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Project Description

In this paper, the author presents an analysis of a time-triggered automotive communion network.

The project was carried out in collaboration with Way AS, and the project vehicle used was a model

year 2016 Mini One with a FlexRay communication network. The paper seeks to investigate

the possibility of manipulating the original network communication in FlexRay. In order to

accomplish this, the author shall:

• Develop the necessary tools in order to analyse the FlexRay communication network.

• Validate the information with the inherent error detection and format of a FlexRay frame.

• Estimate FlexRay configuration parameters.

• Investigate FlexRay message content.

• Research the possibility of performing a man-in-the-middle attack on FlexRay.

Trondheim, 04.06.2017

Markus Iversen Huse
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Summary

This paper investigates the time-triggered automotive communication protocol FlexRay. Included

is a study of on-board electronic vehicular systems, which focuses on possible vulnerabilities

connected to networked data transmissions.

In order to provide information about the network communication and configuration param-

eters, a FlexRay analysis software was developed.

The analysis software is validated using the original FlexRay frame format from the protocol

specification and the cyclic redundancy check (CRC) provided in the data transmission. Addi-

tionally, the results from the network analysis are compared to the communication of a FlexRay

network where the configuration parameters and the frame content are known. The FlexRay

analysis software was then used to investigate the FlexRay network of an actual vehicle.

Finally, based on the theory and experience from working with FlexRay, multiple adver-

sary solutions are presented, as well as solutions for manipulating frame content of real-time

communication in a FlexRay network.
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Sammendrag

Denne oppgaven beskriver bilkommunikasjonsprotokollen FlexRay og elektroniske kjøretøysys-

temer med et fokus på mulige sårbarheter tilknyttet dataoverføring.

For å gi informasjon om datakommunikasjonen og nettverks-konfigurasjonsparametrene i

FlexRay, ble et analyseprogram for FlexRay utviklet.

Analyseprogrammet valideres ved bruk av det originale FlexRay-datarammeformatet og

den sykliske redundanskontrollen (CRC) i meldingsinnholdet i dataoverføringen. Analysen ble

sammenlignet med kommunikasjonen i et nettverk der konfigurasjonsparametrene og meld-

ingsinnholdet er kjent. FlexRay-analyseprogrammet ble videre brukt til å analysere nettverk-

skommunikasjonen i et fungerende kjøretøy.

Til slutt, basert på teorien og erfaringene opparbeidet under oppgaven, blir flere FlexRay-

nettverksmotstandere presentert, i tillegg til løsninger for å manipulere meldingsinnholdet til

FlexRay-meldinger i sanntid.
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Chapter 1

Introduction

1.1 Background and Motivation

Modern automobiles typically contain in excess of 60 Electronic Control Units (ECUs). These

ECUs are dispersed throughout the vehicle and are connected to each other via multiple commu-

nication networks. The networks are used to distribute commands and information between the

various vehicular systems. These electronic systems function in harsh environments, whilst at the

same time providing different levels of security, tolerance, and demands for the data transmission

[12].

Mechanical and hydraulic control systems are increasingly being superseded with electronic

control. These new systems place a high demand on bandwidth, security and deterministic data

transmission. Consequently, there is a real need for time-triggered architectures in automotive

communication networks [12].

The automotive industry, in order to protect its research and inventions, operates almost ex-

clusively with nondisclosure agreements (NDAs). Subsequently, the implementations of electrical

vehicular systems are proprietary, i.e. neither the content nor the format of the data transmissions

are known. However, encryption of network information is rarely implemented.

Nevertheless, a system vulnerability exists whereby an attacker could gain access to the bus

system. The bus system transmits safety-critical data throughout the vehicle and this could

endanger the vehicle occupants and the surrounding environment. Therefore, exposing these

security vulnerabilities could raise an awareness with the automotive manufacturers and lead to

1
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increased security in on-board electronic systems.

Time-triggered automotive communication networks, such as FlexRay, are prone to carrying

safety-critical information as the main applications for FlexRay are related to X-by-wire systems.

The FlexRay protocol uses a Time Division Multiple Access (TDMA) scheme for medium access,

which ensures deterministic data communication throughout the vehicle network [12].

FlexRay is currently the most popular time-triggered automotive network protocol for X-by-

wire applications. Its advantages includes high bandwidth, high tolerance and deterministic

data communication. While the complexity of the execution flow in such networks (with a

static transmission schedule) is reduced, the configuration complexity is greatly increased. Thus,

analysing, or ‘packet-sniffing’, such a network protocol becomes increasingly difficult as opposed

to an event-triggered architecture (e.g. CAN bus) [12].

This paper is written in collaboration with Way AS, who are developing a driving simulator,

which utilises information from various electronic vehicular systems to supply information to

the simulator. Therefore, an approach for retrieving information from the FlexRay network

of the vehicle is desired. Additionally, an adversary solution for FlexRay is wanted in order

to remotely control some of the vehicle’s functions for the sake of simulating specific driving

conditions. Moreover, implementing a FlexRay adversary in the vehicle would open the possibility

of altering the original communication such that it would have data from the simulator. The

driving simulator is shown in Figure 1.1.

This paper contributes to current research as analysis of FlexRay networks, without the use

of proprietary systems, is quite sparse. Furthermore, a limited amount of research is published

about the possibility of an adversary on FlexRay.

1.2 Goal and Method

The goal of this paper is to develop and implement the necessary software solution in order

to analyse the network communication, frame content, and the FlexRay node configuration

parameters of a FlexRay network. Furthermore, the goal is to show how an adversary could be

implemented in a FlexRay network and how a specific frame or the entire network communication

could be manipulated.



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Driving Simulator1

In order to accomplish this, extensive research into the FlexRay protocol, automotive data

security, and automotive electronic systems is required. Additionally, a particular focus is set on

the frame transmission and network configuration in a FlexRay network as well as the physical

layer of FlexRay.

1.3 Outline of the Report

Chapter 2 presents the literature and theory that are used in this paper. Whilst, Chapter 3 portrays

the electronic systems and the main communication networks of the test vehicle. Chapter 4 de-

scribes the functionality of the FlexRay analysis software used to analyse FlexRay communication

and configuration parameters. Furthermore, the analysis software from Chapter 4 is validated

and used for the analysis of existing FlexRay networks in Chapter 5. The suggestions for FlexRay

adversaries are then presented in Chapter 6. Finally, a discussion and the conclusion are given in

Chapter 7 and Chapter 8, respectively.

It is not necessary to read sections 2.1 to 2.4 in order to understand the results presented in

chapters 3 to 6, although it is recommended as it complements to the material presented in the

rest of the paper.

1Picture Provided by Way AS
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Chapter 2

Background

This chapter provides a general understanding of automotive communication networks, elec-

tronic systems, and automotive network security, with an emphasis on the specifications and

applications of the FlexRay protocol. Examples and illustrations are used where they are suitable

in order to give a better understanding of the subjects.

Prior to this paper, I have completed a broad literature study on the FlexRay protocol and

developed a test network which implements two FlexRay nodes. I have also been working with

data analysis of messages in Controller Area Network (CAN) and have a general understanding of

automotive electronic systems.

This chapter is mostly based on the "FlexRay protocol specification version 2.1" [3] from the

FlexRay Consortium, the pre-project of this paper "On-Board Communication Systems in Vehicles

- FlexRay" [7], the book "Vehicle Safety Communications - Protocols, Security, and Privacy" [5]

by Tao Zhang and Luca Delgrossi, as well as the book "FlexRay and it´s Applications" [12] by

Dominique Paret.

Section 2.1, 2.2, 2.5.1 to 2.5.5, 2.5.9, 2.5.10, and 2.5.11 are also featured in the pre-project [7],

however, are rewritten and complemented for the purpose of this paper.

5
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2.1 On-Board Automotive Communication Networks

2.1.1 Controller Area Network

The Controller Area Network bus (CAN bus) is a low cost, high speed, high security communi-

cation protocol developed by Robert Bosch GmbH. The protocol was officially released in 1986

with the goal to solve current issues with on-board communication systems in the automotive

industry. Preceding CAN bus, the vehicles were mainly running wire links between each elec-

trical application and system controllers. Consequently, CAN bus led to a dramatic decrease in

the amount of wiring needed in a vehicle and it introduced a network protocol that is able to

handle the harsh environment of a vehicle. Today, CAN bus is still the primary choice regarding

multiplexed communication networks for on-board communication [11].

Messages in a CAN bus cluster are broadcast to all nodes in the cluster. A message is defined

by a message ID implicating the content of the message, not the origin. CAN bus starts a message

transmission when a node initiates a transmission and has information to transfer. The message

transmission is not confined to any timing scheme, and collision detection is achieved through

the message arbitration inherent in CAN where a dominant bit state of a message will win the

arbitration [5]. Consequently, the communication is structured around ‘carrier-sense multiple

access’ in which all nodes in the cluster can initiate a message transmission, at any given point

in time, and the message with the highest priority (lowest message ID) will be the dominant

transmission [2]. Therefore, the CAN bus is an event based multi-master protocol. Transmission

in CAN has a maximum bit rate of 1 MBit/s transferred over a twisted pair differential wire signal,

which also achieves high immunity to electrical interference [5].

2.1.2 Local Interconnected Network

The primary purpose of the Local Interconnected Network (LIN) protocol is to function as a

sub-network to the CAN bus at a lower cost, and with lower performance. LIN has a ‘single master

multiple slave’ structure with data transfer rates of up to 20 KBit/s and message transmissions

initiated by the master [11].

In a modern vehicle, the LIN might be used for minor functions as transmitting commands
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from the driver window switch to the window engine while the driver door is connected to

the CAN bus. This provides yet another security layer as a malfunction in the window engine

will not affect the communication on the CAN-bus nor other communication networks as the

malfunction would be stopped at the gateway. A malfunction in LIN has a smaller potential

impact than a malfunction in a communication network responsible of transmitting engine or

safety critical information. A modern vehicle typically contains around six LIN networks, which

are communicating with different communication protocols through multiple gateways where

the network performance and tolerance of CAN and FlexRay are not needed [11].

2.1.3 Media Oriented Systems Transport

The Media Oriented Systems Transport (MOST) was developed to replace older protocols for on-

board audio links and was introduced around the same time as LIN. MOST is typically operating

on the same gateways as LIN, CAN, and FlexRay, and provides a physical layer for the imple-

mentation of Ethernet in on-board communications. Through the gateway, MOST establishes

communication between the radio module and safety, comfort and engine modules/ECUs [11].
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2.2 X-By-Wire

The generic term ‘X-by-Wire’ is the general term for applications that are controlled by electrical

wire links [12]. Inspired by fly-by-wire technology, X-by-wire are set to replace other systems, as

e.g. hydraulic and mechanical, with systems that are controlled electronically. Further, for the

automotive industry, the X-by-wire technology is applied to systems like steer-by-wire, brake-

by-wire, suspension-by-wire, shift-by-wire and safe-by-wire. Consequently, the applications

of X-by-wire usually contain highly critical systems which require a safety-critical data bus

architecture with inherent fault tolerance at a high network speed [13].

X-by-wire is a technology used more frequently as the complexity and processor capacity of

automotive systems are increasing and imposing higher demands on communication networks.

Neither CAN, LIN nor MOST are suitable for X-by-wire applications mainly due to the lack of

deterministic data transmission and network speed. For solving the current problems regard-

ing deterministic data transmission and high speed data transmission in automotive systems,

many standards have been considered such as CAN-FD, TTCAN, TTP/C, Byteflight and FlexRay.

However, FlexRay is revealed as the preferred choice by most major automotive manufacturers

[12].

2.3 Automotive Electronic Control Units

During the last couple of decades, mechanical and hydraulic systems in modern vehicles have

been increasingly replaced by systems that are controlled electronically. The on-board systems of

a vehicle are controlled by units called Electronic Control Units (ECUs), which are embedded

systems that control one or multiple electronic systems. An ECU collects data from on-board

sensors, performs calculations and distributes commands to other systems and ECUs in the

vehicle in order to achieve appropriate and efficient driving performance and comfort in the

vehicle. Communication between ECUs is established through automotive network protocols

such as CAN bus, LIN, Ethernet (MOST) and FlexRay [5].

An ECU maintains almost every task of the vehicle´s functions, from turning on lights to more

critical tasks such as autonomous brake systems. An ECU usually works independently, however,

more complex tasks are in some cases divided over multiple ECUs [5].
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An ECU is classified by its tasks. Hence, an ECU that controls the power train1 is typically

called ‘power train ECU’ and the ECU that controls the airbag deployment is called an ‘Airbag

Control Module’ or an ‘Airbag ECU’. This also accounts for the ECUs in combination with the

comfort systems, infotainment systems and so forth [5].

2.4 Active Safety Systems

Passive safety systems, e.g. airbags and seat belts, are implemented in vehicles in order to

minimise harm to the passengers in the event of a collision. However, today, passive safety

systems seem to have reached their limit of effectiveness. Further, significant reduction in

fatalities could be accomplished through electric systems and active safety systems [5].

An active safety system, as opposed to a passive safety system, takes action to prevent the

initial collision or in order to minimise damage when a collision is unavoidable [5].

Anti-Lock Braking System The Anti-lock Braking System (ABS) adjusts the fluid pressure/flow

to the brakes in order to maintain optimal braking performance and prevents the wheels from

locking. This maintains traction with the road surface and helps the driver to steer the vehicle by

preventing a skid and improving stopping distance. The ABS is located in an ECU of the vehicle,

usually as its own module and the ECU regulates the brake fluid pressure depending on road

conditions or imminent wheel lock. The ABS system often consists of wheel speed sensors at

each one of the four wheels, hydraulic valves and an ECU [5].

Electronic Stability Control The Electronic Stability Control (ESC) detects loss of control over

the vehicle and improves the vehicles stability by automatically controlling the brakes of each

individual wheel in order to steer the vehicle. The ESC then improves the vehicles stability by

employing the ABS in order to minimise skids [5].

Brake Assist Brake Assist Systems (BASs) are developed to assist drivers when applying the

brakes in a panic situation. The excitation of the brake pedal is measured in order to detect a

panic situation in which the driver is not applying enough force to the pedal. The BAS will then

1The components that generates and distribute power, such as engine, drive shafts and transmission [5].
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boost the braking power and by that it reduces the stopping distance of the vehicle. BASs can

also take action without input from the driver in situations were a collision is unavoidable. The

system will then use a combination of warning signals in the form of light and sound before

applying the brakes [5].

Further examples of active safety systems used in modern vehicles are Advanced Driver

Assistance Systems, Adaptive Cruise Control, Blind Spot Assist, Attention Assist and various pre-

crash systems. Those will however not be discussed in detail as they are not of great importance

for the content of this paper and most of these systems are not present in the test vehicle.
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2.5 FlexRay

2.5.1 Introduction to FlexRay

FlexRay is a time-triggered, high-speed, fault tolerant and deterministic communication protocol

developed by the FlexRay consortium as a next-generation automotive communication network.

The FlexRay protocol meets the demands for a communication network suitable to X-by-wire

applications with faster and more reliable data transfers than CAN and LIN [5]. FlexRay is neither

intended nor used as an alternative to CAN, LIN or MOST protocols, however it functions as

a supplement to these networks where a higher bandwidth, more security or deterministic

communication is needed [12].

2.5.2 The FlexRay Protocol

FlexRay is based on a multi-master structure for communication where bus access must comply

with a strictly defined communication cycle and the participants of a FlexRay network are

prohibited to have uncontrolled bus access. Each frame transmitted on the network is allocated

in specific time slots with the use of Time Division Multiple Access (TDMA). The TDMA scheme

of FlexRay determines dispatch times of all frames in a FlexRay cluster [16]. FlexRay can operate

on a single or simultaneously on two communication channels where a preference for improved

fault tolerance or additional bandwidth can be chosen [12]. The persistent timing of the TDMA

scheme in FlexRay ensures deterministic transmission in which data arrives on the microsecond

in a predicted time frame. Further, the FlexRay protocol handles a pre-defined communication

cycle that includes pre-defined space for both static and dynamic segments. Consequently, the

configuration of network parameters must be known to all nodes in a FlexRay cluster in order to

communicate in the network [8].

The quality of the transmitted frames is determined by a Cyclic Redundancy Check (CRC),

which then excludes the problems that occur with round trip signal propagation time [12].

FlexRay has an inherent ‘never give up’ strategy in which, if a problem occurs in the network, the

system always tries to operate and therefore never stops trying [8].
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2.5.3 The FlexRay Communication Cycle

The FlexRay data transmission is configured around a media access scheme called the communi-

cation cycle. The communication cycle is a fundamental element of the FlexRay communication

in which each cycle is identical in length and includes a fixed duration of static and dynamic

segments. The length of a communication cycle is generally around 1 to 5 ms and is configured

by the network designer [16][8].

2.5.3.1 The Static Segment

The static segment occurs in the beginning of the communication cycle and is consisting of a

fixed number of equal length static slots (maximum 1023). The length of a static slot is defined

by the network designer. The static slots are assigned to the FlexRay messages that will be

transmitted during the static segment. The slots are identified by a slot number and a message

ID, whereas the FlexRay node has a slot counter. The slot counters on all nodes of a FlexRay

cluster are incremented synchronously at the start of every static slot to ensure that all messages

are transmitted at the correct time and in the proper sequence in each communication cycle.

Consequently, the static segment is predestined for the transmission of real-time messages and

is operating with Global TDMA (GTDMA) for the medium access [16] [12].

2.5.3.2 The Dynamic Segment

Following the static segment, a new segment occurs called the dynamic segment. The dynamic

segment has a fixed duration in the communication cycle and is consisting of ‘minislots’ similar

to the static slots of the static segment. Data transmission during the dynamic segment is not

forced, however, transmitted when needed, e.g. triggered by an event. When a dynamic message

is sent, the slot counter is incremented upon receiving that message. If a frame is not transmitted

during a minislot, the slot counter corresponding to the minislot will be incremented after a

defined time period [16]. Medium access during the dynamic segment is of type Flexible TDMA

(FTDMA), which then enables the segment to secure a time slot for the message transmission.

A prioritisation system is used for the medium access where a higher prioritisation of a frame

(lower message ID) is sent first. Further, the prioritisation system ensures that no data collision
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or bus arbitration will occur during the dynamic segment [12].

An illustration of the static segment and the dynamic segment with the corresponding static

slot and minislot is shown in Figure 2.1.

One FlexRay Communication Cycle

Figure 2.1: Static and Dynamic Segment

Two additional segments are added in addition to the static and dynamic segment to complete

the communication cycle, the ‘Network Idle Time’ (NIT) segment and the optional ‘Symbol

Window’ segment as illustrated in Figure 2.2. The symbol window overlooks the performance of

the bus guardian and occurs right after the dynamic segment [16]. A transmission of a symbol is

dedicated to verify the functioning of a local bus guardian with the use of a 30 bit Media access

Test Symbol (MTS) followed by a channel idle delimiter (CID) (for CID see Section 2.5.8.2) [12].

The NIT segment keeps the transmission lines idle (no data transmission) and allows the FlexRay

nodes to calculate the factors needed in order to synchronise the local clocks. Further, an offset

error correction is produced at the completion of the NIT [16].

Static Segment
Symbol 
Window

Dynamic Segment NIT

FlexRay 
Cycle 1

FlexRay 
Cycle 2

FlexRay 
Cycle k

FlexRay 
Cycle n

FlexRay 
Cycle 3

FlexRay Communication Cycle k

Figure 2.2: FlexRay Communication Cycle
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2.5.4 Network Topology

The unconstrained topology specification of a FlexRay cluster allows different structures. A

cluster could consist of a passive bus structure, active star topology or a combination of passive

and active star called hybrid topology [3].

The passive bus topology is familiar as it is commonly used by both CAN and LIN, and

therefore a FlexRay implementation requires little or no alteration of the network cabling in a

vehicle. In a passive bus topology all nodes are connected by a single network cable with branches

out to the ECUs. Further, the end nodes typically carry out the bus termination [8].

In a FlexRay cluster with active star topology, each ECU is connected to a central node (the

active star) through individual network links. The maximum distance between nodes is then

increased and a network could be constructed such that a node could malfunction without

bringing down the network. The active star topology could also help reducing the amount

of external electrical interference by introducing flexibility in the wiring network in order to

circumvent areas with a high potential for electrical interference [8].

An illustration of a passive bus topology and active star topology is shown in Figure 2.3.

ECU

ECU ECU

ECUECU

ECU ECUECU

ECU

Active StarPassive Bus

Figure 2.3: Passive Bus and Active Star Topology

2.5.5 Node Synchronisation in FlexRay

FlexRay follows the paradigms of time-triggered communication architectures where the un-

derlying logic consists of system actions that are triggered at a specific point in time during the

cycle. For a cluster-wide node synchronisation, a distributed fault-tolerant clock synchronisation

mechanism is necessary [16]. The methods used in FlexRay in order to synchronise the local time
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base of the nodes are based on offset correction and rate correction, executed the same way in all

nodes [3].

2.5.5.1 Macrotick and Microtick

The smallest practical time unit in a FlexRay network is called a ‘macrotick’ (MT) and network

participants synchronise and accommodate their local clocks in order to establish the macrotick

simultaneously in all nodes in the network. Consequently, the macrotick is used for the global

time synchronisation of a FlexRay network. The synchronisation of the macrotick has the advan-

tage that the macrotick dependent data is also synchronised. The duration of the macrotick is

specified by the network designer, typically around 1 µs long [8]. As a smaller FlexRay time unit,

the ‘microtick’ (µT) is calculated in each node from the local clock and will only be influenced

by drifts and tolerances of the local oscillators. Further, the µT is different on every node in a

FlexRay cluster and performs as a local time unit. As the µT is the lowest time unit in FlexRay, the

precision of a node correlates with the µT [12].

Figure 2.4 shows an illustration of the FlexRay macroticks within a communication cycle.

Macroticks

Communication Cycle

Figure 2.4: FlexRay Macroticks

2.5.5.2 Network Startup Synchronisation

Nodes in a FlexRay cluster are synchronised with the use of ‘startup frames’ and ‘sync frames’

eliminating the need for an external synchronisation clock signal. During the start phase of the

network, two nodes are needed to transmit a startup frame in order to initiate the transmission

of the remaining nodes. The action of transmitting startup frames is recognised as a ‘coldstart’
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identifying the nodes in control as coldstart nodes [8].

One of the coldstart nodes will dominate the start phase of the network with its local clock

and will initiate the data transmission on the network in coldstart listen mode. When in coldstart

listen, the node verifies that no data transmission is present on the network, while further sending

a Collision Avoidance Symbol (CAS) in order to instruct the other nodes in the FlexRay cluster

of the presence of a leading coldstart node. The first startup frames are sent for a minimum of

four communication cycles on both channels by the leading coldstart node enabling the other

coldstart nodes to send their sync frames in order to achieve cluster-wide network synchronisa-

tion and completing the startup phase [12]. After completion of the startup phase the remaining

nodes will wait for the transmission of sync frames in order to calculate the time difference

between the sync frames and subsequent frame transmission [8]. Each startup frame is required

to also be a sync frame, hence, each coldstart node is also a synchronisation node [3].

2.5.5.3 Node Synchronisation

The offset and rate correction takes place when the startup phase is complete and is used to

preserve and re-calibrate accurate cluster-wide synchronisation [8].

The offset correction is performed during the NIT segment and is synchronising the start time

of the communication cycle. The synchronisation is done with adding/subtracting a multiple

of microticks from the offset correction portion of the NIT segment as calculated by the clock

synchronisation algorithm. The offset correction is calculated every communication cycle,

however, only applied in the end of the odd communication cycle. The rate correction is adding

or removing a microtick integer of the total number of microticks in a communication cycle

configured as a function of the local clock of a node. The rate correction is calculated once over a

double communication cycle duration (even-odd) and corrected during the NIT segment [3].

2.5.6 FlexRay Message Format

The FlexRay frame consists of three main segments; a header segment, payload segment, and

trailer segment. A FlexRay node transmits the FlexRay frame starting with the the header segment,

then the payload segment, and at last the trailer segment. All segments are transmitted from

left to right, starting with the first leftmost bit of each segment as illustrated in Figure 2.5. The
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FlexRay frame is used for the transmission of all signals in a FlexRay cluster transmitted during

the static and dynamic segment [3] [16].

FlexRay Frame Format

Frame ID

11 bit

Data 0 Data 1 Data n

0...254 Byte

CRC CRC CRC

24 bit

Payload 
Preamble 
Indicator

Reserved 
bit

1 bit 1 bit

Sync Frame 
Indicator

Null Frame 
Indicator

1 bit 1 bit

Startup 
Frame 

Indicator

1 bit

Cycle 
Count

6 bit

Payload 
Length

7 bit

Header 
CRC

11 bit

Data n

Header Payload Trailer

Figure 2.5: FlexRay Message Format

The header consist of a status field, frame ID, payload length, header CRC, and a cycle counter.

The payload section defines the payload of the message and the trailer section contains a 24 bit

CRC that secures the header and payload sections [16].

2.5.6.1 Header Segment

The header section constitutes the first 40 bits (5 Byte) of the FlexRay frame and includes the

status frame, frame ID, payload length, header CRC and cycle count. The 5 bit status frame

contains the reserved bit, payload preamble indicator, null frame indicator, sync frame indicator,

and startup frame indicator [3].

Reserved Bit The reserved bit (1 bit) is not used and reserved for future applications. The

transmitting node shall transmit a logical ‘0’ during the bit duration, while a receiving node

ignores the reserved bit [3].

Payload Preamble Indicator The payload preamble indicator (1 bit) specifies if an optional

vector is present in the payload segment of the transmitted frame. For frames in the static

segment, the payload preamble indicator specifies that the start of the payload segment contains

a network management vector. For frames in the dynamic segment, the payload preamble

indicator specifies that the start of the payload segment contains a message ID. If the payload

preamble indicator bit is set to a logical ‘0’, the payload segment contains neither a network

management vector nor a message ID [3].
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Null Frame Indicator The null frame indicator (1 bit) specifies that the transmitted frame is a

‘null frame’. If the null frame indicator bit is set to a logical ‘0’, then the payload segment of the

belonging frame contains no valid data and all the bytes of the payload segment are set to logical

‘0’. If the null frame indicator is set to a logical ‘1’ the indicator specifies that the belonging frame

has data in the payload section [3].

Sync Frame Indicator The sync frame indicator (1 bit) specifies if the transmitted frame is

a ‘sync frame’. The sync frame is used for global network synchronisation. If the sync frame

indicator bit is set to a logical ‘1’, the transmitting frame is a sync frame and will be used by the

receiving nodes for network synchronisation. If the sync frame indicator is set to logical ‘0’, then

the reviving nodes do not use the frame for any synchronisation related tasks [3].

Startup Frame Indicator The startup frame indicator (1 bit) specifies whether the transmit-

ted frame is a ‘startup frame’ or not. The startup frame is transmitted by coldstart nodes and

used in the startup mechanism of the FlexRay network mentioned in Section 2.5.5.2. If the

startup frame indicator bit is set to a logical ‘1’, the transmitting node is a coldstart node and the

transmitted frame is a startup frame. If the startup frame indicator bit is set to a logical ‘0’, the

transmitted frame is not a startup frame. A single node can only transmit one startup frame per

communication cycle [3].

Frame ID The 11 bit frame ID (values from 1-2047) with the ID ‘0’ as an invalid ID specifies the

unique ID for the belonging frame. The frame ID is used to position the frame in a slot in both

the static and dynamic segment. Two nodes in a network are not allowed to transmit frames with

the same frame ID on the same communication channel. The frame ID is transmitted such that

the most significant bit of the frame ID occurs first in the frame ID transmission. The following

bits are then transmitted in decreasing order down to the least significant bit of the frame ID [3].

Payload Length The payload length (7 bit), named the Data Length Coding (DLC) specifies the

length of the words transmitted in the payload segment, divided by two. That means a 4 byte

payload segment will be indicated with the value ‘2’ in the DLC. The DLC is transmitted such that
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the most significant bit of the DLC occurs first in the DLC transmission. The following bits are

then transmitted in decreasing order down to the least significant bit [3].

Header CRC The 11 bit header CRC consists of a cyclic redundancy check (CRC) for the header

portion of the FlexRay message. The header CRC is calculated using the sync frame indication,

startup frame indicator, frame ID and the payload length. This constitutes a 20-bit input to the

CRC calculation. The CRC is computed offline and not by the transmitting FlexRay communica-

tion controller, meaning that the FlexRay host controller has to calculate the header CRC for both

the transmitted and the received message [3].

The header CRC is calculated in the same way for all nodes, messages and communication

channels with the CRC polynomial in Equation 2.1, with an initialisation vector for the CRC

register of 0x01A [3].

x11 +x9 +x8 +x7 +x2 +1 = (x +1)× (x5 +x3 +1)× (x5 +x4 +x3 +x +1) (2.1)

In order to calculate the CRC value of the header, a CRC algorithm determines if the exclusive

OR (XOR) of the CRC register and the current bit of the input data register should be applied.

The input data are the 20 bits from the header portion. The current bit of the input data register

refers to the most significant bit of the input data. The CRC polynomial is applied to the CRC

register if the XOR function of the data and CRC register yields a logical ‘1’. Further, the input data

register is bit shifted such that the most significant bit is shifted out and second most significant

bit becomes the most significant bit. The process is then repeated for the entire length of the

original input data (20 bit) [4]. The header CRC is transmitted such that the most significant

bit of the CRC occurs first in the CRC transmission. The following bits are then transmitted in

decreasing order down to the least significant bit [3].

The header CRC has its purpose in protecting parts of the header portion and providing a

quick CRC in the header portion itself, such that no node begins to process invalid data [12].

Cycle Count The cycle count (6 bit) specifies the communication cycle iteration of the current

communication cycle. All frames in the same communication cycle must have the same cycle

count, which is incremented automatically by the transmitting node. The cycle count can have 64
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values (0-63) which will be periodically repeated. The cycle count can also be used as a continuity

index for the communication, because of its incrementing transmission. The cycle count is

transmitted such that the most significant bit of the cycle count occurs first in the cycle count

transmission. The following bits are then transmitted in decreasing order down to the least

significant bit [12].

2.5.6.2 Payload Segment

The payload field (0-2032) can carry up to 127 words of 16-bit of useful data in the message frame.

The frame ID could also carry a network management vector or a message ID if the payload

preamble indicator is set to a logical ‘1’ in the status field. The payload is transmitted such that

the most significant bit of the first byte in the payload occurs first in the payload transmission.

The following bits are then transmitted in decreasing order down to the least significant bit of the

last byte in the payload [12].

2.5.6.3 Trailer Segment

The trailer segment of a FlexRay message contains solely a 24 bit CRC calculated by using the

header segment and the payload segment. The trailer CRC protects the entire transmitted frame

using the CRC polynomial in equation 2.2 for both FlexRay channels [3].

x24 +x22 +x20 +x19 +x18 +x16 +x14 +x13 +x11 +x10 +x8 +x7 +x6 +x3 +x +1

= (x +1)× (x11 +x9 +x8 +x7 +x5 +x3 +x2 +x +1)× (x11 +x9 +x8 +x7 +x6 +x3 +1)
(2.2)

For the 24 bit trailer CRC, the FlexRay nodes employ a different initialisation vector for each

FlexRay channel. For channel ‘A’ the node uses the initialisation vector 0xF EDC B A and for

channel ‘B’ the node uses the initialisation vector 0x ABC DEF [3].

The 24 bit CRC is calculated by the communication controller and is verified in the same

manner by receiving controllers with calculating a new 24 bit CRC based on the frame content

and comparing it to the trailer segment of the received frame. This is different in comparison

to the header CRC, in which the 11 bit CRC is calculated by the host controller. The 24 bit CRC
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is calculated before a frame transmission and succeeding a frame reception. The 24 bit CRC is

calculated in the same way as the header CRC, only that the length of the input data to the CRC

algorithm is dynamic due to variable payload lengths [3].

2.5.7 FlexRay Frame Format

Each of the fields mentioned in Section 2.5.6 which is representing the logical load, are subdivided

into bytes and encapsulated with a START and STOP bit, making each transmitted byte a 10 bit

transmission [12]. The FlexRay byte packaging is illustrated in Figure 2.6, where the 5 bit status

field and the 3 most significant bits of the frame ID are embedded within a 10 bit structure after

the official start of the transmission of the frame. Further, the illustration shows the remainder of

the 11 bit frame ID whereas the 8 least significant bits are transmitted after the status and 3 most

significant bits utilising the same structure [12].

Figure 2.6: FlexRay Frame Format and Byte Packaging

For the actual bit transmission of a FlexRay frame, many precautions are added to ensure

proper and secure transmission with actions taken against delays and varying frame length. The

following sections will describe bit-by-bit how a FlexRay frame is structured and transmitted.

2.5.7.1 Byte Start Sequence

Each logical byte is added a START bit (logical ‘0’) at the start and an STOP bit (logical ‘1’) at the

end, consequently forming a 10 bit byte of non return to zero 8N1 type. Since each transmitted

byte in FlexRay is added the START and STOP bit, two successive bytes will have a STOP-START,
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logical ‘1-0’ pattern in between. In FlexRay, the logical ‘1-0’ pattern is called a Byte Start Sequence

(BSS) and occurs before every transmitted byte [12].

2.5.7.2 Frame Start Sequence

The start of a FlexRay frame is indicated with a logical ‘1’ called the Frame Start Sequence (FSS)

and is appearing before the first BSS. The rising edge of the FSS signals the start and presence of

a FlexRay frame. The combination of the FSS and the first BSS of the frame give a distinct pattern

to the start of a frame with a ‘1-1-0’ logical value [12].

2.5.7.3 Transmission Start Sequence

The Transmission Start Sequence (TSS) is transmitted before the FSS in order to initiate a trans-

mission sequence. This occurs at the start of frames in the static segment, dynamic segment and

symbol segment. The length of the TSS is configured by the network designer depending on the

network typologies, the distance between nodes and other physical aspects, with valid values

from 3-15 bit long [12].

It takes only a single bit during the low state of the TSS for a node to become aware of an

incoming frame. Due to physical delays in initiating line drivers for the receivers and transmitters

in a FlexRay cluster, and/or diverting the signal through an active star, the possibility that the

first edge of the transmitted frame is delayed longer than the remaining edges is very high. This

effect causes the TSS signal to be perceived as shorter on the input terminals of the receivers

than the actual output by the transmitting node, an effect called ‘TSS truncation’. The duration of

the TSS is a globally defined FlexRay network parameter, called TSSTransmitter, which is equal

in all nodes of a cluster. Therefore, due to the multiple effects, a receiving node must accept a

frame when a low state occurs in the time slot reserved for the TSS with a duration from 1 bit

to the defined duration + 1 bit as a valid TSS (1 to TSSTransmitter + 1). For a network with a

TSSTransmitter of 10 bits, a node in the cluster must accept frames in which the TSS signal is

received at a duration between 1 and 11 bits [12].
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2.5.7.4 Frame End Sequence

Following the CRC in the trailer of a frame, the last byte of the FlexRay frame is closed by a

specific logical ‘0-1’, 2 bit, sequence, namely the ‘Frame End Sequence’ (FES). The FES are the last

transmitted bits in the FlexRay frame and therefore mark the end of the frame transmission [12].

The BSS, FSS, TSS and FES are all part of the FlexRay frame transmission and persistent in

every message transmitted in a FlexRay cluster, both in the static segment and the dynamic

segment.

2.5.8 Static and Dynamic Slot Format in FlexRay

The FlexRay slot is the structure that consists of the FlexRay frame mentioned in Section 2.5.7

with some additional structure added. The additional structures in the FlexRay slot, apart from

the FlexRay frame, are the Channel Idle Delimiter (CID), and the Dynamic Trailing Sequence

(DTS) [12].

2.5.8.1 Action Point

The start of a FlexRay slot contains a ‘channel idle’ state, in which an action point (AP) occurs

at a precise point in time. The action point refers to the exact point in (local) time at which a

node performs a specific action in conformance with the local time reference. In the case of

FlexRay, this refers to the time instant where Tx of the transmitter starts transmitting the frame

on the medium. To ensure global time in the FlexRay network, a receiving node carries out a

measurement of the time difference between the real action point and the actual reception of the

signal. In this way the nodes of a FlexRay cluster can compensate for the propagation delays of

the signal [12].

2.5.8.2 Channel Idle Delimiter

The CID takes place outside the FlexRay frame with logical data in order to add padding to the

time between the end of the electrical frame and the end of the FlexRay slot. By design, for both

the static and dynamic slot, in the ending of the structure, a field of 11 logical ‘1’ bits is added.
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Consequently, the 11 bit structure is called the CID and has the purpose to signal the end of a

frame in the slot and further to clear the medium such that it can become idle [12]. The FlexRay

static slot with the CID is illustrated in Figure 2.7.

Figure 2.7: FlexRay Static Slot

2.5.8.3 Dynamic Trailing Sequence

When transmitting dynamical frames, a problem occurs due to their variable length putting it

out of synchronisation with the durations depending on the action point. In order to fix this,

an additional sequence is added in the transmission of dynamic frames - the Dynamic Trailing

Sequence (DTS). This segment occurs between the trailer and the CID in the dynamic slot with a

variable duration in order to calibrate microticks according to the durations of the minislots, and

in relation to the precise position of the action point of the subsequent minislot [12].

Figure 2.8: FlexRay Dynamic Slot
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2.5.9 Physical Layer of FlexRay

Although, the physical layer is not explicitly defined in the protocol specification of FlexRay [3],

it describes the instance of using a differential pair wired medium for network transmission.

Further, it provides the designer with the flexibility to also utilise FlexRay with e.g. a fiber-optic

physical layer implementation [12].

2.5.9.1 Bit Rate

The gross bit rate specified in the protocol specification of FlexRay [3] produces a 100 ns bit

duration for a 10 MBit/s bit rate on FlexRay, and officially supports 2.5 MBit/s and 5 MBit/s

in addition to a 10 MBit/s bit rate, with the 10 MBit/s being the maximum gross bit rate on

one FlexRay communication channel. A 5 MHz signal transmission would be realised with a

long varying symmetrical duty cycle sequence S, and a changing logical bit sequence B where

B = {1,0} and S = {B1,B2,B3, ...,BN } with 100 ns bit duration [3][12].

2.5.9.2 Bit Encoding and Differential Voltage

FlexRay implements a bit encoding called ‘non-return to zero’ (NRZ) type in which the physical

signal does not change in value during the duration of the bit after producing the signal. Both

logical levels in FlexRay are represented by a dominant state while the recessive states are re-

served for ‘idle’ mode. The physical transmission lines Bus Plus (BP) and Bus Minus (BM) are

measured relative to the reference potential and the difference between the voltage potential on

the transmission lines are known as the differential voltage ‘VBus ’ in equation 2.3.

VBus = (VBP −VB M ) (2.3)

The VBP and VB M are the voltage potential of the BP and BM transmission lines measured

relative to the reference potential. When producing a logical ‘1’, a ‘high’ voltage potential is

produced on the BP transmission line while a ‘low’ voltage potential is produced on the BM

transmission line. The opposite occurs when producing a logical ‘0’. Therefore, the VBus will be

positive for a logical ‘1’ and negative for a logical ‘0’. There is no data transmission in ‘idle’ mode

and no node is in a ‘low power mode’. The low power modes, idle_lp are achieved when the BP
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and BM transmission lines are grounded with pull-down resistors, resulting in a voltage potential

of 0 V for the entire FlexRay communication channel [12]. The bit representations are illustrated

in Figure 2.9.

V

Time

BP BM
3.5 V

2.5 V

1.5 V

Bus State

Vbus

Idle_LP Logic “1” Logic “0”Idle

0 V 0 V 0.6 V ... 2 V - 0.6 V ... - 2 V

Figure 2.9: Physical Bit Representation of ‘Differential Pair Wire’ with NRZ Bit Encoding

2.5.9.3 Asymmetric Delays

A symmetric power stage is almost impossible in physical applications, as an integrity fault be-

tween the transmitted and received signal is caused in the rise and fall times of signals propagated

throughout the network. The protocol specification of FlexRay [3] states a tolerable limitation of

the asymmetric delays at 4 ns and 5 ns for the transmitter and receiver respectively. Further, the

tolerance is increased to 8 ns for the receiver when an active star is used for signal delegation [12].

2.5.10 FlexRay Node Architecture

For the general architecture of a FlexRay node, four major sections are implemented; a host

microcontroller, protocol manager, line driver and an optional bus guardian. The communication

cycle, communication controller and onward are managed by the protocol manager, while a host

microcontroller implements the application management [12]. The general architecture with

external and internal connections is shown in Figure 2.10.
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Figure 2.10: Node Architecture

Bus termination (impedance-matching) is implemented in FlexRay nodes in order to min-

imise drift inductance and reduce asymmetrical delays. The termination is usually supplemented

with common mode coils and should be implemented symmetrically between the nodes in order

to match the typical 80 to 110 Ohm wiring impedance in a FlexRay network [12].

Bus Guardian The bus guardian is an optional feature in FlexRay and its main objectives are to

prevent a node from getting access to the medium in a wrong time slot and to block a ‘babbling

idiot’ in the network. The bus guardian is aware of the exact communication timing and is

synchronised with the communication controller [12].

2.5.11 In-Cycle Control

Due to the exact timing and the structure of the static segment, FlexRay is well suited for executing

‘in-cycle control’ where data is transmitted during the early stages of the static segment and a

response is given in the same cycle. The Figure 2.11 illustrates an example where gyroscope

values are transmitted from an ECU (ECU 1) in the static segment of the communication cycle,

allowing an additional ECU (ECU 2) to process the gyroscopic values and transmit an update

signal in the same communication cycle [8].
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ECU reading gyroscope values ECU transmitting update signal dependent on gyroscope values 

Figure 2.11: In-Cycle Control Showed in the Static Segment

2.5.12 Packet Sniffing a FlexRay Network

The high security demands and growing complexity of X-by-wire systems led to the introduction

of time-triggered architectures for data transmission. The time-triggered architectures operate

a static transmission schedule and consequently reduce the complexity of the execution flow

for the receivers. Further, the decrease in execution flow complexity has led to an increase in

configuration complexity in which FlexRay requires multiple 10s of configuration parameters.

The theoretical amount of unique configurations of FlexRay communication is more than 1048

configurations [1].

According to [15], a standard open source tool for sniffing packets/frames in a FlexRay network

is not available (in 2016). The available generic tools for this purpose are proprietary and costly,

and additionally usually require the FIBEX file (configuration and communication setup) for the

FlexRay network in order to function. The same conclusion was drawn in the pre-project of this

paper [7]. In order to packet sniff a FlexRay network without the FIBEX file, the bit rate of the

network has to be known. Optimally, also the duration of the communication cycle and the start

and length of the static and dynamic segment should be known [15].

In the paper ‘Automatic Parameter Identification in FlexRay based Automotive Communication

Networks’ [1], a method for automatically identifying FlexRay network parameters is suggested

and could be implemented in a packet sniffing FlexRay system in order to also provide parameter

information.
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2.6 FlexRay Test Network

The two-node FlexRay test network was developed during the pre-project of this paper, "On-board

Communication Systems in Vehicles - FlexRay" [7]. The network consists of two TMS570LS1227

microcontrollers implemented on separate development boards with external FlexRay bus drivers.

The bus drivers perform according to protocol specification 2.1 of FlexRay [3]. For the FlexRay

configuration and communication part, a test software issued by Texas Instruments is imple-

mented on both nodes, each having a separate role in the communication as node ‘A’ and node

‘B’ [7].

The function of the test network was validated in [7] and in this paper the test network will be

used to validate results from a FlexRay analysis software, as the FlexRay configuration parameters

are given in the example software. Figure 2.12 shows the two node FlexRay test network.

Figure 2.12: FlexRay Test Network
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2.7 Automotive Data Security

A modern vehicle consists of multiple ECUs which transfer data between each other and are

connected trough one or multiple communication networks. If an adversary is able to achieve

physical access to the vehicle’s CAN bus, the adversary is able to intercept, manipulate and

broadcast messages [5]. Further, an adversary that has physical access to the vehicle, can perform

a ‘man-in-the-middle’ attack on any of the communication protocols [14].

According to [17], a malfunction or a malicious on-board real-time communication protocol

which operates driving commands such as steering and braking, can lead to severe danger for

the affected occupants and surrounding environment. The potential for impact by an attack on

the different communication networks is in the area of what is shown in Table 2.1 [17].

Table 2.1: Impact Potential of Selected Automotive Communication Protocols
Communication Protocol MOST LIN CAN FlexRay
Endangerment Low Low High Very high

2.7.1 Previous Research

Researchers at the University of California San Diego and the University of Washington demon-

strated how they manipulated and controlled on-board systems trough the CAN bus. The attack

resulted in the systematic control of multiple of the vehicle’s components; including brakes,

heating and cooling system, engine control, lights, radio, locks and instrument panel cluster. The

manipulation included various techniques in order to gain control over some of the vehicle’s

functions, mainly packet sniffing, packet fuzzing and ECU flashing as described next [9].

Packet Sniffing Packet sniffing involves observing the data traffic of the on-board network in

order to determine how the ECU communicate between each other [9].

Packet Fuzzing Packet fuzzing simply involves sending random messages into the network in

order to cause unexpected behaviour and uncover security vulnerabilities within the system [9].
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ECU Flashing This technique involves ‘reverse engineering’ the software for some of the ve-

hicle’s ECUs in order to add additional functionality rather than using the excising software

capabilities in the vehicle [9].

Following this research, two researchers [10] implemented the same techniques as in [9],

however, without the need of physical manipulation in the vehicle. The research exposed security

flaws connected to the telematic unit and in the connection to the cellular network. In this way,

the same attacks as used in [9], could be implemented by remotely reprogramming the telematics

control unit. Therefore, multiple of the vehicle’s functions could be controlled through remote

access to the CAN network of the vehicle. The attack worked on any car of the same model in the

entire US, which presumably led to a massive recall of the targeted vehicle [10].

2.7.2 Man-in-the-Middle-Attack

Wireless communication interfaces are beyond the purpose of this paper and the focus will be

set on an adversary connected to the wired connection of the communication protocol. In order

to establish the kind of manipulation that is presented in this paper, passive connection is not

an option as the original message needs to be manipulated and cannot conflict with potential

injected messages. Further, passive connection to the FlexRay protocol defies any means of

the protocol specification as all nodes and network communication are configured by a global

design, engineered by the network designer, specified to the targeted applications. Therefore, the

focus of this paper will be put on a specific form of attack, namely the Man-in-the-Middle (MitM)

attack.

Figure 2.13 illustrates a man-in-the-middle attack of just one node/ECU of an arbitrary

automotive communication network (e.g CAN). The node under attack is the single node on

the one side of the adversary ‘ECU subjected to adversary’ or ‘Node under attack’ (NUA). The

adversary could also be situated in other configurations, attacking more than one node, and

multiple adversaries could be implemented in a network. A man-in-the-middle attack could

also have full authority over the network if an adversary is placed in front of every node in the

network except one (randomly chosen). Adding an additional controller or system to the network

communication will have an influence on the network. An adversary will introduce a delay in the

network as the transmission signal propagates through, and is processed by, the adversary [14].
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Figure 2.13: A Man-in-the-Middle Attack on an Automotive Communication Network

According to [14], for CAN and LIN networks, the delay caused by the adversary should

be close to a passive forwarding of data. The adversary has to read a single symbol in order

to manipulate and forward it. Further, for FlexRay and MOST, due to the use of time division

multiple access schemes for medium access, the delay is given by del ay = n × c yclet i me (with

n as a positive integer) as a consequence of the TDMA scheme [14].

The functionality of any given ECU in a network, whereas the delay of the adversary is existent,

is highly application specific and can therefore be limited by the manipulation. Assuming that

the communication protocol only used the security and timing features inherent in the protocols,

and that sub-sequential transfers had no relations with each other, the delay approach mentioned

above would be suitable for any of the mentioned automotive communication networks [14].

Due to the event based messaging structure inherent in CAN, where no data is expected to

be received at a specific point in time, the functionality of a node can be expected not to limit

the original functionality. For a node in a FlexRay cluster, the delay might induce much greater

limitations to both the node and the network. As FlexRay is typically used for timing critical

applications and timing critical communication. Further, for the TDMA scheme for bus access to

the medium, the timeout intervals have to be small and closely monitored for such applications

[14].

2.7.3 AUTOSAR End-to-End Communication Protection

AUTOSAR2 has implemented features to further secure information between electronic control

units communicating over automotive networks.

2Automotive Open Systems Architecture (AUTOSAR) is a global partnership that provides an industry standard
for the field of software architecture for Original Equipment Manufacturers (OEMs) and suppliers in the automotive
industry [12]
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Since the AUTOSAR system functions on a higher layer than the FlexRay communication, the

protection is application related and suggesting security features, which are implemented in the

payload of the transmitted frame. The protection is addressing failure modes as defined by ISO

DIS 26262 for the communication, e.g. insertion, corruption, incorrect sequence, timing faults,

addressing faults. For the data protection, an 8 bit CRC is transmitted in the payload calculated

over the frame ID, a counter and the rest of the payload. The counter is also transmitted as a part

of the payload of the frame [6].
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Chapter 3

Investigating the Test Vehicle

3.1 Electronic Systems Overview

The vehicle used for the FlexRay investigation is a Mini One 2016 model. The vehicle is used in a

driving simulator and therefore mounted on a motion platform in order to simulate an external

environment and different driving conditions. The vehicle mounted on the motion platform is

shown in Figure 3.1.

Figure 3.1: Mini One

In order to create a notion of what to expect when analysing the FlexRay communication in

the vehicle, it is necessary to establish an overview of the electrical systems in the vehicle. Due to

proprietary solutions in both hardware and software and the general secrecy of the automotive
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industry, little information is available about the electrical systems of the vehicle. Further, no

information is available regarding the FlexRay network configuration or the data in the network.

However, connector configurations for the different electronic control units, gateways, electrical

sensors and so forth are publicly available on the manufactures’ web pages through payed access

or licensed proprietary diagnostics tools. The connector information can be used in order to

establish an overview of external connections to the different ECUs.

The ‘BMW ISTA Rheingold’ diagnostics tool was used in order to retrieve information about

the ECU connector, and each ECU in the vehicle was inspected for bus connection. The connector

information displays the pin-layout for a specific connector of an ECU, and would indicate

‘FR_BP’ and ‘FR_BM’ for the FlexRay bus plus and bus minus transmission lines respectively

when the units are connected to FlexRay.

The electrical systems are listed in table 3.1. LIN modules are not mentioned as they consist of

a large amount of modules (e.g. the light operating unit and exterior mirrors) and are not assumed

to be of significant importance for the purpose of this paper. The connector information displays

multiple (4) CAN networks; a single MOST/Ethernet network and a single FlexRay network. A

‘central gateway module’ connects the multiple networks and is physically the same unit as

the ‘body domain controller’. Regarding the BMW/MINI terminology the engine control unit is

the Digital Motor Electronic (DME) of petrol engines. As the airbag control unit (Crash Safety

Module), the dynamic stability control, the engine control unit, and the electromechanical power

steering are all connected to the same FlexRay network, it can be assumed that safety-critical

information is transmitted throughout the network.

3.2 Access to FlexRay Transmission Lines

In this paper, the point of access for the FlexRay network in the vehicle is established through a

direct connection on the FlexRay BP and BM transmission lines in the ECU for the EPS system.

This is due to easy access as the wheels of the vehicle are disconnected and the ECU and the

electric servomotor are connected closely to the steering wheel shaft connection to the electrome-

chanical steering system, available in the front left wheel arch. The ECU for the EPS system has

three main connections; FlexRay (BP and BM) and ignition voltage in addition to battery voltage.
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Table 3.1: Electrical Control Units and Network Connection, Mini One
Communication Network System Acronym
K-CAN2 Parking Manoeuvring Assistant PMA
K-CAN2 Roof Module FZD
K-CAN3 Headlight L/R
PT-CAN Instrument Cluster KOMBI
PT-CAN Electronic Transmission Management EGS
PT-CAN Digital Motor Electronics DME
K-CAN4 Information Computer HU-B
K-CAN4 Integrated Automatic Heating System IHKA
K-CAN4 Radio Module
K-CAN and PT-CAN Body Domain Controller BDC-CAS
K-CAN and PT-CAN Central Gateway Module ZGW
Ethernet Radio Module
Ethernet Body Domain Controller BDC-CAS
Ethernet Central Gateway Module ZGW
FlexRay Digital Motor Electronics DME
FlexRay Crash Safety Module ACSM
FlexRay Electromechanical Power Steering EPS
FlexRay Dynamic Stability Control DSC
FlexRay Body Domain Controller BDC-CAS
FlexRay Central Gateway Module ZGW

The ECU for the EPS contains an embedded 32 bit Texas Instruments TMS570LS microcontroller

similar to the one used in the FlexRay test network in Section 2.6.

The petrol engine of the vehicle is removed and simulated through multiple sensors in order

to make the rest of the electronic system "think" that the engine is running. Since multiple of

the original systems are replaced by external sensors and manipulated CAN frames, one can

expect the data transmission on the multiple bus systems to contain error messages. Further, the

FlexRay frames may indicate errors in different systems. Therefore, the network communication

might be different in a fully functional vehicle.
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Chapter 4

FlexRay Analysis Software

The FlexRay Analysis Software (FAS) is developed in order to retrieve frame content and timing

information from an existing FlexRay network while only knowing the bit rate in advance. Addi-

tionally, the frames have to comply with the FlexRay frame format in Section 2.5.7 and both the

11 bit and 24 bit CRCs must be calculated and compared to the header CRC and trailer portions

of the transmitted FlexRay frame.

The input data for the FAS is sampled directly from the FlexRay transmission lines with a

passive bus connection to the original network. The sample data must contain the exact sample

time and the measured analogue voltage for each transmission line, with a sample rate faster than

the Nyquist frequency for the bit duration in the FlexRay network. A lower sampling threshold

was not tested for the FAS, as the sampling rate of the equipment used in this paper was much

faster (10-20 times) than the duration of a 100 ns bit.

The sample data from the sampling equipment is stored in a simple format (.txt or .csv) such

that the software could be applied to all kinds of analogue samples from a FlexRay network with

an appropriate sampling time and resolution.

The MATLAB code for FAS is provided in Appendix B, Section 10.3.
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4.1 Analogue Samples to Digital Signal

4.1.1 Analogue Samples

The first line of the analogue sample file contains the voltage and time delimiters for the specific

sample file, which are used to ensure proper values and timing in the software. The rest of the

file is then loaded into a matrix M where M ∈ Rn×3 and n is the number of samples in the file.

The first column of M contains the time-stamp and the second and third column contain the

analogue voltage of the BP and BM signal. A plot of the analogue samples for one FlexRay frame

is shown in Figure 4.1.
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Figure 4.1: Analogue Representation of a FlexRay Frame

4.1.2 Defining Voltage Thresholds

The voltage thresholds for logic ‘1’, logic ‘0’, idle and idle_LP are defined according to Section

2.5.9.2 in terms of equation 2.3. Meaning that for a logic ‘1’, the VBus voltage is defined as 0.6 V to

2.0 V, whereas VBus is the voltage difference between the BP and BM lines respectively. For a logic

‘0’ the VBus is defined as -0.6 V to -2.0 V. The idle state will produce a VBus voltage of 0 V, however,
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this will have to be addressed in the physical world as the BP and BM voltages are not exactly

similar in the idle states. Therefore, an experimental threshold of -0.1 V to 0.1 V is used in order

to detect the idle states.

The VBus signal is simply calculated using equation 2.3, then ~VBus = ~BP − ~B M , where ~VBus ∈
Rn×1 and n is the number of samples in the file. Further, the ~VBus will be the main vector when

converting to a digital signal. Since the FlexRay transmission lines produce the idle states and

the NRZ type bit signal, there is a total of four different bus states present on the bus lines. The

different states must be addressed in order to develop a fully digital signal. The FAS makes no

distinction of the idle and the idle_lp states as only the frame content and the timing information

are of importance.

4.1.3 Classifying the Signal with Voltage Thresholds and Averaging

4.1.3.1 Voltage Thresholds

The ~VBus is classified by using the thresholds in order to reduce the amount of unique sample

voltages. All states are currently preserved and are defined as in Table 4.1.

Table 4.1: Bus State Voltages
Bus States Idle Standby Idle Low High
Voltage 0 V 2.6 V 1.8 V 3.3 V

The classifying method used for the different states compares the current value of the ~VBus

to the analogue thresholds in Section 2.5.9.2 and appoints one of the states from Table 4.1 to

the current sample in the signal. The idle standby state and the idle state are inseparable by the

~VBus , however, can be detected when the actual analogue voltages of the transmission lines are

0 V. Figure 4.2 shows the classified VBus vector plotted over the sample time. The main ‘High’,

‘Low’ and ‘Idle’ states are classified, however, a problem occurs in the flanks of the bit signals as

they are not within any of the tolerances for the defined states. This is further shown in Figure

4.3, as the ~VBus is plotted over a time period of about 1600 ns (16 full bit duration’s on a 10 Mbps

transmission rate). The flanks then have to be corrected such that they conform with the correct

classified ~VBus signal.
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Figure 4.2: ~VBus Classified with Tolerances

When classifying the ~VBus with the threshold, all the ~VBus values that are not corrected with

the threshold are registered such that they can be addressed by its index in the VBus vector. During

the shift of a logical bit state on the bus, the ~VBus value can lay inside the threshold for the idle

state. In this case the classifying will register this as an idle state when it is actually in transition

from one bus state to another. Therefore, both the unchanged ~VBus values and some of the idle

states have to be corrected.

4.1.3.2 Averaging

For correcting the unidentified samples, averaging is used whereas the VBus vector is investigated

for a change in value. When a change in value occurs, a finite horizon average of the ~VBus values

forward in time is calculated and compared to a voltage threshold for the average value.

For a 5 ns sample rate signal, a horizon of 11 samples was used in order to calculate the

average value. Threshold for the average value was set to 2 V, meaning that an average value of

the horizon of a voltage greater or equal to the threshold would set the current value of ~VBus to

‘High’ and an average voltage less than the threshold would set the current value of the ~VBus to
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Figure 4.3: ~VBus Classified with Tolerances, 16 Bit Durations

‘Low’.

An average value calculated over an horizon of 11 samples contains about 8 samples of either

a bus state of ‘High’ ‘Low’, or ‘Idle’ and there is a maximum of one ‘Idle’ sample during the

bit change. The other values that are not corrected are in the range that is not covered by the

thresholds given in section 2.5.9.2. Therefore, a threshold for the average value can be estimated.

Table 4.2 shows the average voltages calculated over an 11 sample horizon. The median of the

lowest average voltage for a sample that should be corrected to ‘High’, and the highest average

voltage for a sample that should be corrected to ‘Low’ is about 2 V and therefore, the threshold

for the average value is set to 2 V.

Table 4.2: Average Voltages Calculated with a Horizon of 11 Samples
8 Samples 1 Sample 1 Sample 1 Sample Average Voltage [V]
High/Low Idle 0 V 0 V 2.64/1.55
High/Low Idle -0.59 V -0.59 V 2.53/1.43
High/Low Idle 0.59 V 0.59 V 2.74/1.65
High/Low 0 V 0 V 0 V 2.40/1.30
High/Low -0.59 V -0.59 V -0.59 V 2.24/1.15
High/Low 0.59 V 0.59 V 0.59 V 2.56/1.47
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In order to determine if the sample should be corrected, the sample index is compared to the

index for the uncorrected samples. Further, the program checks if all the indexed uncorrected

samples are corrected and are occupied by a bus state. The ~VBus then contains only three unique

values; ‘High’, ‘Low’ and ‘Idle’. The result of the averaging is shown in Figure 4.4, where a single

FlexRay frame is filtered by threshold and corrected with averaging.
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Figure 4.4: ~VBus Values of a FlexRay Frame After Classification

4.1.4 Digitising the FlexRay Signal

In order to create the bit signal (a stream of ‘ones’ and ‘zeros’) of the sample data, the ~VBus now

has to be converted to a digital representation. In order to reduce the amount of samples the

software has to handle, the nonzero values of the derivative of the ~VBus ( ~dVBus) are used in

comparison with the original time-stamp of the sample value. The ~dVBus signal will contain

values that originate from the change of a bus state. The derivative values from the change of

bus states are listed in Table 4.3. In order to create a bit signal only using the two logical states ‘1’

and ‘0’, all bus states apart from ‘Low’ are changed to ‘High’. The channel idle period will then

be represented as a long bit stream of logical ‘ones’. The ‘transmission start sequence’, which
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indicates the start of a frame transmission to the receivers, has a pattern of 3-15 ‘zeros’ at the

start of the frame. Frames transmitted in both the static and dynamic segment are padded with

the ‘channel idle delimiter’, which is an 11 bit signal of ‘ones’ at the end of the frame in the slot.

Therefore, changing the idle bus states to logical ‘ones’ will not change the content of a frame or

the method of decoding the signal. Changing the idle bus states to logical ‘zeros’ would make it

impossible to identify the length of the TSS.

Table 4.3: Values of ~dVBus During a Change in Bus State
Change in Bus State Value of the Derivative Logical Value of Current Sample

High to Low Low - High = -1.5 V 0
High to Idle Idle - High = -0.7 V 1
Low to High High - Low = 1.5 V 1
Low to Idle Idle - Low = 0.8 V 1
Idle to High High - Idle = 0.7 V 1
Idle to Low Low - Idle = -0.8 V 0

Figure 4.5 shows the ~VBus (blue) compared to the ~dVBus (in orange) of one FlexRay frame.
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Figure 4.5: ~VBus and ~dVBus of a FlexRay Frame

Figure 4.6 illustrates how a FlexRay frame is represented when changing the idle bus states to

logical ‘ones’.
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Figure 4.6: ~VBus Represented with Only Logical ‘Ones’ and ‘Zeros’, Two FlexRay Frames

The vector with the bit signal now contains the logical values calculated from the derivative,

and the original time-stamp of the sample value. This dramatically decreases the size of the

vector, as only the change in value is saved, and not the entire sample. With the use of the

non-return to zero type bit encoding, the actual logical bit values can be calculated using the

time-stamp, the bit signal from the derivative, and the bit rate of the FlexRay network. A 10 MBit/s

bit rate produces a 100 ns bit duration. Therefore, if two sequential samples of the ~dVBus have

a logical value of ‘1’ and ‘0’ with time-stamp 0 ns and 400 ns respectively, the samples would

represent a logical ‘1-1-1-1’ bit signal. When converting the analogue values to logical ‘ones’ and

‘zeros’, the actual change in the voltage on the medium is the point in time used for a change

in the logical values. The reason for using the change of the value and not the actual timing

for when the value reaches a threshold for either ‘High’ or ‘Low’ is due to the timing in the bit

transmission in FlexRay, as the other method would be a slight offset in time while the duration

of the bit would be the same.

The method used for calculating the sequential stream of bit values then calculates the time

between every consecutive element in ~dVBus , which will then indicate the logical bit value of

the analogue signal and the duration of the bit value. The time is calculated based on the time-
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stamp in the analogue sample data compared with the time delimiter in order to be expressed in

nanoseconds. In order to divide the duration into separate bits, and not as a measurement of

how long the physical bus signal has been ‘High’ or ‘Low’, the duration of the bit value is divided

by the bit duration of the FlexRay network and rounded up.

The result is a matrix A where A ∈R2×n and n is the number of times a bit value changes in

the sample. The matrix A contains the current bit value, and the number of consecutive bits of

the same bit value after the change of a bus state. The matrix is illustrated in table 4.4 and gives

the following bit stream: ‘1-10-00000000-10-00011110’. The bit stream is divided for illustration

purposes in order to show the FSS as the first bit, followed by two 10 bit byte transmissions

including its 2 bit BSS. Thus, the bit stream contains the symbol segment and frame ID of a

specific FlexRay frame.

Table 4.4: Logical Bit Values and Number of Consecutive Bits
Element in matrix: k k + 1 k + 2 k + 3 k + 4 k+ 5
Logical bit value: 1 0 1 0 1 0
Number of consecutive bits: 2 9 1 4 4 1

4.1.5 Identifying Slots and Frames

4.1.5.1 Converting Bit Stream into Slots

The matrix A is then converted to a bit stream that consists of the actual logical values of the

sampled signal. Since the bit stream is calculated using the persistent timing in FlexRay, and the

threshold values for the FlexRay signals, the bit stream will then indicate what any receiver on

the network is experiencing.

In order to retrieve and validate the information in all frames in the sample data, the bit

stream is split when a pattern equal to the CID sequence padded with a logical ‘zero’ at the end

occurs in the bit stream. Consequently, the bit stream will then be divided into n bit streams

where n is the number of frames in the sampled signal. The information from a FlexRay message

will then include all the logical bits starting with the first bit of the TSS, until the last bit before the

start of the TSS for the successive frame. Therefore, the FlexRay slot information is also included.
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4.1.5.2 Converting Slots into Frames

For each FlexRay slot, the FlexRay frames are retrieved and converted into their correct segment

using the FlexRay frame format from Section 2.5.7. The process of dividing the bit stream from

the frame into its respective segments proceeds as described in the following paragraphs.

Separate frame and channel idle bit The CID sequence and its following channel idle bits are

stored in the variable ChannelIdle_Bits. Since the bit stream contains all the bits from the start of

the frame until the start of the subsequential frame, the bit stream can be separated by the CID

sequence.

Separating the messages by the CID results in two vectors; one that contains only static frames

or the dynamic frames including the DTS, and a second vector that contains the CID and the

number of idle bits until the start of the successive frame. ChannelIdle_Bits will then indicate

two times the ‘channel idle’ time, when multiplied with the bit duration and subtracted the 11 bit

CID.

Calculate the DTS For messages transmitted during the dynamic segment, the end of the

FlexRay message contains the additional dynamic trailing sequence. The length of the DTS is cal-

culated over the number of logical ‘zeros’ before the CID. If a DTS is present in a FlexRay message,

it will indicate that the frame is transmitted during the dynamic segment of the communication

cycle.

TSS, FSS, BSS, FES After removing the channel idle time, the CID, and the DTS from the mes-

sage, the rest of the message will consist of the entire FlexRay frame.

The start of each bit stream is investigated for a ‘0-1-1’ logical bit pattern, whereas the logical

‘1’ marks the start of the frame. The zeros before the FSS are then the 3-15 long TSS. Further,

in order to confirm that the program is evaluating the start of the frame, the subsequent bits

after TSS and FSS are compared with the logical ‘1-0’ BSS sequence. The end of the bit stream is

compared with the logical ‘0-1’ FES.

All the bits following the FSS in the message are transferred into matrix K where K ∈Rn×10

and n is the number of 10 bit bytes of NRZ 8N1 type in the current FlexRay frame as mentioned
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in Section 2.5.7. The matrix K is then checked for a correct BSS by comparing the first two bits of

each row in K to the BSS ‘1-0’ pattern, in order to determine a correct division of the bit stream.

Further, the actual bytes of K are transferred to the matrix B where B ∈Rn×8 and n is the number

of bytes in the frame that have logical content.

4.1.6 Identifying and Validating FlexRay Frame Parameters

The matrix B is now consisting of the header, payload and trailer portion of the FlexRay message

as shown in Figure 2.6, which is the correct FlexRay message format.

Header Portion The first 40 bits (5 byte) of the matrix B (B ∈Rn×8,n = {1,2,3,4,5}) contain the

header portion of the FlexRay frame, and each parameter is retrieved for its belonging bits as

shown in table 4.5. Meaning that the FAS then retrieves the status, frame ID, payload length,

header CRC and cycle count parameters of the FlexRay frame.

Table 4.5: Retrieving Header Parameters from B ,B ∈Rn×8

Header Parameter n Bits
Status (5-bit) 1 1..5
Frame ID (11-bit) 1,2 6..8,1..8
Payload Length (7-bit) 3 1..7
Header CRC (11-bit) 3,4,5 8,1..8,1..2
Cycle Count (6-bit) 5 3..8

Payload Portion The payload portion of the FlexRay frame follows the header portion. Since

the header portion has a static length of five bytes, the bytes that contain the payload portion

can be calculated using the payload length from the header portion of the current FlexRay

frame. The DLC indicates the number of bytes in the payload sequence, divided by two (DLC =
Payl oadLeng th

2
). Therefore, the payload portion is retrieved from the matrix B for all bits

when n = 6..(5+2×DLC ) and DLC ≥ 1, e.g for a frame with a DLC of 2, the belonging bytes of B

would be when n = {6,7,8,9} and n ∈ B . If the transmitted frame has a DLC of 0, then the payload

segment is not a part of the frame.
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Trailer Portion The trailer portion of the FlexRay frame is the last three bytes of the matrix B

and is retrieved from B using the same logic. The trailer portion consists of the 24 bit CRC for the

FlexRay frame as calculated by the transmitting node.

4.1.6.1 Validating Header CRC

In order to validate the header portion of the FlexRay frame, a new 11 bit CRC for the header

portion is calculated and compared with the header CRC of the received FlexRay frame following

the format mentioned in Section 2.5.6. The hexadecimal value of the CRC polynomial from

Equation 2.1 for an 11 bit CRC is equivalent to 0x385.

The input to the header CRC algorithm is a 20 bit segment containing, from the left, the sync

frame indicator, startup frame indicator, frame ID and payload length.

The pseudo-code for the implementation of the header CRC is given in Algorithm 1, with the

only external input being the respective parts of the header portion used in the CRC calculation.

The algorithm returns the respective 11 bits of the CRC register. The MATLAB implementation of

the 11 bit header CRC is shown in appendix B, Section 10.1.
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Result: Calculates the 11 bit header CRC

Initialise: header (20 bit), CRC_Register (0x1A), CRC_Polynomial (0x385), length (20);

Initialise temporary registers: CRC_Next(0), header_temp(0), reg_temp(0);

while length do

length - -;

header ¿ 1;

header_temp = MSB of header;

reg_temp = MSB of CRC_Register;

if header_temp XOR reg_temp then

CRC_Next = 1;

else

CRC_Next = 0;

end

CRC_Register ¿ 1;

if CRC_Next then

CRC_Register = CRC_Register XOR CRC_Polynomial;

end

end

Return: CRC_Register && 0x7F
Algorithm 1: 11 Bit Header CRC

4.1.6.2 Validating Trailer CRC

In order to validate the entire FlexRay frame, a 24 bit CRC is calculated by the FAS and compared

to the value of the trailer in the received frame, following the format mentioned in Section 2.5.6.

The CRC is calculated for both initialisation vectors for the CRC register, 0xF EDC B A for channel

‘A’ and 0x ABC DEF for channel ‘B’ with the CRC polynomial from Equation 2.2 equivalent to

0x5D6DC B

The 24 bit CRC takes the entire header and payload sections as input data for the CRC

algorithm which functions almost in the same manner as the one used for the 11 bit CRC in

Algorithm 1. Since the input data is significantly larger than in the 11 bit CRC, and even a frame

with no payload would be at least 40 bit long due to the 5 bytes of the header section, the input
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data cannot be stored in a 32 bit integer on its own. Further, only input data where the frame has

a DLC of less than 1 can be stored in a 64 bit integer. Therefore, a shift register is implemented

for the input data were a 32 bit integer is used as the shift register. The input data is converted

to a string containing all the bit values of the header and payload sections with the first bit of

the header section located leftmost in the string. The CRC algorithm then evaluates the most

significant bit of the 32 bit shift register and when shifting out the most significant bit, the least

significant bit of the shift register is taken from the appropriate position in the input data string.

The CRC algorithm is processed for the entire length of the input data string and returns the

respective 24 bits of the CRC register for validation. In order to validate the frame, the CRC register

for both channel ‘A’ and channel ‘B’ is compared to the value of the trailer for the current frame.

The MATLAB implementation of the 24 bit trailer CRC is shown in appendix B Section 10.2.

The output from the FlexRay analysis software displays the parameters from all static and

dynamic frames including DTS, CID and the channel idle time until the successive frame. Ad-

ditionally, the validity of the frames is checked with the correct FlexRay frame format and both

the header and trailer CRC are calculated by the FAS in order to approve the frame content and

simultaneously confirming the functioning of the analysis. In order to sample a FlexRay network,

the bit rate of the network has to be known in advance such that the correct bit duration can be

configured in the FAS.



Chapter 5

FlexRay Communication Analysis

In order to provide an overview of how the FlexRay communication is structured in the test

vehicle, the FlexRay analysis software explained in Chapter 3 is first tested on the FlexRay test

network where we have insight into the FlexRay configuration and communication parameters.

Then the same testing is done for the FlexRay network in the test vehicle.

At an early stage in the software development process, a ‘Saleae Logic 8’ logic analyser (100

MS/s digital sampling) was used in an experiment for capturing the differential signal from

FlexRay. A high frequency operation amplifier comparator circuit was developed in order to

convert the differential wire FlexRay signals to TTL (0 to 5V) digital signals in order to sample

the bus communication, as the logic analyser uses standard 5 V TTL for digital signal sampling.

However, due to noise close to the reference voltage, the digital representation of the FlexRay sig-

nals showed inconsistencies between the BP and BM lines, meaning that one of the transmission

lines would have a change in value where the other line was static for a multiple of bit durations.

Instead, the physical signals in the FlexRay network were sampled with a Picoscope 4225,

which is an automotive grade PC oscilloscope with a 20 MHz frequency operating 12 bits at 400

MS/s. This implies that the oscilloscope will take a maximum of 40 samples of a 100 ns FlexRay

bit duration.

53
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5.1 FlexRay Analysis in Test Network

5.1.1 The Communication Cycle

In order to identify the communication cycle of the transmissions in the test network, the sample

data is analysed with respect to the specific segments in the communication cycle. Figure 5.1

shows a sample of the BM line expressed in voltage (y-axis) vs. time (x-axis). A time larger than

the typical 5 ms for the duration of the communication cycle is chosen in order to plot the entire

cycle. The sample data is taken from FlexRay channel ‘A’ on the test network. Here a recurrent

pattern is recognised where two consecutive frames are transmitted followed by a short idle time

period and then two longer frames followed by a long idle time period. The time between the

first frame after the long idle period and the next occurrence of this message is calculated to be

5.6 ms. It is therefore assumed that the four frames belong to the same communication cycle and

the long idle time consists of the NIT segment which ends the communication cycle. The plot

in Figure 5.1 has a time interval of about 20 ms and will, therefore, contain just under four full

communication cycles with a duration of 5.6 ms.
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Figure 5.1: FlexRay Sample Data from BM Line
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Further, the Figure 5.2 shows the start of the communication cycle and the frames in the static

segment or the static and dynamic segment of the sample data as in Figure 5.1.
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Figure 5.2: FlexRay Sample Data from BM line, Start of Cycle

In order to further analyse the communication the analogue sample data is processed with

the FlexRay analysis software from Chapter 3. The first frame of the sample data which is assumed

to be the first frame of the communication cycle is presented in Figure 5.3 and results from the

FAS.

5.1.2 The Static and Dynamic Frames

The FAS shows that there is a reoccurring pattern of four consecutive frame transmissions in

the sample data with iterating cycle count for each pattern, which is further supporting the

communication cycle duration theory. Table 5.1 shows the header content of the four messages

in the communication cycle, in which the 11 bit header CRC calculated by the FAS is identical

to the header CRC in the original FlexRay frame. The ‘Frame Number’ refers to the occurrence

of the frame in respect to the sample data. Due to the static frame length requirement and the

position of the static segment in the communication cycle it is clear that at least the frame ID 0x1
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Figure 5.3: Digital Representation of ~VBus for Frame ‘1’ In Test Network

belongs to the static segment. However, it is highly likely that frame ID 0x2 is also transmitted

during the static segment due to its location and the idle time after the transmission of frame 0x2.

When inspecting the ‘status’ parameter 0x7 = 0b111 of Frame ID 0x1 and 0x2 this implies that

for the two frames, the null frame indicator bit, sync frame indicator bit and the startup frame

indicator bit are set to a logical ‘1’. The status parameter confirms that both ID 0x1 and 0x2 are a

part of the startup and synchronisation process of the network and are, therefore, located in the

static segment. The frames with IDs 0x9 and 0x A are then located in the dynamic segment of the

communication cycle. The null frame indicator is set for all frames in the current communication

cycle which implies that all frames have data in the payload section of the frames.

The DLC parameter refers to the payload length of the frame, meaning that the frames

transmitted in the static segment have a payload length of 18 bytes while frame ID 0x9 and 0x A

have a payload length of 254 bytes (0x7F = 0d127).

Table 5.2 shows the payload and trailer content of the four frames in the communication

cycle. The ‘CRC Valid CH A/B’ parameter indicates whether the calculated 24 bit CRC for channel

‘A’ or channel ‘B’ is identical to the trailer of the transmitted FlexRay frame. The calculated 24

bit CRC will only be identical to the trailer portion of the transmitted FlexRay frame for either
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Table 5.1: Frame Header Content, Test Network
Frame Number Status Frame ID DLC CRC Cycle Count Header CRC Valid

1 0x7 0x1 0x9 0x29E 0x20
p

2 0x7 0x2 0x9 0x81 0x20
p

3 0x4 0x9 0x7F 0x5E1 0x20
p

4 0x4 0xA 0x7F 0x7FE 0x20
p

channel ‘A’ or channel ‘B’ due to the different initialisation vectors for the different channels as

mentioned in Section 2.5.6.3.

The calculated CRC is identical to the transmitted CRC for all four messages in the communi-

cation cycle, and the frame content is therefore valid. The payload of the frames is not analysed

as it is a test network with no external input that influences the frame content.

Table 5.2: Payload and Trailer Content, Test Network
Frame ID Payload (hex) Trailer CRC Valid CH A/B

0x1 01 00 00 00 FF 00 ... 00 0x6FB0C
p

/-
0x2 78 56 34 12 21 43 65 87 00 ... 00 0x5D687E

p
/-

0x9 FF 00 00 00 FF FF 00 00 FF FF FF 00 FF ++ 0xD8B79C
p

/-
0xA FF 00 00 00 FF FF 00 00 FF FF FF 00 FF ++ 0xFC7091

p
/-

Further, Table 5.3 is showing the timing parameters as calculated by the FAS. For the last

sampled frame, the ‘Idle Until Next Frame’ is not calculated as the FAS has no information about

the start of the sub-sequential frame. The TSS is perceived as by a receiver and is therefore

subjected to TSS truncation. The TSS length is equal for all frames in the test network in the

current sample. The length of the DTS is 0 bits for all frames in the sample data, which is always

the case for frames transmitted in the static segment. However, the DTS is used in the dynamic

segment to compensate for the variable payload length such that the frame will end in accordance

with a minislot. The two dynamic frames in the network do not contain a DTS and are therefore

aligned with a whole number of minislots.

Table 5.3: Timing Parameters, Test Network
Frame ID TSS length Idle Until Next Frame DTS

0x1 10 bits 57.6µs 0 bits
0x2 10 bits 573.5µs 0 bits
0x9 10 bits 6.8µs 0 bits
0xA 10 bits - 0 bits
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The length of the static slot can be calculated from the information given by the FAS using

the format from Section 2.5.8. The static slot contains the entire frame, the CID and the channel

idle time before the frame and after the CID. The length of the static frame is the total duration

of the TSS, the FSS, the header portion, the payload portion, the trailer potion and the FES. The

‘channel idle’ duration of the FlexRay slot is calculated using the number of bits that follows the

CID until the start of the frame transmission for an immediately successive frame (frame ID + 1).

The lengths of the header (5 byte) and the trailer (3 byte) are static and the length of the

payload is given by the FAS. The content of the static slot is shown in Table 5.4 and results in a 860

bit duration of the static slot. Two static slots are occupied in the network and the time between

the last static slot and the first dynamic will fit at most six whole static slots. Consequently, the

number of static slots in the network configuration is at the minimum two and at the maximum

eight slots.

Table 5.4: Length of Static Slot (in bits), Test Network
Channel Idle TSS FSS Header Payload Trailer FES CID Channel Idle

288 10 1 5×10 9×2×10 3×10 2 11 288

It was not possible to determine the duration or the number of minislots as the dynamic

slots are of a different size than the minislots, and the network transmission consists of only

two immediate successive dynamic frame transmissions. The only conclusion that can be made

regarding the minislot is that the duration of a minislot is smaller than the size of the smallest

dynamic slot in the dynamic segment. The dynamic slots in the test network are equal in size and

the channel idle time is calculated using the time difference between the immediate successive

dynamic frame transmissions of frame ID 0x9 and 0x A (3.4 µs).

The total duration of the dynamic slot is calculated in the same manner as the duration

of the static slot with the additional DTS included and results in a dynamic slot duration of

271.2 µs for the frames with a DLC of 127. Therefore, the minislot has to be smaller than this

value. For the symbol segment of the communication cycle, no symbol was observed during the

sampling, and the duration of the symbol segment is therefore not specified. Further, since the

dynamic segment can hold minislots after the end of the dynamic slot with the highest frame ID,

the start of the NIT segment is ambiguous and defined as the time after the ending of the last

sampled dynamic slot. Further, when comparing the maximum duration for the minislot and the
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minimum duration of the dynamic segment, a minimum number of minislots can be calculated.

The results from the FAS regarding the FlexRay configuration parameters in the test network

are shown in Table 5.5. The ‘Length of a minislot’ is most likely dramatically overestimated as the

duration is usually around 1 to 4 µs.

Table 5.5: Estimated FlexRay Configuration Parameters, Test Network
Reference Value
Macrotick Cycle length 5600 µs
Number of Static Slots (n) 2≤ n ≤ 8
Duration of a Static Slot 86 µs
Number of Minislots (n) n ≥ 2
Length of a Minislot (d) d ≤ 271.2 µs
NIT Start (t) t ≥ 1224 µs
Symbol Start (t) t ≥ 1224 µs
Payload Length in Static Segment (DLC) 9 (18 Bytes)
Number of TSS Bits (b) b ≥ 10 bit

5.1.3 Validation with FlexRay Node Configuration

The results from the FlexRay analysis of the test network are compared to the actual network

design of the test network with an emphasis on confirming the data in Table 5.1, Table 5.2 and

Table 5.5. The FlexRay network is set to a 10 MBit/s bit rate with a macrotick and microtick

duration of 1 µs and 25 ns respectively. Table 5.6 shows some of the FlexRay configuration

parameters in the test network. The length of the communication cycle is set to be 5600 MT

which is identical with the 5.6 ms displayed in Table 5.5. Further, both the duration of the static

slot and the number of static slots are equal in the FlexRay configuration when compared to the

value showed in the same table. The 18 byte payload length in the static segment and the duration

of the TSS complies with the values found with the FlexRay analysis software. Additionally, the

node configuration is showing that 24 message buffers (frame IDs) are available with the buffers

0 to 3 assigned to the static segment and the remaining buffers are assigned to the dynamic

segment. Only four message buffers are configured in the nodes and are displayed in Table 5.7.

The message buffer configuration in the test network showed in Table 5.7 is identical to the

results of the FAS. The software found the same frame ID´s, payload length and status content

as the message buffer configuration. However, the FAS was not able to identify the origin of the
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Table 5.6: Initialisation of FlexRay Nodes, Test Network
Reference Value
Macrotick Cycle length 5600 MT
Number of Static Slots 8
Duration of a Static Slot 86 MT
Number of Minislots 346
Length of a Minislot 4 MT
NIT Start on MT 2887
NIT Start on MT 2173
Microtick Duration 25 ns
Macrotick Duration 1 µs
Payload Length in Static Segment (DLC) 9 (18 Bytes)
Number of TSS Bits 10 bit

frames, as a FlexRay frame does not contain any content that would identify the transmitting node.

The message buffer configuration also shows that the messages transmitted during the static

segment of channel ‘A’ are also transmitted during the static segment of channel ‘B’, however, no

data is transmitted during the dynamic segment of channel ‘B’.

Table 5.7: Message Buffer Configuration, Test Network
Message Buffer Channel Origin DLC Sync Frame Startup Frame

1 A/B Node A 9
p p

2 A/B Node B 9
p p

9 A Node A 127 - -
10 A Node B 127 - -

Table 5.8 shows the payload of the message buffers in the test network. The nodes use a static

payload, which is identical to the payload found by the FlexRay analysis software. The first byte

of the payload of the corresponding FlexRay frame is transmitted such that the least significant

byte of the 32-bit in ‘Data 1’ is transmitted first.

Table 5.8: Payload Configuration, Test Network
Message Buffer Data 1,2,3..n

1 0x00000001, 0x000000FF
2 0x12345678, 0x87654321
9 0xFF, 0xFFFF, 0xFFFFFF, 0xFFFFFFFF, 0xFFFFFF00, 0xFFFF0000

10 0xFF, 0xFFFF, 0xFFFFFF, 0xFFFFFFFF, 0xFFFFFF00, 0xFFFF0000
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5.2 FlexRay Analysis in the Test Vehicle

The access to the transmission lines for the FlexRay network in the test vehicle are directly estab-

lished on the BP and BM lines connected to the ECU for the Electromechanical Power Steering

(EPS) system, available in the front left wheel arch. The wheel arch and the test equipment are

shown in Figure 5.4 and the EPS ECU with the test probes connected is shown in Figure 5.5,

note that the EPS ECU is not connected to the vehicle in the figure as this picture was taken

during later testing. The EPS ECU is connected to the vehicle in the analysis unless mentioned

otherwise.

Figure 5.4: Access to the Transmission Lines Through Front Wheel Arch

5.2.1 The Communication Cycle

The sample data from the FlexRay network of the test vehicle shows a reoccurring pattern of

23 frames followed by a portion where frames appear dynamically. Figure 5.6 shows a plot of

the sample data with almost three full communication cycles, where the orange line marks one

full communication cycle and the green line marks the reoccurring pattern of 23 frames. The

duration of the communication cycle is exactly 5 ms, calculated by using the time difference from
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Figure 5.5: Electronic Control Unit for EPS System

the first transmitted frame in the communication cycle and the first transmitted frame of the

successive communication cycle .
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Figure 5.6: FlexRay Analogue Sample Data, BM Line

5.2.2 The Static and Dynamic Frames

When analysing the sampled data with the FAS, the reoccurring pattern of 23 frame transmissions

followed by a dynamic frame transmission is confirmed. Further, the frames in the successive
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communication cycle appear with the same frame IDs and an iterated cycle count. Figure 5.7

shows the reoccurring pattern of 23 frame transmissions of an arbitrary communication cycle as

calculated by the FAS. Table 5.9 shows the header content of the same communication cycle with

the additional dynamic frames.

The frames with ID 0x3D, 0x40, and 0x46 have the sync frame and startup frame indicator

bit set to a logical ‘1’ in the status segment of the frames (0x3 = 0b11) which indicates that the

frame with ID 0x46 and all preceding frames in the same communication cycle are transmitted

during the static segment of the cycle. Further, all the 23 frames have the same static payload

length of 16 byte which are enforced for all frame transmissions in the static segment. The two

frames preceding the frame ID 0x46 have a different payload length and are a part of the dynamic

segment of the communication cycle.
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Figure 5.7: Digital Representation of FlexRay Signal

The 24 bit CRC in the trailer portion of the frame is identical to the calculated CRC with

initialisation vector for channel ‘A’, for all 25 frames in Table 5.9, indicating that the FAS verified

all 25 frames in the sample data and the data transmission occurs on channel ‘A’ in the FlexRay

network. The payload of the frames is dynamic and the null frame indicator bit is frequently

used between communication cycles for messages where there is data transmitted in the payload

section of the frame. The payload of the frames is further analysed in Section 5.2.4.

Table 5.10 shows the timing parameters as analysed by the FAS for the same data sample as in



CHAPTER 5. FLEXRAY COMMUNICATION ANALYSIS 64

Table 5.9: Header Content, Vehicle Network
Frame Number Status Frame ID DLC CRC Cycle Count Header CRC Valid

1 0x0 0x13 0x8 0x60D 0x1D
p

2 0x0 0x15 0x8 0x233 0x1D
p

3 0x0 0x1E 0x8 0x401 0x1D
p

4 0x4 0x28 0x8 0x45E 0x1D
p

5 0x0 0x29 0x8 0x5AB 0x1D
p

6 0x4 0x2B 0x8 0x641 0x1D
p

7 0x0 0x2C 0x8 0x38A 0x1D
p

8 0x4 0x2E 0x8 0x60 0x1D
p

9 0x4 0x2F 0x8 0x195 0x1D
p

10 0x0 0x31 0x8 0x259 0x1D
p

11 0x0 0x33 0x8 0x1B3 0x1D
p

12 0x4 0x35 0x8 0x58D 0x1D
p

13 0x4 0x36 0x8 0x792 0x1D
p

14 0x0 0x37 0x8 0x667 0x1D
p

15 0x4 0x38 0x8 0x781 0x1D
p

16 0x4 0x39 0x8 0x674 0x1D
p

17 0x0 0x3B 0x8 0x59E 0x1D
p

18 0x3 0x3D 0x8 0x683 0x1D
p

19 0x4 0x3F 0x8 0x24A 0x1D
p

20 0x3 0x40 0x8 0x417 0x1D
p

21 0x0 0x44 0x8 0x4E0 0x1D
p

22 0x0 0x45 0x8 0x515 0x1D
p

23 0x3 0x46 0x8 0x29 0x1D
p

24 0x4 0x7C 0x4 0x19A 0x1D
p

25 0x4 0x83 0x4 0x293 0x1D
p

Table 5.9. The duration of the TSS differs between the frames and has a maximum length of 9 bit

in the current sample data. Therefore, the global TSS duration is greater or equal to 900 ns. For

the messages transmitted during the dynamic segment of the current communication cycle, two

frame IDs are recorded, namely ID 0x76 and 0x83 with both a DTS duration of 34 bits.

The parameters in the static slot of two different frames are shown in Table 5.11. Both frames

have a frame in the successive message buffer slot in the communication cycle and different TSS

durations. When summing up the parameters in the static slot shown in the table, the duration

of the static slot equals 330 bits for both examples, which is a static slot duration of 33 µs. The

highest frame ID in the static segment is 0x46 = 0d70 which implies that there are at least 70

static slots configured in the FlexRay network in the vehicle. Further, the duration of the static

segment it at least 70×33 µs = 2310 µs.

In order to further determine the duration of the static and dynamic segments, more samples

had to be taken such that additional dynamic transmissions (if occurring) could be analysed.

Additional sampling over a longer time, and under different circumstances will most likely

introduce new dynamic frames.

A dynamic slot is transmitted in multiples of minislots, rendering the minislot to be smaller
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Table 5.10: Timing Parameters, Vehicle Network
Frame ID TSS length Idle Until Next Frame DTS

0x13 9 bits 40 µs 0 bits
0x15 7 bits 270.7 µs 0 bits
0x1E 8 bits 303.9 µs 0 bits
0x28 9 bits 6.7 µs 0 bits
0x29 9 bits 39.7 µs 0 bits
0x2B 7 bits 6.9 µs 0 bits
0x2C 7 bits 39.9 µs 0 bits
0x2E 7 bits 6.9 µs 0 bits
0x2F 7 bits 39.8 µs 0 bits
0x31 9 bits 39.6 µs 0 bits
0x33 9 bits 39.7 µs 0 bits
0x35 7 bits 6.9 µs 0 bits
0x36 7 bits 6.9 µs 0 bits
0x37 7 bits 6.9 µs 0 bits
0x38 7 bits 6.9 µs 0 bits
0x39 7 bits 39.9 µs 0 bits
0x3B 7 bits 39.9 µs 0 bits
0x3D 9 bits 39.7 µs 0 bits
0x3F 7 bits 6.9 µs 0 bits
0x40 7 bits 105.9 µs 0 bits
0x44 7 bits 6.9 µs 0 bits
0x45 7 bits 6.7 µs 0 bits
0x46 9 bits 920 µs 0 bits
0x7C 7 bits 54 µs 34 bits
0x83 7 bits - 34 bits

Table 5.11: Length of Static Slot (in bits), Vehicle Network
Frame ID CH. Idle TSS FSS Header Payload Trailer FES CID CH. Idle

0x28 33.5 9 1 5×10 8×2×10 3×10 2 11 33.5
0x3F 34.5 7 1 5×10 8×2×10 3×10 2 11 34.5
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than the smallest dynamic slot in the dynamic segment. Table 5.12 shows a sample of selected

dynamic frames with size and timing parameters from the test vehicle as analysed by the FAS.

The frames with DLC equal to 1 are the frames with the smallest payload in the samples and have

a frame duration from the TSS to CID (including DTS) of 145 bits. A frame with zero payload is

also possible, however since no such frame occurred in the samples, the duration of the DTS is

unknown. Since the dynamic slot occupies one or more multiples of minislots, the duration of a

minislot has to be smaller than 14.5 µs plus the channel idle time for the dynamic slot. Further,

two successive frames with frame ID ‘n’ and ‘n+2’ respectively will have a time difference of one

minislot from the end of the dynamic slot for frame ID ‘n’ to the start of the dynamic slot with

frame ID ‘n+2’. Thereby, no frame was transmitted to occupy the minislot for frame ID ‘n + 1’ and

the transmission of frame ID ‘n+2’ is then awaited until the successive minislot. The smallest

duration between two dynamic frames is the time between frame ID 0x7C and 0x80 from the

end of the CID for frame ID 0x7C to the TSS of frame ID 0x80 of 33.3 µs. The 33.3 µs are occupied

by the channel idle time which also contains the minislots for the start of a frame transmission

for frame ID 0x7D , 0x7E , and 0x7F . Therefore the duration of a minislot is further decreased to

less than 11.1 µs.

Table 5.12: Additional Dynamic Frames, Vehicle Network
Sample Frame ID DLC TSS DTS Idle Until Next Frame Trailer CRC passed

1 0x6C 4 7 34 115.9 µs
p

1 0x7C 4 7 34 33.3 µs
p

1 0x80 3 7 54 54 µs
p

1 0x87 4 7 34 -
p

2 0xED 4 9 34 74.2 µs
p

2 0XF7 4 9 34 1475.8 µs
p

3 0x7C 4 7 34 54 µs
p

3 0x83 4 7 34 2273.3 µs
p

4 0xD8 4 9 34 239.6 µs
p

4 0xFA 1 7 26 -
p

5 0x6E 1 7 26 46.8 µs
p

5 0x74 4 9 34 60.9 µs
p

5 0x7C 4 7 34 1044.2 µs
p

5 0x113 4 7 34 1234.9 µs
p

The duration from the last static slot to the first dynamic frame, with frame ID 0x5C indicates

the maximum size of the static segment and the maximum amount of static slots. The minimum

number of static slots was determined as 70 slots, and the time between the last static slot and

the TSS of the first sampled dynamic frame indicates a maximum of additionally 21 static slots

and the latest start of the dynamic segment.
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No symbol was observed during the sampling and the duration of the symbol segment is

therefore not specified. Further, since the dynamic segment can have minislots after the end

of the dynamic slot with the highest frame ID, the start of the NIT segment is ambiguous and

defined as the time after the ending of the dynamic slot with the highest recorded frame ID. The

last dynamic frame in the dynamic segment in the sample data is the frame with ID 0x113 shown

in Table 5.12. The ‘Idle Until Next Frame’ indicates the time between the CID parameter of the

dynamic slot and the TSS of the first static frame in the successive communication cycle. The

maximum duration of the NIT segment, when no Symbol window is present in the network,

can then be calculated using the timing information from frame ID 0x113. The start of the NIT

segment and Symbol window is then determined to occur later than 3959.15 µs after the start of

the communication cycle. The earliest start of the NIT segment indicates a minimum duration

for the dynamic segment. Further, when comparing the maximum duration for the minislot

and the minimum duration of the dynamic segment, a minimum number of minislots can be

calculated.

The results from the FAS regarding the FlexRay configuration parameters in the test vehicle

are shown in Table 5.13.

Table 5.13: Estimated FlexRay Configuration Parameters, Vehicle Network
Reference Value
Macrotick Cycle Length 5000 µs
Number of Static Slots (n) 70 ≤ n ≤ 91
Duration of a Static Slot 33 µs
Number of Minislots (n) n ≥ 86
Length of a Minislot (d) d < 11.1 µs
NIT Start (t) t ≥ 3959.15 µs
Symbol Start (t) t ≥ 3959.15 µs
Payload Length in Static Segment (DLC) 8 (16 Bytes)
Number of TSS Bits (b) b ≥ 9 bit

5.2.3 Disconnecting a FlexRay Node

The ECU for the electromechanical power steering system was physically disconnected from the

FlexRay network in order to determine the static frame transmissions originating from the ECU.

Access to the vehicle’s FlexRay bus was then established through the ECU connector on the BP
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and BM lines, as shown in Figure 5.8.

Figure 5.8: EPS Disconnected, Bus Access via Main Connector

When disconnecting the EPS ECU the communication cycle contained 21 frames instead

of the original 23 as illustrated in Figure 5.9. The empty static slots are shown with an orange

line. The lack of the static frame ID 0x31 and 0x33, when the node is disconnected, indicates

that these frames originate from the ECU for the EPS system. Further, since none of the frames

originating from the node has the sync frame indicator bit or the startup frame indicator bit set

to a logical ‘1’, as shown in Table 5.9, the EPS node is not a coldstart node.

Additionally, removing the node from the network caused a voltage change for the dominant

bus states, increasing from 3.3 V to 3.8 V and decreasing from 1.8 V to 1.2 V for the high and low

states respectively. There was also a significant increase in signal noise present in the network

when the node was disconnected. The noise and voltage difference are presumably caused by

the removal of the impedance-matching/termination present in the node.

5.2.4 Payload Investigation

In order to inspect the payload, multiple successive communication cycles have to be analysed in

order to see how the payload changes over time. The payload alone does not give any information
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Figure 5.9: Analogue Samples, Static Frames with EPS disconnected

about the content, therefore, physical influence in the form of brake and clutch actuation are

applied while sampling the FlexRay network.

A single sample containing a second of information renders the FlexRay analysis software

to analyse 200 successive communication cycles. A sample rate of 5 ns with 12 bit per sample,

would create a matrix of 200×106 rows and 3 columns per row with 12 bit samples, and would be

very difficult to work with. Therefore, when analysing a longer time period, the entire sample

duration is split into smaller segments and analysed individually, then the frame content is stored

and compared with the successive samples.

When analysing the payload of specific frames, only the frames with the ‘null frame indicator

bit’ set to ‘one’ are analysed, as the payload would otherwise only consist of ‘zeros’. Another

requirement for analysing the payload is that the frame 24 bit trailer CRC is equal to the trailer

CRC calculated by the FAS. The ‘packet sniffing’ method from Section 2.7.1 is used to identify the

communication between the different ECUs on the FlexRay network in the test vehicle.

Figure 5.10 shows the 16 byte payload of frame ID 0x2C where only the frames that passed

the trailer CRC validation and had data in the payload section are plotted. 100 samples indicate

samples from 100 successive communication cycles and, therefore, a time period of 500 ms.

Similar plots were made for all frame IDs in all samples where the payload was analysed. The first

two byte of the payload of 0x2C are assumed to be a two byte combination of a CRC value and
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an increment counter value, consistent with the AUTOSAR end-to-end protection mentioned in

2.7.3. The same pattern are identified in many other frame IDs as a combination of byte one and

two, and byte nine and 10 which implies, if the end-to-end protection is used, that it protects the

six bytes succeeding the counter byte and the counter itself. Further, byte three to 10 are assumed

to indicate the brake pressure, in either a combination of two bytes or expressed in one byte.
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Figure 5.10: Payload Plot of Frame ID 2C, Brake Actuation

A similar behaviour when actuating the brake pedal is found in frame ID 0x2F , except with

much lower resolution. Byte 8 of 0x2F changes between three unique states as the brake pedal is

activated, while byte 14 of the same frame changes between two states. This is indicating that

byte 8 could show an active, midpoint, and standby position of the brake pedal while byte 14

shows the brake pedal activation.

As the payload in Figure 5.10 looks quite static, and does not reflect the usual behaviour of

the payload in most frames, Figure 5.11 shows the payload of frame ID 0x2B , which implements

a more dynamic payload. The figure is additionally showing the possible counter and CRC

combination of byte one and two, and byte nine and 10.

The frames with frame ID 0x2B , 0x2C , and 0x2F have a visible change in the payload during

the brake pedal actuation which can be shown when comparing the payload to a reference
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Figure 5.11: Payload Plot of Frame ID 2B, Brake actuation

payload. The reference payload is taken from a sample period with no physical interference with

the vehicle (other than the natural). The payload from frame ID 0x2C during brake actuation

(orange) plotted against the reference payload (blue) for byte one through 10 is shown in Figure

5.12. The plot are showing a fixed value for the reference payload and a dynamic pattern in the

brake actuation payload. Therefore indicating that the payload of frame ID 0x2C is connected to

the physical brake system.

A similar approach as for the brake pedal actuation was used when analysing the payload

during clutch pedal actuation. During the clutch pedal activation the payload of frame ID 0x29

and 0x3D responded to the actuation while the reference payload was static. The payload

of frame ID 0x29 is shown in Figure 5.13 with the clutch actuation (orange) compared to the

reference payload (blue).

Additional payload analysis was done in order to investigate if an Inertial Measurement

Unit (IMU) is transmitting accelerometer measurements on the network. An external force was

applied to the test vehicle using the motion platform in order to create a 1 Hz, 4 cm vertical

motion during the sampling of the FlexRay transmission lines. One frame ID (0x15) had a payload
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Figure 5.12: ID 0x2C, Byte 1..10, Brake Actuation Compared to Reference Payload

different to the reference payload during the testing, however, no direct link between the physical

external action and the varying payload was found. The vertical motion (orange) compared to

the reference payload (blue) is shown in Figure 5.14.

The results from the payload analysis for the brake actuation, clutch actuation and vertical

motion are presented in Table 5.14.
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Figure 5.13: ID 0x29, Byte 9..16 Clutch Actuation Compared to Reference Payload
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Figure 5.14: ID 0x15, Byte 1..7, Vertical Motion Compared to Reference Payload



CHAPTER 5. FLEXRAY COMMUNICATION ANALYSIS 74

Table 5.14: Payload Analysis, Test Vehicle
Frame ID Explanation Payload Byte Hexadecimal Value
0x15 Contains Information from IMU 3,4 -
0x2B Contains Information from Brake Pedal 3,4,6 00..FF
0x2C Brake Pressure 3,5 00..FF
0x2C Brake Pedal Position 7,9 00..FF
0x2C Brake Pressure Activation 4,6 7C/7D
0x2C Brake Pressure Situation (hard/normal/none) 8,10 7D/7C/7B
0x2F Brake Pedal Position 8 00..07
0x2F Brake Pedal Activation 14 F8/F9
0x29 Clutch Pedal Activation 11,12,14,15,16 00/3F, 7D/83, 7D/7F, 0/B9, 7D/7B
0x29 Clutch Pedal Activation and Position 13 0..24
0x3D Clutch Pedal Activation 3,4,5,6 0/C0, 7D/7B, 0/C0, 7D/7B
0x3D Clutch Pedal Activation and Position 7 0..21



Chapter 6

Suggestions for FlexRay Adversaries

Due to the deterministic aspect and the network wide configuration of FlexRay, implementing a

man-in-the-middle attack on a FlexRay network requires a lot of knowledge about the original

network. A simple direct connection to the transmission lines will only give access to the existing

communication in the network. This is different than e.g. for CAN were a node could passively

connect to an existing network and then initiate frame transmissions on the network. Further, in

order to manipulate the existing communication in a FlexRay network, the frames have to be

intercepted after transmission from the FlexRay node by an adversary performing a MitM attack.

The manipulation could of course be conducted by reprogramming the original FlexRay nodes,

as shown in Section 2.7.1, where ECU flashing was performed in the original ECUs of the vehicle,

however, that is beyond the scope of this paper.

The main goal for the adversary on FlexRay is to manipulate the data content of the frames

such that the receivers will process the ‘adjusted’ data content of the frame instead of the original.

In order to process the manipulated frame, the frame has to be approved by the FlexRay commu-

nication controller of the receiver. That means that the 24 bit CRC in the trailer portion of the

frame has to be calculated for the manipulated payload and transmitted with the manipulated

frame.

The general idea behind an adversary on FlexRay is illustrated in Figure 6.1, where specific

frames transmitted during the static segment of the communication cycle from the Node Under

Attack (NUA) are subjected to an adversary. The adversary then manipulates the payload and

trailer portion of the frames and transmits the frames to the remaining nodes in the FlexRay

75
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Figure 6.1: FlexRay Adversary, Manipulating Payload

The suggestions for FlexRay adversaries are theoretical and not tested out on an operating

FlexRay network. Two main solutions for FlexRay adversary are suggested in this paper: ‘FlexRay

Adversary Implemented with Hardware Logic’ and ‘FlexRay Adversary Implemented with a

Microcontroller’, and will be explained in the following sections.

6.1 FlexRay Adversary Implemented with Hardware Logic

An adversary on FlexRay implemented with hardware logic (HWL) is suggested for manipulating

the signals directly on the transmission lines while simultaneously monitoring the bus activity in

order to synchronise the system with the FlexRay network. The FlexRay adversary is illustrated in

Figure 6.2.

6.1.1 Monodirectional Adversary

A suggestion for a monodirectional FlexRay adversary is illustrated in Figure 6.3, where the

hardware logic functions as an attacker. The adversary manipulates or passively re-transmits
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Figure 6.2: FlexRay Adversary, Hardware Logic

the data transmission from the attacking node to the rest of the nodes in the FlexRay cluster.

The monodirectional FlexRay adversary consists of a data input buffer for the differential signal,

hardware logic, output line driver and a bidirectional analogue switch. The hardware logic is

constructed such that the FlexRay transmission and frame content can be decoded in real-time

and has the capability of external data input for manipulating payload. Further, a 24 bit trailer

CRC algorithm needs to be implemented in the HWL or provided by external data input. The 11

bit header CRC could be stored in a static message buffer for specific messages as the CRC only

depends on the sync frame indicator, startup frame indicator, frame ID and the payload length,

which does not change for a specific frame.

Figure 6.3: FlexRay Adversary, Monodirectional

In order to manipulate or re-transmit a FlexRay frame, the HWL needs to have the directional

information of the transmitted frame. In case of a monodirectional adversary, the HWL only

needs to know which frames/slots are transmitted from the NUA.

The method used in Section 5.2 for determining the origin of a FlexRay frame, where a node

is physically disconnected from the network, is suitable in order to determine the origin of

frames transmitted during the static segment. However, this method is not suitable for frames

transmitted during the dynamic segment. The frames transmitted during the dynamic segment
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are most likely application related and can be initiated as a response to dynamic or static frames or

frame content. Hence, removing a node from the network might also discard frame transmission

from other network participants. Therefore, a frame manipulation in the dynamic segment

without the FlexRay configuration information from the network designer, is nearly impossible

with the monodirectional FlexRay adversary. In order to manipulate frames in the dynamic

segment, the minislot and dynamic transmissions preceding the minislots for the manipulated

frame ID are monitored, such that the frame manipulation will only take place at a free minislot

and with the correct priority in the dynamic segment.

6.1.2 Bidirectional Adversary

The bidirectional adversary is essentially two monodirectional adversaries for transmitting the

FlexRay communication both to and from the NUA. For the implementation of the bidirectional

adversary, the manipulated frames’ origin needs to be determined by either side ‘1’ or ‘2’ of

the adversary in order for the HWL to activate the corresponding input buffers and output line

drivers.

Figure 6.4: FlexRay Adversary, Bidirectional

If the entire network communication is known, and the transmission in the dynamic segment

are conform to a specific pattern, the bidirectional adversary could be implemented without

the bidirectional analogue switch and thereby routing all the network transmission through the
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HWL. Consequently, the dynamic transmission needs to be conform to a pattern based structure,

which is unlikely due to the event-triggered aspect of the dynamic frame transmissions.

For both the monodirectional and bidirectional adversary, the physical implementation might

pose an additional delay through the bidirectional analogue switch, which needs to be considered

as an effect for the receivers.

6.1.3 Frame Manipulation

Both ‘in-frame manipulation’ and ‘replaced frame manipulation’ are methods suggested for

manipulating FlexRay frames with an FlexRay adversary implemented with hardware logic for

both the monodirectional and bidirectional adversary.

6.1.3.1 In-Frame Manipulation

The in-frame manipulation method uses the bidirectional switch in order to disconnect the NUA

from the FlexRay network in a specific point in global time before the frame to be manipulated is

transmitted. The action point for the bidirectional analogue switch is determined by the HWL

by using the timing information from the preceding frame. After switching the bidirectional

switch, the HWL would be in charge of the communication between the node and the rest of the

network. The HWL then intercepts the original frame transmission from the NUA and passively

re-transmits the header portion while monitoring the transmission lines. Instead of continuing

with the passive re-transmission, the HWL sends a different, pre-calculated, equally long and

formatted bit sequence in the payload and trailer section of the frame. After the last bit of the

trailer section the HWL switches back to passive re-transmission, and further switching off the

bidirectional switch when the channel idle bus state is reached. Thereby the network is put back

to the original operation. The in-frame manipulation of a static slot is illustrated in Figure 6.5.

The payload and the trailer portion of the specific frame are then manipulated, and the trailer

must contain a valid 24 bit CRC for the data content of the entire frame, meaning that the CRC has

to be calculated over the original header portion and the manipulated payload portion. Further,

the status portion of the header section must have the null frame indicator bit set to ‘one’ in

order for other nodes to process the payload of the manipulated node. The header portion is
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Figure 6.5: In-Frame Manipulation

then static for all information transmitted after the status portion for a specific communication

cycle number (due to the iterative cycle count), giving the HWL time to calculate the trailer CRC.

Further, the HWL could verify a specific configuration of the status portion, and only enable

manipulation if the status portion of the current frame is equal to a pre-defined status portion.

The in-frame manipulation could also be applied such that the header portion of the frame is

also manipulated. The passive re-transmission would then end upon the start of the frame.

An example is shown in Table 6.1 where payload and trailer content of frame ID 0x2C are

manipulated. The manipulated content of the frame, byte 3 and 5, are linked to the brake pressure

as shown previously during the payload analysis of the FlexRay communication in the test vehicle,

Table 5.14. Given that the NUA transmits the original frame, the frame will interpreted by the

receivers as brake pressure equal to zero, while in reality the brake pressure could be much higher.

The manipulated frame could however be dismissed by the receivers if the payload contains an

additional security measure, like AUTOSAR End-to-End protection (see Section 2.7.3). In the

case where the AUTOSAR End-to-End protection is implemented in the payload, the CRC8 byte

must also be manipulated. The CRC polynomial for the algorithm is unknown, however, can be

deduced from the frame ID, the counter and the protected sections of the payload since these are

all known. The implementation of such a protection is application specific and might be different

in different systems. The trailer CRC for the manipulated frame in Table 6.1 is calculated with the

same CRC algorithm used in the FlexRay analysis software and is shown in Appendix B Section

10.2.

The in-frame manipulation will introduce a transmission delay, throughput_delay, of the
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Table 6.1: Example of FlexRay Frame Payload and Trailer Manipulation
Frame Header Payload Trailer
Original 20 2C 10 E2 9F A3 F4 68 7C 68 7C 51 7B 51 7B 22 22 FF FF FF FF F6 B5 3A
Manipulated 20 2C 10 E2 9F A3 F4 00 7C 00 7C 51 7B 51 7B 22 22 FF FF FF FF 02 5D 5E

frame due to the physical signal passing through the input buffer, HWL and the output line driver.

In order to ensure that the frame is received within the correct microticks the delay should be

equal or less than the tolerable limitations of the asymmetric delay for a receiver as if there was

an active star present in the network (see Section 2.5.9).

6.1.3.2 Replaced Frame Manipulation

The ‘replaced frame manipulation’ works in a similar manner as the in-frame manipulation

technique. However, instead of passively re-transmitting, the HWL replaces the entire FlexRay

slot. The start time of the frame that is going to be manipulated is known by using the time from

preceding frame. Further, the HWL can compensate for a delay through the bidirectional switch

with reducing the channel idle duration of the current frame. In this way, the manipulated frame

is not subjected to any new delays due to the manipulation. The replaced frame manipulation

does, however, not have the capability of responding, in the same communication cycle, to a

malfunction in the NUA since the entire frame is replaced at the exact point in (global) time the

original frame is transmitted.

For the replaced frame manipulation, the header, payload and trailer portion need to be

configured by the HWL and match the configuration of the original frame. Since the header

portion of the frame is also manipulated, the adversary has the possibility of transmitting a

frame with data in the payload portion of the segment even if the original frame has the null

frame indicator bit set to ‘zero’. The cycle count for the replaced frame must also be iterated

compared to the value of the preceding communication cycle. The replaced frame manipulation

is illustrated in Figure 6.6.
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Figure 6.6: Replaced Frame Manipulation

6.2 FlexRay Adversary Implemented with a Microcontroller

A Flexray adversary solution could also be implemented on a higher level with a microcontroller

solution. The NUA is then separated from the original network by an additional FlexRay node

working as an active star with the extra functionality to intercept and manipulate information

regarding the entire communication cycle, transmitted to and from the NUA. A solution like this

is far more complex than the HWL adversary, as introducing a new operational node to an existing

FlexRay network is not possible due to the global FlexRay network configuration. Therefore, the

additional FlexRay node cannot interfere with the FlexRay configuration of the original network,

and the communication needs to act in accordance with the same persistent global time.

As a direct re-transmission within the same bit duration is not possible due to the added

processing delay, propagation delay and so forth, the adversary has to delay the entire communi-

cation cycle with at least one cycle. Consequently, the original globally synchronised network is

divided into two locally synchronised networks where each of the nodes in the local networks is

unaware of the communication cycle delay. The FlexRay adversary node solution is illustrated in

Figure 6.7.

Table 6.2 shows the delayed communication cycle differences between the two local networks

where k is the number of delayed communication cycles. The adversary FlexRay node has to

decrease the cycle count value in the header section of each frame such that it will match the

current communication cycle in each local synchronised network. Further, during the network

startup phase, if coldstart nodes exist on different sides of the FlexRay adversary node then the

entire startup phase will be delayed with k communication cycles and is conflicting with the



CHAPTER 6. SUGGESTIONS FOR FLEXRAY ADVERSARIES 83

Node Under 
Attack

FlexRay 
Adversary 

Node

Node Under 
Attack

Node Under 
AttackFlexRay Nodes

Local Synchronised Network 1 Local Synchronised Network 2

    Communication 
Controller For 

Network 1

Communication 
Controller For 

Network 2

 FlexRay Adversary Node

 Network

Figure 6.7: FlexRay Adversary Node

pre-defined number of communication cycles in the startup phase. The adversary would then

have to falsify the sync and startup frames in the local network that occupy the leading coldstart

node in order to initiate full network communication, and then, after the startup phase, send the

original frames from the coldstart nodes located in the other local network with an decreased

cycle count.

Table 6.2: Adversary, Communication Cycle
Communication Cycle: Cycle Start Cycle 2 Cycle 3 Cycle 4 Cycle n
Local Network 1: cycle 1 cycle 2 cycle 3 cycle 4 cycle n
Local Network 2: - cycle k cycle k+1 cycle k+2 cycle n-k

Since every frame in the communication cycle is passed through the bus driver, communica-

tion controller and processed by the host controller, the node has access to all the information

in both header and payload segment of all frames in the network and manipulation can be

performed offline in the host controller. The frame content is then loaded into an output buffer

and transmitted after k communication cycles. The FlexRay adversary node would have to im-

plement two communication controllers and bus driver systems such that each local network is

connected to its own communication controller. Utilising the available transmission channel ‘B’

for a network that only implements communication channel ‘A’ would cause an inconsistency in

the trailer portion of the FlexRay frames as the 24 bit CRC algorithm uses different initialisation

vectors for the different communication channels. The 24 bit CRC in the trailer portion of a

FlexRay is calculated online by the communication controller, meaning that the frames transmit-
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ted from the original network on transmission channel ‘A’ would not be verified by the FlexRay

adversary if transmission channel ‘B’ is used from the network and vise versa. The host controller

then has to support two communication controllers, or two host controllers would control each

communication controller independently while transmitting FlexRay network content between

each other.



Chapter 7

Discussion

7.1 The FlexRay Analysis Software

The FlexRay Analysis Software (FAS) was developed while this paper was in progress and provides

message content and timing information for all FlexRay messages in an analogue sample file

taken from the transmission lines BP and BM of FlexRay. The FAS had some problems with

handling the input data when a lot of noise was present on the transmission lines, whereas the

differential value of the signal had a larger voltage threshold for the different bus states. For

example, when the BP line is 4 V and the BM line is 1 V, this would produce a 3 V differential value,

which is outside the threshold area for the ‘High’ bus state. Hence, that specific sample would be

an undefined bus state. The frame containing the undefined bus state would then not pass the

trailer CRC comparison because the 24 bit CRC calculated by the FAS would not be equal to the

one in the trailer portion of the transmitted frame. The noise and voltage discrepancies in the

FAS are, however, assumed to be fixed if the FAS adapts the voltage threshold for the bus states

according to the current sample data, rather than only using the theoretical values.

Further, a solution could be implemented where only one of the transmission lines of FlexRay

is sampled in order to analyse the network communication. This will come at a cost of reduced

tolerance to electromagnetic interference. However, the FAS would then only need to process the

analogue values from one transmission line. Therefore, both the size of the input data and the

processing time of the FAS would be reduced.

85



CHAPTER 7. DISCUSSION 86

7.2 Estimating the FlexRay Configuration Parameters

The FlexRay configuration parameters were estimated in Section 5.1.1 for the FlexRay test network

and in Section 5.2 for the FlexRay network in the test vehicle. The estimated parameters in the test

network were in some cases identical to the configured parameters in the FlexRay node, and in

other cases only determined by an upper or lower value. In order to further tighten the estimates,

more samples should be analysed from the network as analysing over a larger time frame might

reveal additional frame transmissions in the dynamic segment. Additionally, the configuration

parameters could be limited by the specifications in the FlexRay protocol specification such that

an invalid value for a parameter could not be estimated (e.g maximum size of the static segment).

The estimated FlexRay configuration parameters in Chapter 6 do not include all the configura-

tion parameters for a FlexRay node, only the ones that can be deduced by the timing information.

The configuration of a FlexRay node includes additional global and local configuration parame-

ters. Additional methods have to be used in order to estimate more parameters.

7.3 Analysing the Content in a FlexRay Network

Performing an analysis of the messages and message content is not uncomplicated in FlexRay,

as the global network configuration of the time-triggered architecture renders a node unable to

inject messages to the network using a simple passive bus connection. Further, the proprietary

data communication and payload format can be analysed in order to prove a correlation with

a physical system. However, it does not prove causation. In order to determine exactly what

is transmitted in each message in the network, the FIBEX file for the specific communication

network should be consulted.

In order to provoke a reaction in the message payload when investigating the payload of

the messages in the test vehicle in Section 5.2.4, an external physical system in the vehicle was

actuated. Although, this seemed efficient when analysing the sample file during the physical

actuation, it is possible that the reaction originated from a completely different system in the

vehicle. Therefore, additional testing in order to determine the physical origin of the frame

content should be conducted, such as comparing the payload to external sensors and reference

payloads taken under different circumstances.
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7.4 A FlexRay Adversary

The use of different communication protocols and multiple networks in a vehicle offers various

attack surfaces for a potential adversary. The communication of a network can be altered given

that the attacker has physical access to the transmission lines of any communication protocol.

For CAN, the manipulation can be done by using a passive connection to the network in order

to initiate frame transmissions. Further, a MitM attack on CAN can be implemented with an

additional CAN node, as the messages are not expected to arrive at a specific point in time and

will therefore not be affected by the additional delay of the node.

A similar approach is not possible for time-triggered network architectures as in FlexRay due

to the TDMA scheme for the bus access. Two main implementations for a FlexRay adversary are

shown in Chapter 6, which takes a theoretical approach to the manipulation.

The ‘FlexRay adversary implemented with hardware logic’ is manipulating the frame content

in real-time, directly on the transmission lines. Therefore, if there was no extra delay due to the

additional circuitry of the adversary, as in case of the ‘replaced frame manipulation’ method, then

the physical layer would be completely unaware of the adversary. The ‘in-frame manipulation’

method uses a passive re-transmission and manipulation solution for the frame manipulation

and will, therefore, introduce an additional delay to the frame transmission. The added delay

must then be sufficiently small such that it will not be noticed by the receivers which will set high

demands for the hardware components used in the adversary.

An adversary implemented with a microcontroller, as mentioned in Section 6.2 is a far more

complex adversary than the hardware logic adversary. For the microcontroller adversary, the

attacker is implemented as an additional node, performing a MitM attack in the original network.

Therefore, the node has to have all the information necessary in order to communicate on the

network. Many of the FlexRay configuration and communication parameters can be deduced

from the network communication as shown in Chapter 5. However, the parameters need to

be identical to the configured parameters. A completely accurate parameter estimation is only

guaranteed if the network is analysed during all possible situations for an infinite time, as a

dynamic frame transmission is event-triggered. Consequently, implementing an additional node

as a FlexRay adversary would require the configuration information of the original network
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(the FIBEX file). However, if given enough time and the possibility of confirming the network

transmission of a FlexRay network, the node configuration could be brute-forced using the

estimated configuration parameters as a basis.

Additional research and testing have to be done in order to determine how a potential ‘bus

guardian’ would react to the introduction of an adversary node in the network where the bus

guardian is activated.

Appropriate precaution should be taken when implementing an adversary on an automotive

communication network as the adversary could conflict with safety critical message transmission.

Moreover, a FlexRay adversary has a large potential endangerment as the protocol is most likely

used by X-by-wire applications. When manipulating the frame content of a specific frame in the

communication, the original frame content would be delayed with at least one communication

cycle duration, which could be valuable milliseconds during a critical situation. In the extreme

case that the original frame content contains information that would lead to an immediate airbag

deployment, and the same frame is manipulated in the specific communication cycle, the airbag

deployment would not occur until the successive communication cycle. Further, if the frame is

manipulated for every communication cycle, the airbag deployment information might never be

transmitted further than to the adversary. Moreover, implementing an adversary without having

proper information about the content in the network can cause serious endangerment to the

driver and the surrounding environment.

The number of attack surfaces of a vehicle increase as the numbers of electronic systems,

sensors and communication networks are increasing. Automotive manufacturers then have to

take appropriate precautions in order to prevent unwanted access to the safety-critical informa-

tion in the vehicle. The adversary solutions and frame manipulation methods mentioned in this

paper are meant to raise awareness of the fact that such a manipulation is achievable while also

explaining the possible consequences.
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Conclusion

8.1 FlexRay Analysis and FlexRay Adversary

The developed FlexRay Analysis Software (FAS) presented in this paper was tested on a FlexRay

network where the communication and configuration were known in order to prove proper

functionality of the program. The frame information was validated with calculating a new header

CRC and trailer CRC for each specific FlexRay frame. The calculated CRCs were then compared

to the respective portions in the original FlexRay frames, in which the header and trailer CRCs

were identical for all frames in the sample data. Thus, the FlexRay frame content was correctly

analysed by the FAS. Additionally, the frames were validated by comparing the frame format

in the FAS to the FlexRay frame format, which showed a correct frame format for all frames in

the sample data. In conclusion, the developed FAS was able to correctly calculate all the frame

information of a given FlexRay sample file containing only the analogue sample values from

the FlexRay transmission lines. Further, the timing information of the frame transmission was

calculated by the FAS and provided valuable information in order to estimate some of the global

FlexRay configuration parameters.

The content of the FlexRay frames was analysed over a longer time period, in which an

actuation of a physical system was introduced, in order to determine the physical origin of the

frame content. With the actuation of physical systems, a correlation between some of the physical

systems and the payload of specific frames was found.

Multiple adversary solutions for FlexRay were suggested and thoroughly discussed and ex-
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plained in order to provide necessary information for practical implementations. A FlexRay

adversary was proven to be possible for either the manipulation of specific frames or the entire

network communication. Therefore, implementing a man-in-the-middle attack on FlexRay is

possible.

8.2 Suggestions for Further Work

A suggestion for further work is to implement automatic FlexRay parameter identification in the

FAS in a similar manner to what is accomplished in the paper "Automatic Parameter Identification

in FlexRay based Automotive Communication Networks" by [1]. Further, the FAS could be imple-

mented as a real-time system such that the ‘packet sniffing’ over time would be a much easier

process and could be compared in real-time. In order to investigate the frame content (payload)

in an automotive network more easily, the FAS could process an automatic payload identification

whereas the physical actuation is monitored with external sensors and an automatic correlation

algorithm could then identify the physical systems in the payload of the FlexRay frames.

In order to make the FAS more tolerant to signal noise, automatic voltage threshold adjust-

ment should be implemented. Additionally, if a ‘timing error’ has occurred, whereas one or

multiple portions of a specific FlexRay frame are short by one or more multiple bit values, the FAS

could "guess" a bit value, and calculate and compare the new trailer CRC such that the timing

error could be corrected.

The adversary suggestions presented in this paper have to be proven in a physical system in

order to show how the adversaries would work in a FlexRay network. Therefore, further work

regarding the FlexRay adversaries could deal with the implementation of both the hardware logic

and the microcontroller adversary in a FlexRay network performing a man-in-the-middle attack

on a specific node in the network cluster.
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Appendix A

9.1 Acronyms

µT Microtick

ABS Anti-Lock Braking System

AP Action Point

BM Bus Minus (Transmission line)

BP Bus Plus (Transmission line)

BSS Byte Start Sequence

CAN Controller Area Network

CAS Collision Avoidance Symbol

CID Channel Idle Delimiter

CRC Cyclic Redundancy Check

DLC Data Length Coding

DTS Dynamic Trailing Sequence

ECU Electronic Control Unit

EPS Electromechanical Power Steering

ESC Electronic Stability Control

FAS FlexRay Analysis Software (Developed for this paper)

FES Frame End Sequence

FIBEX Field Bus Exchange Format
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FSS Frame Start Sequence

FTDMA Flexible Time Division Multiple Access

GTDMA Global Time Division Multiple Access

HWL Hardware Logic (for Adversary)

ID Identifier

LIN Local Interconnected Network

MCU Microcontroller Unit

MitM Man-in-the-Middle

MT Macrotick

MOST Media Oriented Systems Transport

NIT Network Idle Time

NUA Node Under Attack

TDMA Time Division Multiple Access

TSS Transmission Start Sequence

V_Bus Voltage difference between the BP and BM Bus lines
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Appendix B

10.1 MATLAB Implementation of 11 Bit Header CRC

This section contains the FlexRay 11 bit header cyclic redundancy check used by the FlexRay

Analysis Software.

1 % 11 Bit Header CRC Algorithm for FlexRay Analysis Software

function CRC = Header_CRC( Message_Header )

3 %I n i t i a l i s e Variables

header = s t r c a t ( Message_Header ( 1 , : ) , Message_Header ( 2 , : ) . . .

5 , Message_Header ( 3 , : ) ) ;

header = uint32 ( hex2dec ( header ) ) ;

7 header = b i t s h i f t ( header ,−1) ;

header = bitand ( header , hex2dec ( ’FFFFF ’ ) ) ;

9 CrcInit = int32 ( hex2dec ( ’ 1A ’ ) ) ;

data_length = int32 (20) ;

11 CrcNext = int32 ( 0 ) ;

CrcPoly = uint64 ( hex2dec ( ’ 385 ’ ) ) ;

13 CrcReg_X = uint64 ( CrcInit ) ;

header_temp = uint64 ( 0 ) ;

15 reg_temp = uint64 ( 0 ) ;

header = b i t s h i f t ( header , 1 1 ) ;

17 CrcReg_X = b i t s h i f t ( CrcReg_X , 2 1 ) ;
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CrcPoly = b i t s h i f t ( CrcPoly , 2 1 ) ;

19 % CRC Algorithm

while ( data_length )

21 data_length = data_length −1;

header = b i t s h i f t ( header , 1 ) ;

23 header_temp = uint64 ( bitand ( header , hex2dec ( ’ 80000000 ’ ) ) ) ;

reg_temp = bitand ( CrcReg_X , hex2dec ( ’ 80000000 ’ ) ) ;

25 i f ( bi txor ( header_temp , reg_temp ) )

CrcNext = 1 ;

27 else

CrcNext = 0 ;

29 end

CrcReg_X = b i t s h i f t ( CrcReg_X , 1 ) ;

31 i f ( CrcNext )

CrcReg_X = bitxor ( CrcReg_X , CrcPoly ) ;

33 end

end

35 % Format Output

CrcReg_X = b i t s h i f t ( CrcReg_X,−21) ;

37 CrcReg_X = bitand ( CrcReg_X , hex2dec ( ’ 00000000000007FF ’ ) ) ;

CRC = dec2hex ( CrcReg_X ) ;

39 end

10.2 MATLAB Implementation of 24 Bit Trailer CRC

This section contains the FlexRay 24 bit trailer cyclic redundancy check used by the FlexRay

Analysis Software.

1 % 24 Bit T r a i l e r CRC Algorithm for FlexRay Analysis Software

function CRC = Trailer_CRC ( Message_Header , Message_Payload , Channel )

3 % Format data input

Message_Header = dec2bin ( hex2dec ( Message_Header ) , 8 ) ;
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5 Message_Payload = dec2bin ( hex2dec ( Message_Payload ) , 8 ) ;

temp_header = ’ ’ ;

7 for i = 1 : s i z e ( Message_Header , 1 )

temp_header = s t r c a t ( temp_header , Message_Header ( i , : ) ) ;

9 end

temp_payload = ’ ’ ;

11 for i = 1 : s i z e ( Message_Payload , 1 )

temp_payload = s t r c a t ( temp_payload , Message_Payload ( i , : ) ) ;

13 end

% I n i t i a l i s e Variables

15 data_long = s t r c a t ( temp_header , temp_payload ) ;

i f strcmp ( ’B ’ , Channel )

17 % I n i t i a l i s a t i o n Vector Channel B

CrcInit = int32 ( hex2dec ( ’ABCDEF ’ ) ) ;

19 else

% I n i t i a l i s a t i o n Vector Channel A

21 CrcInit = int32 ( hex2dec ( ’FEDCBA ’ ) ) ;

end

23 CrcNext = int32 ( 0 ) ;

CrcPoly = uint64 ( hex2dec ( ’ 5D6DCB’ ) ) ;

25 CrcReg_X = uint64 ( CrcInit ) ;

header_temp = uint64 ( 0 ) ;

27 reg_temp = uint64 ( 0 ) ;

CrcReg_X = b i t s h i f t ( CrcReg_X , 8 ) ;

29 CrcPoly = b i t s h i f t ( CrcPoly , 8 ) ;

data = uint32 ( bin2dec ( data_long ( 1 : 3 1 ) ) ) ;

31 data_length = s i z e ( data_long , 2 ) ;

bit_length = s i z e ( data_long , 2 ) ;

33 i = 1 ;

% CRC Algorithm

35 while ( data_length )

data_length = data_length −1;
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37 data = b i t s h i f t ( data , 1 ) ;

i f i <= bit_length−31

39 data = bitor ( data , bin2dec ( data_long ( i +31) ) ) ;

end

41 i = i +1;

header_temp = uint64 ( bitand ( data , hex2dec ( ’ 80000000 ’ ) ) ) ;

43 reg_temp = bitand ( CrcReg_X , hex2dec ( ’ 80000000 ’ ) ) ;

i f ( bi txor ( header_temp , reg_temp ) )

45 CrcNext = 1 ;

e lse

47 CrcNext = 0 ;

end

49 CrcReg_X = b i t s h i f t ( CrcReg_X , 1 ) ;

i f ( CrcNext )

51 CrcReg_X = bitxor ( CrcReg_X , CrcPoly ) ;

end

53 end

% Format Output

55 CrcReg_X = b i t s h i f t ( CrcReg_X ,−8) ;

CrcReg_X = bitand ( CrcReg_X , hex2dec ( ’ 0000000000FFFFFF ’ ) ) ;

57 CRC = dec2hex ( CrcReg_X ) ;

end

10.3 MATLAB Implementation of FlexRay Analysis Software

The MATLAB implementation of the FlexRay Analysis Software are shown in the following

link: https://drive.google.com/drive/folders/0B4duzcMTjDZbNVhoUy1KNks0aDA?usp=

sharing

https://drive.google.com/drive/folders/0B4duzcMTjDZbNVhoUy1KNks0aDA?usp=sharing
https://drive.google.com/drive/folders/0B4duzcMTjDZbNVhoUy1KNks0aDA?usp=sharing
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