@NTNU

Norwegian University of
Science and Technology

Implementation of Linear Constraint
Handling Techniques for Generating Set
Search Method for Well Placement
Optimization Problem on FieldOpt
Platform

Bo Niu

Petroleum Engineering

Submission date: June 2017
Supervisor: Jon Kleppe, IGP
Co-supervisor: Mathias Bellout, IGP

Norwegian University of Science and Technology
Department of Geoscience and Petroleum

Abstract

Well placement optimization is important in Petroleum Field Development. Traditional
optimization algorithms for well placement are stochastic algorithms. In this paper, we
present a novel idea to solve such problem, which is using generating set search with
linear constraint. The innovation point of our work is that we are able to provide a well-
determined feasible domain of for well placement optimization by using piecewise linear
constraints. We apply our linear constraint handler with generating set search method.
This allows us to design a customized feasible domain that to a high degree, incorporates
the reservoir engineering knowledge. Moreover, such a domain reduces the search area to
accelerate the optimization speed. According to the literature review, few works can be
found that attempt to solve the problem in this way.

Generating set search method is a local optimization method. Unlike stochastic algo-
rithms, it is easy to trap into a local optimum. To alleviate the problem, we also discuss
how to pick the parameters properly by testing our algorithm on example models, includ-
ing the contraction factor, expansion factor, and search pattern. In addition to that, we
present figures to illustrate how the algorithm work, and how the linear constraints can
accelerate the optimization.

In the end, we present well placement optimization in OLYMPUS reservoir model
and get satisfactory results. We optimize one producer out of sixteen wells. Our solution
significantly increases the cumulative oil production of that well with a small number of
iterations, which indicates a good performance and applicability of our algorithm.

Preface

This thesis is written as a part of the Master’s degree in Petroleum Engineering at the
Department of Geoscience and Petroleum at the Norwegian University of Science and
Technology, NTNU. It was written during the spring semester of 2017 under the supervi-
sion of Prof. Jon Kleppe and co-supervised by Postdoc Mathias C. Bellout. This thesis is
done in collaboration with the Petroleum Cybernetics Group at NTNU.

Acknowledgments

I would like to thank my supervisor Jon Kleppe who provides me the opportunity to work
in the Petroleum Cybernetics Group at NTNU, enable me to collaborate with many talent
researchers in the group. I also want to express my gratitude to Mathias Bellout for the
tutoring, meeting and feedback during the thesis. He has spent so much time on me,
which helped me a lot. Then, I would like to thank Einar Baumann, who helped me solve
some technical problems on software. Finally, I would like to thank the other two master
students in the group, Chingiz Panahli and Lingya Wang. The communication between us
was always helpful and inspiring.

Table of Contents

Introduction

1.1 Optimization Algorithm
1.2 Constraint handler for feasible domain
1.3 Contribution and Motivation of ourwork
1.4 FieldOptPlatform
1.5 Organizationof thisthesis

Generating Set Search Theory and Constraint Handling Methodology
2.1 Description of the algorithm
2.2 Initializing the algorithm 0oL,
2.3 Generating Sets for R” without constraints
24 Update Formulas
2.5 Successful and unsuccessful iterations,
2.6 Scalingfactor L
2.7 Linear constrainthandler,
2.7.1 Effect of the Linear Constraint handler.
2.7.2 The Process of Straightforward Constructionof G,
2.8 Degenerate Casehandler
2.8.1 Anillustrative example of degeneratecase
2.9 Summary of generating setsfor R™ L.

Implementation Details in FieldOpt

3.1 Algorithm
32 Miscellaneouso
3.3 Details of the input in the driver file

Case Study

4.1 Introduction of the two test reservoirmodels

4.2 Expansion factor and contraction factor picking strategy
42.1 CaseDescription
4.2.2 Optimization Solution

4.3 Comparison between two patterns 26
4.3.1 Optimization Solution, 26

4.4 Optimization for two-dimensional model using GSS with linear constraints 28
4.4.1 Linear constraints picking strategy 28

442 Anillustratedexample 30

443 Optimization Solution 32

4.4.4 Comparison between all thecases 34

4.4.5 Interpretation of the solution 35

4.5 Optimization for three-dimensional model using GSS with linear constraints 36
45.1 Casedescription 36

4.5.2 Optimization without linear constraints and scaling factor 38

4.5.3 Linear constraints and scaling factor picking strategy 40

454 Anillustrativeexample 0oL 41

4.5.5 Optimization Solution 43

5 Application of the Method for OLYMPUS Reservoir Model 47
5.1 Description of OLYMPUS model for optimization challenge 47
5.1.1 The optimization challenge of the model 48

5.2 Optimization problem description, 48

5.3 Parameters for GSS algorithm 000 L. 49
5.3.1 Linearconstraints 49

5.32 miscellaneouso 50

54 Optimizationresults L oo 51

5.5 Interpretation of theresults 53

6 Summary and Recommendations 57
6.1 Summary e 57

6.2 Recommendations for furtherwork 0oL 58
6.2.1 New way to define the locationofawell 58

6.2.2 More advanced degenerate case handler 58

6.2.3 More algorithms tocompare 59

6.24 Moresearchdirections 59

6.2.5 Parallel Computing 59
Bibliography 61
Appendices 65
A How FieldOpt Works 65
A.l DriverFiles 65
A2 Optimizer 65
A3 Simulator 66
A4 Model 66
A5 Objective Function Lo oL 66
A6 Constraints 66
A7 Bookkeeper e 67

Q = = 9 a W

A.8 The main Loop of Serial Runner
An Example of the Driver File

GSS_Linear_Constraints.h

GSS _Linear_Constraints.cpp

gss_patterns.hpp

Initial Well placement

Optimized Well placement

69

73

77

89

93

95

List of Tables

3.1

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

5.1
5.2

The name of parameters needed indriverfile 19
Configurations for the two-dimensional model 23
Resultsof case 1-4 23
Resultsof case 5-8 26
Resultsofcase 9-12 L 32
Comparison between unconstrained and constrained condition 34
Configurations for the three-dimensional model 38
Resultofcase 13, 39
Resultofcase 14 43
Initial configurations for OLYMPUS case 51
Optimizationresults o 52

11

List of Figures

2.1
22
23

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
52
53
54
55

Different search patterns
Effects of linear constraints
Nondegenerate Case handler

GSS_Linear_Constraints Class

Twotestreservoirmodels
Searchmapofcase 1-4 L.
Searchmapofcase5-8 Lo oL
Linear constraints for two-dimensional model
Linear constraints proposed for the two-dimensional model

An illustrative example of the iterations for two-dimensional case

Searchmapofcase9-12,
Number of simulations VS objective function value
Oil distribution of the two-dimensional model

Comparison between the base case and the best optimized case, case 11

Initial position of the wells
Searchmapofcase 13
Linear constraints proposed for the three-dimensional model
The effect of linear constraints and scaling factor
An illustrative example of the iterations for three-dimensional case
Searchmapofcase 14
Comparison between the base case and optimized case
Cumulative oil and water production of the three-dimensional model . . .
Oil distribution of the three-dimensional model (first layer excluded) . . .

OLYMPUS reservoirmodel
The challenge of thechannels
Oil saturation distribution for the initialcase
Linear constraints it
Linear constraint matrix for OLYMPUS model

48
49
49
50
51

13

5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

6.1

Evolution of the objection functionvalue 52

Optimal well completion 53
Oil saturation distribution after optimization 53
Cumulative oil production of the field 54
Cumulative water production of the field 54
Cumulative oil production of PROD-10 54
Cumulative water production of PROD-10 55
Oil production rate of PROD-10 55
Water production rate of PROD-10 55
The disadvantage of using linear constraints in Z-direction 58

Chapter

Introduction

Determination of the location of wells is important to develop a reservoir optimally. The
idea behind such problem is to try different locations generated by the optimization algo-
rithm until the best one. This thesis concerns implementing generating set search algorithm
with linear constraints for solving well placement optimization problems.

1.1 Optimization Algorithm

The discrete optimal well placement problem is commonly solved by using derivative-free
optimization algorithms. Due to the effects of reservoir heterogeneity, these problems can
display very rough optimization surfaces, with multiple local optima. Therefore most re-
searchers have focused on using derivative-free stochastic search procedures. The most
popular methods are Genetic Algorithms (GA) (Badru and Kabir, 2003; Bangerth et al.,
2006; Artus et al., 2006). Another commonly-used stochastic search algorithm is Parti-
cle Swarm Optimization method (PSO) (Onwunalu and Durlofsky, 2010a; Jesmani Man-
soureh and Foss, 2015). In the work of Onwunalu and Durlofsky (2010a), PSO was found
to perform better than GA. Other stochastic search methods used by the researchers are
Simulated Annealing (SA) (Beckner and Song, 1995), and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) (Bouzarkouna et al., 2012).

However, these stochastic search methods are not supported by solid convergence the-
ory, and have tuning parameters that are difficult to determine. Besides the stochastic
optimization procedures discussed above, there are also researchers who solve the well
placement optimization problem using local search optimization methods. Isebor (2013)
performed Mesh Adaptive Direct Search (MADS) as one of the algorithm in his paper.
Bellout et al. (2012) performed Pattern Search for joint optimization of well placement
and controls. These methods also gave satisfactory results with an acceptable number of
simulations according to those works.

Chapter 1. Introduction

1.2 Constraint handler for feasible domain

Well placement optimization problems always come together with different kinds of con-
straints, including constraints to limit the well length, inter-well distance, feasible domain
to place the well, etc. While dealing with the feasible reservoir domain, most researchers
only define upper and lower bound for it, which means they perform the search process
within a cubic space. To handle these bound constraints, for example, points that violate
bound constraints are projected back onto the boundary of search space (T.D. Humphries,
2015). Onwunalu (2010) apply the absorb technique for PSO method, in which invalid
particles are moved to the nearest bound and the affected velocity components are set to
zero. These kinds of constraint handling techniques can also be called repair techniques
since infeasible solutions are converted into feasible candidates.

Jesmani et al. (2016) enable the use of user-defined feasible regions of the model by
approximating the boundary of each region by piecewise polynomials. In this way, all the
constraints for well length, feasible domain, well orientation and inter-well distance are
solved together. They apply penalty function and decoder to solve these constraints and
compare. The decoder can convert any nonlinear constraints into boundary constraints.
The idea of penalty functions is to transform a constrained optimization problem into an
unconstrained one by adding a certain value to the objective function based on the amount
of constraint violation present in a certain solution. It is the most common approach to
handle constraints. Other related work involves Bouzarkouna et al. (2010) and Onwunalu
and Durlofsky (2010b) who use penalty method.

1.3 Contribution and Motivation of our work

In this work, we first implement Generating Set Search (GSS) algorithm to resolve the
well placement optimization problem. Our implementation of GSS algorithm, introduced
by Kolda et al. (2003), denotes the generic term of all classical pattern search methods
supported by solid convergence theory, including Generalized Pattern Search (GPS), Mesh
Adaptive Direct Search (MADS) and Hooke-Jeeves Direct Search (HIDS). In our work,
we use linear constraints to define the feasible reservoir domain. We then apply a linear
constraint handling technique taken from Lewis et al. (2007a) for GSS algorithm to handle
these linear constraints.

In our work, we approximate the boundary of the feasible reservoir domain by piece-
wise linear constraints. On one hand, the approximation by using linear constraints is
usually precise enough to replace the irregularly shaped reservoir regions. And it is easier
to implement than the approximation by piecewise polynomials in the work of Jesmani
et al. (2016) in terms of mathematics. On the other hand, by introducing these linear con-
straints, we can narrow down the search space by using reservoir engineering knowledge.
For example, instead of searching the whole reservoir within the reservoir boundary de-
fined by bound constraints, we can divide out certain zones with high oil saturation by
linear constraints, in which the best location of the producer is much more likely to be
than the other places. In consequence, the size of the search space can be reduced con-
siderably by eliminating the simulation of infeasible development scenarios. This means
we can shorten the optimization time by incorporating reservoir engineering knowledge,

2

1.3 Contribution and Motivation of our work

which is rarely discussed by other researchers.

From the literature review, Umut Ozdogan (2005) are the first who attempt on geo-
metrical constraints of the well placement problem considering the irregular shape of the
reservoir. They proposed Fixed Pattern Approach (FPA) which uses a hybrid GA to locate
wells on user-defined patterns. Their methodology needs two primary parameters to de-
fine a line pattern, which are the distance of the wells on the line to the reservoir boundary
and well spacing. With the two parameters, they can capture the shape of the feasible
domain. Comparison with respect to the conventional window approach showed that FPA
significantly reduced the CPU time and resulted in practical and economical well loca-
tions. However, their methodology did not fix the number of wells. In other words, they
are searching the best well pattern instead of well placement for each individual, which
is different from our work. And also, the methodology they design for picking feasible
domain is different from us.

Theoretically, the advantage of solving the linear constraints using our method can be
summarized as follows:

1. Compared with the penalty method, it can perform better since the performance of
penalty method is highly problem-dependent. And penalty method requires addi-
tional tuning of several parameters, which makes the problem more complicated.

2. Compared with the decoder method, it is much easy to implement since the decoder
method requires more advanced mathematical knowledge and is harder to imple-
ment when the reservoir model is complicated and irregular.

3. Compared with the repair technique that projects infeasible solutions onto its cor-
responding feasible space, the linear constraint handling technique implemented in
this work can make use of the shape of the constraints and change the searching
direction more efficiently to accelerate the convergence speed. On the contrary, the
projection process will generate too many points lying on the boundary.

4. Our linear constraint handler can make use of the reservoir engineering knowledge
to shorten the optimization time as discussed above.

The advantages of using GSS algorithm compared to stochastic search methods for
well placement optimization problem are:

1. It has a solid mathematical foundation of convergence which can be found at Kolda
et al. (2007).

2. It is compatible with any other constraint handling technique, which means we can
still apply other constraint handling technique afterward to include other types of
constraints.

We know that using GSS method may lead to getting trapped into local optima. There-
fore, we will discuss how to alleviate such problem in chapter 4. Furthermore, in many
well placement problems, finding a reasonable local optimum following some amount of
global exploration is often sufficient (Bellout et al., 2012).

The disadvantage of the linear constraint handling technique implemented in this work
is that it can only be applied to the GSS type of algorithms. That is, it may not be consistent
with some popularity-based algorithms.

Chapter 1. Introduction

1.4 FieldOpt Platform

Our optimization platform for this thesis is FieldOpt, a software framework developed
by Baumann (2015). FieldOpt is written in C++. It is designed to promote researches
by efficiently integrating methodology from optimization theory and petroleum engineer-
ing. The main idea behind FieldOpt is to consolidate and make user-friendly much of the
groundwork necessary to conduct optimization on a variety of petroleum problems.

FieldOpt has several different functionality sections, most of which can be treat as
“black box” that are not necessary to touch. However, in order to integrate our algo-
rithm into FieldOpt platform, one needs to have a general understanding of how FieldOpt
works. In general, FieldOpt parses the input file which contains reservoir model and con-
figurations for optimizer and wells, and then outputs the optimization results. Currently,
FieldOpt is still being updated, and the functionality is still being improved. In appendix
A, we present the current state of FieldOpt, and how FieldOpt works as a whole. We also
introduce the important functionality modules we use in our work, including the reservoir
simulator we choose, the objective function, the runner, and other types of constraints we
use in this thesis. One can refer to appendix A for more detail.

Currently, FieldOpt can apply compass search method for well placement optimization
problem. Compass search method can be seen as the simplest form of GSS method. In
this thesis, we will extend it to the general GSS method and add linear constraint handler
to it. And also, the compass search algorithm is always the one we use to compare with
our algorithm in chapter 4.

1.5 Organization of this thesis

In chapter 2, we will introduce the theory of GSS algorithm with linear constraints in great
detail. In chapter 3, we present the implementation details of our algorithm. That is, how
we integrate our algorithm into FieldOpt platform. In chapter 4, we perform different test
cases for the algorithm we implemented in order to show the performance of our method.
Then in chapter 5, we will make use of the knowledge we gained from chapter 4 and
solve the well placement optimization problem in OLYMPUS reservoir model. Finally, in
chapter 6, we summarize our work and give recommendations for further work.

Chapter

Generating Set Search Theory and
Constraint Handling Methodology

The linearly-constrained optimization problem considered is

minimize f(x)

; 2.1)
subject to < Ax <u

f + R™ — R is the objective function. The linear constraints are in the form of a
matrix of A € R™*". Generating set search (GSS) is a class of direct search optimization
methods that includes compass search and similar pattern search methods. The algorithm
of GSS method for this thesis is provided in algorithm 1. This chapter will discuss the
theoretical properties of the method based on the algorithm 1. The whole process of the
optimization method, from the initialization to the termination, will be covered in this
chapter. We aim at providing the solid theoretical foundation of our algorithm.

2.1 Description of the algorithm

As illustrated in algorithm 1, the basic idea behind GSS algorithm is to perform the search
by calculated search pattern. Given an initial point, the algorithm will generate several
new trial points around it according to the search pattern. If there exists a better point,
then the iteration is called a successful iteration. The step length will expand, and the
tentative best point will be updated to replace the initial one. Otherwise, the iteration is
called unsuccessful. The step length will contract, and the tentative best point is still the
initial one. In the following iterations, the search process will always be performed around
the tentative best point using the same, or a new search pattern. Such search process will
continue until the step length reaches the lower limit we set.

The main difference between our algorithm and the traditional unconstrained pattern
search algorithm is that our search pattern in each iteration can change based on the linear

5

Chapter 2. Generating Set Search Theory and Constraint Handling Methodology

o Initialization.

— Let f : R™ — R be given.
Let 29 € R™ be the initial guess.

Let Ay, > 0 be the tolerance used to test for convergence.

Let Ag > Ay, be the initial value of the step-length control parameter.

e Algorithm. For each iteration k = 1,2, ...

Step 1. Let Dy, = G, U Hy, . Here Gy, is the generating set for R™ defined by the
search pattern or calculated by the linear constraint handler, and #y, is a
user-defined finite (possibly empty) set of additional search directions.

Step 2. If there exists dj, € Dy, such that f(xy + Agdy) < f(zr), then do the
following:

- Set 241 = xk + Agdy (change the iterate).

- Set Agy1 = oA where ¢, > 1 (optionally expand the step-length
control parameter).

Step 3. Otherwise, f(zx + Ard) > f(z) for all d € Dy, , so do the following:

- Set 11 = xj (no change to the iterate).

- Set Ag11 = 0 A where 0 < 0, < 0,4, < 1 (contract the
step-length control parameter).

- If Agy1 < Aypr , then terminate.

Algorithm 1: Generating Set Search Algorithm

constraints nearby. Therefore, the key point of our algorithm is how we construct the
search pattern in each iteration, which is indicated in step 1 of algorithm 1. In the following
section, we will go through every part of algorithm 1 in great detail, especially for the
process of construction of the search pattern.

2.2 Initializing the algorithm

A few comments regarding the initialization of the algorithm are in order. First, since we
are dealing with the constrained optimization problem, the initial point xy must be in the
feasible region. If not, according to our implementation, the search will either return an
error or never enter the feasible region.

The parameter A,; is problem-dependent and plays a major role in determining both
the accuracy of the final solution and the number of iterations. Smaller choices of Ay,
yield higher accuracy but the price is an increase in the number of iterations. For well
placement problem, usually we set it to be the value of half size of a single grid block so
that the point can move at least one grid block.

6

2.3 Generating Sets for R without constraints

For the initial value of the step-length control parameter A, relatively speaking, it is
better to set it to be a bigger one in case of getting trapped into local optimum too early.

2.3 Generating Sets for R” without constraints

Dy, is defined by a set of search directions which contains a generating set Gy for R™.
See Definition 1 for generating sets , which is also defined as positive spanning set. Pay
attention that all the coefficients are nonnegative. Hy, is any other additional direction that
can be included, and is allowed to set to be empty. For our implementation, Hy, is always
empty with G, changing iteration by iteration.

Definition 1. Ler G = dV), ..., d?) be a set of p > n + 1 vectors in R". Then the set G
generates (or positively spans) R™ if for any vector v € R™ | there exist \(V) ..., A\(?) > 0

such that
p
v=> ADd0.
i=1

A generating set must contain at least n + 1 vectors. This means any vector in the
search space can be constructed by a positive linear combination of the components of G.
If no constraints are nearby in one iteration, the problem can be treated as an unconstrained
problem, and the generating set can always be the same. The generating set is also called
search pattern. In this thesis, we implement two search patterns for the two-dimensional
and three-dimensional problem. The patterns are illustrated in figure 2.1. The left ones are
called Compass pattern and the right ones are called Fast pattern in our thesis. Compass
pattern denotes searching along the coordinate axis. While Fast pattern has fewer trial
points in each iteration compared with Compass pattern. In this way, we incorporate the
built-in compass search method by adding the Compass pattern to our GSS algorithm.

The corresponding generating sets in vector form of vector for the Fast and Compass

A
Gewmme={[6] [3]- 10 [}

for two-dimensional case in figure 2.1(a), and

0 0 1 -1

Grast = O, 1],{0(,]-1

1 -1 —1 -1
1 -1 0 0 0 0
gCompass = 0 y 0 3 1) -1) 0) 0
0 0 0 0 1 -1

for three-dimensional case in figure 2.1(b).

Chapter 2. Generating Set Search Theory and Constraint Handling Methodology

When there are linear constraints nearby, the linear constraint handler is used to con-
struct the generating sets. In this way, the generating sets will no longer be limited to the
two type we introduced above. There will be diverse generating sets calculated by our
linear constraint handler. This is the key point that makes our algorithm outperform other
pattern search method, not only in the aspect of optimization results, but also in the aspect
of the number of simulations, which is performed in chapter 4. The process of construct-
ing generating sets when the point is near linear constraints will be discussed later in the
following sections.

(a) Compass and Fast patterns for two-dimensional cases

(b) Compass and Fast patterns for two-dimensional cases

Figure 2.1: Different search patterns

2.4 Update Formulas

When the algorithm finds a better trial point along certain direction, it means that it is still
on the way of the final optimum. Therefore, the step length will be expanded to search for
a larger range of space. In contrast, if the algorithm fails to find a better trial point in an
iteration, it tends to think that it has already found the final optimum. Thus the step length
will contract. In sum, the rules for updating the step-length control parameter Ay, are:

2.5 Successful and unsuccessful iterations

oAk, k€S
Apy1 =
GkAk, kel
with ¢, > 1 and 0 < 0, < 6,4, < 1. How to better choose the value of ¢ and 6y, is
discussed in chapter 4.

2.5 Successful and unsuccessful iterations

In one iteration, if there exists a dy, € Dj, for which

f(xr + Ady) < f(zr), (2.2)

Then the iteration is called successful. In this case, we update to the best point. If the
condition in equation 2.2 is not satisfied, then we call the iteration unsuccessful. In this
case, the best point is unchanged.

2.6 Scaling factor

GSS method is extremely sensitive to scaling, so it is important to use an appropriate
scaling to get the best performance. In this paper, we allow as an option the common
technique of shifting and rescaling the variables so that they have a similar range and size
(Lewis et al., 2007b). We work in a computational space whose variables w are related
to the original variables x via x = Dw + ¢, where D is a diagonal matrix with positive
diagonal entries and c is a constant vector, both provided by the user. In this way, the
original problem in equation 2.1 is transformed to:

minimize f(Dx+¢) 2.3)
subject to l—Ac < ADw < u — Ac ’
The graphical illustration and explanation of the scaling factor will be performed in
chapter 4.

2.7 Linear constraint handler

If there exist linear constraints, when the current best point is not near any boundary, the
algorithm will search along the same directions as the unconstrained GSS method. When
the current best point is near any boundary, the constraint handling technique will change
the set of search directions, subject to the geometry of the constraints nearby. How the
new generating set are constructed is discussed in this section.

Chapter 2. Generating Set Search Theory and Constraint Handling Methodology

2.7.1 Effect of the Linear Constraint handler

When the point is near linear constraints, if the algorithm has no linear constraint handling
technique, the optimizer will proceed to search as in the unconstrained situation. Then it
may encounter two issues shown in figure 2.2. Here we are taking the example of using
Fast pattern in figure 2.1(a). The area in orange color denotes the feasible domain. The
lines in black are the linear constraints. And the red arrow refers to the direction where
the objective function value decreases. Therefore we expect the search can always be
performed along this direction, or at least along an direction close to this direction.

-Vf(x)

(a) No feasible step and inefficient step

(b) Search direction after linear constraint handler

Figure 2.2: Effects of linear constraints

However, the constraints may prevent the search from taking a feasible step that can

10

2.7 Linear constraint handler

reduce the objective function. Such situation is illustrated in the left one in figure 2.2(a).
Note that only the search direction whose angle with the red line is less than 90 degree
is regarded as a feasible search direction that can reduce the objective function value.
However, the only one such search direction in the figure is totally outside the feasible
region since the point located on the linear constraint.

Furthermore, even though there may exist a pattern search direction in the feasible
space that yields decrease, the feasible step length may only be so short. This is illustrated
in the right one in figure 2.2(a). We note that two of the three search directions in the figure
are feasible to reduce the objective function value. However, the feasible step length can
only be so short because the point is too close to the linear constraints. Therefore, only a
small improvement in the objective function can be realized in either case.

In consequence, what is needed is directions that allow the search to move along any
nearby boundaries, taking feasible steps that are sufficiently long. This is how our linear
constraint handler works. Figure 2.2(a) illustrates the search directions after our linear
constraint handler. We can see that the search directions changed according to the nearby
constraints. The case on the left has three search directions, two of whom are along the
linear constraint and one of whom is perpendicular to it. The case on the right has two
search directions which are parallel to the nearby constraints. It is evident that the search
for both two cases is much better now. In the following section, we will introduce our
linear constraint handler in detail.

2.7.2 The Process of Straightforward Construction of G,

Let al denote the rows of A in equation 2.1. Then partition all the constraints into sets of
equalities and inequalities as

5:{1’ \llzuz} andI:{i ‘ll <ui}. 2.4
We denote by C; ; and C,, ; the faces of the feasible polyhedron:

Cri ={yla]y =1} and C,; = {yla] y = u;}. (2.5)

The distance to nearby inequality constraints along directions that also satisfies equal-
ity constraints are:

laTz —b|/||Z%al| if ZTa #0,
disty(z,S) = 0 if ZTa =0and a”z = b, (2.6)
00 if ZTa = 0and aTx # b.

Where A denotes the nullspace of the equality constraints (the matrix whose rows are
al fori € £). Let Zbe an n x r orthogonal matrix whose columns are a basis for A". And
ac€R"andbeR, S ={ylaly =0}

For those who are not familiar with nullspace, see Definition 2.

Definition 2. Let A be an m by n matrix, and consider the homogeneous system

Az =0

11

Chapter 2. Generating Set Search Theory and Constraint Handling Methodology

the set of all vectors x which satisfy this equation forms a subset of R™. This subset
actually forms a subspace of R™, called the nullspace of the matrix A and denoted N (A).

Then define the sets of inequalities at their bounds that are within distance ¢ of x:

Ii(z,e) = {i € I|distn(x,Cy) < €},

I,(x,e) ={i € I|disty(z,Cy ;) < €}.
Let Zg(x,€) = Zi(x,e) NI, (z, €). Given a feasible « and an € > 0, let
WE(Z‘,E) = {CLL|Z S 5} U {ai|i S IE(JZ,é‘)},

which corresponds to the equality constraints together with inequality constraints for
which the faces for both lower and upper bounds are within the distance ¢ of x.

Wi(z,e) = {—a;|i € Ti(z,e)\Ig(z,e)} U{a;li € Z,(z,e)\Ie(z,€)},

which corresponds to the set of outward-pointing normals to the inequalities for
which the faces of exactly one of their lower or upper bounds is within distance ¢ of
z. In this thesis, these linear constraints are called active constraints in the corresponding
iteration. Then, algorithm 2 is proceeding to attempt the straightforward construction of

Gk.

Step 1. Let L be the linear subspace spanned by the vectors in Wg(xy, £). Compute a
basis Z for L .

Step 2. Check whether the set of vectors {ZT p|p € Wy (zy,x)} is linearly
independent. If so, proceed to Step 3. If not, proceed to the degenerate case
handler in explained in algorithm 3 the next section.

Step 3. Let Q be the matrix whose columns are the vectors Z7p for p € Wy(xy, ep).
Compute a right inverse R for Q7 and a matrix N whose columns are a positive
spanning set for the nullspace of Q7 .

Step 4. Gy is then the columns of Z R together with the columns of ZN.

Algorithm 2: Linear constraint handler

We note that for our work, we are dealing with well placement optimization problem.
Therefore, we do not consider equality constraints since it makes no sense to force a well
to be located on a certain plane. For this reason, the basis Z for L' is always the identity
matrix.

12

2.8 Degenerate Case handler

2.8 Degenerate Case handler

As illustrated in step 2 of algorithm 2, if the set of vectors {Z 7 p|p € Wi (xk,er)} is not
linearly independent, Then we have a degenerate case. Mathematically speaking, degen-
erate case in our work means the case that cannot be solved by algorithm 2. In short, step
3 and 4 will not work for some situation. That is to say, if we still use algorithm 2 to
calculate the generating sets in such situation, it will give very weird results. Therefore,
we need a degenerate case handler to deal with the degenerate case. In this subsection,
first, we give a graphical understanding of the degenerate case. Then we introduce our
degenerate case handler.

2.8.1 An illustrative example of degenerate case

An illustrative example of degenerate case is shown in figure 2.3(a), where there are three
active linear constraints for the rwo-dimensional problem. For this case, we expect the
two search directions shown in the figure. However, such two search directions cannot
be calculated by algorithm 2. If we force to use algorithm 2, we will get some illogical
search directions. However, we realize that one of the boundaries does not play any role in
determining the search directions as illustrated in figure 2.3(b). To be more specific, when
we extrapolate the two linear constraints until they intersect, things become more clear:
The two linear constraints we extrapolate are the two which actually determine the search
directions. If the rest one linear constraint is removed, the search direction should remain
the same. Therefore, how to remove the unnecessary nearby constraints is the key of our
degenerate case handler. Another typical example for a degenerate case can be a point near
the apex of the pyramid, where we have four boundary planes under the three-dimensional
problem.

It is very complicated to find out which constraint has no effect and which one has
from mathematic. In the paper by Lewis et al. (2007b), a C-library package named cddlib
package was used to solve the degenerate case. In this thesis, we use a much simpler
method illustrated in algorithm 3 to overcome such problem. Whenever the degenerate
case occurs, we will contract the step length until a nondegenerate case is detected as
shown in figure 2.3(c).

With a lot of experiments, we find that our degenerate case handler is sufficient enough
to deal with the well placement optimization problem.

do
| Apy1 = 0k A
while { {ZTp|p € Wy (zk,ex)} is not linearly independent };

Algorithm 3: Degenerate case handler

13

Chapter 2. Generating Set Search Theory and Constraint Handling Methodology

-
— — '.,
» °
X X
Q / Q /
(a) What is degenerate (b) Degenerate interpretation
s
.
X /
Q

(c) How to overcome the degenerate case

Figure 2.3: Nondegenerate Case handler

2.9 Summary of generating sets for R"”

In summary, The algorithm of generating set for R™ in step 1 of algorithm 1 in this thesis
is listed in algorithm 4:

Check distance to all linear constraints;

if Active constraints detected then

‘ Gy, < Linear constraint handler in algorithm 2;
else

‘ G < Unconstrained search pattern in figure 2.1;
end

Algorithm 4: Generating Sets for R"

All above exhaustively explain how our GSS algorithm work. The C++ code of our
algorithm is provided in appendix C-E, which contains all the functionalities we discuss
in this chapter. Furthermore, in the next chapter, we discuss the implementation details of
our algorithm in C++ to explain how our algorithm is implemented in codes, for sake of
making things clear for other researchers who want to make changes based on it.

Also, the work of Kolda et al. (2007) and Griffin et al. (2008) contains illustrative

14

2.9 Summary of generating sets for R™

figures of the search process. In chapter 4, we will present our own figures to show the
iterations graphically for two-dimensional and three-dimensional reservoir cases.

15

Chapter 2. Generating Set Search Theory and Constraint Handling Methodology

16

Chapter

Implementation Details in FieldOpt

In the previous chapter, we have discussed the theoretical properties of our algorithm.
Still, there are a lot of work that needs to be done to integrate our algorithm into FieldOpt
platform. In this chapter, we discuss the implementation details of our algorithm. Figure
3.1 illustrates the class of our algorithm. In the figure. # denotes the protected member in
the class, and - denotes the private ones. In the following section, we will give necessary
explanations to the implementation.

3.1 Algorithm

GSS_Linear_Constraints Class includes all the functionalities of our algorithm. As men-
tioned in the main loop of the serial runner in Appendix A.8, while the optimizer is not
finished, it will fetch new case according to the algorithm used. It is here that the program
will jump to our own class, the GSS_Linear_Constraints Class. The following section ex-
plains the most important functions in the class. We note that all the bold font in the
following section denotes the function name in the class.

e The generate_trial_points() implements the algorithm 1 in chapter 2. It defines
how to generate new points in the iteration, which is the fundamental function
of our algorithm. All other functions related to the algorithm is inside gener-
ate_trial_points() function.

o The satisfy_constraints() implements the process of checking distance between the
current point and all the linear constraints illustrated in equation 2.6. It will return
TRUE if all the distance is larger than the step length, which means all the new
points are within the feasible domain. Otherwise, it will return FALSE.

o If there will be points outside linear constraints when using unconstrained search
pattern, change_pattern_conform_to constraints() function will take over to change
the search pattern. It implements the full functionalities of our linear constraint han-
dler. check_linear_independence() is inside the function, which implements our

17

Chapter 3. Implementation Details in FieldOpt

GSS Linear Constraints

actual_dimensions_for_each_point: int

linear_constraints_: MatrixXd

bounding_: VectorXd

unsatisfied_constraints_index_: vector<int>
pattern_: vector< VectorXd>

initial_pattern_: vector<VectorXd>

welltype_: Settings::Optimizer::WellType
step_length_of_pattern_: double

spline_point_id_map_: vector<QUuid>
working_points_: vector<QUuid>

num_of_well_: int

constraint_flag_: bool

scaling_factor_D: vector<double>

scaling_factor_C: vector<double>

satisfy_constraints(): bool

constraint_flag_: bool

scaling_factor_D: vector<double>

scaling_factor_C: vector<double>

satisfy_constraints(): bool

change_pattern_conform_to_constraints(): void

check linear_independence(): bool

handleEvaluatedCase(Case *c) override: void

generate_trial_points(): QList<Case *>

contract(): void

expand(): void

is_converged(): bool

IsFinished(): TerminationCondition

select_pattern(Settings::Optimizer *): void

transfer_value_to_linear_constraints(QString): void

transfer_value_to_bounding(QString): void

transfer_value_to_scaling_factor_D(QString): void

transfer_value_to_scaling_factor_C(QString): void

set_spline_point_id_map_(Model::Properties:: VariablePropertyContainer*): void
get_working_points(Model::Properties:: VariablePropertyContainer *): void
scale_variable(double, double, double): double

revert_scaled_variable(double, double, double): double
- iterate(): void

- is_successful_iteration(): bool

Figure 3.1: GSS_Linear_Constraints Class

18

3.2 Miscellaneous

degenerate case handler. It will read the index of unsatisfied linear constraints. If
they form the degenerate case, it will contract the step length as shown in algorithm
3 in chapter 2.

3.2 Miscellaneous

There are other parameters and functions that are irrelevant to the algorithm. We will
discuss them in this section.

e The linear constraints we set are supposed to be a matrix and respectively. However,
They cannot be in the form of a matrix in the JSON file because JSON format does
not support matrix. In consequence, we change the form of the matrix to be a string
of number separated by a space. And then we use transfer_value_to_linear_constraints
to restore it to the original state. Such is the same in transfer_value_to_bounding,
transfer_value_to_scaling_factor_D, and transfer_value_to_scaling factor_C.

e In fieldOpt, all the variables has their own ID for the optimizer to distinguish what
kind of variables they are, such as heel.x or toe.z. set_spline_point_id_map_ will
store all the IDs in sequential order in spline_point_id_map_. For one well, the
order is heel .x, heel.y, heel.z, toe.x, toe.y, toe.z. Only in this way can we manipulate
on a certain variable or change the value of it correctly.

Table 3.1: The name of parameters needed in driver file

Parameters

MaxEvaluations
InitialStepLength
MinimumStepLength
ContractionFactor
ExpansionFactor
ActualDimensionsForEachPoint
WellType
ConstraintFlag
LinearConstraints
Bounding
SearchPatternWhenNoConstraintNearby
ScalingFactorD
ScalingFactorC

3.3 Details of the input in the driver file

In the driver file, there are 13 parameters in total that are necessary to initialize the opti-
mizer. Table 3.1 provides the name of these parameters. Most parameters are as indicated

19

Chapter 3. Implementation Details in FieldOpt

by their name. They are assigned to the corresponding parameters in GSS_Linear_Constraints
Class. Besides that, ConstraintFlag determines if there are constraints or not. If it is set
to be false, our algorithm will work as an unconstrained situation. SearchPatternWhen-
NoConstraintNearby denotes the search pattern our algorithm use when no active linear
constraint is detected in the current iteration. Normally it is set to be “compass”.

Note that to test our implementation, we perform optimization problem not only on
three-dimensional models, but also on a two-dimensional model, in which there is no Z
dimension. Therefore, we add extra options to determine the actual dimensions for each
point and well type, indicated by ActualDimensionsForEachPoint and WellType in table
3.1. For example, if we want the well to be vertical well in the two-dimensional model,
the actual_dimensions_for_each_point and welltype_ should be set to be 2 and “Vertical”
respectively. Note that such option is used only for the test in our two-dimensional model.
For the normal optimization problem, The two parameter should always be set to be 3 and
“Horizontal”.

In appendix B, we provide an example driver file. Also, an example configuration of
our algorithm can be found in the driver file.

20

Chapter

Case Study

In this chapter, we perform different case studies using GSS method with linear con-
straints. The reservoir model used is described in the following section. We will always
compare the results with the built-in compass search method. We expect a better perfor-
mance because our method adds more features on the basis of compass search. A large
number of tests have been made and in this chapter. The most representative cases are
shown and discussed. The aim of this chapter is, on the one hand, to verify that our im-
plementation of the algorithm is correct, and on the other hand to test the performance of
GSS algorithm with linear constraints.

4.1 Introduction of the two test reservoir models

Two-dimensional reservoir model The two-dimensional model is shown in figure 4.1(a).
It consists of 60*60*1 grid blocks. Each grid block has dimensions of 24m x 24m x 24m.
The reservoir is 100% saturated with oil. For the most part of the reservoir, the porosity
varied from 16% to 36% and permeability varied from 1mD to 1000mD.

Three-dimensional reservoir model The three-dimensional model is shown in figure
4.1(b). It consists of 20 x 9 x 9 grid blocks. The grid blocks are not uniform, making the
reservoir model to be 2000 f¢ x 990 ft x 300 ft. The reservoir has a uniform 25% porosity,
and a uniform permeability, which are 100m D, 100mD, 5mD for kx, ky and kz. In the Z
direction, the first layer is gas layer, and the last two layers are water layers which contain
no oil. The second layer is the oil-gas transition layer which contains a little amount of
oil. Oil saturation in the other layers is very high.

21

Chapter 4. Case Study

Cell Results:
PERMX

1000.0

850.0
750.0
650.0
550.0
450.0
3500
2500
150.0

10

(a) Two-dimensional model

Cell Resuilts:

SOIL
0050
0.7000
0.5000
05000
0.4000
0.3000
0.2000
0.1000
-0.0001

(b) Three-dimensional model

Figure 4.1: Two test reservoir models

4.2 Expansion factor and contraction factor picking strat-
egy

In this section, we perform four cases with different expansion factor and contraction
factor. We change the expansion factor and contraction factor for each case and keep the
other configurations the same. The aim is to find the most appropriate strategy for picking
expansion factor and contraction factor by comparing the results of these different cases.

4.2.1 Case Description

The reservoir model used in this section is the two-dimensional model described above.
For the test in this section, we consider four wells, two producers and two injectors. They
are both vertical wells. The two injectors are fixed at bottom left corner and upper right
corner. The two producers can be positioned anywhere inside reservoir, which means the
optimizer has four variables to handle. The four wells are all in bottom hole pressure
control mode. The bottom hole pressure of the injector at bottom left corner and upper
right corner are kept all the time at 500bar and 250bar correspondingly and the wells are
kept open from the first day of the simulation. The bottom hole pressure of one producer is
maintained at 100bar and the other one kept at 80bar. The simulation time for all the cases

22

4.2 Expansion factor and contraction factor picking strategy

is 1500days. For the optimizer, the initial step length is 300m and minimum step length
is set to be 10m. The search pattern used is configured to be the Fast pattern introduced in
chapter 2. The bookkeeper tolerance is set to be 5m, and the objective function is set to be
FOPT — 0.2 x FW PT. In this way, the initial objective function value is 1211840. All
the configurations that are kept constant are summarized in table 4.1.

Table 4.1: Configurations for the two-dimensional model

Parameter Value
Control mode for injector BHP
Control mode for producer BHP
Simulation time (days) 1500
Initial step length (m) 300
Minimum step length (m) 10
Bookkeeper tolerance (m) 5

SplinePoint-PROD 1-x-Init (m) 400
SplinePoint-PROD 1-y-Init (m) 1000
SplinePoint-PROD2-x-Init (m) 500
SplinePoint-PROD2-y-Init (m) 900
Initial objective function value 1211840

Table 4.2: Results of case 1-4

case 1 2 3 4
Expansion factor 2 2 2.5
Contraction factor 0.5 0.6 0.5 0.8
Final objective function value 1242690 1250250 1252510 1252470
Total number of reservoir simulations 169 205 247 721
Simulated reservoir simulations 158 205 243 540
Bookkeeped reservoir simulations 11 0 4 181
SplinePoint-PROD1-x 400 498.8 462.1 464.8
SplinePoint-PROD1-y 1000 974.9 972.7 965.2
SplinePoint-PROD2-x 1175 1079.1 1098.4 1123.2
SplinePoint-PROD2-y 562.5 672.7 675.9 666.9

4.2.2 Optimization Solution

Table 4.2 shows the results of the four cases and figure 4.2 shows all the searched points
during the optimization process for each case graphically. The grid blocks in the back-
ground denote the reservoir grid blocks. The red circle and blue square denote the position
of PROD1 and PROD?2, respectively. The marker filled in black refers to the initial posi-
tion, and the magnified marker filled in white refers to the solution of the optimizer.

23

Chapter 4. Case Study

§ &:Z: E
it 3 al
a & -
¥ o & o
Bee o° H
- éﬂ He: % L
miHel i
FEHHHHE $ e T a
H o
a T
::::H ::::H i
0 (a) Case 1 wae e (b) Case 2
o 28 T o s s
E “:::: E i 5 # H
' : § figsiaesds
iR o
=
o o -
=
[mum A T
= B a 990 4 ")
i
g o - a L
e 8 ®
B . B
o8 5 = 1 O e FIIRE
(c) Case 3 ° (d) Case 4
¢ |nitial position of PROD1 = |nitial position of PROD2
o Evaluated position of PROD1 = Evaluated position of PROD2
O Final position of PROD1 O Final position of PROD2

B Position of injectors

Figure 4.2: Search map of case 1-4

24

4.2 Expansion factor and contraction factor picking strategy

The results in table 4.2 show that the GSS method can be easily get trapped into the
local optimum in this reservoir model due to its searching feature. When the expansion
factor and contraction factor changes, The optimizer can get different results. While com-
paring case 1 with case 2 and 3, we see that higher expansion factor and contraction factor
can lead to a better solution. The reason is that with higher factor, the optimizer can always
search more points before it reaches the minimum step length.

We can draw the same conclusion from the search map for case 1. Here, the position
of PRODI is trapped into the initial position from the beginning. Therefore, while the
tentative best position of PROD2 keeps changing during the optimization process, the
tentative best position of PROD1 stays at the initial point, resulting in a bad solution. For
case 2 and case 3, even though we know that the initial position of PRODI is a local
optimum hard to jump out, thanks to the higher expansion and contraction factor, the
optimizer now has the chance to search more points to move away from it. It is evident
that case 2 and case 3 went through a larger portion of the whole reservoir, especially for
case 3. In consequence, they both find better solution than case 1. So in general, the more
points the algorithm searches, the more likely it has a chance to find a better optimum.

However, that is not always the case. For example, for case 4, which has the highest
expansion factor and contraction factor, even though the total number of cases evaluated is
almost three times that of the other three, its objective function value is still less than case
2 and case 3. From figure 4.2, we can also see that actually the solution of case 4 is pretty
close to case 3, but it just never reaches the position of case 3 even though we reduce the
bookkeeper tolerance and minimum step length of the optimizer. There are mainly two
reasons. The first reason is the search pattern we select has only three search directions,
which are too few. The second reason is due to the huge geological heterogeneity of the
reservoir model shown in figure 4.1(a).

To be more specific, in order to reach the solution of case 3, the position of PRODI1 has
to move a little bit upward, and the position of PROD?2 has to move a little bit upper left. It
is easy for PROD1 to go upward because we have the search pattern pointing upwards. But
it is not easy for PROD2 to move upper left because the search pattern contains directions
that only point upward and bottom left. Therefore, in order to move left, it has to move
downward at the same time, which is against the direction we want. Therefore, in order
to reach upper left, it needs at least two steps: the first step to move a little bit bottom left
and the second step to move a little bit more upper.

Moreover, since it can not find it in one iteration, several steps needed means that it has
to find a new tentative best cases in each step to reach the last optimum. However, the huge
geological heterogeneity of the reservoir model will normally make the objective function
largely non-smooth. In consequence, the tentative best cases required are always hard to
be captured on the rough surface, or even not exist, making the process even harder.

Note that for case 4 in figure 4.2, which has a high expansion factor, many points reach
the boundaries. Therefore, if we select large expansion factor, we need good constraint
handling technique to avoid generating so many points on the boundaries. The results of
using our constraint handling technique show a better performance, which are listed in
table 4.4 and will be discussed later.

A large number of tests has been done besides the four cases above. We can sum
up the following picking strategies for expansion factor and contraction factor: First, no

25

Chapter 4. Case Study

strict mathematical law can be found between the value of the factor we pick and the
fact whether the optimizer can find global optimum or not due to the irregularity of the
reservoir properties. But in general, the higher the contraction and expansion factors are,
the more likely the optimizer can find better solution. Unfortunately, greater expansion
and contraction factor will take more time since it will definitely generate more cases for
simulator to run, whether or not it can find better solution.

We can also look at the issue from another perspective. As stated above, for example, in
figure 4.2(a), we observe that the optimizer does not touch a large portion of the reservoir.
Therefore, We can simply put the initial position to the area that is not searched and run
the optimizer again. Usually this is the easiest way to get rid of being trapped into the local
optimum.

In summary, our recommendation is that it is better to pick the two factor as high as
possible under the limited computing resources. If we do not satisfy with the result, just
rerun the optimizer with several different starting points.

4.3 Comparison between two patterns

In this section, we perform another four cases with the same optimization configuration
as table 4.1 in last section except using the Compass pattern introduced in chapter 2. The
reservoir model is still the two-dimensional model. The aim of this section is to compare
the performance of the two search pattern, on the basis of which we can find out their
advantages and disadvantages.

4.3.1 Optimization Solution

Table 4.3: Results of case 5-8

Case 5 6 7
Expansion factor 2 2 2.5 4
Contraction factor 0.5 0.6 0.5 0.8
Final objective function value 1242690 1323330 1322960 1323330
Total number of reservoir simulations 217 361 297 1017
Simulated reservoir simulations 168 318 264 762
Bookkeeped reservoir simulations 49 43 33 255
SplinePoint-PROD1-x 400 741 768.7 738.7
SplinePoint-PROD1-y 1000 625.9 601.7 630.8
SplinePoint-PROD2-x 1175 11294 1132 1132.5
SplinePoint-PROD2-y 562.5 584.6 618.7 586.8

Table 4.3 summarizes the results of the four new cases. In the table we see GSS with
Compass pattern will always simulate more cases before finishing the optimization pro-
cess. However, this can also reduce the possibility of getting trapped into local optimum to
some extent. Except case 5, which also trapped into the same local optimum with case 1,

26

4.3 Comparison between two patterns

1440

1440

e 3 o
o o 19
] i :
L) o L= s
2 o
ol .
C] = 5 4
i o ol o < m oo ac
a
w: :H ::::H !
(a) Case 5 e e (b) Case 6 10
H:: | g a :::H::Z:
i B
i ezl XD (0 000 :E* Ksiaisls
: B
1 L @O > 4 bt o
G h e Y i 28 Faee DY T vy
o T o T
" o o E
o
H ZH ::::H
(©) Case 7 e (d) Case 8 o
¢ |nitial position of PROD1 = |nitial position of PROD2
o Evaluated position of PROD1 = Evaluated position of PROD2
O Final position of PROD1 O Final position of PROD2

B Position of injectors

Figure 4.3: Search map of case 5-8

27

Chapter 4. Case Study

the other three cases have a clear improvement on the objective function value compared
with case 1 - 4. From the total number of cases in table 4.3 we can find that GSS with
Compass pattern has about 1/4 more cases than GSS with Fast pattern. This is because, in
one iteration, GSS with Compass pattern will generate four new points for each well, while
GSS with Fast pattern will generate three. It is for this reason that the search can jump out
of the local optimum which trapped case 1 to case 4. To be more specific, In figure 4.3,
the main difference between case 6, 7, 8 and case 2, 3, 4 is the position of PROD1 which
is denoted by red circle. In case 2, 3 and 4, due to the small number of search directions in
each iteration, the optimal position of PROD1 can only search in the area around the initial
position. That is why although the objective function value is getting improved from case
2 to case 4, it still stays in the level of 1.25e6 but never reaches 1.32e6 as case 6, 7, 8 did.
With the help of the additional search directions PRODI is able to move out of the small
area which trapped case 2 to 4. And finally, the algorithm found a better solution.

In summary, the more number of search directions the pattern has and the more var-
ious the search they are, the less possible the point will get trapped into the local opti-
mum. Although it is faster using Fast pattern, it is still not recommended because most
real reservoir conditions can be more complicated than the two-dimensional model. Three
search directions for each point are too few to be representative enough for the conditions
around the point. In other words, we cannot be convinced that there is no better solution
around the point if the search along only three directions cannot find a better solution. We
recommended that at least the Compass pattern, or other pattern containing more search
directions than Compass pattern, to be applied to the well placement optimization prob-
lems.

4.4 Optimization for two-dimensional model using GSS
with linear constraints

In this section, we perform the same optimization problem using GSS with linear con-
straints. Firstly, how to determine the linear constraints is discussed. Then, the first three
iterations of one of the new case we propose are illustrated graphically in order to visualize
the searching process and verify our implementation is correct. The results are discussed
in detail. We expect the same or better results compared with case 1-8 which have no
linear constraints. Finally, the interpretation of the results from reservoir point of view is
discussed.

4.4.1 Linear constraints picking strategy

The aim of the linear constraints is basically to reduce the search area so that it will be more
likely to find the optimum with fewer iterations. The more specific the feasible region is,
the fewer iterations the optimizer will have before finding the optimum. But in order not
to exclude the global optimum out of our feasible region, we have to pick it carefully.
Normally our first concern is to make sure that all the producers should be located at
oil zone, not water zone. In this model, we have no water zone. All grid blocks are fully
saturated with oil. Almost no water exists in the reservoir at all. Therefore, we do not

28

4.4 Optimization for two-dimensional model using GSS with linear constraints

need to worry about it in this model. Another concern is that we should keep producers
far away from the injector to avoid the early water breakthrough. In this model, The two
water injectors are located at the bottom left corner and upper right corner. So it is better
to keep our producers somewhere around the central part of the reservoir.

The most important thing to configure this model is, if we consider the simulation
time, 1500 days. It is not long enough for the injected water to breakthrough as long as
the producer is not too close to the injector. So the optimization problem actually becomes
how to produce as much oil as possible within the limited production time. In this sense,
our focus is to place the producers at the position which has very good reservoir properties
in order to produce more oil. Looking at the permeability of the reservoir shown in figure
4.1(a), we found that the permeability around the main diagonal of the reservoir tends
to be higher than anywhere else. Higher permeability means that producers have higher
production rate according to Darcy’s law. Higher porosity means this place has more oil
than anywhere else. Therefore, this part is our target region.

Figure 4.4: Linear constraints for two-dimensional model

[0.4831 1 0 0 [1366]
3.0455 —1 0 0 3645
0 -1 0 0| [z1 —10
—3.4444 -1 0 O | |v1| o |—2077
0 0 04831 1| |a2| — | 1366
0 0 3.0455 —1| |9 3645
0 0 0 -1 —10
|0 0 —34444 -1 | —2077

Figure 4.5: Linear constraints proposed for the two-dimensional model

In summary, taking into account all the factors above, we propose the following linear
constraints illustrated in figure 4.4. The linear constraints in matrix form is presented in
figure 4.5, where the huge matrix in the left is our linear constraint matrix denoted by A

29

Chapter 4. Case Study

in equation 2.1 in chapter 2. The matrix in the middle is the variable matrix where =1, y;
denote the position of PRODI. x5, y2 denote the position of PROD2. The matrix in the
right denotes u in equation 2.1.

4.4.2 Anillustrated example

In this section, we illustrate the first five iterations of case 11 in table 4.4, which corre-
sponds to case 3 and case 7, with expansion factor equal to 2.5 and contraction factor
equal to 0.5. The aim is to verify the correctness of our implementation and give a visual-
ized understanding of the method.

The first iteration is shown in figure 4.6(a). The light blue grid blocks in the back-
ground denote the reservoir. The feasible region is demonstrated by the quadrilateral. The
constraints in dashed line are the active constraints. We calculate the search directions
(shown as lines emanating from the current best point to corresponding trial points) based
on the active constraints. The red circle and blue rectangle denote the position of PRODI
and PROD?2 respectively. The marker in bigger size refers to the tentative best case in
this iteration. For the first iteration, two constraints are the active constraints. (Actually,
those are four constraints. The first, fourth, fifth and eighth lines in the constraint matrix
in figure 4.5. They overlapped because PROD1 and PROD2 have the same constraints.)
According to the algorithm 1 in chapter 2, they both have two search directions which are
parallel to the constraints, indicating four new cases in this iteration. The first iteration is
a successful iteration because it found a new tentative best case, which is marked by the
bigger sign in the figure. After the first iteration, PRODI1 changed to a new position with
PROD?2 left unchanged.

Figure 4.6(b) shows the next iteration. The step length has updated to 750 since the
last iteration is successful. The same two constraints remain active. Everything is the same
with the first iteration except the step length. This iteration is successful since a better case
is detected as shown.

In Figure 4.6(c), the optimizer reaches the third iteration, where step length becomes
1875. But in this case, the step length is too long that the distance between the current
best point and all the constraints is less than the step length, which means all the four
linear constraints become active constraints. According to the algorithm 1 in chapter 2,
the degenerate case occurs, in which the optimizer cannot find the correct search direction.
How to deal with the degenerate case is illustrated in the next figure.

According to our degenerate case handler, the optimizer will keep multiplying the step
length by the contraction factor until the appearing of the nondegenerate case. In this
situation, the step length has been reduced twice to 468.75. Under such step length, three
new constraints become active constraints (Actually four constraints, two for the heel and
two for the toe, denoted by the first and forth lines in the constraint matrix for PRODI,
and the fifth and sixth lines in the constraint matrix for PROD2). In consequence, the
search directions also changed as shown in figure 4.6(d). Unfortunately, this iteration is
unsuccessful since no better point is found.

Figure 4.6(e) illustrates the fourth iteration. Again we have new search directions
conform to the new active linear constraints. Note that in this iteration we have only one
active constraint for PROD1, which is the first constraint in the matrix. The one active
constraint leads to three search directions, two of which are parallel to the linear constraint

30

4.4 Optimization for two-dimensional model using GSS with linear constraints

g 3
g
o 1440 “o 1440
(a) Iteration 1. Successful (b) Iteration 2. Successful
3 3
:
o =]
. 1440 o 1440
(c) Iteration 3. Degenerate (d) Iteration 3. Unsuccessful
case
3 3
%y 1420 o 1440
(e) Iteration 4. Unsuccessful (f) Iteration 5. Unsuccessful
> Position of PROD1 = Position of PROD2
O Tentative best position of PROD1 o Tentative best position of PROD2
— — Active linear constraints —Inactive linear constraints

Figure 4.6: An illustrative example of the iterations for two-dimensional case

31

Chapter 4. Case Study

and the other one is perpendicular to it. This iteration is also unsuccessful without any
better point.

Figure 4.6(f) shows the fifth iteration. In this iteration, the step length has been reduced
to 117.19 because of the two consecutive unsuccessful iterations. The short step length
leads to the situation that no active linear constraint is nearby. The algorithm will continue
searching as unconstrained GSS algorithm. We set the search pattern for unconstrained
cases to be Compass pattern. Therefore, four new points will be generated for each well.
And the iterations will continue.

4.4.3 Optimization Solution

Table 4.4: Results of case 9-12

case 9 10 11 12
Expansion factor 2 2 2.5 4
Contraction factor 0.5 0.6 0.5 0.8
Final objective function value 1318510 1323330 1323360 1323360
Total number of reservoir simulations 190 183 194 784
Simulated reservoir simulations 163 183 194 782
Bookkeeped reservoir simulations 27 0 0 2
SplinePoint-PROD1-x 707.6 739.7 727.3 743.8
SplinePoint-PROD1-y 794.5 633.3 634.8 626.3
SplinePoint-PROD2-x 1096.4 1138.3 1088.7 1082.7
SplinePoint-PROD2-y 657.7 595.3 704.1 710.3

From the results in table 4.4, it is evident that overall GSS algorithm with linear con-
straints gives better results compared with all cases above. All the four new cases get better
solution compared with the corresponding cases before. Furthermore, the most important
thing is that there is a huge reduction in the number of simulations, which significantly
increases the efficiency of the optimization.

We can sum up two main advantages of using linear constraints compared with all the
previous cases. Firstly, with the restriction of the linear constraints, the searching process
can only be carried out in a smaller region, which can get rid of plenty of unnecessary
points. In figure 4.3, we found that it evaluated too many points near the boundary of the
reservoir, or close to the injector. These points are definitely unnecessary points which
cost a lot of time. However, the amount of searched points when using linear constraints is
much less as shown in figure 4.7. Secondly, with the linear constraints nearby, the search
directions can always change iterations by iterations. For example, for iteration 3, 4 and 5
in figure 4.6, we can see that for PROD1, all the nine new points are generated in different
directions. Without linear constraints, the search process can be only in the four directions
along the coordinate axis with Compass pattern, or three directions with the Fast pattern.
We believe that the more different search directions it has, the more possible it can find
new better points.

Note that for case 9 in figure 4.7, PROD1 no longer gets trapped in the initial position

32

4.4 Optimization for two-dimensional model using GSS with linear constraints

§ “:::: 2 u::::
~ ot ~
) P i H
\ ; P / \ B i o | /7
alain q s ;| oB o o
\ iy I & \ .‘ 9 I o
\ \
H ::H rf ::::H :
¢ (a) Case 9 e ’ (b) Case 10 e
§ H:: H g' “::::
) .Y.M' ol \HEF &
e e, £
. . ‘@::E B
: S
\ L i}
\ v =
\ ! M P
H ::ﬁ {'4 ::::ﬂ o ;
° o B 1440 ° o B 1440
(c) Case 11 (d) Case 12
e |nitial position of PROD1 = [nitial position of PROD2
o Evaluated position of PROD1 = Evaluated position of PROD2
O Final position of PROD1 O Final position of PROD2
@ Position of injectors —Linear constraints

Figure 4.7: Search map of case 9-12

33

Chapter 4. Case Study

as case 1 and case 5 does. This is due to the variety of search directions as we stated above.
Even though it simulated only 163 cases in total, its objective function value is even higher
than the best case we have when using the Fast pattern without constraints. Case 10 has
already found the same best result as table 4.3 found, with only 183 simulations simulated.
While case 6, which use unconstrained Compass pattern, simulates 318 times until it found
the same result. Furthermore, case 11 found even better results than the best result in table
4.3 with only 194 simulations, indicating a much better performance than not using linear
constraints. An even higher expansion factor and contraction factor is carried out in case
12, and no better result is found.

One interesting thing we found in figure 4.7 is that, the area covered by very dense
searched points has higher permeability than the area not covered by many searched points.
For example, for the search map of case 12 in figure 4.7, the bottom left part and bottom
right part of the feasible region, which has almost no searched point, corresponds to pretty
low permeability region in figure 4.4. This relationship also meets with our linear con-
straints picking strategy illustrated above.

4.4.4 Comparison between all the cases

Table 4.5 summarizes the number of simulations and objective function value for case 5-8
and case 9-12. Both the two groups of cases use Compass pattern. (case 5-8 uses uncon-
strained Compass pattern. case 9-12 uses Compass pattern when no linear constraint is
nearby correspondingly.) It is more clear to see the effect of linear constraints in this table.
As stated above, we find that using linear constraints can always find a better solution with
less number of iterations.

Table 4.5: Comparison between unconstrained and constrained condition

Condition Case | Number of simulations | Objective function value
5 217 1242690
Unconstrained 6 361 1323330
7 297 1322960
8 1017 1323330
9 190 1318510
Constrained 10 183 1323330
11 194 1323360
12| 784 1323360

Figure 4.8 gives the optimization curves for all cases. The curves in different shades
of blue denote case 1-4, which use unconstrained Fast pattern. Curves in different shades
of green denote case 5-8, which use unconstrained Compass pattern. Curves in different
shades of red denote case 9-12, which use linear constraints. It is clear to see that case
1-4 cannot find satisfactory solutions compared with others. Their curves always lie in the
bottom half of the figure. Although case 5-8 find good solutions, the number of simulations
is too many. We got pretty satisfactory results from case 9-11, which has good solutions
and also few number of simulations. The curves of case 9-11 lie in the pretty upper-left

34

4.4 Optimization for two-dimensional model using GSS with linear constraints

x10"6

1.34
—~Case 1

1.32 | — —~Case 2
‘ r Case 3
1.3 Case 4
—~Case 5
—Case 6

Case 7

Case 8

—~Case 9

—~Case 10
Case 11
Case 12

Objective Function Value

0 200 400 600 800 1000
Number of Evaluated Reservoir Simulations

Figure 4.8: Number of simulations VS objective function value

side of the figure, indicating high objective function value and few number of iterations.
Case 12 is just for the test since it has too high expansion and contraction factor.

4.4.5 Interpretation of the solution

Figure 4.9 displays the oil saturation distribution at the end of the production time frame
for the base case and case 11, the best case we got. Figure 4.10 presents the cumulative
oil production and water injection for the field and for the two producers. Since both cases
have no water breakthrough, cumulative water production can be neglected. The results
show that our optimized well placement, case 11, has a slightly better reservoir sweep
efficiency than the base case. We notice that the difference is not too great. The reason is
that on the one hand, the initial position of the producer is in the region of our selected area
defined by linear constraints, which means it is already a pretty good position. On the other
hand, the short control time and small size of our model always lead to the similar results
for different locations of wells. The results can be seen much more clear in figure 4.10(a),
which shows that our optimized well placement has a higher cumulative oil production
than base case.

Note that one of the two producers seems to be in the water-swept area in figure 4.9(b).
Actually, that well shuts very early before the injected water reaches its position as pre-
sented in figure 4.10(c). The reason why it shuts so early is still due to the small size of
the reservoir model. Since the two producers are controlled by different BHP, when they
are both in the pretty high permeability zone and the distance between them is short, the
reservoir pressure in both place will always tend to become the value of the lower BHP.
Therefore, the well controlled by the higher BHP will automatically shut according to the
ECLIPSE simulator. But still, since the aim of our cases in this chapter is just to test the

35

Chapter 4. Case Study

(a) Base case (b) Case 11

Figure 4.9: Oil distribution of the two-dimensional model

performance of our algorithm, we do not care too much about if it is implementable in
practice or not.

4.5 Optimization for three-dimensional model using GSS
with linear constraints

In this section, we perform two optimizations for the three-dimensional model, the first
one using unconstrained Compass pattern without linear constraints and scaling factor,
and the other one with linear constraints and scaling factor. (Also Compass pattern when
no linear constraint is nearby.) The aim of this section is to explain how our method works
for the three-dimensional model, and then to test its performance by setting the proper
linear constraints and scaling factors.

4.5.1 Case description

The reservoir model used in this section is the three-dimensional model described at the
beginning of this chapter. In this section, we consider two wells, one horizontal injec-
tor and one horizontal producer. The injector is fixed at southwest corner with all nine
grids blocks in the north direction perforated at bottom layer. Therefore the optimization
problem has six variables to handle. The injector is controlled by a constant bottom hole
pressure at 4100psi. The producer is controlled by a constant bottom hole pressure with
an upper limit of liquid rate, which is 1500psi and 1000rb/day respectively. The simula-
tion time is 2400days. The initial objective function value is 366027. All the necessary
configurations for the model and optimizer are summarized in table 4.6. The initial well
position for injector and producer is presented in figure 4.11. The two cases we perform
will be discussed later.

36

4.5 Optimization for three-dimensional model using GSS with linear constraints

FOPT & FWIT
<1006
2 | [—rFopTINITIALY
= =FOPT(OPTIMIZED) T
— - FWIT(INITIAL) e
o
15 || oo FWIT(OPTIMIZED) e
— PR g
™ ot . - -
RO -
Z --
e 1 _-=
-
3
w .
& o5 ;"
S =
2 =
.
7o
0
0 200 400 600 800 1000 1200 1400

TIME [Days]

(a) Cumulative oil production and water injector for the whole field

1a <1076 0il Production Total for PROD1

—— INITIAL POSITION 4
12 PN

= =OPTIMIZED POSITION - -

0.8 -

0.6 o

WOPT [SM3]

0.4 -

0.2 ”

0 200 400 600 800 1000 1200 1400
TIME [Days]

(b) Cumulative oil production for PROD1

0il Production Total for PROD2

9 x10°4

WOPT [SM3]
£

2 s |NITIAL POSITION

1 = =OPTIMIZED POSITION

0 50 100 150 200
TIME [Days]

(c) Cumulative oil production for PROD2

Figure 4.10: Comparison between the base case and the best optimized case, case 11

37

Chapter 4. Case Study

PRODUCER

Figure 4.11: Initial position of the wells

Table 4.6: Configurations for the three-dimensional model

Parameter Value
Control mode for injector BHP
Control mode for producer BHP
Simulation time (days) 2400
Initial step length (ft) 400
Minimum step length (ft) 5
Bookkeeper tolerance (ft) 4
Expansion factor 2.5
Contraction factor 0.5

SplinePoint-PROD-heel-x-Init (ft) 1050
SplinePoint-PROD-heel-y-Init (ft) 840
SplinePoint-PROD-heel-z-Init (ft) 7180
SplinePoint-PROD-toe-x-Init (ft) 1050
SplinePoint-PROD-toe-y-Init (ft) 360
SplinePoint-PROD-toe-z-Init (ft) 7180
Initial objective function value 366027

4.5.2 Optimization without linear constraints and scaling factor

Case 13 is the one using GSS method with Compass pattern. For this case, neither linear
constraints nor scaling factors are used. Table 4.7 summarizes the results of case 13. Over-
all the result is good as the objective function value increased significantly from 366027
to 987446. However, we found some parts that could still be improved. Firstly, the total
number of iterations is too many. According to the search map shown in figure 4.12 we
observe that we have too many searched points at the boundary of the reservoir model.
This is because without introducing scaling factor, the step length along each search di-
rection is the same. However, the size of our reservoir model along different directions is

38

4.5 Optimization for three-dimensional model using GSS with linear constraints

not in the same order of magnitude. Typically for a reservoir model, the size of the lon-
gitudinal dimension is much smaller than the horizontal dimension. Under such situation,
the search along Z coordinate will always exceed the range of the reservoir model, which
will be projected back to the boundary according to the FieldOpt’s bound constraint han-
dler. Therefore, scaling factors must be introduced to make each parameter in the same
magnitude.

We observe that according to the result, the heel of the optimized producer is on the
same side as the injector, and the toe of the optimized producer is on the other side. Such
well placement strategy does not follow the principle of reservoir engineering because
the too short distance between the heel of producer and injector will lead to early water
breakthrough. In order to prevent the heel of producer from being too close to the injector,
linear constraints need to be introduced to limit the range of feasible region of heel and toe
of the producer.

Table 4.7: Result of case 13

case 13
description GSS without constraints and scaling factor
Final objective function value 987446
Initial objective function value 366027
Total number of reservoir simulations 1309
Simulated reservoir simulations 1012
Bookkeeped reservoir simulations 297
SplinePoint-PROD-heel-x 24.5
SplinePoint-PROD-heel-y 858.1
SplinePoint-PROD-heel-z 7141.6
SplinePoint-PROD-toe-x 1968
SplinePoint-PROD-toe-y 258.4
SplinePoint-PROD-toe-z 7150.6

© Evaluated position of the heel
o Evaluated position of the toe
@® Heel of the injector
B Toe of the injector

Figure 4.12: Search map of case 13

39

Chapter 4. Case Study

4.5.3 Linear constraints and scaling factor picking strategy

The reservoir model has nine layers in the z-direction. we observe that the first layer is
gas layer and the last two layers are water layer. Therefore, in the z-direction, we propose
bound constraints to make both the heel and toe only move in oil layer. Then we propose
one linear constraint in the middle to separate the entire reservoir into two parts, the east
part and the west part. In this way, the heel of producer can only move on the side which
is away from the injector and the toe can only move on the other side of the reservoir. The
other constraints in the matrix are the reservoir boundary in x and y directions.

In summary, The linear constraints we propose is listed in figure 4.14(a). The right part
of the reservoir is the feasible domain for the heel of the producer. While the left part is
for the toe. Furthermore, the linear constraints is shown in figure4.13 in the matrix form,
where the huge matrix in the left is our linear constraint matrix denoted by A in equation
2.1 in chapter 2. The matrix in the middle is the variable matrix where subscript 1 denotes
heel and subscript 2 denotes toe. The matrix in the right denotes u in equation 2.1.

(2475 -1 0 0 0 0 [—2970]
O -1 0 0 0 0 0
o 1 0 0 0 0 990
10 0 0 0 0f][xn 2000
0O 0 -1 0 0 0w ~7050
0 0 1 0 0 0f]a]_]720
0 0 0 2475 1 0| |xz| = | 2970
0 0 0 0 —1 0|y 0
0 0 0 0 1 0] /| 990
o 0 0 -1 0 0 0
o 0 0 0 0 -1 —7050
0o 0 0 0 0 1] | 7200 |

Figure 4.13: Linear constraints proposed for the three-dimensional model

In order to make all variables in the same magnitude, the diagonal of the matrix D and
the scaling factor ¢ we pick are

Diiag = 1,2,13,1,2,13
¢ =0,0,-91650,0,0, —91650

In this way, x is in the range between 0 and 2000, y is in the range between 0 and 1980,
and z is in the range between 0 and 1950. It is evident that they are in the same magnitude
now. Therefore, we transform the search space from figure 4.14(a) to figure 4.14(b).

In summary, this is how we define the linear constraints and scaling factor for the
three-dimensional model. Case 14 is proposed by the configurations discussed above. The
first three iterations of it is discussed in the next section.

40

4.5 Optimization for three-dimensional model using GSS with linear constraints

7050 1950
2000 1980
7300 2000
990

0 0 o

(a) The effect of linear constraints (b) The effect of scaling factor

Figure 4.14: The effect of linear constraints and scaling factor

4.5.4 An illustrative example

In this section, we perform the first three iterations of case 14 as shown in figure 4.15,
aiming at showing graphically how linear constraints and scaling factors work for this
three-dimensional model.

In figure 4.15, the left part is the reservoir model after scaling. As mentioned above,
in this space, the three dimensions has the same magnitude. Actually, our searching algo-
rithm is working in this space, and the new points are mapped back to the real reservoir
model according to the one-to-one relationship between this space and the real model. In
both spaces, the plane in the middle is the linear constraint that separates the feasible do-
main of heel and toe of producer. The red circle and blue rectangle denote the position of
heel and toe respectively. The marker filled with color refers to the tentative best case in
that iteration.

Figure 4.15(a) is the first iteration. The initial step length is 400ft, which makes the
first, third, sixth, seventh and twelfth lines in the linear constraint matrix (figure 4.13)
become active constraints. According to our algorithm, the starting point has seven search
directions, three for heel and four for toe. As shown in figure, the step length is all the same
for each search direction after scaling. However, when it is mapped to the real reservoir,
the step length is longer in the x-direction and shorter in z-direction according to our
scaling factor to better match the size of the reservoir. However, all the search directions
are still parallel to the corresponding constraint plane, though the angle of the plane may
change due to the scaling factor. The first iteration is successful since it found new better
points which are filled with color.

The second iteration is shown in figure 4.15(b). Since the first iteration is successful,
the step length becomes 1000ft according to the expansion factor we set. Then, the degen-
erate case occurs because we have so many active constraints under this step length that
the algorithm cannot find any search direction. According to our degenerate case handler
introduced in chapter 2, the step length will be multiplied by the contraction factor until it

41

Chapter 4. Case Study

1950
1980
2000
0 o
(a) Iteration 1. Successful
0
1950
1980
2000
0 0

(b) Iteration 2. Successful

<

1980

() Iteration 3. Successful

o Position of the heel o Position of the toe
* Tentative best position of the heel = Tentative best position of the toe

Figure 4.15: An illustrative example of the iterations for three-dimensional case

42

4.5 Optimization for three-dimensional model using GSS with linear constraints

is no longer degenerate case. In this iteration, the step length is multiplied by the contrac-
tion factor one time to become 500 ft. For the second iteration, the active constraints are
the first, third, sixth, seventh, eighth and twelfth lines in linear constraints matrix (figure
4.13). In consequence, six search directions are generated by the algorithm. Again, the
second iteration is successful as shown.

The third iteration in figure 4.15(c) is mostly the same as the first two iterations, includ-
ing the same successful iteration and degenerate case occurrence. But the active constraints
in this iteration become the third, fourth, sixth, seventh, eighth and twelfth lines. There
are six search directions correspondingly and the step length in this iteration is 625 f¢.

4.5.5 Optimization Solution

The results of case 14 is presented in table 4.8. While comparing the results between
table 4.7 and table 4.8, it is evident that case 14, which uses GSS with linear constraints
and scaling factor, gave better results. Although case 14 is only 1.3% higher than case
13 in terms of the objective function value. There is a huge reduction in the number of
simulations compared with case 13, from 1309 to 493. The reason, as implied above, is that
by introducing linear constraints and scaling factor, a significant amount of unnecessary
points can be avoided, such as the points in the water layer, points that are projected onto
the reservoir boundary. Figure 4.16 shows the search map of case 14. Unlike the messy
searching process in case 13 in figure 4.12, case 14 capture the area of best points very
fast, and then find a solution by gradually contracting the step length.

Table 4.8: Result of case 14

case 14
Description GSS with constraints and scaling factors
Final objective function value 1000420
Initial objective function value 366027
Total number of reservoir simulations 493
Simulated reservoir simulations 493
Bookkeeped reservoir simulations 0
SplinePoint-PROD-heel-x 1928.4
SplinePoint-PROD-heel-y 766.2
SplinePoint-PROD-heel-z 7144.2
SplinePoint-PROD-toe-x 150.7
SplinePoint-PROD-toe-y 0.9
SplinePoint-PROD-toe-z 7129.6

This can also be seen in figure 4.17, where case 14 outperforms case 13 in terms of
the number of reservoir simulations. For case 14, the objective function value increases
sharply at the beginning of the optimization. It has already been pretty close to the final
solution within 200 runs. The curve of the following runs is very flat with a small im-
provement in objective function value. In contrast, the curve of case 13 increases slowly
and gradually until the end.

43

Chapter 4. Case Study

7050

7300
990

Objective Function Value

o Evaluated position of the heel
o Evaluated position of the toe
® Heel of the injector
0 B Toe of the injector

Figure 4.16: Search map of case 14

x10175
10.5

9.5

8.5

7.5

6.5

5.5

—~Case 13
4.5

Case 14

0 200 400 600 800 1000 1200 1400
Number of Evaluated Simulations

Figure 4.17: Comparison between the base case and optimized case

44

4.5 Optimization for three-dimensional model using GSS with linear constraints

We perform the comparison between the initial position of the producer and case 14,
the best position our algorithm has got. As can be seen in figure 4.18, case 14 has much
higher cumulative oil production and much lower cumulative water production than initial
position. Figure 4.19 displays the oil saturation distribution of both cases at the end of the
production time frame. (Note that the first layer is excluded out since it can block the oil
distribution in oil layer.)

<106 Field Qil Production Total

14
1.2
1
= 0.8
& _
= - -
3 06 -
= _ -
-
04 -
- -
| = =Starting Position
0.2 -
-
- Case 14
Cd
0
0 500 1000 1500 2000
TIME [Days]
(a) Cumulative oil production
10M Field Water Production Total
1.8
4
1.6 e
rd
”
1.4 -~
”
12 =
[
&S
'g 0.8
”~
* 06 -
”
-
04 = =Starting Position
-
02 - - Case 14
-
0
0 500 1000 1500 2000

TIME [Days]

(b) Cumulative water production
Figure 4.18: Cumulative oil and water production of the three-dimensional model

It is evident that our optimized case has a much better sweep efficiency than the initial
position. For the initial position, which is in the middle of the reservoir, a significant
amount of oil on the side away from injector still remains in the reservoir. Even on the
same side of the injector, a lot of oil is still left in the reservoir because of the early water
breakthrough. Whereas such situation improved a lot in our optimized position, which is
shown in the figure.

45

Chapter 4. Case Study

Cell Results:
SOIL

08535
0.8000

0.7000
0.6000
05000
04000
0.3000
0.2000
0.1000
-0.0001

(a) Oil distribution of the base case

el Results:
SOIL

0.8535
0.8000

0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
-0.0000

(b) Oil distribution of case 14

Figure 4.19: Oil distribution of the three-dimensional model (first layer excluded)

46

Chapter

Application of the Method for
OLYMPUS Reservoir Model

In this chapter, we will make use of the knowledge we gained from the previous chapter
and perform the well placement optimization on OLYMPUS model, a complicated reser-
voir model. The reservoir model used is described in the next section. Limited by the time
available and the performance of our computer, we will optimize the location of one well
out of the sixteen wells. Our aim is to improve the position of a producer by using our
algorithm.

5.1 Description of OLYMPUS model for optimization chal-
lenge

OLYMPUS is a synthetic reservoir model inspired by a virgin oil field in the North Sea, de-
veloped for the purpose of a benchmark study for field development optimization (R.M. Fon-
seca and Leeuwenburgh, 2017). The field is 9km x 3km wide and is bounded on one side
by a boundary fault. The reservoir model is shown in figure 5.1. It is 50m thick for which
16 layers have been modeled. In addition to the boundary fault, six minor faults are present
in the reservoir. The reservoir consists of two zones, separated by an impermeable shale
layer. The top reservoir zone contains fluvial channel sands embedded in floodplain shales.
The bottom reservoir zone consists of alternating layers of coarse, medium and fine sands
with a predetermined dip similar to a clinoformal stratigraphic sequence (R.M. Fonseca
and Leeuwenburgh, 2017).

For the model, it consists of grid cells of approximately 50m x 50m x 3m each. 16
wells are drilled in the given model as shown in figure 5.1, 10 of which are producers and
6 of which are water injectors.

47

Chapter 5. Application of the Method for OLYMPUS Reservoir Model

Cell Results:
SOIL

09229

0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
-0.0086

fiyl
E(x)

Figure 5.1: OLYMPUS reservoir model

5.1.1 The optimization challenge of the model

The following geological reservoir characteristics are identified as sources of complexity
in OLYMPUS model for a good field development optimization challenge:

Faulting The presence of faults makes regular well patterns suboptimal such that place-
ment of individual wells needs to be optimized. Some compartmentalization would be
preferred, but compartments should not be regular in shape, again to prevent the optimal-
ity of regular well patterns (Geosciences, 2017).

Barriers The No.8 layer of OLYMPUS model is a completely sealing horizontal barrier
which separates the whole reservoir into two. The existence of the sealing barrier will
make it more difficult to best develop two separate reservoirs with a limited set of wells.

Channels The presence of channels will introduce the challenge of high-connectivity
and undesired fast water breakthrough. In the OLYMPUS model, there exists multiple
channels that can be found on figure 5.2. Note that the permeability values in the X and Y
directions are identical.The permeability in the Z direction is 10% of the permeability in
the X direction.

5.2 Optimization problem description

For the wells in the model, all the producers are controlled by a constant bottom hole
pressure at 175bar, and all the injectors are controlled by a constant bottom hole pressure
at 235bar. The production time is 20years, along which all producers and injectors are
open. For the completion of wells, most producers are horizontal wells while all injectors
are vertical wells. The oil saturation distributions at the end of the production time are
given in figure 5.3. We observe that PROD-10 is a vertical well. (The completion of
PROD-10 is listed in appendix F.) In addition, there is still a large amount of remaining

48

5.3 Parameters for GSS algorithm

Cell Results:
PERMX

997 .4
900.0
B00.0
00,0
00,0
5000
400.0
300.0
200.0
1000
00

)

E(x)

Figure 5.2: The challenge of the channels

oil around the well at the end of production. Therefore, we believe that by optimizing the
well placement of PROD-10 to make it become a horizontal well, PROD-10 has a great
potential to produce much more oil than before.

Cell Results:
SOIL

05229

08000
07000
06000
05000
04000
03000
0.2000
0.1000
-0.0086

tly]
Efx)

Figure 5.3: Oil saturation distribution for the initial case

Though other producers also have potential, due to the limited time available and com-
puting resources, the scope of our work in this thesis focuses only on PROD-10.

5.3 Parameters for GSS algorithm

5.3.1 Linear constraints

The reservoir model is so huge for placing one well. Given an initial distribution of wells
in the reservoir, our work direction is to split the entire reservoir into small segments
around each well, so that the well can be optimized in the corresponding segment. In this

49

Chapter 5. Application of the Method for OLYMPUS Reservoir Model

way, the overall well distribution will not change significantly. The original well pattern
still remains to some extent after optimization. In doing so, illogical well placements can
be avoided, such as two wells intersecting, or wells that cross the faults, etc. The linear
constraints we set for PROD-10 is shown in figure 5.4. Our strategy is as follows.

el Results:
S0IL

09229

0.8000
0.7000
0.6000
0.5000
0,4000
0.3000
0.2000
0.1000
-0.0086

ly)

Efx)

Figure 5.4: Linear constraints

As shown in figure 5.3, two faults and two injectors are near PROD-10. We do not
want PROD-10 to have any intersection with them. Therefore, we set two nearly parallel
linear constraints; one is exactly along the fault, the other one is one grid block away from
the injector, to exclude the faults and injectors out.

Furthermore, the west side of PROD-10 is water zone as indicated in blue. The east
side of PROD-10 is in the range of another producer: PROD-2. Thus, we pick another two
linear constraints to cut our own region out. In this way, we have enclosed our space.

Then, we propose two planes to define the range in the Z-direction. The water-oil
contact for OLYMPUS model is about 2090m, which means oil zone is above it. The oil
zone is our target zone for placing PROD-10. We note that the top of the reservoir is not a
flat plane. Therefore, we pick an average depth of the top in this region, which is 2050m.
In this way, we have included both two parts of oil zone separated by the barrier. The
channel problem is not necessary to be taken into consideration since the feasible space
for PROD-10 is already small enough.

In sum, the above are how we define the six linear constraints. (12 linear constraints
in total for heel and toe.) The matrix of linear constraints is listed in figure 5.5.

5.3.2 miscellaneous

We know that higher contraction factor and expansion factor can alleviate the problem of
getting trapped in a local optimum. However, considering the time spent for running, our
contractor factor and expansion factor are 0.5 and 2.5, respectively. The starting point of
PROD-10 is the initial position of it. The diagonal of the matrix D and the scaling factor
c we use are listed below to make all variables in the same magnitude and start from 0.

50

5.4 Optimization results

(027308 1 0 0 0 0 [6324060]
2.81057 1 0 0 0 0 7651897
~0.28063 —1 0 0 0 0 —6326966
~0.58525 1 0 0 0 0] [x 5875644
0 0 1 0 0 0| |w 2090
0 0 -1 0 0 0 |z|_ | —2050
0 0 0 027398 1 0] |z2| = | 6324060
0 0 0 281057 1 0| |p 7651897
0 0 0 —028063 —1 0| |z —6326966
0 0 0 —05825 1 0 5875644
0 0 0 0 0 1 2090
0 0 0 0 0 -1 | 2050 |

Figure 5.5: Linear constraint matrix for OLYMPUS model

Daiag = 1,2.5,40,1,2.5,40
¢ = —521227, —15450000, —82000, —521227, —15450000, —82000

In addition to that, we also include a nonlinear constraint handler built in FieldOpt:
WellSpline Length, which sets the upper limit for the length of the well. In our work, we
set it to be 1000m because it is not possible to drill a well that is so long. The summary of
our configuration is listed in table 5.1.

Table 5.1: Initial configurations for OLYMPUS case

Parameter Value
Initial step length (m) 500
Minimum step length (m) 20
Bookkeeper tolerance (m) 2

SplinePoint-PROD-10-heel-x (m) 522937
SplinePoint-PROD-10-heel-y (m) 6180617
SplinePoint-PROD-10-heel-z (m) 2062
SplinePoint-PROD-10-toe-x (m) 522965
SplinePoint-PROD-10-toe-y (m) 6180606
SplinePoint-PROD-10-toe-z (m) 2081
Initial objective function value 5659246

5.4 Optimization results

Table 5.2 lists the results of the optimization. The objective function value for base case is
5659246. It is increased by 11% after optimization. We note that the optimization of one

51

Chapter 5. Application of the Method for OLYMPUS Reservoir Model

Table 5.2: Optimization results

Parameter Value

Final objective function value ~ 6287516

Total number of cases 194

Valid cases 186
Bookkeeped cases 0

Optimization duration (hours) 39.3

SplinePoint-PROD-heel-x (m) 522169.2
SplinePoint-PROD-heel-y (m) 6180948.6
SplinePoint-PROD-heel-z (m) 2064.3
SplinePoint-PROD-toe-x (m) 523126.5
SplinePoint-PROD-toe-y (m) 6180659.7
SplinePoint-PROD-toe-z (m) 2066.2

well out of sixteen wells can yield 11% increase in term of the whole field, which is an
apparent improvement. There are eight invalid cases during optimization. Those are the
cases out of reservoir boundary. Since the top of the reservoir is not a flat plane, some part
of the top surface is lower than the plane defined by the upper linear constraint. Therefore,
some points that satisfy the linear constraints can still be outside the reservoir, which are
treated as invalid points.

x10"6
6.3

6.2

6.1

5.9

5.8

Objective Function Value

5.7

5.6

o 50 100 150 200

Iumb Eual J &

of

Figure 5.6: Evolution of the objection function value

The optimization process is further illustrated in figure 5.6, where the evolution of the
objective function versus the number of evaluated cases is represented. Huge improve-
ments are gained in the early iterations since the well length becomes longer and longer,
resulting in more and more oil production. The improvements are gradually smaller in the
late iterations since the limit of well length has reached. Only adjusting the location of
heel and toe yields small improvements. The optimization converges with an acceptable
number of evaluated cases. Therefore, it is reasonable and viable to expect to extend the

52

5.5 Interpretation of the results

optimization to all sixteen wells using our algorithm, with better computing resources and
parallel runner.

5.5 Interpretation of the results

The completion of the well after optimization is shown in figure 5.7. The detailed com-
pletion is given in appendix G. As shown in figure 5.7, the well is a horizontal well along
the strike direction of the fault. Figure 5.8 illustrates oil saturation distribution of the new
completion. It is evident that, compared with the previous oil saturation distribution shown
in figure 5.3, the oil saturation near the well is significantly reduced, indicated by the big
green area in the figure.

Figure 5.7: Optimal well completion

Cell Results:
SOIL

05215

0.8000
0,7000
0.6000
0,5000
0.4000
0,3000
0,2000
0,1000
-0,0020

ly)

Efx)

Figure 5.8: Oil saturation distribution after optimization

53

Chapter 5. Application of the Method for OLYMPUS Reservoir Model

Field Oil Production Total

s %1016
7 -
-
-
6 -
-
-
5 -
" -
s -
-
2 -
o
”
2 s -
P/
2 A
== |NITIAL POSITION
1
= =Q0PTIMIZED POSITION
0
0 1000 2000 3000 4000 5000 6000 7000
TIME [Days]

Figure 5.9: Cumulative oil production of the field

Field Water Production Total

n
45 x1076
4 Vi
rd
35
3
Z2s
)
E o2
2
T s
1
= INITIAL POSITION
03 = =OPTIMIZED POSITION
0
0 1000 2000 3000 4000 5000 6000 7000
TIME [Days]
Figure 5.10: Cumulative water production of the field
<1076 Well Oil Production Total
16
14 | |—INTALPOSITION -
. - -
— -OPTIMIZED POSITION .-
1.2 -
-
P e
7 P
_E__ 0.8 . s
g ’
0.6 -,
3 P
04 Pad
'
”
0.2 P
rd
0
0 1000 2000 3000 4000 5000 6000 7000
TIME [Days]

Figure 5.11: Cumulative oil production of PROD-10

54

5.5 Interpretation of the results

o *10%6
0.8 | |[=INITIAL POSITION
/
0.7 | |= -oPTiMiZED POSITION ,
s
0.6 ,
™ 7/
2 05
2 R
= 0.4
% rd
’
0.3
3 /
’
0.2 P
rd
0.1 -
-
o - L —
0 1000 2000 3000 4000 5000 6000 7000
TIME [Days]
Figure 5.12: Cumulative water production of PROD-10
Well Oil Production Rate
400
350 ——INITIAL POSITION
— =OPTIMIZED POSITION
300 =
A - =~ 4
= 30 [~ .
a S e
S 200 S
s ~
-~
£ 150 ~~o_
o --— -,
g 100
s L/\
0
0 1000 2000 3000 4000 5000 6000 7000
TIME [Days]
Figure 5.13: Oil production rate of PROD-10
Well Water Production Rate
300
——INITIAL POSITION L
250 -
— =OPTIMIZED POSITION Pk
P rd
200 -
= ’
z /
8150
& /
a ’
& 100 Vs
’
S y
50 7
rd
Vi - —
0 -
0 1000 2000 3000 4000 5000 6000 7000
TIME [Days]

Well Water Production Total

Figure 5.14: Water production rate of PROD-10

55

Chapter 5. Application of the Method for OLYMPUS Reservoir Model

Figure 5.9 to figure 5.14 display the production data of OLYMPUS field. For the whole
field, the cumulative oil production is increased by 11%. The cumulative water production
is also increased by 10%. However, this is more than compensated for by the increase
in cumulative oil. The difference is more clear in figure 5.11 and figure 5.12, where oil
production for PROD-10 is 3.3 times as much as the initial case, and water production is
even 15.5 times of the initial one. We note that, for the initial case, there is almost no water
production at all. It is because the production rate for the initial case is so low that water
breakthrough occurs very late. Even so, such case is not preferable since oil production is
also very low, leading to a low objective function value. For the oil production rate in figure
5.13, at first, it goes up slowly for both initial and optimized cases. This part represents the
production rate before water breakthrough. As water is displacing oil, since the viscosity
of water is much less than oil, and both producers and injectors are controlled by the
constant bottom hole pressure, the production rate will gradually increase according to
Darcy’s law. Once water breakthrough occurs, oil production rate will decline drastically.
Our result shows that at the end of the production time frame, the water cut has reached
70%, which is 37% in the base case.

56

Chapter

Summary and Recommendations

6.1 Summary

This thesis has dealt with solving the well placement optimization problem using GSS
algorithm with linear constraints. The main goal of our work is to provide new ideas for

such problems. Our work can be summarized as:

Literature review has shown that few researchers have focused on GSS method to
solve well placement optimization problem since it is a local optimization method.
Even fewer researchers have approximated the feasible domain with piecewise linear
constraints.

According to the test cases we made, GSS method can easily get trapped into a local
optimum for well placement problem. However, configuring proper parameters and
making use of linear constraints can alleviate such problem.

With higher contraction factor and expansion factor, our algorithm can find better
solution. The reason is that higher contraction and expansion factor enable the al-
gorithm to search more trial points before termination.

Compass pattern has a better performance than Fast pattern since it is so easy for the
Fast pattern to trap into a local optimum. Three search directions of the Fast pattern
are not representative enough for the conditions around a point.

By introducing linear constraints to divide the feasible region out, the total number
of iterations can be reduced significantly with the same, or even better solution.

We have applied our algorithm to OLYMPUS model, and the solution increases the
oil production significantly, which indicates a good performance and applicability
of our algorithm.

57

Chapter 6. Summary and Recommendations

6.2 Recommendations for further work

The methodology introduced in this work is quite general. Thus there are still issues
that should be investigated further. Here we recommended the following areas for future
research:

6.2.1 New way to define the location of a well

In this thesis, we define one well by six real values, which are the x, y, z coordinates
of the heel and toe. However, there is a disadvantage of such definition. The shape of
a typical reservoir is always not flat in Z-direction as illustrated in figure 6.1, where the
planes indicated by the black lines are the linear constraints, and the surfaces indicated by
the blue lines are the real reservoir layers we intend to place the well. It is evident that the
area covered by the two linear constraints vary a lot with the actual region.

Figure 6.1: The disadvantage of using linear constraints in Z-direction

One way to overcome it is to divide the area more finely so that we can better approx-
imate it by linear constraints. However, it will definitely make the process more compli-
cated. One better way we propose is to change the way how we define a well. Instead of
defining a well by six real values, it is better to define a well by four real values, which
denote the x and y coordinates, and two integers, which refers to the index of reservoir
layer (index of Z). In this way, the well can always be placed into the reservoir layer we
want, no matter how ups and downs the reservoir is.

However, this requires a large amount of modification to the FieldOpt platform, which
is out of our scope. This is why it is not implemented in our work.

6.2.2 More advanced degenerate case handler

In our work, we use a simplified degenerate case handler, which it to contract the step
length when the degenerate case occurs. Although it works well according to our test,

58

6.2 Recommendations for further work

we still expect a more advanced degenerate case handler which has a strong mathematical
foundation.

As mentioned in chapter 2, a C-library package named cddlib package was used to
solve the degenerate case in the work of Lewis et al. (2007b). We recommend to integrate
such package into our FieldOpt platform. Again, this requires a strong mathematical and
programming background to implement.

6.2.3 More algorithms to compare

Currently, our FieldOpt is still lacking other optimization algorithms which are commonly
used for solving the well placement optimization problem, though some researchers are
working on it. In this thesis, we have gained seemingly good results from our algorithm.
Thus we expect to compare our algorithm with other algorithms for the same problem,
especially with those commonly-used algorithms.

6.2.4 More search directions

As mentioned in chapter 2, Without nearby linear constraints, the searching process can
be only in the four directions along the coordinate axis with compass pattern, or three
directions with the fast pattern. The search along such fixed directions can easily lead to
trapping in a local optimum. In the work of Bellout et al. (2012), they make the sten-
cil orientation randomly modified after each polling. Therefore, we recommend adding
the same feature to our algorithm, such as adding the same random search directions to
‘H}. in unsuccessful iteration in algorithm 1, chapter 2. We believe that it can reduce the
possibility of getting trapped into the local optimum.

6.2.5 Parallel Computing

Our GSS algorithm is easily parallelized in theory which means that we can speed up the
optimization by evaluating several coordinates simultaneously. Still, in practice, it needs
some efforts to parallelize the algorithm.

59

Chapter 6. Summary and Recommendations

60

Bibliography

Artus, V., Durlofsky, L. J., Onwunalu, J., Aziz, K., 2006. Optimization of nonconventional
wells under uncertainty using statistical proxies. Computational Geosciences 10 (4),
389—404.

Badru, O., Kabir, C., 2003. Well placement optimization in field development. In: SPE
Annual Technical Conference and Exhibition, 5-8 October, Denver, Colorado. Society
of Petroleum Engineers.

Bangerth, W., Klie, H., Wheeler, M. F., Stoffa, P. L., Sen, M. K., 2006. On optimization
algorithms for the reservoir oil well placement problem. Computational Geosciences
10 (3), 303-319.

Baumann, E. J. M., 2015. Fieldopt: Enhanced software framework for petroleum field op-
timization - development of software support system for the integration of oil production
problems with optimization methodology. Master’s thesis, NTNU.

Beckner, B., Song, X., 1995. Field development planning using simulated annealing - op-
timal economic well scheduling and placement. In: SPE Annual Technical Conference
and Exhibition, 22-25 October, Dallas, Texas. Society of Petroleum Engineers.

Bellout, M. C., Echeverra Ciaurri, D., Durlofsky, L. J., Foss, B., Kleppe, J., 09 2012. Joint
optimization of oil well placement and controls. Computational Geosciences 16 (4),
1061-1079.

Bouzarkouna, Z., Ding, D. Y., Auger, A., 2010. Using evolution strategy with meta-models
for well placement optimization. In: ECMOR XII-12th European Conference on the
Mathematics of Oil Recovery.

Bouzarkouna, Z., Ding, D. Y., Auger, A., 2012. Well placement optimization with the
covariance matrix adaptation evolution strategy and meta-models. Computational Geo-
sciences 16 (1), 75-92.

Geosciences, T. A., 2017. Isapp - integrated systems approach for petroleum.
URL http://www.isapp2.com/optimization—-challenge/
reservoir-model-description

61

http://www.isapp2.com/optimization-challenge/reservoir-model-description
http://www.isapp2.com/optimization-challenge/reservoir-model-description

Griffin, J. D., Kolda, T. G., Lewis, R. M., 2008. Asynchronous parallel generating set
search for linearly constrained optimization. SIAM Journal on Scientific Computing
30 (4), 1892-1924.

Isebor, O. J., 2013. Derivative-free optimization for generalized oil field development.
Ph.D. thesis, Stanford University.

Jesmani, M., Bellout, M. C., Hanea, R., Foss, B., 2016. Well placement optimization
subject to realistic field development constraints. Computational Geosciences 20 (6),
1185-1209.

Jesmani Mansoureh, Bellout Mathias C., R. H., Foss, B., 2015. Particle swarm optimiza-
tion algorithm for optimum well placement subject to realistic field development con-
straints. In: SPE Reservoir Characterisation and Simulation Conference and Exhibition,
14-16 September, Abu Dhabi, UAE. Society of Petroleum Engineers.

Kolda, T. G., Lewis, R. M., Torczon, V., 2003. Optimization by direct search: New per-
spectives on some classical and modern methods. SIAM Review 45 (3), 385-482.

Kolda, T. G., Lewis, R. M., Torczon, V., 2007. Stationarity results for generating set search
for linearly constrained optimization. SIAM Journal on Optimization 17 (4), 943-968.

Lewis, R. M., Shepherd, A., Torczon, V., 2007a. Implementing generating set search
methods for linearly constrained minimization. SIAM Journal on Scientific Computing
29 (6), 2507-2530.

Lewis, R. M., Shepherd, A., Torczon, V., 2007b. Implementing generating set search
methods for linearly constrained minimization. STAM Journal on Scientific Computing
29 (6), 2507-2530.

Magnusson, H., 2016. Development of constraint handling techniques for well placement
optimization in petroleum field development. Master’s thesis, NTNU.

Onwunalu, J., 2010. Optimization of field development using particle swarm optimization
and new well pattern descriptions. Ph.D. thesis, Stanford University.

Onwunalu, J. E., Durlofsky, L. J., 2010a. Application of a particle swarm optimization
algorithm for determining optimum well location and type. Computational Geosciences
14 (1), 183-198.

Onwunalu, J. E., Durlofsky, L. J., 2010b. Application of a particle swarm optimization
algorithm for determining optimum well location and type. Computational Geosciences
14 (1), 183-198.

R.M. Fonseca, C. G., Leeuwenburgh, O., March 2017. Description of olympus reservoir
model for optimization challenge. Tech. rep., TNO, Delft University of Technology,
ENI, Statoil and Petrobras.

Schlumberger, 2014.
URL https://www.software.slb.com/products/eclipse

62

https://www.software.slb.com/products/eclipse

T.D. Humphries, R. H., 2015. Joint optimization of well placement and control for non-
conventional well types. Journal of Petroleum Science and Engineering 126, 242 — 253.

Umut Ozdogan, Akshay Sahni, B. Y. B. G. W. H. C., 2005. Efficient assessment and opti-
mization of a deepwater asset using fixed pattern approach. In: SPE Annual Technical
Conference and Exhibition, 9-12 October, Dallas, Texas. Society of Petroleum Engi-
neers.

63

64

Appendix

How FieldOpt Works

FieldOpt is a software framework developed by Baumann (2015) that aims at being a
common platform for MSc and Ph.D. students to conduct research. Generally speaking,
it takes the input containing all the configurations of the run and gives the output of the
optimized well placement and other result files. FieldOpt itself comprises more than six-
teen thousand lines of C++ source code, and currently, the codes are still being improved.
It contains several different modules. While implementing optimization algorithm in Fiel-
dOpt, the understanding of the necessary modules is needed in order to make changes to
them and create new optimization method class. The other modules which do not influ-
ence the optimization method can be treated as “black box” which will never be touched.
This section will introduce the current status and workflow of FieldOpt. The aim of it is to
get a brief understanding of how FieldOpt works as a whole.

A.1 Driver Files

FieldOpt takes the JSON (JavaScript Object Notation) file as the driver file, which is the
only input file of the FieldOpt. JSON is a lightweight data-interchange format. On the one
hand, it is easy for humans to read and write. On the other hand, it is easy for machines
to parse and generate. It contains all the configurations needed by FieldOpt in the form of
sub-objects. The sub-objects are Global, Optimizer, Simulator, Model. Note that all the
sub-objects must be present. An example JSON file can be found at appendix B.

A.2 Optimizer

Currently, two optimization methods have been implemented in FieldOpt, which are Com-
pass Search method (CS) and Asynchronous Parallel Pattern Search method (APPS). And
the integration of other optimization algorithms is currently in progress. The different
algorithm has its different settings and parameters. The needed parameters have to be
provided in the driver file corresponding to the selected optimization algorithm.

65

A.3 Simulator

FieldOpt supports three type of simulators which are ECLIPSE, ADGPRS, and FLOW. In
this work, only ECLIPSE (Schlumberger, 2014) is used.

A.4 Model

When the simulator is ECLIPSE, FieldOpt will parse the reservoir grid through the EGRID
file. The path of the EGRID file should be provided so that FieldOpt can read and then
generate wells in that reservoir grid model. Currently, all the wells can either be defined
by WellSpline or by a set of WellBlocks. WellSpline means that a well is defined by its
position of heel and toe, which is an array of float coordinates. The well trajectory is then
the connection between the two points. In this way, for a three-dimensional model, one
well is defined by six variables for the simulator to handle. WellBlocks, in another way,
defines one well directly by the perforation of the reservoir blocks. In this work, only the
way of WellSpline is used and discussed because it is more realistic and practical.

A.5 Objective Function

Currently, FieldOpt only supports one type of objective function to be used by the opti-
mization algorithm, which is WeightedSum. Usually, it is set to be the linear combination
of the different results of eclipse running. In this work, the Objective Function is always
set to be:

FOPT — 0.2 x FWPT

where FOPT denotes cumulative oil production, and FWPT refers to cumulative water
production.

A.6 Constraints

FieldOpt also supports some different kinds of constraint handling, which includes Reser-
voir Boundary, Well Spline Length, Well Spline Interwell Distance. If such constraints
are listed in the driver file, after the new cases are generated by the optimizer, the con-
straint handling module will take over all the new cases and snap these new cases to con-
straints. The constraint handling module was implemented by Magnusson (2016). Reser-
voir Boundary just defines the feasible region of a reservoir to be a cubic model. Once
the new case is outside the feasible region, it will be projected onto the boundary of the
feasible region. Well Spline Length defines the upper and lower limit of the well length, in
case of too long and too short well length which makes no sense to drilling engineering.
Well Spline Interwell Distance defines the limit of interwell-distance, since it also makes
no sense if the two different wells intersect or they are too close to each other. The detailed
derivation and implementation of all these constraints can be found at Magnusson (2016).
Note that all these constraint handlers are different with the linear constraint handler im-
plemented in this paper, since the linear constraint handler in our work only applies to our

66

GSS method. In other words, it is packed together with our GSS algorithm. However, the
global constraint handler discussed above can still take over the new cases generated by
our algorithm to make changes.

A.7 Bookkeeper

The BookkeeperTolerance sets the tolerance for the case bookkeeper. That is, when the
new point generated by the optimizer is close enough to one of the evaluated points, Fiel-
dOpt will directly mark that point as evaluated without running the simulator and set the
objective function value to be the same as the point which meets the tolerance.

A.8 The main Loop of Serial Runner

FieldOpt supports more than one kind of runner, which include serial runner, mpi runner,
synchronous mpi runner and so on. In this work, we use only serial runner since it is easy
to use and understand. The main loop in the serial runner is shown on algorithm 5, coded
by Baumann (2015), which indicates the working flow of FieldOpt.

initialization;
while Optimizer is not finished do
Get new case for evaluation;
if Bookkeepered then
Mark the case as bookkeeped;

else
Apply the case to model;
Run simulator;
if Simulation succeeds then

‘ Set objective function value to the case;
else

‘ Set a sentinel value to the case;
end

end
Update tentative best case;
Log the case;

end
Algorithm 5: Serial runner

Before FieldOpt enters this loop, it will firstly parse the driver file to initialize Settings,
Model, Simulator, optimizer and other objects. This loop means the start of optimization.
FieldOpt will never jump out of the loop until the termination condition is reached. As
shown in the algorithm, first, FieldOpt will fetch a new case from the optimizer. How the
new case is generated depends on the optimizer. After that, the Bookkeeper will take over
this case to see if this case is evaluated or not. If not, FieldOt will apply this new case to
the reservoir model to generate the runnable DATA input file for ECLIPSE and then run
the simulator. FieldOpt will wait until ECLIPSE finishes the simulation. Then it will read

67

the summary file of ECLIPSE and calculate the objective function value. If the simulation
cannot run because the new point is outside the reservoir, the objective function value of
this case will be set to a sentinel value which is a pretty small value. The logger in the
loop is responsible for recording the running information and outputs all such information
to the output directory. Until now the first round of the loop is over. Then FieldOpt will
run into the next round of the loop and fetch another case to evaluate. This is the workflow
of FieldOpt in this work.

68

o B

Appendix

An Example of the Driver File

”Global”: {
"Name”: "Sspot”,
”BookkeeperTolerance”: 5.0
I
"Optimizer”: {
"Type”: "GSS_Linear_Constraints”,
”Mode” : ”Maximize” ,
”Parameters”: {
”"MaxEvaluations”: 3200,
"InitialStepLength”: 300.0,
”MinimumStepLength”: 10.0,
”ContractionFactor”: 0.5,
”ExpansionFactor”: 2,
”ActualDimensionsForEachPoint”: 2,
"WellType”: ”Vertical”,
"ConstraintFlag”: true,
“LinearConstraints”: 70.4831 1 0 0 3.0455 -1 0 0 0 —1 0 O
—3.4444 —1 0 0 0 0 0.4831 1 0 0 3.0455 -1 0 0 0 —1 0 0 —3.4444 —17,
”Bounding”: 71366 3645 —10 —2077 1366 3645 —10 —2077",
”SearchPatternWhenNoConstraintNearby”: “compass”,
”ScalingFactorD”: 71 1 1 17,
”ScalingFactorC”: 70 0 0 0~
¥
”Objective”: {
"Type”: "WeightedSum™ ,
"WeightedSumComponents”: [

{
"Coefficient”: 1.0, "Property”:
CumulativeOilProduction”, ”"TimeStep”: —1,
"IsWellProp”: false
b
{
"Coefficient”: —0.2, "Property”: 7
CumulativeWaterProduction”, ”TimeStep”: —1,
"IsWellProp”: false
}

69

47

59

61

63

69

89

91

]
I
"Constraints”: [
1
}
”Simulator”: {
"Type”: "ECLIPSE”,
”FluidModel”: ”DeadOil”,
"ExecutionScript”: “csh_eclrun”
}
“"Model”: {
”ControlTimes”: [0, 300, 600, 900, 1200,
"Reservoir”: {
"Type”: "ECLIPSE”

"Wells”: [
{
”Name”: “"PRODI1”,
”Group”: "G27,
"Type”: "Producer”,
"DefinitionType”: ”WellSpline”,
”PreferredPhase”: 70il”,
”WellboreRadius”: 0.1905,
”SplinePoints”: {
"Heel”: {
”x”: 400.0,
”y”: 1000.0,
7z”: 1712.0,
“IsVariable”: true
},
“Toe”: {
”x”: 400.0,
”y”: 1000.0,
”z”: 1712.0,
“IsVariable”: true
}
}.
”Controls”: [
{
"TimeStep”: O,
”State”: “Open”,
”Mode”: "BHP”,
"BHP”: 80.0

~——

”Name”: “PROD2”,
”Group”: G2,
"Type”: "Producer”,
"DefinitionType”: ”WellSpline”,
”PreferredPhase”: 70il”,
”WellboreRadius”: 0.1905,
”SplinePoints”: {
"Heel”: {
”x”: 500.0,
"y”: 900.0,

15007,

70

97

99

109

111

113

127

129

131

141

et

e

7z”: 1712.0,
“IsVariable”: true
},
"Toe”: {
”x”: 500.0,
”y”: 900.0,
”z”: 1712.0,
“IsVariable”: true

}
¥,
”Controls”: [
{
"TimeStep”: O,
”State”: "Open”,
“Mode”: “BHP”,
"BHP”: 100.0

“"Name”: “INJ1”,
»Group”: "Gl”,
"Type”: "Injector”,

"DefinitionType”: "WellSpline”,

”"PreferredPhase”: ”"Water”,
”WellboreRadius”: 0.1905,
"SplinePoints”: {
“"Heel”: {
”x7: 108.0,
"y”: 108.0,
”z”: 1712.0,
“IsVariable”: false
},
"Toe”: {
”x”: 108.0,
”y”: 108.0,
7z”: 1712.0,
“IsVariable”: false

}
e
”Controls”: [
{
"TimeStep”: 0,
"Type”: "Water”,
”State”: “Open”,
”Mode”: ”BHP”,
"BHP”: 500.0,
“IsVariable”: false

“"Name”: 7INJ2”,
»Group”: "Gl”,
"Type”: "Injector”,

"DefinitionType”: "WellSpline”,

”"PreferredPhase”: ”Water”,

71

149 "WellboreRadius”: 0.1905,
"SplinePoints™: {

151 “Heel”: {
”x7: 1332.0,
153 "y?: 1332.0,
”z7: 1712.0,
155 “IsVariable”: false
},
157 “"Toe”: {
”x7: 1332.0,
159 7y 1332.0,
7z”: 1712.0,
161 “IsVariable”: false

}
163 },
”Controls”: [

165 {

"TimeStep”: 0,

167 "Type”: ”"Water”,
”State”: “Open”,

169 ”Mode”: ”BHP”,
"BHP”: 250.0,

171 “IsVariable”: false

175 1

77| }

Example_driver_file.json

72

Appendix

GSS _Linear_Constraints.h

i/
/! Created by bo on 2/19/17.
/1

#ifndef FIELDOPT_GSS_LINEAR_CONSTRAINTS_H
#define FIELDOPT_GSS_LINEAR_CONSTRAINTS_H

n

#include "GSS.h”

#include ”Optimization/optimizer.h”
#include <Eigen/Core>

#include <vector>

;| using namespace Eigen;
using namespace std;

namespace Optimization {
17 namespace Optimizers {

19 class GSS_Linear_Constraints : public GSS

{

public:
QString GetStatusStringHeader () const;
QString GetStatusString () const;

GSS_Linear_Constraints (Settings :: Optimizer *settings ,
Case xbase_case ,
Model :: Properties ::
VariablePropertyContainer =xvariables ,
29 Reservoir :: Grid :: Grid =grid ,
Logger xlogger);

protected :
int actual_dimensions_for_each_point;
MatrixXd linear_constraints_;

35 VectorXd bounding_;

vector<int> unsatisfied_constraints_index_;

73

41

45

47

59

65

67

69

79

vector<VectorXd> pattern_;

vector<VectorXd> initial_pattern_;

Settings :: Optimizer :: WellType welltype_; //flag for vert or
horz

double step_length_of_pattern_;

vector <QUuid> spline_point_id_map_;

// contain the QUuid of all spline point variables. Each well
has 6 variables which are

// heel.x, heel.y, heel.z, toe.x, toe.y, toe.z

vector <QUuid> working_points_;

// contain the QUuid of the actual working spline point
variables from mathmetical point of view.

// for example

//if json file define a vertical well with two dimensions for
the point,

// spline_point_id_map_ will contain the same 6 QUuid of the 6
variables

// working_points- will contain only 2 QUuid of 2 variables ,
which are heel.x and heel.y

int num_of_well_;

bool constraint_flag_; // true means we have constraints ,
false means we don’t have constraints.

vector<double> scaling_factor_D;

vector<double> scaling_factor_C;

bool satisfy_constraints ();

void change_pattern_conform_to_constraints () ;

bool check_linear_independence () ;

void handleEvaluatedCase (Case *c) override;

QList<Case *> generate_trial_points ();

void contract();

void expand();

bool is_converged();

TerminationCondition IsFinished () ;

void select_pattern(Settings :: Optimizer x);

void transfer_value_to_linear_constraints (QString);

/%

* When fieldopt read the linear constraints part from json
file , it will save that part

* to QString. This function is to convert the QString to a
Matrixxd .

*/

void transfer_value_to_bounding (QString);

/

When fieldopt read the bounding part from json file , it
will save that part

* to QString. This function is to convert the QString to a
Vectorxd .

*/

void transfer_value_to_scaling_factor_D (QString);

void transfer_value_to_scaling_factor_C (QString);

void set_spline_point_id_map_(Model:: Properties ::
VariablePropertyContainer =x);

/%

* This function is used to set the value for
spline_point_id_map-.

74

89

93

97

99

* spline_point_-id_map._- contains the ID of spline point type

variables in order.
that is:

the spline_point_id_map- contains the ID in the order of

*
*
*
* welll . heel.x welll.heel.y welll.heel.z
x welll . toe.x welll.toe.y welll.toe.z

* well2.heel.x well2.heel.y well2.heel.z
* well2.toe.x well2.toe.y well2.toe.z

* well3 ..., ..

*

*

*/

void get_working_points (Model:: Properties ::
VariablePropertyContainer x*);

//set the value for working_points_.

double scale_variable (double, double, double);

double revert_scaled_variable (double, double, double);

private:

void iterate (); //!< Step or contract, perturb, and clear list

of recently evaluated cases.

bool is_successful_iteration(); //!< Check if this iteration

was successful (i.e. if the current tent. best case was found
iteration).

}s
}
}

#endif //FIELDOPT_GSS_LINEAR_CONSTRAINTS_H

in this

GSS_Linear_Constraints.h

75

76

Appendix

GSS _Linear_Constraints.cpp

/1
// Created by bo on 2/19/17.
/1

#include ”"GSS_Linear_Constraints.h”
#include <iostream>
#include “gss_patterns.hpp”

namespace Optimization {
namespace Optimizers {

GSS_Linear_Constraints :: GSS_Linear_Constraints (Settings
xsettings , Case xbase_case ,

:: Optimizer

Model :: Properties ::

VariablePropertyContainer xvariables ,

Reservoir :: Grid ::

Grid *grid, Logger xlogger) : GSS(settings , base_case,

variables , grid, logger) {

constraint_flag_. = settings —>parameters().constraint_flag;
actual_dimensions_for_each_point = settings —>parameters ().

actual_dimensions_for_each_point;
welltype_ = settings —>parameters () .welltype;
set_spline_point_id_map_(variables);
get_working_points (variables);
select_pattern(settings);
step_-length_of_pattern_= settings —>parameters ().
initial_step-length;

constraint_flag_ = settings —>parameters().constraint_flag;

transfer_value_to_scaling_factor_D (settings —>parameters () .
scaling_factor_D);

transfer_value_to_scaling_factor_C (settings —>parameters () .
scaling_factor_C);

if (constraint_flag_){

77

29

41

19

61

transfer_value_to_linear_constraints (settings —>parameters
().linear_constraints);
transfer_value_to_bounding (settings —>parameters () .bounding

)

QList<Case *> GSS_Linear_Constraints:: generate_trial_points () {

auto trial_points = QList<Case *>();
pattern_ = initial_pattern_;
if (!satisfy_constraints ()) {

change_pattern_conform_to_constraints () ;

}

auto rea_base = GetTentativeBestCase ()—>real_variables ();

for (int i = 0; i < (int)pattern_.size(); i++) {
auto trial_point = new Case(GetTentativeBestCase());
if (rea_base.size() > 0) {
for (int j = 0; j < working_points_.size (); ++j) {

double perturbed_variable = scale_variable(
rea_base.value(working_points_[j]), scaling_factor_-D[j],
scaling_factor_C[j]) + pattern_[i][j] % step_length_of_pattern_;

double reverted_variable = revert_scaled_variable (
perturbed_variable , scaling_factor_D[j], scaling_factor_.C[j]);

trial_point —>set_real_variable_value (
working_points_[j], (int)(reverted_variable/0.1)%0.1);

// //round to int

if (welltype. == Settings :: Optimizer :: WellType ::
Vertical){

std :: vector<QUuid >::iterator position = std::

find (spline_point_id_map_.begin(), spline_point_id_map_.end(),

working_points_[j]);
trial_point —>set_real_variable_value (*(
position+3), (int)(reverted_variable/0.1)%0.1);
/! //round to int
//cout << (position+3)—>toString ().toStdString

() << endl;
}
}
cout << "the number ” << i << 7 new point is” <<endl;
for (int k = 0; k < working_points_.size (); ++k) {
cout << trial_point—>real_variables ().value(
working_points_[k]) << "——” ;

cout << endl;
}
trial _point —>set_origin_data (GetTentativeBestCase (), i,
step_-length_of_pattern._);
trial_points .append(trial_point);

78

89

99

101

103

105

10

109

111

119

points

bool

scaling_

bounding_[i])/

cout << 7in this iteration, ” << (int)pattern_.size() << ” new
has been generated.” << endl;

for (Case x*c trial_points)

constraint_handler- —>SnapCaseToConstraints(c);
return trial_points;

GSS_Linear_Constraints :: satisfy_constraints () {

if (!constraint_flag_)
return true;

unsatisfied_constraints_index_.clear ();

auto rea-b = GetTentativeBestCase ()—>real_variables ();
VectorXd x;

x.setZero(working_points_.size ());

int index = 0;

double distance;
for (auto id working_points_) {
x[index] = scale_variable(rea_b.value(id),
factor_D[index], scaling_factor_C[index]);
index ++;
} 2 . ”

//cout << 7"x is 7 << endl << x << endl;

for (int i = 0; i < bounding_.size() ; ++i) {

distance = std::abs(linear_constraints_.row(i) * X —
linear_constraints_.row(i).norm() ;
cout << "distance is 7 << endl << distance << endl;
if (distance < step_-length_of_pattern. &&

std:: find(unsatisfied_constraints_index_.begin(),

unsatisfied_constraints_index_.end (), 1)

== unsatisfied_constraints_index_.end()){
unsatisfied_constraints_index_.push_back(i);
std :: cout << “unsatisfied occur for constraint\n” <<

linear_constraints_.row(i) << endl;

void GSS_Linear_Constraints :

0 A

}
}

if (unsatisfied_constraints_index_.size() == 0){
return true;
else{

return false;

}

:change_pattern_conform_to_constraints

79

129

141

149

159

161

165

169

pattern_.clear ();

if (! check_linear_independence ()){// degenerate case. try to
contract step length to avoid.

cout << “degenerate case occur. try to avoid it by
contracting step length.” << endl;

do{
unsatisfied_constraints_index_.clear();
step-length_of_pattern- = step_-length_of_pattern. x
contr_fac_;
satisfy_constraints ();

} while (! check_linear_independence ());

}

MatrixXd p(unsatisfied_constraints_index_.size (),
linear_constraints_.cols());
p.setZero () ;

int index = 0;

for (int j : unsatisfied_constraints_index_)
p.row(index) = linear_constraints_.row(j);
index ++;

}

MatrixXd tran = p.transpose();
MatrixXd paral = pxp.transpose();
MatrixXd para2 = paral.inverse ();
MatrixXd right_inverse = tran *x para2;
std ::cout << “the right inverse r is \n” << right_inverse <<
endl;
for (int i = 0; i < right_inverse.cols() ; ++i) {
right_inverse.col(i).normalize ();
std :: cout << “the normalized right inverse r” << i << 7 is
\n” << right_inverse.col(i) << endl;

}

FullPivLU <MatrixXd> lu_decomp(p);
MatrixXd nullspace = lu_decomp.kernel ();
std :: cout << “Here is a matrix whose columns form a basis of
the null—space of p:\n”
<< lu_decomp. kernel () << endl;

for (int i = 0; i < right_inverse.cols(); i++){
std ::cout << "new direction added due to right inverse\n”
<< —right_inverse.col(i).transpose () << endl;
pattern_.push_back(—right_inverse.col(i).transpose());
}

if (!nullspace.isZero()){

181

189

191

195

199

205

207

209

MatrixXd positive_spanning_set(nullspace.rows(), nullspace

.cols () *2);
positive_spanning_set.setZero () ;
for (int i=0; i<nullspace.cols(); i++){
positive_spanning_set.col(i) = nullspace.col(i);
}
for (int i=(int)nullspace.cols(); i<nullspace.cols()*2; i
++){

positive_spanning_set.col(i) = —nullspace.col(i—
nullspace.cols());

std :: cout << "Here is a matrix N whose columns are a
positive spanning set for the nullspace of p:\n”
<< positive_spanning_set << endl;
for (int i = 0; i < positive_spanning_set.cols() ; ++i) {
positive_spanning_set.col(i).normalize () ;
}

std ::cout << “the normalized matrix N whose columns are a
positive spanning set for the nullspace of p is \n” <<
positive_spanning_set << endl;

for (int i = 0; i < positive_spanning_set.cols(); i++){

std ::cout << "new direction added due to positive
spanning set\n” << positive_spanning_set.col(i).transpose () << endl;

pattern_.push_back(positive_spanning_set.col(i).
transpose ());

}

unsatisfied_constraints_index_.clear ();

bool GSS_Linear_Constraints:: check_linear_independence () {

MatrixXd unsatisfied_constraints (
unsatisfied_constraints_index_.size (), linear_constraints_.cols());

unsatisfied_constraints .setZero () ;

for (int i = 0; i < unsatisfied_-constraints_index._.size(); ++i

) o
unsatisfied_constraints .row(i) = linear_constraints_.row(
unsatisfied_constraints_index_[i]);

FullPivLU<MatrixXd> luA(unsatisfied_constraints);
int rank = (int)luA.rank();

if (rank == unsatisfied_constraints.rows())
return true;

else
return false;

void GSS_Linear_Constraints ::iterate ()

{

81

if (!is_successful_iteration () && iteration_ != 0)
219 contract () ;
else
2 expand () ;
case_handler_.—>AddNewCases(generate _trial_points ());
23 case_handler.—>ClearRecentlyEvaluatedCases () ;
iteration._ ++;
225 }
229 QString GSS_Linear_Constraints :: GetStatusStringHeader () const
{
231 return QString ("%1,%2,%3,%4,%5,%6,%7")
.arg(”Iteration™)
233 .arg(”EvaluatedCases™)
.arg (" QueuedCases™)
235 .arg(”RecentlyEvaluatedCases”™)
.arg(”TentativeBestCaselD ")
237 .arg (" TentativeBestCaseOFValue™)
.arg(”StepLength™);
239 }
241
243 QString GSS_Linear_Constraints :: GetStatusString () const
{
25 return QString ("%1,%2,%3,%4,%5,%6,%7")
.arg(iteration.)
247 .arg(nr_evaluated_cases ())
.arg(nr_queued_cases ())
249 .arg(nr_recently_evaluated_cases ())
.arg(GetTentativeBestCase ()—>id () .toString ())
251 .arg(GetTentativeBestCase ()—>objective_function_value
0)
.arg(step-length_of_pattern_.);
25 }
257 void GSS_Linear_Constraints :: handleEvaluatedCase (Case *c) {
if (isImprovement(c))
259 updateTentativeBestCase (c);
}
261
263
bool GSS_Linear_Constraints::is_successful_iteration () {
265 return case_handler.—>RecentlyEvaluatedCases ().contains (
GetTentativeBestCase ()) ;
}
267
269
void GSS_Linear_Constraints :: contract() {
27 step_length_of_pattern. = step_length_of_pattern_ % contr_fac_

82

285

289

291

299

309

315

319

void GSS_Linear_Constraints ::expand () {
if (iteration_ != 0)
step_length_of_pattern_. = step_length_of_pattern_ x
expan_fac_;

}

bool GSS_Linear_Constraints::is_converged () {

if (step-length_of_pattern. >= step_-tol_)
return false;

else
return true;

Optimizer :: TerminationCondition GSS_Linear_Constraints :: IsFinished

O A
)

if (case_handler_.—>EvaluatedCases().size () >= max_evaluations_

return MAX EVALS REACHED;
else if (is_converged())
return MINIMUM_STEP_LENGTH_REACHED;
else return NOT_FINISHED; // The value of not finished is O,
which evaluates to false.

}

void GSS_Linear_Constraints :: transfer_value_to_linear_constraints (
QString linear_constraints) {

char x[1000];
double a[100];

std::string stdstring = linear_constraints.toStdString();
const char * s = stdstring.c_str();

const char % sl = stdstring.c_str();

int i=0;

while (s—sl<stdstring .length () && sscanf(s, "%s”, x)){
s += strlen(x)+1;
ali++] = atof(x);

}

linear_constraints_.setZero(i/working_points_.size (),
working_points_.size());

int 1=0;

//cout << 7a[l] is 7 << endl;

for (int j = 0; j < i/working_points_.size () ; ++j) {

for (int k = 0; k < working_points_.size (); ++k) {
linear_constraints_.row(j)[k] = a[l]/scaling_factor_D|[

k1;

83

329

345

361

365

/lcout << 7 V<< all];
1++;
}
// cout << endl << "next ” << endl;
}
cout << ”linear_constraints is 7 << endl;
cout << linear_constraints_ << endl;

void GSS_Linear_Constraints :: transfer_value_to_bounding (QString
bounding) {

char x[1000];
double a[100];
std :: string stdstring = bounding.toStdString ()

const char * s = stdstring.c_str();
const char % sl = stdstring.c_str();
int i=0;

while (s—sl<stdstring .length () && sscanf(s, "%s”, x)){
s += strlen(x)+1;
ali++] = atof(x);
}
bounding_.setZero(i);
for (int j = 0; j < i 5 ++j) {
bounding_[j] = a[j];
for (int k = 0; k < working_points_.size (); ++k) {
bounding_[j] = bounding_[j] + scaling_factor_C [k]=*
linear_constraints_.row(j)[k];

}
}

std :: cout << "bounding is 7 << endl << bounding. <<endl;

void GSS_Linear_Constraints:: select_pattern(Settings :: Optimizer x*
settings) {

if (settings —>parameters () . pattern.toStdString () == "fast”){
pattern_= GSSPatterns :: fast_pattern (
actual_dimensions_for_each_point, (int)working_points_.size());
initial _pattern_= GSSPatterns:: fast_pattern (
actual_dimensions_for_each_point, (int)working_points_.size());

else if(settings —>parameters ().pattern.toStdString () == "
compass™){

pattern_= GSSPatterns:: compass_pattern (
actual_dimensions_for_each_point, (int)working_points_.size());

initial _pattern_= GSSPatterns:: compass_pattern (
actual_dimensions_for_each_point, (int)working_points_.size());

}
}

84

391

399

401

403

405

109

413

void GSS_Linear_Constraints :: set_spline_point_id_map_(Model::
Properties :: VariablePropertyContainer *variables) {

QHash<QUuid, Model:: Properties :: ContinousProperty *> x
Continous_Variables_;

Continous_Variables_. = variables —>GetContinousVariables () ;
vector<QString> wellname;

// find well name
for (QUuid key : Continous_-Variables_—>keys()){
// Continous_Variables_—>value (key)—>get_parent_well_name ()

if (Continous_Variables_—>value (key)—>isVariable () &&

std :: find (wellname . begin (), wellname.end() ,
Continous_Variables.—>value (key)—>propertylnfo () .parent_well_name) ==
wellname . end ()) {

cout << Continous_Variables_—>value (key)—>propertylnfo
() .parent_well_name.toStdString () << endl;

wellname . push_back ((QString &&) Continous_Variables.—
value (key)—>propertylnfo () .parent_well_name);

}

num_of_well. = (int)wellname.size ();

int spline_end[] = { 3001, 3001, 3001, 3002, 3002, 3002 };//
means {heel, heel, heel, toe, toe, toe}; see property.h

int coord[] = {4001, 4002, 4003, 4001, 4002, 4003};// means {x
, Y, Z, X, y, z}; see property.h

for (int i = 0; i < wellname.size () ; ++i) {
for (int j = 0; j < 6; ++j) {

for (QUuid key : Continous_Variables_—>keys ()){
if (Continous_Variables_—>value (key)—>propertylnfo

() .parent_well_name == wellname[i] &&
Continous_Variables_—>value (key)—>propertylnfo
().spline_end == spline_end[j] &&

Continous_Variables_—>value (key)—>propertylnfo
() .coord == coord[j{

spline_point_id_map_-.push_back(key);

}
}
cout << ”spline_point_id_-map_- is: 7 << endl;
for (int j = 0; j < spline_point_id_-map_.size(); ++j) {
cout << spline_point_id_-map_[j].toString ().toStdString ()
<< endl;
cout << Continous_Variables_—>value(spline_point_id_map_[]j
])—>propertylnfo ().parent_well_-name.toStdString () << endl

85

417

419

421

443

449

<< Continous_Variables_—>value(spline_point_id_map_[]j
]1)—>propertyInfo () .spline_end << endl

<< Continous_Variables_—>value(spline_point_id_map_[]j
])—>propertylnfo ().coord << endl;

}

void GSS_Linear_Constraints :: get_working_points (Model:: Properties
:: VariablePropertyContainer svariables) {

working_points_ = spline_point_id_map_;

QHash<QUuid, Model:: Properties :: ContinousProperty *> x
Continous_Variables_;

Continous_Variables_. = variables —>GetContinousVariables () ;

if (actual_dimensions_for_each_point == 2) {
for (QUuid key : Continous_Variables_—keys()) {
if (Continous_-Variables_.—>value (key)—>propertylnfo ().
coord == 4003) {
std :: vector<QUuid >::iterator position = std:: find(
working_points_.begin(), working_points_.end(),

key);
if (position != working_points_.end()) // ==
myVector.end () means the element was not found
working_points_.erase(position);
}

}

if (welltype. == Settings :: Optimizer:: WellType :: Vertical) {
for (QUuid key : Continous_Variables_—>keys()) {
if (Continous_Variables_—>value (key)—>propertyInfo ().
spline_end == 3002) {
std :: vector<QUuid >::iterator position = std:: find(
working_points_.begin(), working_points_.end(),

key);
if (position != working_points_.end()) // ==
myVector.end () means the element was not found
working_points_.erase (position);
}

}
}
cout << “working point is: 7 << endl;
for (int j = 0; j < working_points_.size(); ++j) {
cout << working_points_[j].toString ().toStdString () <<
endl ;

double GSS_Linear_Constraints ::scale_variable (double variable ,
double d, double c¢) {

86

459

465

4169

479

481

487

489

491

4199

501

505

50

509

double scaled_variable;
scaled_variable = d % variable + c;
return scaled_variable ;

double GSS_Linear_Constraints :: revert_scaled_variable (double
scaled_variable , double d, double c¢) {

double variable ;
variable = (scaled_variable — ¢) / d;
return variable;

void GSS_Linear_Constraints :: transfer_value_to_scaling_factor_D (
QString d) {

char x[1000];
double a[100];
std::string stdstring = d.toStdString ();

const char * s = stdstring.c_str();
const char % sl = stdstring.c_str();
int i=0;

while (s—sl<stdstring .length () && sscanf(s, "%s”, x)){
s += strlen(x)+1;
ali++] = atof(x);
std ::cout << "scaling_factor.D is 7 << endl;
for (int j = 0; j < i ; ++j) {
scaling_factor_D .push_back(a[j]);
std ::cout << 7 << aljl;
}

cout<< endl;

void GSS_Linear_Constraints :: transfer-value_to_scaling_factor-C (
QString ¢) {
char x[1000];
double a[100];
std::string stdstring = c.toStdString ();

const char * s = stdstring.c_str();
const char % sl = stdstring.c_str();
int i=0;

while (s—sl<stdstring .length () && sscanf(s, "%s”, x)){
s += strlen(x)+1;
ali++] = atof(x);

}

std ::cout << "scaling_factor_.C is 7 << endl;

for (int j = 0; j < i ; ++j) {

87

51

scaling_factor_C .push_back(a[j]);
std ::cout << 7 < aljl;
}

cout<< endl;

GSS_Linear_Constraints.cpp

88

o

30

36

o

Appendix

gss_patterns.hpp

[% ok ok ok ok ok ok ok ok ok ok ok ok oK oK oK oK oK oK oK oK oK ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok Rk kR kO ok ko kK kK ok ok ok ok K K
Created by einar on 11/21/16.
Copyright (C) 2016 Einar J.M. Baumann <einar.baumann@gmail .com>

This file is part of the FieldOpt project.

FieldOpt is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

FieldOpt is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with FieldOpt. If not, see <http ://www.gnu.org/licenses/>.
stk K o o ok sk ok ok KK o ok ok ok ok KK K ok ok ok ok ok KK sk ok sk sk ok KKK R ok sk ok ok ok KK s ok sk sk ok ok KK sk ok sk ok ok o Kk ok [
#ifndef FIELDOPT_GSS_PATTERNS_HPP_H
#define FIELDOPT_GSS_PATTERNS_HPP_H

#include <Eigen/Core>
#include <vector>

namespace Optimization { namespace GSSPatterns {
/%!
* @brief Get the set of search directions containing all
coordinate directions , bot positive and negative.
This is the set used by CompassSearch.

*
*

*

* For 2D, the set is:

« [1, O], [0, 1], [—1, O], [0, —1]
*
*

Which looks like +.

89

10

48

50

56

66

68

80

86

*
% @param num_vars The number of variables in the problem.

* @return The set of search directions in all coordinate
directions , positive and negative.
*/
inline std::vector<Eigen:: VectorXi> Compass(int num-vars) {

auto directions = std::vector<Eigen:: VectorXi>(2«num_vars);

for (int i = 0; i < num-vars; ++i) {
Eigen:: VectorXi dir = Eigen:: VectorXi::Zero(num_vars);
dir(i) = 1;
directions[i] = dir;
directions [i+num_vars] = (—1) x dir;

}

return directions;

inline std::vector<Eigen:: VectorXd> fast_pattern (int
actual_dimensions_for_each_well , int num._vars) {

if (actual_dimensions_for_each_well == 2){

auto pattern = std::vector<Eigen:: VectorXd>(num_vars/2x3);
for (int i = 0; i < pattern.size(); ++i) {

pattern[i] = Eigen:: VectorXd:: Zero(num-_vars);
}

for (int j = 0; j < num_vars/2 ; ++j) {
pattern[3%j][2%j] = 1;
pattern [3xj+1][2%j+1] = 1;
pattern[3xj+2][2%j] = —1;
pattern [3*j+2][2%j+1] = —1;

}

cout << "the fast pattern is 7 << endl;
for (int k = 0; k < pattern.size (); ++k) {

cout <<”Next” << endl << pattern[k] << endl;
}

return pattern;

else if(actual_dimensions_for_each_well == 3){

auto pattern = std::vector<Eigen:: VectorXd>(num_vars/3x4);
for (int i = 0; i < pattern.size(); ++i) {

pattern[i] = Eigen:: VectorXd:: Zero(num-_vars);
}

for (int j = 0; j < num_vars/3 ; ++j) {
pattern[4*j][3*j+2] = 1;
pattern[4xj+1][3%j+1] = 1;
pattern[4xj+1][3%j+2] = —1;
pattern [4%j+2][3%j] =

—_

90

96

98

100

102

104

106

108

110

116

118

128

140

144

146

}

inline

actual_dimensions_for_each_well ,

pattern [4xj+2][3*xj+2] = —1;

pattern [4%j+3][3*xj] = —1;
pattern [4%j+3][3*xj+1] = —1;
pattern [4%j+3][3*xj+2] = —1;

}

cout << "the fast pattern is 7 << endl;
for (int k = 0; k < pattern.size (); ++k) {

cout <<”Next” << endl << pattern[k] << endl;
}

return pattern;

std :: vector<Eigen :: VectorXd> compass_pattern(int
int num_vars) {

if (actual_dimensions_for_each_well == 2){
auto pattern = std::vector<Eigen:: VectorXd>(num_vars*2);
for (int i = 0; i < pattern.size(); ++i) {
pattern[i] = Eigen:: VectorXd:: Zero(num-_vars);
}
for (int j = 0; j < num-vars/2 ; ++j) {
pattern[4xj][2%j] = 1;
pattern [4*j+1][2%j+1] = 1;
pattern[4xj+2][2%j] = —1;
pattern [4*j+3][2%j+1] = —1;
}
cout << “the compass pattern is 7 << endl;
for (int k = 0; k < pattern.size(); ++k) {
cout <<”Next” << endl << pattern[k] << endl;
}

else

return pattern;

if (actual_dimensions_for_each_well == 3){

auto pattern = std::vector<Eigen:: VectorXd>(num_vars*2);

for (int i = 0; i < pattern.size(); ++i) {
pattern[i] = Eigen:: VectorXd:: Zero(num-_vars);

}

for (int j = 0; j < num-vars/3 ; ++j) {
pattern[6xj][3*j] = 1;
pattern[6%j+1][3%j+1] = 1;
pattern[6x%j+2][3%j+2] = 1;
pattern[6x%j+3][3xj] = —1;
pattern[6x%j+4][3xj+1] = —1;
pattern[6x%j+5][3%j+2] = —1;

}

91

148

158

160

}

cout << “the compass pattern is 7 << endl;
for (int k = 0; k < pattern.size(); ++k) {

cout <<”Next” << endl << pattern[k] << endl;
}

return pattern;

#endif //FIELDOPT_GSS_PATTERNS_HPP_H

gss_patterns.hpp

92

Appendix

Initial Well placement

COMPDAT

PROD-10 74 89 1 1 OPEN 1* 7.35869 0.1905 1* 1* 1*Z/
PROD-10 74 89 2 2 OPEN 1* 2.55659 0.1905 1* 1* 1*Z/
PROD-10 74 89 3 3 OPEN 1* 0.624908 0.1905 1* 1* 1* Z/
PROD-10 74 89 4 4 OPEN 1* 0.0011354 0.1905 1* 1* 1*Z/
PROD-10 74 89 5 5 OPEN 1* 18.4681 0.1905 1* 1* 1*Z/
PROD-10 74 89 6 6 OPEN 1* 13.0011 0.1905 1* 1* 1*Z/
PROD-10 74 89 7 7 OPEN 1* 0.216822 0.1905 1* 1* 1* Z/

93

94

Appendix

Optimized Well placement

COMPDAT

PROD-1063 87 1 1 OPEN 1* 516.131 0.1905 1* 1* 1* X/
PROD-10 64 87 1 1 OPEN 1* 368.414 0.1905 1* 1* 1* X/
PROD-10 65 87 2 2 OPEN 1* 431.684 0.1905 1* 1* 1* X/
PROD-10 66 87 3 3 OPEN 1* 314.849 0.1905 1* 1* 1* X/
PROD-10 67 87 3 3 OPEN 1* 150.664 0.1905 1* 1* 1*Z/
PROD-10 67 87 4 4 OPEN 1* 0.0044036 0.1905 1* 1* 1* X/
PROD-10 68 87 4 4 OPEN 1* 0.00346145 0.1905 1* 1* 1*Z/
PROD-10 68 87 3 3 OPEN 1* 147.863 0.1905 1* 1* 1* X/
PROD-10 69 87 3 3 OPEN 1* 23.5874 0.1905 1* 1* 1*Z/
PROD-10 69 87 2 2 OPEN 1* 173.423 0.1905 1* 1* 1* X/
PROD-10 70 87 2 2 OPEN 1* 253.454 0.1905 1* 1* 1* X/
PROD-1071 87 1 1 OPEN 1* 452.146 0.1905 1* 1* 1* X/
PROD-107287 11 OPEN 1* 171.94 0.1905 1* 1* 1* X/
PROD-1073 87 1 1 OPEN 1* 78.2168 0.1905 1* 1* 1* Z/
PROD-10 73 87 2 2 OPEN 1* 189.706 0.1905 1* 1* 1* X /
PROD-10 74 87 2 2 OPEN 1* 308.939 0.1905 1* 1* 1* X/
PROD-1075 87 2 2 OPEN 1* 45.6866 0.1905 1* 1* 1* X/

96

	Introduction
	Optimization Algorithm
	Constraint handler for feasible domain
	Contribution and Motivation of our work
	FieldOpt Platform
	Organization of this thesis

	Generating Set Search Theory and Constraint Handling Methodology
	Description of the algorithm
	Initializing the algorithm
	Generating Sets for Rn without constraints
	Update Formulas
	Successful and unsuccessful iterations
	Scaling factor
	Linear constraint handler
	Effect of the Linear Constraint handler
	The Process of Straightforward Construction of Gk

	Degenerate Case handler
	An illustrative example of degenerate case

	Summary of generating sets for Rn

	Implementation Details in FieldOpt
	Algorithm
	Miscellaneous
	Details of the input in the driver file

	Case Study
	Introduction of the two test reservoir models
	Expansion factor and contraction factor picking strategy
	Case Description
	Optimization Solution

	Comparison between two patterns
	Optimization Solution

	Optimization for two-dimensional model using GSS with linear constraints
	Linear constraints picking strategy
	An illustrated example
	Optimization Solution
	Comparison between all the cases
	Interpretation of the solution

	Optimization for three-dimensional model using GSS with linear constraints
	Case description
	Optimization without linear constraints and scaling factor
	Linear constraints and scaling factor picking strategy
	An illustrative example
	Optimization Solution

	Application of the Method for OLYMPUS Reservoir Model
	Description of OLYMPUS model for optimization challenge
	The optimization challenge of the model

	Optimization problem description
	Parameters for GSS algorithm
	Linear constraints
	miscellaneous

	Optimization results
	Interpretation of the results

	Summary and Recommendations
	Summary
	Recommendations for further work
	New way to define the location of a well
	More advanced degenerate case handler
	More algorithms to compare
	More search directions
	Parallel Computing

	Bibliography
	Appendices
	How FieldOpt Works
	Driver Files
	Optimizer
	Simulator
	Model
	Objective Function
	Constraints
	Bookkeeper
	The main Loop of Serial Runner

	An Example of the Driver File
	GSS_Linear_Constraints.h
	GSS_Linear_Constraints.cpp
	gss_patterns.hpp
	Initial Well placement
	Optimized Well placement

