
Implementation of Trust-region
Algorithm for Well Placement
Optimization in FieldOpt Framework

Lingya Wang

Petroleum Geoscience and Engineering

Supervisor: Jon Kleppe, IGP
Co-supervisor: Mathias Bellout, IGP

Department of Geoscience and Petroleum

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Oil field development is a challenging engineering task that involves optimization
problems such as the types, numbers, scheduling, location, and controls of wells.
Optimization algorithm is the key factor for optimization model. Each algorithm
has its own strengths and weaknesses, hence we need to apply efficient and
effective methodologies to solve optimization problems. Multiple papers propose
derivative-free methods based on stochastic global search techniques. However,
very few research papers propose the use of derivative-free local search methods
in well placement optimization. A main drawback of stochastic search techniques
is that they often require an extensive amount of function evaluations to perform
their search. These methods are thus not practical for large scale problems
where each function evaluation may require hours. As a result, we consider a
local and deterministic trust region algorithm in our work. This thesis concerns
the implementation of the trust region for well placement into the FieldOpt
optimization framework developed at the Petroleum Cybernetics Group, NTNU.

The C++-written FieldOpt software program serves as a framework and
enabler for algorithm development aimed at petroleum problems that require the
efficient computation of reservoir simulations for cost function evaluation. The
reservoir simulation works as a “Black Box”, but the FieldOpt software allows for
a straightforward one-to-one communication between the algorithm logic and the
multiple driver files and settings needed by the simulator.

We start with general introduction of well placement optimization and widely
used algorithms for optimization problems. Gradients with respect to well place-
ment variables are commonly not available and therefore derivative-free methods
are often proposed for well placement optimization. The trust region method
implemented in this work does not require cost function derivatives, but instead
constructs surrogate models of the objective function obtained during the optimiza-
tion process. Our approach is based on building a quadratic interpolation model,
which reasonably reflects the local behavior of the original objective function in a
subregion.

After implementation of the algorithm in FieldOpt, we apply test functions
to validate the performance of the algorithm. One of them is the plated-shaped
Matyas function and the other one is the valley-shaped Rosenbrock function.
We used Cauchy point calculation and Dogleg method to solve the optimization
problem and analyze their convergence properties. The results show that the
convergence of the Cauchy point algorithm by taking the steepest descent direction
is inefficient in some cases. A future improvement could be achieved by using
the Dogleg method. We also notice that values of predetermined parameters
can affect algorithm performance. Therefore, it is also important to choose a
proper parameter value to improve the convergence of method. Then, we apply
the model-based trust-region method to solve some well placement optimization
cases, for example single producer or five-spot model.

Preface
This thesis was conducted as a part of the Master’s degree in Petroleum Engieering
at the Department of Geoscience and Petroleum at the Norwegian University of
Science and Technology. It was performed throught my 10th semester, spring 2017
in collaboration with the Petroleum Cybernetics Group at NTNU. This work was
done under the supervision of Prof. Jon Kleppe and co-supervised by Postdoc
Mathias C. Bellout.

iii

Acknowledgments
I wish to thank my supervisor professor Jon Kleppe for his guidance towards the
Petroleum Cybernetics group and his support during the project.
I would like to give a big thank you to my co-supervisor Mathias Bellout for

his advice and assistant on almost every aspect for this thesis. Without his help I
would probably not have made it.

I would also like to thank friends and classmates for support and discussion:
Hilmar Magnusson, Chingz Panahli and Bo Niu. Thank you for helping me with
formulating and solving the optimization problem with FieldOpt framework.
In addition, I would like to thank PhD stud. Einar Baumann: without his

original FieldOpt code and technical help I would probably not have implemented
algorithm in FieldOpt software framework successfully.
Lastly, I will thank my family, my mother and brother for supporting me

through all these years. Thanks always being there when I need you. You know
who you are.

v

Table of contents

1 Introduction 1
1.1 Well placement problem . 1
1.2 Literature review . 2

1.2.1 Widely used methods for optimal well placement 2
1.2.2 Trust region method in derivative-free optimization 4

1.3 Thesis outline . 6

2 Trust region algorithm 7
2.1 Framework of trust region algorithm 7
2.2 Problem definition . 10
2.3 Construction of quadratic model 11
2.4 The updating of interpolation set 12
2.5 Trust-region subproblem . 13

2.5.1 The exact solution . 14
2.5.2 The approximate solution 14

3 Implementation of trust-region algorithm in FieldOpt 19
3.1 Polynomial . 19
3.2 PolyModel . 21
3.3 Trust region search . 23

4 Computational experiments 25
4.1 Matyas test function . 25

4.1.1 Background . 25
4.1.2 Approximate quadratic model 26
4.1.3 Optimization results . 28

4.2 Rosenbrock test function . 35
4.2.1 Background . 35
4.2.2 Approximate quadratic model 36
4.2.3 Optimization results . 38

vii

5 Example cases 43
5.1 Case 1 . 43

5.1.1 Case description . 43
5.1.2 Optimization solutions . 45

5.2 Case 2 . 50
5.2.1 Case description . 50
5.2.2 Optimization solutions . 50

5.3 Case 3 . 60
5.3.1 Case description . 60
5.3.2 Optimization solutions . 61

6 Summary 65

7 Further work 67
7.1 Constrained optimization . 67
7.2 Surrogate model . 67
7.3 Optimization step . 68

A Code 69
A.1 Code for interpolation points . 69
A.2 Code for optimization step . 72

B Driver Files 77
B.1 Case 1 . 77
B.2 Case 2 . 79
B.3 Case 3 . 83

viii

Chapter 1
Introduction

Oil field development is a very expensive and challenging process, which involves
optimization problems such as the types, numbers, scheduling, location, and
controls of wells. The well placement optimization problem is one of the most
important parts in field development. It is crucial to apply an efficient algorithm
to reduce simulation runs and accelerate the process. In our work, we use a
model-based trust region algorithm to solve well placement optimization problem
and implement this local search derivative free method into FieldOpt optimization
framework. The C++-written FieldOpt software program serves as a framework
and enabler for algorithm development, which is aimed at petroleum problems
that require the efficient computations of reservoir simulations for cost function
evaluation. The reservoir simulation works as a “Black Box”, but the FieldOpt
software allows for a straightforward one-to-one communication between the
algorithm logic and the multiple driver files and settings needed by the simulator.
This chapter reviews the common methods in well placement optimization and
the trust region method.

1.1 Well placement problem
The general well placement optimization problem involves the determination of
the well types (e.g., injector or producer, vertical or horizontal) and well locations.
The optimal well location that maximizes asset value (such as Net Present Value
and cumulative oil production) is a key reservoir management decision. Decision-
making is difficult since it depends on many parameters (e.g., heterogeneity of
rock and liquids, well and surface equipment specification, economics factors,
potential of various well types, spacing and scheduling of wells). In addition, we
need to consider the uncertainties in certain variables. For example, permeability,
perforation interval, communication between layers and some dynamic uncertainty
factors. When we apply efficient algorithms to solve optimization problems, some
realistic and practical constraints should also be considered and embedded into a

1

Chapter 1. Introduction

mathematical optimization formulation. There are three main constraints for well
placement optimization problem: well length, inter-well distance and reservoir
bound constraints.

1.2 Literature review

1.2.1 Widely used methods for optimal well placement

The derivative-free optimization algorithms are widely used in oil industry. From a
different perspective, optimization algorithms can also be classified into determin-
istic or stochastic. Deterministic optimization methods include general pattern
search methods and direct search methods. They are widely used in well control
problems. For well placement problem, most research has focused on stochastic
search algorithms. In the following section, we will present several widely used
derivative-free algorithms in well placement optimization problem.

1.2.1.1 Genetic algorithm

Genetic algorithm (GA) belongs to the evolutionary algorithm and is based on
natural selection. This algorithm is the most widely used approach for well
placement optimization problem. The main advantage of GA is its ability to
find the global optimum solution. However, genetic algorithm requires numerous
simulation runs because of its stochastic nature. Johson and Roger [1] used
artificial neural networks and a heuristic search method to optimize the design of
well field. The heuristic search method includes genetic algorithm and simulated
annealing. Artificial neural network (ANN) is trained to predict the model result.
Yeten and Durlofksy [2] used genetic algorithm method to find the type, location
and trajectory of nonconventional wells. Due to computationally expensive
simulations runs, they used three “helper”algorithms (feed-forward artificial neutral
network, hill climber and upscaling methodology) to reduce number of simulations
and accelerate the optimization procedure. The artificial neutral network is used
as an efficient proxy to the objective function. Hill climbing is another acceleration
tool to determine the search direction. A near-well upscaling methodology is used
to speed up the finite difference simulation runs. It is shown that the optimal
type of well depends on the reservoir model, objective function (cumulative oil
production or net present value) and the degree of reservoir uncertainty.

There are significant uncertainties in reservoir models and can also affect the
well placement optimization. As a result, some new modified genetic algorithms
under uncertainties are proposed in recent years. Morales [3] used this algorithm
under geological uncertainties which makes genetic algorithm a robust tool. The
general genetic algorithm is modified so that engineer can identify the acceptable
level of risk. Litvak and Onwunalu [4] also proposed a new modified genetic
algorithm in 2011. They considered the surface uncertainties which are represented
in multiple reservoir models and proposed two effective approaches to reduce CPU
requirements.

2

1.2. Literature review

1.2.1.2 Particle swarm optimization

Kennedy and Eberhart [5] first introduced particle swarm optimization (PSO)
algorithm in 1995. PSO algorithm evaluates the objective function at each particle
location and is inspired by social behaviors of bird flocking or fish schooling. In
PSO, particles represent potential solutions and move in the search space. Like
genetic algorithm, PSO is a global optimization algorithm and based on natural
processes, but it has no evolution operators. Compared to GA, PSO is easier to
implement and there are fewer parameters to adjust. The main drawback of PSO
algorithm is that it is not guaranteed to converge to a stationary point.

Onwunalu and Durlofsky [6] applied PSO algorithm to determine the optimal
type and location. Vertical, deviated and dual-lateral wells were considered in their
research. In addition to PSO algorithm, GA is also used to maximize objective
value (NPV). By a comparion of results from these two global search methods,
it indicated that PSO algorithm outperforms the general genetic algorithm for
well placement optimization problem. Afterwards, they developed PSO algorithm
for large scale field development problem. Well pattern optimization [7] was
proposed to handle large numbers of wells as pattern. As a result, number
of simulation runs is reduced and optimization procedure is improved. Wang
[8] proposed a novel approach for well placement problem under uncertainty
using retrospective optimization (RO). RO is suited for optimization problem
under geological uncertainty. A sequence of realizations are used in retrospective
optimization. Results from several examples in this work demonstrate that RO
procedure requires fewer simulation runs and can reduce computational effort
obviously.

1.2.1.3 Simulated annealing

Simulated annealing (SA) algorithm is a probabilistic method to approximate
the global optimization in a large search space. It was developed in 1983 to deal
with nonlinear problems. Both simulated annealing and genetic algorithm start
with an initial random population. The main advantage of simulated annealing
methods is to avoid getting stuck in local minima, but they are computationally
intensive and need carefully chosen parameters. Beckner and Song [9] first used
simulated annealing algorithm to optimize well placement and economics. They
applied reservoir simulation model and an economic analysis module to maximize
NPV. Well placement and scheduling problems are defined as a classical “traveling
salesman problem” in this work. Norrena and Deutsch [10] used SA methods
to determine the optimal well locations. In this work, they assumed that wells
are initially static and dynamics of fluid flow are not considered. Then a flow
simulator adjusts the static wells to dynamic. The optimal locations are only
determined in expected value because the true reservoir is unknown.

1.2.1.4 Other derivative-free optimization algorithms

In addition to the above methods, there are several other derivative-free opti-
mization methods used in well placement optimization. For example, Branch and

3

Chapter 1. Introduction

Bounded algorithms (B&B), Covariance Matrix Adaptation-Evolution Strategy
(CMA-ES), Nelder-Mead downhill simplex (N-M), Spontaneous Perturbation
Stochastic Approximation (SPSA) and Generalized Reduced Gradient (GRG).
B&B can be used to solve both linear and nonlinear problems for large scale
optimization. Rosenwald and Green [11] first used B&B with mixed integer
programming to determine optimal well locations in 1974. The method in this
work is in conjunction with a mathematical reservoir model to minimize the
difference between the production-demand curve and the flow curve. Like PSO
and GA algorithms, CMA-ES also belongs to the evolutionary algorithms and
are inspired by biological mechanism. Bouzarkouna [12] proposed two new tech-
niques into CMA-ES (adaptive penalization with rejection and incorporation of a
meta-model). Results of his work showed that CMA-ES outperforms the genetic
algorithm. N-M algorithm is a direct search method which only uses function
evaluations. Tilke [13] presented an automated work flow to well placement
optimization problem under uncertainty. The downhill simplex method of Nelder
and Mead was coupled with reservoir simulator and adapted to treat bounded
constraints to determine the optimal locations of well. SPSA algorithm is based on
gradient and used for continuous stochastic optimization problems. Bangerth [14]
compared SPSA with Nelder-Mead (N-M) simplex algorithm, very fast Simulated
Annealing (VFSA) and Genetic Algorithm (GA). It is shown that SPSA and
VFSA are more efficient to find optimal locations of wells with a high probability.
For SPSA, there are fewer function evaluations than VFSA. GRG is generalized
by allowing nonlinear constraints and arbitrary bounds on variables. John applied
GRG algorithm for well spacing optimization in 2010. He proposed an economic
optimization model to maximize returns on investment. It is shown that well
spacing is more sensitive to oil price.

1.2.2 Trust region method in derivative-free optimization
Function evaluations from reservoir simulation are computationally expensive,
hence there is a growing demand for better and more effective algorithms to
find the optimal well locations with fewer function evaluations in recent years.
Multiple papers propose derivative-free methods based on stochastic global search
techniques. However, very few research papers propose the use of derivative-
free local search methods in well placement optimization. A main drawback of
stochastic search techniques is that they often require an extensive amount of
function evaluations to perform their search. These methods are thus not practical
for large scale problems where each function evaluation may require hours. As a
result, we consider a local and deterministic trust region algorithm in our work.

Trust region is a very important and efficient numerical optimization method
for nonlinear programming problems. It has a subregion around the current
search point. In general, quadratic model based on interpolation is constructed
within this subregion. Winfield [15] was the first to use interpolation models in
1969. Powell [16] proposed COBYLA algorithms which is a sequential trust-region
algorithm through interpolation of objective functions and constrained functions.
This method can be applied to solve constrained derivative-free optimization

4

1.2. Literature review

problem. When the number of variables is n, the degree of freedom is (n+1)(n+2)
2

for a quadratic function(Rn). Hence, at least (n+1)(n+2)
2 interpolation points are

needed to construct a unique model. If n > 20, UOBYQA [17] is used. However,
UOBAYQA algorithm is not suitable for large scale problems. At each iteration,
the amount of computations increases the fourth power with dimension. To
overcome this difficulty, Powell also proposed NEWUOA algorithm [18] which
is the best one of derivative-free optimization algorithms. It can be used when
interpolation point is less than (n+1)(n+2)

2 . Actually Powell’s methods were
developed from the modification of minimum change in quasi-newton method [19],
which means Broyden modification. From numerical experiments results, it is
shown that this modified method can acquire useful quadratic information and
accelerate convergence. In the practical calculations, the amount of function
computation increase linearly with dimension. Thus, NEWUOA can solve large
scale optimization problem. For example, function needs to be evaluated 8504
times to find high precision solution when Powell applied NEWUOA to solve the
160-dimensional Arwhead test function [18].

For both UOBYQA and NEWUOA algorithms, Lagrange interpolation model
plays a critical part. Lagrange polynomials can be applied to construct quadratic
model, complete poisedness of points and update interpolation points. For con-
strained optimization problem, Powell improved NEWUOA algorithm and pro-
posed BOBYQA algorithm. Nocedal and Marazzi [20]constructed another trust
region derivative-free algorithm based on quadratic interpolation model. In ad-
dition to the traditional constraints in subregion, there is a wedge constraint.
The purpose of such a wedge constraint is to improve interpolation point when
objective values are minimized. CONDOR [21] algorithm is similar to UOBYYQA
and can be applied to solve general constrained optimization problem. MNH [22]
used Frobenius norm interpolation to construct model. DFLS algorithm [23] is
based on the least square method and proposed by Conn and Scheinberg.

As we presented above, the trust region algorithm has been developed a lot.
Algorithms based on trust region idea are robust and have been successfully applied
in many problems. Bockmann [24] applied a modified trust region Gauss-Newton
method to identify physical spectra. Alexandrov [25] used trust region method
to solve nonlinear bilevel optimization problems. Bilevel problem is converted
into a single-level problem and there is no assumptions on structure. Oeuvray
and Bierlaire [26] constructed BOOSTERS algorithm and it has been successfully
applied in biomedicine.

The trust region idea has been applied in many fields (e.g. applied mathematics,
chemistry, physics, computer science, biology, medicine, economics and sociology),
it is rarely used in well placement optimization. As we mentioned before, most
of the research focuses on genetic algorithm, particle swarm optimization and
simulated annealing. All these algorithms are global search methods. There is
less published work that indicates utilization of local search methods for optimal
well placement. Thus, trust region derivative-free algorithm arouses our interest.
Unlike the line search method, the trust region requires to solve optimization
problem in subregion at each iteration. In addiction to that, the convergence

5

Chapter 1. Introduction

properties of trust region method is strong. Hence, we want to incorporate it into
the FieldOpt optimization software toolkit.

1.3 Thesis outline
The next chapter presents the framework for trust region algorithm. We will
introduce how we construct a quadratic surrogate model by a set of well-poised
interpolation points and solutions of trust region subproblems. In Chapter 3,
we describe the implementation of the trust region algorithm in FieldOpt. It
includes three C++ classes: Polynomial class, PolyModel class and TrustRe-
gionSearch class. In Chapter 4, we apply two test functions to validate the
performance of the algorithm. One of them is the plated-shaped Matyas function
and the other one is the valley-shaped Rosenbrock function. Then, we will use the
model-based trust region method to solve three well placement optimization cases
in Chapter 5. Chapter 6 summarizes the work and the results we have obtained.
Although we have implemented trust region algorithm successfully in FieldOpt,
there are still some unsolved problems. In Chapter 7, we will discuss and list
some important suggestion to improve the trust region algorithm.

6

Chapter 2
Trust region algorithm

We know that the common methods that are used to solve optimization problem are
based on derivatives, for example, Newton methods. However, for well placement
optimization problem, we can only get the value of the objective function from a
black box. We have the input data for reservoir simulator and get the output data.
But there is no accurate expression or derivative information. It may be costly to
get derivative by function evaluation. So we consider derivative-free method here.

As we presented before, Derivative-free approaches can be divided into two
categories, local and global search method. Compared with other DFO methods,
trust region is based on interpolation model. Model-based trust region method has
relatively better numerical results and convergence because model is constructed
with local information of the true objective function.

The trust region algorithm is a local search model-based method. This method
is designed to construct surrogate models of the objective during the optimization
process. This surrogate model is usually easy to evaluate and presumed to be
accurate in a neighborhood about the current iterate. In our study, we use
quadratic interpolation model [27] We start by providing the background of trust
region algorithm in Section 2.1 and outlining the interpolation models based on
trust region method in Section 2.2. In Section 2.3, we discuss the main solutions
of trust the region subproblem.

2.1 Framework of trust region algorithm

The trust region idea is based on a model which is obtained by a set of well-poised
interpolation points. This model approximates the true objective function f(x)
in a local neighborhood centered at the current point xk(2.1).

B(xk; ∆k) = {x ∈ Rn : ||x− xk|| 6 ∆k} (2.1)

7

Chapter 2. Trust region algorithm

where xk is the central point, ∆k is the trust region radius, ||x− xk|| is the trial
step at k-th iteration.

We focus on unconstrained optimization problem in our work. Hence, the
trust region optimization problem can be defined as{

min m(x+ sk)

s.t.||sk|| 6 ∆k

(2.2)

The surrogate model can be accurate or poor. If the trust region step gives a good
decrease in the true objective function relatively to the decrease in the model, the
step is taken and the trust region size is increased or not altered. Otherwise the
step is rejected and the trust region radius is decreased. Therefore, trust region
algorithm always drive the radius to zero. When the trust region size is small
enough, the optimization process should terminate. The following ratio between
the actual reduction in the objective function f(x) and the predicted reduction
using the model m(x) reflects how much the surrogate model agrees with the
objective function within the trust region. This ratio decides whether the solution
of (2.2) is accepted as a new iteration xk+1.

ρk =
actual reduction

predicted reduction
=

f(xk)− f(xk + sk)

m(xk)−m(xk + sk)
(2.3)

The trust region radius and the center point for next iteration will be updated
according to ρk. When ρk is close to 1, it means the model has a good approximate
performance. Trust region radius ∆k should be increased and xk + sk is used as
the new center point for the next iteration. If ρk is close to 0, the surrogate model
gives a poor prediction. The radius have to has be reduced and the center point
is still xk. The updating formulae used for updating xk and ∆k can be expressed
as follows:

xk+1 =

{
xk + sk, ρk > η1

xk, ρk < η1

(2.4)

∆k+1 =


γ2∆k, ρk > η2

∆k, η1 6 ρk < η2

γ1∆k, ρk < η1

(2.5)

In our work, the values of these parameters are :
γ1 = 0.5

γ1 = 1.5

η1 = 0.25

η2 = 0.75

(2.6)

We construct a surrogate model function of the true objective function at
first. Optimization step sk will be found by solving (2.2). The ratio ρk is used to
update the center point and trust region size for next iteration. The following
algorithm shows the framework of trust region method(1).

8

2.1. Framework of trust region algorithm

Algorithm 1 Trust region derivative free optimization [27]

Step 0: Initialization.
Choose an initial point x0, an initial radius ∆0 ∈ (0,∆max), an initial
interpolation set I0, given constants parameters: 0 6 ε, 0 < η1 6 η2,
0 < γ1 6 1 < γ2, set k = 0

Step 1: Create model.
Complete well-poisedness and create model using Algorithms (3). If
||gk|| 6 ε, Stop.

Step 2: Solve the trust region subproblem. min qk(s) = gTk s+
1

2
sTBks

s.t.||s||2 6 ∆k

Find sk using Algorithm

Step 3: Define the next iteration
Compute

ρk =
ared

pred
=
f(xk)− f(xk + sk)

q(0)− q(sk)

Then

xk+1 =

{
xk + sk, if ρk > η1;

xk, else.

Step 4: Update the trust region radius

∆k+1 =


min(γ2∆k,∆max), ρk > η2

∆k, η1 6 ρk < η2

γ1∆k, ρk < η1

Step 5: Update the interpolation set
Set k = k+ 1, select a new set of interpolation points Ik, go to step 1 to
improve the current model.

9

Chapter 2. Trust region algorithm

2.2 Problem definition
For the well placement optimization, we need to define variables, objective function
values and constraints. In our study, the trajectory of a vertical, horizontal or
directional well inside the reservoir is described in the Cartesian coordinate system.
The coordinates of hell and toe are used as variables. (xh,i, yh,i, zh,i) are the
coordinates of heel position, (xt,i, yt,i, zt,i) represents the coordinates for the toe
of the well. Thus, there are six variables for one well (see Figure 2.1).

x

y

z

Heel

Toe

Figure 2.1: The schematic of directional well

The objective function for the well placement optimization is based on the pro-
duction reservoir. It’s difficult to find an accurate formulation f(x) of production
by using any reservoir simulator directly, but we can build approximate surro-
gate model m(x) to fit the problem. We define the well placement optimization
problem in the following form{

min m(x) = −Q
s.t. xlow 6 x 6 xup.

(2.7)

x is the n-dimensional vector for the well trajectories

x = [xs,1, ys,1, zs,1, xe,1, ye,1, ze,1, ..., xs,N , ys,N , zs,N , xe,N , ye,N , ze,N ,] (2.8)

These well trajectory parameters have been defined in Figure 2.1. N is the number
of wells, so the dimension of the vector should be

n = N ×Number of wells (2.9)

For simplicity, we only consider boundary constraints in our work. xlow and xup
are the bound constraints from the reservoir boundaries for location of the well.

Q is the objective function value. We can find the optimum placement of wells
by maximizing or minimizing objective function value. For example, maximum
cumulative oil production, maximum NPV or minimum cost. In FieldOpt , the
objective function value is defined as:

10

2.3. Construction of quadratic model

Q = Np − 0.2×Wp (2.10)

Where Np is the cumulative oil production and Wp is the cumulative water
production.

2.3 Construction of quadratic model
Reservoir simulator works as a “Black Box” and only the function values are
available. we can’t get the accurate calculation formula for objective function.
Hence we need to construct an approximate model m(x) at each optimization
iteration.

m(x) = f(x), x ∈ Ik (2.11)

m(x) is the polynomial model interpolating the function f(x) at a given point if
m(y) = f(y). Ik is the set of interpolation points which should be located inside
the trust region at the k-th iteration.

When we construct model, we always first consider the space of interpolation
function. There are three main different functions: linear polynomial functions,
quadratic polynomial functions [28] and radial basis functions [29]. Our approach
is based on quadratic interpolation model.

A natural basis φ = {φ1, φ2, φ3, ..., φL} is defined by

φ = {1, xs,1, ys,1, zs,1, ..., ze,N ,
xs,1

2
, xs,1ys,1,

ys,1
2
, xs,1zs,1, ys,1zs,1,

zs,1
2
...,

z2
e,N

2
}

(2.12)
where L = (n+1)(n+2)

2 and n = N × Number of wells.
Given a set of interpolation points x = {x1, x2, x3, ..., xL} ∈ Ik, values of

f(x) are obtained from reservoir simulation model and a set of coefficients α =
{α1, α2, α3, ..., αL} which can be determined by solving the linear system{

M(φ, x)αφ = f(x), x ∈ Ik
αφ = M(φ, x)−1f(x)

(2.13)

where

M(φ, x) =


φ1(x1) φ2(x1) φ3(x1) . . . φL(x1)
φ1(x2) φ2(x2) φ3(x2) . . . φL(x2)

.
φ1(xL) φ2(xL) φ3(xL) . . . φL(xL)

 (2.14)

αφ =


α1

α2

...
αL

 (2.15)

11

Chapter 2. Trust region algorithm

and

f(x) =


f(x1)
f(x2)

...
f(xL)

 (2.16)

Therefore, for such a basis φ, the quadratic model m(x) can be written as

m(x) =

L∑
i=1

αiφi (2.17)

Algorithm 2 Construct a quadratic model

Step 0: Given an Λ- poisedness set of interpolation points by Algorithm (3)
and the natural basis (2.12), ui(x) = Φi(x), i = 0, 1, ..., L.

Step 1: Input data to reservoir simulator, get the values of objective function
f(x).

Step 2: Construct Matrix M(x) by (2.14)

Step 3: Compute the set of coefficients αφ

αφ = M(φ, x)−1f(x)

Step 4: Build the quadratic model

m(x) =

L∑
i=1

αiφi

2.4 The updating of interpolation set

Obviously, the above system (2.2) may not have a solution. The interpolation
points are very important. If Ik is not well-poised set, the model m(x) acquired
may not have a good approximate performance. Hence, we need to update the
interpolation set and create a well-poised set to ensure that the matrix M(φ, x) is
non-singular.

There are three main methods to update points: the wedge trust region
method [20] the self correcting geometry process [30] and geometry-improvement
step [27] [18]. Here we use geometry step to complete a well-poised interpolation
set and improve the model.

In well placement optimization, we select total (n+1)(n+2)
2 interpolation points

inside trust region (2.1). Then complete the non-poised set Ik by using Algorithm
(3). Some of these points can work as new interpolation points at next iteration if

12

2.5. Trust-region subproblem

they are still located inside the new trust region. Their corresponding values of
objective function have been already obtained from reservoir simulator at previous
iteration.

With the following approach, we can get a Λ-poised interpolation set after a
finite number of iterations. More details and theories can be found in Chapter 6
in [27].

Algorithm 3 Improving well poisedness via LU factorization

Step 0: Initialization.
Choose a constant Λ = 0.25, given a ball B(x,∆) (2.1), an initial set
Ik ∈ B and the corresponding monomial basis,
ui(x) = Φi(x), i = 0, 1, ..., L, set i = 1.

Step 1: Criticality test.
If Λk = max06i6Lmaxx∈Ik | ui(x) |< Λ, the threshold Λ is too large,
then Stop.

Step 2: Replace.
Find ji = argmaxi6j6L | ui(xj) |. If | ui(xj) |> Λ, Then update
Ik by performing the point exchange

Ik = Ik ∪ {xji} \ {xi}

Otherwise, compute xi as

xi ∈ argmaxx∈B | ui(x) |

Step 3: Update the polynomials
For j = i+ 1, ..., L

uj(x) = uj(x)− uj(x
i)

ui(xi)
ui(x)

If i < L, then set i = i+ 1, go to Step 1.

2.5 Trust-region subproblem

The trust-region subproblem is a constrained optimization problem. As we
already mentioned, we concentrate on the quadratic model. The subproblem
is n-dimensional (n = 6 × Number of wells) and based on a simpler objective
function. At the current iteration xk, the trust region subproblem is min qk(s) = gTk s+

1

2
sTBks

s.t.||s||2 6 ∆k

(2.18)

13

Chapter 2. Trust region algorithm

where qk(s) is the quadratic model in the trust region, s is trial step, gk = ∇mk(xk)
is the gradient at the current iteration xk, Bk = ∇2mk(xk) is approximate Hessian
matrix which is symmetric, ∆k is the trust region radius.

2.5.1 The exact solution

Trust region subproblem can be solved exactly or approximately. Newton-like
method is an exact solution. This method is meant to be applied to very small
dimensional problems due to its computational complexity. The exact solution to
the trust region subproblem 2.18 is found by solving

(Bk + λ ∗ I) ∗ s∗ = −g,
Bk + λ ∗ I > 0 (positive semi-definite),

λ > 0,

λ(||s||∗2 −∆k) = 0.

(2.19)

We use the Newton’s method to solve the nonlinear system. Then s∗ is unique
if Bk + λI > 0 [27].

2.5.2 The approximate solution

When the dimension is large, factorization to solve 2.19 can be difficult. Exact
solution works when Bk + λ ∗ I is positive definite and the process is complicated
to calculate all eigenvectors and eigenvalues of Bk to find the optimal trajectory.
Therefore we consider approximate solutions for a hard trust-region problem.
There are three main approaches: Cauchy point, Dogleg method and Steihaug’s
method [31] [32].

2.5.2.1 Cauchy point algorithm

The Cauchy point is located on the gradient which minimizes the quadratic
model subject to the step being within the trust region. Hence, the Cauchy point
algorithm is similar to the steepest descent line search algorithm.

sCk = −τk
∆gk
||gk||

τk =


1, if gTk Bkgk 6 0;

min (
||gk||3

∆kgTk Bkgk
, 1), else.

(2.20)

Although this method is cheap to implement, the convergence of the technique
is inefficient and it perform poorly in some cases. Therefore, a further improvement
may be achieved if Dogleg method or conjugate gradient method is used.

14

2.5. Trust-region subproblem

2.5.2.2 Dogleg algorithm

Dogleg method [16] is simple and cheap to compute and works with a polygon
consisting of two line segments. It is a combination of Cauchy point and quasi-
Newton point. It attempts to find the minimum along the gradient first and then
find the minimum along the current point to the bottom of the quadratic model.
This method is based on a positive matrix Bk.

Quasi-Newton point is the minimization point along the Newton direction
equation

sNk = −B−1
k gk (2.21)

The dogleg path is described by

sk =

{
τsCk , 0 6 τ 6 1;

τsCk + (τ − 1)(sNk − sCk), 1 6 τ 6 2;
(2.22)

The single dog leg curve is from the central point xk along the steepest de-
scent to the Cauchy Point sCk and continues along a straight line segment to
the quasi-Newton point sNk (see Figure 2.2). This curve looks like a dog-leg and
approximates the curved optimal trajectory (shown dashed).

Figure 2.2: Single dogleg path

The value of the objective function is monotonically decreasing along the
dogleg path, norm is strictly increasing along the path. If Cauchy point sCk is
outside the trust region or at the boundary, the approximate solution is located
at the truncated Cauchy point sCk where τ is 1. If the Cauchy point is interior,
then we take a Newton step. Quasi-Newton point sNk is taken as approximate
solution if it is inside the trust region. Otherwise, the approximate solution is
located at the intersection of the dogleg curve and trust region boundary.

Double dogleg method is proposed by Dennis and Mei [33] and is a modified
single dogleg algorithm. A new step SNewk is selected in the Newton direction and

15

Chapter 2. Trust region algorithm

Algorithm 4 Dogleg Method

Step 0: Given xk, gk, Bk symmetric, ∆k,

Step 1: Compute ||sCk ||2 by 2.20; if ||sCk ||2 > ∆k, then go to Step 2.

Step 2: sk = − ∆kgk
||gk||2 ; set xk+ = xk + sk = xk − ∆kgk

||gk||2 , and Stop.

Step 3: Compute ||sNk ||2” by 2.21; if||sNk ||2;if ||sNk ||2 6 ∆k, then go to Step 4;

Step 4: sk = sNk ; set xk+1 = xk + sk = sk −B−1
k gk, and Stop.

Step 5: Compute λ satisfying ||sCk +λ(sNk −sCk)|| = ∆k; set sk = sCk +λ(sNk −sCk);
xk+1 = xk + sCk + λ(sNk − sCk); and Stop.

replaces the Newton step SNewk . This new point can be found by solving
sNewk = ηsNk ,

η = 0.8γ + 0.2,

γ =
||gk||42

(gTk Bkgk)(gTk B
−1
k gk)

.

(2.23)

The new dogleg curve passes central point, Cauchy point and the new point
towards the Newton direction (see Figure 2.3). Thus double dog-leg method could
improve the convergence characteristics of the dog-leg method.

Figure 2.3: Double dogleg path

2.5.2.3 Steihaug’s algorithm

Steihaug’s method is a modified conjugate gradient approach, which is most widely
used to solve the trust region subproblem approximately. It has all the good
properties of the dogleg method. Comparing with traditional conjugate gradient
method, this truncated conjugate gradient method has two extra exits. The first
one is when search direction is zero or along the negative curvature of Bk, the
second one is when sk destroys the trust region constraint. Solution is located at
the boundary in both cases.

16

2.5. Trust-region subproblem

Algorithm 5 Truncated Conjugate Gradient Method

Step 0: Given s0 = 0, g0, d0 = −g0, k = 0, B, ∆ε.

Step 1: If ||gk|| 6 ε, then set s∗ = sk and Stop.

Step 2: If B−1 exits, ||B−1
k gk|| 6 ∆ and dTkBdk > 0, set s∗ = −B−1

k gk,
Stop.

Step 3: If dTkBdk 6 0, dk is a negative curvature, compute τ satisfying
||sk + τdk|| = ∆; set s∗ = sk + τdk, and Stop.

Step 4: Compute αk =
gTk sk
dTkBdk

, gk+1 = gk + αkBdk, βk =
gTk+1gk+1

dTk dk
,

dk+1 = −gk+1 + βkdk, setsk+1 = sk + αkdk.

Step 5: If ||sk+1|| > ∆, compute τ satisfying ||sk + τdk|| = ∆, set s∗ = sk + τdk
and Stop.

Step 6: Set k = k + 1, then go to Step 1

After we find the approximate solution of subproblem obtained by the above
methods. We must check the surrogate model’s validity before next iteration.
Trust region radius 2.5 and center point 2.4will be updated according to ρk.

The Figure 2.4 presents the methods and necessary steps for trust region
algorithm. It describes the procedure for cooperation between trust region method
and reservoir simulator.The trust region derivative-free optimization strategy
decomposes well optimization process into a sequence of optimization subproblems
with small regions. At each iteration, a new set of interpolation points are selected
and the corresponding polynomial model is constructed instead of computationally
expensive objective functions [34]. This optimization algorithm can be described
as follows:

• Step 1 Select the initial center case which has been evaluated in simulator,
define the values of parameters and the termination conditions

• Step 2 Create a set of interpolation points and construct the surrogate model
of the true objective function in the subregion

• Step 3 Find the maximum value of the model in the subregion and check
model’s validity

• Step 4 Update the center point and trust region size

• Step 5 Check the termination conditions, Stop or return to Step 1

17

Chapter 2. Trust region algorithm

Input: initial center case
parameters, termination conditions

Create a set of interpolation points in trust region
around center point

(Algorithm 2)

Stop

Continue

Construct a quadratic surrogate model
(Algorithm 3)

Send the new point to simulator and
evaluate its true objective function value

Construct Matrix
(Equation 2.13)

Send cases to simulator and evaluate their
objective function values

Evaluate the objective function value of the
new point using the model

Compute ratio and check model's validity
(Equation 2.3)

Update center point and trust region size
(Equation 2.4 and Equation 2.5)

Check termination conditions
Maximum evaluated cases
Minimum trust region size

Solve the trust region subproblem
Cauchy point, Dogleg or Steihaug's method

(Equation 2.19-2.20 and Algorithm 4-5)

Best case

Figure 2.4: Trust region algorithm flowchart in well placement optimization

18

Chapter 3
Implementation of trust-region
algorithm in FieldOpt

In this chapter, we describe how we implemented the derivative free local search
trust region algorithm in FieldOpt. The main code is given in Appendix. Here,
we present the three classes: Polynomial,PolyModel and TrustRegionSearch.

The full code for trust-region algorithm in FieldOpt is available on its entirety
on GitHub [35]. We use class diagram in the UML (Unified Modeling Language)
to present the properties of class [36]. Class diagram is a diagram showing
different classes in a system their attribute, operation and the relationship among
different objects. The name of the class is in bold on the first line. Methods have
parentheses after the name. If the attributes and methods are private, they are
prefixed with “ - ”. If they are public, the symbol is “ + ”.

3.1 Polynomial

Polynomial

- dimension: int
- no_elements : int
- coefficients : VectorXd
- Hessian_Matrix: MatrixXd

+ Polynomial(int dimension, VectorXd coefficients): VectorXd
+ Evaluate(VectorXd point): double
+ EvaluateGradient(VectorXd point): VectorXd
+ Hessian(): MatrixXd
+ Cauchy_Point(VectorXd points, double radius, VectorXd grad): VectorXd
+ Newton_Point(VectorXd points, double radius,VectorXd grad): VectorXd
+ Dogleg_step(VectorXd points, double radius,VectorXd grad: VectorXd

19

Chapter 3. Implementation of trust-region algorithm in FieldOpt

Polynomial class has constructor Polynomial, which defines a second-order
polynomial with dimension of variables and coefficients of each element as parame-
ters. The function Evaluate returns the objective function value of the polynomial
when values of variables are given. For a given point, the gradient is obtained by
function EvaluateGradient. Cauchy point, Newton point and Dogleg path are
calculated by functions Cauchy_point, Newton_point and Dogleg_path. All of
them take interpolation point, gradient at this given point and trust region size
as input.

Hessian matrix is a square matrix of second ordered partial derivatives of a
scalar function. The general Hessian matrix of n variables is defined as following:

H =



∂2f
∂2x1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

∂2f
∂x2∂x3

. . . ∂2f
∂x2∂xn

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂2x3

. . . ∂2f
∂x1∂xn

...
...

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

∂2f
∂xn∂x3

. . . ∂2f
∂2xn


(3.1)

In our work, we apply a second-order polynomial. Hence, Hessian matrix only
depends on coefficients. For example, when is polynomial is defined with two
variables:

f(x1, x2) = a0 + a1 × x1 + a2 × x2 + 1
2 × a3 × x2

1 + 1
2 × a4 × x2

2 − a5 × x1 × x2 (3.2)

The Hessian matrix of this function has in the following form:

H =

[
a3 a5

a4 a5

]
(3.3)

With the following approach, we can get the Hessian matrix of a second-order
polynomial.

20

3.2. PolyModel

Algorithm 6 Hessian matrix of second-order polynomial

Require: Coefficients (vector) and dimension L
for i=0, ..., L-1 do

Hessian(i,i)=Coefficients(L+i+1);
end for
for i=0, ..., L-1 do

k=0
for j=i+1,...,L-1 do

a = ((L + 1) + (L - i)) ×(i + 2)
2 + k

Hessian(i,j) = Coefficients(a)
Hessian(j,i) = Hessian(i,j)

end for
k=k+1

end for

3.2 PolyModel

PolyModel

- points_abs: VectorXd
- point: VectorXd
- center_: VectorXd
- model_coefficients: VectorXd
- optimization_step_CP: VectorXd
- optimization_step_SDL: VectorXd
- Cases_: Case
- Cases_not_eval_: Case
- Basis_: Polynomial

+ PolyModel(Case base_case, double radius)
+ CaseFromPoint(VectorXd point, Case prototype): Case
+ find_new_point(VectorXd point): VectorXd
+ complete_points_abs(): VectorXd
+ complete_points: VectorXd
+ calculate_model_coeffs(): void
+ optimizationStep_CP (int factor): VectorXd
+ optimizationStep_SDL (int factor): VectorXd
+ addBaseCase(Case BaseCase): void
+ objective_function_value_model(VectorXd point): double

PolyModel class includes Polynomial class and Case class. The Case class
contains a complete set of variables from a perturbed model and is used to describe
perturbations by most of FieldOpt [37]. In this class, we construct surrogate
quadratic model from a set of interpolation points. These points need to be well-
poised to ensure the matrix M(Φ, x) is non-singular. We find interpolation points
in a ball with radius 1 around origin and create a well-poised set of interpolation

21

Chapter 3. Implementation of trust-region algorithm in FieldOpt

points by Algorithm 3, then points are completed by scaling the ball back to trust
region radius and center point.

• complete_points_abs(): Use Algorithm 3 to complete well-poised inter-
polations points points_abs, which are located in a ball of radius 1 around
the origin.

• center_: Values of variables from the initial base case.

• complete_points(): Complete the set of interpolation points points_ in
trust region radius around the center point (center_).

• calculate_model_coefficients(): Find the coefficients of surrogate quadratic
model (model_coefficients) from the interpolation points and their cor-
responding objective function value (Algorithm 2.13).

• optimizationStep_CP (int factor): Create a second-order polynomial
from model_coefficients and find the Cauchy point at current itera-
tion (center_). Cauchy point and Dogleg step are based on steepest
descent. In maximization problem, we need to transform to maximiza-
tion by multiplying the objective or model_coefficients by -1. Hence,
factor is used as input in both function optimizationStep_CP and function
optimizationStep_SDL. factor = 1 in minimization problem, factor =
−1 in maximization problem.

• CaseFromPoint(VectorXd point, Case prototype): Create new case from
point by displacing points and objective function value of Case prototype.

• addBaseCase(Case BaseCase): After each successful iteration, tentative
best case is used as new base case (center point) for next iteration. If the
surrogate model is very poor and the candidate solution is not accepted,
previous base case is still the center point for next iteration and trust region
radius is reduced.

22

3.3. Trust region search

3.3 Trust region search

TrustRegionSearch

- radius_: double
- minimum_radius_: double
- contraction_factor: double
- expansion_factor: double
- objective_value: double
- polymodel_: PolyModel
- Current_CenterPoint: VectordXd
- New_CenterPoint: VectordXd
- currentBaseCase: Case
- newBaseCase: Case
- scaleRaidus(double k): void
- InitialModel(): void
- completeModel(): void
- iteration(): void
+ TrustRegionSearch(Optimizer setting, Case base_case, VariableProperty-
Container variables, Grid grid)
+ SumbitEvaluatedCases(Case c): void
+ optimizationStep: void
+ UpdateModel: void

TrustRegionSearch class includes PolyModel class and is inherited through
public inheritance Optimizer class [37]. The abstract Optimizer class is designed
for implementation of a set of algorithms. The Figure 3.1shows the implementation
of trust region algorithm in FieldOpt. We start with an initial evaluated base case
and initialize a PolyModel with base case. Then we input the center base case and
create a set of well-poised interpolation points in function completeModel which
is inculded in iterate. Before optimizationStep, all cases must be evaluated.
Hence, these unevaluated cases will be added into CaseHandler class. After all
cases have been evaluated, then we can make the optimization step and find
the tentative best case at the current iteration. This case maybe not accepted
if the surrogate model is poor. In the function UpdateModel, the trust region
radius and the base case will be updated such that. If ρk ≥ 0.75, there is a
good agreement between the model and the objective function. Trust region
size is increased and New_CenterPoint is accepted as the new base case for next
iteration. If 0.1 ≤ ρk < 0.75, trust region size is not altered although it is a
successful iteration. In this case, if ρk < 0.1, the iteration give a poor prediction.
The Current_CenterPoint is still used at next iteration and the trust region
radius is reduced.

23

Chapter 3. Implementation of trust-region algorithm in FieldOpt

Initialize model and
complete well -poised

interpolation points

Input Base Case

Surrogate ModelCaseHandle

Iterate ()

Optimization StepUpdateModel ()

New Base Case

Evaluate all cases from
interpolation points

Construct surrogate
quadratic model;

Calculate coefficients
of model

Trust region size and
center point are

updated according to
model's validity

Make optimization step
;

Cauchy point method
or Dogleg method

Figure 3.1: Implementation of Trust-region algorithm in FieldOpt

24

Chapter 4
Computational experiments

Before we apply the trust region optimization algorithm in some specific fields, test
functions are used to validate the performance of the algorithm. Test functions
can be grouped according to similarities in their significant physical properties
and shapes. For example, plate-shaped, valley-shaped and bowl-shaped. In this
chapter, we use Matyas function and Rosenbrock function as test functions for the
model-based trust region optimization algorithm. The Matyas function is used
the test the validity of the surrogate model which is constructed by Algorithm 2
and 3. In addition, we also discuss the convergences of the Dogleg method and
the Cauchy point method when the true function is plate-shaped Matyas function.
The Rosenbrock function is n-dimensional and valley-shaped, We evaluate the
performance and effects of different parameters’ values of trust region algorithm
when the true function is not quadratic function.

4.1 Matyas test function

4.1.1 Background

Matyas function is a two-dimensional and unimodal test function. This function
can be defined on any input domain and it is usually evaluated on the square
x ∈ [−10, 10] and y ∈ [−10, 10]. It has only one global minimum f(x1, x2) = 0 at
(x1, x2) = (0, 0). The function is defined by

f(x1, x2) = 0.26(x2
1 + x2

2)− 0.48x1x2 (4.1)

Matyas function is a quadratic function and plotted in the Figure 4.1.

25

Chapter 4. Computational experiments

10

20

30

40

-10

50

60

70

80

90

f(
x1

,x
2)

100

-5

X1

0

Matyas function

5

X2

10510 0-5-10

10

20

30

40

50

60

70

80

90

100

Figure 4.1: Plot of the Matyas function of versus x1and x2. The global minimum
is at the point (0,0).

As we mentioned before, the approximate model is a quadratic function. Here,
we use Matyas function as the true objective function, which is also a quadratic
function. If the Algorithm 2 and 3 proposed to construct the surrogate model are
effective. The surrogate quadratic model should be very close and even identical to
true quadratic function. Therefore, we choose Matyas function to test the validity
of a surrogate model. In addition, we apply both the Cauchy point method and
the Dogleg method for optimization step to analyze their convergences.

4.1.2 Approximate quadratic model
As we know, both the approximate model and the true objective function are
quadratic function. Hence, we can check the model’s validity by comparing their
corresponding coefficients directly. The comparison results are more obvious than
ratio between the actual reduction gained by the true objective function (Matyas
function) and predicted reduction expected in the model function.

We used two starting points (x1, x2) = (2, 3) and (x1, x2) = (4, 5) as center
points. For each center point, there are three different subregion sizes (0.5, 1
and 1.5). Then we created well-poised interpolation points inside trust region
and constructed quadratic models. The Table 4.1 shows the quadratic surrogate
models based on Matyas function. We notice that the each coefficient of the
quadratic term from the approximate models are very close or even identical to
the Matyas function. For example, when starting point is (x1, x2) = (2, 3) and
trust region size is 0.5, the surrogate quadratic model is

f(x1, x2) = −1.07× 10−14 + 0× x1 + 3.55× 10−15 × x2 + 0.56
2 × x

2
1 + 0.56

2 × x
2
2 − 0.48x1x2 (4.2)

Matyas function can be written as

f(x1, x2) = 0× 1 + 0× x1 + 0× x2 + 0.56
2 × x

2
1 + 0.56

2 × x
2
2 − 0.48x1x2 (4.3)

26

4.1. Matyas test function

Table 4.2 shows that ratio between actual reduction and predicted reduction
is 1. This ratio reflects how much the surrogate model agrees with the objective
function with the trust region. There is a good agreement between the model and
objective function at this iteration when r > 0.75. Figure 4.1 shows the surfaces
of approximate quadratic models and Matyas function. Obviously, surfaces are
almost same. Based on the coefficients, ratio and surface of surrogate model, we
conclude that the constructed model is perfectly accurate when the original true
objective function is also quadratic function.

(x1, x2) ∆ a0 a1 a2 a3 a4 a5

(2, 3)
0.5 -1.07E-14 0 3.55E-15 0.52 0.52 -0.48
1 8.88E-16 4.44E-16 -2.22E-15 0.52 0.52 -0.48
1.5 -1.33E-15 5.55E-16 1.11E-15 0.52 0.52 -0.48

(4, 5)
0.5 2.84-13 -4.26E-14 -9.95E-14 0.52 0.52 -0.48
1 -3.55E-14 5.33E-15 6.22E-15 0.52 0.52 -0.48
1.5 1.24E-14 -2.22E-15 -1.78E-15 0.52 0.52 -0.48

Matyas function 0 0 0 0.52 0.52 -0.48

Table 4.1: Coefficients of approximate models based on Matyas function

(x1, x2) ∆ (x1, x2)new Actual reduction Predicted reduction ρ

(2, 3)
0.5 (2.277, 2.584) 0.240 0.240 1
1 (2.000, 2.033) 0.337 0.337 1
1.5 (1.584, 1.559) 0.401 0.401 1

(4, 5)
0.5 (4.213, 4.548) 0.265 0.265 1
1 (4.125, 4.125) 0.395 0.395 1
1.5 (3.646, 3.656) 0.541 0.541 1

Table 4.2: Ratio between actual reduction and predicted reduction

3.5

Approximate model 1

X2

3

0.4

0.6

0.8

f(
x1

,x
2)

1

1.5

1.2

X1
2 2.52.5

0.4

0.6

0.8

1

1.2

3.5

Matyas function

X2

3

0.4

0.6

0.8

f(
x1

,x
2)

1

1.5

1.2

X1
2 2.52.5

0.4

0.6

0.8

1

1.2

5.5

Approximate model 2

X2

5
0.8

1

1.2

1.4

f(
x1

,x
2)

1.6

3.5

1.8

X1
4 4.54.5

0.8

1

1.2

1.4

1.6

1.8

5.5

Matyas function

X2

5
0.8

1

1.2

1.4

f(
x1

,x
2)

1.6

3.5

1.8

X1
4 4.54.5

0.8

1

1.2

1.4

1.6

1.8

Figure 4.2: Surfaces of approximate models and original function

27

Chapter 4. Computational experiments

4.1.3 Optimization results

As we presented in Chapter 2, approximate solutions are widely used for a hard
trust region problem. Cauchy point algorithm and Dogleg method are simple
and cheap to compute. Here, we applied both methods for optimization step and
compared their corresponding results.

4.1.3.1 Cauchy step

Figure 4.3 presents the graphical illustration of optimization results from Cauchy
step in contour of Matyas function. The magenta dot represents starting point
(x1, x2) = (2, 3) and the red square is the global minimum of Matyas function at
(x1, x2) = (0, 0). The green asterisk marked points are optimization results of each
iteration. The magenta circle is the initial trust region radius 1. Expansion factor
1.5 and contraction factor 0.5 are used in this case. As we know, the surrogate
quadratic model is perfectly accurate. Hence, the trust region radius is increased
at each iteration. The trust region radius is 1.5 for the second iteration and
marked as green circle.

Figure 4.3: Graphical illustration of each iteration based on Cauchy point method.
Starting point (2, 3).

Table 4.3 is a summary for the optimization results. Full step is taken at
each iteration since the model gives a perfect prediction. At the end stage
of the computation, the minimum value is f(x1∗, x2∗) = 0.002 at (x1∗, x2∗) =

28

4.1. Matyas test function

(0.171, 0.226). Actually, the Cauchy point calculation doesn’t give an efficient
convergence rate. We will discuss more about convergence of Cauchy point method
later. The following Figure 4.14 and Table 4.4 are results from starting point
(x1, x2) = (4, 5). It needs 15 iterations to obtain a objective function value
f(x1∗, x2∗) = 0.015 at (x1∗, x2∗) = (0.616, 0.595).

No. of iteration Center point Stopping point f(x1∗, x2∗)
n (x1, x2) (x1∗, x2∗)

1 (2.000, 3.000) (2.415, 2.377) 0.230
2 (2.415, 2.377) (1.167, 1.545) 0.109
3 (1.167, 1.545) (1.312, 1.282) 0.068
4 (1.312, 1.282) (0.722, 0.956) 0.042
5 (0.722, 0.956) (0.812, 0.793) 0.026
6 (0.812, 0.793) (0.447, 0.591) 0.016
7 (0.447, 0.591) (0.502, 0.490) 0.010
8 (0.502, 0.490) (0.276, 0.366) 0.006
9 (0.276, 0.366) (0.310, 0.304) 0.004
10 (0.310, 0.304) (0.171, 0.226) 0.002

Table 4.3: Optimization results of each iteration based on Cauchy point method.
Starting point (2, 3)

Figure 4.4: Graphic illustration of each iteration based on Cauchy point method.
Starting point (4, 5)

29

Chapter 4. Computational experiments

No. of iteration Center point Stopping point f(x1∗, x2∗)
n (x1, x2) (x1∗, x2∗)

1 (4.000, 5.000) (4.360, 4.236) 0.742
2 (4.360, 4.236) (3.002, 3.597) 0.523
3 (3.002, 3.597) (3.199, 3.087) 0.398
4 (3.199, 3.087) (2.283, 2.734) 0.302
5 (2.283, 2.734) (2.431, 2.346) 0.230
6 (2.431, 2.346) (1.734, 2.078) 0.175
7 (1.734, 2.078) (1.848, 1.783) 0.133
8 (1.848, 1.783) (1.318, 1.579) 0.101
9 (1.318, 1.579) (1.404, 1.356) 0.077
10 (1.404, 1.356) (1.002, 1.200) 0.058
11 (1.002, 1.200) (1.067, 1.030) 0.044
12 (1.067, 1.030) (0.762, 0.912) 0.034
13 (0.762, 0.912) (0.811, 0.783) 0.026
14 (0.811, 0.783) (0.579, 0.694) 0.019
15 (0.579, 0.694) (0.616, 0.595) 0.015

Table 4.4: Optimization results of each iteration based on Cauchy point method.
Starting point (4, 5)

4.1.3.2 Dogleg method

Now we look at the optimization results (see Table 4.5) and the graphical il-
lustration(see Figure 4.5) when Dogleg algorithm is used. After only tree it-
erations, we get the minimum result f(x1∗, x2∗) = 1.9 × 10−31 at (x1∗, x2∗) =
(2.2× 10−15,−2.0× 10−15), which is very close to the global minimum point at
(x1∗, x2∗) = (0, 0). Comparing results from Cauchy point and Dogleg method (see
Figure 4.6 and Figure 4.7), it is obvious that Dogleg method has much faster
convergence. At the same starting points and conditions, it needs 10 iterations to
get a stopping point where f(x1∗, x2∗) = 0.002 by using Cauchy step (see Figure
4.3 and Table 4.3).

No. of iteration Center point Stopping point f(x1∗, x2∗)
n (x1, x2) (x1∗, x2∗)

1 (2.000, 3.000) (2.033, 2.001) 0.163
2 (2.033, 2.001) (0.785, 1.168) 0.109
3 (0.785, 1.168) (2.2× 10−15,−2.0× 10−15) 1.9× 10−31

Table 4.5: Optimization results of each iteration based on Dogleg method

30

4.1. Matyas test function

Figure 4.5: Graphical illustration for each iteration based on Dogleg method.
Starting point (2.3).

Figure 4.6: Results comparison between Cauchy point method and Dogleg method.
Starting point (2.3)

31

Chapter 4. Computational experiments

0 1 2 3 4 5 6 7 8 9 10

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Algorithm Performance
Initial point (2, 3)

Cauchy point method
Dogleg method

Figure 4.7: Algorithm performance at starting point (2, 3)

For another starting point (4,5), it needs also less iterations for Dogleg method.
At the end of stage, the objective function value is 1.9×10−30 after four iterations
(see Table 4.6), which is much smaller than 0.002 that is obtained from the Cauchy
point method (see Figure 4.4 and Table 4.4).

Figure 4.10 and Figure 4.9 also show that Dogleg method has better conver-
gence when the starting point is (x1, x2) = (4, 5). The yellow ‘+’ marked points
are optimization results from Dogleg algorithm. After four iterations, a yellow
‘+’ is located in the red square which means the global minimum of the original
objective function. Hence, we can get a stopping point that is very close to global
minimum. The green ‘∗’ marked points represent results of each iteration based
on Cauchy step. After 15 iterations, there is still a gap between the last stopping
point (x1∗, x2∗) = (0.616, 0.595) and the global minimum point (x1, x2) = (0, 0).

No. of iteration Center point Stopping point f(x1∗, x2∗)
n (x1, x2) (x1∗, x2∗)

1 (4.000, 5.000) (4.125, 4.008) 0.665
2 (4.125, 4.008) (2.768, 3.369) 0.467
3 (2.768, 3.369) (1.536, 1.486) 0.092
4 (1.536, 1.486) (−6.9× 10−15,−6.9× 10−15) 1.9× 10−30

Table 4.6: Optimization results of each iteration based on Dogleg method

32

4.1. Matyas test function

Figure 4.8: Optimization results based on Dogleg method. Starting point (4,5)

Figure 4.9: Results comparison between Cauchy point method and Dogleg method.
Starting point (4,5)

33

Chapter 4. Computational experiments

0 5 10 15

Iterations

0

0.2

0.4

0.6

0.8

1

1.2

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Algorithm Performance
Initial point (4, 5)

Cauchy point method
Dogleg method

Figure 4.10: Algorithm performance at starting point (4, 5)

We used several different starting points and solved the optimization problem
by using both Cauchy step (see Table 4.7) and Dogleg method (see Table 4.8).
Obviously, Dogleg algorithm has much better convergence in this case. Hence, we
will use Dogleg method to solve the trust region subproblem in our work.

Starting points No. of iteration No. of f(x) Evals Stopping point f(x1∗, x2∗)

(2, 3) 15 91 (0.065, 0.087) 0.00034
(4, 5) 29 175 (0.090, 0.087) 0.00032
(6, 7) 42 253 (0.079, 0.090) 0.00032
(8, 9) 48 289 (0.089, 0.094) 0.00034
(10,11) 54 325 (0.087, 0.096) 0.00036

Table 4.7: Optimization results of Cauchy step from various starting points

Starting points No. of iteration No. of f(x) Evals Stopping point f(x1∗, x2∗)

(2, 3) 3 19 (2.2× 10−15,−2.0× 10−15) 1.9× 10−31

(4, 5) 4 25 (−6.9× 10−15,−6.9× 10−15) 1.9× 10−30

(6, 7) 4 31 (2.2× 10−15, 4.4× 10−15) 1.7× 10−32

(8, 9) 5 31 (1.7× 10−15, 1.6× 10−15) 1.2× 10−29

(10, 11) 6 37 (−8.0× 10−15,−8.0× 10−15) 2.6× 10−30

Table 4.8: Optimization results of Dogleg method from various starting points

34

4.2. Rosenbrock test function

4.2 Rosenbrock test function

4.2.1 Background
The well known Rosenbrock function is a popular test problem for gradient-based
optimization algorithms. It is also referred as Rosenbrock’s valley or Rosenbrock’s
banana function because of its curved contours. The global minimum lies in a
narrow and parabolic valley. The n-dimensional function can be formalized as
follows

f(x1 · · ·x2) =
n−1∑
i=1

(100(xi − x2
i+1)2 + (1− xi)2)

minimum at f(1, 1 · · · , 1) = 0

(4.4)

The two-dimensional Rosenbrock function is widely used for numerical optimization
problems. It is shown in the following Figure 4.11. It has a global minimum at
(1,1), where f(x1, x2) is 0. The definition of the function is

f(x1, x2) = 100(x2 − x2
1)2 + (1− x1)2 (4.5)

0
-10 10

2

5-5

4

X2X1

00

6

Rosenbrock Banana

10 5

f(
x1

,x
2)

8

5 -5

10

-1010

12

0

2

4

6

8

10

12
10 5

Figure 4.11: Plot of the Rosenbrock function of two variables. The global
minimum is at the point (1,1)

35

Chapter 4. Computational experiments

As we mentioned before, trust region algorithm is model based. To solve the
minimization problem, we first construct a quadratic model in a small subregion
by using some interpolation points. Then the minimization problems are solved
by Dogleg method. This approximate model’s validity needs to be checked at
each stage. The candidate solution is not accepted if the iteration is unsuccessful.
From the Matyas function, We find that the Dogleg method has much better
convergence than The Cauchy point method. Hence, we still use the Dogleg
method to solve the trust region subproblem. We use expansion factor 1.5 and
contraction factor 0.5 for Matyas function. Here, we also evaluate the performance
of trust region algorithm when the parameters’ values changes and find the the
appropriate values of parameters.

4.2.2 Approximate quadratic model

Starting point Stopping point ∆ a0 a1 a2 a3 a4 a5 ρ

(3, 2) (2.1, 2.1) 1 23641 -20482 -1020 10202 200 -260 0.958
(2.05, 2.14) (1.37, 2.23) 1.25 5104 -6223 -845 4483 200 3.6 0.403
(1.37, 2.23) (0.98, 2.19) 1.25 1136 -1727 -427 1688 200 34.9 -1.049

Table 4.9: Approximate models based on Rosenbrock function

We used Rosenbrock function as the original objective function, which is not
quadratic. Hence, the surrogate model based on such a function will not be
perfectly accurate as Matyas function. The trust region radius and the current
iterate will be updated. Table 4.9 shows the surrogate quadratic models for the
first tree iterations when starting point is (x1, x2) = (3, 2). The initial trust
region size is 1 and expansion factor is 1.25. For iteration 1, the center point is
(x1, x2) = (3, 2). The ratio is 0.958, which is sufficiently high. There is a good
agreement between the approximate model and objective function (see Figure
4.12). The stopping point (x1, x2) = (2.046, 2.139) is used as the new center point
for the next iteration. At this stage, the ratio is 0.403, which means the iteration
is successful but not perfect. The candidate solution is accepted and the trust
region size is not altered. Hence, the trust region size is 1.25 for both iteration 2
and 3. We notice model difference (see Figure 4.13) between approximate model
and the original objective function. For iteration 3, the models differs (see Figure
4.14) and the ratio is -1.049. This iteration is unsuccessful. The trust region size
needs to be reduced and surrogate model has to been reconstructed.

36

4.2. Rosenbrock test function

3
2.50

X2

2 2

0.5

Quadratic model 1

2.5

X1

1

1.53

f(
x1

,x
2)

10 4

1.5

3.5 14

2

0

0.5

1

1.5

2

10 4

3
2.5

X2

2 2

0.5

Rosenbrock function

2.5

X1

1

1.53

10 4

f(
x1

,x
2) 1.5

3.5 1

2

4

0.5

1

1.5

2

10 4

3
2.50

X2

2 2

0.5

Model difference

2.5

X1

1

1.53

10 4

f(
x1

,x
2) 1.5

3.5 1

2

4
0

0.5

1

1.5

2

10 4

Figure 4.12: Very successful surrogate quadratic model of iteration 1. The ratio
is 0.958.

3
2.5

0

X2

1 2

Quadratic model 2

1500

1.5

X1

1.52

f(
x1

,x
2) 3000

2.5

4500

13

0

1000

2000

3000

4000

5000

3
2.50

X2

1 2

1500

Rosenbrock function

1.5

X1

3000

1.52

f(
x1

,x
2) 4500

2.5 13

6000

0

1000

2000

3000

4000

5000

6000

3
2.5

0

X2

1 2

Model difference

1500

1.5

X1

1.5

3000

2

f(
x1

,x
2)

2.5

4500

13

0

1000

2000

3000

4000

5000

6000

Figure 4.13: Successful surrogate quadratic model of iteration 2. The ratio is
0.403.

37

Chapter 4. Computational experiments

3
2.50

X2

1 2

Quadratic model 3

1000

1.5

X1

1.52

f(
x1

,x
2) 2000

2.5 1

3000

3

0

500

1000

1500

2000

2500

3000

3
2.50

X2

1000

1 2

Rosenbrock function

2000

1.5

X1

3000

1.52

f(
x1

,x
2) 4000

2.5

5000

13
0

1000

2000

3000

4000

5000

6000

3
2.50

X2

1000

1 2

Model difference

2000

1.5

X1

3000

1.52

f(
x1

,x
2) 4000

2.5

5000

13
0

1000

2000

3000

4000

5000

6000

Figure 4.14: Unsuccessful surrogate quadratic model of iteration 3. The ratio is
-1.049.

4.2.3 Optimization results

The following figures show the graphical illustration of the first three iterations in
the contour of the original objective function. The quadratic model’s contours
are marked as rose red lines. The black circle is the trust region size. The initial
point is marked as a red dot. The stopping point for iteration 1 and the new
center point for iteration 2 is marked as a yellow dot (see Figure 4.15). The blue
dot represents the stopping point for iteration 2 and the new center point for
iteration 3 (see Figure 4.15). The red square is the global minimum at (1,1),
where f(x1, x2) is 0.

Iteration 1 : The starting point is (x1, x2) = (3, 2). The objective function
value at this point is 4904. The trust region is defined as the area inside the black
circle, which is centered at the starting point and has radius 1. The quadratic
model gives a good prediction since the ratio is close to 1. Hence, a full step
is taken to the next point (x1, x2) = (2, 0461, 2.139). The trust region radius
increased from 1 to 1.25 for the next iteration.

38

4.2. Rosenbrock test function

Figure 4.15: Graphical illustration of iteration 1

Iteration 2 : Start with (x1, x2) = (2.046, 2.139) and an enlarged trust region
radius is 1.25. This iteration is successful but not good enough to the new point
(x1, x2) = (1.374, 2.232). Ratio is 0.403, which is not sufficient to expand trust
region size. Hence, the radius is the same for the next iteration.

Figure 4.16: Graphical illustration of iteration 2

39

Chapter 4. Computational experiments

Iteration 3 : Start with (x1, x2) = (1.374, 2.232) and the trust region radius is
still 1.25. The ratio is -1.049, which means that the surrogate model gives a poor
predictions and the new stopping point is not accepted. We need to reduce the
trust region size and reconstruct a new surrogate model. Therefore, the starting
point is still at (x1, x2) = (1.374, 2.232) and trust region size is reduced to 0.625
for iteration 4.

Figure 4.17: Graphical illustration of iteration 3

Table 4.10 is a summary for the optimization process. During the first 10
iterations, there are four iterations giving poor prediction. The surrogate models
have to been reconstructed using a in reduced trust region size with same center
point.

Iteration (x1, x2) (x1∗, x2∗) ∆ f(x1∗, x2∗) ρ Validity
1 (3.000, 2.000) (2.046, 2.139) 1 226.027 0.958 Very successful
2 (2.046, 2.139) (1.374, 2.232) 1.25 11.931 0.403 Successful
3 (1.374, 2.232) (0.975, 2.191) 1.25 153.962 -1.049 Unsuccessful
4 (1.374, 2.232) (1.243, 1.896) 0.625 12.083 -0.026 Unsuccessful
5 (1.374, 2.232) (1.466, 2.185) 0.313 0.344 1.489 Very successful
6 (1.466, 2.185) (1.424, 2.181) 0.390 2.533 -1.474 Unsuccessful
7 (1.466, 2.185) (1.429, 2.075) 0.195 0.303 0.095 Unsuccessful
8 (1.466, 2.185) (1.474, 2.181) 0.098 0.232 1.599 Very successful
9 (1.474, 2.181) (1.470, 2.180) 0.122 0.255 -2.303 Unsuccessful
10 (1.474, 2.181) (1.475, 2.180) 0.061 0.227 2.225 Very successful

Table 4.10: Optimization results of each iteration based on Dogleg method

40

4.2. Rosenbrock test function

As we known, there are several parameters of trust region algorithm. For
example, the initial trust region size, the starting point, expansion factor and
contraction factor. Here, we discuss the effects of various initial step size on the
performance of trust region algorithm and find the appropriate value of initial
trust region radius when the original objective function is Rosenbrock function.
Table 4.11 and Table 4.12 show the optimization results from different initial step
sizes with the same starting point is (3, 2). The expansion factor is 1.25 and
contraction factor is 0.5 for all tests.

The termination condition in Table 4.11 is the maximum number of iterations
which is 40. In Test A6, the initial step size is 1.5. We notice that the objective
function value of the final stopping point in is 0.154, which is less than the other
tests. In Table 4.12, the optimization process will terminate when the objective
function value of the stopping point is less than 0.2. In Test B6, The initial trust
region radius is 1.5. It needs only 5 iterations to get a new point with objective
function value less than 0.2. However, it takes 216 iterations when the initial
step size is 0.25 (see Test B1). In addition, Test B6 has the minimum objective
function value compared with the other tests in Table 4.12. Hence, we conclude
that 1.5 is the appropriate value in this situation. When the initial starting point
or other parameters change, we will get another appropriate value. Hence, it is
difficult to find all best parameters values since they have interaction effects and
it highlights the need for more research.

Test Initial step Stopping point Iterations Very successful Successful Unsuccessful f(x1∗, x2∗)

A1 0.25 (1.501, 2.257) 40 19 10 11 0.251
A2 0.50 (1.501, 2.255) 40 18 11 11 0.247
A3 0.75 (1.478, 2.183) 40 19 10 11 0.228
A4 1.00 (1.454, 2.113) 40 15 15 10 0.207
A5 1.25 (1.456, 2.120) 40 12 18 10 0.208
A6 1.50 (1.393, 1.940) 40 14 15 11 0.154
A7 1.75 (1.446, 2.090) 40 17 12 11 0.199
A8 2.00 (1.476, 2.180) 40 15 13 12 0.227

Table 4.11: Optimization results with various initial trust region sizes. The
starting point is (3, 2) and the number of iteration is 40.

Test Initial step Stopping point Iterations Very successful Successful Unsuccessful f(x1∗, x2∗)

B1 0.25 (1.4468, 2.0932) 216 95 87 34 0.1997
B2 0.50 (1.4465, 2.0948) 220 96 89 35 0.2000
B3 0.75 (1.4470, 2.0935) 121 54 45 22 0.1998
B4 1.00 (1.4470, 2.0934) 57 23 22 12 0.1998
B5 1.25 (1.4468, 2.0931) 63 22 28 13 0.1997
B6 1.50 (1.3929, 1.9399) 5 2 1 2 0.1672
B7 1.75 (1.4469, 2.0833) 38 16 11 11 0.1988
B8 2.00 (1.4467, 2.0949) 180 76 73 31 0.1999

Table 4.12: Optimization results with various initial trust region sizes. Starting
point is (3, 2) and f(x1∗, x2∗) < 0.2.

41

Chapter 5
Example cases

In this chapter,we will provide example results generated from trust-region algo-
rithm for well placement problem. We consider three cases in our study. In the
first case, there is only one production well in a two-dimensional heterogeneous
reservoir. As we presented previously, the values of predetermined parameters
can influence the performance of trust region algorithm. Our objective is simply
to find the appropriate values of some parameters and method for optimization
step in this reservoir. In the second case, we consider a five-spot pattern, where
the production well is located in the center surrounded by four injection wells at
the corners. In addiction, we also analyze the effects of various expansion factors
and contraction factors on optimization process. In the third case, we test the
performance of trust region method in a simple three-dimensional reservoir and
the appropriate location of producer is already known before trust region search.
In our work, the objective function value is defined by Np − 0.2 ×Wp. Np is
cumulative oil production, Wp is cumulative water production. The drivers files
for FieldOpt are in a machine-readable format (JSON). The driver files we used
for example cases can be found in Appendix B.

5.1 Case 1

5.1.1 Case description

We consider a relatively simple two-dimensional heterogeneous reservoir here. The
reservoir is a 1400×1400×24 m3 simulation model. It is discretized by 60×60×1
grid blocks. The length along each horizontal direction and the depth are 24
m. The porosity and permeability fields of the reservoir are shown in Figure 5.1
and Figure 5.2. First, we find the best location of producer under certain initial
conditions. Then, we discuss the optimization results from various parameters
values, the Cauchy point method and the Dogleg method.

43

Chapter 5. Example cases

Figure 5.1: Permeability field of reservoir

Figure 5.2: Porosity field of reservoir

44

5.1. Case 1

5.1.2 Optimization solutions
5.1.2.1 Optimization results

The reservoir has only one producer operating at a constant production rate of
5000 STB/D. There are no injection wells. The simulation time is 100 days. The
initial step size is 100 m. We use 1.5 as expansion factor and 0.5 as contraction
factor. As we explained before, the Dogleg method has better convergence in
some cases. Therefore, we use the Dogleg method to decide the optimization step.
Table 5.1 shows the optimization results after the trust region search. There are 9
successful models during 18 iterations. Although we used Dogleg method for each
iteration, there are only two successful iterations with Dogleg path. The main
reason is that most quasi-Newton points are located outside the trust region area.
Hence, Cauchy point is used as optimization step. Here, the objective function
value is defined by Np − 0.2 ×Wp (2.10). Np is the cumulative oil production
and the Wp is the cumulative water production. The objective function value is
increase by 3 % from 205572 SM3 to 211570 SM3. The growth is not significant
because the initial location of producer is close to the best location of producer
(see Figure 5.3). Figure 5.4 shows the oil saturation at the end of simulation time.
We notice that the oil saturation in the southwest corner of reservoir from the
best well placement is less than the initial location of producer. It means that
more oil is produced when the production well is drilled at the best location after
trust region search. Figure 5.5 shows the cumulative oil production (FOPT) and
cumulative water production (FWPT) from the initial well placement and the
best well placement. The cumulative oil production increases from 205904 SM3

to 211576 SM3 at the end of production time. The cumulative water production
increases from 28.63 SM3 to 30 SM3, which is very small compared with FOPT.

Iteration ∆ Optimization step Model’s validity Maximum value
1 100 Cauchy point Good 208605
2 150 Cauchy point Satisfactory 209682
3 150 Cauchy point Good 210376
4 225 Dogleg point Poor 210376
5 112.5 Cauchy point Good 211250
6 168.75 Newton point Poor 211250
7 84.375 Dogleg point Poor 211250
8 42.1875 Cauchy point Good 211386
9 63.2812 Newton point Poor 211386
10 31.6406 Cauchy point Good 211485
11 47.4609 Dogleg point Poor 211485
12 23.7305 Dogleg point Poor 211485
13 11.8652 Cauchy point Good 211543
14 17.7979 Newton point Poor 211543
15 8.8989 Cauchy point Satisfactory 211557
16 8.8989 Dogleg point Good 211570
17 13.3484 Cauchy point Poor 211570
18 6.67419 Dogleg point Poor 211570

Table 5.1: Optimization results at each iteration after trust region search in Case
1

45

Chapter 5. Example cases

Figure 5.3: The initial location and the best location of producer in Case 1

Figure 5.4: Oil saturation at the end of production time from the initial location
and the best location of producer in Case 1

Figure 5.5: Comparison of FOPT and FWPT from the initial location and the
best location of producer in Case 1

46

5.1. Case 1

5.1.2.2 Different values of parameters

As we mentioned before, the values of parameters can influence the optimization
results. In order to find the appropriate values of the initial step size and the
expansion factor in this reservoir, we use the trust region algorithm with various
values of parameters to solve the well placement optimization problem. We use
three different initial trust region sizes (60 m ,100 m and 150 m) and three
different expansion factors (1.1, 1.25 and 1.5) to analyze the performance of trust
region algorithm. All of these tests have the same initial reservoir conditions and
location of production well. For simplicity, the simulation time is 100 days here.
The iteration will terminate when the trust region size is smaller than 5 m. The
contraction factor is 0.5. The production rate is 5000 STB/D.

Table 5.2 shows the optimization results from various initial step sizes and
expansion factors. Test 8 evaluated 448 cases when the initial step size is 80 m
and the expansion factor is 1.5. The optimization process terminated earlier than
the other tests. Hence, the maximum value from this case is 210850 SM3 and
less than the most of tests. In Test 9, the initial trust region size is 100 m and the
expansion factor is 1.5. The number of total evaluated cases is 505. The objective
function value of the final stopping point is 211570 SM3 which is largest here.

From Figure 5.6, we notice that the initial trust region size is 60 m or 100
m, we can get larger objective function value with higher expansion factor value.
But the effect of various expansion factors is very small when the initial step
size is 80 m. In Figure 5.7, when the expansion factor is 1.1, there is no big
difference between the objective function values even thought we use different
initial step sizes. But it is obvious that higher initial trust region radius have
better performance when the expansion factor is 1.25 or 1.5. We also notice
that it takes fewer iterations if the trust region size is larger. In order to reduce
simulation runs, we prefer 100 m as initial step size and 1.5 as expansion factor
in this reservoir.

Test Initial step Expansion factor Iterations Evaluated cases Maximum value
1 60 1.1 21 589 210886
2 80 1.1 20 561 211323
3 100 1.1 21 589 210910
4 60 1.25 19 533 210841
5 80 1.25 22 617 210969
6 100 1.25 17 477 211397
7 60 1.5 20 561 211423
8 80 1.5 16 448 210850
9 100 1.5 18 505 211570

Table 5.2: Optimization results of trust region method with various parameters

47

Chapter 5. Example cases

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.04

2.06

2.08

2.1

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

60(1.1)
60(1.25)
60(1.5)

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.04

2.06

2.08

2.1

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

80(1.1)
80(1.25)
80(1.5)

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.04

2.06

2.08

2.1

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

100(1.1)
100(1.25)
100(1.5)

Figure 5.6: Comparison of results with same initial step and different expansion
factors.

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.04

2.06

2.08

2.1

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

60(1.1)
80(1.1)
100(1.1)

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.04

2.06

2.08

2.1

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

60(1.25)
80(1.25)
100(1.25)

0 2 4 6 8 10 12 14 16 18 20

Iterations

2.04

2.06

2.08

2.1

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

60(1.5)
80(1.5)
100(1.5)

Figure 5.7: Comparison of results with same expansion factor and different initial
step sizes.

48

5.1. Case 1

5.1.2.3 Different methods for optimization step

From the optimization results at each iteration (see Table 5.1), we notice that the
most optimization step is from the Cauchy point even thought we have applied
the Dogleg method. Therefore, maybe the Dogleg method does not have better
convergence than the Cauchy point in this reservoir. To verify this guess, we
applied both Cauchy point method and Dogleg method with various initial step
sizes to solve the optimization problem in this case. Table 5.3 and Figure 5.8
show the optimization results from both methods. As we expected, the Dogleg
method actually does not have much better performance of algorithm here. When
we use the Dogleg method, the optimization process terminate earlier. For the
Cauchy point method, there will be more successful iterations, which means the
optimization process is extended. The final stopping point has a larger objective
function value. Therefore, we recommend the Cauchy point as the optimization
step at each iteration in this two-dimensional heterogeneous reservoir.

Test Initial step size Optimization step Iterations Evaluated cases Maximum value
1 60 Dogleg method 20 561 211423
2 60 Cauchy point 23 645 211443

3 80 Dogleg method 20 561 210867
4 80 Cauchy point 24 673 210914

5 100 Dogleg method 18 505 211570
6 100 Cauchy point 22 617 211599

Table 5.3: Optimization results from Cauchy point method and Dogleg method

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.05

2.06

2.07

2.08

2.09

2.1

2.11

2.12

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 5

60(1.5)-Cauchy Point method
60(1.5)-Dogleg method
80(1.5)-Cauchy point
80(1.5)-Dogleg method
100(1.5)-Cauchy point
100(1.5)-Dogleg method

Figure 5.8: Optimization results from Cauchy point method and Dogleg method

49

Chapter 5. Example cases

5.2 Case 2

5.2.1 Case description

In Case 2, we still use the same reservoir model from the previous case. But
it is five-spot model, where four injection wells are located at the corners of
reservoir and the production well sits in the center. Table 5.4 summarizes the
input parameters for reservoir model and trust region algorithm. In this case,
we use trust region algorithm to solve the optimization problem and the Cauchy
point is taken as optimization step at each iteration. In addition, we discuss the
effects of various parameters values on the optimization results. As we know, the
initial well placement also affects the optimization process. Hence, we also solve
the optimization problems with different initial well locations.

Number of Grids 60× 60× 1
Each Grid Block Dimension (m) 24× 24× 24
Initial pressure (psi) 2473
Heel of production well (m) (324,900,1712)
Toe of production well (m) (612,900,1712)
Production rate (STB/D) 5000
Reservoir life (years) 8
Location of injection well 1 (m) (84,84,1712)
Location of injection well 2 (m) (1356,84,1712)
Location of injection well 3 (m) (84,1356,1712)
Location of injection well 4 (m) (1356,1356,1712)
Injection rate (STB/D) 1000
Initial trust region radius (m) 100
Minimum trust region radius (m) 5
Expansion factor 1.5
Contraction factor 0.5

Table 5.4: Reservoir parameters and trust region algorithm parameters

5.2.2 Optimization solutions

Table 5.5 shows the optimization results at each iteration in Case 2. The objective
function value from the initial well placement is 2097440 SM3, which increases to
2166840 SM3 after 309 simulations. In this case, the minimum trust region size
is 5 m and there are total 11 iterations when the optimization process terminated.
However, there are only four successful iterations (e.g., iteration 1, 2, 4, 9). For
the first three iterations, they are very successful models and the trust region sizes
are appropriate (100 m, 150 m and 112.5 m). Therefore, the objective function
values increase significantly.

From the iteration 5 to iteration 8, there is no successful model. The trust
region radius are reduced by halve at each unsuccessful model. Hence, the radius
are reduced significantly from 168.75 m to 10.5460 m. The tentative best location
of producer during these iterations is found at iteration 4, which has objective
function value 2165580 SM3.

50

5.2. Case 2

For iteration 9, the increase is not apparently although the quadratic model
gives a good prediction. The main reason is relatively small trust region radius
(10.5469 m) at this stage limits the increase. However, we can’t adjust this
subregion directly. Because the trust region radius are depend on previous
iterations and some parameters. At this iteration, we have already found the
best location of producer in Case 2. The trust region radius is 15.8203 m at this
iteration, which is larger than minimum step size 5 m. Hence, the optimization
process continues. Unfortunately, the last two iterations are unsuccessful. In such
a situation, we could stop optimization process earlier to reduce the simulation
runs. For example, the termination condition can be minimum trust region size
10 m.

No. of Iteration Trust region size Model’s validity Objective function value
1 100 Good 2129760
2 150 Good 2149150
3 225 Poor 2149150
4 112.5 Good 2165580
5 168.75 Poor 2165580
6 84.375 Poor 2165580
7 42.1875 Poor 2165580
8 21.0938 Poor 2165580
9 10.5469 Good 2166840
10 15.8203 Poor 2166840
11 7.91016 Poor 2166840

Table 5.5: Optimization results at each iteration from Case 2

0 1 2 3 4 5 6 7 8 9 10 11

Iterations

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16

2.17

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 6

Trust region search

Figure 5.9: Algorithm performance of trust region method in Case 2

Figure 5.10 shows the initial locations and best locations of wells in Case

51

Chapter 5. Example cases

2. The initial location of producer is along the east-west direction. After trust
region search, the best location of producer is along the north-east direction
and it is located at the north-west of reservoir. Figure 5.11 displays the oil
saturation distributions at the end of the production time. Compared with the
initial locations for wells, more oil is produced in the west area and the north area
of reservoir from the best locations of wells. Figure 5.12 shows the cumulative oil
production and cumulative water production from the initial well locations and
the best well locations. The cumulative oil production at the end of production
time increases from 3316884.5 SM3 to 3511177 SM3. But the cumulative water
production from the best locations of wells is less than the initial locations of
wells. It is reduced from 6838727 SM3 to 6721689 SM3.

Figure 5.10: The initial location and the best location of producer in Case 2

Figure 5.11: Oil saturation distribution at the end of production life from the
initial location and the best location of producer in Case 1

52

5.2. Case 2

Figure 5.12: Comparison of FOPT and FWPT from the initial location and the
best location of producer in Case 2

5.2.2.1 Different values of parameters

In order to extend the optimization process, we can reduce the minimum step
size for the termination condition. But there is no significant difference between
maximum objective function values, which means that more iterations with small
trust region sizes can’t improve the optimization process apparently. Therefore
we want to adjust values of parameters to get more successful models. In this
case, we focus on the expansion factor and the contraction factor. Table 5.6 shows
the optimization results in Case 2 from various parameters values.

As we explained previously, the trust region sizes are reduced by halve at
each unsuccessful iteration. So the trust region radius are decreased significantly
and the optimization process terminated after several unsuccessful iterations.
Therefore, we want to use larger contraction factors (0.7 and 0.8) to decrease the
reduction in trust region sizes. However, the results show that higher contraction
factor didn’t improve the performance of algorithm or find better results (see
Figure 5.13). When the extraction factor is 0.5, iteration 3 is unsuccessful. When
the extraction factor is 0.7, both iteration 3 and iteration 4 are unsuccessful.
When the extraction factor is 0.8, iteration 3, iteration 4 and iteration 5 are
unsuccessful. Actually, the final best cases from these three situations are similar.
But it takes 23 iterations to reach the best locations of wells with the contraction
factor 0.8 and there are 19 unsuccessful iterations during the optimization process.
Hence, we should not use high contraction factor, which can only result in more
unsuccessful iterations.

Figure 5.14 shows the optimization results from three different values of
expansion factor (1.5, 2.00 and 2.50). Because the first iteration is successful,
the trust region size is increased at iteration 2. The surrogate model is still very
good at this iteration. Compared with the expansion factor 1.5, the tentative best
case at iteration 2 has larger objective function value with expansion factor 2.0
and 2.5. However the improvement is not significant. In addition, there are more
unsuccessful iterations with larger expansion factor. Hence, we suggest expansion
factor 1.5 for this five-spot pattern.

53

Chapter 5. Example cases

Expansion factor Contraction factor Successful iterations Unsuccessful iterations Maximum value
1.5 0.5 4 7 2166840
1.5 0.7 4 13 2166520
1.5 0.8 4 19 2166920
1.50 0.5 4 7 2166840
2.00 0.5 5 11 2168200
2.50 0.5 5 10 2166420

Table 5.6: Results of iterations from different contraction factors in Case 2

0 2 4 6 8 10 12 14 16 18 20 22 24

Iterations

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16

2.17

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 6

Expansion 1.5 - Contraction 0.5
Expansion 1.5 - Contraction 0.7
Expansion 1.5 - Contraction 0.8

Figure 5.13: Optimization results from different contraction factors in Case 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16

2.17

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

10 6

Expansion 1.50 - Contraction 0.5
Expansion 2.00 - Contraction 0.5
Expansion 2.50 - Contraction 0.5

Figure 5.14: Optimization results from different contraction factors in Case 2

54

5.2. Case 2

5.2.2.2 Different initial locations of producer

From the optimization results (see Table 5.5), the objective function value of the
best locations of wells is increased only by 3 % from 2097440 SM3 to 2166840
SM3. There are maybe two reasons for such a small growth. First, the initial well
locations is good and close to best well locations (see Figure 5.10). In addition,
the simulation time could be another reason. After long time of production, a
lot of oil in the reservoir will be produced regardless of the locations of wells.
Therefore, there is no significant difference in the oil saturation distribution at
the end of production time. In order to get more significant improvement, we
reduce the simulation time from 8 years to 5 years and solve the well placement
optimization problem from another four different initial locations of wells (north-
east, north-west,north-south and east-west). The other initial conditions are
unchanged.

Table 5.7 summaries the initial locations of wells and theirs corresponding
optimization results after trust region search. Although we have used different
initial locations of producer, the best location is always along the north-east
direction (see Figure 5.10, 5.15 5.18 and 5.21). In Test 2 and Test 4, the initial
locations of wells are far way from the best locations of well. Hence, the increasing
in objective function value should be significant and much more oil will be produced
from the best locations of well. As we expected, the oil saturation at the end
of production time from the best locations of well is much less than the initial
locations of wells (see Figure 5.19 and 5.22). The objective function value is
increased by 33% from 2083140 SM3to 2771040 SM3 in Test 3, which has the
most significant improvement in all the tests. Cumulative oil production at the
end of production time is increased from 2590176 SM3 to 3134591 SM3 and
the cumulative water production at the end of production time is reduced from
2535182 SM3 to 1817738 SM3 (see Figure 5.23).

Test 1 Test 2 Test 3 Test 4
Production rate (STB/D) 5000 5000 5000 5000
Injection rate (STB/D) 1000 1000 1000 1000
Simulation time (years) 5 5 5 5
Initial heel (i,j,k) (14,14,1) (46,14,1) (13,13,1) (23,32,1)
Initial toe (i,j,k) (41,41,1) (46,33,1) (30,13,1) (41,16,1)
Initial direction north-east north-south north-west east-west
Best heel (i,j,k) (7,31,1) (7,31,1) (5,32,1) (2,32,1)
Best toe (i,j,k) (28,52,1) (29,52,1) (26,48,1) (26,36,1)
Best direction north-east north-east north-east north-east
Initial value (SM3) 2513320 2357380 2083140 2527240
Maximum value (SM3) 2767310 2770040 2771040 2710850
Percent increase (%) 10.1% 17.5% 33% 7.3%
FOPT - Initial location (SM3) 2955580 2842019 2590176 2966097
FOPT - Best location (SM3) 3132627 3134558 3134591 3096942
Percent increase -FOPT (%) 6% 10.3% 21.2% 4.5%
FWPT - Initial location (SM3) 2211300 2423213 2535182 2194306
FWPT - Best location (SM3) 1826596 1822586 1817738 1930438
Percent decrease -FWPT (%) 17.4% 24.8% 28.3% 12%

Table 5.7: Optimization results of different initial conditions

55

Chapter 5. Example cases

Figure 5.15: The initial locations and the best locations of wells in Test 1

Figure 5.16: Oil saturation at the end of production time from the initial locations
and the best locations of wells in Test 1

Figure 5.17: Comparison of FOPT and FWPT from the initial locations and the
best locations of wells in Test 1

56

5.2. Case 2

Figure 5.18: The initial locations and the best locations of wells in Test 2

Figure 5.19: Oil saturation at the end of production time from the initial locations
and the best locations of wells in Test 2

Figure 5.20: Comparison of FOPT and FWPT from the initial locations and the
best locations of wells in Test 2

57

Chapter 5. Example cases

Figure 5.21: The initial locations and the best locations of wells in Test 3

Figure 5.22: Oil saturation at the end of production time from the initial locations
and the best locations of wells in Test 3

Figure 5.23: Comparison of FOPT and FWPT from the initial locations and the
best locations of wells in Test 3

58

5.2. Case 2

Figure 5.24: The initial locations and the best locations of wells in Test 4

Figure 5.25: Oil saturation at the end of production time from the initial locations
and the best locations of wells in Test 4

Figure 5.26: Comparison of FOPT and FWPT from the initial locations and the
best locations of wells in Test 4

59

Chapter 5. Example cases

5.3 Case 3

5.3.1 Case description

In this case, we consider a simple three dimensional reservoir with one production
well. The dimensions of reservoir are 2000 × 990 × 300 ft3 and represented by
20 × 9 × 9 grid system. The reservoir and initial data are shown in Table 5.8
and 5.9. The reservoir has nine layers and porosity is constant 25% (see Figure
5.27). The horizontal and vertical permeability is 100 md and 5 md, respectively.
The initial oil saturation distribution is shown in the Figure 5.28. In the top two
layers, the gas saturation is very high. The bottom two layers contain mostly
water. The oil saturation is stratified horizontally and the third layer has largest
oil saturation (83.9%). Therefore, the appropriate locations of producer should be
horizontal between layer 2 and layers 7. As we already know the good locations
of production well, this reservoir model can be used to evaluate the validity of
trust region algorithm in well placement optimization problem.

Layer Thickness Depth of the center of layer kh kv
ft ft md md

1 50 7025 100 5
2 50 7075 100 5
3 30 7115 100 5
4 15 7137.5 100 5
5 10 7150 100 5
6 15 7162.5 100 5
7 30 7185 100 5
8 50 7225 100 5
9 50 7275 100 5

Table 5.8: Reservoir data

Layer Thickness po So Sw Sg
ft psia

1 50 3845 0 0.1 0.9
2 50 3854 0.151 0.115 0.734
3 30 3866 0.839 0.147 0.014
4 15 3872 0.831 0.169 0
5 10 3876 0.806 0.194 0
6 15 3879 0.769 0.231 0
7 30 3885 0.506 0.494 0
8 50 3895 0.005 0.995 0
9 50 3918 0 1 0

Table 5.9: Reservoir initial data

60

5.3. Case 3

Figure 5.27: Porosity field of reservoir

Figure 5.28: Initial oil saturation distribution

5.3.2 Optimization solutions

To test the performance of trust region algorithm in this case, we consider
three different initial locations of production well: vertical well, inclined well
and horizontal well. The reservoir has only one production well operating at a
constant production rate of 2000 STB/D. The simulation time is 100 days. Table
5.10 summaries the initial well placement and conditions for each test.

61

Chapter 5. Example cases

Test 1 Test 2 Test 3
Liquid production rate (STB/D) 2000 2000 2000
Direction of well Vertical Inclined Horizontal
Producer length (ft) 110 907 900
Layer Layer 2-7 Layer 2-7 Layer 7
Initial heel (ft) (1050,495,7075) (550,495,7075) (550,495,7185)
Initial toe (ft) ((1050,495,7185) (1450,495,7185) (1450,495,7075)

Table 5.10: Initial well placement for each test in Case 3

As we explained before, the oil saturation is stratified horizontally (see Figure
5.28. Hence, we suggest that production well should be drilled horizontally on
the layers with large oil saturation, for example, the layer 3. Table 5.11 shows the
optimization results of all the tests. The best locations of producer is always on
the layer 3 (see Figure 5.29,5.31 and5.33). Figure 5.30, 5.32 and 5.34 show the
cumulative oil production and the cumulative water production from the initial
location of producer and the best location of producer. We notice that much more
oil is produced when the producer is drilled on the layer 3. The cumulative water
production in each test is reduced significantly, which are are negligibly small.
The optimization results after trust region search are as we expected. Hence, the
trust region algorithm is efficient in this case.

Test 1 Test 2 Test 3
Initial direction Vertical Inclined Horizontal
Best direction Horizontal Horizontal Horizontal
Best layer Layer 3 Layer 3 Layer 3
Heel (i,j,k) (4,9,3) (6,6,3) (6,5,3)
Toe (i,j,k) (14,2,3) (19,5,3) (15,5,3)
Maximum value 199701 199712 199683

Table 5.11: Best locations of producer after trust region search

Figure 5.29: The initial location and the best location of producer in Test 1

62

5.3. Case 3

Figure 5.30: Comparison of FOPT and FWPT from the initial location and the
best location of producer in Test 1

Figure 5.31: The initial location and the best location of producer in Test 2

Figure 5.32: Comparison of FOPT and FWPT from the initial location and the
best location of producer in Test 2

63

Chapter 5. Example cases

Figure 5.33: The initial location and the best location of producer in Test 3

Figure 5.34: Comparison of FOPT and FWPT from the initial location and the
best location of producer in Test 3

64

Chapter 6
Summary

Well placement optimization is one of the most important part in field development.
It is a challenging process because evaluating this type of objectives typically
requires performing a time-consuming reservoir simulation. An efficient algorithm
is essential to reduce simulation runs and accelerate optimization process. In
our work, we implement model-based trust region algorithm in FieldOpt for well
placement optimization problems. The values of parameters can influence the
performance of this algorithm. We should choose proper parameters to improve
the convergence of method. In our work, we recommend expansion factor 1.5,
contraction factor 0.5 and intial step size 100 ft as input parameters for example
cases.

We have applied both the Cauchy point method and Dogleg method to solve
the trust region subproblem. Cauchy point performs poorly in some cases, for
example, Matyas function. A significant improvement in convergence could be
achieved by using Dogleg method. However, when we used Dogleg method for
well placement in FieldOpt. The results show that the Dogleg method does
not accelerate the optimization process significantly. In well placement problem,
quasi-Newton points are always located outside the trust region area. Althought
we used Dogleg method to solve the trust region subproblem, the Dogleg path
is not available when quasi-Newton point is outerior. Then Cauchy point is
taken as optimization step in such a situation. When the Cauchy point method
is applied, there are more successful iteartions before the optimization process
is terminated. Therefore the final case based on Cauchy point is better than
that from Dogleg method. In addition to that, we also notice that appropriate
termation condition can reduce unnecessary iterations and inital well placement
is aslo an imporant factor during the optimization process in Case 2. In Case 3,
the reservoir has horizontal oil saturation distrution and the approriate location
of producer is known. The optimization results validated the perfomance of trust
region algorithm.

65

Chapter 7
Further work

The current trust region algorithm implemented with FieldOpt has some draw-
backs. Due to lack of time, we were not able to solve some problems. In the
future, we can improve the performance of the trust region algorithm from the
following aspects.

7.1 Constrained optimization

In our work, we only optimize a single well placement. There are six variables for
one well and only reservoir boundary conditions are considered as constraints. In
the future, we will solve multiple-well placement optimization problem. Therefore,
there are more variables in optimization process and we have to take into account
more constraints. For example, well length constraint and inter-well distance
constraint.

7.2 Surrogate model

Compared to the true function, surrogate model is computationally simple to
evaluate and processes well-behaved derivatives. But there is a significant draw-
back of quadratic model. The number of interpolation points (n+1)(n+2)

2 is the
quadratic in the dimension n of the true function. For example, n = 24 for four
wells, there are nearly 325 cases needed to be evaluated at each iteration. Hence,
the procedure to evaluate objective function from simulator can be very time
consuming. Powell [18] proposed an algorithm that uses a quadratic model relying
on fewer than (n+1)(n+2)

2 interpolation points. Beyond quadratic model, we can
also consider radial basis function model, which uses fewer function evaluations
than the polynomial models.

67

Chapter 7. Further work

7.3 Optimization step
Actually, both exact solution and Dogleg method have some drawbacks. For exact
solution, Bk + λI need to be positive definite and the process is complicated to
calculate all eigenvectors and eigenvalues of Bk to find the optimal trajectory. So
the exact solution should be applied to small dimension. Dogleg method works
when Bk is positive and it is not suited for large optimization scale. However,
truncated conjugate method works for arbitrary Bk and has more and all the
good properties of Dogleg method. In addition to that, the solution calculated by
this method has a good sufficient reduction property [38]. Therefore, we suggest
the truncated conjugate gradient method to solve the trust region subproblem.

68

Appendix A
Code

A.1 Code for interpolation points

find_new_point()

QList<Eigen : : VectorXd> PolyModel : : find_new_point (
Polynomial bas i s_funct ion)

{
int dimension = bas i s_funct ion . return_dimension () ;
Eigen : : VectorXd c o e f f s = bas i s_funct ion . r e tu rn_coe f f s () ;
Eigen : : VectorXd x0 , x1 , x2 , x3 , x4 ;
x0 = x1 = x2 = x3 = x4 = Eigen : : VectorXd : : Zero (dimension) ;

// Find l a r g e s t monomial c o e f f i c i e n t (exc lud ing constant term
↪→ which has a l ready been ass igned to f i r s t po in t)

double max = 0 . 0 ;
int max_coeff = −1;
for (int i = 1 ; i < c o e f f s . s i z e () ; ++i) {

i f (f abs (c o e f f s (i)) > max) {
max = fabs (c o e f f s (i)) ;
max_coeff = i ;

}
}

i f (max_coeff == −1){
std : : cout << "Good␣ po int ␣ alg , ␣Problem : ␣ a l l ␣ c o e f f i c i e n t s ␣ are ␣

↪→ zero , ␣ should ␣never ␣happen" << std : : endl ;
for (int i = 0 ; i < 3 ; i++){

std : : cout << c o e f f s [i] << std : : endl ;
}

}

i f (max_coeff <= dimension) {
// The l a r g e s t c o e f f i c i e n t i s from a l i n e a r term
x1 (max_coeff−1) = 1 ;
x2 = −x1 ;

}

69

Appendix A. Code

else i f (max_coeff <= 2∗ dimension) {
// Larges t c o e f f i c i e n t i s quadra t i c monomial
x1 (max_coeff−dimension−1) = 1 ;
x2 = −x1 ;

}
else {

int l ,m = −1;
int coeff_dummy = 2∗ dimension+1;

for (int i = 0 ; i < dimension −1; i++){
for (int j = i +1; j < dimension ; j++) {

i f (max_coeff == coeff_dummy) {
l = i ;
m = j ;
goto endloop ;

}
coeff_dummy = coeff_dummy+1;

}
}
endloop :

x1 (l) = 1 .0/ sq r t (2) ;
x1 (m) = −1.0/ sq r t (2) ;
x2 = −x1 ;
for (int i = 0 ; i < dimension ; i++){

x3 (i) = fabs (x1 (i)) ;
x4 (i) = −f abs (x1 (i)) ;

}
}

Eigen : : VectorXd best_point ;
double best_value = 0 . 0 ;
QList<Eigen : : VectorXd> po in t s ;
po in t s . append (x0) ;
po in t s . append (x1) ;
po in t s . append (x2) ;
po in t s . append (x3) ;
po in t s . append (x4) ;

// Determine which o f the 5 po in t s i s the b e s t one
for (int i = 0 ; i < 5 ; i++){
i f (f abs (bas i s_funct ion . eva luate (po in t s . at (i))) >= best_value) {

best_point = po in t s . at (i) ;
best_value = fabs (bas i s_funct ion . eva luate (po in t s . at (i))) ;

}

}

return best_point ;
}

70

A.1. Code for interpolation points

complete_points_abs()

void PolyModel : : complete_points_abs ()
{

Eigen : : VectorXd centre_point = points_ . at (0) ;
// points_abs=sca l ed i n t e r p o l a t i o n po in t .
// points_abs . at (0) i s always zero
points_abs . append (points_ . at (0) − centre_point) ;
int n_Polynomials = basis_ . l ength () ;
int n_points = points_ . l ength () ;

QList<Polynomial> temp_basis = get_bas i s () ;
for (int i = 0 ; i < n_Polynomials ; i++) {

Polynomial cur_pol = temp_basis . at (i) ;
i f (i == 0) {

std : : cout << "we␣don ’ t ␣need␣ to ␣ f i nd ␣new␣point , ␣ ba s i s ␣
↪→ polynomial , ␣ i ␣=␣" << i << std : : endl ;

s td : : cout << "␣This ␣ po int ␣ i s ␣" << points_abs . at (i) <<
↪→ std : : endl ;

}
else {

std : : cout << "we␣need␣ to ␣ f i nd ␣new␣point , ␣ ba s i s ␣
↪→ polynomial , ␣ i ␣=␣" << i << std : : endl ;

Polynomial temp_poly_here = temp_basis . at (i) ;
// Append new poin t and swap i t to current po s i t i on
points_abs . append (find_new_point (temp_poly_here)) ;

// points_abs . swap (i , points_abs . l en g t h () − 1) ;
// s td : : cout<<"t h i s po in t i s " << points_abs . at (i) << s td

↪→ : : end l ;
Polynomial temp_i = temp_basis . at (i) ;
auto temp_point = points_abs . at (i) ;

for (int j = i + 1 ; j < n_Polynomials ; j++) {
Polynomial uj = temp_basis . at (j) ;
Polynomial u i = temp_basis . at (i) ;
double r a t i o ;
//Test ing d i v i s i o n by zero
i f (u i . eva luate (temp_point) == 0 && j == i +1){
std : : cout << "Div i s i on ␣by␣ zero ␣ because ␣U_i(y_i) ␣=␣0"

↪→ << std : : endl ;
}

i f (uj . eva luate (temp_point) == ui . eva luate (temp_point)
↪→) {

r a t i o = 1 . 0 ;
}

else {
r a t i o = uj . eva luate (temp_point) / u i . eva luate (

↪→ temp_point) ;
}
u i . mul t ip ly (−1.0 ∗ r a t i o) ;
uj . add (u i) ;
temp_basis [j] = uj ;

}
}

}

}

71

Appendix A. Code

complete_points()

void PolyModel : : complete_points ()
{

int n_Polynomials = basis_ . l ength () ;
Eigen : : VectorXd centre_point = points_ . at (0) ;
s td : : cout << " f o r ␣ i=␣0" << std : : endl ;
s td : : cout << "This ␣ i n t e r p o l a t i o n ␣ po int ␣ i s : ␣" << points_ . at (0) <<

↪→ std : : endl ;
// Sca le po in t s back
for (int i = 1 ; i < n_Polynomials ; ++i) {

points_ . append (centre_point + radius_∗points_abs . at (i)) ;
s td : : cout << " f o r ␣ i=␣" << i << std : : endl ;
s td : : cout << "This ␣ i n t e r p o l a t i o n ␣ po int ␣ i s : ␣" << points_ . at (

↪→ points_ . s i z e ()−1) << std : : endl ;

//Create case from new i n t e r p o l a t i o n po in t
cases_ . append (CaseFromPoint (centre_point + radius_∗

↪→ points_abs . at (i) , cases_ . at (0))) ;

// Append case to l i s t o f uneva luated cases
cases_not_eval_ . append (cases_ . at (i)) ;

}
needs_evals_ = true ;
needs_set_of_points_ = fa l se ;
s td : : cout << " In t e r p o l a t i o n ␣ po in t s ␣ are ␣ completed : ␣" << std : : endl

↪→ ;
}

A.2 Code for optimization step
Hessain()

QList<Eigen : : VectorXd> Polynomial : : Hess ian ()
{

/∗ Hessian matrix i s a square matrix o f second−order
∗ p a r t i a l d e r i v a t i v e o f a sca lar−va lued func t i on .
∗ f o r quadra t i c po ly model , Hessian matrix only
∗ depend on c o f f i c i e n t s
∗/

Eigen : : MatrixXd B = Eigen : : MatrixXd : : Zero (dimension_ , dimension_) ;

for (int i = 0 ; i < dimension_ ; ++i) {
B(i , i) = coe f f s_ (dimension_+i +1) ;

}

for (int i = 0 ; i < dimension_ ; ++i) {
int k = 0 ;
for (int j = i +1; j< dimension_ ; ++j) {

int a = ((dimension_ + 1) + (dimension_ − i)) ∗ (i + 2)
↪→ / 2 + k ; ;

B(i , j) = coe f f s_ (a) ;
B(j , i) = B(i , j) ;
k = k+1;

}

72

A.2. Code for optimization step

}

Hessian_Matrix = B;
// s td : : cout << "Hessian matrix : " << B << std : : end l ;

return Hessian_Matrix ;
}

Cauchy_point()

QList<Eigen : : VectorXd> Polynomial : : Cauchy_Point (
Eigen : : VectorXd points , double radius_ , Eigen : : VectorXd grad)

{
double gBg = grad . t ranspose () ∗Hessian_Matrix∗grad ;
double tau ;
i f (gBg <= 0) {

tau = 1 ;
}
else {

double l ength = grad . norm () ∗grad . norm () ∗grad . norm () /(radius_∗
↪→ gBg) ;

i f (l ength >= 1) {
std : : cout << "The␣Cauchy␣Point ␣ l i e s ␣on␣ the ␣boundary , ␣ then

↪→ ␣ take ␣a␣ step ␣ to ␣ the ␣boundary␣ along ␣ s t e ep e s t ␣
↪→ descent ␣ d i r e c t i o n : " << std : : endl ;

tau = 1 ;
}
else {

std : : cout << "The␣Cauchy␣Point ␣ l i e s ␣ i n s i d e ␣ the ␣ t r u s t ␣
↪→ r eg i on " << std : : endl ;

tau = length ;
}

}
Eigen : : VectorXd Cauchy_Point = −tau∗ radius_∗grad/grad . norm () ;
// s td : : cout << " tau i s : " << tau << std : : end l ;
std : : cout << "The␣Cauchy␣Point ␣ i s : \ n" << Cauchy_Point << std : :

↪→ endl ;
s td : : cout << "Length␣ o f ␣Cauchy␣Point ␣ i s : \ n" << Cauchy_Point . norm

↪→ () << std : : endl ;
// s td : : cout << " o b j e c t i v e func t i on va lue o f Current Point i s :"

↪→ << eva lua t e (po in t s) << s td : : end l ;
// s td : : cout << " o b j e c t i v e func t i on va lue o f Cauchy Point i s : "

↪→ << eva lua t e (Cauchy_Point) << s td : : end l ;
return Cauchy_Point ;

}

73

Appendix A. Code

Newton_point()

QList<Eigen : : VectorXd> Polynomial : : Newton_Point (
Eigen : : VectorXd points , double radius_ , Eigen : : VectorXd grad)

{
std : : cout << "Find␣Quastion−Newton␣ po int : " << std : : endl ;
Eigen : : MatrixXd Inverse_Matrix = Hessian_Matrix . i n v e r s e () ;
Eigen : : VectorXd Newton_Point = −Inverse_Matrix ∗grad ;
i f (Newton_Point . norm () > radius_) {

std : : cout << "The␣Newton␣Point ␣ l i e s ␣ ou t s id e ␣ the ␣ t r u s t ␣ r eg i on
↪→ " << std : : endl ;

}
else {

std : : cout << "The␣Newton␣Point ␣ l i e s ␣ i n s i d e ␣ the ␣ t r u s t ␣ r eg i on "
↪→ << std : : endl ;

}

std : : cout << "The␣Quasi−Newton␣Point ␣ i s : \ n" << Newton_Point <<
↪→ std : : endl ;

s td : : cout << " length ␣ o f ␣Newton␣Point ␣ i s : \ n" << Newton_Point . norm
↪→ () << std : : endl ;

// s td : : cout << " o b j e c t i v e func t i on va lue o f Current Point i s :\n"
↪→ << eva lua t e (po in t s) << s td : : end l ;

// s td : : cout << " o b j e c t i v e func t i on va lue o f Newton Point i s :\n"
↪→ << eva lua t e (Newton_Point) << s td : : end l ;

return Newton_Point ;

}

Dogleg_step()

QList<Eigen : : VectorXd> Polynomial : : Dogleg_step (
Eigen : : VectorXd points , double radius_ , Eigen : : VectorXd grad)

{
Eigen : : VectorXd Dogleg_step ;
Eigen : : VectorXd d_cp = Cauchy_Point (po ints , radius_ , grad) ;
Eigen : : VectorXd d_nw = Newton_Point (po ints , radius_ , grad) ;
s td : : cout << " length ␣ o f ␣ ra idus " << radius_ << std : : endl ;
s td : : cout << " length ␣ o f ␣Cauchy␣ po int ␣ i s " << d_cp . norm () << std : :

↪→ endl ;
s td : : cout << " length ␣ o f ␣Newton␣ po int ␣ i s " << d_nw. norm () << std : :

↪→ endl ;

i f (d_cp . norm () >= radius_) {
Dogleg_step = d_cp ;
std : : cout << "Cauchy␣ po int ␣ l i e s ␣on␣ the ␣boundary , ␣ then␣ take ␣

↪→ Cauchy␣ po int ␣ as ␣ opt imiza t i on ␣ step : ␣" << Dogleg_step
↪→ << std : : endl ;

}
else i f (d_nw. norm () <= radius_)
{

Dogleg_step = d_nw;
std : : cout << "Both␣Cauchy␣ po int ␣and␣Quastion−Newton␣ po int ␣

↪→ l i e ␣ i n s i d e ␣ t r u s t ␣ reg ion , ␣ then␣ take ␣Newton␣ po int ␣ as ␣
↪→ opt imiza t i on ␣ step : ␣" << Dogleg_step << std : : endl ;

}

74

A.2. Code for optimization step

else {
std : : cout << "Cauchy␣ po int ␣ l i e s ␣ i n s i d e ␣ t r u s t ␣ reg ion , ␣

↪→ Quastion−Newton␣ po int ␣ l i e s ␣ ou t s id e ␣ t r u s t ␣ reg ion , ␣ then
↪→ ␣ take ␣Dogleg␣ opt imiza t i on ␣ step : ␣" << Dogleg_step <<
↪→ std : : endl ;

s td : : cout << "Find␣ tau␣ such␣ that ␣ | | ␣d_cp␣+␣tau ∗(d_nw␣−␣d_cp)
↪→ ␣ | | _2␣=␣␣ rad iu s ␣ : ␣" << std : : endl ;

// so l v e a s i n g l e quadra t i c equat ion
double tau ;
Eigen : : VectorXd d i f f = d_nw−d_cp ;
double a = d i f f . dot (d i f f) ;
double b = 2∗d_cp . dot (d i f f) ;
double c = d_cp . dot (d_cp)−radius_∗ radius_ ;
tau = (−b+sq r t (b∗b−4∗a∗c)) /(2∗ a) ;
std : : cout << "tau␣ i s : ␣" << tau << std : : endl ;
Dogleg_step = d_cp+tau ∗(d_nw−d_cp) ;
std : : cout << "Dogleg␣ opt imiza t i on ␣ step ␣ i s : ␣" << Dogleg_step

↪→ << std : : endl ;
s td : : cout << " length ␣ o f ␣Dogleg␣ po int ␣ i s : ␣" << Dogleg_step .

↪→ norm () << std : : endl ;
}
return Dogleg_step ;

}

75

Appendix B
Driver Files

B.1 Case 1

{
"Global " : {

"Name" : "ONE_PRODUCER" ,
"BookkeeperTolerance " : 32 .0

} ,
"Optimizer " : {

"Type" : "Trust reg ion " ,
"Mode" : "Maximize" ,
"Parameters " : {

"MaxEvaluations" : 800 ,
" In i t i a l S t epLeng th " : 100 .0 ,
"MinimumStepLength" : 5 ,
"Contract ionFactor " : 0 . 5 ,
"ExpansionFactor " : 1 . 5 ,

} ,
"Object ive " : {

"Type" : "WeightedSum" ,
"WeightedSumComponents" : [

{
" Co e f f i c i e n t " : 1 . 0 , "Property " : "

↪→ CumulativeOilProduction " , "TimeStep" : −1,
" IsWellProp" : fa l se

} ,
{

" Co e f f i c i e n t " : −0.2 , "Property " : "
↪→ CumulativeWaterProduction" , "TimeStep" :
↪→ −1,

" IsWellProp" : fa l se
}

]
} ,
" Const ra in t s " : [

{
"Wells " : ["PROD1"] ,

77

Appendix B. Driver Files

"Type" : "ReservoirBoundary " ,
"BoxImin" : 0 ,
"BoxImax" : 59 ,
"BoxJmin" : 0 ,
"BoxJmax" : 59 ,
"BoxKmin" : 0 ,
"BoxKmax" : 0

}
]

} ,
" Simulator " : {

"Type" : "ECLIPSE" ,
" Execut ionScr ipt " : " csh_eclrun "

} ,
"Model" : {

"ControlTimes" : [0 , 50 , 100] ,
" Rese rvo i r " : {

"Type" : "ECLIPSE"
} ,
"Wells " : [

{
"Name" : "PROD1" ,
"Group" : "G1" ,
"Type" : "Producer " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Oi l " ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 300 .0 ,
"y" : 900 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 900 .0 ,
"y" : 900 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

{
"TimeStep" : 0 ,
" State " : "Open" ,
"Mode" : "BHP" ,
"BHP" : 100 .0

}
]

}
]

}
}

78

B.2. Case 2

B.2 Case 2

{
"Global " : {

"Name" : "5SPOT_INPUT" ,
"BookkeeperTolerance " : 32 .0

} ,
"Optimizer " : {

"Type" : "Trust reg ion " ,
"Mode" : "Maximize" ,
"Parameters " : {

"MaxEvaluations" : 1000 ,
" In i t i a l S t epLeng th " : 100 .0 ,
"MinimumStepLength" : 5 ,
"Contract ionFactor " : 0 . 5 ,
"ExpansionFactor " : 1 . 5

} ,
"Object ive " : {

"Type" : "WeightedSum" ,
"WeightedSumComponents" : [

{
" Co e f f i c i e n t " : 1 . 0 , "Property " : "

↪→ CumulativeOilProduction " , "TimeStep" : −1,
" IsWellProp" : fa l se

} ,
{

" Co e f f i c i e n t " : −0.2 , "Property " : "
↪→ CumulativeWaterProduction" , "TimeStep" :
↪→ −1,

" IsWellProp" : fa l se
}

]
} ,

" Const ra in t s " : [
{

"Wells " : ["PROD1"] ,
"Type" : "ReservoirBoundary " ,
"BoxImin" : 0 ,
"BoxImax" : 59 ,
"BoxJmin" : 0 ,
"BoxJmax" : 59 ,
"BoxKmin" : 0 ,
"BoxKmax" : 0

}
]

} ,
" Simulator " : {

"Type" : "ECLIPSE" ,
" Execut ionScr ipt " : " csh_eclrun "

} ,
"Model" : {

"ControlTimes" : [0 , 400 , 800 , 1200 , 1600 , 2000 , 2400 , 2800 ,
↪→ 3200] ,

" Rese rvo i r " : {
"Type" : "ECLIPSE"

} ,
"Wells " : [

79

Appendix B. Driver Files

{
"Name" : "PROD1" ,
"Group" : "G1" ,
"Type" : "Producer " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Oi l " ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 12 . 0 ,
"y" : 828 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 588 .0 ,
"y" : 996 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

{
"TimeStep" : 0 ,
" State " : "Open" ,
"Mode" : "Rate" ,
"Rate" : 5000 .0

}
]

} ,
{

"Name" : "INJ1" ,
"Group" : "G2" ,
"Type" : " I n j e c t o r " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Water" ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 84 . 0 ,
"y" : 84 . 0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 84 . 0 ,
"y" : 84 . 0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

{
"TimeStep" : 0 ,
"Type" : "Water" ,
" State " : "Open" ,
"Mode" : "Rate" ,

80

B.2. Case 2

"Rate" : 1000 .0
}

]
} ,
{

"Name" : "INJ2" ,
"Group" : "G2" ,
"Type" : " I n j e c t o r " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Water" ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 1356 .0 ,
"y" : 84 . 0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 1356 .0 ,
"y" : 84 . 0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

{
"TimeStep" : 0 ,
"Type" : "Water" ,
" State " : "Open" ,
"Mode" : "Rate" ,
"Rate" : 1000 .0

}
]

} ,
{

"Name" : "INJ3" ,
"Group" : "G2" ,
"Type" : " I n j e c t o r " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Water" ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 84 . 0 ,
"y" : 1356 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 84 . 0 ,
"y" : 1356 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

81

Appendix B. Driver Files

{
"TimeStep" : 0 ,
"Type" : "Water" ,
" State " : "Open" ,
"Mode" : "Rate" ,
"Rate" : 1000 .0

}
]

} ,
{

"Name" : "INJ4" ,
"Group" : "G2" ,
"Type" : " I n j e c t o r " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Water" ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 1356 .0 ,
"y" : 1356 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 1356 .0 ,
"y" : 1356 .0 ,
"z" : 1712 .0 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

{
"TimeStep" : 0 ,
"Type" : "Water" ,
" State " : "Open" ,
"Mode" : "Rate" ,
"Rate" : 1000 .0

}
]

}

]
}

}

82

B.3. Case 3

B.3 Case 3

{
"Global " : {

"Name" : "SPE7_TEST2" ,
"BookkeeperTolerance " : 32 .0

} ,
"Optimizer " : {

"Type" : "Trust reg ion " ,
"Mode" : "Maximize" ,
"Parameters " : {

"MaxEvaluations" : 800 ,
" In i t i a l S t epLeng th " : 100 .0 ,
"MinimumStepLength" : 5 ,
"Contract ionFactor " : 0 . 5 ,
"ExpansionFactor " : 1 . 5

} ,
"Object ive " : {

"Type" : "WeightedSum" ,
"WeightedSumComponents" : [

{
" Co e f f i c i e n t " : 1 . 0 , "Property " : "

↪→ CumulativeOilProduction " , "TimeStep" : −1,
" IsWellProp" : fa l se

} ,
{

" Co e f f i c i e n t " : −0.2 , "Property " : "
↪→ CumulativeWaterProduction" , "TimeStep" :
↪→ −1,

" IsWellProp" : fa l se
}

]
} ,
" Const ra in t s " : [

{
"Wells " : ["PROD1"] ,
"Type" : "ReservoirBoundary " ,
"BoxImin" : 0 ,
"BoxImax" : 19 ,
"BoxJmin" : 0 ,
"BoxJmax" : 8 ,
"BoxKmin" : 0 ,
"BoxKmax" : 8

}
]

} ,
" Simulator " : {

"Type" : "ECLIPSE" ,
" Execut ionScr ipt " : " csh_eclrun "

} ,
"Model" : {

"ControlTimes" : [0 , 50 , 100] ,
" Rese rvo i r " : {

"Type" : "ECLIPSE"
} ,
"Wells " : [

{

83

Appendix B. Driver Files

"Name" : "PROD1" ,
"Group" : "G1" ,
"Type" : "Producer " ,
"Def in i t ionType " : "Wel lSp l ine " ,
" Pre ferredPhase " : "Oi l " ,
"WellboreRadius " : 0 .1905 ,
" Sp l inePo in t s " : {

"Heel " : {
"x" : 550 .00 ,
"y" : 495 .00 ,
"z" : 7075 .00 ,
" I sVa r i ab l e " : true

} ,
"Toe" : {

"x" : 1450 .00 ,
"y" : 495 .00 ,
"z" : 7185 .00 ,
" I sVa r i ab l e " : true

}
} ,
"Contro l s " : [

{
"TimeStep" : 0 ,
" State " : "Open" ,
"Mode" : "Rate" ,
"Rate" : 2000 .0

}
]

}
]

}
}

84

Bibliography

[1] L. L. Rogers, F. U. Dowla, and V. M. Johnson, “Optimal field-scale ground-
water remediation using neural networks and the genetic algorithm,” Envi-
ronmental Science & Technology, vol. 29, no. 5, pp. 1145–1155, 1995.

[2] B. Yeten, L. J. Durlofsky, K. Aziz et al., “Optimization of nonconventional
well type, location and trajectory,” in SPE annual technical conference and
exhibition. Society of Petroleum Engineers, 2002.

[3] A. N. Morales, H. Nasrabadi, D. Zhu et al., “A new modified genetic algorithm
for well placement optimization under geological uncertainties,” in SPE
EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum
Engineers, 2011.

[4] M. L. Litvak, J. E. Onwunalu, J. Baxter et al., “Field development optimiza-
tion with subsurface uncertainties,” in SPE Annual Technical Conference
and Exhibition. Society of Petroleum Engineers, 2011.

[5] R. C. Eberhart, J. Kennedy et al., “A new optimizer using particle swarm
theory,” in Proceedings of the sixth international symposium on micro machine
and human science, vol. 1. New York, NY, 1995, pp. 39–43.

[6] J. E. Onwunalu and L. J. Durlofsky, “Application of a particle swarm opti-
mization algorithm for determining optimum well location and type,” Com-
putational Geosciences, vol. 14, no. 1, pp. 183–198, 2010.

[7] J. E. Onwunalu, L. Durlofsky et al., “A new well-pattern-optimization pro-
cedure for large-scale field development,” SPE Journal, vol. 16, no. 03, pp.
594–607, 2011.

[8] H. Wang, D. Echeverría-Ciaurri, L. Durlofsky, A. Cominelli et al., “Opti-
mal well placement under uncertainty using a retrospective optimization
framework,” Spe Journal, vol. 17, no. 01, pp. 112–121, 2012.

85

Bibliography

[9] B. Beckner, X. Song et al., “Field development planning using simulated
annealing-optimal economic well scheduling and placement,” in SPE annual
technical conference and exhibition. Society of Petroleum Engineers, 1995.

[10] K. P. Norrena, C. V. Deutsch et al., “Automatic determination of well place-
ment subject to geostatistical and economic constraints,” in SPE International
Thermal Operations and Heavy Oil Symposium and International Horizontal
Well Technology Conference. Society of Petroleum Engineers, 2002.

[11] G. W. Rosenwald, D. W. Green et al., “A method for determining the optimum
location of wells in a reservoir using mixed-integer programming,” Society of
Petroleum Engineers Journal, vol. 14, no. 01, pp. 44–54, 1974.

[12] Z. Bouzarkouna, D. Y. Ding, and A. Auger, “Well placement optimization
with the covariance matrix adaptation evolution strategy and meta-models,”
Computational Geosciences, vol. 16, no. 1, pp. 75–92, 2012.

[13] P. G. Tilke, R. Banerjee, V. B. Halabe, B. Balci, M. Thambynayagam,
J. B. Spath et al., “Automated field development planning in the presence
of subsurface uncertainty and operational risk tolerance,” in SPE Annual
Technical Conference and Exhibition. Society of Petroleum Engineers, 2010.

[14] W. Bangerth, H. Klie, M. Wheeler, P. Stoffa, and M. Sen, “On optimization
algorithms for the reservoir oil well placement problem,” Computational
Geosciences, vol. 10, no. 3, pp. 303–319, 2006.

[15] D. Winfield, “Function minimization by interpolation in a data table,” IMA
Journal of Applied Mathematics, vol. 12, no. 3, pp. 339–347, 1973.

[16] M. Powell, A new algorithm for unconstrained optimization. Academic Press,
1970.

[17] M. J. Powell, “Uobyqa: unconstrained optimization by quadratic approxima-
tion,” Mathematical Programming, vol. 92, no. 3, pp. 555–582, 2002.

[18] M. Powell, “The newuoa software for unconstrained optmization without
derivatives,” pp. 255–297, 2006.

[19] J. E. Dennis, Jr and R. B. Schnabel, “Least change secant updates for
quasi-newton methods,” Siam Review, vol. 21, no. 4, pp. 443–459, 1979.

[20] M. Marazzi and J. Nocedal, “Wedge trust region methods for derivative free
optimization,” Mathematical programming, vol. 91, no. 2, pp. 289–305, 2002.

[21] F. V. Berghen and H. Bersini, “Condor, a new parallel, constrained extension
of powell’s uobyqa algorithm: Experimental results and comparison with the
dfo algorithm,” Journal of computational and applied mathematics, vol. 181,
no. 1, pp. 157–175, 2005.

[22] S. M. Wild, “Mnh: A derivative-free optimization algorithm using minimal
norm hessians,” 2008.

86

Bibliography

[23] H. Zhang and A. R. Conn, “On the local convergence of a derivative-free
algorithm for least-squares minimization,” Computational Optimization and
Applications, vol. 51, no. 2, pp. 481–507, 2012.

[24] C. Böckmann, “Curve fitting and identification of physical spectra,” Journal
of computational and applied mathematics, vol. 70, no. 2, pp. 207–224, 1996.

[25] N. Alexandrov and J. E. Dennis, Algorithms for bilevel optimization. Insti-
tute for Computer Applications in Science and Engineering, NASA Langley
Research Center, 1994.

[26] R. Oeuvray, “Trust-region method based on radial basis functions with
application to biomedical imaging,” Ph.D. dissertation, Ecole Polytechique
Federale de Lausanne, 2005.

[27] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free
optimization. Siam, 2009, vol. 8.

[28] A. R. Conn and P. L. Toint, “An algorithm using quadratic interpolation for
unconstrained derivative free optimization,” in Nonlinear optimization and
applications. Springer, 1996, pp. 27–47.

[29] M. D. Buhmann, “Radial basis functions: theory and implementations,”
Cambridge Monographs on Applied and Computational Mathematics, vol. 12,
pp. 147–165, 2003.

[30] K. Scheinberg and P. L. Toint, “Self-correcting geometry in model-based
algorithms for derivative-free unconstrained optimization,” SIAM Journal on
Optimization, vol. 20, no. 6, pp. 3512–3532, 2010.

[31] Y. xian Yuan, “A review of trust region algorithms for optimization.”

[32] T. Steihaug, “The conjugate gradient method and trust regions in large
scale optimization,” SIAM Journal on Numerical Analysis, vol. 20, no. 3, pp.
626–637, 1983.

[33] J. Dennis Jr and H. Mei, “Two new unconstrained optimization algorithms
which use function and gradient values,” Journal of Optimization Theory and
Applications, vol. 28, no. 4, pp. 453–482, 1979.

[34] C. M. Giuliani, “Distributed derivative free optimization,” Ph.D. dissertation,
Universidade Federal de Santa Catarina, 2016.

[35] https://github.com/lingyaw/FieldOpt/tree/TRO-new_polymodel/.

[36] https://msdn.microsoft.com/en-us/library/dd409416.aspx/.

[37] E. J. M. Baumann, “Fieldopt: Enhance software framework for petroleum
field optimization,” Master’s thesis, Norweigian University of Sicenes and
Technology, 2015.

87

https://github.com/lingyaw/FieldOpt/tree/TRO-new_polymodel/
https://msdn.microsoft.com/en-us/library/dd409416.aspx/

Bibliography

[38] Y. Yuan, “On the truncated conjugate gradient method,” Mathematical
Programming, vol. 87, no. 3, pp. 561–573, 2000.

88

	Introduction
	Well placement problem
	Literature review
	Widely used methods for optimal well placement
	Genetic algorithm
	Particle swarm optimization
	Simulated annealing
	Other derivative-free optimization algorithms

	Trust region method in derivative-free optimization

	Thesis outline

	Trust region algorithm
	Framework of trust region algorithm
	Problem definition
	Construction of quadratic model
	The updating of interpolation set
	Trust-region subproblem
	The exact solution
	The approximate solution
	Cauchy point algorithm
	Dogleg algorithm
	Steihaug's algorithm

	Implementation of trust-region algorithm in FieldOpt
	Polynomial
	PolyModel
	Trust region search

	Computational experiments
	Matyas test function
	Background
	Approximate quadratic model
	Optimization results
	Cauchy step
	Dogleg method

	Rosenbrock test function
	Background
	Approximate quadratic model
	Optimization results

	Example cases
	Case 1
	Case description
	Optimization solutions
	Optimization results
	Different values of parameters
	Different methods for optimization step

	Case 2
	Case description
	Optimization solutions
	Different values of parameters
	Different initial locations of producer

	Case 3
	Case description
	Optimization solutions

	Summary
	Further work
	Constrained optimization
	Surrogate model
	Optimization step

	Code
	Code for interpolation points
	Code for optimization step

	Driver Files
	Case 1
	Case 2
	Case 3

