios of the mode and credible intervals for a 0.1 increase in
Csd on the occurrence of normal FMs from the Bayesian model.

The table shows that also for the Bayesian approach, the effects of Csd on having
normal FMs differs between countries. Again, for Norwegian and American infants, the
subject specific odds ratio are less than 1, and increased Csd values gives reduced odds
for having normal FMs, given that the random intercept is constant. For Indian infants,
increased Csd values gives an increase in the odds for having normal FMs, given that the
random intercept is constant. Even though these values seems more reasonable than the
ones from the glmer()-analysis, the fact that Indian infants have increased odds or normal
FMs for increased Csd values, while Norwegian and American infants have decreased
odds, does not sound reasonable in a clinical setting. The credible intervals here are also
quite large, even though they are not as large as in the frequentist analysis. Again, we have
that the credible intervals for the American and Indian infants covers values of the subject
specific odds ratio which corresponds to both increased and decreased odds for having
normal FMs for increased Csd values, given constant random intercepts. Hence, for these
data, there are no significant effect of Csd on the occurrence of normal FMs for American
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4.1 Prediction of fidgety movements

and Indian infants.

Validation of the INLA-model

Now, we will see how well this model performs at predicting normal FMs. An internal
validation and a leave-one-out cross validation, both at the population level, have been
performed. Figure 4.13 shows the predicted posterior mode of the population averaged
probabilities, π̂ij for having normal FMs from both the internal and the external validation.
There seems to be small differences between the internal and the external validation, as
these figures seems quite equal. We see that for the Norwegian infants there are a spread
of the values of π̂ij , but there are no clear separation between those that are classified with
normal FMs from those who are classified with abnormal FMs. For the American and
Indian infants, there are very small differences between the ones classified with normal
FMs and the ones classified with abnormal FMs, and almost all the π̂ij have values close
to one, regardless of their true outcome.

Comparing these plots to the ones from the frequentist approach, we see these values
are in general higher than the π̂ij values from the frequentist approach, and have more
spread in the values for the Norwegian infants. However, non of the methods seem to
make any clear separation between those classified with normal FMs from those classified
with abnormal FMs.
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Figure 4.13: Estimated population averaged probabilities for having normal FMs for those classified
with normal FMs (green) and those classified with abnormal FMs (blue) for the internal (a) and
external (b) validation using the posterior mode for each predicted population averaged probability.

Figure 4.14 shows the ROC-curve with corresponding AUC-values for the internal and
external validation of the posterior mode of the predicted population averaged probabilities
for having normal FMs. The curves are quite similar, but the internal validated curve are
mostly higher than the external, and the AUC-values are thereafter with values 0.698 and
0.630 for the internal and external validation, respectively. Comparing these values to the
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Figure 4.14: ROC-curve for internal and external validation with INLA model, using the posterior
mode for each predicted population averaged probability for having normal FMs.

ones from the frequentist approach, we find that these values are smaller and are in fact
below the acceptable range of discrimination, according to Lydersen (2012).

The Brier score for the Bayesian model is also calculated based on the posterior mode
values for the predicted population averaged probabilities for having CP from the external
validation. It has a value of 0.113, which is a decrease compare to the frequentist model
and corresponds to a better model fit than for the frequentist model. Again, we remind
the reader that the predicted probabilities for having normal FMs for frequentist approach
were not population averaged, but calculated by setting the random intercepts equal to
zero. Hence, we trust the results from the validation of the Bayesian approach more then
the ones from the frequentist approach, when it comes to assessing the population averaged
predicted probabilities.

4.2 Prediction of cerebral palsy

Now, we turn to the prediction of cerebral palsy (CP). First, we consider a model similar
to the one with FMs as response, where we see how well the Csd variable is at predict-
ing cases of CP. Since there are several GMT-variables and other available variables, we
search for a better models for prediction of CP. We start by using the Lasso method for
all the GMT-variables, and see how well the selected model performs at predicting CP.
Then, we also include some available variables in the Lasso analysis, and see if adding
these variables will increase the model fit. Finally, we evaluate the estimated coefficient
values for the selected model including both GMT- and the available variables, in terms
of bootstrapping and multi sample-splitting for calculations of p-values and confidence
intervals.

Since the CP-diagnose is only made once, there are not different outcomes correspond-
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ing to each repeated measurement of the GMT, as for the FM-data. Due of this, we must
select one of the GMT-recordings per infant for the CP-analysis. To avoid problems with
selection bias, the chosen recordings were selected at random.

However, the first dataset that were selected at random included one of the outliers for
the Asd, (see Section 2.2). It turned out that this one outlier had some effect in the Lasso-
analysis. Figure 4.15 shows the amount of times each of the variables were included in the
model when running the bootstrap algorithm for the dataset including one outlier of Asd
and for a dataset not including any of the outliers. When including the outlier, the Asd
variable was selected in less than 40% of the 1000 bootstrap replicates. With no outlier,
however, the variable was selected in more than 70% of the replicates. The remaining
variables seem to stay at similar values, regardless of the outlier. Hence, it seems that
the one outlier brings large uncertainty to the model, so to be on the safe side, we only
consider the dataset where the recodings have been selected at random, but without any of
the outliers of the Asd variable.
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Figure 4.15: Bootstrap samples with (a) and without (b) one of the large outliers for the Asd vari-
able.

4.2.1 Prediction of cerebral palsy by the standard deviation of the
centroid of motion

First, we look at the association between theCsd variable and the CP-status. To investigate
the predictive power of Csd on the occurrence of CP, a logistic regression model is used to
fit the data. To adjust for the infants’ countries, both the country variable and the interac-
tion of Csd and country are included in the model. Country is a factor variable, with three
categories; Norway, USA and India. Based on the same reasoning as for the FM-model,
country will be treated as a fixed factor variable in the model. Our model takes the form

logit(πi) = β0 + β1Csd + β2USA+ β4India+ β5CsdUSA+ β6CsdIndia,

where πi is the probability of infant i = 1, ..., 693 having CP.
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Resid. Df Resid. Dev Df χ2 p-value
Csd 691 338.2 1 0.2 0.672
Country 689 294.3 2 44 < 0.001
Csd:Country 687 291.3 2 3.0 0.225

Table 4.8: Hierarchical ANOVA-table for the logistic regression model with CP as response and
Csd, Country and their interaction as covariates.

The ANOVA-analysis in Table 4.8 shows that, according to the LRT, the interaction
betweenCsd and country is not statistically significant at a 5% level, and it is hence omitted
from the model. Then the new model takes the form

logit(πi) = β0 + β1Csd + β2USA+ β3India for i = 1, ..., 693

For the new model without the interaction terms, the results for the fitted model are
shown in Table 4.9 and Figure 4.16. We see that for all three countries, increased values

Estimate Std. Error p-value 95% CI OR 95% CI
Intercept -3.08 0.774 < 0.001 (-4,60, -1.56)
Csd 9.09 4.49 0.043 (0.295, 17.9) 2.48 (1.03, 5.99)
USA -1.13 0.341 < 0.001 (-1.80, -0.458) 0.324 (0.166, 0.633)
India -3.18 0.633 < 0.001 (-4.42, -1.94) 0.042 (0.012, 0.144)

Table 4.9: Estimated coefficients with standard error, p-values from the Z-test, confidence intervals
and odds ratios with confidence intervals for the logistic regression model with CP as response and
Csd and Country as covariates. The odds ratio for the Csd is calculated with a 0.1 increase in Csd.

of Csd correspond to increased logit probability for having CP. An increase of 0.1 in Csd
gives an increase in odds of a factor 2.48 for having CP, and the odds for having CP is
larger for Norwegian infants, compared to American and Indian infants.

Validation of the model

For an external validation, a leave-one-out cross validation was performed on the model
with CP as response and Csd and Country as covariates. The predicted probabilities for
having CP, π̂i, from both the internal and external validation are shown in Figure 4.17,
separated for each country. The values of π̂i from the internal and external validation
seems very similar, but looking closer one can see that the values of π̂i from the internal
validation is a bit higher than the ones form the external validation. In general, there are
quite low values of π̂i. For Norwegian infants, most of the participants have values of π̂i
of about 0.1 and 0.2, and the model seems to not distinguish much between those that have
CP and those that doesn’t. The values of π̂i are lower for American infants and even lower
for Indian infants. Most of the values for π̂i stay at the same level, and the model doesn’t
seem to catch the ones that do have CP.

Figure 4.18 shows the ROC-curves for both the internal and external validation for this
model together with their AUC-values. As observed in Figure 4.17, the values of the π̂i’s
are a bit higher for the internal validation than for the external validation. This is also
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Figure 4.16: Estimated logit probability for having CP for different values of Csd and different
countries, with 95% confidence intervals.
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Figure 4.17: Predicted probabilities for having CP for the infants diagnosed with CP (blue) and the
infants diagnosed without CP (green) from the internal (a) and external (b) validation.

reflected in the ROC-curves, where the internal ROC-curve is in general higher than the
external ROC-curve. According Lydersen (2012), the external AUC-value corresponds
to an acceptable strength of discrimination. The Brier score has been calculated for the
predicted probabilities from the external validation. For this model, the Brier score is
0.058.
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Figure 4.18: ROC-curves with AUC-values for the internal and external validation for the model
with CP as response and Csd and Country as covariates.

4.2.2 Variable selection for the cerebral palsy model
In our dataset, we have nine available summary variables from the GMT-software, describ-
ing the infants movements. In this section, we investigate if we can find a better model for
predicting CP, when considering all nine GMT-variables and using the Lasso method for
variable selection. In addition, other variables are available in the dataset, so we investigate
if inclusion of some of these variables in the model can improve the fit.

Variable selection for prediction of cerebral palsy with General Movement Toolbox-
variables

First, we consider only the GMT-variables in the Lasso analysis. Before we start the
analysis, we remove the highly correlated variables. In this way, we can select which of
the highly correlated variables that seem most natural to include in the analysis, instead of
the Lasso method removing highly correlated variables based on only correlation values.
In Section 2.2, we saw that the centroid of motion variables in x- and y-direction were, as
expected, highly correlated with the Euclidian distance between them. However, the x- and
y-variables were not highly correlated with each other, and there were no high correlation
between the mean and standard deviation variables. Due to this, we only remove the
Euclidian distance variables, Cmean and Csd, from the analysis.

In addition, Qmean was highly correlated with Qsd, Hmean,Wmean and Asd. In fact,
the width and height variables (W and H) are highly correlated with both each other and
with the area variables (A). Because of this, we choose to also remove Qmean, Hmean,
Wmean, Hsd and Wsd from the analysis.

The GMT-variables included in the model were Cxsd, Cysd, Cxmean, Cymean, Qsd,
Amean and Asd. To account for differences between countries, we force the country vari-
ables to be a part of the model, i.e. their coefficients can’t be shrunken to zero. The
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Lasso-analysis is done in R, using the glmnet-package (Friedman et al., 2010).
Figure 4.19 shows the Lasso coefficient path for different values of the tuning param-

eter, log(λ). The variables that are shrunken to zero last are Cysd and Cymean, while Cxsd
and Cxmean are removed from the model for small values of the tuning parameter.
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Figure 4.19: The Lasso coefficient path and number of non-zero parameters for different values
of the tuning parameter log(λ) for the model with GMT-variables. Note that Country2 =USA and
Country3 = India

A k-fold cross validation has been performed to find the value of the tuning parameter
that gives the best model. Using 20 folds in the cross validation, we secure that there are
some observations of CP in the training sets. Figure 4.20 shows the cross validation curve
with upper and lower standard deviation along the λ-sequence for different decision rules
for the cross validation. The best model, corresponding to the tuning parameter λmin for
deviance and misclassification decision rules and the tuning parameter λmax for the AUC
decision rule, includes seven variables. For all decision rules, the model which is within
one standard error of the best model, corresponding to the model with the tuning parameter
λ1se, include non or only one of the GMT-variables.

Looking at the estimated coefficient values in Table 4.10, we see that the seven vari-
ables included in the best model, regardless of the decision rule, is Cysd, Cymean, Qsd,
Amean, Asd and the country variables. For the models with tuning parameter λ1se, we see
that only the AUC decision rule includes more than the country variables. For this decision
rule, also Cymean is included in the model.

Validation of the Lasso model

Next, we will see how well the Lasso model performs at predicting CP. The predicted
probabilities for having CP from both the internal and external validation are shown in
Figure 4.21. For the internal validation, the estimated Lasso coefficients with deviance
and λmin as decision rule from Table 4.10 have been used to estimate the probabilities for

73



Chapter 4. Results

−8 −7 −6 −5 −4

0.
38

0.
42

0.
46

log(Lambda)

B
in

om
ia

l D
ev

ia
nc

e

9 9 9 9 9 9 9 9 7 7 7 7 7 7 4 4 3

−8 −7 −6 −5 −4

0.
05

5
0.

06
0

0.
06

5
0.

07
0

0.
07

5

log(Lambda)

M
is

cl
as

si
fic

at
io

n 
E

rr
or

9 9 9 9 9 9 9 9 7 7 7 7 7 7 4 4 3

−8 −7 −6 −5 −4

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

log(Lambda)

A
U

C

9 9 9 9 9 9 9 9 7 7 7 7 7 7 4 4 3

Figure 4.20: Cross validation curve with upper and lower standard deviation with decision rules
based on deviance, misclassification error and area under the ROC curve. The two vertical lines
displays the values of λmin/λmax in terms of the decision rule, and the value of λ1se, while the
numbers on top displays the number of variables included in the model.

having CP. The model takes the form

logit(π̂i) = β̂0+β̂1Cysd+β̂2Cymean+β̂3Qsd+β̂4Amean+β̂5Asd+β̂6USA+β̂7India,

where π̂i is the predicted probability of infant i = 1, ..., 693 having CP. For the external
validation, a leave-one-out cross validation has been performed, where a Lasso model was
fitted for each of the training sets and used to predict the probability for having CP for the
one observation in the test sets.

Also for this model, the predicted probabilities for having CP, π̂i, are very similar
for the internal and external validation. Comparing these figures to Figure 4.17, we see
that including other GMT-variables than the Csd, the model predicts higher probabilities
for having CP with more spread. For the Norwegian infants, the highest values of π̂i
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λmin λmax λ1se
dev class auc dev class auc

log λ -5.76 -5.95 -5.39 -3.62 -3.62 -3.72
(Intercept) -8.41 -8.63 -7.84 -1.60 -1.60 -2.04

Cxsd 0 0 0 0 0 0
Cysd 18.3 19.1 16.3 0 0 0

Cxmean 0 0 0 0 0 0
Cymean 8.48 8.74 7.82 0 0 0.80

Qsd 85.0 90.9 69.6 0 0 0
Amean -2.13 -2.26 -1.78 0 0 0
Asd -7.79 -8.43 -6.18 0 0 0

USA -0.92 -0.91 -0.96 -0.98 -0.98 -1.00
India -3.07 -3.07 -3.07 -2.95 -2.95 -2.97

Table 4.10: Estimated coefficients for the models with tuning parameters λmin/λmax and λ1se

from the cross validation of the Lasso-analysis for all three decision rules.
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Figure 4.21: Predicted probabilities for having CP for infants diagnosed with CP (blue) and infants
diagnosed without CP (green) from the internal (a) and external (b) validation of the Lasso model
with GMT-variables.

corresponds to the ones that were diagnosed with CP, but there are also many many that
were diagnosed with CP with low values of π̂i. For the American and Indian infants, there
are no clear separation between the values of π̂i for those diagnose with and without CP.

Figure 4.22 shows the ROC-curve with corresponding AUC-values for both the in-
ternal and external validation. With this model, the external AUC-value is 0.794, which
corresponds to an acceptable strength of discrimination, according to Lydersen (2012).
Using the external validation of this model, the Brier score is 0.054, which is a bit lower
than the Brier score for the model with only one GMT-variable. Hence, a model with se-
lected GMT-variables performs better at distinguishing between infants with and without
CP, than the model with only one GMT-variable, Csd, as covariate.
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Figure 4.22: ROC-curves and AUC-values for the internal and external validation of the Lasso
model with several GMT-variables.

Variable selection for prediction of cerebral palsy with General Movement Toolbox-
variables and other available variables

Next, we include some of the other available variables for the 693 infants. These are the
birth weight (bw), the gestational age (GA), the length of the video recording (rec time),
the post term age (P TE AGE), the trunk area (trunk area) and the gender of the infants.
In addition, there are three dummy-variables for extreme low birth weight and extreme
preterm infants. These are listed below.

• Below1000g; 1 if infant has birth weight below 1000g, 0 otherwise.

• Below28GA; 1 if infant was born before 28 weeks’ of gestation. 0 otherwise.

• Below1000g28GA; 1 if infant has both birth weight below 1000g and/or born before
28 weeks’ gestation, 0 otherwise.

Even though some of these variables are quantities from the GMT-software and some are
background variables for the infants, we refer to these variables as the clinical variables
for simplicity.

Figure 4.23 shows the correlation between the clinical variables. There are high cor-
relation between the birth weight, the gestational age and the three corresponding dummy
variables. It is natural that the birth weight and the gestational age are correlated, as early
born infants are often of smaller size and hence lower weight than those who are born
closer to the term. The dummy variables are categorized based on the birth weight and
the gestational age, so these are hence highly correlated. It seems that among these vari-
ables, birth weight, below1000g and below28GA are the least correlated variables, with
0.67 at the most. Hence, we choose to drop gestational age and below1000g28GA from
the analysis. Figure 4.24 shows the correlation plot of all variables now to be included in
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Figure 4.23: Pairwise correlation of the clinical variables.

the Lasso regression model. We see that non of these variables are highly correlated with
each other, so we continue our analysis with these variables.
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Figure 4.24: Pairwise correlation of the remaining variables that are included in the Lasso analysis.

The Lasso coefficient path when including the clinical variables are shown in Fig-
ure 4.25 for a sequence of the log tuning parameter log(λ). Again, Cysd and Cymean are
the last variables that are shrunken to zero, and the figure seems quit similar to the one
where the clinical variables were not included, Figure 4.19. Among the clinical variables,
the gender seems to be most important, as it is the last clinical variable that is shrunken to
zero.

Again, we use a 20-fold cross validation to choose which value of the tuning parameter
that gives the best model fit. Figure 4.26 shows the cross validated deviance, misclassifi-
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Figure 4.25: The coefficient path in full scale (a) and zoomed in on the y-axis (b) for the Lasso
estimates when including GMT-variables and clinical variables in the analysis plotted for a sequence
of the log of the tuning parameter.

cation error and AUC-values for the data including both GMT-variables and clinical vari-
ables. Again, the three decision rules seem to agree that the model with approximately 10
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Figure 4.26: Cross validated deviance, misclassification error and AUC-values with standard devi-
ations for the Lasso model including GMT- and clinical variables.
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variables gives the best fit. The models that are within one standard error of the best fit
include few variables, as for the models with only GMT-variables. Table 4.11 shows the
estimated Lasso coefficients with each decision rule for the model with the tuning param-
eter for the best fit, λmin/λmax and the model with the tuning parameter corresponding to
one standard error within the best fit, λ1se.

λmin λmax λ1se
dev class auc dev class auc

log λ -5.55 -5.74 -5.18 -3.78 -3.50 -3.60
(Intercept) -7.32 -7.56 -6.72 -2.93 -1.60 -2.04

bw 0 0 0 0 0 0
rec time -0.17 -0.18 -0.16 0 0 0

P TE AGE 0 0 0 0 0 0
trunk area 0 0 0 0 0 0

Cxsd 0 0 0 0 0 0
Cysd 16.9 17.7 14.8 1.01 0 0

Cxmean 0 0 0 0 0 0
Cymean 8.56 8.89 7.74 2.16 0 0.80

Qsd 72.3 78.7 55.8 0 0 0
Amean -2.50 -2.69 -2.02 0 0 0
Asd -6.70 -7.37 -5.00 0 0 0

USA -0.84 -0.82 -0.88 -1.03 -0.98 -1.00
India -3.00 -2.99 -3.02 -2.99 -2.95 -2.97

sex -0.60 -0.65 -0.49 0 0 0
below1000g 0 0 0 0 0 0
below28GA 0.11 0.14 0.04 0 0 0

Table 4.11: The estimated Lasso coefficients for the models with λmin/λmax and λ1se from the
cross validated Lasso-model with both GMT- and clinical variables for different decision rules.

The table shows that among the clinical variables, the length of the recording, gender
and the indication variable for extreme preterm infants are included in the best models, for
all three decision rules. The centroid of motion variables in x-direction are also shrunken
to zero in these models, while all of the other GMT-variables are included in the best
models. For the models with tuning parameter λ1se, only Cymean and Cysd are included
in the model, in addition to the intercept and the country variables. Comparing these
models to the ones without the clinical variables, we see that the same GMT-variables
are included in the best models, with quite similar estimated coefficient values. However,
comparing Figure 4.26 and Figure 4.20, we see that the AUC-values are generally higher
when including the clinical variables. Hence, including clinical variables in the analysis
gives higher AUC-value and a better fit to the data.

Validation of the Lasso model

Next, we will see how well the Lasso model with clinical variables performs at predicting
CP. Figure 4.27 shows the predicted probabilities for having CP, π̂i, from the internal and
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the external validation. Again, the estimated Lasso coefficients in Table 4.11 has been
used to estimate the probabilities for having CP in the internal validation, where the model
takes the form

logit(π̂i) = β̂0 + β̂1Cysd + β̂2Cymean + β̂3Qsd + β̂4Amean + β̂5Asd + β̂6USA+ β̂7India

+ β̂8rec time+ β̂9sex+ β̂10below28GA,

where π̂i is the predicted probability of infant i = 1, ..., 963 having CP. For the external
validation we used the leave-one-out cross validation, where a Lasso model was fitted for
the training sets, and used to predict the probability for having CP in the test sets. These
figures are quite similar to the corresponding figures with only the GMT-variables included
in the model, shown in Figure 4.21. Again, the largest values of π̂i corresponds to the ones
diagnosed with CP for the Norwegian infants, but there are still many that are diagnosed
with CP that have very small values of π̂i. For American and Indian infants, there are still
no clear separation between the values of π̂i for those that are diagnosed with CP and those
that are not.
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Figure 4.27: Predicted probabilities for having CP for infants diagnosed with CP (blue) and infants
diagnosed without CP (green) from the internal (a) and external (b) validation of the Lasso model
with the GMT-variables and the clinical variables.

Comparing the AUC-values from the ROC-curves for the model with clinical variables
in Figure 4.28 to the ones from the model without clinical variables shown in Figure 4.22,
one can see that inclusion of the clinical variables has increased the external AUC-value a
bit, from 0.794 to 0.797. The Brier score for the external validation of the model including
clinical variables is 0.053, which is a bit lower than the score for the model without clinical
variables. Hence, inclusion of clinical variables improve the model fit a bit.

Inference for the Lasso model

To evaluate the uncertainty of the Lasso estimates, a bootstrap analysis and the method of
multi sample-splitting were run. In the bootstrap analysis, there were drawn 1000 boot-
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Figure 4.28: ROC-curves and AUC-values for the internal and external validation of the Lasso
model with several GMT-variables and clinical variables.

strap samples, and the 20-fold cross validations was performed for each sample. The
estimated coefficients of the best model, corresponding to the model with the tuning pa-
rameter λmin/λmax, and the estimated coefficients from the model with tuning parameter
λ1se were saved for each bootstrap sample. Here, we only focus on the binomial deviance
as decision rule, and the models with the tuning parameter λmin, but refer to Appendix B
for the same analysis for the other decision rules. Figure 4.29 shows the proportion of the
1000 bootstrap replicates where each of the variables are estimated to a nonzero value.
Since the country variables are forced to be included in the model, these are not shown in
the figure.

The figure shows that the GMT-variables Cymean, Cysd are nonzero in almost all the
1000 bootstrap replicates. In addition, theQsd variable is nonzero in about 85%, while the
Amean and Asd variables are nonzero in about 70% of the bootstrap replicates. However,
the Cxmean and Cxsd variables are only included in about 50% and 40% of the bootstrap
replicates. Among the clinical variables, the gender and the length of the video recording
are nonzero in more than 80%, while the remaining clinical variables are included in about
half the replicates or less.

Histograms of the estimated Lasso coefficient values from the bootstrap replicates are
shown in Figure 4.30. Also here, the coefficients for the country variables are excluded
from the figures. From these figures, it is clear thatQsd,Cymean andCysd are significantly
different from zero. The Amean and Asd variables are mostly different from zero. Even
though these variables have the interquartile range that borders at zero, the median values
are far from zero. For the Cxmean and Cxsd variables, the median value is very close to
zero.

Since the 25th and 75th percentiles for estimated coefficients forQsd, Cymean andCsd
are above zero, the figure indicates that increased values of these variables corresponds
to increased logit probability for having CP. The estimated coefficients for the area of
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Figure 4.29: Proportion of the 1000 bootstrap replicates where the coefficients from the 20-fold
cross validation with binomial decision rule are estimated to be non-zero.

motion variables however, are mostly below zero, so increased values of these variables
corresponds to decreased logit probability for having CP.

For the clinical variables, we see that the variables for the length of the video recording,
the gender and extreme preterm infants are mostly different from zero. It seems that the
estimated coefficients for the length of the video recording and the gender are mostly
negative. The estimated coefficients for the indication variable for extreme preterms are
mostly positive. This indicates that longer video recordings, being female and being born
after 28 weeks’ gestation corresponds to a decrease in the logit probability of having CP.
The remaining variables have estimated coefficient values both above and below zero, so
there is no clear association between any of these variables and having CP.

Table 4.12 shows the results from the multi sample-splitting method for the logistic
regression model using a leave-one-out cross validation in the variable selection. Since
the method performs a cross validation on only half the dataset, we use a leave-one-out
cross validation to include as much data as possible in the training sets.

The adjusted p-values show that only the variable for India is significant at a 5% sig-
nificance level. The variables with confidence intervals ranging from −∞ to ∞ shows
that the variables have been selected less than 50% of the times, so their confidence in-
tervals are not defined. The area of motion variables that have large range between the
25th and the 75th percentiles in the bootstrap analysis does not have defined confidence
intervals in the multi sample-splitting. The other GMT-variables, Qsd, Cymean, Cysd and
sex and rec time have defined confidence intervals in the multi sample-splitting. How-
ever, most of these confidence intervals range over zero, so the corresponding variables
are not significant. The only two variables that doesn’t have a confidence interval ranging
over zero are the variables for India and Cymean. When adjusting for multiple testing, the
adjusted p-values shows that the variable for Cymean is not statistically significant at a 5%
significance level, while the variable for India is.
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Figure 4.30: The estimated Lasso coefficients in full scale (b) and zoomed in y-axis (a) from the
bootstrap replicates from 20-fold cross validation using minimum binomial deviance as decision
rule.

p-value CI
bw 1.00 (−∞,∞)

rec time 1.00 (-0.79, 0.37)
P TE AGE 1.00 (−∞,∞)
trunk area 1.00 (−∞,∞)

Qsd 1.00 (-98.2, 263)
Amean 1.00 (−∞,∞)
Asd 1.00 (−∞,∞)

Cxmean 1.00 (−∞,∞)
Cxsd 1.00 (−∞,∞)

Cymean 0.32 (1.45, 18.4)
Cysd 1.00 (-4.30, 43.4)
USA 0.73 (-2.27, 0.20)
India 0.03 (-5.71, -1.25)

sex 1.00 (-2.21, 0.71)
below1000g 1.00 (−∞,∞)
below28GA 1.00 (−∞,∞)

Table 4.12: P-values adjusted for multiple testing and a 97.5% confidence intervals for the estimated
coefficients from the multi sample-splitting with 1000 iterations.
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Chapter 5
Discussion

In this thesis, we have used data from the GMT-software for 693 infants with a total of 798
recordings, from three different countries, to find models that predict infants with normal
FMs and infants with CP. Fitting a logistic regression model with Csd as covariate and
CP as response, we found that there was a significant effect of Csd on the occurrence of
CP, where increased values of Csd corresponded to increased logit probability of having
CP. For this model, there were no differences in the effect of Csd on the occurrence of
CP between countries. Allowing other GMT-variables and other available variables to be
included in the model and using the Lasso method for variable selection, the model fit
increased and several variables were selected. These selected GMT-variables were Cysd,
Cymean, Qsd, Amean and Asd. The other variables were gender, the indication variable
for extreme preterm (below 28 weeks’ gestation) and the length of the video recordings.
When using the FMs as response, we used both a frequentist method and a Bayesian
method for fitting a mixed effects logistic regression model with random intercepts, with
Csd as covariate. Both approaches found that there was a difference in the effect of Csd
on the occurrence of normal FMs between countries, but the effect was only significant
for Norwegian infants, where increased values of Csd corresponded to decreased logit
probability of having normal FMs.

The results from the logistic regression model with Csd as covariate concur with the
results from Adde et al. (2010). However, when allowing other GMT-variables to be in-
cluded in the model, the model fit increased. The Lasso model showed that it was in fact
the y-direction of the centroid of motion variables that had the most effect on having CP,
and not the Euclidean distance between the x- and y-variables. Hence, from this model, it
seems that more movements in the upper part of the body and uncoordinated movements
between upper an lower body parts, leading to large variations of the centroid of motion
in the y-direction, corresponds to increased logit probability of having CP. This sounds
reasonable, as these movements could be interpreted as non-smooth movements, which
are characteristic for abnormal FMs and hence CP (Hopkins and Prechtl, 1984).

The selected Lasso model also showed that increased variation in the quantity of mo-
tion corresponds to increased odds of having CP. Large variations of the quantity of motion
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can also be interpreted as non-fluent and non-smooth movements. However, larger mean
and standard deviation values of the area of motion corresponds to a decrease in the odds
of having CP. Hence, infants with fluent and smooth movements on a small area and with
small variations of the area of the movements, have lower probability of having CP, which
sounds reasonable. In addition, extreme preterm infants are of higher risk of develop-
ing CP (Stephens and Vohr, 2009), so it seems logical that this variable is selected in the
model. Inclusion of the gender in the Lasso model might be because of the prevalence of
CP among the boys and girls in the dataset, as we know little about the risk of having CP
between boys and girls. The length of the video recordings are likely more associated with
the uncertainty of the GMT-variables, than the probability of having CP.

The result that the logit probability of having normal FMs decreased with increasing
Csd values for Norwegian infants concur with the results from Adde et al. (2009). How-
ever, there is no reason to expect that the effect of Csd on the occurrence of normal FMs
should vary much between countries, so this result might be a consequence of the few
cases of abnormal FMs in the dataset.

In a medical setting, this is a large dataset, consisting of 798 recordings of infants at
high risk of developing CP. This is a strength of the study, as there are many infants from
different continents with both CP and FMs-status. However, there is a limitation with the
number of cases of abnormal FMs and CP in the dataset. When considering FMs as re-
sponse, there are only 103 out of 798 of the recordings of the infants that corresponds to
abnormal FMs. For the Indian infants, there are only 16 out of 289 of the recordings cor-
responding to abnormal FMs. Because of this, there might not be enough data of infants
with abnormal FMs to find statistically significant results for the FM-models, especially
for the Indian infants. When considering the CP-data, we reduced the dataset such that all
693 infants had only one recording. With CP as outcome, only 46 out of 693 infants are
diagnosed with CP, corresponding to less than 7%. Hence, also for the CP-data, finding
good models with statistically significant results could be difficult. This is especially dif-
ficult for the Indian data, where only 3 out of 298 of the infants are diagnosed with CP,
corresponding to less than 1%. In addition, when modeling the FM-data with repeated
measurements, the fact that only 595 infants have more than one recording is a challenge.

In order to investigate the uncertainty and stability when modeling a mixed effects
logistic regression model with random intercepts for data with few cases of repeated mea-
surements, we performed the simulation study. We found that in general, using more than
20 quadrature points gave quite stable results, but for the dataset with only one or two
repeated measurements, there were many extreme values and quite large uncertainties in
the estimated values. When adding repeated measurements such that all infants had two
repeated measurement, the outliers disappeared and the uncertainty of the estimated co-
efficient values were considerable reduced. We suspected that the unstable results could
be caused by an non-valid approximation of a normal distribution for the posterior, as de-
scribed in Section 3.4.1. However, in the simulation study, we had at most four repeated
measurements per infant. One could question if four repeated measurements could be in-
terpreted as a large cluster size, and is enough to have a good normal approximation. Due
to this, one could also question the validity of the simulation study.

When using 50 quadrature points for modeling the frequentist approach for the FM-
data, we found that the estimated coefficient values were quite extreme, with large confi-
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dence intervals. When applying a Bayesian approach for the same model, the estimated
coefficient values as well as the width of the credible intervals were reduced. The Bayesian
approach showed that there were little information in the data about the precision of the
random intercept and the interaction variables between Csd and country, as their posterior
distributions were highly affected by their priors. Hence, as for the frequentist approach,
estimation of the coefficients for the random intercept and the interaction variables are
difficult with these data. However, the Bayesian approach showed that even though the
posterior for the precision of the random intercept was highly affected by the prior distri-
bution, the choice of this prior had little impact on the posteriors for the coefficients of the
fixed effects.

Also for the CP-models, we have seen that finding good models with statistically sig-
nificant results are difficult with these data. Even though we found that the models with
several GMT-variables were better for prediction of CP than the model with only the Csd
variable, the AUC-values for the Lasso models with and without other available variables
were only acceptable according to Lydersen (2012). In addition, the evaluation of the
model showed that non of the GMT-variables were statistically significant when adjusting
for multiple testing. Hence, in order to find a good model for prediction of CP that can
be used in clinical practice, even larger samples are needed. As CP is a rare disease, one
should perhaps include new centers in the study, in order to increase the number of infants
with CP in the dataset.
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Chapter 6
Further work

For further analysis of these data and models, we would like to point out some improve-
ments. First is the prediction of population averaged probabilities for having normal FMs.
Using the lme4-package for predictions in the frequentist approach, the population aver-
aged probabilities are not available. In order to get correct population averaged probabili-
ties for validation of the model, one should write own code for performing this.

In the variable selection, we included the variable for the length of the video recording
as a covariate. The length of the video recordings could give less uncertainty in the GMT-
variables for the infants, as longer video recordings are likely to include more movements,
and abnormal movements might be easier to detect. To account for this, the variable for the
length of the video recordings could have been included as an interaction with the GMT-
variables. In addition, the trunk area have previously been adjusted for, by normalizing all
the GMT-variables with respect to the trunk area. In this thesis, we have not considered
any of these adjusted variables, we have only included the trunk area as a variable in the
Lasso model. For future analysis, one can look further into models for prediction of CP
with the adjusted variables, or one could look for other methods to account for the trunk
area of the infants.

Also, in this thesis, we have assumed that repeated measurements within each infant is
correlated and can not be considered independent of each other. For prediction of CP, we
have selected only one of the recording in order to do logistic regression for modeling the
data. In this way, we don’t use all the information we have available. We have not con-
sidered methods for modeling repeated covariates with one response, where the repeated
measurements are included. For further work on these data, one could have looked into
these type of methods for modeling the data, to include more of the available information.
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A Simulation study
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Figure A.1: Estimated values from the simulation study for the log likelihood, ψ and β0 − β3 for
different number of quadrature points in case 1.
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Figure A.2: Estimated values from the simulation study for β4, β5, number of warnings and number
of errors for different number of quadrature points in case 1.
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Figure A.3: Estimated values from the simulation study for the log likelihood, ψ and β0 − β3 for
different number of quadrature points in case 2.
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Figure A.4: Estimated values from the simulation study for β4, β5, number of warnings and number
of errors for different number of quadrature points in case 2.
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Figure A.5: Estimated values from the simulation study for the log likelihood, ψ and β0 − β3 for
different number of quadrature points in case 3.
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Figure A.6: Estimated values from the simulation study for β4, β5, number of warnings and number
of errors for different number of quadrature points in case 3.
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Figure A.7: Estimated values from the simulation study for the log likelihood, ψ and β0 − β3 for
different number of quadrature points in case 4.
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Figure A.8: Estimated values from the simulation study for β4, β5, number of warnings and number
of errors for different number of quadrature points in case 4.
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B Bootstrap
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Figure B.1: Amount of nonzero Lasso coefficients from the 1000 bootstrap replicates for mini-
mum/maximum and one standard error within the minimum/maximum for different decision rules;
binomial deviance, misclassification error and AUC.
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Figure B.2: Estimated Lasso coefficients from the bootstrap replicates using different decision rules
with both λmin/λmax and λ1se.
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C R code for simulation study

1

2 l i b r a r y ( ” lme4 ” )
3 # l o a d d a t a
4 d a t a <− r e a d . t a b l e ( f i l e =” Mas te r / newdata . t x t ” )
5 #View ( d a t a )
6 d a t a $ C o n t i n e n t = as . f a c t o r ( d a t a $ C o n t i n e n t )
7 d a t a $FMs o l d = as . f a c t o r ( d a t a $FMs o l d )
8 # number o f r e c o r d i n g s p r i n f a n t s
9 n = dim ( d a t a ) [ 1 ]

10 d a t a $ r e p = 1
11 f o r ( i i n 2 : n ) {
12 i f ( d a t a $PID [ i ]== d a t a $PID [ i −1]){
13 d a t a $ r e p [ i ] = d a t a $ r e p [ i −1] + 1
14 }
15 }
16

17 # remove r e c o r d i n g 3 and 4
18 c a s e 1 d a t a <− d a t a [ 1 , ]
19 t e l l e r = 2
20 f o r ( i i n 2 : dim ( d a t a ) [ 1 ] ) {
21 i f ( d a t a $ r e p [ i ] ! =3 && d a t a $ r e p [ i ] ! = 4 ) {
22 c a s e 1 d a t a [ t e l l e r , ] = d a t a [ i , ]
23 t e l l e r = t e l l e r + 1
24 }
25 }
26

27 c a s e 1 d a t a $ C o n t i n e n t = as . f a c t o r ( c a s e 1 d a t a $ C o n t i n e n t )
28 c a s e 1 d a t a $FMs o l d = as . f a c t o r ( c a s e 1 d a t a $FMs o l d )
29

30 # f i n d c o e f f i c i e n t s
31 FMoldt rue <− glm ( f o r m u l a = FMs o l d ˜ com sd + C o n t i n e n t + com sd∗

C o n t i n e n t , d a t a = da ta , f a m i l y =” b i n o m i a l ” )
32 b e t a <− FMoldt rue $ c o e f f i c i e n t s
33 b e t a
34 p s i = 5 # v a r i a n c e o f z e t a
35

36 # c a s e 2 d a t a <− r e a d . t a b l e ( f i l e =” Mas te r / c a s e 2 d a t a 2 . t x t ” )
37 # c a s e 2 d a t a <− r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents /

Mas te r / c a s e 2 d a t a . t x t ” )
38 # c a s e 2 d a t a = c a s e 2 d a t a [ o r d e r ( c a s e 2 d a t a $PID ) , ]
39 # c a s e 2 d a t a $FMs o l d = as . f a c t o r ( c a s e 2 d a t a $FMs o l d )
40 # c a s e 2 d a t a $ C o n t i n e n t = as . f a c t o r ( c a s e 2 d a t a $ C o n t i n e n t )
41

42

43 # c a s e 3 d a t a <− r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents /
Mas te r / c a s e 3 d a t a . t x t ” )

44 # c a s e 3 d a t a <− r e a d . t a b l e ( f i l e =” Mas te r / c a s e 3 d a t a 2 . t x t ” )
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45 # c a s e 3 d a t a = c a s e 3 d a t a [ o r d e r ( c a s e 3 d a t a $PID ) , ]
46 # c a s e 3 d a t a $FMs o l d = as . f a c t o r ( c a s e 3 d a t a $FMs o l d )
47 # c a s e 3 d a t a $ C o n t i n e n t = as . f a c t o r ( c a s e 3 d a t a $ C o n t i n e n t )
48

49 # c a s e 4 d a t a <− r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents /
Mas te r / c a s e 4 d a t a . t x t ” )

50 c a s e 4 d a t a <− r e a d . t a b l e ( f i l e =” Mas te r / c a s e 4 d a t a 2 . t x t ” )
51 c a s e 4 d a t a = c a s e 4 d a t a [ o r d e r ( c a s e 4 d a t a $PID ) , ]
52 c a s e 4 d a t a $FMs o l d = as . f a c t o r ( c a s e 4 d a t a $FMs o l d )
53 c a s e 4 d a t a $ C o n t i n e n t = as . f a c t o r ( c a s e 4 d a t a $ C o n t i n e n t )
54

55 s imsim <− f u n c t i o n ( be t a , p s i , da t a , n I t e r , c a s e ) {
56 simmat <− a r r a y ( 1 , dim=c ( 1 0 , 1 0 , n I t e r ) ) # q u a d r a t u r e p o i n t s i n

column , v a r i a b l e i n row , i t e r a t i o n i n l a s t dim
57 rownames ( simmat ) = c ( ” l l ” , ” p s i ” , ” b0 ” , ” b1 ” , ” b2 ” , ” b3 ” , ” b4 ” ,

” b5 ” , ” w a r n i n g s ” , ” e r r o r ” )
58 FMnVec = r e p (NA, n I t e r )
59 FMpVec = r e p (NA, n I t e r )
60 l i k e l i h o o d = r e p (NA, n I t e r )
61 f o r ( s i mr ep i n 1 : n I t e r ) {
62 # f o r c a s e 1 :
63 # z e t a s i m i l a r f o r same PID ( p e r s o n )
64 i f ( c a s e ==1){
65 z e t a = rnorm ( n=dim ( d a t a ) [ 1 ] , mean = 0 , sd = p s i )
66 f o r ( i i n 1 : dim ( d a t a ) [ 1 ] ) {
67 i f ( d a t a $ r e p [ i ] ==2){
68 z e t a [ i ] = z e t a [ i −1]
69 }
70 }
71 }
72 e l s e {
73 # f o r c a s e 2 ,3 ,4
74 z e t a = rnorm ( n=dim ( d a t a ) [ 1 ] / case , mean = 0 , sd = p s i )
75 z e t a = r e p ( z e t a , t i m e s = r e p ( case , l e n g t h ( z e t a ) ) ) # d a t a maa

v a e r e s o r t e r t f o r s t
76 }
77

78 # f i n d p i i j = exp ( x b e t a + z e t a j ) / (1+ exp ( x b e t a + z e t a j ) )
79 mf = model . f rame ( f o r m u l a = FMs o l d ˜ com sd + C o n t i n e n t + com sd

∗C o n t i n e n t , d a t a = d a t a )
80 X = model . m a t r i x ( a t t r ( mf , ” t e r m s ” ) , d a t a = mf )
81 p i = as . numer ic ( exp (X%∗%b e t a + z e t a ) / (1+ exp (X%∗%b e t a + z e t a ) ) )
82

83 # s i m u l a t e y
84 FMold = rbinom ( n= l e n g t h ( p i ) , s i z e =1 , prob = p i )
85 FMold = as . f a c t o r ( FMold )
86 # s t o r e r e s u l t
87 FMnVec [ s imr ep ] = sum ( FMold ==0)
88 FMpVec [ s imr ep ] = sum ( FMold ==1)
89
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90 #make d a t a s e t
91 d a t a s e t <− d a t a . f rame ( FMold = FMold , C o n t i n e n t = d a t a $

C o n t i n e n t , com sd = d a t a $com sd , p i d = d a t a $PID )
92

93 #glm model − f o r t e s t i n g random i n t e r c e p t
94 glmModel <− glm ( f o r m u l a = FMold ˜ C o n t i n e n t + com sd + C o n t i n e n t

∗com sd , d a t a = d a t a s e t , f a m i l y = ” b i n o m i a l ” )
95 # s t o r e l i k e l i h o o d
96 l i k e l i h o o d [ s i mr ep ] <− as . numer ic ( l o g L i k ( glmModel ) )
97

98 # c a t c h e r r o r s and w a r n i n g s
99 myTryCatch <− f u n c t i o n ( exp r ) {

100 warn <− e r r <− NULL
101 v a l u e <− w i t h C a l l i n g H a n d l e r s (
102 t r y C a t c h ( expr , e r r o r = f u n c t i o n ( e ) {
103 e r r <<− e
104 NULL
105 } ) , warn ing = f u n c t i o n (w) {
106 warn <<− w
107 i n v o k e R e s t a r t ( ” muf f leWarn ing ” )
108 } )
109 l i s t ( v a l u e = va lue , warn ing =warn , e r r o r = e r r )
110 }
111

112 # f i t model f o r d i f f e r e n t number o f q u a d r a t u r e p o i n t s
113 vec = c ( 0 , 1 , 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 , 8 0 , 1 0 0 )
114 m = l e n g t h ( vec )
115 l l = r e p (NA, m)
116 ps iVec = r e p (NA, m)
117 b0 = r e p (NA, m)
118 b1= r e p (NA, m)
119 b2 = r e p (NA, m)
120 b3= r e p (NA, m)
121 b4 = r e p (NA, m)
122 b5= r e p (NA, m)
123 warn ing = r e p (NA, m)
124 e r r o r = r e p (NA, m)
125 f o r ( i i n 1 :m) {
126 model random <− myTryCatch ( g lmer ( f o r m u l a = FMold ˜ C o n t i n e n t +

com sd + C o n t i n e n t ∗com sd + ( 1 | p i d ) , d a t a = d a t a s e t ,
f a m i l y = ” b i n o m i a l ” , nAGQ=vec [ i ] ) )

127

128 i f ( i s . n u l l ( model random $ e r r o r ) ) {
129 l l [ i ] = l o g L i k ( model random $ v a l u e )
130 ps iVec [ i ] = as . numer ic ( getME ( model random $ va lue , ” t h e t a ” ) )
131 b0 [ i ] = as . numer ic ( f i x e f ( model random $ v a l u e ) [ 1 ] )
132 b1 [ i ] = as . numer ic ( f i x e f ( model random $ v a l u e ) [ 2 ] )
133 b2 [ i ] = as . numer ic ( f i x e f ( model random $ v a l u e ) [ 3 ] )
134 b3 [ i ] = as . numer ic ( f i x e f ( model random $ v a l u e ) [ 4 ] )
135 b4 [ i ] = as . numer ic ( f i x e f ( model random $ v a l u e ) [ 5 ] )
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136 b5 [ i ] = as . numer ic ( f i x e f ( model random $ v a l u e ) [ 6 ] )
137 e r r o r [ i ] = 0
138 i f ( i s . n u l l ( model random $ warn ing ) ) {
139 warn ing [ i ] = 0
140 }
141 e l s e {warn ing [ i ] = 1}
142

143 }
144 e l s e {
145 e r r o r [ i ] = 1
146 warn ing [ i ] = 1
147 l l [ i ] = NA
148 ps iVec [ i ] = NA
149 b0 [ i ] = NA
150 b1 [ i ] = NA
151 b2 [ i ] = NA
152 b3 [ i ] = NA
153 b4 [ i ] = NA
154 b5 [ i ] = NA
155 }
156

157 }
158 # save r e s u l t s
159 simmat [ 1 , , s i mr ep ] = l l
160 simmat [ 2 , , s i mr ep ] = ps iVec
161 simmat [ 3 , , s i mr ep ] = b0
162 simmat [ 4 , , s i mr ep ] = b1
163 simmat [ 5 , , s i mr ep ] = b2
164 simmat [ 6 , , s i mr ep ] = b3
165 simmat [ 7 , , s i mr ep ] = b4
166 simmat [ 8 , , s i mr ep ] = b5
167 simmat [ 9 , , s i mr ep ] = warn ing
168 simmat [ 1 0 , , s i mr ep ] = e r r o r
169

170 p r i n t ( s im rep )
171 Sys . t ime ( )
172 f l u s h . c o n s o l e ( )
173 }
174

175 r e t u r n ( l i s t ( simmat = simmat , FMn = FMnVec , FMp = FMpVec ,
L i k e l i h o o d = l i k e l i h o o d ) )

176 }# end f u n c t i o n
177

178 #ptm <− p roc . t ime ( )
179 s e t . s eed ( 2 0 0 )
180 ptm <− p roc . t ime ( )
181 # change v a l u e o f d a t a and c a s e f o r d i f f e r e n t c a s e s
182 r e s u l t <− s imsim ( be ta , p s i , d a t a = c a s e 4 d a t a , n I t e r =1000 , c a s e =4)
183 p roc . t ime ( ) − ptm
184 saveRDS ( r e s u l t , f i l e = ” Mas te r / c a s e 4 w i t h l o g L 2 . r d s ” )
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D R-code INLA

1 # i n s t a l l
2 i n s t a l l . p a c k a g e s ( ” sp ” ) # needed f o r INLA
3 i n s t a l l . p a c k a g e s ( ”INLA” , r e p o s = ” h t t p : / /www. math . n tnu . no / i n l a / R /

t e s t i n g ” )
4 l i b r a r y ( INLA )
5

6 # l o a d d a t a
7 mydata = r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents / Mas te r /

newdata . t x t ” , h e a d e r = TRUE)
8 y=mydata $FMs o l d
9 com sd = mydata $com sd

10 C o n t i n e n t = as . f a c t o r ( mydata $ C o n t i n e n t )
11 PID=mydata $PID
12

13 d a t a = l i s t ( y=y , com sd = com sd , C o n t i n e n t = C o n t i n e n t , PID=PID )
14

15 # #### Fongs p r i o r #####
16 f o r m u l a = y ˜ com sd + C o n t i n e n t + com sd∗C o n t i n e n t +
17 f ( PID , model=” i i d ” , hype r = l i s t ( t h e t a = l i s t ( p r i o r = ” loggamma ”

, param = c ( 0 . 5 , 0 . 0 1 6 4 ) ) ) )
18 modelFong = i n l a ( fo rmula , d a t a = da ta , f a m i l y = ” b i n o m i a l ” ,

N t r i a l s = r e p ( 1 , l e n g t h ( y ) ) )
19

20 summary ( modelFong )
21 # f i x e d m a r g i n a l d i s t r i b u t i o n s
22 mF = modelFong $ m a r g i n a l s . f i x e d
23

24 # #### D e f a u l t p r i o r #####
25 f o r m u l a = y ˜ com sd + C o n t i n e n t + com sd∗C o n t i n e n t +
26 f ( PID , model=” i i d ” )
27 modelDef = i n l a ( fo rmula , d a t a = da t a , f a m i l y = ” b i n o m i a l ” , N t r i a l s

= r e p ( 1 , l e n g t h ( y ) ) )
28

29 summary ( modelDef )
30 # f i x e d m a r g i n a l d i s t r i b u t i o n s
31 mD = modelDef $ m a r g i n a l s . f i x e d
32

33 # #### P o p u l a r p r i o r #####
34 f o r m u l a = y ˜ com sd + C o n t i n e n t + com sd∗C o n t i n e n t +
35 f ( PID , model=” i i d ” , hype r = l i s t ( t h e t a = l i s t ( p r i o r = ” loggamma ”

, param = c ( 0 . 0 0 1 , 0 . 0 0 1 ) ) ) )
36 modelPop = i n l a ( fo rmula , d a t a = da ta , f a m i l y = ” b i n o m i a l ” , N t r i a l s

= r e p ( 1 , l e n g t h ( y ) ) )
37

38 summary ( modelPop )
39 # f i x e d m a r g i n a l d i s t r i b u t i o n s
40 mP = modelPop $ m a r g i n a l s . f i x e d
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41

42 # ######################
43 # P l o t f o r a l l t h e f i x e d m a r g i n a l s f o r d i f f e r e n t p r i o r s f o r t h e

random i n t e r c e p t p r e c i s i o n .
44 p a r ( mfrow=c ( 2 , 3 ) )
45 p l o t (mP [ [ 1 ] ] , main=” I n t e r c e p t ” , t y p e =” l ” , y l im =c ( 0 , 0 . 4 ) , x l im =c

( 0 , 1 2 ) )
46 l i n e s (mF [ [ 1 ] ] , c o l =” r e d ” , t y p e =” l ” )
47 l i n e s (mD[ [ 1 ] ] , c o l =” b l u e ” , t y p e =” l ” )
48 l e g e n d ( ” t o p r i g h t ” ,
49 b t y = ” n ” ,
50 i n s e t =0 ,
51 cex = 0 . 6 ,
52 t i t l e =” P r i o r ” ,
53 c ( ” P o p u l a r ” , ” Fong ” , ” D e f a u l t ” ) ,
54 h o r i z =FALSE ,
55 l t y =c ( 1 , 1 , 1 ) ,
56 lwd=c ( 2 , 2 , 2 ) ,
57 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,
58 bg=” grey96 ” )
59 p l o t (mP [ [ 2 ] ] , main=”C sd ” , t y p e =” l ” , y l im =c ( 0 , 0 . 0 8 ) , x l im =c (−50 ,0) )
60 l i n e s (mF [ [ 2 ] ] , c o l =” r e d ” )
61 l i n e s (mD[ [ 2 ] ] , c o l =” b l u e ” )
62 l e g e n d ( ” t o p r i g h t ” ,
63 b t y = ” n ” ,
64 i n s e t =0 ,
65 cex = 0 . 6 ,
66 t i t l e =” P r i o r ” ,
67 c ( ” P o p u l a r ” , ” Fong ” , ” D e f a u l t ” ) ,
68 h o r i z =FALSE ,
69 l t y =c ( 1 , 1 , 1 ) ,
70 lwd=c ( 2 , 2 , 2 ) ,
71 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,
72 bg=” grey96 ” )
73 p l o t (mP [ [ 3 ] ] , main=”USA” , t y p e =” l ” , y l im =c ( 0 , 0 . 3 5 ) , x l im =c (−10 ,4) )
74 l i n e s (mF [ [ 3 ] ] , c o l =” r e d ” )
75 l i n e s (mD[ [ 3 ] ] , c o l =” b l u e ” )
76 l e g e n d ( ” t o p r i g h t ” ,
77 b t y = ” n ” ,
78 i n s e t =0 ,
79 cex = 0 . 6 ,
80 t i t l e =” P r i o r ” ,
81 c ( ” P o p u l a r ” , ” Fong ” , ” D e f a u l t ” ) ,
82 h o r i z =FALSE ,
83 l t y =c ( 1 , 1 , 1 ) ,
84 lwd=c ( 2 , 2 , 2 ) ,
85 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,
86 bg=” grey96 ” )
87 p l o t (mP [ [ 4 ] ] , main=” I n d i a ” , t y p e =” l ” , y l im =c ( 0 , 0 . 3 ) , x l im =c (−15 ,5) )
88 l i n e s (mF [ [ 4 ] ] , c o l =” r e d ” )
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89 l i n e s (mD[ [ 4 ] ] , c o l =” b l u e ” )
90 l e g e n d ( ” t o p r i g h t ” ,
91 b t y = ” n ” ,
92 i n s e t =0 ,
93 cex = 0 . 6 ,
94 t i t l e =” P r i o r ” ,
95 c ( ” P o p u l a r ” , ” Fong ” , ” D e f a u l t ” ) ,
96 h o r i z =FALSE ,
97 l t y =c ( 1 , 1 , 1 ) ,
98 lwd=c ( 2 , 2 , 2 ) ,
99 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,

100 bg=” grey96 ” )
101 p l o t (mP [ [ 5 ] ] , main=”C sd∗USA” , t y p e =” l ” , y l im =c ( 0 , 0 . 0 6 ) , x l im =c

(−20 ,60) )
102 l i n e s (mF [ [ 5 ] ] , c o l =” r e d ” )
103 l i n e s (mD[ [ 5 ] ] , c o l =” b l u e ” )
104 l e g e n d ( ” t o p r i g h t ” ,
105 b t y = ” n ” ,
106 i n s e t =0 ,
107 cex = 0 . 6 ,
108 t i t l e =” P r i o r ” ,
109 c ( ” P o p u l a r ” , ” Fong ” , ” D e f a u l t ” ) ,
110 h o r i z =FALSE ,
111 l t y =c ( 1 , 1 , 1 ) ,
112 lwd=c ( 2 , 2 , 2 ) ,
113 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,
114 bg=” grey96 ” )
115 p l o t (mP [ [ 6 ] ] , main=”C sd∗ I n d i a ” , t y p e =” l ” , y l im =c ( 0 , 0 . 0 5 ) , x l im =c

(−10 ,85) )
116 l i n e s (mF [ [ 6 ] ] , c o l =” r e d ” )
117 l i n e s (mD[ [ 6 ] ] , c o l =” b l u e ” )
118 l e g e n d ( ” t o p r i g h t ” ,
119 b t y = ” n ” ,
120 i n s e t =0 ,
121 cex = 0 . 6 ,
122 t i t l e =” P r i o r ” ,
123 c ( ” P o p u l a r ” , ” Fong ” , ” D e f a u l t ” ) ,
124 h o r i z =FALSE ,
125 l t y =c ( 1 , 1 , 1 ) ,
126 lwd=c ( 2 , 2 , 2 ) ,
127 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,
128 bg=” grey96 ” )
129

130

131 # P l o t o f p r e c i s i o n f o r t h e random i n t e r c e p t w i th d i f f e r e n t p r i o r s
f o r t h e p r e c i s i o n . The be ta ’ s have d e f a u l t p r i o r s .

132 p a r ( mfrow=c ( 1 , 1 ) )
133 p l o t ( modelPop $ m a r g i n a l s . hype r $ ‘ P r e c i s i o n f o r PID ‘ [ 1 : 6 0 , ] , t y p e =” l ”

, y l im =c ( 0 , 0 . 9 5 ) )
134 l i n e s ( x= seq ( from =0 , t o =4 , by = 0 . 1 ) , dgamma ( x= seq ( from =0 , t o =4 , by
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= 0 . 1 ) , shape =modelPop $ a l l . hype r $ random [ [ 1 ] ] $ hype r $ t h e t a $ param
[ 1 ] , r a t e =modelPop $ a l l . hype r $ random [ [ 1 ] ] $ hype r $ t h e t a $ param [ 2 ] )
, c o l =” b l a c k ” , l t y =2)

135 l i n e s ( modelFong $ m a r g i n a l s . hype r $ ‘ P r e c i s i o n f o r PID ‘ [ 1 : 6 0 , ] , c o l =”
r e d ” )

136 l i n e s ( x= seq ( from =0 , t o =4 , by = 0 . 1 ) , dgamma ( x= seq ( from =0 , t o =4 , by
= 0 . 1 ) , shape =modelFong $ a l l . hype r $ random [ [ 1 ] ] $ hype r $ t h e t a $ param
[ 1 ] , r a t e =modelFong $ a l l . hype r $ random [ [ 1 ] ] $ hype r $ t h e t a $ param
[ 2 ] ) , c o l =” r e d ” , l t y =2)

137 l i n e s ( modelDef $ m a r g i n a l s . hype r $ ‘ P r e c i s i o n f o r PID ‘ [ 1 : 8 , ] , c o l =”
b l u e ” )

138 l i n e s ( x= seq ( from =0 , t o =4 , by = 0 . 1 ) , dgamma ( x= seq ( from =0 , t o =4 , by
= 0 . 1 ) , shape =modelDef $ a l l . hype r $ random [ [ 1 ] ] $ hype r $ t h e t a $ param
[ 1 ] , r a t e =modelDef $ a l l . hype r $ random [ [ 1 ] ] $ hype r $ t h e t a $ param [ 2 ] )
, c o l =” b l u e ” , l t y =2)

139 l e g e n d ( ” t o p r i g h t ” ,
140 i n s e t = 0 . 0 1 ,
141 cex = 0 . 8 ,
142 c ( ” P o s t e r i o r P o p u l a r ” , ” P o s t e r i o r Fong ” , ” P o s t e r i o r D e f a u l t ”

, ” P r i o r P o p u l a r ” , ” P r i o r Fong ” , ” P r i o r D e f a u t l ” ) ,
143 h o r i z =FALSE ,
144 l t y =c ( 1 , 1 , 1 , 2 , 2 , 2 ) ,
145 lwd=c ( 2 , 2 , 2 , 2 , 2 , 2 ) ,
146 c o l =c ( ” b l a c k ” , ” r e d ” , ” b l u e ” ) ,
147 bg=” grey96 ” )
148

149

150 # p l o t o f f i x e d m a r g i n a l s and t h e i r p r i o r s
151 p a r ( mfrow=c ( 2 , 3 ) )
152 # use t h e p o p u l a r p r i o r f o r t h e random i n t e r c e p t
153 mP = modelPop $ m a r g i n a l s . f i x e d
154 p l o t (mP [ [ 1 ] ] , main=” I n t e r c e p t ” , t y p e =” l ” , y l im =c ( 0 , 0 . 4 5 ) , c o l =” r e d ”

)
155 x= seq ( from =−5, t o =15 , by = 0 . 1 )
156 l i n e s ( x=x , y=dnorm ( x , mean =0 , sd =1 / s q r t ( 0 ) ) , c o l =” b l u e ” )
157 l e g e n d ( ” t o p r i g h t ” ,
158 i n s e t =0 ,
159 cex = 0 . 6 ,
160 c ( ” P o s t e r i o r ” , ” P r i o r ” ) ,
161 h o r i z =FALSE ,
162 l t y =c ( 1 , 1 , 1 ) ,
163 lwd=c ( 2 , 2 , 2 ) ,
164 c o l =c ( ” r e d ” , ” b l u e ” ) ,
165 bg=” grey96 ” )
166 p l o t (mP [ [ 2 ] ] , main=”C sd ” , t y p e =” l ” , y l im =c ( 0 , 0 . 0 8 ) , c o l =” r e d ” )
167 x= seq ( from =−80, t o =25 , by = 0 . 1 )
168 l i n e s ( x=x , y=dnorm ( x , mean =0 , sd =1 / s q r t ( 0 . 0 1 ) ) , c o l =” b l u e ” )
169 l e g e n d ( ” t o p r i g h t ” ,
170 i n s e t =0 ,
171 cex = 0 . 6 ,
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172 c ( ” P o s t e r i o r ” , ” P r i o r ” ) ,
173 h o r i z =FALSE ,
174 l t y =c ( 1 , 1 , 1 ) ,
175 lwd=c ( 2 , 2 , 2 ) ,
176 c o l =c ( ” r e d ” , ” b l u e ” ) ,
177 bg=” grey96 ” )
178 p l o t (mP [ [ 3 ] ] , main=”USA” , t y p e =” l ” , y l im =c ( 0 , 0 . 3 5 ) , c o l =” r e d ” )
179 x= seq ( from =−15, t o =10 , by = 0 . 1 )
180 l i n e s ( x=x , y=dnorm ( x , mean =0 , sd =1 / s q r t ( 0 . 0 1 ) ) , c o l =” b l u e ” )
181 l e g e n d ( ” t o p r i g h t ” ,
182 i n s e t =0 ,
183 cex = 0 . 6 ,
184 c ( ” P o s t e r i o r ” , ” P r i o r ” ) ,
185 h o r i z =FALSE ,
186 l t y =c ( 1 , 1 , 1 ) ,
187 lwd=c ( 2 , 2 , 2 ) ,
188 c o l =c ( ” r e d ” , ” b l u e ” ) ,
189 bg=” grey96 ” )
190 p l o t (mP [ [ 4 ] ] , main=” I n d i a ” , t y p e =” l ” , y l im =c ( 0 , 0 . 3 ) , c o l =” r e d ” )
191 x= seq ( from =−20, t o =10 , by = 0 . 1 )
192 l i n e s ( x=x , y=dnorm ( x , mean =0 , sd =1 / s q r t ( 0 . 0 1 ) ) , c o l =” b l u e ” )
193 l e g e n d ( ” t o p r i g h t ” ,
194 i n s e t =0 ,
195 cex = 0 . 6 ,
196 c ( ” P o s t e r i o r ” , ” P r i o r ” ) ,
197 h o r i z =FALSE ,
198 l t y =c ( 1 , 1 , 1 ) ,
199 lwd=c ( 2 , 2 , 2 ) ,
200 c o l =c ( ” r e d ” , ” b l u e ” ) ,
201 bg=” grey96 ” )
202 p l o t (mP [ [ 5 ] ] , main=”C sd∗USA” , t y p e =” l ” , y l im =c ( 0 , 0 . 0 6 ) , c o l =” r e d ” )
203 x= seq ( from =−50, t o =90 , by = 0 . 1 )
204 l i n e s ( x=x , y=dnorm ( x , mean =0 , sd =1 / s q r t ( 0 . 0 1 ) ) , c o l =” b l u e ” )
205 l e g e n d ( ” t o p r i g h t ” ,
206 i n s e t =0 ,
207 cex = 0 . 6 ,
208 c ( ” P o s t e r i o r ” , ” P r i o r ” ) ,
209 h o r i z =FALSE ,
210 l t y =c ( 1 , 1 , 1 ) ,
211 lwd=c ( 2 , 2 , 2 ) ,
212 c o l =c ( ” r e d ” , ” b l u e ” ) ,
213 bg=” grey96 ” )
214 p l o t (mP [ [ 6 ] ] , main=”C sd∗ I n d i a ” , t y p e =” l ” , y l im =c ( 0 , 0 . 0 5 ) , c o l =” r e d

” )
215 x= seq ( from =−60, t o =120 , by = 0 . 1 )
216 l i n e s ( x=x , y=dnorm ( x , mean =0 , sd =1 / s q r t ( 0 . 0 1 ) ) , c o l =” b l u e ” )
217 l e g e n d ( ” t o p r i g h t ” ,
218 i n s e t =0 ,
219 cex = 0 . 6 ,
220 c ( ” P o s t e r i o r ” , ” P r i o r ” ) ,
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221 h o r i z =FALSE ,
222 l t y =c ( 1 , 1 , 1 ) ,
223 lwd=c ( 2 , 2 , 2 ) ,
224 c o l =c ( ” r e d ” , ” b l u e ” ) ,
225 bg=” grey96 ” )
226

227

228 # #### Odds r a t i o s ####
229 # norway
230 d a t a <− w i t h i n ( da t a , C o n t i n e n t <− r e l e v e l ( C o n t i n e n t , r e f = 1) )
231 f o r m u l a = y ˜ com sd + C o n t i n e n t + com sd∗C o n t i n e n t +
232 f ( PID , model=” i i d ” , hype r = l i s t ( t h e t a = l i s t ( p r i o r = ” loggamma ”

, param = c ( 0 . 0 0 1 , 0 . 0 0 1 ) ) ) )
233 modelPop = i n l a ( fo rmula , d a t a = da ta , f a m i l y = ” b i n o m i a l ” , N t r i a l s

= r e p ( 1 , l e n g t h ( y ) ) )
234

235 orNor <− i n l a . t m a r g i n a l ( f u n c t i o n ( x ) exp ( 0 . 1 ∗x ) , modelPop $ m a r g i n a l s
. f i x e d [ [ 2 ] ] )

236 i n l a . z m a r g i n a l ( orNor )
237

238 # usa
239 d a t a <− w i t h i n ( da t a , C o n t i n e n t <− r e l e v e l ( C o n t i n e n t , r e f = 2) )
240 f o r m u l a = y ˜ com sd + C o n t i n e n t + com sd∗C o n t i n e n t +
241 f ( PID , model=” i i d ” , hype r = l i s t ( t h e t a = l i s t ( p r i o r = ” loggamma ”

, param = c ( 0 . 0 0 1 , 0 . 0 0 1 ) ) ) )
242 modelPop = i n l a ( fo rmula , d a t a = da ta , f a m i l y = ” b i n o m i a l ” , N t r i a l s

= r e p ( 1 , l e n g t h ( y ) ) )
243 summary ( modelPop )
244

245 orUSA <− i n l a . t m a r g i n a l ( f u n c t i o n ( x ) exp ( 0 . 1 ∗x ) , modelPop $ m a r g i n a l s
. f i x e d [ [ 2 ] ] )

246 i n l a . z m a r g i n a l ( orUSA )
247

248 # i n d i a
249 d a t a <− w i t h i n ( da t a , C o n t i n e n t <− r e l e v e l ( C o n t i n e n t , r e f = 3) )
250 f o r m u l a = y ˜ com sd + C o n t i n e n t + com sd∗C o n t i n e n t +
251 f ( PID , model=” i i d ” , hype r = l i s t ( t h e t a = l i s t ( p r i o r = ” loggamma ”

, param = c ( 0 . 0 0 1 , 0 . 0 0 1 ) ) ) )
252 modelPop = i n l a ( fo rmula , d a t a = da ta , f a m i l y = ” b i n o m i a l ” , N t r i a l s

= r e p ( 1 , l e n g t h ( y ) ) )
253 summary ( modelPop )
254

255 o r I n d i a <− i n l a . t m a r g i n a l ( f u n c t i o n ( x ) exp ( 0 . 1 ∗x ) , modelPop $
m a r g i n a l s . f i x e d [ [ 2 ] ] )

256 i n l a . z m a r g i n a l ( o r I n d i a )
257

258

259 # #### P r e d i c t i o n #####
260

261 # i n t e r n a l v a l i d a t i o n − p o p u l a t i o n a v e r a g e d
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262 PID2 =PID+693
263 d a t a 2 = l i s t ( y=c ( y , r e p (NA, l e n g t h ( y ) ) ) , com sd = c ( com sd , com sd

) , C o n t i n e n t = c ( C o n t i n e n t , C o n t i n e n t ) , PID=c ( PID , PID2 ) )
264 p mode2 = r e p (NA, l e n g t h ( d a t a $PID ) )
265

266 f o r ( i i n 1 : l e n g t h ( d a t a $PID ) ) {
267 l i n k = r e p (NA, l e n g t h ( d a t a 2 $y ) )
268 l i n k [ which ( i s . na ( d a t a 2 $y ) ) ] = 1
269 modelPop2 = i n l a ( fo rmula , d a t a = da ta2 , f a m i l y = ” b i n o m i a l ” ,

N t r i a l s = r e p ( 1 , l e n g t h ( y ) ) , c o n t r o l . p r e d i c t o r = l i s t ( compute
= TRUE, l i n k = l i n k ) )

270 p mode2 [ i ] = i n l a . mmarginal ( i n l a . t m a r g i n a l ( fun = f u n c t i o n ( x ) exp
( x ) / (1+ exp ( x ) ) ,

271 m a r g i n a l = modelPop2 $ m a r g i n a l s . l i n e a r .
p r e d i c t o r [ [798+ i ] ] ) )

272 Count ry [ i ] = d a t a 2 $ C o n t i n e n t [798+ i ]
273 }
274 w r i t e . t a b l e ( d a t a . f rame ( p = p mode2 , Count ry = Count ry ) , f i l e =” / /

Use r s / m a r t i n a h a l l / Documents / Mas te r / p r o b I n t e r n a l I N L A . t x t ” )
275 i n t <− r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents / Mas te r /

p r o b I n t e r n a l I N L A . t x t ” )
276

277 # E x t e r n a l v a l i d a t i o n : l e a v e−one−o u t cv − p o p u l a t i o n a v e r a g e d
278 p mode2 = r e p (NA, l e n g t h ( d a t a $PID ) )
279 f o r ( i i n 1 : l e n g t h ( d a t a $PID ) ) {
280 d a t a 2 = d a t a
281 d a t a 2 $y [ i ] = NA
282 l i n k = r e p (NA, l e n g t h ( d a t a 2 $y ) )
283 l i n k [ which ( i s . na ( d a t a 2 $y ) ) ] = 1
284 modelPop2 = i n l a ( fo rmula , d a t a = da ta2 , f a m i l y = ” b i n o m i a l ” ,

N t r i a l s = r e p ( 1 , l e n g t h ( y ) ) , c o n t r o l . p r e d i c t o r = l i s t ( compute
= TRUE, l i n k = l i n k ) )

285 p mode2 [ i ] = i n l a . mmarginal ( i n l a . t m a r g i n a l ( fun = f u n c t i o n ( x ) exp
( x ) / (1+ exp ( x ) ) ,

286 m a r g i n a l = modelPop2 $ m a r g i n a l s . l i n e a r . p r e d i c t o r [ [ i ] ] ) )
287 }
288 l i s t = l i s t ( e x t e r n a l = p mode2 , t rueY = d a t a $y )
289 w r i t e . t a b l e ( l i s t , f i l e =” / / Use r s / m a r t i n a h a l l / Documents / Mas te r /

INLAExterna l . t x t ” )
290 p mode2 <− r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents / Mas te r /

INLAExterna l . t x t ” )
291

292

293 # #### AUC − pop . avg from v a l i d a t i o n #####
294 l i b r a r y ( ”ROCR” )
295 # e x t e r n
296 predE <− p r e d i c t i o n ( p mode2$ e x t e r n a l , d a t a $y )
297 p e r f E <− p e r f o r m a n c e ( predE , ” t p r ” , ” f p r ” )
298 aucE <− p e r f o r m a n c e ( predE , ” auc ” )
299 # now c o n v e r t i n g S4 c l a s s t o v e c t o r
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300 aucE <− u n l i s t ( s l o t ( aucE , ” y . v a l u e s ” ) )
301

302 # i n t e r n
303 p r e d I <− p r e d i c t i o n ( i n t $p , d a t a $y )
304 p e r f I <− p e r f o r m a n c e ( p r e d I , ” t p r ” , ” f p r ” )
305 a u c I <− p e r f o r m a n c e ( p r e d I , ” auc ” )
306 # now c o n v e r t i n g S4 c l a s s t o v e c t o r
307 a u c I <− u n l i s t ( s l o t ( aucI , ” y . v a l u e s ” ) )
308

309 # bo th i n one p l o t
310 p l o t ( p e r f I , c o l =” b l u e ” , l t y =3 , lwd =3 , y l a b =” S e n s i t i v i t y ” , x l a b =”1−

S p e s i f i c i t y ” )
311 l i n e s ( c ( 0 , 1 ) , c ( 0 , 1 ) )
312 p l o t ( per fE , c o l =” r e d ” , l t y =3 , lwd =3 , y l a b =” S e n s i t i v i t y ” , x l a b =”1−

S p e s i f i c i t y ” , add=TRUE)
313

314

315 # a dd in g min and max ROC AUC t o t h e c e n t e r o f t h e p l o t
316 I n t e r n<−min ( round ( aucI , d i g i t s = 4 ) )
317 E x t e r n<−max ( round ( aucE , d i g i t s = 4 ) )
318 I n t e r n t <− p a s t e ( c ( ”AUC i n t e r n a l = ” ) , I n t e r n , sep =” ” )
319 E x t e r n t <− p a s t e ( c ( ”AUC e x t e r n a l = ” ) , Ex te rn , sep =” ” )
320 l e g e n d ( 0 . 3 , 0 . 6 , c ( I n t e r n t , E x t e r n t , ”\n ” ) , b o r d e r =” w h i t e ” , cex = 1 . 1 , box

. c o l = ” w h i t e ” , c o l =c ( ” b l u e ” , ” r e d ” ) )
321 l e g e n d ( ” b o t t o m r i g h t ” ,
322 b t y = ” n ” ,
323 i n s e t = 0 . 1 ,
324 cex = 1 ,
325 t i t l e =” ” ,
326 c ( ” I n t e r n a l ” , ” E x t e r n a l ” ) ,
327 h o r i z =FALSE ,
328 l t y =c ( 1 , 1 , 1 ) ,
329 lwd=c ( 2 , 2 , 2 ) ,
330 c o l =c ( ” b l u e ” , ” r e d ” ) ,
331 bg=” grey96 ” )
332

333

334 # b r i e r s c o r e
335 b r i e r = (1 / l e n g t h ( p mode2$ e x t e r n a l ) ) ∗sum ( ( p mode2$ e x t e r n a l−p mode2

$ t rueY ) ˆ 2 )
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E R code Bootstrap

1 mydata2<− r e a d . t a b l e ( f i l e =” Mas te r / newdataCP new . t x t ” , h e a d e r =
TRUE)

2 l i b r a r y ( g lmne t )
3

4 B=1000
5 # choose d e c i s i o n r u l e
6 t y p e = dev
7 lambdaMin = TRUE
8 n f o l d s = 20
9

10 CP = as . f a c t o r ( mydata2 $CP)
11 Count ry = as . f a c t o r ( mydata2 $ C o n t i n e n t )
12 C sd = mydata2 $com sd
13 C mean = mydata2 $com mean
14 Q mean = mydata2 $qom mean
15 Q sd = mydata2 $qom sd
16 A mean = mydata2 $aom mean
17 A sd = mydata2 $aom sd
18 H mean = mydata2 $hom mean
19 H sd = mydata2 $hom sd
20 W mean = mydata2 $wom mean
21 W sd = mydata2 $wom sd
22 C x mean = mydata2 $com x mean
23 C x sd = mydata2 $com x sd
24 C y mean = mydata2 $com y mean
25 C y sd = mydata2 $com y sd
26 # c l i n i c a l v a r i a b l e s
27 sex = as . f a c t o r ( mydata2 $SEX)
28 below1000g = as . f a c t o r ( mydata2 $BELOW1000GR)
29 below28GA = as . f a c t o r ( mydata2 $BELOW28GA)
30 bw = mydata2 $BW
31 GA = mydata2 $GA
32 r e c t ime = mydata2 $ r e c t ime
33 P TE AGE = mydata2 $P TE AGE
34 t r u n k a r e a = mydata2 $ Trunk a r e a
35

36 m2 = model . m a t r i x (CP ˜ Count ry + sex +below1000g+below28GA ) [ ,−1]
37 x2<− as . m a t r i x ( d a t a . f rame ( bw , r e c t ime , P TE AGE, t r u n k a rea , Q sd

, A mean , A sd , C x mean , C x sd , C y mean , C y sd , m2) )
38

39 cv <− cv . g lmne t ( x2 , y=CP , a l p h a =1 , f a m i l y =” b i n o m i a l ” , p e n a l t y .
f a c t o r = c ( r e p . i n t ( 1 , 1 1 ) , 0 , 0 , 1 , 1 , 1 ) , s t a n d a r d i z e = TRUE,
i n t e r c e p t = TRUE, n f o l d s = n f o l d s , t y p e . measure = t y p e )

40

41 b e t a = c o e f ( cv , s=” lambda . min ” ) [ , 1 ]
42 lambda = cv $ lambda . min
43 p = l e n g t h ( b e t a ) # a n t a l l p r e d i c t o r s
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44 s t o r e M a t <− m a t r i x (NA, n c o l =( p +1) , nrow=B)
45 co lnames ( s t o r e M a t ) <− c ( names ( b e t a ) , ” lambda . min ” )
46 n=dim ( mydata2 ) [ 1 ]
47

48 # b o o t s t r a p
49 s e t . s eed ( 1 2 4 2 3 2 )
50 f o r ( b i n 1 :B) {
51 # draw b o o t s t r a p samples
52 bsample = sample ( c ( 1 : n ) , r e p l a c e = TRUE)
53 d a t a = mydata2 [ bsample , ]
54 CP = as . f a c t o r ( d a t a $CP )
55 Count ry = as . f a c t o r ( d a t a $ C o n t i n e n t )
56 C sd = d a t a $com sd
57 C mean = d a t a $com mean
58 Q mean = d a t a $qom mean
59 Q sd = d a t a $qom sd
60 A mean = d a t a $aom mean
61 A sd = d a t a $aom sd
62 H mean = d a t a $hom mean
63 H sd = d a t a $hom sd
64 W mean = d a t a $wom mean
65 W sd = d a t a $wom sd
66 C x mean = d a t a $com x mean
67 C x sd = d a t a $com x sd
68 C y mean = d a t a $com y mean
69 C y sd = d a t a $com y sd
70 # c l i n i c a l v a r i a b l e s
71 sex = as . f a c t o r ( d a t a $SEX)
72 below1000g = as . f a c t o r ( d a t a $BELOW1000GR)
73 below28GA = as . f a c t o r ( d a t a $BELOW28GA)
74 bw = d a t a $BW
75 GA = d a t a $GA
76 r e c t ime = d a t a $ r e c t ime
77 P TE AGE = d a t a $P TE AGE
78 t r u n k a r e a = d a t a $ Trunk a r e a
79

80 m2 = model . m a t r i x (CP ˜ Count ry + sex +below1000g+below28GA ) [ ,−1]
81 x2<− as . m a t r i x ( d a t a . f rame ( bw , r e c t ime , P TE AGE, t r u n k a rea , Q

sd , A mean , A sd , C x mean , C x sd , C y mean , C y sd , m2) )
82

83 # f i t model
84 cv <− cv . g lmne t ( x2 , y=CP , a l p h a =1 , f a m i l y =” b i n o m i a l ” , p e n a l t y .

f a c t o r = c ( r e p . i n t ( 1 , 1 1 ) , 0 , 0 , 1 , 1 , 1 ) , s t a n d a r d i z e = TRUE,
i n t e r c e p t = TRUE, n f o l d s = n f o l d s , t y p e . measure = t y p e )

85 i f ( lambdaMin == TRUE) {
86 b b e t a = c o e f ( cv , s=” lambda . min ” ) [ , 1 ]
87 blambda = cv $ lambda . min
88 }
89 e l s e {
90 b b e t a = c o e f ( cv , s=” lambda . 1 se ” ) [ , 1 ]
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91 blambda = cv $ lambda . 1 se
92 }
93 # s t o r e r e s u l t s
94 s t o r e M a t [ b , ] = c ( bbe ta , blambda )
95 }
96

97 saveRDS ( s to r eMa t , f i l e =” Mas te r / b o o t s t r a p D e v . r d s ” )
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F R code Multi sample splitting

1 d a t a <− r e a d . t a b l e ( f i l e =” / / Use r s / m a r t i n a h a l l / Documents / Mas te r /
newdataCP new . t x t ” , h e a d e r = TRUE)

2 CP = d a t a $CP
3 Count ry = as . f a c t o r ( d a t a $ C o n t i n e n t )
4 C sd = d a t a $com sd
5 C mean = d a t a $com mean
6 Q mean = d a t a $qom mean
7 Q sd = d a t a $qom sd
8 A mean = d a t a $aom mean
9 A sd = d a t a $aom sd

10 H mean = d a t a $hom mean
11 H sd = d a t a $hom sd
12 W mean = d a t a $wom mean
13 W sd = d a t a $wom sd
14 C x mean = d a t a $com x mean
15 C x sd = d a t a $com x sd
16 C y mean = d a t a $com y mean
17 C y sd = d a t a $com y sd
18

19 # c l i n i c a l v a r i a b l e s
20 sex = as . f a c t o r ( d a t a $SEX)
21 below1000g = as . f a c t o r ( d a t a $BELOW1000GR)
22 below28GA = as . f a c t o r ( d a t a $BELOW28GA)
23 below1000g28GA = as . f a c t o r ( d a t a $ Below1000g 28GA)
24 bw = d a t a $BW
25 GA = d a t a $GA
26 r e c t ime = d a t a $ r e c t ime
27 P TE AGE = d a t a $P TE AGE
28 t r u n k a r e a = d a t a $ Trunk a r e a
29

30 i n s t a l l . p a c k a g e s ( ” h d i ” )
31 l i b r a r y ( ” h d i ” )
32

33 mydata = d a t a . f rame ( Count ry =Country , C sd=C sd , C mean=C mean , Q
mean=Q mean , Q sd=Q sd , A mean=A mean , A sd=A sd , H mean=H
mean , H sd=H sd , W mean=W mean , W sd=W sd , C x mean=C x mean ,
C x sd=C x sd , C y mean=C y mean , C y sd=C y sd , sex =sex ,
below1000g=below1000g , below1000g28GA=below1000g28GA ,
below28GA=below28GA , bw=bw , GA=GA, r e c t ime = r e c t ime , P TE AGE
=P TE AGE, t r u n k a r e a = t r u n k a r e a )

34

35 # f u n c t i o n t o use t h e l a s s o method i n t h e m u l t i sample−s p l i t
36 l a s s o . cv . lambda . min= f u n c t i o n ( x , y , n f o l d s = 346 , grouped = nrow ( x

) > 3 ∗ n f o l d s ,
37 . . . )
38 {
39 f i t . cv <− cv . g lmne t ( x , y , n f o l d s = 346 , g rouped = grouped ,
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p e n a l t y . f a c t o r = c ( r e p . i n t ( 1 , 1 1 ) , 0 , 0 , 1 , 1 , 1 ) , t y p e . measure =
” dev ” ,

40 . . . )
41 s e l <− p r e d i c t ( f i t . cv , t y p e = ” nonze ro ” , s=” lambda . min ” )
42 s e l [ [ 1 ] ]
43 }
44

45 # c o n f i d e n c e i n t e r v a l s f o r l o g i s t i c model
46 glm . c i = f u n c t i o n ( x , y , l e v e l = 0 . 9 5 , . . . )
47 {
48 f i t . glm <− glm ( y ˜ x , f a m i l y = ” b i n o m i a l ” )
49 c o n f i n t ( f i t . glm , l e v e l = l e v e l ) [−1 , , d rop = FALSE]
50 }
51

52 f o r m u l a = CP ˜ bw + r e c t ime + P TE AGE + t r u n k a r e a + Q sd + A mean
+ A sd + C x mean + C x sd + C y mean + C y sd + f a c t o r (

Count ry ) + f a c t o r ( sex ) + f a c t o r ( below1000g ) + f a c t o r ( below28GA
)

53 mf = model . f rame ( f o r m u l a = formula , d a t a = mydata )
54 X = model . m a t r i x ( a t t r ( mf , ” t e r m s ” ) , d a t a = mf )
55

56 # m u l t i sample s p l i t t i n g
57 hd iRes <− m u l t i . s p l i t ( x=X[ ,−1] , y=CP , c l a s s i c a l . f i t = glm . pva l ,

c l a s s i c a l . c i = glm . c i , model . s e l e c t o r = l a s s o . cv . lambda . min ,
a r g s . model . s e l e c t o r = l i s t ( f a m i l y =” b i n o m i a l ” ) , B=1000 , r e t u r n .
nonaggr = TRUE, r e t u r n . s e l m o d e l s = TRUE, v e r b o s e = TRUE)

58

59 # c o r r e c t e d p−v a l u e s
60 hd iRes $ p v a l . c o r r
61 # c o n f i d e n c e i n t e r v a l s
62 c b i n d ( hd iRes $ l c i , hd iRes $ uc )
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