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SUMMARY 

Numerical modelling of wave energy converters (WECs) is currently an area of interest 

within the marine renewable energy industry, due to its ability to streamline design processes 

and accelerate scientific understanding. The presented project investigates the capacity of 

linear potential flow theory to accurately model wave excitation of a 2D WEC buoy-section, 

identifying wave conditions under which computational fluid dynamics (CFD) become a more 

appropriate strategy.  

OpenFOAM® v1612+ is utilised to simulate fully non-linear, viscous wave-structure 

interactions for comparison with linear theory and experimental results. Regular waves are 

generated to study both fixed and floating body cases.  

Linear forces are compared with those computed during fixed body CFD simulations, the 

validity of which is investigated using wave flume experiments carried out in NTNU’s 

Ladertanken wave flume facility. Experimental and numerical results show reasonable 

agreement. 1st harmonic CFD forces compare well with linear forces in cases where 

overtopping is not observed. 2nd harmonic loads are shown to have significant contributions 

to total forces.  

Floating body CFD simulations are carried out allowing heave response displacements to 

be obtained for comparison with linear theory predictions. For the tested cases, responses are 

dominated by 1st harmonics, making comparison with linear theory particularly interesting. 

Good agreement is seen between linear theory and CFD for wave frequencies far from the 

natural frequency in heave, however divergence is seen for steep waves close to resonance 

where overtopping is extensive. 
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

With the world looking towards alternative energy solutions following the 1974 oil crisis, 

the first serious scientific attention was paid to harnessing the power of ocean waves. 

Numerical modelling techniques became vital in improving wave energy convertor (WEC) 

designs that had previously been based solely on analytical estimations, intuition and 

empirical experience. Such tools, many of which are still used today, aim to model wave-body 

interactions via predicting induced loads and structural responses.  

Since the 1970s, a variety of wave energy converter (WEC) concepts have emerged along 

with a plethora of numerical modelling techniques. WECs can be split into 3 main categories; 

oscillating water columns, overtopping devices and oscillating bodies, all of which may be 

fixed or floating structures. Oscillating water columns use wave elevation to compress air 

inside a chamber which in turn runs a bi-directional turbine generator, overtopping devices 

allow water to flow into a reservoir past conventional hydro turbines, while oscillating bodies, 

also called wave activated bodies, respond directly to wave motion, generating electrical 

power through power take off systems such as hydraulic actuators.  

The majority of marine hydrodynamic modelling techniques evolved to analyse offshore 

structures such as ships and oil platforms, but have since been applied to and adapted for 

WECs. (Folley, 2016) describes that up until 1997 all numerical models of WECs were based 

purely on linear potential flow theory and that today 90% still are. WAMIT, developed by 

Chang-Ho Lee and John Newman in 1987, is a commonly used wave-structure interaction 

code based primarily on linear theory, utilising a boundary element method (BEM) to solve 

potential flow problems in the frequency domain, offering fast computation times and results 

that have been validated extensively for a range of applications.  

As the WEC sector has developed the need for second generation design tools, capable of 

analysing nonlinear fluid effects commonly experienced under extreme wave conditions, has 

become apparent. Techniques that capture nonlinear effects are prevalent within the marine 
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industry, these include, weakly non-linear frequency domain methods based on expanding the 

perturbation series from which linear potential theory is derived, partially non-linear time 

domain approaches such as ACHIL3D, fully non-linear time domain potential flow codes as 

well as computational fluid dynamics (CFD), which possesses the ability to model fully 

nonlinear viscous flow problems.  

 A key challenge for the wave energy industry is to identify which numerical modelling 

techniques are most appropriate for each WEC design under specific environmental 

conditions. This is made particularly difficult due to the diversity in energy generation 

processes and the variety in wave characteristics to which WECs are exposed. For example, 

the most appropriate method for analysis of a WEC in its power production operational state, 

in which only small waves are present, is likely to be unsuitable for its survival mode in 

which it is exposed to severe sea states. Design tools based on fully non-linear methods are 

generally required for the latter, however it is of interest to examine to what extent simpler 

potential flow methods are acceptable for analysis of each WEC design. The presented project 

aims to contribute to the knowledge base regarding this topic for WECs that utilise heaving 

buoys to generate electrical power, such as point-absorbers (PAWECs) and floating 

oscillating water columns (FOWCs). (Ye Li and Yi-Hsiang Yu, 2012) describes PAWECs as 

one of the most cost-efficient technologies and that no one modelling method has been 

recognised as superior for all scenarios.  Whilst having many advantages in terms of 

computational cost, weakly nonlinear frequency domain potential flow methods, based 

fundamentally on linear theory, cannot produce accurate results for a number of key situations 

in which viscous and non-linear wave effects are prevalent. It is therefore important to 

thoroughly explore linear theory’s capabilities regarding the estimation of wave induced 

forces and responses for heaving buoys such that these methods can be used both safely and 

effectively.  
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1.2 CONTRIBUTION 

To aid in the development of PAWECs and FOWCs, linear theory’s capacity to model 

wave excitation of floating buoys is explored, with the main objective to investigate under 

which regular wave characteristics non-linear effects become substantial for a 2D heaving 

buoy, providing an indication of the limitations of current state of the art numerical modelling 

tools that are based on linear theory. For this, two main procedural steps are defined as 

follows:  

1. Analyse linear theory’s performance in computing wave-induced vertical forces 

on a fixed buoy by comparing linear theory with both experimental and CFD 

results. Specifically, assess 1st harmonic loads with reference to linear forces and 

evaluate the magnitude of higher order contributions.  

 

2. Analyse linear theory’s performance in predicting wave-induced heave responses 

of a floating buoy section by comparing linear response amplitude operators with 

those of CFD simulations.  

1.3  SCOPE  

Fixed cases simulations in procedural step 1 and floating case simulations in step 2 are 

performed using the open source CFD toolbox, OpenFOAM® v1612+. Regular waves of 

steepness 1/60, 1/45, 1/30 and 1/15, defined as wave height, 𝐻, divided by wave length, 𝜆, are 

tested for 0.8, 1.0 and 1.2 second periods in both cases, providing a large variety of conditions 

under which linear theory is examined. Experimental replication of the fixed case simulations 

is performed to assess the validity of numerical results. 

Vertical forces and motions are examined as they are of great significance to the 

power production of heaving buoy type wave energy converters. Horizontal effects are not 

considered. 

The 2D cross section of a cylindrical buoy is analysed, belonging to a FOWC design 

provided by Cruz Atcheson Consulting Engineers. A 3D approach has not been considered 

due to the extensive computational requirements involved.  
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1.4 REPORT STRUCTURE 

The remainder of the report is organised as follows 

• Chapter 2 identifies physical characteristics and phenomenon associated with wave 

excitation of marine structures related to heaving buoy type WECs and describes the 

fundamental principles of numerical modelling based on potential theory and CFD.  

• Chapter 3 provides the details of the presented problem, defining a coordinate system 

and describing the structural geometry. 

• Chapter 4 details the experimental method used to obtain wave induced vertical 

forces on the fixed WEC buoy structure. 

• Chapter 5 describes the numerical method employed for fixed and floating case 

simulations. Results from sensitivity studies used to determine computational 

parameters are presented at this stage. The chapter goes on to outline the linear force 

and response calculation procedure as well as specifying the post-processing 

techniques utilised throughout the project. 

• Chapter 6 presents results and provides discussion of linear theory’s performance in 

the given cases. 

• Chapter 7 draws conclusions from the project. 

• Chapter 8 offers recommendations for future work. 
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2 WAVE EXCITATION OF OFFSHORE STRUCTURES 

Heaving buoy type WECs installed in ocean environments are constantly exposed to 

waves with a large range of characteristics causing loads and responses of varying severity, in 

which linear and non-linear effects are present. The following chapter examines a selection of 

these effects and provides a brief explanation of numerical modelling techniques that are 

commonly used to capture them. As stated by (Henry et al., 2013), there is currently a “lack of 

empirical load data for wave energy converters, therefore knowledge and guidance must be 

drawn from other industries”, thus examples of wave excitation shall also be given regarding 

structures that relate closely to heaving buoy type WECs. 

2.1 HARMONIC WAVE LOADING 

As with all cyclical type loading, the total wave force experienced by a structure may be 

decomposed into its 1st and higher-order harmonic contributions, oscillating at integer 

multiples of the applied loading frequency. 1st harmonic forces are in phase with the 

fundamental frequency and are referred to as linear forces. In theory for low wave steepness 

one expects the 1st harmonic to completely dominate and thus the system behaves linearly. 

For high steepness waves the 2nd, 3rd and in some cases higher-order harmonics may carry a 

significant proportion of the total energy, inducing non-linear effects. In theory, potential flow 

methods are sufficient to model wave harmonics, as such wave effects are purely inertial. 

Linear codes have the ability to capture 1st harmonic force, however higher order 

contributions require non-linear modelling.  

The importance of higher harmonic behaviour is recognized throughout the marine 

industry. A typical example is for tension-leg platforms (TLPs), whose natural periods are 

generally between 1-4 seconds and are thus outside the appreciable incident energy spectrum 

but may be excited by the 2nd harmonic, as stated by (Kim, 1991). This may be in the form of 

springing, an oscillatory response caused by wave effects at sum frequencies (the 2nd 

harmonic), described thoroughly by (Srinivasan et al., 2011). Wind turbine foundations are 

composed of asymmetrical vertical cylinders similar to TLPs and can also experience 
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significant loading caused by higher-order harmonics. (Paulsen et al., 2014) explores the 

phenomenon of ringing, observed as a strong transient response triggered by large wave 

impacts. This is often attributed to the third harmonic force. Higher-harmonic load effects are 

also of key concern in the design of large slender hulled vessels; (Hänninen et al., 2016) 

explains the development of second harmonic springing loads on a large cruise ship. 

Modelling of high order harmonics is achieved either through nonlinear potential flow 

methods or using CFD. 

2.2 WAVE BREAKING AND VISCOUS LOADS 

Wave breaking here refers to overtopping and slamming caused by the presence of a 

body. Such effects are common when structures are exposed to waves of significant height as 

well as during significant body motion, for example when resonance occurs. Overtopping and 

slamming loads are highly non-linear in nature but as they are generally initiated in phase 

with the wave frequency they can have influence over 1st harmonic forces and response. Wave 

breaking requires highly accurate free-surface modelling and thus potential flow methods in 

which the free-surface is not discretized are insufficient. A common approach is to use surface 

capturing techniques such as the volume of fluid (VOF) method in combination with two 

phase CFD. 

Viscous forces arise primarily from flow separation within the boundary layers of 

offshore structures. This is caused by adverse pressure gradients caused by variation in body 

form, for example at sharp edges and along curved surfaces. Such effects may only be 

modelled by solving the Navier Stokes equations, which govern viscous fluid flows, using 

computational fluid dynamics (CFD), as described in the following section.  
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2.3 NUMERICAL MODELLING  

As hinted at in the introduction, there are two main schools of thought when it comes to 

numerical analysis of complex geometries within the marine hydrodynamics field. The first 

was born with the introduction of computers for engineering applications in the late 20th 

century, where numerical tools for hydrodynamic analysis of marine structures were 

developed based upon linear potential flow theory. Such tools show good agreement with 

experimental data for a wide range of applications and are highly valuable to the industry. 

Progress has been made in applying nonlinearity to potential flow models for many 

applications. 

As computational power has evolved new solution techniques have been developed, 

designed to model more thoroughly the physics of engineering problems. The second 

accepted norm relating to numerical marine hydrodynamics revolves around the use of such 

techniques to solve the fully non-linear Navier-Stokes (NS) equations, which model viscous 

fluid behaviour. There are no analytical solutions to the NS equations; they must be solved 

iteratively with numerical schemes. This process is known generally as computational fluid 

dynamics (CFD). 

The present section addresses the fundamental background to both potential flow 

methods and CFD as well as offering insight into the current state of numerical analysis for 

heaving buoy type wave energy convertors and related structures.  

2.3.1 Potential flow methods 

A potential or ideal flow is assumed to be incompressible (i.e. with constant density), 

irrotational (i.e. without vorticity) and inviscid (i.e. without viscosity). The need for mass 

continuity in a flow of constant density leads to the following equation, 

∇2𝜑 = 0 

 Where, 

• 𝜑: Velocity potential 

• ∇: Gradient operator 
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This is known as the Laplace equation and governs potential flow. Applying 

appropriate boundary and initial conditions, for a given engineering situation, on a domain 

governed by Laplace allows a boundary value problem (BVP) to be formulated in which the 

velocity potential, 𝜑, can be found.  

 The boundary conditions required for marine engineering problems comprise of; a 

kinematic condition, established on the bottom boundary such that water does not flow 

through it; a similar body impermeability condition ensuring no flow through the structure; a 

kinematic free-surface boundary condition to ensure that fluid particles on the free surface 

remain there; a dynamic free-surface condition prescribing fluid pressure to be equal to the 

ambient (atmospheric) pressure along the free surface and finally for a radiation condition in 

which waves are considered to be outgoing meaning that velocities tend to zero far from the 

body.  

In describing BVPs, the level of wave non-linearity captured by the model may be 

controlled. Fully non-linear models apply boundary conditions on the instantaneous free 

surface and wetted body. This is a demanding process and requires significant coding specific 

to a given geometry and problem. More commonly linear and weakly non-linear approaches 

are used in which the velocity potential, 𝜑, is expressed in terms of a power series in some 

parameter, 𝜀 , measuring the non-linearity in the system. This is known as a perturbation 

expansion and is shown below. 

𝜑 = 𝜑1̃𝜀 + 𝜑2̃𝜀
2 + 𝜑3̃𝜀

3… .= 𝜑1 + 𝜑2 + 𝜑3…. 

 Where, 

• 𝜑1: First order solution for velocity potential; proportion to 𝜀 

• 𝜑2: Second order solution for wave elevation; proportion to 𝜀2 

Etc. 

The main source of non-linearity in marine problems enters due to wave steepness 

thus the parameter commonly used is 

𝜀 =
𝜁𝑎
𝜆⁄  
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For linear and weakly non-linear methods, boundary conditions are applied at the 

mean free-surface and the mean wetted body rather than the instantaneous levels. This is 

achieved using Taylor series expansions around 𝑧 = 0. By substituting the perturbation series 

into the governing equation and boundary conditions and retaining terms of a desired level of 

non-linearity BVPs may be formulated for each solution order. Numerical approaches require 

discretization of these boundaries into finite elements for which individual solutions may be 

found. 

In solving linear potential flow theory, a description of the velocity potential which 

satisfies the linearized boundary conditions is found.  Methods based on such formulations 

can be used to model 1st harmonic wave loads which oscillate at the wave’s fundamental 

frequency. A solution for wave elevation may be found using the computed linear velocity 

potential in the dynamic free-surface boundary condition, this results in regular sinusoidal 

wave forms which replicate small steepness ocean waves. Under linear theory, forces induced 

by waves with constant length but varying amplitude can be calculated simply by scaling one 

known solution proportionally to the desired amplitude. However, an error exists within 

Linear theory as it assumes constant velocity potential between the mean free-surface and the 

free-surface level, meaning that under the wave trough hydrostatic and dynamic pressure do 

not cancel each other as required in the dynamic free-surface boundary conditions. This is of 

greater significant at high wave steepness and must be considered when scaling up forces. 

Weakly nonlinear methods solve both the linear and higher order boundary value 

problems. Through retaining higher order terms, the boundary conditions are more accurately 

satisfied and thus more of the physics occurring within the problem is modelled. Such 

methods have the ability to model the higher order harmonic contributions contained within 

wave loads. A 2nd order method based on perturbation expansions can in theory model the 2nd 

harmonic, a 3rd order formulation will resolve the 3rd harmonic and so on. Wave elevation 

results from weakly nonlinear methods effectively imitate the observed forms of ocean waves 

with steepness greater than those modelled by linear theory.  

Figure 1 below shows the wave characteristics that linear and weakly nonlinear 

potential flow theories can accurately model. Regions have been calculated by solving 

perturbation expansion BVPs without the presence of structural bodies. 
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Figure 1. Ranges of applicability for potential wave theories. Taken from (Le Mehaute, 2013) 

For all potential flow calculation, the acquired function 𝜑 is unique to the given 

engineering problem and can be used to find fluid velocities as well as pressure using 

Bernoulli’s equation, 

𝑝 = 𝑝𝑎 − 𝜌𝑔𝑧 − 𝜌
𝜕𝜑

𝜕𝑡
−
1

2
𝜌(∇𝜑)2 

 With, 

• 𝜌: Fluid density 

• 𝑝𝑎: Ambient pressure 

• −𝜌𝑔𝑧: Hydrostatic pressure 

• −𝜌
𝜕𝜑

𝜕𝑡
: Linear dynamic pressure 

• −
1

2
𝜌(∇𝜑)2:  Non-linear pressure term, which is disregarded when 

computing pressure under linear theory. 
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In weakly non-linear approaches, non-linear pressure terms are included once again 

through inserting perturbation expansions and retaining the desired higher order terms. 

Pressure forces on a marine structure can then be found simply by integrating the pressure 

over the its wetted surface as 

𝑭 = − ∫ 𝑝𝒏𝑑𝑆

𝑆𝐵

 

 Where,  

• 𝑆𝐵: Wetted body surface 

• 𝒏: Unit normal vector to the body surface, where positive direction is 

defined to be into the fluid.  

To analyse a floating structure’s seakeeping performance in waves using potential 

flow theory, two problems must be solved. Firstly, a diffraction problem in which the 

structure is fixed and the loads exerted on it by waves, known as excitation forces, are 

calculated.  

Excitation forces exerted on a fixed structure can be split into two categories, namely 

Froude-Krylov and diffraction forces. Froude-Krylov forces can be considered as the result of 

the flow associated with the incident wave trying to penetrate the structure with normal 

velocity, 
𝜕𝜑𝑜

𝜕𝑛
, where 𝜑𝑂  is the velocity potential of the incident wave. To ensure body 

impermeability the body presence causes a flow which can result in diffraction waves, 

described by the velocity potential 𝜑𝐷. This flow causes hydrodynamic loads, due to dynamic 

pressure changes on the body, called diffraction forces. Excitation forces are therefore given 

by  

𝑭𝒆𝒙𝒄 = − ∫ 𝑝𝑑𝑂𝒏 𝑑𝑆

𝑆𝐵

− ∫ 𝑝𝑑𝐷𝒏 𝑑𝑆

𝑆𝐵

 

 Where, 

• 𝑝𝑑𝑂: Dynamic pressure associated with incident wave velocity potential 
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• 𝑝𝑑𝐷: Dynamic pressure associated with velocity potential of the diffracted 

flow 

The first term on the right-hand side of the equation represents Froude-Krylov forces. 

The second term represents diffraction forces. 

Secondly, a radiation problem where the structure is given a prescribed motion and 

forces induced by the fluid on the structure are calculated. The problem is solved to find a 

velocity potential for the radiated flow, expressed as, 𝜑𝑅 . Radiation forces can then be 

calculated as  

𝑭𝒓𝒂𝒅 = − ∫ 𝑝𝑑𝑅𝒏 𝑑𝑆

𝑆𝐵

 

Radiation forces in phase with the body’s acceleration are known as added mass forces 

and those in phase with its velocity are wave damping forces. In uncoupled heave motion the 

radiation forces are given by 

𝐹𝑟𝑎𝑑,3 = −𝐴33�̈�3 − 𝐵33𝜂3̇ 

Where, 

• 𝐴33: Added mass coefficient in heave due to heave motion 

• 𝐵33: Wave damping coefficient in heave due to heave motion 

Such forces are dependent on body form and frequency of the applied oscillatory 

motion.  

The response of the floating structure to waves may then be found using Newton’s 

second law of motion 

𝑚�̈� =∑𝑭 = 𝑭𝒆𝒙𝒄 + 𝑭𝒓𝒂𝒅 + 𝑭𝒓𝒆𝒔𝒕 

𝑭𝒓𝒆𝒔𝒕is the restoring force vector caused by changes in buoyancy experienced during 

body motion. For small amplitude uncoupled heave motion, in which the WPA remains 

constant, 𝐹𝑟𝑒𝑠𝑡,3 may be expressed as 
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𝐹𝑟𝑒𝑠𝑡,3 = −𝐶33𝜂3 

 Where, 

• 𝐶33 : Linear restoring force coefficient in heave due to heave motion, 

computed as 

𝐶33 = 𝜌𝑔𝑊𝑃𝐴 

• 𝜂3: Heave displacement 

The equation of motion for uncoupled heave motion may then be formulated from 

Newton’s second law as 

(𝑚 + 𝐴33)�̈�3 + 𝐵33𝜂3̇ + 𝜌𝑔𝑊𝑃𝐴𝜂3 = 𝐹𝑒𝑥𝑐,3 

 Where, 

• 𝜂3̇: Heave velocity 

• �̈�3: Heave acceleration 

If radiation forces are known for the excitation force frequency then the heave 

response, 𝜂3 , can be computed by solving the ordinary differential equation above. 

Occasionally additional terms are included in the equation of motion to model some level of 

viscosity in the problem based on empirical expressions. With constant coefficients, the 

equation of motion may be solved in the frequency domain. On the other hand, if parameters 

vary as the body is excited the equation of motion must be solved in the time domain, i.e. 

solutions are computed at each time step in an iterative process. Partially non-linear time 

domain approaches utilise linear and weakly non-linear potential formulations for computing 

hydrodynamic forces but are solved in the time domain for the treatment of time dependent 

terms, such as time varying restoring forces; for floating non-moored bodies this can be 

caused by changes in wetted body form during motions. Fully non-linear methods follow a 

similar approach but solve BVPs with boundary conditions applied at instantaneous surfaces 

and require approaches in which the free-surface position and wetted body form is updated at 

each time step.  
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 A sizeable proportion of numerical software utilised in the marine industry use linear 

and weakly non-linear potential flow formulations to find velocity potential and perform 

frequency domain calculations to model floating interactions. WAMIT, developed by Chang-

Ho Lee and John Newman in 1987, and ShipX, created by MARINTEK in the late 1990s, are 

examples of such interaction codes. WAMIT is based on first and second order potential flow 

theory, utilising perturbation expansions of boundary conditions and pressure expressions. In 

modelling wave excitation of a floating structure WAMIT first solves a radiation problem 

where the body is forced to oscillate at the same frequency as the incident waves that it will 

subsequently be exposed to. Here the added mass and damping coefficients are obtained. A 

diffraction problem is then solved to calculate excitation forces and the equation of motion is 

solved in the frequency domain, producing a time series of the body’s response. Tools like 

WAMIT utilise BEMs, also called Panel methods, in which the mean wetted body boundary 

is discretized into a finite number of sections. Green’s function, given as equation (4.25) in 

(Faltinsen, 1993), is then applied to each section, describing a solution for 𝜑 represented by 

surface distributions of singularities over the discretised elements. The function is known to 

satisfy the environmental boundary conditions describing the domain of a linear potential 

free-surface flow problem. A solution is established by assigning strength factors to each 

singularity corresponding to the body’s boundary condition, a negative factor indicating a sink 

and a positive factor describing a source. The solutions for velocity potential are used to 

compute hydrodynamic forces within the radiation and diffraction problems. Green’s 

functions are only used to solve linear problems but can be coupled with higher order 

solutions found from perturbation methods. One of the key advantages of such linear and 

weakly non-linear potential flow tools is that solutions only need to be found on the mean 

body and free-surface boundaries, thus there is no need to discretize the surrounding fluid. In 

the case of linear solutions using Green’s functions only the mean body boundary requires 

modelling. This coupled with frequency domain solution procedures leads to very fast 

analysis, requiring little computational power.  

 (Ye Li and Yi-Hsiang Yu, 2012) describes how weakly nonlinear frequency domain 

BEM approaches, based on perturbation expansions with boundary conditions specified at the 

mean free-surface and body surface, have been used successfully to solve wave radiation and 

diffraction problems for floating bodies. For example (Cruz and Salter, 2006) obtained 

hydrodynamic coefficients based on linear potential flow theory for a modified version of the 
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Edinburgh Duck WEC using WAMIT. Comparison of response predictions with experimental 

work showed good correlation away from resonance frequencies but poor correlation around 

natural frequency, confirming limitations of linear theory. (McCabe et al., 2007) employed 

WAMIT to find linear hydrodynamic coefficients in order to estimate response of 

axisymmetric bodies in waves, which relate closely to heaving buoy type WECs. Higher order 

potential flow methods have been employed for modelling wave induced forces on vertical 

cylinders like in (Newman, 1996), which captured second order harmonic loads. A fully non-

linear approach has been utilised in (Bai and Taylor, 2006), successfully predicted non-linear 

irregular wave radiation of vertical cylinders. (Ferrant et al., 2003) managed to solve the 

diffraction problem in a similar way. 
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2.3.2 Computational fluid dynamics  

CFD aims to solve the mathematical expressions for the conservation laws of physics 

that govern viscous fluid flow and thus theoretically it can describe the physical reality of 

fluid problems. For hydrodynamic applications, we are interested in accurately calculating 

fluid velocities and pressures exerted on marine structures by their environments. With this in 

mind, CFD provides the ability to model real flow physics, such as viscous forces, wave 

breaking loads and fully nonlinear inertial effects experienced during wave-body interactions. 

Thus, in certain situations correctly implemented CFD will provide velocity and pressure 

results with superior accuracy to potential flow methods. However, the process is 

computationally exhaustive and should only be used when such effects are critical to 

engineering problems. 

Mesh based methods in which the fluid domain is discretised into control volumes are 

the most common CFD approaches and will be examined here.  

The need for mass conservation of a fluid in a domain gives rise to the first governing 

equation of any CFD model: the continuity equation. In integral form the continuity condition 

for a single control volume Ω reads 

∫
𝜕𝜌

𝜕𝑡
Ω

𝑑𝑉

⏟    
𝐼

+ ∫ 𝜌𝑼 ∙ 𝒏

𝜕Ω

𝑑𝐴

⏟        
𝐼𝐼

= 0 

 Where, 

• 𝐼: Rate of mass change inside control volume Ω 

• 𝐼𝐼: Net mass flow over control volume boundary 𝜕Ω 

• 𝑼: Velocity vector 

• 𝒏: Unit normal vector to the control volume boundary, where positive 

direction is defined out from the surface into the surrounding s fluid.  
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Water is almost perfectly incompressible meaning that density remains constant if the 

temperature is fixed, thus for marine applications the continuity equation becomes, 

∫ 𝑼 ∙ 𝒏

𝜕Ω

𝑑𝐴 = 0 

Newton’s second law of motion must also be satisfied within the system, that is the 

rate of change of momentum in a system is equal to the sum of the forces exerted upon it. 

Mathematically in integral Newton’s second law for a single control volume reads 

∫ 𝜌
𝜕𝑼

𝜕𝑡
Ω

𝑑𝑉

⏟      
𝐼

+ ∫ 𝜌𝑼𝑼 ∙ 𝒏

𝝏Ω

𝑑𝐴

⏟        
𝐼𝐼

= − ∫ 𝑝𝑼

𝜕Ω

𝑑𝐴

⏟      
𝐼𝐼𝐼

+ ∫ 𝝉 ∙ 𝒏

𝜕Ω

𝑑𝐴

⏟      
𝐼𝑉

+ ∫ ρ𝐟

Ω

𝑑𝑉

⏟    
𝑉

 

 With, 

𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 Where, 

• 𝐼: Unsteady temporal term expressing rate of momentum change inside 

control volume Ω 

• 𝐼𝐼 : Convective term showing momentum flow over control volume 

boundary 𝜕Ω 

• 𝐼𝐼𝐼 : Source term giving pressure force acting on control volume 

boundary 𝜕Ω 

• 𝐼𝑉 : Diffusive term showing viscous force acting on control volume 

boundary 𝜕Ω 

• 𝑉: Source term for external volume force on Ω 

• 𝝉: Viscous stress tensor 

• 𝐟: External force vector 

This equation which can be described as a general transport equation and provides the 

second governing equation for viscous incompressible fluid flows. It is known as the Navier-

Stokes momentum equation and can be split into three separate transport equations, one for 
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each velocity component. A third governing equation for viscous flows exists expressing the 

first law of thermodynamics which describes conservation of energy in the system. For 

marine applications, we are generally not interested in modelling properties such as 

temperature variation in the fluid thus the third governing equation is not explored here. 

Velocities and pressure may be calculated using only the first and second governing 

equations.  

The first step of any CFD calculation is always to discretize the solution domain into a 

meshed grid of control volumes, known as cells. The orthogonality of the grid should be 

considered as this can dramatically influence numerical performance. Meshes may be refined 

at points of interest were flow characteristics are likely to be more complex. To compute fluid 

flow variables on such a grid, CFD software such as OpenFOAM employs the finite volume 

method (FVM) in which the transport equations are conserved for each cell and thus 

transported quantities can be found at cell centroids. An advantage of FVM is that it allows 

for varied grids unlike the simpler finite difference method (FDM), thus control volumes can 

take any shape allowing CFD analysis within geometrically complex domains. One possible 

drawback is that FVM only has the capacity to model variation in a cell linearly unlike more 

complex methods like the finite element method (FEM). 

Within FVM, transport equations are discretized for each cell using a variety of 

numerical schemes. It should be noted that as these are second order equations, CFD 

practitioners should aim to use second order or higher discretization schemes to help achieve 

good accuracy. Firstly, the convective and diffusive terms are reformulated using Gauss’s 

theorem to convert volume integrals into surface integrals in a way that integration may be 

achieved by summing the fluxes at each cell face. Interpolation schemes are used to find the 

boundary flux values using centroid results. Such schemes should be selected with the aim of 

producing accurate non-oscillatory (bounded) solutions. Commonly however a balance must 

be struck between numerical stability and accuracy, as higher-order schemes are generally 

less stable. Total variation diminishing schemes help to reduce the oscillatory behaviour of 

higher order schemes and are generally an appropriate choice for convective fluxes. Source 

terms within transport equations are discretized into linear and non-linear contributions. This 

concept can model source terms exactly as long as they are constant or vary linearly with the 

transported quantity. Finally, the temporal term must be discretized. Again, many schemes 

exist, both implicit and explicit, with varying levels of stability and accuracy. 
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Turbulence must also be considered when setting up a CFD simulation. If turbulence 

were to be modelled completely the mesh would have to be refined down to the Kolmogorov 

length scale which represents the size of smallest possible eddy structure for the given flow. 

Solving the Navier Stokes equations directly with meshes at this scale is known as direct 

Navier Stokes (DNS) CFD, however this is impractical due to enormous computational 

requirements and is not considered for most cases. Instead a more common approach is 

Reynolds averaged Navier Stokes (RANS) CFD where average flow velocities are computed 

and additional transport equations are used to model turbulent fluctuations. RANS also 

includes specific treatment close to wall boundaries to estimate the effect of turbulent flow. 

Alternatively, if turbulent effects are deemed non-critical for a problem the Navier Stokes 

equations may be solved directly on a course grid, this is known as laminar modelling. 

Once each transport equation has been discretized they are rearranged into systems of 

linear algebraic equations, stored as matrices, describing the transported variables across the 

entire domain. Boundary and initial conditions are applied and the system is solved either 

iteratively or directly. For wave body interaction problems, as in potential flow methods, 

impermeability conditions are required on the body and domain bottom. The free surface is 

not considered as a boundary but as an interface between two flows with distinct phases.  

To model the free surface behaviour including wave breaking, interface capturing 

methods such as the volume of fluid (VOF) technique are a common choice. VOF uses phase 

fractions, α, to define the free-surface. In a general marine case; water has α equal to one and 

air is set to zero. Cells with a composition of water and air receive corresponding proportional 

alpha values between 0 and 1, this allows complex free-surfaces to be modelled without the 

need for a moving mesh, helping to reduce computational cost. A transport equation for α is 

established and treated in an analogous way to the NS momentum equation. The relative 

volume fraction of the two phases in each cell, α, can then be computed and used to express 

physical properties of the flow as weighted averages. With the free-surface established waves 

must be generated at an inlet boundary, a typical approach for this is prescribing fluid 

velocities at the boundary corresponding to the solutions of potential wave theories. 

Depending on the desired wave characteristics, the appropriate theory can be selected in 

accordance with le Mehaute’s work presented in figure 1. (Zhao et al., 2010) investigated 

extreme wave generation using the VOF method and produced promising results.  
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A solution algorithm is required in which the method used for calculating pressure 

based on velocity results is defined. Generally, this is achieved using an iterative process in 

which initial values for velocity and pressure are prescribed through initial conditions. 

Intermediate velocity values are then computed by solving the momentum equation for the 

current time step. These values are then used in a pressure correction equation based on the 1st 

governing equation, before the pressure value is updated. Additional transport equations are 

then solved with the corrected pressure and velocity terms. This process is iterated until 

convergence, determined by set tolerances, in solutions is achieved before moving onto the 

next time step. 

Finally, before simulations can be run a suitable time step should be selected. 

Alternatively, an adjustable time step can be used, controlled by a parameter known as the 

Courant or CFL number which describes the rate of information flow across a cell and has 

influences over accuracy and stability of calculations. For fluid motion in the x direction, it is 

defined as 

𝐶 =
𝑢∆𝑡

∆𝑥
 

The courant number should be set to improve stability, and thus convergence, of 

numerical schemes. For stability of some, mostly explicit, temporal schemes a condition of 

𝐶 < 1 is required such that information does not traverse more than one cell per time step.  

For marine applications in which structures response to wave-body interactions the 

body may be modelled in several ways. Immersed boundary methods can be used in which 

the fluid is given a Eulerian description with variables defined on fixed cartesian coordinates 

and the body boundary is defined by Lagrangian variables on a mesh that moves freely 

through the fixed cartesian grid. (Nematbakhsh et al., 2015) uses an immersed boundary 

method to investigate wave loads on a TLP wind turbine and compares with potential flow 

approximations. Showing good agreement at small wave heights. Alternatively, body fitted 

meshes can be used where the mesh is constructed around the structure, movement of the 

body is then achieved by morphing the shape of the mesh. To simulate floating responses 

specific boundary conditions can be applied on the body to induce mesh motion in accordance 

with hydrodynamic forces and the mass of the structure. For an example of a body fitted 

approach, (Chen et al., 2014) presents results for wave interaction with a vertical surface 
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piercing cylinder using OpenFoam’s default two phase solver InterFoam which utilises a 

body fitted mesh and the VOF method of free-surface tracking with a new boundary for wave 

generation and absorption based on the work of (Morgan and Zang, 2011, Morgan et al., 

2011) which reproduced experiments of the propagation of regular waves over a submerged 

bar, modelling up to the 8th order harmonics correctly. 

 In terms of CFD application to WECs there are a few notable examples of Navier-

Stokes type approaches being applied to model wave-structure interactions. (Yu and Li, 2011) 

performed a series of studies on a two-body heaving floating point absorber in operational 

wave conditions using RANS and VOF in StarCCM+.  (Elhanafi, 2016)performed similar 

analysis on a 2D OWC and found that non-linear loading is more prevalent in vertical forcing 

than horizontal for his OWC case. (Agamloh et al., 2008) used the finite volume RANS code 

COMET (by CD-Adapco) to model the single degree of freedom dynamics of a heaving buoy 

WEC system in waves. COMET is a fluid-structure interaction model, employing VOF and 

has been used widely and validated. (Henry et al., 2013) compared characteristic wave 

impacts on an oscillating wave surge convertor calculated using two CFD approaches, namely 

a VOF method using OpenFOAM and a meshless particle method known as smoothed-

particle hydrodynamics (SPH). Both VOF and SPH show 10% smaller amplitudes for flap 

motion compared to experiments. (Schmitt and Elsaesser, 2015) performed similar 

calculations using OpenFOAM’s InterDyMFoam multiphase dynamic mesh solver and 

(Schmitt et al., 2012) highlights the problems faced when applying linearized potential flow 

codes such as WAMIT to the same case. (Iturrioz et al., 2015) provides a validation of 

OpenFOAM’s Interfoam multiphase static mesh solver using wave generation and active 

absorption boundary conditions, based on the work of (Higuera et al., 2013), for simulation of 

a fixed detached 3D oscillating water column device, finding that “the model was proven to 

be able to reproduce the complex dynamics involved in an OWC device”. 
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3 STRUCTURAL GEOMETRY AND COORDINATE SYSTEM 

Figure 2 presents the WEC buoy 2D cross-section that is subject to hydrodynamic 

analysis in the presented project. Geometric details have been provided by Cruz Atcheson 

Consulting Engineers (www.cruzatcheson.com). The structure makes up a floating oscillating 

water column’s (FOWC) cylindrical top-section that is positioned on the free-surface, thus 

experiencing a major share of the FOWC’s total hydrodynamic loading, making it of 

significant interest for analysis. In the following work the buoy has been modelled as a closed 

structure in which the air chamber is not considered. 

Full scale dimensions are given on the right-hand side of the figure and 1/20 scale model 

dimensions are shown on the left. A coordinate system definition is provided in which 

positive direction is indicated by each arrow’s orientation.  

 

Figure 2. LHS: Full scale buoy geometry in metres, RHS: 1/20 model scale geometry in metres 

The presented model scale dimensions are applied throughout the project in both 

numerical simulations and experimental tests. During analysis, the model is position on the 

free-surface with a draught of 0.189m. 

x 

z 
y 

http://www.cruzatcheson.com/
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It is useful at this point to define the buoy’s leading edge, which is to be used for 

reference in the following sections. The term refers to the buoy’s vertical left side spanning 

0.21m. During analysis, the leading edge is tangential to the mean free-surface and exposed to 

incident waves propagating in the positive x direction. 
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4 EXPERIMENTAL METHOD 

The presented laboratory test, completed in NTNU’s Lader Tanken wave flume, is used 

to analyse the validity of wave induced heave forces calculated during numerical analysis.  A 

high level of accuracy in experimental results is therefore fundamental for effective 

validation. The following section outlines the experimental method employed to obtain the 

vertical forces induced on a 1/20 scale model of the WEC buoy cross-section by waves of 

varying period and steepness. Both forces and wave elevation are measured to allow for 

comparison between experimental fluid dynamics (EFD) and CFD for the given problem. 

It must be noted that the Lader Tanken facility is maintained by SINTEF Ocean, who 

have assisted in the experimental set-up and operation. 

4.1 SET UP AND STRATEGY 

4.1.1 Model specifications, tank parameters and instrumentation 

A 3D representation of the 1/20 scale buoy cross-section has been constructed by 

SINTEF Ocean as a 59cm extrusion of the cross section in the y axis. Model dimensions, in 

millimetres, are provided in figure 3. 

 

Figure 3. Model dimensions in mm 

y 

z z 

x 
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The model is fastened, at a distance from the wave maker paddle in its upright position 

to the leading edge of 6.4m in x, using a custom-made rig ensuring no lateral, vertical or 

rotational movement, as shown in figure 4. A zero-heel angle and a draught of 189mm is 

imposed. 

 

Figure 4. Experimental rig 

Lader Tanken measures 13m in length, 0.6m in width and has been filled to a water 

depth of 1m. A wave dissipation beach is set up 5m behind the rear edge of the model to 

eliminate interference from waves reflected off the back end of the tank. 

Vertical forces induced on the model are measured by a force transducer that connects 

the model to the rig. The transducer consists of strain gauges arranged in a Wheatstone bridge 

configuration. When the force is applied to the system, one strain gauge will be elongated on 

one side of the rod while the other is compressed on the other side, this introduces unbalance 

resistance in the bridge and voltage can be measured at the exit. A sampling frequency of 200 

per second is used.  
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Positioning of the vertical force transducer is presented in figure 5. 

 

Figure 5. Vertical force transducer 

Three wave probes are positioned in the tank observing wave elevation close to the 

model and to the wave maker, as detailed in table 1.  

Table 1. Wave probe positions 

Wave 

probe 

Distance from leading edge 

in x-direction, [m] 

Distance from tank 

centreline in y-direction, [m] 

wp1 -0,50 -0,10 

wp2 -0,50 0,10 

wp3 -4,00 0,00 

 

  

Vertical force, 𝐹𝑧 , 

transducer 
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Wave probes one and two are depicted in figure 6. 

 

Figure 6. Wave probes at -0.5m 

It is required that variation of wave effects is negligible across the tank in the y 

direction so that experimental results may be compared with the 2D numerical simulations 

after scaling. Wp1 and wp2 are used to test this assumption. 

The wave maker consists of a single flap hinged at 120mm above the tank bottom and 

produces regular waves that propagate in the positive x-direction. A generation program, 

coded in MATLAB, is used to produce the required input data for the wavemaker. It is useful 

at this point to introduce some of the fundamentals on which the wave generation script is 

based. 

4.1.1.1 Wave maker theory 

(Dean and Dalrymple, 1991) reasons that wave motion induced by a wave maker and 

the power required may be determined from linear potential wave theory via solving a 

boundary value problem (BVP) in which an additional kinematic condition is satisfied on the 

wave maker at x equals zero. All other boundary conditions remain as in linear potential flow 

theory for marine applications, described in section 2.3.1, including a radiation condition far 

from the body in x. 

A single flap wave-maker is utilised in the presented experiment which requires a 

specific boundary condition. After solving the BVP for velocity potential, 𝜑, an expression is 

wp1 & 

wp2 
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determined for the wave elevation produced by the wave maker. The ratio between wave 

height produced and stroke of the flap, 𝐻 𝑆⁄ , can be found, providing the key information 

required for operation. For a single flap in water depth ℎ, hinged at a distance ℎ𝑤𝑚 below the 

free-surface at 𝑧 = 0 the 𝐻 𝑆⁄  ratio  for a wave with wave number 𝑘 is defined by (Hughes, 

1993) as, 

𝐻
𝑆⁄ =

4sinh(kh)

sinh(2𝑘ℎ) + 2𝑘ℎ
[sinh(𝑘ℎ) +

cosh(𝑘(ℎ − ℎ𝑤𝑚)) − cosh(𝑘ℎ)

𝑘ℎ𝑤𝑚
] 

The wave generation script used in the presented experiments utilises this relation to 

set the flap motion to produce the desired wave heights. As stated by (Dean and Dalrymple, 

1991), “wave maker theory has been developed assuming both small-amplitude motions of 

the paddle and small wave heights”, thus for high steepness waves there is a level of 

unpredictability in the generated wave forms. A mechanical transfer function, developed from 

previous empirical experience, is therefore implemented to fine tune the flap motion such that 

it produces the desired wave heights for the specific tank and wave maker.   

4.1.2 Calibration 

Data acquisition sensors and transducers must be correctly calibrated i.e. the voltage 

induced in the sensors corresponds to the unit measured by means of an accurate calibration 

factor. The exact relationship between output signals and the known physical properties must 

therefore be found. 

A generalized procedure for calibration is summarized below: 

• A zero measurement is taken when the sensor is at its neutral position and is not 

disturbed by any environmental changes. 

• Several different known values are set, the resulting voltages induced by the sensor 

are plotted graphically.  

• The relationship between the known values and the voltage measured is given by the 

trend of several measurements. Calibration factor, 𝐶 [𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑡⁄ ] , may then be 

obtained as the gradient of the line plot and logged in the data acquisition.  
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The vertical force transducer has a known calibration factor of 49.53 Newtons per volt 

measured, with a sensitivity equivalence of 3 millivolts per 1 volt. It is considered stable and 

has been used effectively in recent experiments, thus re-calibration was not carried out.  

The wave probes have also been used effectively in recent experiments, however their 

calibration had to be checked. This was achieved by taking a zero measurement then raising 

the probes onto blocks of 49mm height. The measured change in height was within the 

allowable range of 49 +/- 1.5%, thus re-calibration was not required. 

Calibration of the wave maker is achieved using the mechanical transfer function 

described previously. Due to the limited time frame of the experimental work, re calibration is 

not attempted, however wave making performance is assessed during analysis of wave 

elevation results.  
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4.1.3 Testing strategy and methodology 

Four tests are carried out involving three wave periods. Each test consists of four runs 

with the same period but varying heights incorporating a steepness range from calm to storm 

conditions. Test details are provided by table 2, in which model and full-scale wave 

characteristics are provided. 

 Table 2. Tested wave characteristics 

 

Tests 1 and 1a are identical, permitting experimental precision to be briefly examined 

in the following section.  

Before each test, 30 second zero-setting measurements are taken such that constant 

environmental conditions are neglected, making results from all tests comparable.  

Each run consists of 3 ramp-up, 19 regular and 3 ramp-down periods. Time has been 

given between runs allowing the tank to settle. 310 seconds has been utilised, yielding very 

small amounts of free-surface disturbance at the start of each run. 

  

Wave 

period, T 

[secs]

Full scale 

T [secs]

Wave 

steepness, 

H/λ 

Wave 

number, 

k

Full scale 

k

Wave 

length, λ 

[m]

Full scale 

λ [m]

Wave 

height, 

H [m]

Full scale 

H [m]

1/60 6,288 0,314 0,999 20,010 0,017 0,333

1/45 6,288 0,314 0,999 20,010 0,022 0,444

1/30 6,288 0,314 0,999 20,010 0,033 0,666

1/15 6,288 0,314 0,999 20,010 0,067 1,332

1/60 4,027 0,202 1,560 31,182 0,026 0,520

1/45 4,027 0,202 1,560 31,182 0,035 0,693

1/30 4,027 0,202 1,560 31,182 0,052 1,040

1/15 4,027 0,202 1,560 31,182 0,104 2,080

1/60 2,815 0,141 2,232 44,688 0,037 0,744

1/45 2,815 0,141 2,232 44,688 0,050 0,992

1/30 2,815 0,141 2,232 44,688 0,074 1,488

1/15 2,815 0,141 2,232 44,688 0,149 2,976

T
e
st

 3

1,20

T
e
st

 1
 &

 1
a

0,80

T
e
st

 2

1,00

3,58

4,47

5,37
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4.2 EXPERIMENTAL PRECISION, WAVE MAKER PERFORMANCE AND FREE 

SURFACE VARIATION IN Y 

The following section utilises results from 0.8s period waves to investigate 

experimental precision as well as two additional factors, namely wave maker performance, 

affecting accuracy of the experimental forces, and free-surface variation in y which affects the 

ability to make comparisons between experimental results and numerical work.  

Wave induced vertical force time series for tests 1 and 1a are presented in figure 7, 

providing an indication of experimental precision.  

 

Figure 7. Test 1 & 1a wave induced heave forces 

Very little discrepancy is seen between the results of the two tests. Time series 

variations are replicated almost exactly, indicating an appropriate level of experimental 

precision.  
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 Wave elevation at wp3 is compared for tests 1 and 1a in figure 8. This serves to 

examine experimental precision as well as wave maker performance.  

 

Figure 8. Test 1 & 1a  free-surface elevation at -4m from leading edge  

 Again, good agreement is seen between the results of test 1 and 1a. Table 3 provides 

the average wave heights produced by the wave maker within steady state regions between 4 

and 11 seconds, in which wave reflection from the body is yet to affect the free-surface 

elevation. For accurate wave induced forces, this measured average wave height should be as 

close as possible to the set theoretical heights: also included in table 3.  
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Table 3. Wave maker performance at 0.8 second T 

 

 One observes close agreement between the measured values of test 1 and 2, hinting at 

good experimental precision. The measured values are also very close to the theoretical 

heights for the 1/60, 1/45 and 1/30. Wave making performance slightly reduces for the steeper 

1/15 waves; with an average discrepancy between measured and theoretical heights of 8%.  

It is also important to investigate the variation of wave elevation in the y-direction thus 

wp1 and wp2 data from test 1 are presented in figure 9. 

 

Figure 9. Free surface variation at -0.5m from leading edge  

Test 1 Test 1a

1/60 0,017 0,016 0,016

1/45 0,022 0,022 0,021

1/30 0,033 0,033 0,032

1/15 0,067 0,061 0,062

Set wave 

height, H [m]

Average measured wave 

elevation [m]
Wave 

steepness, 

H/λ 
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 Differences are quantified in table 4 where average heights measured by wp1 and wp2 

are compared for steady state regions between 6 and 15 seconds. 

Table 4. Free-surface y-variation for test 1 

 

Negligible variation is seen at wp1 and wp2, positioned at -0.1 and 0.1m in y from the 

tank centre line respectively, thus it is assumed that wave elevation is constant in y during test 

1. This helps to confirm that scaled experimental results are comparable to the those produced 

by 2D numerical simulations. 

 

wp1 wp2

1/60 0,032 0,032

1/45 0,042 0,041

1/30 0,064 0,062

1/15 0,130 0,130

Wave 

steepness, 

H/λ 

Average measured wave 

elevation [m]
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5 NUMERICAL METHOD 

Fixed and floating case CFD simulations are carried out by means of parallel 

computation on four Intel® Xeon® CPU E5-2630 v3 @2.40GHz cores using the open source 

software OpenFOAM® v1612+: developed and released by OpenCFD Ltd. OpenFOAM 

employs the finite volume method (FVM) for modelling viscous fluid flows, for details on the 

fundamentals of this approach the reader should refer to section 2.3.2 in chapter 2. 

For all the presented numerical work, air and water phases are defined as Newtonian 

fluids with kinematic viscosities of 1.48×10−5and 1×10−6 𝑚2/𝑠   and densities of 1 and 

1000 𝑘𝑔/𝑚2 respectively.  

Turbulence modelling is not performed as turbulent effects are assumed to be 

insignificant for the given cases. The main effect of turbulence is the variation of flow 

separation point positions on the body, this is of concern for curved structures such as 

cylinders. For sharp cornered structures such as the geometry in question, separation points 

are always at corners. Excluding turbulence models results in laminar computations, in which 

direct Navier Stokes solutions are found at low resolution. Details are not modelled down to 

Kolmogorov scale as in DNS type CFD but the approach is identical.  
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5.1 FIXED CASE SIMULATIONS  

Replication of the experimental work using OpenFOAM is undertaken. Simulation of 

regular gravity waves incident to a fixed structure requires a static two-phase solver. For this, 

OpenFOAM’s default multiphase solver, InterFoam, is employed, in a similar fashion to 

(Chen et al., 2014), (Iturrioz et al., 2015) and (Diz-Lois Palomares, 2015).   

Twelve wave forms are simulated, reproducing tests 1, 2 and 3 of the experiments. To 

recap, test 1 uses 0.8s period waves, test 2 uses 1.0s and test 3 uses 1.2s. Every test includes 

runs of wave steepness 1/60, 1/45, 1/30 and 1/15. The total time of each numerical run is 

calculated as 30 times the wave period. Forces induced on the body are computed through 

pressure integration using OpenFOAM’s forces function object in which density of the fluid 

has been set at 1000𝑘𝑔/𝑚3 . For simulation control an adjustable time step is utilised, 

determined by a maximum allowable Courant number of 0.65.  

5.1.1 Numerical schemes and solution algorithms 

InterFoam is designed for unsteady, incompressible multiphase problems and utilises 

the VOF free-surface tracking technique. The solver adopts the PISO algorithm, in which 

pressure is linked to velocity using a modified Poisson equation, representing mass continuity 

within the system and the 1st NS governing equation. Two separate pressure and velocity 

corrections are made per iteration of the PISO algorithm loop.  

Appropriate numerical schemes must be chosen for the discretization of the NS 

momentum equation plus the transport equation for the fluid phase fraction, α. Time 

discretization schemes, ddtSchemes, are required for the temporal terms. Divergence schemes, 

divSchemes, are required for the convective terms. Gradient and Laplacian schemes, 

gradSchemes and laplacianSchemes, are needed to model the diffusive terms. Interpolation 

schemes, interpolationSchemes specify how transported property values at cell faces are 

evaluated and finally for discretization of surface normal gradients, snGradSchemes, are 

required. 

In the presented project, all numerical schemes except for divSchemes and ddtSchemes 

are kept as the defaults provided in InterFoam wave based tutorials. Defaults include second 
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order gradSchemes, laplacianSchemes, interpolationSchemes and snGradSchemes. A further 

explanation of the choices available for OpenFOAM’s divSchemes is given below.  

For convective fluxes, i.e. divSchemes, a first order scheme exists called the upwind 

method, this is very stable and outputs bounded (non-oscillatory) solutions, however it is 

inaccurate due to high levels of numerical diffusion. Linear or central differencing is second 

order accurate but generates oscillatory solutions. The linear upwind method is also second 

order accurate but more stable, only becoming unbounded in highly convective flows where 

there are strong gradients. Total variation diminishing (TVD) methods, such as VanLeer and 

SuperBee apply slope limiters to the linear upwind method that switches the method to the 

first order upwind method when strong gradients are detected, helping to prevent oscillatory 

solutions. For initial simulations, the linear upwind method is selected for the convective 

terms in the NS momentum equation and the TVD VanLeer method is used for convective 

terms in the phase fraction transport equations. 

When using the solver InterFoam for transient simulations, two choices are available 

for discretization of the temporal term, i.e. ddtSchemes. There is the first-order accurate 

implicit Euler method which has been utilised in the presented project and the second-order 

implicit Crank Nicolson method. Both produce bounded solutions. Theoretically Crank 

Nicolson should produce more accurate solutions but can be very unstable and requires an 

off-centring coefficient which blends the two methods together. It should also be noted that 

some important features of the InterFoam’s VOF implementation are not possible when using 

Crank Nicolson such as sub-cycling: a form of temporal filter to improve stability. For initial 

simulations Euler’s method is selected for temporal discretization.  

With the transport equations appropriately discretized and applied to each control 

volume, they must be organised into large matrices describing the whole domain to which 

boundary conditions are numerically implemented, enforcing the physical characteristics of 

the simulation. To solve the linear systems of equations a range of algorithms exist. For the 

presented simulations a generalised geometric-algebraic multi-grid method, GAMG, has been 

selected for the symmetric pressure matrices. The preconditioned biconjugate gradient solver, 

PBiCG, is chosen for the asymmetric velocity matrices. A custom solver incorporating Gauss 

Seidel’s iterative method for linear systems is utilised for the α matrices.  
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5.1.2 Computational domain and boundary conditions 

A body fitted mesh approach is applied to model the 1/20 scale buoy geometry within 

a computational domain. The buoy structure has been developed in Autodesk Inventor CAD 

software and exported as an STL file. OpenFOAM’s built-in complex meshing tool, 

snappyHexMesh, is used to construct a mesh around the input geometry file. snappyHexMesh 

generates 3D meshes by splitting a background mesh, containing cells with aspect ratio 1, 

around the geometry. Cells within the body are removed and those along structural edges are 

distorted to snap onto the body. As the presented project involves 2D simulations, an 

extrusion is taken of the domain’s centreline plane with a thickness of 0.01m in the y 

direction. One cell is used for this extrusion, as is the general approach for 2D modelling in 

OpenFOAM.  

The domain is created with an initial span of 10m in x and boundaries are assigned as 

in figure 10. The WEC buoy-section is positioned on the free-surface with a draught of 

0.189m in a water depth of 1m, thus replicating the experimental wave flume set-up.  

 

Figure 10. Numerical domain and boundaries 

Initial mesh refinement is applied along the free-surface and around the body, as 

displayed in figures 11 & 12.  

 

Figure 11. Mesh refinement along free surface region 
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Figure 12. Mesh refinement around body 

 Table 5 provides the boundary conditions applied to the computational domain plus 

their initial values at 𝑡 = 0 . The internal cells must also be assigned initial values. For 

pressure and velocity zero values are set throughout the domain. Phase fraction values are 

applied using the setFields utility to define the initial free surface position, with values of one 

below and zero above. 

Table 5. Fixed case boundary conditions 

 
 

Empty conditions are used for patches whose plane is normal to the y direction and 

require no solution in 2D simulations. A no slip condition on the lower wall and body, 

consistent with viscous flow theory, are enforced. Wave generation and active absorption is 

Velocity, U Pressure, P
Phase 

fraction, α

BC              BC BC

Body Wall
fixedValue 

uniform (0 0 0) 
zeroGradient zeroGradient

Inlet Patch
waveVelocity 

uniform (0 0 0)

fixedFluxPressure 

uniform (0)

waveAlpha 

uniform (0)

Outlet Patch
waveVelocity 

uniform (0 0 0)

fixedFluxPressure 

uniform (0)
zeroGradient

Lower wall Wall
fixedValue 

uniform (0 0 0)

fixedFluxPressure 

uniform (0)
zeroGradient

Atmosphere Patch

pressureInletO-

utletVelocity 

uniform (0 0 0)

totalPressure 

uniform (0)

inletOutlet 

uniform (0)

Front and 

Back
Empty empty empty empty

Boundary 

field

Boundary 

type
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achieved through the waveVelocity and waveAlpha BCs: developed at the Environmental 

Hydraulics Institute, IHCantabria and described in (Higuera et al., 2013). Velocity is 

prescribed corresponding various wave theories. The appropriate theory must be selected in 

accordance with figure 1: taken from (Le Mehaute, 2013). Only Stokes’s wave theories, up to 

5th order, are used in the presented simulations. Examples involving successful 

implementation of these wave generation and absorption BCs are given in (Iturrioz et al., 

2015) and (Diz-Lois Palomares, 2015).  

5.1.3 Sensitivity studies 

With the initial set-up defined it is important to investigate the sensitivity of certain 

parameters fundamental to accurate CFD simulations, namely the mesh characteristics, 

domain span as well as the choice of convective and temporal discretization schemes. 

Multiple simulations of the 0.8 second period wave with 1/60 steepness are performed, in 

which these parameters are varied. It is envisaged that results from the presented studies are 

representative across the test range however this has not been verified due to time restrictions 

on the project. 

5.1.3.1 Mesh study 

Six meshes have been constructed using snappyHexMesh with a background mesh 

made up of 0.05𝑚 × 0.05𝑚 square cells. Different levels of refinement are applied to the 

free-surface and body region for each mesh. A level 1 refinement of a background mesh cell 

involves halving the height and width, thus 4 refined cells take up the space of one original 

cell. Table 6 gives the mesh characteristics tested for the 0.8T0.017H 1/60 steepness case. 

Table 6. Mesh characteristics 

Mesh 
Refinement 

along FS 

# cells 

per H 

# cells 

per λ 

Refinement 

around 

body 

# cells over 

leading edge 

1 Level 1 0,68 39,97 Level 2 17 

2 Level 2 1,36 79,94 Level 2 17 

3 Level 2 1,36 79,94 Level 3 34 

http://www.ihcantabria.com/en/
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4 Level 3 2,72 159,87 Level 3 34 

5 Level 3 2,72 159,87 Level 4 68 

6 Level 4 5,44 319,74 Level 4 68 

Figure 13 below presents the vertical wave induced forces measured on the structure 

during simulations with the six alternative meshes. By-pass filtering is applied to the force 

data, removing high frequency noise as well as mean loads, so that experimental and 

numerical results may be easily compared. This is necessary as the forces function object has 

been used to compute total force whereas hydrostatic pressure force was removed from 

experimental data during zero-setting procedures. This filtering involves fast Fourier 

transforms of the force time series, cut-off frequencies are then applied before the filtered 

frequency spectrum is subjected to an inverse Fourier transform, resulting in a filtered time 

series. Cut off frequencies are taken as 0.1 and 4 times the wave frequency, retaining those in 

between. 

 

Figure 13. Mesh study- Heave forces  
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Taking the average heights within the steady state region of 12 to 19 seconds and 

comparing them with the experimental value in table 7 helps to quantify differences between 

meshes. 

Table 7. Mesh study- Average force values 

 

Experimental Mesh 1 Mesh 2 Mesh 3 Mesh 4  Mesh 5  Mesh 6 

Average 

force 

oscillation 

height [N] 

0,0854 0,0587 0,0714 0,0736 0,0794 0,0804 0,0824 

 One sees significant improvement in the mesh’s ability to reproduce the experimental 

measurement for those with refinement of level 3 and above on the body and free-surface, i.e. 

meshes 4, 5 and 6, all of which produce average heights with a discrepancy of less than 10% 

of the experimental result. This is a good indication that the numerical results have a level of 

validity. Mesh 4 yields a force value within 7% of the measured experimental result, mesh 5 

gives 6% and mesh 6 is clearly the most effective with a discrepancy of only 4%, however 

additional factors must be considered before final selection. 

It is of interest to examine the wave modelling capabilities of each mesh. As in the 

experimental procedure, wave elevation is probed at -0.5m and -4m in x from the leading 

edge of the model. Figure 14 presents wave elevation at -4m which corresponds to wp3 in the 

experimental tank, thus results are compared with experimental data. 
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Figure 14. Mesh study- Wave elevation at -4m 

Average wave heights within the steady state region of 5-12s are taken and presented 

in table 8. The theoretical wave height is provided for reference, as in the steady region wave 

reflection from the model is yet to take effect and thus accurate elevation data should compare 

well. 

Table 8. Mesh study- Average wave heights 

 

Theoretical Experimental Mesh 1 Mesh 2 Mesh 3 Mesh 4  Mesh 5  Mesh 6 

Average 

wave 

height [m] 

0,0167 0,0159 0,0131 0,0147 0,0149 0,0155 0,0157 0,0160 

Again, we see good agreement between the experimental measurement and the 

numerical results. Less than 10% discrepancy is seen for meshes 2-6. Meshes 4, 5 and 6 are 

however superior and produce results within 10% of the theoretical value, with mesh 6 

actually outperforming the wave makers ability to reproduce the set wave characteristics 
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during wave flume experiments. The meshes ability to reproduce the desired wave elevation 

seems to be consistent with its ability to replicate experimental forces.  

A mesh must be chosen such that it induces as little numerical damping of the waves 

as possible. Wave elevation is sampled during each simulation within the mesh study at -4m, -

3m and -2m. The difference between steady state solutions at these points is obtained and an 

average of the two values is taken to find a value for numerical wave damping per metre. 

Table 9 displays such values as percentages of the theoretical wave height. 

Table 9. Mesh study- Wave damping  

 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 

Average numerical 

damping of waves per 

meter                        

[% theoretical height] 

7,78 6,23 3,51 2,63 2,16 2,18 

Convergence in numerical damping results occurs for meshes 5 and 6, meaning that 

there is no advantage gained using mesh 6. Only a small improvement is seen between 

meshes 4 and 5.  

It is also crucial to consider the run times for each simulation, presented in table 10, as 

this influences the usability of the mesh.  

Table 10. Mesh study- Run times 

Mesh 

Run time 

[hours] [mins] [secs] 

1 0 4 48 

2 0 16 11 

3 0 19 34 

4 2 29 12 

5 3 4 26 

6 21 8 40 
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On completion of the presented mesh study it is clear that increasing the level of mesh 

refinement on the body and along the free-surface is beneficial for improving force and wave 

elevation accuracy, as well as reducing wave damping. For the 0.8T0.017H case significant 

improvements in the meshes ability are seen when using refinement level 3, compared to 

coarser mesh results. Tables 7, 8 and 9 suggest that only modest improvements can be gained 

using meshes with finer meshes. The time cost required for such improvements is too 

expensive due to the time restrictions on the project. Mesh 4, with refinement level 3 on the 

body and free-surface, has thus been selected for the presented fixed body simulations. 

It should be noted that the selected mesh refinement at the inlet boundary was not 

suitable for waves of steepness greater than 1/30, as air pockets formed due to reflected waves 

causing simulations to crash. For such cases courser meshes have been applied close to the 

inlet. All other mesh characteristics have been kept constant across all fixed case tests.  

5.1.3.2 Domain study  

With mesh refinement selected it is of interest to observe the effect of domain size on 

simulation results. In this way, one can determine whether the full experimental tank must be 

modelled numerically. 

The experimental model was positioned at a -6.4m from its leading edge to the 

wavemaker. Vertical force results are compared for two simulations, one full-length domain 

spanning -6.4m from the leading edge and one with a shortened domain spanning -5m from 

the leading edge. Forces have been band pass filtered between 0.1 and 4 times the wave 

frequency, removing high frequency noise and mean loads such that experimental and 

numerical results are comparable. 
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Average force oscillation heights of the respective steady state regions are given in 

table 11. 

Table 11. Domain study- Average force values 

 

Experimental Whole-Tank Short-Tank 

Average force 

oscillation 

height [N] 

0,0856 0,0703 0,0737 

There is no improvement in force results when modelling the whole tank in front of 

the structure therefore computational costs may be saved using the shortened domain.  

5.1.3.3 Numerical study 

A brief investigation has been carried out in which the effect of changing convective 

and temporal schemes is examined.  

For divSchemes, using the linear method rather than the linear upwind for the 

convection terms in the momentum equation method introduced instability and simulations 

crashed after a short time. Using SuperBee for convection in α produced average wave 

elevation and force results with a discrepancy of less than 1.1% when compared to VanLeer 

and required a very similar run time. No noticeable improvements were observed whilst 

testing the sensitivity of convective discretisation schemes thus the initial numerical set up 

using the linear upwind and VanLeer methods is maintained throughout the project. 

For ddtSchemes, the effectiveness of the second order implicit Crank Nicolson method 

is compared with Euler’s first order method. Using purely Crank Nicolson is unstable, causing 

immediate crashes, thus an off-centring parameter of 0.9 has been set. Improvement is seen 

using Crank Nicolsen when observing wave elevation, presented in figure 15. 
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Figure 15. Time discretisation study- Wave elevation at -4m 

 The Crank Nicolson method provides a 7% improvement, measured as difference over 

initial Euler value, in replicating the experimental values within the 5-12 second region. 

However, when observing measured forces, the Crank Nicolson method drastically overshoot 

the experimental data, as shown in figure 16. 
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Figure 16. Time discretisation study- Heave forces 

 The initial set up using Euler’s method is maintained for further numerical work. 
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5.2 LINEAR FORCES 

To numerically compute excitation forces based on linear potential flow theory, a 

boundary element method (BEM), as described in section 2.3.1, would generally be used. 

However commercial linear potential flow software such as WAMIT does not have the 

capacity to make 2D calculations or replicate the wave flume test conditions. Due to time 

restrictions on the presented project, constructing a potential flow code for the buoy section 

geometry was not practical. Instead OpenFoam has been used to simulate very small 

steepness waves and calculate the pressure forces on the body. Wave steepness has been 

chosen in accordance with (Le Méhauté, 1969) and implementing a water depth of 1 metre, 

such that the wave is known to be described accurately by linear potential flow theory. If the 

set amplitude is small relative to the body such that the free surface remains along the straight 

side edge of the buoy then non-linear inertial effects as well as viscous effects are likely to be 

negligible and thus OpenFoam is imitating linear potential flow calculations. This method 

renders obsolete the error experienced in linear potential pressures under wave troughs.  

Waves with steepness 1/200 over a period range of 0.75 to 1.5 seconds fall within linear 

theory’s range of applicability. Twelve such wave forms have been simulated using 

InterFoam and vertical forces induced on the body are measured. Characteristics are provided 

in table 12. 
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Table 12. Linear wave characteristics 

Wave 

period, T 

[s] 

Wave 

number, k 

Wave 

length, λ 

[m] 

Wave 

height, H 

[m] 

1/Steepness, 

λ/H 
kA 

0,75 7,154 0,878 0,004 200 0,0157 

0,80 6,288 0,999 0,005 200 0,0157 

0,85 5,570 1,128 0,006 200 0,0157 

0,90 4,969 1,265 0,006 200 0,0157 

0,95 4,460 1,409 0,007 200 0,0157 

1,00 4,027 1,560 0,008 200 0,0157 

1,05 3,655 1,719 0,009 200 0,0157 

1,10 3,334 1,884 0,009 200 0,0157 

1,15 3,057 2,056 0,010 200 0,0157 

1,20 2,815 2,232 0,011 200 0,0157 

1,25 2,604 2,413 0,012 200 0,0157 

1,50 1,875 3,351 0,017 200 0,0157 

For comparison with the fixed case CFD calculations described in section 5.1, the linear 

forces for 0.8, 1.0 and 1.2s periods are scaled to the appropriate wave heights. This is valid 

under linear theory as forces are assumed to be proportional to wave height. 
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5.3 FLOATING CASE SIMULATIONS  

The numerical work goes on further to investigate heave response of the WEC buoy-

section. Floating simulations are carried out for the same wave periods and steepness as in the 

fixed tests 1, 2 and 3.   

OpenFOAM’s dynamic VOF solver InterDyMFoam is utilised. This is similar to the 

fixed case solver, InterFoam but incorporates mesh deformations to model motion. An 

additional set of equations must therefore be solved describing the displacement of cell nodes 

within the mesh, known as point displacements. A pre-conjugate gradient matrix algorithm is 

used for the extra system of equations.  

Specific boundary conditions are required to model point displacements within the 

domain and fluid velocities on a moving wall. Mesh deformation is based on the pressures 

exerted on dynamic boundaries and is computed using the displacementLaplacian solver. 

Table 13 provides the BCs for the floating case simulations, with their initial values.  

Table 13. Floating case boundary conditions 

 

 The sixDOFRigidBodyDisplacement BC requires some explanation here. Using 

pressure integration to calculate forces on the body boundary motion is calculated in 

accordance with Newton’s second law of motion. For this, the body’s mass and centre of mass 

coordinates must be provided. In the presented work mass has been calculated as the volume 

of displaced fluid multiplied with the fluid density of 1000 𝑘𝑔/𝑚3, giving 0.3272 kg. The 

Velocity, U Pressure, P
Phase 

fraction, α
Point displacement

BC              BC BC BC             

Body Wall
movingWallVelocity 

uniform (0 0 0) 
zeroGradient zeroGradient

sixDOFRigidBodyDis-

placement

Inlet Patch
waveVelocity 

uniform (0 0 0)

fixedFluxPressure 

uniform (0)

waveAlpha 

uniform (0)

fixedValue         

uniform (0 0 0) 

Outlet Patch
waveVelocity 

uniform (0 0 0)

fixedFluxPressure 

uniform (0)
zeroGradient

fixedValue         

uniform (0 0 0) 

Lower wall Wall
fixedValue uniform 

(0 0 0)

fixedFluxPressure 

uniform (0)
zeroGradient

fixedValue         

uniform (0 0 0) 

Atmosphere Patch

pressureInletO-

utletVelocity 

uniform (0 0 0)

totalPressure 

uniform (0)

inletOutlet 

uniform (0)

fixedValue         

uniform (0 0 0) 

Front and 

Back
Empty empty empty empty empty

Boundary 

field

Boundary 

type
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aim of the floating simulations is to investigate heave motion of the buoy, measured using the 

centre of mass for reference. To achieve this, constraints are applied within the boundary 

condition such that motion is restricted to a single degree of freedom in z. Due to body 

symmetry, pitch (rotation around the y axis) does not need to be considered as it has no 

influence on the heave response at the centre of mass.  

Any simulation parameters that are not specified above, including boundary conditions, 

mesh characteristics, domain size, numerical schemes and solution algorithms, are kept 

constant as in the fixed case computations. Once again, the forces function objective is 

utilised and response of the centre of mass is extracted from each simulation’s logged data.  

5.4 LINEAR RESPONSE 

A linear response simulator is developed in MATLAB. Responses to linear wave forces 

are computed by solving the following equation of motion.  

(𝑚 + 𝐴33)�̈�3 + 𝐵33�̇�3 + 𝐶33𝜂3 = 𝐹𝑒𝑥𝑐 

Linear excitation forces which include Froude-Krylov and diffraction forces, are 

calculated for the wave period range 0.75 to 1.5 seconds, as described in section 5.2. The 

linear hydrodynamic forces exerted on the body by the fluid are found from forced 

oscillations with frequency equal to that of the waves. This procedure is outlined in the 

following section. 

MatLab’s inbuilt ODE45 function is used to solve the above second order ordinary 

differential equation for each linear excitation force, 𝐹𝐸𝑥𝑐, outputting heave displacement time 

series. Hydrodynamic coefficients are kept constant for each excitation wave, thus the 

equation is solved in the frequency domain, mimicking software such as WAMIT. 

5.4.1 Linear hydrodynamic coefficients 

Once again OpenFOAM has been used to imitate linear potential flow calculations. 

Hydrodynamic forces on a body are computed by solving radiation problems in which forced 

oscillations are applied to the body. Small heave oscillations are enforced using 

InterDyMFoam. The numerical set-up remains the same as for the floating case CFD 
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simulations apart from one alternation in the point displacement boundary conditions, as 

shown in table 14. 

Table 14. Floating case boundary conditions 

 

The oscillatingDisplacement boundary condition for point displacements on the body 

enforces sinusoidal motion with a set amplitude and frequency. The following twelve 

simulations are performed with oscillation frequencies equivalent to the wave periods used in 

the calculation linear wave forces.  

  

Velocity, U Pressure, P
Phase 

fraction, α

Point 

displacement

BC              BC BC BC             

Body Wall
movingWallVelocity 

uniform (0 0 0) 
zeroGradient zeroGradient

oscillatingDispl-

acement

Inlet Patch zeroGradient
fixedFluxPressure 

uniform (0)
zeroGradient

fixedValue         

uniform (0 0 0) 

Outlet Patch zeroGradient
fixedFluxPressure 

uniform (0)
zeroGradient

fixedValue         

uniform (0 0 0) 

Lower wall Wall
fixedValue      

uniform (0 0 0)

fixedFluxPressure 

uniform (0)
zeroGradient

fixedValue         

uniform (0 0 0) 

Atmosphere Patch

pressureInletO-

utletVelocity 

uniform (0 0 0)

totalPressure 

uniform (0)

inletOutlet 

uniform (0)

fixedValue         

uniform (0 0 0) 

Front and 

Back
Empty empty empty empty empty

Boundary 

field

Boundary 

type
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Table 15. Forced heave oscillations 

Oscillation 

period [s] 

Oscillation 

frequency 

[rad/s] 

Oscillation 

amplitude 

[m] 

0,75 4,712 0,010 

0,80 5,027 0,010 

0,85 5,341 0,010 

0,90 5,655 0,010 

0,95 5,969 0,010 

1,00 6,283 0,010 

1,05 6,597 0,010 

1,10 6,912 0,010 

1,15 7,226 0,010 

1,20 7,540 0,010 

1,25 7,854 0,010 

1,50 9,425 0,010 

 

Hydrodynamic vertical forces on the body are calculated using the forces function 

objective, as described in previous sections. Amplitudes of 0.01m help to ensure that the 

measured forces are similar to linear potential theory predictions for the same case. This is 

indicated by the waves produced by the forced motions which are small and likely fall within 

the range of applicability for linear theory described in (Le Mehaute, 2013).  

The measured hydrodynamic forces for each oscillation frequency may be broken 

down as follows. 

𝐹𝐻𝑦𝑑𝑟𝑜 = 𝐹𝐴 + 𝐹𝐵 + 𝐹𝑅 

 Where, 

• 𝐹𝐴: Added mass force 

• 𝐹𝐵: Damping force 

• 𝐹𝑅: Restoring force 



  N u m e r i c a l  m e t h o d  | C h a p t e r  5  

Page | 62  

 

Added mass force is defined as the force exerted upon the body by the fluid in phase 

with the body’s acceleration. The damping force is similar to the added mass force but rather 

in phase with the body’s velocity. Restoring force is associated with changes in buoyancy due 

to varying hydrostatic pressure as the body moves vertically and is thus the force exerted on 

the body by the fluid in phase with body displacement. 

Hydrodynamic force may then be written as 

𝐹𝐻𝑦𝑑𝑟𝑜,3 = −𝐴33�̈�3 − 𝐵33�̇�3 − 𝐶33𝜂3 

The negative signs are present because the hydrodynamic forces act in the opposite 

direction to the body motion. The linear restoring force coefficient is constant across all 

oscillation frequencies and given as 

𝐶33 = 𝜌𝑔𝑊𝑃𝐴 

 Frequency dependent added mass and damping coefficients are found using the 

hydrodynamic force equation with the measured force time series as follows.  

The enforced heave motion is known to be 

𝜂3 = 𝜁𝑎𝑠𝑖𝑛𝜔𝑡 

𝜂3̇ = 𝜔𝜁𝑎𝑐𝑜𝑠𝜔𝑡 

�̈�3 = −𝜔
2𝜁𝑎𝑠𝑖𝑛𝜔𝑡 

Expressions for the coefficients can then be formulated by multiplying the hydrodynamic 

force equation by the forced acceleration and the forced velocity respectively. They are then 

integrated over an integral number of oscillation periods to remove odd terms and rearranged 

as  

𝐴33 =
−∫𝐹𝐻𝑦𝑑𝑟𝑜,3 �̈�3 − 𝐶33 ∫𝜂3�̈�3𝑑𝑡

∫ �̈�3�̈�3𝑑𝑡
 

𝐵33 =
−∫𝐹𝐻𝑦𝑑𝑟𝑜,3 �̇�3

∫ �̇�3�̇�3𝑑𝑡
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 Integration limits have been selected for each case corresponding to a steady state 

region in the measured hydrodynamic force time series. 

5.5 POST-PROCESSING 

Simulations are first visualised using the third-party software ParaView in which a 

graphic interface provides oversight of the pressure, velocities and phase fractions terms at 

each time step.   

Force values are written to a text file and subsequently processed using MATLAB. The 

post-processing technique for the 0.8T0.017H case from test 1 is provided as an example 

below. 

Raw signals are filtered for noise and mean loads using cut-offs of 0.2 and 4 times the 

wave frequencies, as shown in figures 17 and 18. After initial filtering the resulting time 

series is named ‘Original’. 

 

Figure 17. Noise and mean load by-pass filtering of experimental signal 
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Figure 18. Noise and mean load by-pass filtering of CFD signal 

It should be noted that the filtering program has been developed by the project 

supervisor, Trygve Kristiansen. 

The second harmonic peaks are clearly visible in the frequency spectra above. Harmonic 

contributions are extracted using by-pass filtering around integer multiples of the wave 

frequency. Cut-off frequencies vary case by case but are generally set at less than +/-30% of 

the fundamental frequency away from the harmonic frequency. Figure 19 below provides an 

example of harmonic decomposition using the experimental and numerical forces. 

 

Figure 19. Harmonic decomposition 
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This process is repeated for each fixed simulation and harmonic contributions, taken as 

the average heights of each harmonic signal within steady state regions, are compared for the 

runs of tests 1, 2 and 3.  

These average force values are non-dimensionalised using 

�̃� =
𝐹

𝜌𝑔𝐷3
 

Where, 

• 𝐷: Characteristic length, taken as span of the buoy in x  

Linear forces are obtained using the same method. Force filtering is applied to extract the 

first harmonics of the 1/200 steepness waves. Figure 20 presents the linear force filtering and 

the results time series for the 1.0 second period linear wave. 

 

Figure 20. Development of linear force time series 

Scaling of linear forces, for comparison with numerical and experimental tests 1, 2 and 3, 

is achieved by calculating a scale factor as  

𝑆𝐹 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠

𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠
= 200𝐻 𝜆⁄  

For post-processing floating case simulation, orientation values for the buoy’s centre of 

mass are extracted and input to MATLAB. The first harmonics of each CFD response are 

compared to linear responses calculated using the linear simulator described previously. First 
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harmonic extraction from response time series is achieved in an identical manner to that 

described for forces. 1st harmonic responses are then non-dimensionalised into response 

amplitude operators (RAOs), describing the response per unit amplitude of an appropriately 

scaled linear wave. In this we they may be compared against linear response RAOs.
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6 RESULTS AND DISCUSSION 

6.1 WAVE INDUCED FORCES ON A FIXED BUOY 

Results for the experimental and numerical fixed case tests are compared in the 

following section and examined with respect to linear force calculations. 

6.1.1 Test 1: Regular incident waves with 0.8 second periods 

Non-dimensional load harmonics of the four experimental and numerical runs in test 1 

are plotted in figure 21 along with forces corresponding to linear theory. Values correspond to 

the average heights of force oscillations taken from steady state regions in each harmonic 

contribution’s time series. Force results are non-dimensionalised as follows, 

�̃� =
𝐹

𝜌𝑔𝐷3
 

For more details on the post processing techniques employed the reader should refer to 

section 5.5. 
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Figure 21. Test 1- Force harmonics 

It is of interest to comment on the validity of numerical results with reference to 

experimental measurements. Experimental results carry greater magnitude across all 1st and 

2nd harmonics for each wave steepness however errors are mostly consistent up until 1/15 

wave steepness. A probable cause of the lower numerical values is the inability of the inlet 

boundary conditions to generate desired wave heights to a high level of accuracy and also the 

presence of numerical wave damping, as observed in the mesh study presented in section 

5.1.3. Good agreement in shape between experimental and numerical results is seen for wave 

steepness less than and equal to 1/30 with discrepancy remaining relatively constant at under 

7.2% in 1st harmonics. Divergence however is seen for the 1/15 case in which the CFD 

harmonics are substantially lower than experimental values, with discrepancy of 10.2% in the 

1st and 20.5% in the 2nd harmonic. 

A main consideration for the presented project is linear theory’s potential to model 

wave loads. Clearly from figure 21, linear theory can only model 1st harmonic loading and it 

does this successfully for the entire experimental test, predicting the same trend but with a 
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smaller magnitude. CFD 1st harmonics follow linear estimations almost perfectly up until 1/15 

wave steepness where experimental values follow the linear relation but CFD values are 

reduced. To investigate this drop in CFD 1st harmonic values it is useful to visualise both the 

experimental and numerical runs in figures 22 & 23. 

 

Figure 22. Experiment- 0.8T0.067H 1/15 steepness  

 

Figure 23. InterFoam- 0.8T0.067H 1/15 steepness  

A small amount of overtopping is observed in the numerical simulation but not in the 

experimental run. This could be a contributing factor to the reduction in the numerical first 

harmonic as loads acting in negative z are experienced for each wave period thus affecting 

forces oscillating at the fundamental frequency. 

 2nd harmonics in both the numerical and experimental forces are of significance for all 

wave steepness and dominate the higher order contributions as 3rd harmonics are of little 

significance. Numerical values are shown in table 16 where magnitudes are given as 

percentages of the 1st harmonics.  
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Table 16. Test 1- CFD 2nd order harmonics 

Wave 

steepness, 

H/λ  

2nd harmonic 

(% of 1st) 

  1/60 15,4 

  1/45 19,7 

  1/30 32,6 

  1/15 58,0 

The effect of 2nd harmonic loads can be illuminated when comparing CFD and linear 

force time series in figure 24. CFD forces are referred to here as ‘CFD Original’ forces and of 

comprised of raw data with noise and mean loads removed.  

 

Figure 24. Test 1- CFD and linear time series 

 The 2nd order harmonics oscillating at twice the fundamental wave frequency act to 

reduce the maxima of oscillations and for high steepness cases this produces secondary peaks. 

To show this more clearly the 1/15 CFD force is presented below. 
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Figure 25. Case: 0.8T0.067H 1/15 Steepness- CFD force time series 

By plotting the 1st and 2nd harmonics which as seen in figure 21 are the majority 

contributors to the above force one can attempt the shape of the original force is formed.  As 

shown in figure 26, the 2nd harmonic has a trough at each of the 1st harmonic crests, by adding 

the two series it is easy to imagine the resulting shape to be similar to that of figure 25.  

 

Figure 26. Case: 0.8T0.016H 1/15 Steepness- CFD 1st and 2nd harmonic force time series 
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6.1.2 Test 2: Regular incident waves with 1.0 second periods 

Figure 27 presents the non-dimensional load harmonics for test 2 with corresponding 

linear forces.  

 

Figure 27. Test 2- Force harmonics 

 The trends in experimental and numerical results show agreement in shape across all 

harmonics. Once again experimental results carry greater magnitude but errors are consistent 

and likely due to the wave modelling performance of the numerical setup. 1st harmonics 

follow linear relations until 1/15 wave steepness cases, in which overtopping is present during 

experimental and numerical runs, as shown in figures 28 & 29.  
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Figure 28. Experiment- 1.0T0.104H 1/15 steepness 

 

Figure 29. InterFoam- 1.0T0.104H 1/15 steepness 

2nd order harmonics have considerable magnitudes and 3rd harmonics are negligible. 

The magnitude of numerical second order forces are presented in table 17.  

Table 17. Test 2- CFD 2nd order harmonics 

Wave 

steepness, 

H/λ  

2nd harmonic 

(% of 1st) 

  1/60 5,6 

  1/45 9,4 

  1/30 16,7 

  1/15 34,2 

By comparing linear and CFD forces it is observed that the effect of these second 

order contributions is similar to those observed in test 1 but to a lesser extent. 
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Figure 30. Test 2- CFD and linear time series 
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6.1.3 Test 3: Regular incident waves with 1.2 second periods 

Force harmonics extracted from experimental and numerical runs in test 3 plus 

associated linear forces are provided in figure 31.  

 

Figure 31. Test 3- Force harmonics 

 Greater disagreement in trends is observed between experimental and numerical 

results than in previous tests. Numerical 1st harmonics only agree with linear theory up to 1/45 

whereas experimental results have a linear relation up to 1/30. Once again it is interesting to 

visualise the experiments and simulations, to identify if overtopping is a contributing factor to 

this inconsistency.  
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Figure 32. Experiment- 1.2T0.074H 1/30 steepness 

 

Figure 33. InterFoam- 1.2T0.074H 1/30 steepness 

 Figures 32 and 33 depict no overtopping with 1/30 steepness waves in experiments 

however a small amount is observed in numerical simulations. 

 

Figure 34. Experiment- 1.2T0.149H 1/15 steepness 
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Extensive overtopping is seen in figures 34 & 35, detailing numerical and 

experimental runs in which the WEC buoy is exposed to 1/15 steepness waves with 1.2 

second periods.  

The analysis above provides another suggestion that overtopping acts to reduce first 

harmonic contributions and gives a possible explanation of the disagreement in shape seen 

between experimental and numerical first harmonic plots in figure 31. 

In comparison to the previous tests, CFD second order contributions for the 1.2 second 

period waves, provided in table 18, are less significant. Once again 3rd harmonics carry only 

small amplitude. This is particularly obvious for the 1/30 steepness case. 

Table 18. Test 3- CFD 2nd order harmonics 

Wave 

steepness, 

H/λ  

2nd harmonic 

(% of 1st) 

  1/60 5,9 

  1/45 7,5 

  1/30 8,7 

  1/15 29,8 

Comparing linear forces with CFD original time series, in figure 36, one sees better 

agreement than in previous tests. 

Figure 35. InterFoam- 1.2T0.149H 1/15 steepness 
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Figure 36. Test 3- CFD and linear time series 

 While second order contributions reduce the maximum height of oscillations, most 

prominently for 1/15 steepness waves, the shape is similar to linear forces for all cases. 

 For comparison with test 3, (Chen et al., 2014) provides a detailed investigation of 

wave-structure interactions between vertical surface piercing cylinders and regular waves. 

CFD simulations of a 1/15 steepness wave with 1.22 second period waves, were performed 

with results comparing well to experimental data.  (Chen et al., 2014) remarked that “steeper 

waves lead to stronger nonlinear wave-structure interactions and more significant nonlinear 

effects”, finding that for wave-loading on the cylinder, harmonic contributions of order 

greater than 1 had a magnitude equal to 31% of the 1st harmonic for the 1/15 steepness wave, 

showing close agreement with the presented study. 

* * * 



  R e s u l t s  a n d  d i s c u s s i o n  | C h a p t e r  6  

Page | 79  

 

On inspection of the three tests above one observes reasonable agreement between 

experimental data and numerical results. In general, experimental values produce higher 

magnitude forces for each tested wave steepness however plot shapes and relations remain 

consistent with numerical results. This is particularly apparent at low steepness i.e. for the 

1/60 and 1/45 cases, where discrepancy between numerical and experimental first harmonics 

remains at roughly 8%. Disagreement however is introduced for steep cases; overtopping 

develops earlier in numerical simulations for tests 1 and 3. This coincides with divergence of 

CFD values from experimental results. One can say that the experimental results suggest 

validity of the low steepness numerical forces but that there is a level of uncertainty around 

high steepness cases. A likely cause for lower numerical results is the wave generating ability 

of the numerical setup and earlier overtopping may be due to mesh characteristics 

exaggerating wave diffraction and effecting free-surface positioning. 

It is clear on inspection of the harmonic plots that linear forces consistent have the 

capacity to model 1st harmonics with a good level of accuracy at low wave steepness. When 

examining linear force predictions, one sees very good agreement with numerical results and 

consistency in shape with experimental data for up to 1/30 steepness in tests 1 and 2 and 1/45 

in test 3. The initiation of overtopping is concurrent with deviation of the first harmonics from 

linear theory for both experimental and numerical runs. The findings infer that linear forces 

can only model the first harmonics accurately in cases where overtopping is not present.  

Higher harmonic forces are apparent for all fixed body cases and increase with wave 

steepness, for the presented studies 3rd harmonics share the same trend but have small 

magnitudes and are not examined further. An obvious trend observed is that greater 

contributions are prevalent in tests with shorter periods; 2nd harmonic contributions are largest 

for high steepness waves with short periods, such as the 1/15 case in test 1. In tests 1 and 2 a 

parallel relation is seen; second harmonic contributions remain similarly low for 1/60 and 

1/45 steepness then become prominent at 1/30 before roughly doubling for 1/15 waves. In test 

3 however 2nd harmonics only become prominent for 1/15 waves. These forces, oscillating at 

double the wave frequency, act to alter the shape of first harmonic force time series, reducing 

maxima and creating additional peaks, most prominently for high steepness, low period cases. 

This reduces linear theories capacity to estimate forces when higher order contributions are 

present. For many scenarios, such forces require analysis as they can be of key concern to 

structural loading, fatigue damage as well as high frequency resonant response motions and 
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therefore state of the art numerical techniques for modelling wave forces based on linear 

potential flow theory are insufficient.   

6.2 HEAVE RESPONSE OF A FLOATING BUOY 

 Using methods described in chapter 5 a linear response RAO plot has been produced 

for comparison with floating heave responses measured in CFD simulations using the 

InterDyMFoam solver. This section first presents the linear hydrodynamic coefficients 

required for computed linear responses and identifies the natural frequency of the buoy in 

heave before numerical and linear response values are plotted and examined. 

6.2.1 Linear hydrodynamic coefficients 

The linear restoring coefficient in heave remains constant for all wave periods and is 

given below.  

𝐶33 = 19.1295 

Frequency dependent added mass and damping terms are presented in table 19 for 

oscillatory periods ranging from 0.75 to 1.5 seconds. 

  



  R e s u l t s  a n d  d i s c u s s i o n  | C h a p t e r  6  

Page | 81  

 

Table 19. Linear hydrodynamic coefficients 

Period, 

T [secs] 

Added 

mass 

coefficient, 

A33 

Wave 

damping 

coefficient, 

B33 

0,75 0,134 0,285 

0,8 0,127 0,338 

0,85 0,123 0,382 

0,9 0,120 0,387 

0,95 0,118 0,502 

1 0,114 0,506 

1,05 0,115 0,543 

1,1 0,120 0,577 

1,15 0,121 0,564 

1,2 0,113 0,581 

1,25 0,103 0,625 

1,5 0,127 0,606 

When considering response of the structure it is of interest to consider the natural period 

of the system, and thus the wave frequency at which the buoy’s heave response should 

theoretically be greatest. This is achieved using the added mass coefficients computed during 

the forced motion simulations with the following expression. 

𝜔𝑛 = √
𝐶33

𝑚 + 𝐴33(𝜔)
 

By plotting both the RHS expression using the 12 added mass values and a linear relation 

for the LHS, the natural frequency may be extracted from the intersection point, as shown in 

figure 37.  
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Figure 37.Plotting of natural frequency 

Yielding a natural frequency of 6.527 𝑟𝑎𝑑/𝑠𝑒𝑐 and a natural period of 0.9626 seconds. 

As this value is close to the fundamental wave frequencies used in the floating simulations it 

is unlikely that higher order harmonic responses will be excited, whereas if it were at double 

the wave frequency then resonance could be initiated by second order load harmonics and 

response at twice the wave frequency would be observed. In the present study, it is therefore 

assumed that 1st order harmonic behaviour will dominate, making comparisons with linear 

predictions of considerable interest.  
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6.2.2 Response  

Twelve linear response RAOs for the 1/200 steepness waves are presented in figure 38, 

describing the amplitudes of response per unit linear wave height. The linear response values 

at wave periods 0.8, 1.0 and 1.2 seconds are plotted against RAOs computed from the 1st 

harmonic responses of the floating case CFD simulations. The natural frequency is included 

for reference as the wave frequency for which response motions are predicted to be greatest. 

Note that the response values, used to compute RAOs, correspond to the average 

motion oscillations in steady state regions.  

 

Figure 38. Wave induced responses 

 Reasonable agreement is shown between linear predictions and CFD 1st harmonic 

responses for all wave cases with periods away from resonance and up to the 1/30 case close 

to resonance. Relative to these, the 1/15 case near resonance is poorly modelled by linear 

theory with a discrepancy of 27.7%, measured as difference over the linear value. 
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The results of floating simulations with wave periods of 1.0 seconds, i.e. close to the 

natural period, display signs of beating, where force maxima and minima fluctuate in an 

oscillatory manner. This is characteristic of response near resonance and is shown in figures 

39 & 40. 

   

Figure 39. (L) Case: 1.0T0.026H 1/60 Steepness- Response 

Figure 40. (R) Case: 1.0T0.034H 1/45 Steepness-Response 

 Although linear theory fails to predict this shape, for the 1/60, 1/45 and 1/30 steepness 

cases it produces similar average heights, as reflected in figure 38.  

 It is of interest to compare the 1/30 and 1/15 cases with 1 second wave period to 

distinguish any features that may cause poor linear estimation in the latter. Firstly, the linear 

and CFD response time series are presented in figures 41 & 42. 

  

Figure 41. (L) Case: 1.0T0.052H 1/30 Steepness- Response 

Figure 42. (R) Case:1.0T0.104H 1/15 Steepness- Response 
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  Linear predictions drastically overshoot the CFD values in the steeper case. Typical 

behaviour in each simulation is visualised below. 

 

 

Overtopping is not observed in the 1/30 case shown above. With 1/15 waves however, 

violent wave behaviour and overtopping occurs, as shown in figure 44.  

 

 

Analysis of cases with periods away from the natural period, overtopping is seen to a 

very small extent in the 0.8T0.067H 1/15 floating simulation and substantially in the 

1.2T0.149H 1/15 case, as depicted in figures 45 &46.  

Figure 43. InterDyMFoam- 1.0T0.052H 1/30 Steepness 

Figure 44. InterDyMFoam- 1.0T0.104H 1/15 Steepness 
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Figure 45. InterDymFoam- 0.8T0.067H 1/15 Steepness 

 Such wave breaking seems to have no damping effect on motions in figure 38. 

 

Figure 46. InterDyMFoam- 1.2T0.149H 1/15 Steepness 

 Although overtopping is extensive in figure 46, it seems to only have a small damping 

effect on motions induced by 1.2 second period waves, and response results are not far from 

linear predictions. 

 All cases that have not been individually presented involve no overtopping and 

motions are modelled well by linear theory. 

The author suggests that such overtopping acts to damp the large amplitude motions 

experienced at frequencies close to resonance, contributing to reduced RAOs value when 

compared to linear estimations. Several other factors are of considerable importance which 

influence damping of motions, most notably viscous pressure forces caused by flow 

separation in boundary layers and vorticity in the surrounding fluid. Such effects would likely 

be observed for all large amplitude motions; however, it is only in the overtopping case close 
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to resonance where extensive damping occurs, thus their influence is reasoned to be of 

secondary importance.  

From the presented study of responses linear theory clearly has good potential for 

modelling 1st harmonic responses of the buoy, however for large steepness waves, motion 

damping is experienced causing linear theory over estimations. This is most pronounced when 

overtopping is extensive and wave periods are close to resonance. Such results are consistent 

with an assessment made by (Ye Li and Yi-Hsiang Yu, 2012), recounting that frequency 

domain potential flow codes based on linear and weakly non-linear theory produce barely 

acceptable results close to resonance. 
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7 CONCLUSIONS  

On completion of the presented project the following conclusions can be drawn regarding 

hydrodynamic analysis of the 2D WEC buoy section: 

• Linear theory performs well in estimating CFD heave responses for wave periods 

away from the natural period. However, performance reduces for steep waves 

with periods close to resonance where overtopping is prevalent.  

• Linear forces show good agreement with the first harmonic loads computed in 

CFD fixed case simulations for regular waves of steepness less than 1/30 

steepness across all tested periods.  

• Wave overtopping loads are a contributing factor to divergence between linear 

forces and first harmonic CFD forces seen in all 1/15 numerical cases.  

• Second order harmonic wave loads increase with incident wave steepness and are 

prominent in all 1/15 cases.  

• Second harmonic force contributions carry greater significance for waves with 

shorter periods. 

The presented work points to the considerable importance of 2nd order harmonic loads 

and overtopping in reducing linear theory’s capacity to model wave-structure interactions for 

the given WEC buoy section, both in terms of force predictions at high steepness and 

response estimations at wave periods close to the natural period. It is therefore suggested that 

when using linear potential software for analysis of similar designs, predictions should be 

made regarding the likelihood of overtopping as an indication of uncertainty in the model. 

Such software should be avoided if 2nd order harmonic loads are of concern for structural 

integrity and resonant behaviour. Under steep wave conditions, OpenFOAM has proved to be 

an effective tool for modelling non-linear wave forces and overtopping when compared to 

experimental results, however using finer meshes is suggested for improved agreement.  
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8 FURTHER WORK 

Provided here are suggestions to extend and benefit the presented project.  

Analytical work could be expanded to include additional wave steepness, runs at 1/20 and 

1/10 could provide greater detail of linear theory’s capability to model wave-structure 

interactions for the given geometry.  

Development of an indicator for the likelihood of overtopping would complement the 

work. One possible solution is to use linear theory and find a relation between structural 

freeboard, incident wave height and diffracted wave height to predict overtopping. 

Comparison between the linear forces and responses calculated here with values 

computed using a linear BEM code for the given geometry would be of considerable interest 

in evaluating the methodology described in sections 5.2 & 5.4. 

A validity study of the floating numerical simulations using experiments could be used to 

examine confidence in the presented response results. It would also be interesting to simulate 

the same wave cases but with the full cylindrical structure in 3D such that the applicability of 

2D results could be examined. 
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