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Task Description

An application case study should consider iceberg threat detection and tracking for pro-
tecting offshore installations in arctic conditions. While satellite images might provide
some infrequent updates of the positions of the largest icebergs, unmanned aerial vehicles
can be deployed to check their current location, and also search for other icebergs not
captured by satellite images.

The project will consider the use of several fixed wing unmanned aerial vehicles
(UAVs) for such a search and tracking application, i.e simultaneously search an area
to detect and identify unknown moving objects of interest, while at the same time track-
ing the motion of already detected objects. Due to the spatio-temporal extent of the
problem, the task will involve coordinated control of a network of multiple UAVs to
autonomously allocate resources within the fleet of UAVs at a given instant in time.

The following items should be considered:

� Survey the literature for relevant methods and applications.

� Propose algorithms for searching and tracking in a centralized, coordinated control
network using a fleet of UAVs.

� Propose a method of target location estimation in a dynamic environment, using
data gathered by the fleet of UAVs.

� Implement and simulate the system with a number of UAVs for iceberg search and
tracking.

� If time permits, implement the system using the existing DUNE software framework
from NTNU, and evaluate the system using software in the loop simulations as a
preparation for future field testing.
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Abstract

An important part of offshore operations in arctic climates is the management of drifting
sea ice due to the dangers posed on ships and offshore structures. This thesis investigates
the utilization of multiple unmanned aerial vehicles for ice monitoring. A cooperative
search algorithm for a team of agents to autonomously monitor and search for sea ice
in a dynamic environment is presented. The algorithm reduces the continuous search
problem to a sequence of online, receding horizon optimizations on a finite, dynamically
updated graph whose vertices represent potential waypoints for the agents to follow.
Estimates of target locations are iteratively updated by agent measurements through
Bayesian recursive estimation. The main contributions of this thesis are the incorporation
of a predictive step in the iterative target estimation, enabling a dynamic environment
for an unknown number of targets to be accounted for. Using the estimated target
topology enables the formulation of a search objective with the intention of reducing
the probability of target collision with an offshore installation. The system has been
implemented using MATLAB, and software in the loop testing conducted to investigate
the real time performance when integrated in a fully operational system. Simulations of a
variety of scenarios have been conducted, revealing a significant increase in performance
by increasing the size of the search party, both with regards to search time and threat
detection. The proposed search objective yields an efficient cooperative behavior for
teams of multiple agents, while additionally yielding good results for a single searching
agent. However, simulations show that the predictive step is sensitive to errors in the
estimation of the target dynamics, which could cause problems for practical applications
as the calculation of the search objective relies heavily on the expected dynamics in the
search region.
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Sammendrag

En viktig del av offshore-operasjoner i arktiske strøk er h̊andtering av havis p̊a grunn
av farene den utgjør mot skip og oljeplattformer. Denne oppgaven undersøker bruken
av opptill flere ubemannede fly til hensikt å monitorere havis. En samarbeidende søks-
algoritme for et lag med agenter som monitorerer og søker etter havis i et dynamisk
miljø blir presentert. Algoritmen forenkler det kontinuerlige søksproblemet til en sekvens
av online, receding horizon optimaliseringer p̊a en dynamisk oppdatert graf av endelig
størrelse, hvor nodene representerer potensielle veipunkter som agentene kan følge. Esti-
mater av lokasjonene til m̊alene blir iterativt oppdatert av agentenes målinger gjennom
Bayesisk rekursiv estimering. Hovedbidragene i denne oppgaven er innkorporeringen av
et prediktivt steg i den iterative estimeringen til målenes posisjon, noe som muliggjør dy-
namiske søkskart for et ukjent antall mål. Ved å benytte den estimerte mål-topologien blir
det mulig å formulere et søksobjektiv med intensjon om å redusere sannsynligheten for
at mål skal kollidere med en oljeplatfrom. Systemet har blitt implementert ved hjelp av
MATLAB, og tester med software in the loop har blitt gjennomført for å undersøke san-
ntidskapasitetene til programmet i et fullt operasjonelt system. Simuleringer av en rekke
scenarioer har blitt gjennomført. Disse avdekket en betydelig økning av ytelsen ved å øke
størrelsen p̊a søkslaget, b̊ade med hensyn p̊a søkstid og trusseldetektering. Det foresl̊atte
søksobjektivet leder til en effektiv, samarbeidende oppførsel for lag best̊aende av flere
agenter, i tillegg til å gi gode resultater for kun én agent. Likevel viser simuleringer at det
prediktive steget er sensitivt med tanke p̊a feil i estimeringer av måldynamikken, noe som
kan føre til problemer for praktiske applikasjoner siden kalkuleringen av søksobjektivet i
stor grad baserer seg p̊a den forventede dynamikken i søksomr̊adet.
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Chapter 1
Introduction

The motivation for this thesis is to use multiple unmanned aerial vehicles (UAVs), here-
after referred to as agents, for surveillance and tracking of ice to aid ice management for
offshore installations in arctic conditions. Ice management is a crucial part of operations
in arctic regions due to the dangers the drifting ice pose on ships and offshore structures.
The following definition of ice management is proposed in [6]:

Ice management is the sum of all activities where the objective is to reduce
or avoid actions from any kind of ice features, hereafter referred to as targets.
This will include, but is not limited to:

� Detection, tracking and forecasting of sea ice, ice ridges and icebergs

� Threat evaluation

� Physical ice management such as ice breaking and iceberg towing

� Procedures for disconnection of offshore structures applied in search for
or production of hydrocarbons

Since ships are maneuverable, modern solutions for collision avoidance can be based on
the use of unmanned aerial systems (UAS) to scout ahead, locate and track potentially
dangerous icebergs and escort the ships in safe directions. On the other hand, offshore
rigs are stationary and can not perform evasive maneuvers. Instead, information about
approaching icebergs are gathered through a variety of means and icebergs posing a threat
are usually towed away (Figure 1.1). If detected too late, chances are drilling operations
will have to be stopped to brace for impact. Even though modern offshore installations are
built to withstand tremendous forces, the cost of disconnecting and terminating drilling
operations are significant. It is therefore important to detect potential threats at an early
stage.

A common way to monitor ice and icebergs is by using Satellite Synthetic Aperture
Radar (SAR) which is able to provide images day and night and in rough weather con-
ditions. By the use of satellites, one can discover large icebergs, but this method is not
sufficient in terms of detecting the smaller icebergs which can be missed due to too coarse
image resolution. Furthermore, should the rate of provided satellite images be low, the
information gained will be outdated as time passes. Helicopters and platform support ves-
sels are also currently used as a method of collecting information about iceberg positions.
Including the use of UAS in offshore drilling operations could be a great way to supply
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2 CHAPTER 1. INTRODUCTION

already existing means of iceberg detection. A group of agents performing a cooperative
search for potential threats to the platform would save both time and resources.

Figure 1.1: Towing an iceberg from a collision course with the Hibernia oil platform
located in Newfoundland, Canada. Photo: Randy Olson.

1.1 Problem Description

The use of UAS would mainly contribute in two areas of modern ice management: detec-
tion and tracking of sea ice. The problem of autonomously locating and tracking moving
targets is a large field of research, but when examining to what extent the use of UAS
will contribute to ice management we will focus on the following questions:

� Would such a system add value to modern ice management operations?

� How could a reasonable search policy be formulated for the use case of ice manage-
ment

� What is the benefit of deploying multiple agents compared to just one?

� How should the target dynamics in the operational area influence the behavior of
the searching agents?

� How robust would the system be in terms of errors in the estimates of the target
dynamics?

� How can the system account for prior information of iceberg locations?
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� How will search strategies be influenced when dealing with both targets with and
without prior information?

� How could the system handle both localization and tracking?

� Would the complexity of such a system make it feasible for online calculations in
practical applications?

In this thesis we will try to answer these questions by designing a system capable of
deploying multiple agents in a cooperative search in a given search region. The system
should take into account probabilistic prior information of targets that have already been
detected in addition to account for unknown targets with no prior information. Due to
the size of the search region, the system should make strategic choices with regards to
which areas to prioritize.

To accomplish this, we assume all agents are equipped with state of the art autopilots
capable of navigating by waypoints. This reduces the search problem to a problem
of cooperative path planning in terms of optimal waypoint placement. To disregard
unimportant regions of the search area, we will propose a method of constructing a search
priority grid map which will be dynamically updated throughout the search. Based on
this grid map, a dynamically updated graph will represent the waypoints to consider
when deciding paths for the agents. The system will be cooperative in the sense that the
participating agents will share all information in a centralized fashion, in order to plan
paths that will maximize the team’s chances of detecting threats to the platform. The
optimal paths will be calculated online using a receding horizon approach similar to the
principles used in model predictive control (MPC).

1.2 Previous Work

Modern search theory was pioneered by Bernard Koopman and was motivated by the
problem of finding enemy marine vessels [10]. Since then, the number of applications
have greatly increased and now encompass fields like search and rescue, surveillance
and exploration. In the years following the declassification and release of Koopman’s
work, multiple variations and extensions to his problems were explored, mostly solved
by a dynamic programming approach [12]. Stephen M. Pollock introduced a Bayesian
approach where decisions are made sequentially based on all previous measurements to
minimize a search cost [16]. He also considered the case of a moving target under the
assumption that a target moves from one region to another in a Markovian fashion and
with known parameters. A useful simplification in search theory is to discretize the
search space and formulate the search problem with a graph. This will reduce the path
of the searching agent to a piecewise linear path, but the problem is still computationally
heavy. DasGupta et al. showed that the search problem for a stationary target is NP-
hard, but also presented approximate algorithms for solving it in polynomial time using
graph partitioning [4].

All of the mentioned works are of a single searching agent. Once we add multiple
agents to cooperatively search for targets the problem will increase considerably in com-
plexity. Several approaches have been made to reduce this complexity. In [3], hierarchical
decompositions were performed on the tasks, and the searching agents were divided into
sub-teams. Another approach is to simplify the problem by restricting the optimizations
to a finite, receding horizon. This will reduce the complexity of the optimization problem,
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but we are still required to solve an NP-hard search problem at every time step, which
puts limitations on the length of the prediction horizon. To address this problem, [9]
proposed a method of performing the receding horizon optimization on a dynamically
changing graph where the nodes are placed only in regions with high target probabil-
ity. This way the searching agents only perform detailed searches in areas of high target
probability and can evaluate long paths just as efficiently as short paths.

This thesis extends the authors’ work [17], where the use of a dynamically updated
search graph was introduced in the context of protecting an offshore installation from
incoming targets. However, knowledge of the target dynamics was not incorporated
in the estimation of prioritized search areas prior to the search mission. Instead, the
search priority for unknown targets was linearly decreasing from the offshore rig, and
the direction of the search area of interest from the rig was assumed given. A clear
mathematical problem description was not formulated, and the search policy of the agents
was based on intuition rather than optimization in the sense of avoiding sea ice collision.

1.3 Structure of the Thesis and Main Contributions

The reminder of this thesis is structured as follows:

Chapter 2: This chapter presents the relevant background theory used in this thesis,
including already established knowledge and new deviations. This chapter presents the
mathematical fundaments the system implementation is built on, and is mainly divided
into three sections:

Estimation of Target Location: An iterative Bayesian estimation algorithm
based on [19] is used to estimate the target locations from sensor measurements.
The main contribution is the proposal of a predictive step in the iterative estimation
algorithm to account for the search map dynamics. The prediction is found to be
expressed as a convolution between all posterior estimates of target locations and a
matrix encapsulating the the target dynamics.

Search Objective Formulation: In this section we create and propose an itera-
tive procedure to estimate the probabilities of collision from individual positions in
the search region. The probability estimates are based on the matrix encapsulat-
ing the target dynamics. An optimization problem with respect to the search team
configurations is formulated to minimize the probability of collision between targets
and the offshore installation. The optimization objective function is based on the
probabilities of collision from individual positions in the search region.

Model Predictive Search: In order to relate the search problem to the task of
finding a set of optimal waypoints for the team of agents to follow, a receding horizon
search algorithm first presented in [9] will be described. By proposing a method of
incorporating the objective function from the previous section, the receding horizon
optimization will choose agent paths minimizing the probability of collision. The
main contribution of this section is the incorporation of the proposed objective
function in the model predictive search, enabling an optimal search for an unknown
number of targets in a dynamic environment.

Chapter 3: This chapter presents the system architecture of the implementation of the
system described in Chapter 2, and a brief description of the different key modules will be
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given. A software in the loop (SITL) test environment has been developed to test the real
time performance of the implemented system. The architecture of the test environment
and the different software components used in the SITL simulations will be described.

Chapter 4: Simulation results from application based test scenarios and parameter ad-
justment sensitivity are presented by using the simulation environment created and pre-
sented in Chapter 3. The simulation results are analyzed to give a brief indication of
the performance and scalability of the algorithm, and what kind of estimation errors it
is prone to.

Chapter 5 and 6: Discussion of theory and results, concluding remarks and future per-
spectives are presented in the final chapters.
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Chapter 2
Theory

2.1 UAV and Sensor Model

As opposed to a multi-rotor UAV, a fixed wing UAV would be the platform of choice for ice
management due to the requirements on range and flight time. Since a fixed wing aircraft
is non-holonomic, there are certain constraints given by the dynamics of the UAV. These
can be modeled as a set of coupled nonlinear differential equations, but for the purpose of
this thesis a detailed aircraft model will not be outlined, as the low level aircraft dynamics
is outside the scope of this thesis. It is however important to keep in mind that certain
constraints like maximum bank angle, maximum thrust and minimum speed will need to
be taken into account to assign feasible waypoints for the UAV. However, the principles of
our system can be tested regardless of the specific aircraft constraints. We will therefore
make the simplistic assumption that the UAVs at all times move at constant speed in a
piecewise linear path constituted by the line segments between the waypoints assigned.

In order to detect sea ice, the UAVs are equipped with sensors capable of taking mea-
surements of the environment at a given frequency. This could for instance be a thermal
imaging camera which have proven to be a suitable choice of sensor when attempting to
detect ice features. To be able to cover as much ground as possible, the camera is usually
mounted on a stabilized gimbal to ensure sufficient camera movement. The region that
the camera can view at a particular time instant is called the field of view (FOV) and in
order to relate features in captured images to the physical world, a projection model de-
pendent on the UAV and gimbal pose is required. This means the optimization problem
of searching for moving targets can be extended to also finding the optimal direction to
aim the camera at all times throughout the search. This thesis will only consider the path
planning aspect of the search and therefore assume the camera is stabilized and always
pointing straight downwards relative to the UAV. To be able to automatically classify ice
features captured by the camera, computer vision software is required in order to detect
the sea ice. Image processing and camera calibration is however outside the scope of this
thesis, and we will assume the computer vision software is fully implemented.

2.2 Estimation of Target Location

A key assumption in this thesis is that the prior location of a target is either not known
or only partially known. This means we have an approximate location of the target with
a varying degree of uncertainty, which needs to be updated as the agents proceed into

7
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the search. In other words we need an estimator that characterize the target probability
density function (pdf) in a discrete approximation. One approach is to use particle filters
as target location estimators [1], but one is also able to incorporate nonlinear dynamic
and non-Gaussian distributions using a grid based probabilistic map. Estimating a map
from a moving platform is a challenging task in the field of robotics. Map estimation
cannot be separated from the localization problem and difficulty arises when errors in the
estimates of the agent location is incorporated into the map. This problem is referred
to as simultaneous localization and mapping (SLAM). For this thesis we will use the
simplified approach where we assume the poses of the agents are fully known at all time
which is a reasonable assumption as most UAVs are equipped with accurate GNSS and
IMU sensors in order to estimate position and attitude.

2.2.1 Iterative Estimation of Occupancy Grid Map

For our application of sea ice management, we will represent the search area as a simplified
world fixed grid map referred to as an occupancy grid map. An occupancy grid map is
a representation of the search area which is divided into grid cells, where each cell either
contains or does not contain a target. The occupancy grid map represents the true state of
the search area and is thus unknown to the searching agents. However, the agents will in
a probabilistic way try to estimate the state of the grid cells by continuous measurement.
The iterative Bayesian estimation algorithm presented in this section is based on the
work in [19] with inspiration from [7].

Let mt denote the occupancy grid map

mt = {mi,t} (2.1)

where mi,t represents grid cell i with an associated binary occupancy value. We wish to
estimate the posterior probability density of all possible maps given all past measurements
z1:t = {z1, z2, . . . , zt} and agent poses x1:t = {x1, x2, . . . , xt}. This is commonly referred
to as the belief of the state of the map at time t

bel(mt) = p(mt|z1:t, x1:t) (2.2)

An important assumption about the stochastic process mt is that it is Markov. What
this essentially means is that given the current state mt, no additional information is
gained by considering previous states and measurements when trying to predict mt+1. In
other words, mt is complete in the sense that it summarizes everything that has happened
in the past. The Markov assumption can be expressed by the conditional independence

p(mt|mt−1, z1:t−1, x1:t−1) = p(mt|mt−1) (2.3)

It is often convenient to calculate a posterior before taking the most recent measurement
into account. This is called the predictive belief and will be denoted as

bel(mt) = p(mt|z1:t−1, x1:t−1) (2.4)

A recursive Bayesian estimation algorithm, or Bayesian filter, calculates the posterior
bel(mt) from a prior bel(mt−1) and a new measurement zt. First, by marginalizing over
all previous states, (2.4) can be rewritten as

bel(mt) =

∫
p(mt|mt−1)p(mt−1|z1:t−1, x1:t−1)dmt−1

=

∫
p(mt|mt−1)bel(mt−1)dmt−1

(2.5)
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Figure 2.1: An agent performing a sensor measurement zt of all occupancy grid cells in
the agent’s field of view.

By applying Bayes’ rule such that

p(mt, zt|z1:t−1, x1:t) = p(zt|mt, z1:t−1, x1:t)p(mt|z1:t−1, x1:t) (2.6)

= p(mt|zt, z1:t−1, x1:t)p(zt|z1:t−1, x1:t) (2.7)

and by setting (2.6) and (2.7) equal to each other we get the following expression for the
belief

p(mt|z1:t, x1:t) =
p(zt|mt, z1:t−1, x1:t)p(mt|z1:t−1, x1:t)

p(zt|z1:t−1, x1:t)
(2.8)

Now we exploit the assumption that our state mt is complete in the sense of Markov. We
know that when trying to predict the measurement zt, no additional information is gained
by considering previous measurements given that we know the state mt. Furthermore,
even though the agent pose xt does not predate the state mt, it will not influence the
state of the map without its accompanying measurement and can therefore be omitted.
This can all be expressed by the following conditional independence

p(zt|mt, z1:t−1, x1:t) = p(zt|mt) (2.9)

Hence (2.8) can be reduced to

p(mt|z1:t, x1:t) =
p(zt|mt)p(mt|z1:t−1, x1:t)

p(zt|z1:t−1, x1:t)
= ηp(zt|mt)p(mt|z1:t−1, x1:t)

(2.10)

where η can be considered a normalizing term. From (2.5) and (2.10) we get the following
recursive update equations

bel(mt) =

∫
p(mt|mt−1)bel(mt−1)dmt−1 (2.11)
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bel(mt) = ηp(zt|mt)bel(mt) (2.12)

Since an occupancy grid map consists of multiple grid cells mi,t ∈ {0, 1}, the marginal-
ization of all possible occupancy map permutations in (2.11) will in most applications be
too computationally heavy. Thus it makes sense to consider each grid cell individually.
By doing this we will first assume the grid cell densities are independent, and neighboring
cells will not affect each other. This can be explained in mathematical terms as

p(mt|z1:t, x1:t) =
∏
i

p(mi,t|z1:t, x1:t) (2.13)

By considering individual grid cells we reduce the marginalization over all possible maps
in (2.11) to the much simpler marginalization over the previous states of the single grid
cell

bel(mi,t) =
∑

mi,t−1

p(mi,t|mi,t−1)bel(mi,t−1) (2.14)

where p(mi,t|mi,t−1) is a state transition probability encoding the dynamics of the map.
Due to our assumption of independence between grid cells, map dynamics is included only
by considering the state of a single grid cell given its previous state. One might argue this
is overly simplistic, and section 2.2.2 of this thesis is solely dedicated to the predictive
step bel(mi,t), proposing a slightly more sophisticated approach to map dynamics. We
get the final step of the Bayesian recursion by applying Bayes’ rule

bel(mi,t) = p(mi,t|z1:t, x1t)

=
p(zt|mi,t, xt)p(mi,t|z1:t−1, x1:t−1)

p(zt|z1:t−1, x1:t)

=
p(zt|mi,t, xt)bel(mi,t)

p(zt|z1:t−1, x1:t)

(2.15)

where p(zt|mi,t, xt) is the probability relating the most recent measurement to the state
of the cell and the agent pose. This probability density might however be very hard to
define as we are required to describe every possible measurement given the agent pose
and cell state. In our case the measurement is much more complex than the simple binary
state of mi,t. It is therefore easier to specify a distribution over the binary cell state as a
function of the measurement. This is referred to as an inverse measurement model and is
often much easier to implement than the traditional forward model. By applying Bayes’
rule to the measurement model we obtain

p(zt|mi,t, xt) =
p(mi,t|zt, xt)p(zt|xt)

p(mi,t|xt)

=
p(mi,t|zt, xt)p(zt|xt)

p(mi,t)

(2.16)

Next, inserting this into (2.15) yields

bel(mi,t) =
p(mi,t|zt, xt)p(zt|xt)bel(mi,t)

p(mi,t)p(zt|z1:t−1, x1:t)
(2.17)

By taking advantage of the fact that the grid cell states are binary, we can calculate the
probability of the negated state by

p(¬mi,t) = 1− p(mi,t) (2.18)
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We define the odds ratio to be the fraction between the belief and the negated belief. By
assuming the belief has the same property as in (2.18) we can cancel out a few terms not
dependent on the cell state to get

bel(mi,t)

bel(¬mi,t)
=

bel(mi,t)p(mi,t|zt, xt)p(¬mi,t)

bel(¬mi,t)p(¬mi,t|zt, xt)p(mi,t)
(2.19)

Defining li,t to be the log of the odds ratio we get the additive update equation

li,t = log
bel(mi,t)

1− bel(mi,t)
+ log

p(mi,t|zt, xt)
1− p(mi,t|zt, xt)

− log
p(mi,t)

1− p(mi,t)
(2.20)

The first term in this update equation includes the predictive belief to account for map
dynamics. The second term includes the most recent measurement through the inverse
measurement model p(mi,t|zt, xt). The return value of the inverse sensor measurement
model is a design parameter decided by how reliable the sensor measurements are, and
enables us to account for the possibility of false detection. The last term is the prior log
odds ratio and can be seen as a quantity returned by the inverse measurement model
when nothing is added through a measurement. For grid cells not in the perceptual
field of any agents there are no measurements to influence the belief. Thus, for all grid
cells outside the field of view of the searching agents, the belief is updated only by the
predictive step

li,t = log
bel(mi,t)

1− bel(mi,t)
(2.21)

By using the log odds representation in the Bayesian recursion, as opposed to the
regular probability representation, we avoid instabilities for probabilities close to zero.
The probabilities can be recovered at any time from the log odds ratio by

p(mi,t|z1:t, x1:t) =
exp(li,t)

1 + exp(li,t)
(2.22)

2.2.2 Map Dynamics

In order to calculate the belief of each individual grid cell according to (2.15) we made
the assumption that all occupancy grid cells are independent. However, in the case of a
dynamic occupancy grid map it arguably makes sense that a grid cell to some degree is
dependent of the state of other cells. Due to external forces in the search environment
there is a probability that the state of one grid cell will transition over to a neighboring
cell. We will now propose a way to account for this transitional probability by relaxing
the constraint of independent grid cells during the calculation of the predictive belief
bel(mi,t).

In order change the calculation of the predictive belief for the entire search map (2.11)
to that of a single grid cell (2.14), we assumed all cells independent in order to get the
simple marginalization over one binary state. For the purpose of calculating the predictive
belief, let us instead assume the state of a grid cell mi,t is dependent on the previous state
of all grid cells in a neighborhood D. This means mi,t is independent of all previous grid
cell states except the set of states

{mj,t−1}, ∀j ∈ D (2.23)
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To calculate the predictive belief we now need to marginalize over all previous states of
all grid cells in D. We also assume the contributions from the grid cells j to the single
cell i are additive. (2.11) can then be reformulated as

bel(mi,t) = p(mi,t|z1:t−1, x1:t−1)

=
∑
j∈D

∑
mj,t−1

p(mi,t|mj,t−1)p(mj,t−1|, z1:t−1, x1:t−1)

=
∑
j∈D

∑
mj,t−1

p(mi,t|mj,t−1)bel(mj,t−1)

(2.24)

The term p(mi,t|mj,t−1) will tell us something about the probability that the previous
state of cell j will influence the current state of cell i. Since the grid cell states are binary,
we can write out (2.24) as∑

j∈D

[
p(mi,t|mj,t−1)bel(mj,t−1) + p(mi,t|¬mj,t−1)bel(¬mj,t−1)

]
(2.25)

p(mi,t|¬mj,t−1) is describing the probability of the state of cell i given the neighbor j had
the opposite state. Since we are considering the individual contribution in an additive
fashion, there is no way the previous state of cell j alone can give cell i the opposite state.
Therefore

p(mi,t|¬mj,t−1) = 0 (2.26)

This leaves us with the following expression for the predictive belief

bel(mi,t) =
∑
j∈D

p(mi,t|mj,t−1)bel(mj,t−1) (2.27)

By letting the cells of the neighborhood D be a square section of the occupancy grid
map with 2n + 1 cells in each direction and cell i in the center, we can represent the
neighborhood D in the matrix form

K(u,v),t ∈ R2n+1×2n+1 (2.28)

Here we replace the notation of a given cell i by its equivalent row position u and column
position v in the context of an occupancy grid map in matrix form. The elements in
K(u,v),t are the state transition probabilities from the respective cells in D

K(u,v),t =

p(m(u,v),t|m(u−n,v−n),t−1) · · · p(m(u,v),t|m(u−n,v+n),t−1)
...

. . .
...

p(m(u,v),t|m(u+n,v−n),t−1) · · · p(m(u,v),t|m(u+n,v+n),t−1)

 (2.29)

The representation of the transitional probabilities in matrix form enables us to write
(2.27) as

bel(m(u,v),t) =
n∑

k=−n

n∑
l=−n

p(m(u,v),t|m(u−k,v−l),t−1)bel(m(u−k,v−l),t−1) (2.30)

In this sense it is the kernel K(u,v),t that determines the effect of map dynamics on
the posterior probabilities of target locations. Thus, we need a way to approximate the
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elements of K(u,v),t. In the scenario of drifting sea ice, the term metocean data refer to
the main three effects that will influence target movement: wind, ocean currents and
waves. However, the size and shape of icebergs will influence the dynamics such that two
different targets might not get the same trajectories for the same metocean data. Due
the the fact that we necessarily do not know the target shape prior to detection and due
to error sources in the metocean data, there naturally is an element of uncertainty to
the target dynamics. It is outside the scope of this thesis to employ metocean data to
analytically estimate the dynamics of drifting sea ice, but for the purpose of this thesis
we will make the following assumption:

Based on information like metocean data, weather forecasts and historical tar-
get trajectories, a probability density function representing the target velocity
vector at position (x, y) can be found.

This means all locations (x, y) in the search area have a corresponding target vector
represented by a probability density function, as illustrated in Figure 2.2. For more

(x,y)

Figure 2.2: Target velocity vector modeled with a probability density function.

detailed information on uncertainty in vector fields, see [13]. Next, let the probability
density function of the target velocity vector of an occupancy grid cell (u, v) be discretized
as the grid cell matrix

K(u,v),t ∈ R2n+1×2n+1 (2.31)

which is of the same dimesions as K(u,v),t. Figure 2.3 illustrates an example of how
K(u,v),t is approximated by the pdf of a target velocity vector. It should now be apparent
that K(u,v),t is directly related to the transitional probabilities. However, in contrast
to K(u,v),t which contains the probabilities p(mi,t|mj,t−1), K(u,v),t contains the elements
p(mj,t|mi,t−1) which describes the probability of a target transitioning from the center
cell i to a neighbor j. This means K(u,v),t can be written as

K(u,v),t =

p(m(u−n,v−n),t|m(u,v),t−1) · · · p(m(u−n,v+n),t|m(u,v),t−1)
...

. . .
...

p(m(u+n,v−n),t|m(u,v),t−1) · · · p(m(u+n,v+n),t|m(u,v),t−1)

 (2.32)

In order to relate K(u,v),t and K(u,v),t, we will model the vector field of target velocity
vectors in the search region as uniform with the same probability density function for
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=⇒ K(u,v),t =



0 0 0 0 0.095 0.118 0.095

0 0 0 0 0.118 0.1478 0.118

0 0 0 0 0.095 0.118 0.095

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


Figure 2.3: Conceptual illustration of how the matrix Kt is a discretization of the prob-
ability density function of the target velocity vector.

the entire region, which is possible since we can incorporate uncertainty in the velocity
vectors. This means transitional probabilities in a neighborhood relative to a grid cell
m(u,v),t will be the same regardless of the position of m(u,v),t. Thus the matrices K(u,v),t

and K(u,v),t will be identical for all (u, v) in the occupancy grid map and will therefore be
referred to as Kt and Kt for the remainder of this thesis. By considering the two matrices
we can see that Kt describes the transfer of information from the center cell in D to
the neighbors, while Kt describes the opposite transfer from the neighbors to the center
cell. Furthermore, since the transitional probabilities are assumed constant relative to
the center cell i for all neighborhoods in the search area it makes sense that the two
matrices Kt and Kt are flipped versions of each other, both horizontally and vertically.
The relation can be described mathematically as

Kt = J2n+1KtJ2n+1 (2.33)

where J2n+1 ∈ R2n+1×2n+1 is the exchange matrix

J2n+1 =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 (2.34)

(2.34) is often referred to as the reversal matrix due to its property of flipping a matrix
around its vertical axis by pre-multiplication and around its horizontal axis by post-
multiplication.

Due to the relationship (2.33) it is of interest to note that calculating (2.30) for every
cell in the occupancy grid map amounts to a two dimensional spatial convolution. The
operation performed on the entire occupancy grid map can therefore be written as the
convolution

bel(mt) = Kt ∗ bel(mt−1) (2.35)

Drawing parallels to the field of image processing this can be seen as convolution where
bel(mt−1) represents an image and Kt a filtering kernel. For example, letting Kt represent
a target vector with a Gaussian distribution, (2.35) would amount to a Gaussian blur,
thus smoothing out the posterior occupancy grid map. For more information of the use
of convolution in image processing, we refer the reader to [8]. It should now be more clear
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why it is important to keep Kt spatially independent. By letting Kt change depending
on the position of the occupancy grid cell we risk existing posterior information being
duplicated or removed. Furthermore, due to the fact that Kt represents a discretization
of a pdf we know

n∑
k=−n

n∑
l=−n

p(m(u−k,v−l),t|m(u,v),t−1) = 1 (2.36)

which ensures the sum of posterior information is preserved after the operation (2.35).
Even though the transitional probabilities are assumed spatially independent it is impor-
tant to note Kt can be time dependent. As the conditions in the search area change, the
probability density function of the target velocity vector should be updated accordingly,
causing Kt to change.

Figure 2.4 shows simulation results for the iterative Bayesian recursion algorithm with
map dynamics incorporated by (2.35). The simulation is without sensor measurements,
so only the dynamics of the map is regarded. The sum of probabilities in all grid cells
were found to be the same before and after every convolution.

iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6

Figure 2.4: Simulation of convolution with a Gaussian kernel Kt. The sum of the belief
of all grid cells before and after every iteration is the same.

2.2.3 Algorithm for Iterative Occupancy Grid Map Estimation

As a summary, this section will present the complete iterative Bayesian recursion al-
gorithm with map dynamics included. The algorithm requires a prior estimate of the
occupancy grid map bel(mt−1) and a transition probability kernel Kt. The posterior
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probabilities of the occupancy grid map can be estimated recursively using the algorithm
listed in Algorithm 1.

Algorithm 1 Occupancy Grid Mapping by Bayesian Recursion

1: procedure OccupancyGridMapping(lt−1, Kt, zt, xt)
2: for all cells i do
3: bel(mi,t−1) = exp(li,t−1)/(1 + exp(li,t−1))
4: Calculate bel(mi,t) according to (2.30)
5: if cell i in perceptual field of zt then
6: Calculate li,t according to (2.20)
7: else
8: Calculate li,t according to (2.21)
9: end if
10: end for
11: return lt
12: end procedure

Figure 2.5 illustrates the iterative map estimation described in Algorithm 1 for a single
agent. The agent is traveling in a straight line from west to east and the map dynamics
are based on a target velocity pointing south.

Figure 2.5: Illustrating the full Bayesian estimation process for a single agent traveling
from west to east. Map dynamics are included based on a target velocity vector directed
south.

2.3 Search Objective Formulation

We define the state of the team of agents at time t as pt. Furthermore, we define the
search policy µ to be a function mapping the current state of the team of agents at time
t to the next set of agent positions

pt+1 = µ(pt) (2.37)

In other words, the search policy µ defines the next set of controls to be executed by
the searching agents. The objective is to find a search policy that minimizes the risk of
targets colliding with the offshore platform. Since we wish to continuously evaluate the
threat of a collision by performing new sensor measurements, it is of interest to consider
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the posterior probability P (collision|z1:t, x1:t). Using the fact that we can either have a
collision or no collision at all, we write the posterior as

P (collision|z1:t, x1:t) = 1− P (no collision|z1:t, x1:t) (2.38)

In order to consider the probability of a collision in the context of an occupancy grid
map, we define the event

Ci,t = at least one target in grid cell i at time t causes a future collision

We extend the assumption of independent grid cell from Section 2.2.1, such that the
events Ci,t are independent for all cells in the occupancy grid map. This enables us to
write (2.38) for the entire search area as

P (collision|z1:t, x1:t) = 1−
∏
i

(
1− P (Ci,t|z1:t, x1:t))

)
(2.39)

By marginalization, we can write the posterior probability of Ci,t as

P (Ci,t|z1:t, x1:t) =
∑
mi,t

P (Ci,t|mi,t)p(mi,t|z1:t, x1:t)

=
∑
mi,t

P (Ci,t|mi,t)bel(mi,t)
(2.40)

Since grid cell i can not contribute to a collision should it be empty, we know

P (Ci,t|mi,t = 0) = 0 (2.41)

which enables us to write (2.40) as

P (Ci,t|z1:t, x1:t) = P (Ci,t|mi,t = 1)bel(mi,t = 1) (2.42)

Inserting into (2.39) yields the following expression for the posterior probability of colli-
sion

P (collision|z1:t, x1:t) = 1−
∏
i

(
1− P (Ci,t|mi,t = 1)bel(mi,t = 1)

)
(2.43)

The term P (Ci,t|mi,t = 1) essentially states the probability that a target in grid cell i will
eventually collide, given there exists at least one target in that cell. Section 2.3.1 of this
thesis is dedicated solely to the estimation of this conditional probability.

As a search unfolds, the agents can iteratively update the estimate of (2.43). How-
ever, since the only action the agents are capable of performing is observation, they can
do nothing more than gradually determine the chances of whether a collision is going to
take place or not. In other words, our choice of search policy will in no way guarantee a
reduction in the probability of collision. On the contrary, a good search policy might un-
cover a threat that will greatly increase P (collision|z1:t, x1:t). Thus we make the following
assumption:

When the position of a target can be determined with a satisfactory level of
certainty, the target in question no longer pose a threat.
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This assumption is reasonable in the sense that once we are relatively certain of the state
of a target, this target is under control. After all it is outside the scope of the UAS to
neutralize a threat. However, the decision whether or not to neutralize a threat should be
based on the information gathered by the UAS. In the scenario of ice management, this
could involve deploying boats for towing an iceberg or performing evasive maneuvers.
Thus we need a measure of the importance and priority of a grid cell based on the
posterior belief. We define δ : bel(mi,t) → [0, 1] as a function that maps the posterior
belief of a grid cell to some notion of priority. δ can take any shape depending on the
desired behavior of the agents, but we found using the Shannon entropy of the belief

δ(bel(mi,t)) = −
∑
mi,t

P (bel(mi,t)) log2 P (bel(mi,t))

= −P (bel(mi,t)) log2 P (bel(mi,t))− P (bel(¬mi,t)) log2 P (bel(¬mi,t))

(2.44)

yielding good results. The shape of (2.44) can be seen in Figure 2.6. In this sense, δ can
be seen as a measure of the information gained by visiting each grid cell. After all, we
have little interest in investigating cells with a posterior belief close to 0 or 1, since we
are fairly certain of what to find. Furthermore, by modeling δ in a manner resembling
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Figure 2.6: Response of δ(bel(mi,t)) as the Shannon entropy of bel(mi,t).

(2.44), we can include a notion of target tracking. Upon detection of a target, the belief
bel(mi,t) will spike causing δ to drop. As time passes, the map dynamics described in
Section 2.2.2 will blur the posterior belief of the grid cell across the neighboring cells,
causing a gradual increase in δ. Thus it might be of interest to go back and re-investigate
the state of a target after some time.

We can now propose the following objective to the search problem:

min
µ
f(µ, t) := 1−

∏
i

(
1− P (Ci,t|mi,t = 1)δ(bel(mi,t = 1))

)
(2.45)

subject to
pt+1 ∈ Pt (2.46)
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where Pt is the set of all reachable points for the agents from their current state pt.
The constraint (2.46) is a result of the physical limitations of the agents. It should be
apparent that the objective (2.45) closely resembles the posterior probability of collision
(2.43). The difference is the replacement of the posterior belief with the priority function
δ. Due to this, the objective function can be interpreted as a measure of the probability
of collision, influenced only by grid cells deemed important. The measure of which grid
cells are important is decided by the shape of δ.

2.3.1 Collision Risk Grid Map

In order to calculate the posterior probability of collision (2.43) and the objective function
(2.45), we need to determine the conditional probability P (Ci,t|mi,t = 1). Since this term
essentially states the probability that at least one target in a grid cell will eventually cause
a collision given there are at least one target present, it is obvious this probability should
be closely linked to the map dynamics. By considering a target in grid cell i, we know
the only possible events occurring in a time-step is the target transitioning to a grid cell
j in the neighborhood D of cell i, or the target staying put in cell i. Thus, by assuming
that the individual grid cells in D contribute to the probability of Ci,t happening in an
additive fashion at time t+ 1, we can express

P (Ci,t|mi,t = 1) =
∑
j∈D

∑
mj,t+1

P (Ci,t|mj,t+1)p(mj,t+1|mi,t = 1) (2.47)

which is a marginalization over the states of all grid cells in D. Since we are considering
the individual contributions from neighboring cells, we make the same assumption of the
transitional probabilities as in (2.26), such that

P (mj,t+1 = 0|mi,t = 1) = 0 (2.48)

which enables us to express (2.47) as

P (Ci,t|mi,t = 1) =
∑
j∈D

P (Ci,t|mj,t+1 = 1)P (mj,t+1 = 1|mi,t = 1) (2.49)

Let us consider the term P (Ci,t|mj,t+1 = 1). This is the probability that a target in cell
i will eventually collide given there exists a target in cell j at the next time step. In the
context of (2.49), this amounts to the individual contribution to the probability that a
target will venture through cell j on its path to collision. Thus it arguably makes sense
that we can rewrite (2.49) to

P (Ci,t|mi,t = 1) =
∑
j∈D

P (Cj,t+1|mj,t+1 = 1)P (mj,t+1 = 1|mi,t = 1) (2.50)

Right away it is possible to spot the overlapping subproblem P (Cj,t+1|mj,t+1 = 1), which
amounts to the same problem as finding P (Ci,t|mi,t = 1). Furthermore, (2.50) contains
transitional probabilities for future time-steps. The need for predictions of future tran-
sitional probabilities would greatly increase the problem complexity, and we will thus
assume our current estimate of the dynamics at time t encapsulates the future map
dynamics. We can then express (2.50) as

P (Ci,t|mi,t = 1) =
∑
j∈D

P (Cj,t|mj,t = 1)P (mj,t = 1|mi,t−1 = 1) (2.51)
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One might argue this is a crude assumption, since a worst case scenario might contain
a considerable change in target dynamics should the weather and current conditions
change. However, the problem can be addressed by adding sufficient uncertainty to the
target vector described by Kt. Next, we subtract both sides of (2.51) by the case where
j = i, such that

P (Ci,t|mi,t = 1)
(

1− P (mi,t = 1|mi,t−1 = 1)
)

(2.52)

=
∑

j∈D\{j=i}

P (Cj,t|mj,t = 1)P (mj,t = 1|mi,t−1 = 1)

which yields the following expression

P (Ci,t|mi,t = 1) =

∑
j∈D\{j=i} P (Cj,t|mj,t = 1)P (mj,t = 1|mi,t−1 = 1)

1− P (mi,t = 1|mi,t−1 = 1)
(2.53)

By looking at (2.53), we see that the probability of collision from cell i is again given by
the probability of collision from its neighbors j. However, the neighbors j are in turn
given by the value of cell i. In other words, (2.53) can not be solved explicitly. Thus we
will now propose an iterative procedure to approximate P (Ci,t|mi,t = 1).

Let Ck denote the grid map of the approximated grid cell probabilities of collision
after iteration k

Ck = {cki = P̂ (Ci,t|mi,t = 1)} (2.54)

Let Q denote the subset of grid cell indices in the occupancy grid map containing the
offshore platform. Thus a collision is defined as the event of a target transitioning into a
grid cell mi,t for all i ∈ Q. Initiate C0 such that

C0 = {c0
i = 0 | i /∈ Q} ∪ {c0

i = 1 | i ∈ Q} (2.55)

which essentially is a binary map with cell value 1 for cells defined as containing an
offshore platform. After all, should a target happen to be in such a cell, there is a 100%
chance of collision. For every iteration k until convergence, all grid cells i /∈ Q in Ck are
updated according to

cki =
1

1− P (mi,t = 1|mi,t−1 = 1)

∑
j∈D\{j=i}

ck−1j P (mj,t = 1|mi,t−1 = 1) (2.56)

where the transitional probabilities P (mj,t = 1|mi,t−1 = 1) are the elements of Kt. Ck is
said to converge when

|cki − ck−1i | < θ, ∀i (2.57)

where θ is a convergence threshold specified by the desired accuracy of the iterative
estimation. The full procedure is summarized in in Algorithm 2.
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Algorithm 2 Collision Risk Grid Map Creation Algorithm

1: procedure CreateCollisionGridMap(Kt, Q)
2: Initiate C0 according to (2.55)
3: k := 1
4: while Ck−1 has not converged do
5: for all grid cells i /∈ Q do
6: Calculate cki according to (2.56)
7: end for
8: k := k + 1
9: end while
10: end procedure

k = 0 k = 1 k = 3

k = 6 k = 15 k = 30

Figure 2.7: Illustration of the iterative process of creating the grid map Ck containing
the probabilities of collision.

Although a formal proof of convergence for Ck has not been established, Algorithm
2 has been tested on a broad range of transition kernels Kt, resulting in convergence
every time. Figure 2.7 illustrates a simple example of the iterative procedure listed in
Algorithm 2. The dark grid cells at iteration k = 0 marks the cells defined as critical in
terms of collision. It can be seen that for this simple example, the algorithm converges
after relatively few iterations.
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2.4 Model Predictive Search

2.4.1 Search Policy

The objective function f(µ, t) proposed in Section 2.3 presents a metric for optimization,
but the choosing of agent control actions and trajectories is not specified. During a search
each agent is given a path or a trajectory to follow, and the overall goal is to find the
set of paths for the team of agents such that f(µ, t) is minimized as quickly as possible.
To find the set of optimal routes for the team to follow, the objective function will be
further examined. We define the associated risk ri,t for a cell i at time t to be

ri,t := P (Ci,t|mi,t = 1)δ(bel(mi,t = 1)) (2.58)

such that the search objective can be rewritten as

min
µ

[
1−

∏
i

(1− ri,t)

]
(2.59)

The agents are able to alter the objective function by taking a measurement of cell i,
thus updating the belief bel(mi,t) associated with the cell. Due to potential measurement
noise and the possible events of false negatives, we let r̂i,t denote the associated risk of
cell i after the belief has been updated according to Algorithm (1).

In optimization theory, there are a number of ways of finding a local minimum. In this
thesis we employ the steepest descent method, which will be looking for paths resulting
in the most negative gradient of the objective function. In other words, to minimize
f(µ, t) the team of agents should use the set of paths that, after execution, maximize
the difference in the objective function per unit time. Let Pi,t be the path associated to
agent i and Pt denote the set of planned paths for the team of agents at time t, i.e.

Pt = {P1,t, P2,t, . . . , Pn,t} (2.60)

Let T (P) denote the time for the team of agents to traverse their paths in P . The reward
RT (P) for the team is the reduction of the objective function per unit time accomplished
by the entire team if the agents follow their respective path in P . As a large decrease
in the objective function should result in a large positive team reward, the team reward
should be defined as the negative difference in the objective function per unit time. As
the team of agents have performed measurements of a set of cells when all paths are
traversed, the posterior objective function will be divided into two sets, one consisting of
the cells that are not updated, i /∈ P , and the other consisting of cells that are updated
by the measurements, i ∈ P . This leads to the following expression for the team reward

RT (P) :=− ∆f

T (P)
= −fpost − fpre

T (P)
(2.61)

=− 1

T (P)

[
1−

∏
i/∈P

(1− ri,t)
∏
i∈P

(1− r̂i,t)

]
+

1

T (P)

[
1−

∏
i

(1− ri,t)

]
(2.62)

where fpre is the value of the objective function before and fpost after the paths in P have
been executed.

In order to find the optimal set of paths for the team, a few assumptions are made.
Firstly, the objective function value fpre will not be affected by the choice of paths P and
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can be considered constant for the optimization problem. Secondly, the knowledge of
measurement noise and false negatives and positives are not considered during the path
planning, as we assume the agents will gather sufficient measurements of any cell i to let
r̂i,t → 0. From these assumptions, the team reward can be rewritten as

RT (P) =
1

T (P)

[∏
i/∈P

(1− ri,t)−
∏
i

(1− ri,t)

]
(2.63)

=
1

T (P)

[∏
i/∈P

(1− ri,t)−
∏
i/∈P

(1− ri,t)
∏
i∈P

(1− ri,t)

]
(2.64)

=
1

T (P)

∏
i/∈P

(1− ri,t)

[
1−

∏
i∈P

(1− ri,t)

]
(2.65)

Next, to find the optimal set of paths, we are looking for the set of paths P∗ that will
maximize the team reward

P∗ := argmax
P

RT (P) (2.66)

= argmax
P

1

T (P)

∏
i/∈P

(1− ri,t)

[
1−

∏
i∈P

(1− ri,t)

]
(2.67)

(2.68)

Since the objective function value fpre is unaffected by the choice of P , we know that the
product

fpre :=
∏
i

(1− ri,t) =
∏
i/∈P

(1− ri,t)
∏
i∈P

(1− ri,t) (2.69)

is constant. This implies that maximizing one of the product terms in (2.69) is equal to
minimizing the other. Due to this fact, equation (2.67) can be rewritten as

P∗ = argmax
P

1

T (P)

∏
i/∈P

(1− ri,t) (2.70)

By using the fact proposed in (2.69), we can express P∗ as

P∗ = argmax
P

fpre
T (P)

∏
i∈P(1− ri,t)

(2.71)

= argmin
P

T (P)
∏
i∈P

(1− ri,t) (2.72)

As (1 − ri,t) will take a value in the interval [0, 1], the product can potentially get very
small should many cells be included in P . A more convenient approach is thus minimizing
the logarithm of the objective function.

P∗ = argmin
P

log

[
T (P)

∏
i∈P

(1− ri,t)

]
(2.73)

= argmin
P

[
log T (P) +

∑
i∈P

log(1− ri,t)

]
(2.74)
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Finally, the team reward value should be positive for any set of paths P if it decreases
the objective function. Hence the optimal set of paths can be expressed as the solution
to the following optimization problem

P∗ = argmax
P

[
− log T (P)−

∑
i∈P

log(1− ri,t)

]
(2.75)

2.4.2 Motivation for the Graph Construction

The notions of a path and a set of paths were introduced in section 2.4.1, but no infor-
mation was given about how a path is represented, nor how the search for optimal paths
is performed. A path is defined as a set of sequential waypoints, where a waypoint is a
spatial position in the search area.

P := {w1, w2, . . . wn} (2.76)

It should be noted that the path planning in this thesis is simplified to the two-dimensional
plane, as the the desired altitude can be predetermined and constant for the searching
agents. Thus, a waypoint wi is represented by the two-dimensional coordinates (xi, yi).

As the spatial positions in the search area are continuous, some sort of discretization
of the potential waypoints is required to have a finite number of paths to consider. A
solution proposed in [9] is to span the search area by a lattice graph Gl := (Vl, El) with
vertex set Vl and edge set El. Each node v in Vl is assigned to a position (xm, yn) in the
search map (Figure 2.9a), and represents a possible waypoint for the agents to consider
as part of their paths. Similarly, the edges represent potential connections between the
waypoints. To ensure that it is physically possible for an agent to travel directly from
a node i to any connected neighbor node j, the node spacing must be large enough to
satisfy the aircraft constraints described in Section 2.1. Moreover, a vital part is that the
node spacing ensures that every cell in the occupancy grid map will be covered by the
FOV of an agent from at least one node in the graph, to prevent the case where a region
is not observable from any waypoint. It is important to note that any lattice graph will
work for this process, and [9] found a degree-3 hexagonal lattice to give particularly good
results. However, the principles of the algorithm can be be tested regardless of lattice
choice, and we will therefore use the simplistic square grid graph in this thesis.

To be able to use the graph to find an optimal set of trajectories, a search map
st = {si,t} will be introduced. The search map is a grid map, where each cell si,t is
represented by the value

si,t = − log(1− ri,t) (2.77)

The graph Gl is placed on top of the search map st, and each node is assigned a weight
equal to the sum of the cells si,t in the neighborhood of the node. The sum of the cells in
the neighborhood of a node is found by dividing the entire search area into equally sized
regions, where each node has its position at the center of a such region. This region is
defined as the field of region (FOR) for the correspondingly centered node as shown in
Figure 2.8. The size of the FOR is thus dependent on the spacing between the nodes.
The weight Wt(v) for a node v is computed as the sum of cells in the search map laying
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𝑠𝑖,𝑡

𝑣
FOR(𝑣)

FOR(𝑣)

Figure 2.8: Illustration of how the FOR of a node is defined.

inside the FOR of v at time instance t

Wt(v) :=
n∑
i=1

si,t · inFOR(v, si,t) (2.78)

inFOR(v, si,t) :=

{
1, si,t ∈ FOR(v)

0, otherwise
(2.79)

Note how equations (2.78) and (2.77) are related to (2.75). The weight of node v is
closely related to the reduction of the objective function yielded by including v in a path.
Since there can potentially be a very large number of nodes in the graph, a horizon length
l will be set to limit the maximum number of nodes each path can contain at all times.

It is not necessary to consider every node during the search as some nodes may have
a low and negligible weight Wt(v). Since we want to search in areas with high search
map cell values, we introduce a threshold τ to remove the nodes with weights below this
threshold. After the removal, the remaining nodes will be reconnected by using Delaunay
triangulation (DT) to ensure connectivity between possibly separated areas. Figure 2.9b
shows an illustration of what a fully constructed graph G could look like. Full details for
how the graph is constructed is explained in Section 2.4.3.

The weight assigned to a node can be thought of as a search reward the agents will
receive by examining this node. The optimal set of trajectories are found by searching for
the paths that results in the highest search reward for the entire team. This algorithm is
called Cooperative Graph-based Model Predictive Search (CGBMPS) [9] and is described
in detail in Section 2.4.4.
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(a) Lattice graph over the search map st. (b) Fully created graph over the search map st.

Figure 2.9: Lattice- and fully created graph placed over the search map st.

2.4.3 Graph Construction

The dynamic graph is created as proposed in [9]. Since the search map is constantly
changing due to sensor measurements from the team of agents, the graph should be
periodically updated to ensure the trajectories only consists of waypoints with high search
reward. The graph construction process is stated in Algorithm 3. Figure 2.10 shows the
graph construction step-by-step.

Algorithm 3 Graph Construction at time instance t

1: Construct uniform lattice graph Gl := (V l, El) over the search region
2: Set reward threshold τ ≥ 0
3: Let Gτ

t := (V τ
t , E

τ
t ) be the graph where nodes from Gl with values less than τ at

time instance t are removed, V τ
t := {v ∈ V l | Wt(v) ≥ τ}. Eτ

t is the set of edges
connecting the nodes in V τ

t

4: Let GDel
t := (V τ

t , E
Del
t ) be the graph generated by a Delaunay triangulation of V τ

t

5: Let GDel<d
t := (V τ

t , E
Del<d
t ) be the subgraph of GDel

t obtained by keeping only the
edges in EDel

t connecting the nodes in V τ
t which has degree less than d in Gτ

t , where
d is the degree of the lattice graph Gl.

6: Let the final graph Gt := (Vt, Et) be the combination of Gτ
t and GDel<d

t , that is
Vt := V τ

t and Et := Eτ
t ∪ EDel<d

t

2.4.4 Cooperative Graph-Based Model Predictive Search

As the dynamic search graph based on the search map st is created, an algorithm for the
team of agents to cooperatively find a set of paths to follow has to be established. The
algorithm presented in this section is a slight generalization of the CGBMPS algorithm
presented in [9] to include the use of the search priority map st.

Suppose there is a team of M agents searching for an unknown number of targets in a
search region. Gt := (Vt, Et) is the dynamic graph used for path-planning with a vertex
set Vt and edge set Et at time instance t. As already stated, the vertices of Gt serves
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(a) Lattice graph Gl (b) Threshold graph Gτ

(c) Threshold Delaunay graph GDel<d (d) Final graph G

Figure 2.10: Step-by-step illustration of the graph construction. The search map st
consists of three Gaussian distributions and the nodes with high weights remains after
the threshold in (b).

as potential waypoints for the agents. At all times, each individual agent a has a set of
waypoints they want to reach, which is a path Pa represented as a sequence of vertices
in Gt; Pa := (va1 , v

a
2 , . . . , v

a
l−1, v

a
l ), where l is the horizon length of the receding horizon

optimization.
A path traveling cost is defined as

T (Pa) :=
l−1∑
i=1

t(vai , v
a
i+1) (2.80)

where t(vai , v
a
i+1) is the time it takes for agent a to travel between node vi and node vi+1.

T (Pa) is thus equal to the total duration for agent a to travel along path Pa. Optimally,
each agent should select a path P ∗a that maximizes the team’s examination of prioritized
areas. Therefore it is convenient to find an expression for the team reward RT , which all
of the agents attempt to maximize. From (2.75) and (2.77) we rewrite the team reward
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as

RT (P) = − log T (P) +
∑
i∈P

si,t (2.81)

Since we are summing over the set of cells visited by the entire team, we can also sum
over set of cells visited by each agent and sum over all agents. The time penalty T (P) is
the time it takes the team to finish executing the set of paths P , and could thus be equal
to T (P) = max [T (Pa)] ∀Pa ∈ P . This definition would make the search party only try to
decrease the duration of the most time consuming path, and remove the information about
the time spent for the other paths. Instead, our steepest descent search is interpreted
as if there were only one agent trying to find and execute M potentially non-connected
paths, where the overall time would be the sum of the time it takes to traverse each path.
This will make the team work as a unit to optimize the time spent by every agent, and
we can thus express the time penalty as

T (P) :=
∑
a

T (Pa) (2.82)

enabling us to rewrite the team reward as

RT (P) = − log
M∑
a=1

T (Pa) +
M∑
a=1

∑
i∈Pa

si,t (2.83)

As the agents are using the nodes in Vt as waypoints, and the FOR for two neighbor
nodes border each other, the sum of all cells si,t included in path Pa can be approximated
by summing all the node weights of all nodes vai in Pa when assuming that the FOV of
each agent is approximately as large as the FOR. Thus, we can simplify the team reward
to

RT (P) =− log
M∑
a=1

T (Pa) +
M∑
a=1

l∑
i=1

Wt(v
a
i ) (2.84)

where Wk is calculated by (2.78)
The agents will compute a new path every time they reach a new waypoint. Hence it

will only be the first node in the path that will be reached before a new path is generated.
This receding horizon approach is similar to the principals of model predictive control
(MPC) and is referred as model predictive search (MPS).

Obviously, the agents will generally arrive at waypoints at different times since the
edges in Et may have nonuniform lengths. At each time instant we therefore define the
set Aplan containing all agents that have arrived at a waypoint and Aen containing all
agents en route to a waypoint. In the CGBMPS algorithm, whenever the set Aplan is
nonempty, the agents in that set need to compute new paths assuming that the agents
in Aen will continue on their current paths. The update of the optimal paths at timestep
k is determined by

{P ∗a : a ∈ Aplan(k)} = argmax
{Pa:a∈Aplan(k)}

RT ({Pa}) (2.85)

Most often Aplan will consist of only a single agent. However, when Aplan consists of
more than one agent, equation (2.85) is not possible to solve explicitly as the optimal



2.4. MODEL PREDICTIVE SEARCH 29

paths are found by assuming all the other optimal paths are known in (2.84) . The worst
case scenario is all agents arriving at a waypoint at the same time instant. This will make
the optimization problem computationally heavy so an approximation used in [9] is the
sequential optimization

P ∗a := argmax
Pa

RT (P ∗1 , P
∗
2 , . . . , Pa), ∀a ∈ Aplan (2.86)

Since all agents in Aen already have computed their optimal path, that is ∃P ∗i ∀i ∈ Aen,
this modification results in the agent with the lowest index in Aplan to plan its path first
and the remaining agents plan their paths accordingly in a sequential manner. However,
this approximation does not care about cases where it might be better that the indexes
are shuffled, such that agent n finds its path before agent n − 1. This may result in a
suboptimal behavior by the team, and is solved by calculating (2.86) for all permutations
of agent orderings and choose the set of paths that yields the highest team reward.

To prevent multiple agents visiting the same node, the reward of visiting an already
taken node is set to zero for the subsequent agents. However, if there are waypoints with
high priorities close to an already taken waypoint, then the subsequent agents can choose
to pass through this node to reach the high priority node if this is an optimal solution.
The complete algorithm can be seen listed in Algorithm 4.

Algorithm 4 CGBMPS

1: t := 0
2: Construct G0 = (V0, E0) as in Section 2.4.3
3: For each agent a ∈ {1, . . . ,M} assign initial path P ∗a = (va1 , v

a
2 , . . . , v

a
l ) on G0

4: while search not complete do
5: Each agent takes sensor measurement
6: Update the belief bel(mt) as in Section 2.2.3.
7: Compute the set of agents arriving at a waypoint, Aplan

8: if the set Aplan is nonempty then
9: Update Gt as in Section 2.4.3
10: for each agent a in the set Aplan(k) do
11: Compute the path P ∗a using (2.86) with permutations
12: end for
13: end if
14: Agents move towards next waypoint in path
15: t = t+ 1
16: end while



30 CHAPTER 2. THEORY



Chapter 3
System Architecture

This chapter describes the system architecture of the simulator implemented to test the
performance of the system outlined in Chapter 2. The majority of work done in this
thesis have been spent implementing the simulation software, and it is thus natural to
give a brief description of its design and capabilities. Even though the system is intended
to have a high degree of autonomy capable of beyond line of sight (BLOS) operations,
the online optimization is performed in a centralized manner. This means the agents
will have on-board computers processing the sensor measurements before sending them
to a ground station which makes all decisions on behalf of the team. This design implies
the need for a telemetry link providing robust communication between the centralized
computer and all agents, leading to a requirement of the on-board computers being able
to perform image processing on a substantial amount of raw sensor data, rather than send
the data for processing elsewhere. Thus the only image information required to transmit
to the centralized computer would be binary detection variables for the occupancy grid
cells, which will greatly increase the robustness of the communication links in terms of
less data transfer.

The implementation of the system in this thesis is mainly twofold: The software
running on the centralized computer calculating the optimal agent trajectories, and a
software in the loop (SITL) setup simulating the aircraft dynamics in real time using
actual communication links to the centralized computer. Both aspects will be given a
brief description in the following sections.

3.1 Centralized Model Predictive Search Software

In essence, the task of the centralized computer is to calculate optimal trajectories for
the team of agents based on their poses and sensor measurements of the search area.
As described in Section 2.4.2, the problem of calculating trajectories is reduced to the
problem of finding a set of optimal waypoints for each agent, as the on-board autopilot
will calculate a trajectory accordingly.

MATLAB was chosen as the programming language to implement the model predic-
tive search optimization. This is due to the high amount of built-in functions suited
for scientific development and MATLAB’s high level of abstraction and possibility for
fast prototyping. The program is written using object-oriented programming (OOP),
abstracting several core components into objects. Due to the object instances separating
the functionality of the program we will refer to the separate objects as modules. In
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DUNE
LINK

CRM EM OGMAGENT GRAPH

ENVIRONMENT

TARGET

SWARM

Figure 3.1: Dependencies between the MATLAB modules.

some cases certain variables and methods of a module is accessible by other modules.
The program is divided into the following modules:

Agent• Collision risk map• DUNE link•

Entropy map• Environment• Graph•

Occupancy grid map• Swarm• Target•

The modules all have separate responsibilities. For instance, while the graph module
is responsible for updating the nodes and edges of the waypoint graph at each time step,
the swarm module is responsible for keeping track of the positions and planned paths
of all agents. Illustrated in Figure 3.1 are the module dependencies. All the modules
are indirectly connected to the environment module, which act as a container for the
overall simulation. The swarm module also acts as a container in the sense that it holds a
collision risk map-, entropy map-, occupancy grid map- and a graph instance in addition
to a list of agent instances. The tree structure ensures minimal dependencies between
the modules, which in turn optimizes both the abstraction of the architecture and the
code quality.

3.1.1 Module Descriptions

Map Modules

There are three separate map modules; Collision risk-, occupancy grid- and entropy map
module. The occupancy grid map (OGM) module is responsible of keeping track of the
posterior belief of the occupancy grid map, as well as the creation of an initial prior belief
map from recent satellite data. The posterior belief is updated every time a measurement
is supplied by an agent. The occupancy grid map module is also responsible for calculating
the next iteration in the Bayesian filter presented in Section 2.2.3.
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The collision risk map (CRM) module creates and stores the collision risk grid map
presented in Section 2.3.1. The collision risk grid map is not updated during the search
except if (or when) the kernel is changed.

The entropy map (EM) module is very similar to the occupancy grid map module, but
contains the Shannon entropy of all the belief cells instead of probability. Every time the
occupancy grid map is updated, the entropy map module will recalculate the Shannon
entropy of each updated belief cell.

Table 3.1 shows the three map modules and some of their methods

Table 3.1: The map modules and some of their methods.

Module Methods
occupancy grid map bayes estimation(kernel, map)

predict belief(kernel, map)
collision risk map calc risk map from kernel(kernel)
entropy map calc entropy from OGM(OGM)

Graph Module

The graph module creates and dynamically updates the graph containing the possible
paths to consider for the agents. The graph module uses the element wise product
between the entropy- and collision risk grid map to calculate the graph as explained
in Section 2.4.3. Table 3.2 shows some of the methods and variables of the module.
Every time the planned paths of the agents are to be updated, a new waypoint graph is

Table 3.2: The variables and methods belonging to the graph module.

Variables Methods
number of nodes add node()
node weights remove node()
reward threshold create graph from map(map)
adjacency matrix

created by calling create graph from map to account for recent measurements. The
variable adjacency matrix keeps track of the current waypoint graph, represented as
an adjacency matrix.

Agent Module

The agent module stores information of one single agent, and every agent in the team
is represented by an instance of this module. The module has no methods and Table
3.3 shows the key variables. The position and desired velocity of each agent will be
stored within their respective instance of this module. In addition, every agent holds an
instance of the DUNE link module. This module keeps all information necessary for the
central computer to communicate with the agent in question, regardless of the type of
communication link used. Details about the software, DUNE, used as a command and
communications link, will be given in Section 3.2.
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Table 3.3: Variables in the agent module.

Variables Methods
ID
pose

velocity
current node
FOV size

current path
dune link

Target Module

The target module keeps track of all information of one single target, and thus every
simulated target is represented as an instance of this module. Note that the swarm
module does not have access to the target module (Figure 3.1), and thus the true target
positions will not influence the estimated target positions. The target module does not
contain information about the team’s posterior belief of the target positions, as that is
the purpose of the occupancy grid map module. The target module is fairly simple, and
its variables and methods are listed in Table 3.4.

Table 3.4: The variables and methods belonging to the target module.

Variables Methods
ID move()
position
velocity vector mu
velocity vector sigma
is detected

If a target is positioned within the field of view of an agent while performing a mea-
surement, is detected is set to true. By considering this variable for all targets in a
search area we get a simple metric for the efficiency and thoroughness of a search party.

Swarm Module

The swarm module can be seen as the core component of the centralized program. This
module keeps track of all information provided by the searching agents and makes all
decisions regarding path choices for the agents. Instances of the waypoint graph, all
maps and a list of active agents are stored, and this is the module performing the model
predictive search optimization. The variables and methods of the swarm module are
listed in Table 3.5. At every time instance, the optimal paths for the team can be found
by calling update agent paths, which in turn calls model predictive search,
solving (2.86) by using dynamic programming. For each individual agent, the optimal
path is found by calling find optimal path recursively on the neighboring nodes,
since the optimal path from the current node with horizon l is the same as the maximum
of the optimal paths from the neighboring nodes with horizon l − 1. The method uses
depth first search to determine the order of nodes to examine.



3.1. CENTRALIZED MODEL PREDICTIVE SEARCH SOFTWARE 35

Table 3.5: The variables and methods belonging to the swarm module.

Variables Methods
agents model predictive search(graph)
OGM update graph(graph)
CRM take step()
EM update agent paths()
graph measure and update map(map)
kernel calc path reward()
horizon length find optimal path(graph)
position log measure()
search area size

Environment Module

The environment module acts as a facilitator search scenario. It contains an instance of
the swarm module and a list of all target module instances in the search region. This
abstraction enables us to draw a clear line between the estimated reality, contained in
the swarm module, and actual reality, contained in the list of target module instances.
The role of the environment module is thus to keep track of the time passed, move the
targets in accordance with their true velocity vectors and return the simulated camera
measurements to the swarm module. The environment module will flag targets as de-
tected if they are, and it is also capable of visualizing the search as it unfolds, plotting
the poses of all the agents along with the positions of the targets. Table 3.6 shows the
variables and methods of the environment module.

Table 3.6: Variable and methods of the simulation module.

Variables Methods
swarm add targets(targets)
targets mark detected targets(targets)
time passed visualize search()

execute search()
get agent positions()

Listing 3.1 shows a code snippet from the execute search method, which is run
after all initializations are complete. self is a reference to the environment instance,
as the function belongs to this module. In line 2, measure and update map calls
the swarm method measure for all agents, subsequently calling bayes estimation
from the occupancy grid map module to update the occupancy grid- and entropy map.
get agent positions reads the position data received from DUNE and updates the
position variable in the agent instances. In line 5, update agent paths determines
which agents have arrived at their designated waypoint and add them to Aplan. If Aplan

is nonempty, a new graph is created, and the model predictive search method is
called on this graph to update the optimal paths.
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1 while search_not_complete
2 located_targets = self.swarm.measure_and_update_map();
3 self = self.mark_detected_targets(located_targets);
4 self = self.get_agent_positions();
5 self.swarm = self.swarm.update_agent_paths();
6 self.swarm.send_waypoints_to_agents();
7 self.visualize_search();
8 end

Listing 3.1: Snippet from the execute search method belonging to the environment
module.

Visualization Tool

A visualization tool has been created to enable the user to view the current status of
the search as it unfolds. Figure 3.2 shows a snapshot of the visualization tool. The
visualization tool consists of multiple windows displaying information vital to the search.
The main window is showing the search priority map st with the dynamically created
waypoint graph on top. The agents are represented as triangles and their position logs
are displayed as trailing lines. The upper right window displays the posterior belief of the
occupancy grid map, based on the measurement gathered by all the agents. The middle
window to the right shows the collision risk map created based on the target dynamic
kernel, while the lower right window shows the kernel. All plots in the visualization tool
are made three dimensional to make it possible to view the search from any suitable
angle.

3.1.2 Features and Capabilities

There are a few parameters left for the user to specify when initializing the centralized
model predictive search. Among those, the most important are

� Geographical boundaries of the search area

� Resolution of the occupancy grid map

� Position of the offshore installation in the search area

� Horizon length in each step of the model predictive search

� Inverse sensor measurement model return values

It is however important to note that choosing a higher grid map resolution or horizon
length increase the system requirements of the computer used to run the program. Should
the centralized computer spend too much time on each calculation, the consequence would
be agents waiting for further instructions would be left loitering their previously assigned
waypoint in the meantime, which obviously is a waste of time.

The modular design allows us to keep the true target positions stored in the environ-
ment module, separated from the actual optimization process. During simulation, this
means when an agent reports its pose back to the ground station, a field of view will be
calculated from the target topology creating a simulated measurement. However, this
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Figure 3.2: Visualization tool.

approach does not lead to loss of generality as the same structure is applicable to actual
field tests. The advantage is the separation of the image processing problem, allowing
sole attention to the development of the path planning and target position estimation.
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3.2 Software in the Loop

In order to make sure the software from Section 3.1 performs well when integrated in
a fully operational system, a SITL test environment was set up. SITL is a useful tool
for developers as it simulates hardware, physical dynamics and data flow in real time,
enabling extensive testing of the software without physically connecting the hardware.

In order to simulate the flight dynamics of the UAVs acting as agents for the system,
the open source flight dynamics model JSBSim [2] is used. JSBSim is a standalone
program capable of compiling and running under many operating systems. It takes
input through a script file and various configuration files and can relatively easily be
incorporated in a larger flight simulator system. The specific airframe used for simulations
in this thesis is the Skywalker X8 Flying Wing (Figure 3.3) as this frame is available at
NTNU for potential field testing.

ArduPilot [18] is used as the closed loop autopilot for the agents. Even though
ArduPilot has many powerful features in terms of autonomy, it will serve our purpose
by simply navigating the UAV by the waypoints supplied by the centralized ground
computer. ArduPilot passes the output of the aircraft actuators to JSBSim, and JSBSim
will use the flight dynamics to reply with the new states of the agents, including their new
pose. One of the powers of ArduPilot is the possibility to run it on numerous different
hardware systems, including a regular laptop. This makes it possible to simulate an
aircraft with an associated autopilot on a laptop, while the interaction possibilities are
exactly the same as if it was running on an on-board computer.

DUNE Unified Navigation Environment (DUNE) [14] is used as a command and
communications link between the agents and the centralized computer. Dune is a run-
time environment for unmanned systems on-board software, and will pass the data from
ArduPilot and JSBSim to MATLAB and vice versa. DUNE can be used to write spe-
cific embedded software at the heart of a system, such as features of control, navigation,
communication, sensors and actuators. For the purpose of this thesis, DUNE enables all
active agents to be initiated as individual tasks that communicate through a well defined
protocol. The tasks are event driven, and all messages between an agent and the central-
ize computer are sent as predefined Inter-Module Communication (IMC) [11] messages.
MATLAB and DUNE communicate through a socket, uniquely defined by an IP address
and a port. This network interface encourages the centralized MATLAB software to not
care about the agents hardware setup nor the physical communication medium as long
as the socket is properly created.

To monitor the state of the agents during flight, the open-source ground control soft-
ware, Neptus [15], is used. Neptus can be used for a variety of tasks, including mission
planning, simulation, control execution, supervision, data logging and post mission analy-
sis. Neptus can communicate directly with DUNE using the IMC protocol, making it the
natural choice of ground control software for this thesis. A snapshot of Neptus’ command
and control GUI during SITL simulation can be seen in Figure 3.5b. The corresponding
live MATLAB visualization of the mission at the same time instance can be seen in Figure
3.5a.

The system architecture of the complete SITL test environment can be seen in Figure
3.4. All agent instances were initiated on separate computers connected by a local area
network (LAN) to the centralized computer. The fact that DUNE works as a pipeline
between the ground station and the agents using IMC messages, means the exact same
software tested in the SITL environment will be fully functional for an operational system
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Figure 3.3: Skywalker X8 Flying Wing airframe. Photo: NTNU Unmanned Aerial Vehi-
cles Laboratory (UAV-Lab).
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Figure 3.4: The architecture of the SITL test environment.
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running on separate on-board computers using wireless communication links. Thus, the
system implemented in this thesis is ready for field testing from a software perspective.

(a) Live search visualization by MATLAB.

(b) The Neptus command and control GUI.

Figure 3.5: Snapshot from SITL simulation.



Chapter 4
Simulations

In this chapter, the implemented system presented in Chapter 3 will be used to simu-
late various scenarios to empirically gain insight into the performance of the cooperative
search algorithm outlined in Chapter 2. Section 4.1-4.5 will mainly investigate the per-
formance and the scalability of the algorithm in terms of adjusting the number of agents
participating in a search. In Section 4.6, a few of the design parameters of the system will
be considered, to investigate the sensitivity to tuning and their impact on the system as
a whole. To avoid biased results due to the specific configurations of a scenario, Monte
Carlo simulations should ideally be employed with a high number of randomized sce-
nario configurations to estimate the expected performance of the system. However, due
to computationally heavy and time demanding simulations, simulating a high number of
different configurations has not been feasible for all the tests conducted in this chapter. A
few number of randomized configurations have however been simulated for each scenario
in order to improve the accuracy of the results. For many of the simulated scenarios,
plots are not included of all team sizes, and supplementary plots are shown in Appendix
A.

As a note to the reader, the simulations in this chapter are performed without soft-
ware in the loop, by only using MATLAB. This is due to the fact that all simulations
running SITL are performed in real time, making each simulated scenario extremely time
demanding. Furthermore, this chapter only intends to measure the behavior and choices
made by the system. Thus SITL, which test hardware compatibility and real time re-
quirements, are not important to the results, and will be disabled. Instead the UAV
dynamics is simplified as steps with the assigned velocity in the direction of the next
waypoint. Due to the large scale of the search regions in this chapter, it turns out the
resulting trajectories have little difference from the ones obtained when running SITL for
the same configurations.

4.1 No Prior Target Information

To test the path planning capabilities of the system, simulations have been carried out
for a fixed number of stationary targets with no prior location information. The prior
occupancy grid map bel(m0) is given the uniform belief 10−3 for all cells, leaving only the
collision risk grid map to affect the path choices. The scenario parameters can be seen
in Table 4.1. The search is executed by teams ranging from one to five agents, with a

41
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Table 4.1: Simulation configurations for no prior target information.

Parameter Value
Physical map size 10,000m × 10,000m
Number of grid cells 100 × 100
Number of nodes 25 × 25
MPS horizon length 6
Graph threshold 10−4

Agent velocity 15m/s
Agent field of view (FOV) 440m × 440m
Number of targets 10
Target velocity None

collision risk grid map created from the kernel

K =
1

4

0 1 0
1 0 1
0 1 0

 (4.1)

As this kernel does not give any certain knowledge of the direction of target movement,
the resulting collision risk grid map is exponentially decreasing from the offshore rig in
all directions. To get a more accurate measure of the search durations, the simulation
is carried out for three randomized target configurations consisting of 10 targets each.
Figure 4.1 shows the resulting agent trajectory from a simulation with a team consisting

Figure 4.1: One agent searching for targets with no prior target information.

of one single agent. The colored map visualizes the search map st where yellow areas
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indicates high cell values, whereas dark blue represents low cell values. With no prior
target information, it can be seen that the resulting trajectory takes form as a growing
spiral starting in the offshore rig. The rationality of this behavior is supported by the
fact that in geometric exploration, the spiral search starting from a given point of interest
is in fact the optimal search strategy for objects whose positions are unknown [5].

Figure 4.2: Two agents searching for targets with no prior target information.

Figure 4.2 shows the resulting search trajectories for a team consisting of two agents.
The cyan trajectory represents agent one’s search trajectory while the red represents
agent two’s trajectory. The search pattern is very similar to the case with a single agent,
except the agents are now cooperating such that the resulting search spirals are growing
approximately twice as fast. The increased efficiency caused by the cooperation can be
seen from the search durations (Figure 4.3), where the mean search duration decreases
from 236 to 117 minutes by increasing the team from one to two agents. This is an
indication that deploying two agents opposed to just one, will double the efficiency of
the search for situations where no prior target information is obtainable. Figure 4.3 also
shows the curve constructed from the means of the search durations by least-squares
fitting. The results show an exponential decrease in mission time by increasing the team
size.
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Figure 4.3: Error bar and curve fitting from search durations for teams ranging from one
to five agents where no prior information is given.
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Figure 4.4: Objective function value and number of targets detected over time where no
prior information is given.

When considering performance and scalability is also of interest to compare the de-
velopment of the objective function f(µ, t) between teams of different sizes (Figure 4.4a).
An interesting note is how the general shape of f(µ, t) is similar for all team sizes, even
though the search patterns vary with the size of the team (Figure A.1 shows trajectories
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for teams of size three to five agents). The objective function value initially decreases
slowly until the most critical regions have been covered. After this, f(µ, t) decreases in an
almost linear fashion for all team sizes. Furthermore, from Figure 4.4a it seems like the
time for each team to reach any given value in the objective function is also exponentially
decreasing with the team size.

Figure 4.4b shows an example of the development of target detection for the various
team sizes. The number of targets detected increases in a linear fashion, and the slope
increases as the number of agents is increasing.

4.2 Prior Information on all Targets

Since the system presented in this thesis can use the prior information of the search area
to its advantage, it is of interest to investigate the performance for cases where we to some
degree have prior information of all targets as a search is initiated. As in Section 4.1, 10
stationary targets are distributed across the search area. All prior target distributions
are modeled as Gaussian distributions with the same covariance matrix

C =

[
250 0
0 250

]
(4.2)

and three randomly generated initial position configurations will be simulated to give
a good measure of the search times. The configuration parameters are the same as in
the previous section (Table 4.1), and the collision risk grid map is calculated from the
kernel (4.1). Figure 4.5 shows the mean value and the variance of the search time as a
function of the search party size. The means of the search durations does not have the
same obvious exponential decrease as seen in section 4.1. This is most likely due to the
fact that the target configurations have a large significance when this amount of prior
information is given. Thus, three simulated configurations is likely not enough to get a
good measure of the average search durations. However, the time to detect all targets is
significantly lower than the resulting times when no prior information was given, which
is an indication that the system is able to take advantage of the prior information of the
target topology. The reason for the high variance of the mission durations in Figure 4.5
is also due to the fact that the trajectories of the agents are highly dependent on the
target positions when we have a high degree of prior target information, as opposed to
the spiral search pattern seen when no prior information is given.

Figure 4.6 shows the search trajectory of a single agent for one of the simulated
scenarios. As seen from the plot, the agent goes straight for the mean when it approaches
a target Gaussian. Furthermore, when multiple Gaussian target distributions are close
together, the agent tends to cover all the means before systematically going back to cover
the remains of the target distributions. After all, the search objective outlined in Section
2.3 considers the product of the contributions to a collision from each individual grid
cell. This leads to prioritizing covering high reward areas as fast as possible, even if they
are separated by stretches of low priority. This search strategy might result in an overall
increased search duration, but a faster decrement in the objective function. Thus, this
behavior seems like a rational search policy from a perspective of protecting an offshore
installation. Figure 4.7 shows the same search scenario for a team of two agents. As
expected, when increasing the number of agents the search party will fan out and focus
on different targets. Plots showing the trajectories of teams ranging from three to five
agent can be seen in Figure A.2
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Figure 4.5: Resulting curvefitting for the mission times versus team sizes ranging from
one to five agents when prior information about the targets are given.

Figure 4.6: Search trajectory for one agent where prior information is given on all targets.
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Figure 4.7: Two agents searching for targets where prior information is given on all
targets.

When looking at the values of the objective function (Figure 4.8a) we can see it
reduced in a more uneven fashion than than the case of no prior target information. This
is because of the stretches of low priority that has to be traversed in order to reach the
next high reward area. Furthermore, we see that for this particular scenario there is little
to gained by deploying a team of more than three agents.
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Figure 4.8: Objective function value and number of targets detected over time where
prior target information is given.

4.3 Prior Information on a Subset of the Targets

A realistic ice management scenario might involve a search region where satellite images
have provided some degree of prior target information. The information provided by a
satellite might however be outdated or coarse, leading to the chances of unknown targets
in the search region. Thus, it is of interest to investigate how the system will perform
in situations where prior information is given on a subset of the targets. The same
target configurations as in the previous sections will be tested, where five of the targets
will be given a prior Gaussian distribution with the covariance matrix (4.2). No prior
information is given on the five remaining targets, and the search proceeds until all targets
are found. The configuration parameters of the simulations are listed in Table 4.1. The
search durations for teams of various sizes can be seen in Figure 4.9. It makes sense
that the means of the search times fall in between the case of a high rate of prior target
information and the case of no prior information at all.

Figure 4.10 shows the search pattern for a single agent. Like the resulting trajectory
displayed in Section 4.1, a spiraling path from the starting point can be observed. How-
ever, the agent makes detours once it comes within reach of known target distributions,
leading to a faster discovery of the targets with prior information. Figure 4.11 displays
the same scenario for two agents. The combination of prior target probability distri-
butions and areas with an unknown target probability does not seem to cause trouble
for the cooperative behavior of the agents. As seen from the trajectories there are no
conflicting path choices between the two agents. This is also reflected in the objective
function plotted for various team sizes (Figure 4.12a), where we see the rate of reduction
of the objective value is significantly increased as the team size increases. The trajectories
of teams ranging from three to five agents can be seen in Figure A.3.
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Figure 4.9: Resulting curvefitting for the mission times versus team sizes ranging from
one to five agents when prior information is given about a subset of the targets.

Figure 4.10: Search trajectory for one agent where prior information is given on a subset
of the targets.
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Figure 4.11: Search trajectory for two agents where prior information is given on a subset
of the targets.
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Figure 4.12: Objective function value and number of targets detected over time where
prior target information is given on a subset of the targets.
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4.4 Team of Agents Compared to Satellite Imagery

A natural question arising from this thesis is whether the system developed would be a
contribution to modern ice management. In order to get a measure of the contribution,
we will compare the system with the use of satellite images for sea ice detection, which is
a method currently used in ice management. We will consider a scenario with a timespan
of 72 hours for a search area of 100km × 100km with the offshore platform positioned
in the center of the search area. For this simplified scenario, targets in the search area
are given a velocity with mean value 2m/s acting south-west. During the 72 hours of
simulation time, 1000 targets are randomly sent into the search area. The parameter
list can be seen in Table 4.2. Figure 4.13 shows the search trajectories for team sizes
of one and three agents. The grid shaped pattern of the trajectories are a result of
the map dynamics. There is a steady flow of unknown target probability drifting in
the direction of the platform and the agents are not able to cover all the ground before
having to venture back to reinvestigate the previously searched areas. The result is a
patrolling behavior by the agents where they keep the regions deemed the most critical
under constant surveillance, going back and forth across the lattice graph. A pleasing
result is that extending the team size also extends the area the search party is able to
patrol in order to protect the offshore platform from incoming threats. Agent trajectories
for teams of two and four agents can be seen in Figure A.4.

Table 4.2: Configuration for the long term search.

Parameter Value
Physical map size 100,000m × 100,000m
Number of grid cells 100 × 100
Number of nodes 25 × 25
MPS horizon length 6
Graph threshold 10−3

Agent velocity 15m/s
Agent Field of view 4400m × 4400m
Mean target velocity 2m/s south-west

As a means of comparison we will look at the effects of satellite images without the
aid of the UAS. In order to put this in the framework of this thesis, we incorporate
a satellite image in the sense of the Bayesian target estimation from Section 2.2, as a
large measurement zt covering the entire search map. Figure 4.14 shows the value of
the objective function for various time intervals of satellite images being taken. Prior
information is given of the initial configuration of the targets. As seen from the Figure
4.14a, our initial information of the targets will drift towards the platform causing an
abrupt increase in the objective function. As all initial information drifts away from
the critical regions, the objective function will stabilize because of the steady influx of
unknown target probability into the search map. The same behavior can be seen in
Figure 4.14b when another satellite image is provided after two days. The belief of all
grid cells will either spike or decrease significantly, causing the objective function to go
to zero. What is interesting to note however, is that when increasing the frequency of
satellite images provided, the average objective function value go up. This is due to
the fact that a satellite image provides information of the entire search region, which in
cases of high target density will cause a rise in the near future of the estimated risk of
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(a) Path history for one agent. (b) Path history for three agents.

Figure 4.13: A section of the search area displaying path history for different team sizes.
The underlying plot is the collision risk grid map.

collision. Figure 4.15 displays the objective function values for the exact same scenario
for search parties ranging from 1-4 agents. Seen from the plots, the objective function
f(µ, t) slightly increases when increasing the team size. The reason for this increase is the
fact that a larger team will uncover more potential threats, causing an increase in f(µ, t)
over time when the map dynamics are brought into effect. When increasing the team
size to such an extent they have the majority of the critical areas under some degree of
constant surveillance, simulations show the average value of f(µ, t) will again decrease.

By comparing Figure 4.14 and 4.15, we see that all team sizes manage to score a lower
average objective function value than any of the simulated satellite image frequencies. We
also see that all team sizes produce an average objective value that is lower than the case
of only unknown target probabilities as seen in Figure 4.14a. While supplying satellite
images gives a detailed update of the entire search region once in a while, a searching
team of agents give continous updates only in critical regions. Of course, the optimal
approach would be a combination of the two. It should be noted that although the use
of UAS yield better overall results in these simulations, they are performed for teams of
agents flying continuously for 72 hours. Even though agents could be replaced one by
one as they were drained by battery life, this is a slightly unrealistic use case.
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(a) No satellite images.
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(b) Satellite image taken after two days.
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(c) Satellite image taken once every day.
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(d) Satellite image taken every two hours.

Figure 4.14: Objective function value plotted for various intervals of satellite images
taken. The red line shows the average objective value.
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(a) One agent.
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(b) Two agents.
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(c) Three agents.
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(d) Four agents.

Figure 4.15: Objective function value plotted for team sizes. The red line shows the
average objective value.
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4.5 Tracking Performance

If we are fairly certain a cell in the occupancy grid map contain at least one target, the
corresponding belief of the cell bel(mi,t) will have a value close to one. As a result of the
map dynamics presented in Section 2.2.2, the predictive step may distribute the belief
of this cell to the surrounding cells, resulting in a higher value of the priority function
δ(bel(mi,t)) for the surrounding cells. Eventually the value of the search map st will
rise above the graph reward threshold τ , causing a node to appear in the search graph
enabling agents to revisit a previously investigated area. Hence a notion of tracking is
introduced to the behavior of the system. This section will isolate the tracking feature
and compare the performance between team sizes ranging from one to three agents.

Table 4.3: Configurations for tracking scenario.

Parameter Value
Physical map size 10,000m × 10,000m
Number of grid cells 100 × 100
Number of nodes 25 × 25
MPS horizon length 6
Graph threshold 10−3

Agent velocity 15m/s
Agent Field of view 440m × 440m
Target velocities 2m/s east

Kernel

0 0 0.1
0 0 0.8
0 0 0.1



Figure 4.16: Configuration setup of tracking scenario. The black square represents the
initial target positions and the triangle is the initial agent position.

The scenario is initiated with the configurations specified in Table 4.3. Three targets
are initially placed at the coordinates (100, 4000), (100, 5000) and (100, 6000), with agents
initially placed at (0, 5000) as shown in Figure 4.16. The positions of all targets are
assumed to be fully known to the team of agents prior to the search, so bel(mi,0) ∈ {0, 1}.
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(a) Trajectory for team of one agent.
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(b) Trajectory for team of two agents.

Figure 4.17: Trajectories of teams consisting of one and two agents tracking three targets
moving towards the offshore rig.

Figure 4.17 shows the resulting agent trajectories for teams consisting of one and two
agents respectively. Trajectories for three agents are shown in Figure A.5. The main
difference between a team of one and two agents is that two agents are able to cover
more area and frequently update the position estimates of all the targets. Figure 4.17a
shows that the single agent spends most of its time tracking the target following the
line y = 4000, as opposed to regularly updating all target positions. This result is
reflected in Figure 4.18a1, showing the development of the posterior estimate of the
target positions for the single agent. As seen from the plot, the target following the line
y = 4000 get more attention, and has a higher update rate. When the targets approach
the offshore rig where the cells in the collision risk map contains high values, the last
two targets are eventually revisited. Figure 4.18b1 and 4.18c1 show that the certainty in
the posterior target estimations increases as the number of agents are increased for this
tracking scenario. Figure 4.18a2, 4.18b2 and 4.18c2 show the objective function f(µ, t)
over time for the three team sizes. A perfect tracking system would know the exact
position of all targets at all times, rendering the objective function equal to zero at all
times. Figure 4.18a2 shows that measurements from only one agent is not enough to
reduce the objective function from the initial value, except when the targets get close to
the offshore rig and the position information may be crucial for avoiding collisions. As
the number of agents increases, the belief bel(mi,t) of the grid cells in general get a higher
level of certainty, lowering the objective f(µ, t).
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(a1) Team of one agent.
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(a2) Team of one agent.

(b1) Team of two agents.
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(b2) Team of two agents.

(c1) Team of three agents.
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(c2) Team of three agents.

Figure 4.18: The time development of the posterior estimates of target positions bel(mi,t)
and objective function f(µ, t) over time for team sizes ranging from one to three agents.
The red line is the average objective function value over time.
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4.6 Effects of Parameter Tuning

The system developed in this thesis have several parameters specifiable by the user.
It is of interest seeing how these parameters affects the behavior of the agents and the
resulting search patterns. This section will isolate and adjust three of the most important
parameters to examine their sensitivity to variations. The parameters to be examined
are the relationship between the node spacing and size of the field of view (Section 4.6.1),
the MPS horizon length (Section 4.6.2) and the cell transition probability kernel Kt
(Section 4.6.3). In Section 4.6.3, the targets velocity vectors will be physically modeled
by Gaussian distributions and Monte Carlo simulations are performed to estimate the
expected result. However, Monte Carlo simulations are not performed in Section 4.6.1
and 4.6.2 as the statistical variations has limited influence on the validity of the results.

4.6.1 Relationship Between Node Spacing and Field of View

As described in Chapter 2.4.2, each node has an assigned field of region (FOR) containing
the search map grid cells si,t in the neighborhood of the node. As an agent visit a node,
the relationship between the agent’s field of view (FOV) and the node’s field of region
will determine the amount of grid cells in the field of region the agent will examine. If the
ratio between the field of view and the field of region is too large, the agent will examine
cells belonging to the neighboring nodes’ field of region, decreasing their search reward
without even visiting them. By adjusting the node spacing, the size of the field of region
is affected. A change in the ratio between the node spacing and the agents field of view
will cause a corresponding change in the ratio between the field of region size and the
field of view size. For a more intuitive metric, we define the FOV-to-FOR ratio r as

r :=
FOV size

FOR size
(4.3)

Table 4.4: Configuration of node spacing scenario.

Parameter Value
Physical Size 5,000m × 5,000m
Number of grid cells 100 × 100
Number of nodes 25 × 25
MPS horizon length 6
Graph threshold 10−4

Agent velocity 15m/s
Target velocities None
FOV-to-FOR ratios

[
1, 1.5, 2

]
In this section, three scenarios with different values of r will be set up. The configu-

rations of the search scenarios are listed in Table 4.4. Before the simulation results are
presented, it is important to clarify the details of how the examination of grid cells is
performed in the system implementation. When performing a measurement, every corner
of a cell must lie inside the agents field of view for that cell to be registered as examined,
such that a grid cell will not be updated by the Bayesian filter unless all the content of
that cell is visible to an agent. Optimally, the FOV-to-FOR ratio r should be equal to
one for an agent to only examine the cells inside a nodes FOR and ensure all the cells
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in the particular FOR are examined. This implementation detail implies that the node
placements should be in a manner such that the grid cells are positioned symmetrically
around each node. Should this be the case, a FOV size equal to the FOR size would mea-
sure all cells belonging to the FOR of the visited node. This ideal outcome is however not
always the case as both the number of cells and the node spacing can be set arbitrarily.

As we aim to isolate and compare the effects of adjusting FOV-to-FOR ratio, the size
of the search party is irrelevant, thus all simulations in this section are performed for a
single agent. The simulated scenarios are executed by letting the FOR size be the same
for all scenarios, only adjusting the FOV size to reach the desired ratio r. This will make
more visually intuitive results, as the waypoints are located at the same positions through
all scenarios. However, it should be noted that for practical applications the field of view is
dependent of the specifications of the camera used, and the flight altitude which depends
on the weather conditions. In this setting, the FOR size should be designed according
to the expected field of view to reach the desired FOV-to-FOR ratio. As this section
only outlines the effects of ratio adjustments, the order of parameter determination is
irrelevant.

Simulations results (Figure 4.19a) show the agent is unable to examine all cells be-
longing to the FOR of a node with r = 1. This is due to unsymmetrical positions of
search map cells around the nodes and fluctuations in agent position, resulting in mea-
surements that are wider to one side of the agent than the other. This phenomena leaves
unsearched cells inside the FOR of a given node and the reward of a node might be above
the threshold τ even after the node has been visited.

A solution to address the problem could be to increase the threshold τ such that the
search reward of a node indeed drops below τ after visitation. However, increasing τ
would also affect the overall search because other medium priority areas of the search
region might drop below the threshold. To resolve the issue, a small margin is added to
the agents field of view to compensate for unsymmetrical node placement in the the grid
map. For this scenario configuration, the FOV-to-FOR ratio was increased from r = 1
to r = 1.1 (Figure 4.19b). The result show the agent is capable of covering all cells in
the FOR of the visited nodes, without the FOR of unvisited nodes being significantly
affected.

Figure 4.19c and 4.19d shows the resulting trajectories for r = 1.5 and r = 2.0
respectively. The search patterns are all variations of the growing search spiral observed
in Section 4.1, but are performed in a less symmetrical manner. This lack of symmetry
causes the search pattern to leave some areas unsearched. The corresponding nodes
containing the unsearched area in its FOR may be assigned a reward below τ , making
it disregarded for proceeding search. This may have fatal consequences as in the worst
case there might be undiscovered targets inside such an unsearched region that are now
unreachable from any of the remaining nodes.

Figure 4.20 shows the objective function f(µ, t) over time for the three different ratios
r. As the node spacing is constant for all three scenarios, the field of view for each agent
is increasing with the ratio. This means the area measured per time is proportional to
the FOV-to-FOR ratio, and thus is makes sense that f(µ, t) decrease faster with higher
values of r. It can be seen that when r = 2, f(µ, t) is decreasing the fastest. However,
r = 1.1 actually has a higher rate of decrease than r = 1.5, even with a smaller FOV size
for the agent. This is the result of the absence of remaining unsearchable areas due to
the small margin added to r = 1.1, as the presence of these slow down the decrease of
the objective function.
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(a) r = 1.0. Snapshot during mission as the
search did not terminate.

(b) r = 1.1

(c) r = 1.5 (d) r = 2.0

Figure 4.19: Resulting trajectories for four different FOV-to-FOR ratios.
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Figure 4.20: Objective function over time for different FOV-to-FOR ratios.

4.6.2 MPS Horizon Length

Another design parameter having an impact on the resulting search strategy is the horizon
length used in the model predictive search algorithm. The horizon length represents how
many waypoints into the future the agents are capable of considering when choosing the
optimal path. By increasing the horizon length we can influence the search strategy from
a greedy approach, to a more long term search strategy planning further into the future.

To examine the effects of adjusting the horizon length, a simulation scenario where
prior information is given on a subset of the target positions is set up. The simulation
configuration is shown in Table 4.5, and the simulation will terminate when the team has
detected all ten targets. As we aim to isolate the effect of adjusting the horizon length,
the number of agents deployed is irrelevant and all simulations in this section is performed
for a team size of two agents. As stated in Section 3.1.1, the search for the optimal path
is implemented as a depth first search, meaning the number of paths to examine is a
rapidly growing function of the horizon length. Due to computational limitations, we are
not able to test the case where the horizon length is equal to the total number of nodes
in the search graph, but are limited to a maximum horizon length of approximately ten
nodes.

Figure 4.21a - 4.21d shows the resulting trajectories for horizon lengths 1, 6, 8 and
10 respectively. Trajectories for horizon length 4 is shown in Figure A.6. A common
behavior is that both agents are moving in an expanding manner from the offshore rig in
all cases. As seen from the case of the short horizon length (Figure 4.21a), the agents are
not immediately searching for the targets for which they have prior position information.
Increasing the horizon length however, causes the agents to prioritize investigating the
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(a) horizon length = 1 (b) horizon length = 6

(c) horizon length = 8 (d) horizon length = 10
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(e) Objective function over time.
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(f) Number of target detections over time.

Figure 4.21: Resulting agent trajectories for various horizon lengths in addition to objec-
tive function and target detection over time.
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Table 4.5: Configuration for scenario with different MPS horizon lengths.

Parameter Value
Physical Size 5,000m × 5,000m
Number of grid cells 100 × 100
Number of nodes 25 × 25
MPS horizon lengths

[
1, 4, 6, 8, 10

]
Graph threshold 10−4

Agent velocity 15m/s
Number of targets 10
Target velocities None
FOV to FOR ratio 1.1

prior information areas at an earlier stage, as this will cause a faster decrease of the
objective function.

Figure 4.21e and 4.21f shows the objective function over time and the number of
detected targets versus time for all horizon lengths. The objective function is not affected
much by the increased the horizon length. The rate of target detections is also similar
for all horizon lengths. However, Figure 4.21f shows the horizon length equal to one
marginally has the slowest rate of detection, while surprisingly the horizon length equal
to four has to steepest detection rate. It is however important to note that these results
are specific for this single scenario, thus no general conclusions should be drawn based
on this data set.

The simulated mission time and the computer run time for completing the simulations
are displayed in Figure 4.22. The simulated mission time is not much affected by the
increased horizon length. However, passing a horizon length of eight greatly increase the
computer runtime and at a horizon length of 10, the computer runtime is almost twice the
length of the simulated mission time. This leaves the centralized computations useless
for practical applications as they would require online computations.

Some improvements could be done to reduce the algorithm runtime, for instance
implementing the optimization in a more seamless language with less overhead such as
C or Fortran. Another suggestion is simply running the centralized software on a more
powerful computer, to be able to increase the horizon length. However, the above results
does not imply an extremely high horizon length necessarily results in a more efficient
agent behavior.
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Figure 4.22: Simulated mission times, and actual computer runtime to complete a simu-
lation. Simulations performed on an Intel® CoreTM i7-4790 3.60GHz processor, 16.0 GB
RAM.
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4.6.3 Kernel Estimation Accuracy

Section 2.2.2 explains how the predictive step includes map dynamics as a convolution
between the prior belief and the estimated cell transition probability kernel. As the nodes
of the search graph only appear in areas with a satisfactory search reward, the accuracy
of the estimated kernel is important to ensure targets are reachable from nodes in the
search graph at all times.

In this section, we will assume the target velocities are random vectors drawn from a
Gaussian distribution with known expected value µ and covariance matrix Σ. A kernel
will be created by sampling the Gaussian distribution into grid cells with equal size as
shown in Figure 4.23. It is of interest to see how accurate the sampling process of the
kernel is due to rounding errors and how these may propagate through the prediction
steps. For this test scenario, a target is initially placed at position (100, 100) and will
every iteration follow the random velocity vector V where

V ∼ N (µ, Σ), µ =

[
30
30

]
, Σ =

[
22.5 0

0 31.5

]
(4.4)

The remaining search scenario parameters are shown in Table 4.6. In this scenario, the
targets will move with a mean velocity of 2m/s, so a Gaussian distribution could be
created with an expected value equal to this. However, as the map grid cells are of size
10 × 10 m2, the resulting discretization would be too coarse due to the resolution of the
kernel. Instead, the Gaussian is scaled such that we look at the position uncertainty after
the targets have moved 30m in both x and y direction, which implies a predictive step
is only to be employed every 15 seconds. Note that the distribution presented in (4.4) is
not estimated from a realistic data set. The parameters are set arbitrary as we only wish
to illustrate the challenges with the kernel estimation.

Table 4.6: Scenario Configuration for Kernel estimation.

Parameter Value
Physical size 1,000m × 1,000m
Number of cells 100 × 100
Number of convolutions 20

The belief grid map will correspondingly be convolved by the kernel at every iteration,
and the position of the target will be compared to the estimated belief map after 20
iterations to see the effects in terms of estimation error of the final target position due
to kernel estimation errors. To get a satisfactory basis for comparison, Monte Carlo
simulations are performed for 100 targets. Figure 4.24 shows the resulting Monte Carlo
simulations at five different stages in the series of convolutions. Naturally, it can be
seen that the deviations between the mean of the target position and target position
belief are increasing with the number of convolutions, even when the kernel is sampled
from the target velocity distribution. The source of the deviation error is the loss of
accuracy through the down sampling (Figure 4.23). Higher resolution in terms of more
map grid cells yields less loss in the process of down sampling. These errors becomes
more significant as the numbers of convolutions increase and the errors are propagated.
In addition, it should be clear from Figure 4.24 that a kernel sampled or estimated from
an unknown or less accurate distribution, as is the case for a real life application, would
result in additional prediction errors.
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(a) Known target velocity distribution. (b) Sampled kernel from distribution in (a).

Figure 4.23: Kernel sampled from a Gaussian distribution.

Figure 4.25 illustrates how the belief of the expected target cell evolves through the
predictive iterations. The mean target position after every iteration is calculated, and the
belief in the corresponding grid cell is plotted against the iteration number. The expected
target belief, which is a function of both uncertainty in the vector distribution and the
estimation accuracy errors, is exponentially decreasing. This gives an indication that
the predictive step decays the information about the target position estimation rapidly.
However, as long as the target distribution is ensured to be inside an area of sufficient
belief, the region containing the target will get a reward above the threshold τ should it
venture into a critical region of the collision risk map.
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Figure 4.24: Resulting Monte Carlo simulation and belief predictions after 4, 8, 12, 16
and 20 convolutions. The red markers are the target positions and the blue lines are
contour plots of the resulting predicted belief. The black markers are the mean positions
of the targets.
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Figure 4.25: Kernel belief.



68 CHAPTER 4. SIMULATIONS



Chapter 5
Discussion

5.1 Performance, Optimality and Scalability

The system developed in this theses emphasize the focus of using multiple UAVs in
ice management to increase the efficiency from using only one single UAV. In [9], the
CGBMPS algorithm was employed with the intention of locating a single stationary
target. The repurposing of the algorithm to account for an unknown number of targets
was tested in Section 4.1, 4.2 and 4.3 for simulations of a stationary target topology with
a varying degree of prior information. The results substantiates that the efficiency in
terms of target detection rate and reduction in probability of collision indeed increase
with the number of agents. Furthermore, efficiency in terms of search duration seems
to be dependent on the amount of prior information supplied. When no prior target
information is given, the mission durations have an exponential decrease. On the other
hand, when prior information is given for all target positions, the same rate of decrease
does not occur. The system’s ability to utilize the a priori knowledge seems to be efficient
as an increase in prior information leads to a reduction in mission duration.

Current ice management applications are often relying on satellite data to estimate
the position of threatening sea ice. A comparison between the usage of the presented
system and the usage of satellite imaging was performed in Section 4.4. The two systems
are highly complementary as the satellite measurements have a low update frequency but
a high level of data acquisition in terms of measured area, while the UAS has a rela-
tively high update frequency but a low level of data acquisition compared to the satellite
imaging. A comparison was made based on the objective function for the two systems.
However, due the different modes of operation it is difficult to compare the two alterna-
tives. Moreover, the search objective function is not an objective metric of the current
danger posed by the surrounding sea ice, as it heavily depends on the gathered sensor
measurements, thus making it hard to conclude which of the two alternatives are better
suited for ice management. On the other hand, as the two systems are complementary, a
combined system would be beneficial by combining the strengths of both alternatives. As
the satellites have a high level of data acquisition, satellite imaging could be incorporated
in the Bayes’ estimation update of the UAS, even when the update rate is infrequent.

The introduction of a priority function δ dependent on the belief of a cell, introduces
a notion of tracking to the the presented system. The results from Section 4.5 shows
that the tracking ability is limited when the number of agents is small compared to the
number of targets to track. However, increased tracking performance is achieved when the

69
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number of agents is increased. A weakness of the tracking feature is the rapid oscillations
in the objective function, as the estimated target positions quickly gain uncertainty. This
weakness is a result of a sensitive priority function δ yielding a great increase from just
a small decrease in the belief of a given cell. This ensures the agents are putting a high
emphasis on tracking, which obviously reduce the time spent searching for new targets,
raising the question whether the Shannon entropy is a good choice of δ after all. However,
the advantage of the priority function is that it can be used as a tuning instrument for
whether the user wants emphasis on searching or tracking, suggesting that δ should be
tailored to each individual use case.

There are a few parameters in the implemented system architecture that require tuning
for a satisfactory behavior. In Section 4.6.1 it is shown that given the size of the field
of view of the agents, the node spacing is a sensitive parameter in terms of variations in
the resulting search patterns. It is made clear that this parameter should be chosen such
that a good coverage of a node’s field of region is ensured when the node is visited. A
proper node spacing will also affect the decrease in the objective function, and a poorly
chosen node spacing may result in a search not terminating properly, as visited nodes
may not be removed and the agents could get stuck in loops.

Section 4.6.2 presents the effects of changing the MPS horizon length, and it sur-
prisingly turns out that increasing the horizon length does not necessarily result in a
significant improvement of the search efficiency, as revealed by the objective function
plots. However, the simulated horizon lengths ranging from 1-10 might be too short to
see a clear difference, and the influence of this parameter could perhaps be seen for a
horizon length approaching the total number of nodes in the search graph. The simula-
tions performed in this thesis were limited by computational power and it is seen that for
a horizon length of 10, the computer runtime is almost twice that of the actual mission
time which would not be applicable for practical applications.

When calculating new agent paths in the model predictive search, each agent is as-
signed the path that will maximize the team’s ability to reduce the chances of collision.
However, new paths are only calculated every time an agent reachs its designated way-
point, and in the worst case scenario the entire team reach a waypoint at the same time.
The resulting problem of finding the set of optimal paths for the entire team simultane-
ously has been simplified in this thesis to the sequential process of finding the optimal
path for one agent at a time. Although this might result in a suboptimal solution for the
team, it is much less computationally demanding.

To investigate the real time performance of the system when integrated in a fully
operational framework, SITL simulations have been performed. The implementation of
the software with the intention of SITL testing has made the implementation process
significantly more time demanding and challenging, but it has ensured the system was
implemented with an abstraction making it applicable to actual field testing. Thus, the
SITL simulations can be viewed as a proof of concept of the software itself, with the
end goal being an operational system. The fact that SITL tests have been successfully
conducted, implies the system developed in this thesis is ready for field testing from a
software perspective.
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5.2 Dynamic Occupancy Grid Maps

In this thesis, the approach to a dynamic occupancy grid map has been to represent the
dynamics as transition probabilities between individual grid cells. This representation
is based on the discretization of the probability density function of the target velocity
vector. In order to preserve the total probability after the predictive step in the Bayesian
filter, the probability density function of the target velocity vector is assumed to incor-
porate the target dynamics for the entire search region. Although it is outside the scope
of this thesis to use information like metaocean data, weather forecasts or historical tar-
get trajectories to analytically estimate this probability density, one can easily spot the
weakness of generalizing one single distribution for the entire search region. This might
be a good approach for small search regions with a low diversity in target dynamics, but
once the search region grows large, the dynamics of a target might vary depending on
the geographical position. Of course, this can be accounted for by increasing the un-
certainty of the general target dynamics probability density function, but at some point
the uncertainty might grow to a point where the predictive step will not add any useful
information. Thus, using another approach calculating the dynamics depending on the
spatial position in the search region, arguably would make more sense for many search
scenarios. In the case of ice management however, the size and shape of the targets highly
influence their trajectories which could make it an advantage having a generalized model
for the entire search region. Additionally, by using an alternative approach to the kernel
Kt in order to encapsulate the movement of the targets, the collision risk map algorithm
proposed in Section 2.3.1 should also be reconsidered due to the fact that its creation
relies heavily on the elements of Kt.



72 CHAPTER 5. DISCUSSION



Chapter 6
Conclusions and Future Work

This thesis presents the development of a cooperative search algorithm for detecting sea
ice to aid ice management in offshore operations. By representing the search region as
an occupancy grid map, the unmanned agents of the system use camera measurements
together with their pose to iteratively update the estimate of target locations in the grid
map. The qualitative ice management problem was formulated as a quantitative math-
ematical optimization problem where the agents minimize the probability of collision
given the measurements taken. In order to account for dynamics in the search region,
initial assumptions of independent grid cells were relaxed for the calculation of a predic-
tive step in the iterative estimation process. An objective function to the optimization
problem was proposed based on the estimates of target positions in combination with
the estimated target dynamics used in the predictive step. This function was based on
the objective of reducing the chances of collision from potential threats, and paths for
the a team of agents are chosen accordingly by optimization. The proposed objective
function removes the need for separating the two modes, searching and tracking. The
optimal paths are chosen to maximize data acquisition according to the priority function
δ, leading to a floating transition between searching and tracking. A Cooperative Graph
Based Model Predictive Search framework using a waypoint based receding horizon al-
lows for easy comparison between paths of different length by doing a coarser search in
regions deemed unimportant. The system has been implemented for SITL (Software In
The Loop) testing, to ensure the software performs well in real time when integrated in
a fully operational setting. However, results from section 4.6.2 shows that the horizon
length should be limited for the computation time to be feasible for online calculation.

An advantage of the presented system is that it can deal with an unknown number
of targets with either some notion of prior target information or no prior information
at all. Even though the system works well for one single agent, simulations show a
significant increase in performance by increasing the size of the search party, both with
regards to search time and threat detection. Furthermore, we see a great benefit from any
prior target information supplied, indicating that combining the system with information
gathered from satellite images is beneficial. However, simulations of the occupancy grid
map dynamics reveal that the predictive step is sensitive to errors in the estimation of
the target dynamics. This will prove a problem for large search regions and situations
heavily relying on predictive updates.

The focus of this thesis have not been on direct methods of employing metaocean data
for calculating map dynamics. Future work would involve finding analytical methods to
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estimate the cell transitional probabilities from these data, and even investigate other
approaches to map dynamics altogether. In this thesis, a priority function calculating
some notion of priority from the posterior belief of grid cells is proposed. Even though
using the Shannon entropy of the belief yielded a desired effect, it proved slightly too
sensitive to changes in the belief. The next step would involve a systematic approach to
find a priority function perfectly suited for the use case. Another possibility is having
an adaptive priority function, adjusting as a search unfolds and search motives change.
Furthermore, a key assumption in this thesis is that the pose of the agents are perfectly
known at all times, while in reality errors in the pose estimation will effect the mapping
process. Future work should include implementing the system with agents capable of
on-board image processing, investigating the performance of the system faced with errors
caused by both pose estimation and camera calibration.



Appendix A
Additional Simulation Plots

A.1 No Prior Target Information

(a) Number of agents = 3.
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(b) Number of agents = 4.

(c) Number of agents = 5.

Figure A.1: Agents searching for targets where no prior target information is given for
any targets.
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A.2 Prior Information on all Targets

(a) Number of agents = 3.

(b) Number of agents = 4.
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(c) Number of agents = 5.

Figure A.2: Agents searching for targets where prior information is given on all targets.

A.3 Prior Information on a Subset of the Targets

(a) Number of agents = 3.
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(b) Number of agents = 4.

(c) Number of agents = 5.

Figure A.3: Agents searching for targets where prior target information is given for a
subset of the targets.
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A.4 Team of Agents Compared to Satellite Imagery

(a) Path logs for two agents.

(b) Path logs for four agents.

Figure A.4: Path logs for different team sizes when the agents are searching for 72 hours.
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A.5 Tracking Performance
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Figure A.5: Trajectories of team consisting of three agents tracking three targets moving
towards the offshore rig.

A.6 MPS Horizon Length

Figure A.6: Resulting agent trajectories with horizon length = 4.



82 APPENDIX A. ADDITIONAL SIMULATION PLOTS



Bibliography

[1] M. S. Arlampalam et al. A Tutorial on Particle Filters for Online Nonlinear/Non-
Gaussian Bayesian Tracking. 2002.

[2] J. S. Berndt. JSBSim Reference Manual. 2011. url: http://jsbsim.sourceforge.
net/JSBSimReferenceManual.pdf.

[3] P. Chandler and M. Pachter. Hierarchical Control for Autonomous Teams. 2001.

[4] B. DasGupta et al. “Honey-pot constrained searching with local sensory informa-
tion.” In: (2006).

[5] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics, 2nd edition.
2010.

[6] K. Eik. “Review of Experiences within Ice and Iceberg Management.” In: Journal
of Navigation 61.04 (2008).

[7] A. L. Fl̊aten. “Experimental Monitoring of Sea Ice Using Unmanned Aerial Sys-
tems.” In: (2015). url: https://brage.bibsys.no/xmlui/handle/
11250/2352540.

[8] R. C. Gonzales and R. E. Woods. Digital Image Processing. 2008.

[9] Gaemus E. Collins James R. Riehl and Joao P. Hespanha. “Cooperative Search by
UAV Teams: A Model Predictive Approach Using Dynamic Graphs.” In: (2011).

[10] B. O. Koopman. Search and Screening. Operations Evaluations Group Report No.
56, Center for Naval Analyses, Alexandria, VA. 1946.

[11] R. Martins et al. “IMC: A communication protocol for networked vehicles and
sensors.” In: OCEANS 2009-EUROPE. IEEE (2009).

[12] L. H. Nunn. “An Introduction to the Literature of Search Theory.” In: (1981).

[13] M. Otto et al. “Uncertain 2D Vector Field Topology.” In: Eurographics (2010).

[14] J. Pinto et al. “Implementation of a control architecture for networked vehicle sys-
tems.” In: Proceedings of the IFAC Workshop on Navigation, Guidance and Control
of Underwater Vehicles (2012).

[15] J. Pinto et al. “Neptus: a framework to support a mission life cycle.” In: Proc. IFAC
Conference on Manoeuvring and Control of Marine Craft (MCMC) (2006).

[16] S. M. Pollock. A Simple Model of Search for a Moving Target. 1970.

[17] M. Skjønhaug and M. Hals. “Optimization of Coordinated Control Between Au-
tonomous Vehicles in Ice Management.” In: (2016).

83

http://jsbsim.sourceforge.net/JSBSimReferenceManual.pdf
http://jsbsim.sourceforge.net/JSBSimReferenceManual.pdf
https://brage.bibsys.no/xmlui/handle/11250/2352540
https://brage.bibsys.no/xmlui/handle/11250/2352540


84 BIBLIOGRAPHY

[18] ArduPilot dev. team. ArduPilot: Open Source Autopilot. url: http://ardupilot.
org/.

[19] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. 2002.

http://ardupilot.org/
http://ardupilot.org/

	Introduction
	Problem Description
	Previous Work
	Structure of the Thesis and Main Contributions

	Theory
	UAV and Sensor Model
	Estimation of Target Location
	Iterative Estimation of Occupancy Grid Map
	Map Dynamics
	Algorithm for Iterative Occupancy Grid Map Estimation

	Search Objective Formulation
	Collision Risk Grid Map

	Model Predictive Search
	Search Policy
	Motivation for the Graph Construction
	Graph Construction
	Cooperative Graph-Based Model Predictive Search


	System Architecture
	Centralized Model Predictive Search Software
	Module Descriptions
	Features and Capabilities

	Software in the Loop

	Simulations
	No Prior Target Information
	Prior Information on all Targets
	Prior Information on a Subset of the Targets
	Team of Agents Compared to Satellite Imagery
	Tracking Performance
	Effects of Parameter Tuning
	Relationship Between Node Spacing and Field of View
	MPS Horizon Length
	Kernel Estimation Accuracy


	Discussion
	Performance, Optimality and Scalability
	Dynamic Occupancy Grid Maps

	Conclusions and Future Work
	Appendices
	Additional Simulation Plots
	No Prior Target Information
	Prior Information on all Targets
	Prior Information on a Subset of the Targets
	Team of Agents Compared to Satellite Imagery
	Tracking Performance
	MPS Horizon Length


