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Effects on Scope for Growth due to elevated carbon dioxide in the copepod

Calanus finmarchicus

by Ole Jacob Håkedal

The calanoid copepod Calanus finmarchicus is a keystone species in the North Atlantic.

Adverse effects of ocean acidification on this species could have major implications for

ecosystem structure and function, as well as socio-economic impacts on fisheries. Co-

horts of Calanus finmarchicus exposed to simulated ocean acidification environments

were followed during the course of two consecutive generations. The time of develop-

ment into the different molting stages were monitored. While the more moderate CO2

concentration (1080 ppm) did not seem to affect the development rate, a slower devel-

opment into molting stages were found in the highest exposure groups (2080 - 3080 ppm

CO2), compared to a control treatment group (380 ppm CO2). Measurements of oxygen

consumption and feeding rate in sub adult individuals (copepodite stage C5) from the

second generation of continuously exposed C. finmarchicus were integrated into calcu-

lations of the overall energy balance (Scope for Growth) of the animals. Together with

biometric measurements that were performed, these results points to an energy depletion

due chronic exposure to elevated CO2. Calanus finmarchicus seems to be tolerant to

a more moderate CO2 elevation (1080 ppm). No signs of adaptation to the treatments

were detected over the course of two generations.

. . .
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Chapter 1

Introduction

1.1 Ocean Acidification

The atmospheric CO2 over the last 650,000 years has been determined by the analysis of

Antarctic ice cores. During this time and until the industrial revolution the concentration

of this trace gas has varied between the range of 180 and 300 parts per million (ppm)

Siegenthaler et al. [2005]. Today the global mean atmospheric CO2 is close to 400

ppm Conway and Tans [2012]. Human activities releases large quantities of CO2 into

the atmosphere, mainly by burning of fossil fuel, cement production, and agricultural

practices such as burning of forest to produce crop- and pasture lands. The CO2 released

by human activities is refereed to as anthropogenic CO2, and has resulted in a rate of

increase that may not have been experienced for millions of years Doney et al. [2009].

In discussions of the impact of anthropogenic CO2 emissions a lot of focus has been

directed upon the radiative forcing of CO2 and the warming of the Earth‘s climate

Houghton et al. [1996]. The last few decades has revealed another major impact of CO2

emissions called ocean acidification. This is commonly refereed to as the decrease in

ocean pH due to uptake of anthropogenic CO2 Zeebe [2012].

The oceans and the atmosphere exchange large amounts of CO2. As the partial pressure

of gaseous CO2(g) in the atmosphere rises the concentration of CO2(aq)in the oceans

rises proportionally. This is due to a thermodynamic equilibrium that follows Henry‘s

law Gattuso and Hansson [2011].

1



Chapter 1. Introduction 2

In water dissolved CO2 occurs in three main inorganic forms: free aqueous carbon

dioxide (CO2(aq)), bicarbonate ion (HCO−

3 ), and carbonate ion (CO2−
3 ). Carbonic acid

(H2CO3) is a minor form that constitute less than 0.3% of [CO2(aq)] (brackets denote

concentrations). The sum of [H2CO3] and [CO2(aq)] is therefore commonly denoted as

[CO2] Gattuso and Hansson [2011].

The dissolved carbonate species are related by the following equations 1.1 and 1.2.

CO2 + H2O 
 HCO−

3 + H+; K∗

1 (1.1)

HCO−

3 
 CO2−
3 + H+; K∗

2 (1.2)

The proportion of the carbonate species are determined by their stoichiometric disso-

ciation constants (K∗

1 and K∗

2), which are a function of pH, temperature, salinity, and

surface pressure. This is illustrated in a Bjerrum plot shown in figure 1.1. At typical

surface seawater with pH measured at the total pH scale (pHT ) of 8.2 the speciation of

[CO2], [HCO−

3 ], and [CO2−
3 ] is respectively 0.5%, 89%, and 10.5% Gattuso and Hansson

[2011].

Because of the buffer capacity in the seawater the sum of the inorganic carbonic species

(CT ) does not change proportionally to that in the atmosphere. The Revelle factor

describes the relative change in seawater CO2(aq) to the relative change of CT in equi-

librium with atmospheric CO2(g). A doubling in atmospheric [CO2(g)] increases CT only

by 10% Gattuso and Hansson [2011].

The carbonate buffering system is the process in which the relatively stable pH are

maintained in the oceans. It relies on the availability of carbonate ions from which the

supply mainly are from the slow process of geological erosion Widdicombe and Spicer

[2008].

1.1.1 Future predictions

The athmospheric CO2 is currently rising due to natural and anthropogenic causes.

There exists a broad scientific agreement that the contribution to the rate of increase

by human activities are substantial. Several estimates has been constructed to elucidate
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the future levels of atmospheric CO2, each by using different scenarios for future CO2

emissions Solomon et al. [2007].

Since the industrial revolution the oceans have absorbed 1
3 of the CO2 emmited by

human activities, and this has been estimated to have reduced the pH by 0.1 units,

which approximately corresponds to a 30% increase in hydrogen ions Fabry et al. [2008].

Based upon a ”buisness as usual” model it has been estimated that the level of atmo-

spheric CO2, due to its equilibration with surface waters will result in a decrease in pH

by 0.3 units within 100 to 150 years Caldeira and Wickett [2003].

From models of further rise in CO2 it has been estimated that the atmospheric level

may exceed 1900 ppm by the year 2300, and that this would result in a pH drop of 0.77

units in surface oceans Caldeira and Wickett [2003].

Figure 1.1: The concentration of carbonate species as a function of pHT (temperature

= 0◦C, salinity = 35h) illustrated in a Bjerrum plot. (The figure was made in R version

3.0.0 (2013-04-03) using the seacarb package, from Zeebe and Wolf-Gladrow [2001])
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1.1.2 Marine life in high CO2 environments

All organisms expend metabolic energy in maintaining a cellular pH level to ensure that

biochemical processes operate efficiently Raven et al. [2005].

Studies of elevated CO2 effects on marine organisms range from short time acute expo-

sures to high concentrations, medium term exposures over weeks, to more realistically

approaches using predicted CO2 concentrations in long time studies on the scale of

months. These different approaches have reveled valuable information concerning re-

sponses in marine organisms. Short time approaches can elucidate mechanistic modes

of action for CO2 toxicity (hypercapnia), while medium or long term studies may reveal

more relevant information about population level responses Whiteley [2011].

Several studies have revealed adverse effects on marine life due to elevated CO2 at levels

that are within projections for the near future. The majority of the species studied have

shown negative effects, but broad variations of responses to ocean acidification have

also been found Whiteley [2011]. The variation has been linked to the wide variety of

processes that are affected by this change in the abiotic environment, such as calcium

carbonate dissolution rates, calcification rates, growth rates and development Kroeker

et al. [2010].

Most studies on ocean acidification have focused on calcifying organism, since the in-

creased concentration of CO2 has been found to affect the formation and dissolution of

calcium carbonate structures. Among organisms studied there has been found results

indicating adverse effects in calcifying algae Kuffner et al. [2007], corals Gagnon [2013],

mollusks Gazeau et al. [2007], echinoderms Kurihara and Shirayama [2004], Stumpp

et al. [2011], and crustaceans Kurihara et al. [2008], due to elevated CO2 conditions.

The negative effects have been to a large degree explained by a decreased solubility

state for calcium carbonate (aragonite and calcite) in CO2 enriched seawater. It has been

demonstrated that different calcifying organisms do not respond uniformly to ocean acid-

ification. Variation in responses between calcifying organisms (individuals or species)

have been explained by differences in the ability for pH control near calcification sites.

Some are found to be better equipped to cope with ocean acidification Kroeker et al.

[2010].
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1.1.3 Susceptibility to high CO2 in marine organisms

Physiological effects of elevated CO2 exposure are mediated through low pH in the

ambient water, and through diffusion of CO2 into organisms. Water breathers depend on

CO2 excretion through gills or other structures that are in close contact with the water,

and this becomes more difficult as the carbonate chemistry changes due to increased

CO2. A result of this is a build-up of CO2 in the oxygen carrying fluids (blood or

haemolymph) and subsequently a decrease in pH (acidosis) Pörtner et al. [2004]. Since

CO2 easily diffuses through biological membranes this also results in a decreased pH

inside cells Whiteley [2011].

Cellular acidosis may disrupt biological processes including iono-regulation, protein syn-

thesis, and metabolism. Lowered pH also affects the oxygen transport and delivery

to tissues by influencing the conformation, and oxygen affinity in respiratory pigments

(Bohr effect). Organisms are therefore equipped with buffering mechanisms to adjust

the acid-base equilibria in their body fluids Pörtner et al. [2004].

To buffer the extracellular fluid in order to maintain homeostasis, the organisms depend

mainly on the inward transport of bicarbonate ions from the seawater in exchange from

an outward transport of calcium ions. After the hydration reaction of CO2, which

is catalyzed by carbonic anhydrase enzymes, an outward transport of hydrogen ions

is exchanged for sodium ions. This is an example of acid-base regulation and iono

regulation sharing the same mechanisms Whiteley [2011].

Tolerance to high CO2 environments is linked to the ability to compensate for altered

extracellular acid-base status. Animals with a powerful ionic regulatory apparatus are

more adapted to cope with ocean acidification Pörtner et al. [2004]. The exchange of

ions across cellular membranes is driven by baso-lateral Na+/K+-ATPase enzymes and

is thereby energy demanding. It has been estimated that up to 40% of total energy

expenditure are associated with active ion transport Whiteley [2011].

The ability to cope with increased extracellular hypercapnia is therefore linked to the

metabolic capacity of marine animals. Active organism have to adjust fluctuating ex-

tracellular conditions by active cellular processes, and are thus more adapted, compared

to less metabolic active organisms to elevated CO2 Melzner et al. [2009]. Individuals

and taxa that are poorer equipped with respect to the capacity for ion regulation are
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more susceptible for adverse effects. Early developmental stages (eggs, sperm, larvae),

and juveniles are found to be more vulnerable compared adult individuals to elevated

CO2 Pörtner et al. [2005].

Invertebrates have generally a lower regulatory capacity for ion exchange compared to

vertebrates, and are generally thought to be less tolerant to elevated CO2 compared to

vertebrates Pörtner et al. [2005]. Among crustaceans responses show a large degree of

variation, and some are considered to be relatively tolerant to elevated CO2 due to their

high ion-regulatory capacity, but there is a general lack of data on long term effects

Melzner et al. [2009].

1.1.4 Long term effects of elevated CO2

The majority of investigations of CO2 effects are short time exposure studies, and have

not implemented the continuum between time- and concentration dependent effects

Pörtner et al. [2005].

The reduced capacity for oxygen transport caused by acidosis can be counteracted by

enhanced ventilation. However because the distribution of CO2 between the water and

the organisms is close to equilibrium, the release of CO2 due to increased ventilation

is limited. Water breathing organisms must therefore compensate for pH disturbance

caused by CO2 mainly by the previously described mechanisms, involving trans-epithelial

ion exchanges Pörtner et al. [2005].

When the partial pressure of CO2 in the seawater rise, the levels of dissolved CO2 in

intra and extracellular spaces of organisms will rise. This is due to increased diffusion,

and will continue until a new value is reached that is sufficient to restore CO2 excretion

Fabry et al. [2008]. This will be accompanied by a shift in metabolism. Such processes

may not be life threatening for individuals, but may affect slow processes like growth

and reproduction. At long time-scales this could potentially have negative effects on

higher biological levels Pörtner et al. [2005].

Ocean acidification may result in reduced marine biodiversity through loss of species

that are sensitive to changes in CO2 and pH. If sensitivity is a function of the taxonomic

group, taxonomic diversity may be reduced. Loss or reduced function of keystone species
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could reduce habitat complexity and biological regulation mechanisms Widdicombe and

Spicer [2008].

In their long term exposure study, Kurihara et al. [2008], using predicted future CO2

levels, found effects on antennae growth, moulting frequency, and mortality in the marine

shrimp Palaemon pacificus. In this study impacts of CO2 were manifested after several

weeks of exposure, indicating a decreased ability for acid-base regulation over time.

Their results also pointed towards a change in the feeding rate of the shrimps, although

these results were not statistically significant. The authors pointed out that the whole

process of digestion, nutrient absorption from the gut, and nutrient assimilation could

have been depressed, affecting the energetics of the animals Kurihara et al. [2008].

Calcium carbonate is incorporated as a strengthening component in the chitionous cuti-

cle (exoskeleton) of crustaceans Neues et al. [2007]. The calcification of the exoskeleton

in crustaceans is considered as being less vulnerable to ocean acidification compared

to organisms such as molluscs and echinoderms. This is due to a dominant propor-

tion of a more stable form of calcium carbonate mineral (calcite) Whiteley [2011]. The

calcification site is also protected by an outer layer of the shell (epicuticula). It is how-

ever unclear whether the balance between calcification and dissolution may be adversely

affected, especially in long term exposure situations Whiteley [2011].

There is limited information about the sensitivity in zooplankton for future CO2 con-

ditions, partly reflecting the complexity in working with these organisms. Most in-

vestigations have been performed focusing on effects on calcification in species such

as pteropods and foraminifera. Less is known about the effects of ocean acidification

on growth, reproduction, and grazing rates in zooplankton, especially in non-calcifying

species Gattuso and Hansson [2011].

In a study by Fitzer et al. [2012] the copepod Tisbe battagliai, when exposed to elevated

CO2 in the course of three generations, showed responses of reduced growth and re-

productive performance. The levels of CO2 used in their study (<600 µatm)are within

what is expected for the relatively near future.
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1.1.5 Assessment of energy balance: Scope for Growth

The growth of an organism involves physiological, cellular and biochemical activities

that are related to factors within the organism’s environment. By analyzing growth,

one can therefore obtain information related to environmental factors which organisms

are exposed to. Direct measurements of growth are difficult to obtain, but an estimate

of the energy available for growth and reproduction is more easily derived Navarro et al.

[2006]. An estimate for this energy is given by the Scope for Growth (SfG) index,

developed by Warren and Dav1s [1967].

SfG is estimated by subtracting the energy utilized in respiration and excretion from

the total amount of energy absorbed from food. A positive value for SfG is interpreted

as an excess of energy being available for growth and reproduction. A negative SfG is

obtained when the energy expenditure in organisms exceeds the energy absorbed from

food, and means that the organism must rely on its body reserves for maintaining basic

life processes Navarro et al. [2006].

Since SfG provides an instantaneous measure of the energy status of an individual, is

sensitive and gives a quantitative response that can be related to tissue chemistry it

has been used as a biomarker of effect in studies of environmental stressors such as

temperature, salinity and pollutants such as pesticides Verslycke et al. [2004], and other

chemical contaminants Widdows et al. [1995].

It has also been employed as a measure of effects due to elevated CO2 conditions. Stumpp

et al. [2011] found a decrease in SfG in larvae of the sea urchin Strongylocentrotus

purpuratusat elevated CO2 exposure, at a pH of 7.7.

1.2 Calanus finmarcicus (Gunnerus, 1770)

The marine copepod Calanus finmarcicus is considered to be a keystone species in the

North-Atlantic ecosystem. As a mainly herbivorous zooplankton it contributes to the

pivotal role of providing energy transfer from primary producers to higher throphic

positions of the food web Runge [1988]. The importance of Calanus finmarcicus can be

illustrated its contribution to the total copepod biomass, which has been estimated to
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be as high as 70% to 90% in some areas Planque and Batten [2000]. An illustration of

the life cycle of Calanus finmarcicus is shown in figure 1.2

Figure 1.2: Illustration of the life cycle of Calanus finmarcicus. 6 naupili stages

are followed by 5 copepodite stages, before turning into adulthood. The figure also

illustrates the relative body sizes and relative duration between each molt. Individuals

in the stage C5 that have acquired adequate lipid reserves may descend into deep

waters for overwintering (diapause) Bagøien et al. [2012]. (The figure was made by

Baumgartner [2009] at Woods Hole Oceanographic Institution)

Biological activity is one of the major drivers for changing the CO2 conditions in the

surface oceans Kerrison et al. [2011], and the fecal pellets produced by Calanoid cope-

pods can dominate the vertical transport of carbon in some areas Mayor et al. [2012].

They thereby sequester a large portion of the CO2 captured by photosyntetic biomass

production into deeper seas.

1.2.1 Effects on Calanus finmarcicus due to ocean acidification

It has been documented a reduction in total calanus biomass of 70% since 1960, and

a change in biogeographical distribution of Calanus finmarcicus in the North Sea and

Northeast Atlantic Beaugrand et al. [2002]. While the underlying mechanism for these

changes remains unclear, the ongoing warming of the surface sea temperature has been

ascribed to as an possible explanation Edwards et al. [2008]. Since the ocean acidification

phenomenon happens at the same time as the warming of the climate, it can not be ruled

out as being a contributing factor Mayor et al. [2012].
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Some results have indicated that adult Calanus finmarchicus may be relatively robust

to near future CO2 conditions, but adverse effects has been found in eggs and earlier de-

velopmental stages in combination with realistic scenarios of future warming in Calanus

species Mayor et al. [2012].

1.2.2 The present study

In this study we investigated effects of three elevated CO2 conditions on two consequtive

generations of Calanus finmarchicus. The species of study was chosen based on its key

position in the marine ecosystem, and the lack of data on its response to future ocean

acidification predictions Mayor et al. [2007].Calanus finmarchicus has a relatively short

generation time, and are therefor suitable in investigation of potential long term effects

on full life cycle of development due to environmental stressors.

A negative effect on this specie has the potential to have a major impact on ecosystem

structure and function, and could also have negative socio-economic impacts as it rep-

resents an important food source for several fish species that are harvested for human

consumption Runge [1988].

The effects of elevated CO2 has been found to affect the same parameters as changed

temperature conditions Pörtner et al. [2005]. One possible effect could be a change in

developmental rate, as this has been found in studies of this species Campbell et al.

[2001]. This may be important as the development of C.finmarchicus is tuned to match

algae blooms Bagøien et al. [2012].

1.3 Aims of the study

The management of economically important species is currently moving towards an

ecosystem based approach. Among other things, this requires an understanding of in-

teractions with abiotic components such as CO2 Bagøien et al. [2012]. This project aims

to provide some insight that may be useful in population model studies to elucidate

potential ecological and socio-economic impacts of future CO2 conditions.

The objective of the study was to investigate long term effects of different future CO2

scenarios on growth and development of C. finmarchicus. Since growth and development
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involves energy demanding processes, we investigated potential effects on feeding and

oxygen consumption in a sub adult developmental stage (C5). Feeding and oxygen

consumption data were used in calculation of the overall energy balance (Scope for

Growth).





Chapter 2

Materials and Methods

2.1 Experimental setup

The experiments described in this thesis were conducted at NTNU Center of Fisheries

and Aqua-culture (SeaLab), Trondheim. Starting from early November 2011 and lasted

until late April 2012.

As a participant in a collaborative group involved in the project I will present the

main experiment, and the experiments that I were directly involved in. This includes

determination of stage development in the first generation, measurements of feeding

and oxygen consumtion in moulting stage C5 of the second generation of the cultured

copepods, and overall monitoring of the exposure conditions.

An experimental setup customized for exposure of Calanus finmarchicus to elevated CO2

concentrations were installed in a temperature controlled room at SeaLab zoo-physiology

laboratory. Twelve cylindro-conical-shaped polystyrene tanks (90L) were divided into

tree replicates of the following treatments: Air (control, approximately 380 ppm CO2),

1080 ppm CO2, 2080 ppm CO2, and 3080 ppm CO2. Four tanks receiving one of each

treatment were installed together, making three separate blocks differently located in

the room. Relatively large tank volumes were chosen to approach a microcosm-scale

situation for the animals.

Pure CO2 gas provided by pressure flask and ambient air provided by the central com-

pressed air distribution at SeaLab was mixed to produce different levels of CO2-enriched

13
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air. The composition of the gas mixtures were controlled by a custom developed gas

mixing system (HTK Hamburg R©GmbH). There were separate channels for each of the

four treatment concentrations.

Filtered natural sea water was used in the experiment. This was pumped from the

Trondheim fjord at approximately 80 meter depth and collected in reservoir tanks for

temperature regulation and maturation of the water.

In four equilibrating columns, one for each treatment, the gas entered the water in form

of small bubbles provided by an aquarium diffuser (Wooden air-stone, Aqua medic)

located at the bottom of the columns. An inner tube collected the bubbles and as water

entered this tube from the top a counter current system ensured effective gas transfer

into the water by diffusion.

The water from the equilibrating columns were distributed to the experimental tanks

from the top and also from the bottom apex positions in order to prevented stagnated

water. CO2-enriched air was also mixed directly in the experimental tanks, by the same

principle as in the equilibrating columns. This prevented loss of CO2 gas due to air-water

exchange to decrease the concentrations in the experimental water.

The water outlet was located at the top of the tanks, and the flow rate was sat at

approximately 3.75 liters hour−1 to reach total change of water in 24 hour intervals. To

prevent animals from escaping the outlet was covered by a filtering cloth (nylon mesh).

The tanks were without lids, therefore to compensate for carbon dioxide loss by air-water

gas exchange; the CO2-enriched air was adjusted at a slightly higher level at the gas

mixer. To approach the target CO2 concentrations, pH, temperature and total alkalinity

were measured. CO2 concentrations were calculated by using the open source software

CO2SYS-v2.1.xls Pelletier et al. [2007].

The light setting was at a 12 hour light and 12 hour dark cycle. To prevent stress due

to sharp light Mauchline [1998] the lamps in the room was covered with dark fabric,

providing a dim light condition.
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2.2 Experimental conditions

2.2.1 pH measurements

A colorimetric method for pH measurement was employed as described by Dickson

[1993]. This method provides values based on the total pH scale. The equilibrium

constant and pH value of the reference materials were also determined based on this

scale (TRIS buffer).

The definition of the total pH scale is given by the equations:

[H+]T = [H+]F (1 + (ST/KS)) (2.1)

[H+]T ≈ [H+]F + [HSO−

4 ] (2.2)

Where [H+]F is the free hydrogen ion concentration, included hydrated forms, ST is the

total sulfate concentration, KS is the second dissociation constant of sulfuric acid and

[HSO−

4 ] represents the hydrogen sulfate ion concentration Dickson [1993].

The method for measurement is based upon the dissolution of a sulfonephthalein indi-

cator dye (m-cresol purple). The second dissociation of this diprotic acid is described

by the following reaction.

HI−
(aq)

= H+
(aq)

+ I2−
(aq)

(2.3)

Where I represents the indicator dye. The principle for pHT determination is based

upon the different absorption spectra for the different forms of the dye. The total ion

concentration can be determined by the following formula.

pHT = pK(HI−) + log10
[I2−]

[HI−]
(2.4)

The following procedure was employed. Water samples were collected into glass bottles

(50 ml) with a sealing cap preventing air pockets. The samples were placed into a water

bath set at 25◦C. After temperature equilibration water was transferred into a gas-tight



Chapter 2. Materials and Methods 16

glass cuvette. The samples absorbance was read specrophotometrically at the wavelengts

578, 434 and 730 nm. Then m-cresol purple solution (50 µl) was added into the cuvette

containing the sample, and the absorbance was read at the same wavelengths. The

following formula as described by Dickson [1993] was employed for the calculations:

pH = 8.0056 + Log10[
(A1/A2− 0.00691)

2.222− (A1/A2 ∗ 0.1331)
] (2.5)

where A1/A2 =
(A578cresol−A578blank)−(A730cresol−A730blank)
(A434cresol−A434blank)−(A730cresol−A730blank) , and A represents the absorp-

tion value at the representative wavelength Dickson [1993]. The pH was also monitored

by a handheld potentiometric pH-meter. This was performed because it was less time

consuming and allowed a more regular testing of this water parameter.

2.2.2 Temperature measurements

A certified glass thermometer was used for regularly temperature measurements (VWR R©Precicion

Thermometer, accuracy ± 0.3 ◦C ). In addition was the built in thermometer in the po-

tentiometric pH meter used for these measurements.

2.2.3 Total alkalinity measurements

Measurements of total alkalinity (TA) were performed using an automatic potentiometric

titratior (Radiometer Analytical SAS), according to a method as described by Xiaowan

et al. [2009]. The measurements were performed in one of the replicate tanks for the

control treatment at a regular schedule.

2.2.4 Feeding conditions

The copepods were given a sole diet of the cryptophyte microalgae Rhodomonas baltica

(strain C/95). The alga was provided as a stock solution of known concentration. A

continuous addition of algae into the different experimental tanks was provided by a

multi-channeled peristaltic dosing pump (Watson-Marlow 520S).
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The inflow of algae in the tanks was located near the top and in close proximity to the

inflow of the water from the equilibration columns. This ensured a good circulation and

an even distribution of algae in the tanks.

The amount of algae given to the copepods was determined based on a previous feeding

experiment, and the target concentration was 200µgCL−1. This concentration was de-

termined to prevent ad libitum (in excess) supply of food from potentially mask energetic

effects due to the CO2 exposure.

The alga level in the tanks was measured with a coulter counter (Beckman MultisizerTM3

Coulter Counter R©). This was performed on a regularly basis during the experiment(daily

or every second day). The algae concentrations (cells ml−1) were determined based upon

the integration of number of particles counted v.s. particle diameter (µm) in the range

of 5.363 to 9.561 µm. This range gave a clear peak indicating presence of R. baltica

cells. The integrations were based upon the graph displayed from three consecutive

measurements performed by the coulter.

The results from the cell counts were transformed into carbon equivalents (µg C L−1)

based on a linear relationship (R2 = 0.976) between algae cell density and the carbon

biomass of R. baltica cultivated at SeaLab using the same nutrient media and the same

algae strain Skogstad [2010]. Based on this an estimate for carbon mass were calculated

(45 pg C cell−1). The estimate was close to a value reported elsewhere for R. baltica

B̊amstedt et al. [1999].

Due to the observation that there was a difference in algae concentration between some

of the tanks, attempts were made to adjust the alga supply during the time of the second

generation. This was performed by providing a series of dilutions of the algae stock to

the tanks with higher concentrations. No such actions were performed during the time

of the first generation of the copepods.

2.2.5 The animals

The animals that were used in the experiment were obtained from a culture of Calanus

finmarchicus. The cultured animals originate from the Trondheim fjord, and has been

kept stable since 2004 at SINTEF / NTNU SeaLab Saage et al. [2008].
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They were maintained in 300 Liter tanks and the development of the animals were kept

under surveillance until there was found a relatively large amount of female animals with

visible eggs. Adult animals (mostly females) were separated from the other developmen-

tal stages by carefully sieving through an appropriate sized mesh, and transferred into

new containers (50 liter) containing normal seawater for egg laying.

To increase the egg production they were fed ad libitum. After 24 hours eggs were

collected by sieving of the bottom content of the containers. The amount of eggs in the

batch was estimated by mixing 1 liter of water containing the eggs, and counting the egg-

content in a 10 mL sub-sample. The eggs were evenly distributed into the experimental

tanks, with approximately 2050 eggs in each tank. The median egg-laying period was

noted as 12 hour after the incubation of the gravid females.

2.2.6 Sampling procedure

The sampling procedure was based upon previous studies of copepods, e.g. Campbell

et al. [2001], were a large cohort of eggs laid in a short time interval were followed

during the development to adult copepods. Samples were taken to determine the stage

composition of each cohort over time.

The method assumes that the initial cohort is large enough that the stage composition

is not affected by the sampling, and that the size of each sample is large enough to

represent the culture Hu et al. [2007].

The sampling of animals was performed by attaching a 500 ml measuring cup at the

end of a pvc pipe. This sampler was then put into the tanks and gently stirred by a

rotating motion from the bottom and upwards three times before the sampling volume

was taken out. This action was performed in order to approximate an even distribution

of the animals, and thereby obtain representative samples. The sampling volume was

500 ml when the animals consisted of mostly nauplii stages. The volume was increased

to 1500 ml as copepodite stages became more dominant.

The sampling volume was poured onto a funnel with a sieve collecting the content. The

content was then transferred along with seawater into 8 ml glass vials and preserved by

adding 16µl of Lugol’s solution (phytofix).
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Samples were taken at frequent intervals and from where the stages of development were

determined. The sampling intervals were based upon the works of Campbell et al. [2001],

and were most frequent the first days of the experiment in order to get individuals of

the first short lasting developmental stages.

The first sampling was performed 36 hours after the midpoint of the egg laying period

and the following samples was taken at 8 hours intervals the first three days of the

experiment. The interval was then increased to 12 h, and this interval lasted until

copepodites were observed in the tanks (after 10 days). Thereafter the sampling was

performed once a day for 10 days, every second day for 10 days, and every fourth day

for the rest of the generation period.

When the animals consisted mostly of adult individuals, we started the preparation for

the culturing of the second generation. Due to the cannibalistic tendency documented

in calanoid copepods Bonnet et al. [2004], the adults were separated from their eggs

in order to secure the second generation. We also wanted to reduce the impact of

variable developed animals that could make it difficult to distinguish between the two

generations. In addition, available eggs and nauplii could potentially represent an extra

energy source and thereby mask CO2 related effects.

Adult animals were transferred for egg laying in separate 50 liter containers containing

water from their respective treatment tanks. The procedure was similar as for the first

generation.

2.2.7 Stage determination

The preserved samples for the first generation animals were stored in a cold room for

approximately 11 month before examination of the content. In most cases the ani-

mals were well preserved, and the stage specific characteristics were visible. The stage

determination was performed by examining the animals under a microscope (Leica M

205 C). The morphological characteristics of the different stages that was focused upon

was based upon literature descriptions Marshall and Orr [1972], Mauchline [1998], and

a stage determination key with close up pictures and a short description of the most

prominent characteristics worked out by one of our co-workers (Researcher Iurgi Imanol

Salaverria-Zabalegui, Department of Biology, NTNU).
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2.2.8 Determination of median development time and stage durations

The samples representing the evolving stage structure of the tank population were used

to estimate the median development time (MDT), which is defined as the time from

the midpoint in the egglaying period and until 50 percent of the cohort has reached a

specific developmental stage Landry [1983].

The fraction of the cohort that had molted past a specific stage at each sampling time

was plotted against the time that has passed since the midpoint of the egg-laying pe-

riod. MDT values were determined by the coefficients of a least square linear regression

performed on the linear portion of the plot (excluding the tails < 0.05, > 0.95), similar

to the procedure described by Campbell et al. [2001], except that a larger portion of the

plot were included to get a better fit.

In a few cases the fraction became less than one at a sampling time where it at an earlier

time had been determined that the cohort was completely molted passed that specific

stage. This had an strong influence on the regression model and made a poor linear

fit. Therefore were regression performed in the time interval limited to the first point in

time where the fraction equaled one.

2.3 Feeding and oxygen consumption in CO2 exposed cope-

podides (C5), second generation

The measurements of feeding rate and oxygen consumption were conducted on individ-

ual stage 5 copepodites (C5) from the F2 generation. The experiments were performed

over 7 days with each day covering one of the three replicate tank series. The replicate

tanks were covered two times during the experiment. In order to reduce potential vari-

ation in feeding and respiration performance due to dial rhythms Mauchline [1998] the

measurements were performed at approximately the same time of the day.

2.3.1 Grazing measurements

A volume (3L) was sampled from each experimental tank. To get a representative ran-

dom selection the sampling procedure was performed by applying the same technique
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as in the stage development experiment, however due to few animals in the target de-

velopmental stage a larger sampling volume were applied.

Every day of the experiment 3 sub-replicate animals from each of the treatment tanks

in one of the treatment series were transferred into glass bottle grazing chambers (50

ml), with one animal in each chamber (12 animals). This gave measurements on a total

of 72 animals covering all replicate tanks two times.

Identification of stage 5 copepodites was performed under a dissection microscope. All

handling of animals and the set-up of the experiment were conducted inside a tempera-

ture controlled room set at 10◦C. The bottles were pre filled with control- or CO2 treated

water and algae content from each respective tank.

To measure the change in algae content, one bottle representing each treatment con-

tained water and algae from the respective tank without animals. This gave 4 bottles

representing each tank, and a total of 16 bottles per replicate treatment series. To pre-

vent air from entering the bottles and possible loss of treatment conditions, glass caps

were mounted onto a positive meniscus, squeezing the excess water out.

After sealing, the 16 bottles were mounted onto a motor driven wheel rotating at approx-

imately 1 round per minute (RPM) to keep the algae cells in suspension, as described

by Huntley et al. [1983]. Constant temperature during the grazing period was ensured

by rotating the wheel in a controlled water bath inside a polystyrene insulated box.

Stable temperature was confirmed by measurements before and after the incubation by

a calibrated glass thermometer. The setup is illustrated in figure 2.1

To prevent algae growth only dim light was used during the animal handling, while

the majority of the incubation period was performed in the dark. After the incuba-

tion period (19.64±0.73 hours) the animals were transferred to respiration chambers for

determination of oxygen consumption.

Algae content was determined using a Coulter counter as described in the feeding

condition section 2.2.4.

Filtration rates, defined as the volume of water swept clear due to grazing by the copepods

and ingestion rates were calculated using methods described by Frost [1972] and Marin

et al. [1986]. The filtration rate, F , were given by:
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F (ml copepod−1h−1) =
V ∗ g

N
(2.6)

Where V is the volume (ml) of the grazing chamber, g is the grazing constant, and N is

the number of copepods in the grazing chamber. The constant, g, was calculated from:

g = k
(lnC2∗ − lnC1∗)

(t2 − t1)
(2.7)

Where k, is the algae growth constant given by:

k =
(lnC2 − lnC1)

(t2 − t1)
(2.8)

Where C1 and C2 are the initial and final algae concentrations (cells ml−1) in the control

chamber without copepods. C1∗ and C2∗ are the initial and final algae concentrations in

the experimental grazing chambers and t2 − t1 the time elapsed during the experiment.

In our experiment the algae growth was limited due to dark conditions. To test this C2

values were compared with algae counts from the respective experimental tanks mea-

sured at the same day, but at a different time of the day than the grazing experiments,

by setting these values as C1 in the calculations. The k values from this check were

considered as being close to zero (0.005±0.006). It was therefore assumed that no sig-

nificant alga growth had occurred. The grazing coefficient, g, were calculated assuming

that k = 0 as described by Marin et al. [1986], and Huntley et al. [1983] for similar

situations (i.e., C1 = C1∗).

The ingestion rate, I , is given by:

I(cells copepod−1h−1) = F ∗C (2.9)

Where C is, according to Frost [1972] the mean cell concentration, calculated from:

C =
C1 ∗ [e(k−g)(t2−t1) − 1]

(t2 − t1) ∗ (k − g)
(2.10)
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Again, due to the assumption of no algae growth during the time of incubation, the

ingestion rates in our experiment were calculated, following Marin et al. [1986], by:

I = F ∗ C1 (2.11)

Samples were preserved for later determination of the fecal pellet production; however

these were later discharged as they were in a varying degree degraded at the time of

inspection.

Figure 2.1: Illustration of the custom made setup for the grazing experiment. The

grazing chambers (50 ml sealed bottles) were attached to a wheel (30 cm diameter) with

8 chambers on either side. The wheel was driven by a peristaltic pump motor adjusted

to turn the wheel at approximately 1 RPM. The wheel was half way submerged in

a temperature controlled water bath. The water level was held constant by overflow.

The inflow was supplied by an aquarium pump from an adjusted heater/cooler unit

set at 9.7◦C. Circulation of water was provided by another aquarium pump inside the

polystyrene insulated box. A lid (not shown), prevented temperature flux in the air in

which the grazing chambers was exposed to half of the incubation time (approximately

20 hours). The setup was installed inside a chilling room set at 10◦C. The wheel was

made by product designer Ola Flatvad at Ula Jern, Trondheim. Modification and

assembly were performed at the workshop at NTNU, SeaLab. Trondheim (The figure

is made in Google SketchUp 8)
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2.3.2 Respirometry

The three sub-replicate animals from each experimental regime were transferred directly

from the 50 mL bottles into individual glass respirometry chambers (2 mL). The cham-

bers had been tested by filling them with nitrogen saturated water; measurements reviled

no rise in oxygen content confirming that they were gas tight.

Before the transfer of animals, the chambers were pre filled with control or CO2 treated

water. The water was taken from the grazing chambers to approximate similar situations

as they experienced in the grazing experiment. Only water from the respective treatment

grazing chambers that did not contain animals was used in this pre filling. One exception

to this was on the first day of measurement (A series), where the respirometry chambers

were pre filled with content from the respective grazing chambers.

A large plastic pipette was used to transfer the animals. The animals were washed

by first pipetting them into a small dish containing the appropriate water in order to

dilute eventual differences in algae concentrations. This was to approximate similar

algae situation between the sub replicates during the respirometry.

All air bubbles were eliminated by mounting the chamber cap onto a positive meniscus,

squeezing out excess water. The respirometry chambers were mounted onto a customized

acrylic plate and placed into a controlled water bath inside a heater/cooler unit. The

time of the animal transfer were noted as the start of incubation.

The oxygen measurements were performed using a fiber-optic oxygen meter (Fibox 3

LCD trace, Precision Sensing GmbH). Calibrated according to the device manual. The

oxygen content in the water was detected by illumination and optical reading of an

oxygen sensitive patch mounted inside the respiration chambers. Small pieces of silicone

tube were attached to the glass vials in order to center the probe at the location of the

oxygen sensitive patch.

The oxygen content in the chambers was recorded approximately every 60 minutes during

the incubation period (approximately 8 hours). The time from start of incubation and

until the first oxygen reading varied between the chambers due to the preparation time

for subsequent chambers. The first readings were performed at approximately one hour

after preparation of the last chamber. This was to prevent readings during a sharp

decrease in oxygen level previously observed in copepode respirometry due to handling
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stress Marshall and Orr [1972]. Approximately 10 readings were performed with 0.5

second intervals, from which an average were used as a measurement point. All readings

were performed during a linear decrease in oxygen concentration. The respirometry was

terminated before the oxygen level was reduced by 40 percent of the first measured value.

Oxygen consumed by the animals was determined based upon the least square regression

of oxygen concentration (mg/l) vs incubation time (hours). The regression coefficients

were used to determine the reduction in oxygen due to respiration by the following

formula:

O2consumption(µgO2 ∗ mgDW−1 ∗ hour−1) =
(a(b + a))− (ac(bc + ac)) ∗ V ∗ 1000

DW
(2.12)

Where a and b refers to the regression coefficients in the formula for the regression line

in the form:

Y = ax + b

The coefficients from the no animal control chamber (ac and bc) was withdrawn to

remove the influence in oxygen consumption due to algae and bacteria respiration, V is

the volume of the chambers (2 ml), and DW is the dry weight (mg) of the copepods.

Results were multiplied by 1000 to get the measured O2 unit (mg/L) in to µg/L.

After the oxygen measurements the animals were inspected for movements as sign for

vitality and any visible signs of damage that could have influenced their respiration

rate. They were sedated by adding a small amount of MS-222 (Finquel, Agent Chemical

Laboratories Inc), and photographed (Sony DFW-SX900 color digital camera) under a

dissection microscope (LEICA MZ 125). The animals were then dipped in distilled water

to remove salt, before they were transferred into pre weighted tin capsules placed inside

a 96 well plate. The animals were stored in a freezer (- 20◦C).

All animals were identified as being in stage C5 prior to the incubation, and all were

confirmed to be alive and intact at the end of experiments. There were some evidence

that 4 of the animals had gone through a molt during the incubation. Based upon

examination of the photographs and one incident were a shed skin were found in the

grazing chamber 2.2, one animal from the 380 ppm, one from the 1080 ppm, and 2 from
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the 3080 ppm CO2 group were identified as adults. All obtained values were included

in the analysis.

Figure 2.2: Picture of a shed shell found in the grazing chamber after the experiment,

this belonged to an individual in the 2080 ppm CO2 treatment group. Three others

were identified as being adults by examination of the pictures; one from the 380 ppm,

and two from the 3080 ppm CO2 treatment group

2.3.3 Biometry

The photographs were used for length and area measurements, that was utilized for

volume calculations by a method described by Miller et al. [2000]. A calibrated software

(Image J, National Institutes of Health, Bethesda MD, USA) made use of the pixel

count on a computer screen to read the measurements in millimeters. The calibration

was based on the known magnification in the photographs.

Length measurements were performed by superimposing a line from the anterior dome

of the head to the posterior-most extent of the last thoracic segment. The length of the

oil-sac were performed by superimposing a line from the visible part of the anterior to

the posterior of the oil containing membrane 2.3. The area was estimated by tracing an

outline of the oil-sac on the computer screen. All length and area measurements were

performed three times from which an average value was used for cylindrical tube volume

approximations by the following formula.

V =
πA2

4L
(2.13)

Where A is the projected area, and L is the length of the principal axis of the oil sac

Miller et al. [2000].
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Figure 2.3: Length measurement were performed by superimposing a line on the
animal as shown by the green line. The same was performed on the visible oil-sac. In
addition were the outline area of the oil-sac traced in order to estimate the volume.

2.3.4 Dry weight determination

The animals were dried in a heating cabinet at 60◦C for 24 hours as described by Williams

and Robins [1982]. The weight were determined on a micro-scale weight (Mettler Toledo,

checked monthly, at 10 mg the acceptable deviation is 0.0008 mg). To reduce potential

gaining of weight due to air humidity, the samples were stored in a desiccator between

each measurement.

Two control weights were performed with one hour in the heating cabinet between each

weighing in order to confirm the stability of the values. Dry weights were determined

by subtracting the weight of the tin capsules.

2.3.5 Energy equivalents and SfG calculation

It was assumed that the carbon content in our strain of R.baltica were 45 percent of

dry weight Kiørboe et al. [1985]. Due to the lack of egestion and excretion data the

assimilated food was assumed to be 80 percent of the dry weight normalized ingestion

value, as this is considered a general assimilation efficiency level for herbivorous feeding

copepods B̊amstedt et al. [1999]. The energy assimilated from the algae ingested was

based upon assumed content of protein, lipids, and carbohydrate as respectively 50, 10,

and 20 percent of dry weight B̊amstedt et al. [1999], with energy equivalents of 24.0,

39.5 and 17.5 kJ g−1 for protein lipid, and carbohydrate respectively Hoegh-Guldberg

and Emlet [1997].
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The energy used in aerobic respiration were calculated into energy equivalents assuming

484 µJ nmol−1 O2, according to Stumpp et al. [2011].

SfG was calculated by:

SfG(Joule ∗mgDW−1 ∗ hour−1) = A − R (2.14)

Where A is the assimilated energy, and R is the energy lost due to respiration.

2.4 Statistics

The Median development times for the different moulting stages were analysed by one-

way ANOVA. Any significant results were analysed with TukeyHSD in order to assess

which treatment group that differ.

The measurements and estimates of dry weight, volume of the oil sac, body length,

filtering rate, ingestion rate, oxygen consumption and Scope for Growth were analysed

by a three factor nested ANOVA . Significant differences between treatment groups were

extracted by setting the control group as a treatment contrast in the analysis.

All sorting of data into appropriate datasets were performed in Microsoft excel (version

2010), while the analysis were performed in R version 3.0.0 (2013-04-03), R Core Team

[2013]. The statistical method, and R packages used for analysis of the results from

measurements on stage C5 from the second generation are described in Appendix A.

The significance level for all tests were set at 0.05.



Chapter 3

Results

3.1 Experimental conditions

3.1.1 Water parameters

pH, temperature and total alkalinity measured during the first and second generation

are listed in table 3.1 and 3.2 respectively. These values were used to calculate the

respective pCO2 (µatm) also included in the tables. The calculated pCO2 values differed

from the aim concentrations for all the treatments, but are refereed to as their aim values

in this text.

Table 3.1: Water parameters (mean±SD) calculated from samples taken from all

experimental tanks across the duration of first generation of the copepods

Treatment pHT Temp (◦C) AT pCO2 (µatm)

380 ppm 8.00±0.01 9.75±0.15 2269.44±21.78 437.14±16.94

1080 ppm 7.64±0.03 9.89±0.15 1102.34±76.61

2080 ppm 7.33±0.06 9.87±0.15 2306.78±303.17

3080 ppm 7.15±0.03 9.68±0.12 3501.99±261.86

29
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Table 3.2: Water parameters (mean±SD) calculated from samples taken from all

experimental tanks across the duration of second generation of the copepods

Treatment pHT Temp (◦C) AT pCO2 (µatm)

380 ppm 8.02±0.01 9.79±0.10 2245.07±16.36 421.25±16.34

1080 ppm 7.66±0.05 9.94±0.10 1051.89±110.73

2080 ppm 7.39±0.04 9.94±0.09 2019.99±190.04

3080 ppm 7.16±0.08 9.79±0.09 3481.81±542.13

3.1.2 Feeding conditions

The algae concentration µC L−1 of the different treatments for each measurement

(mean±SD, n=3) are shown in figure 3.1. There were some differences in the con-

centrations between the different treatment groups. While no differences were found

at the time of the nauplii stages, the highest exposure group had a significantly higher

algae concentration than the control treatment (P=0.007), later into the experiment

where the majority of the animals consisted of copepodites (day 20 to day 76 in the first

generation). An approximate estimate for the duration of the nauplii stages was derived

from the estimated MDT value of development stage C1, while the rest of the duration

were assumed to be mainly composed of copepodites.

The same trend seemed to be present in the second generation. Here were also a signif-

icant higher algae concentration found in the highest CO2 treatment group (P=0.027),

in the assumed duration where copepodites dominated the stage compositions (day 100

to day 160). Means and standard deviation over all measurements are shown in figure

3.2.
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Figure 3.1: Concentration of Rhodomonas baltica µC L−1 during the experiment

(mean±SD, n=3). vertical lines represents the duration of the first and the second

generation of the studied C. finmarchicus. Green areas represents the duration of

the sampled development data from the first generation (left), and the duration of

the feeding and oxygen consumption measurements of C5 copepodites in the second

generation (right).
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Figure 3.2: Algae concentrations (mean±SD, n=3) in the treatment groups during

the approximate nauplii development time (day 0 to day 20)(left), and copepodite devel-

opment times (day 20 to day 76)(right), for the first (top), and second (bottom) genera-

tions (nauplii: day 80 to day 100, and copepodites: day 100 to day 160). No differences

were detected during the development of nauplii stages. There were found a significant

difference in the algae concentrations during the copepodite development times for both

the first (F3,8=7.389 P= 0.011) ,and the second generation (F3,8= 5.087 P=0.029). The

highest CO2 treatment had a significantly higher concentration compared to the control

treatment in the first (P=0.007) and the second generation(P=0.027), determined by

multiple comparisons of means: Dunnett Contrasts. No other treatment groups differed

significantly from control.

3.2 Stage development of the first generation of exposed

C. finmarchicus

3.2.1 Naupliar median development time

The estimated median development times for the nauplii stages (N1 to N6) from the

first generation of the studied C.finmarchicus are shown in figure 3.3.
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The time for 50% of the cohort to develop past the N5 stage was found to be on average

2.42 days later for the 3080 ppm CO2 than the control treatment group. A near sig-

nificant difference was found for the development past this stage (F3,8=3.918, P=0.054)

between the treatment groups, and a significant difference between 380 ppm CO2 and

3080 ppm CO2 was detected (P=0.043).

The development past the stage N6 were significantly different between the treatments

(F3,8=4.781, P=0.034), with a significant difference between the control and 2080 ppm

CO2 group(P=0.031). The MDT for this stage was on average 2.50 days later in the

2080 ppm CO2 than in the control group

The results points to a later time before molting into the last few nauplii developmental

stages in the highest two CO2 treatments.

3.2.2 Copepodite median development time

The estimated median development times for the copepodite stages (C1 to C5) from

the first generation of the studied C. finmarchicus are shown in figure 3.3. The results

were analyzed the same way as for nauplii stages. A significant difference in MDT

was detected between the treatments in stage C4 (F3,8=5.361, P=0.0257). In Tukey

HSD differences were found between the treatments 380 ppm CO2 and 2080 ppm CO2

(P=0.019). The time for 50% of cohort to develop past stage C4 was on average 4.14

days later in the 2080 ppm CO2 than in control.
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Figure 3.3: Median development times for the nauplii stages (top), and copepodite

stages (bottom), (means±SD, n=3). A later MDT was detected in the nauplii stages

N5 and N6 for the highest CO2 treatment groups than the control group, only the result

from the N6 stage were statistically significant. In copepodite stages a significant later

MDT value was detected for the 2080 ppm treatment group compared to control.

3.3 Energy balance of CO2 exposed C5 copepodites (sec-

ond generation)

3.3.1 Impact on body mass, length, and energy stores

The measurements of dry weight, body length, and the calculated estimate of their

oil-sac volumes are summarized in table 3.3.

Compared to control (380 ppm CO2) the mean dry weight were higher in the lowest CO2

group, while the higher concentration groups had a lower mean dry weight. The differ-

ence in dry weight between the treatments were not found to be significant (F3,8=2.97,

P=0.097).

The volume of the oil-sac were significantly larger in the 1080 ppm CO2 group (P=0.023).

In the 3080 ppm CO2 group the mean volume of the oil sac were smaller compared to

control, this was found to be close to significant (P=0.0504).



Chapter 3. Results 35

The mean of the measured body lengths were shorter in all CO2 treatments than in

control, this was not found to be significant (F3,8=3.68, P=0.063).

Table 3.3: Dry weight, body length and estimated volume of oil sac(means and stan-

dard deviations) in the stage C5 copepodites from all experimental tanks across the

duration of the grazing and oxygen consumption measurements of the second genera-

tion of CO2 exposed C.finmarchicus.

Treatment (CO2) Dry weight (mg) Body length (mm) Volume oil sac (mm3)

380 ppm 0.193±0.056 2.229±0.235 0.082±0.048

1080 ppm 0.199±0.084 2.110±0.167 0.108±0.079

2080 ppm 0.183±0.046 2.140±0.139 0.080±0.045

3080 ppm 0.136±0.042 2.080±0.211 0.041±0.026

3.3.2 Impact on filtering and ingestion rates

Filtering (or clearance) rate (ml copepod−1 hour−1) for the animals in the different

treatments are shown in figure 3.4 (means±SD, n=3).

The mean filtering rate were higher in the 1080 ppm CO2 group and lower in the 2080

and 3080 ppm CO2 groups than in the control group, following the same trend as for

the dry weight, volume of oil sac and to a degree also the body length measurements.

The treatments were however not found to have an significant impact on the filtering

performance (F3,8= 3.80, P=0.058).

The Ingestion rates were calculated using the estimated filtering rate values. Estimated

cells eaten were transformed into carbon equivalents and normalized by their dry weights.

A significant difference were found between the treatments (F3,8=4.526,P=0.039), and

a significant higher ingestion rate was found in the 1080 ppm CO2 group compared to

the control treatment (P=0.011).

Negative filtering rates and therefore also ingestion rates were obtained in one of the

animals from the 380 ppm , one animal in the 1080 ppm, and in three of the animals in

the 3080 ppm CO2 group. All values were included in the analysis.
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Figure 3.4: Filtering rates (ml copepod−1 hour−1) (left) and ingestion rates (µg

C DW−1 hour−1)(right) in the different treatment groups (means±SD, n=3). No

significant differences were detected in the filtering rates, but the ingestion rate was

found to be significantly higher in the 1080 ppm CO2 group.

3.3.3 Impact on aerobic metabolic rates

Oxygen consumption rates (µg O2 mg DW−1 hour−1) are shown in figure 3.5. The

mean oxygen consumption increased with increasing CO2 concentrations. No significant

differences between the treatment groups were detected (F3,8=3.35 ,P=0.076).
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Figure 3.5: Oxygen consumption (µg O2 mg DW−1 hour−1),in C. finmarchicus stage

C5,(means±SD, n=3). The mean values display a concentration dependent increase in

oxygen consumption. No significant differences were detected.

3.3.4 Impact on Scope for Growth (SfG)

The result of SfG (Joule mg DW−1 hour−1) estimated using energy intake through

feeding and respiratory energy loss versus dry weight of the copepods are shown in

figure 3.6. A negative SfG was detected in the control group as well as in the 2080 and

3080 ppm CO2 groups. This indicates a depletion in energy reserves in C. finmarchicus

measured in those groups.
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A positive SfG was detected in the 1080ppm group. The difference between the treat-

ment groups were significant (F3,8=21.72, P=0.0003), and all elevated CO2 concentra-

tions were significantly different from the control treatment, 1080 ppm (P=0.0001), 2080

ppm (P=0.0272) and 3080 ppm (P=0.0179) .

Figure 3.6: Scope for Growth (Joule mg DW−1 hour−1), in C. finmarchicus,

(means±SD, n=3). All elevated CO2 treatment groups differed significantly from the

control treatment. A higher SfG was obtained in the 1080ppm group (P=0.0001), and

a lower SfG was obtained in the 2080 ppm (P=0.0272) and 3080 (P=0.0179) ppm CO2

groups.
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Discussion

4.1 Energetic effects of elevated CO2 on stage C5 C.finmarchicus

The different measurements and calculated estimates performed in this experiment in-

dicates a general pattern of responses to the treatments. The animals exposed to the

lowest elevated CO2 treatment seemed to perform better than those exposed to higher

concentrations. In some of the measurements this treatment group even seemed to per-

form better than the control group. Indicating a tolerance for moderate elevation in

CO2 in this development stage of C.finmarchicus. The higher concentrations of CO2

seemed to have a more negative impact on the measured and estimated parameters in

the animals.

Even though not all of the tested parameters showed a statistical difference compared

to control in this experiment, they all seemed to follow the same pattern, indicating an

overall adverse effect with respect to energy balance in animals in the 2080 ppm and

3080 ppm CO2 groups.

4.1.1 Feeding rate

The filtering rates and ingestion rates obtained were within values previously reported

for C. finmarchicus Mauchline [1998], Mayor et al. [2006]. Some of the filtering values

were negative. This may represent an artifact as has been obtained in other feeding

39



Chapter 4. Discussion 40

experiments, and can occur when the net growth of feeding cells is greater in an exper-

imental bottle relative to control and may have resulted in an underestimation of the

ingestion rates Mayor et al. [2006]. In 3 of the 5 obtained negative values the animals

were also identified as being adults after the experiment. The process of molting may

have influenced their feeding performance.

A higher feeding rate has previously been demonstrated as a response to elevated CO2

exposure in copepods. In a short term exposure study Li and Gao [2012] found that the

feeding rate increased in the calanoid copepod Centropages tenuiremis at a moderate

elevated CO2 (pH 7.8). They suggested that this may be explained by an increase in food

acquisition to compensate for a higher energy demand for maintainance of intracellular

acid-base balance, evident from an increased aerobic metabolic rate.

In the results from our experiment it was also found a significantly higher ingestion

rate in the 1080 ppm CO2 group, and may demonstrate an increased food demand

for compensatory processes due to the exposure. However it was not found any clear

evidence for extra energy expenditure in this group from the result of the SfG estimates.

Animals from the 1080 ppm CO2 group group had also a significantly larger volume of

their oil-sac indicating a good capacity for accumulating nutrients to form energy stores.

This may indicate an excess of energy in spite of the potential stress due to this CO2

treatment.

All though not significant the results may point to a lower filtering and ingestion rate in

the two highest CO2 treatment groups compared to the control. The feeding rate in C.

finmarchicus has been found to correlate with the amount of food available Mayor et al.

[2006], and it may therefore be expected that the feeding rate increased in the highest

exposure group since these tanks had a significantly higher algae density. It may also be

expected that these animals would increase their food acquisition in order to cope with

the stress elicited by the CO2 exposure Li and Gao [2012]. The results obtained in our

experiment may indicate the contrary to be the case for the highest two CO2 treatment

groups. One possible explanation for this may be that the stress adversely affected their

ability to obtain food due to an exceeded time and/or concentration dependent threshold

for CO2 toxicity Pörtner et al. [2005].

A decreased feeding rate in crustaceans has been reported as a response to toxic expo-

sures. In a study of the crustacean mysid Neomysis integer Verslycke et al. [2004] found



Chapter 4. Discussion 41

a significant decrease in feeding rate as a response to high chlorpyrifos concentrations.

A suppressed feeding has also been found as a response to acidified seawater in three

species of bivalve mollusks at a pH value of 7 Bamber [1990]. In sea urchin larvae ex-

posed to simulated ocean acidification Stumpp et al. [2011] found a reduction in feeding

rate in a high pCO2 treatment. They explained this as a possible inhibition of growth

in their ciliated feeding structures due to the exposure.

Copepods may be more tolerant against calcification-related effects of CO2 exposure.

This is because they possess a chitinous exoskeleton rather than a aragonite or calcite

shell Fitzer et al. [2012]. A potential for CO2 exposure to impair the growth of min-

eralized chitinous exoskeleton structures has however been found in other crustaceans

Whiteley [2011]. Among the large variation in mineral composition in different crus-

taceans a more soluble calcium carbonate component (amorphous calcium carbonate)

has been found Neues et al. [2007]. This mineral has been suggested to act as a source

for bicarbonate to acid-base buffering Whiteley [2011].

The formation of calcium carbonate is thought to depend on maintainance on an more

alkaline pH in the exoskeleton compartment relative to the heamolymph. A lower pH in

this compartment due to elevated influx of dissolved CO2 may influence the precipitation

of calsium carbonate. It is also possible that post-moult calcification could be disrupted

since this process is dependent on a large uptake of calcium and bicarbonate ions from

the seawater. This ion influx is sensitive to an increase in the concentration of external

hydrogen ions because this reduces the bicarbonate uptake Whiteley [2011].

Post-moult delay has been observed in the crab Callinectes sapidus as a response to

hypercapnia, explained by an impaired uptake of external bicarbonate Cameron and

Wood [1985]. A shortening of antennae was observed in the shrimp Palaemon pacificus,

and this was attributed to a dissolution of calcium carbonate stores, followed by a

disruption of acid-base homeostasis after long term CO2 exposure Kurihara et al. [2008].

As a filter feeder C. finmarchicus is dependent upon the movement of mouth parts to

set up water currents for obtaining food items Marshall and Orr [1972]. If an impaired

structure or function of components in the filtering apparatus is a consequence of high

CO2 exposure, it could potentially reduce the food acquisition in the animals.
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A lower feeding rate may also partly explain the observed increase in the algae con-

centrations in the highest CO2 treatment tanks. However, this increase may also have

been caused by a lower density in the tanks due to mortality. Lethal effects of of the

treatments were not measured, but by visual inspection of the tanks there were signs of

a lower animal density in the highest two CO2 treatment tanks.

The CO2 concentrations had been determined based upon their possible sub-lethal ef-

fects. The highest concentration (3080 ppm) did not cause decreased survival in eggs

or nauplii stages in an earlier study performed at SeaLab on animals obtained from the

same original culture as was used in our experiment V̊age [2011]. This study was how-

ever more short time based, and lethal effects due to a longer lasting exposure situation

may not be ruled out.

Exposure of adult C. finmarchicus to concentrations as high as 5000 to 8000 ppm CO2

did not reduce their survival in a study by Mayor et al. [2007].

If the feeding rate is altered as some of our findings indicates, it may have serious

consequences for the balance of phytoplankton production and zooplankton grazing in

marine ecosystems, at similar environmental conditions.

4.1.2 Aerobic metabolic rate

The oxygen consumption measured is close to previously reported values in stage C5

of C. finmarchicus Marshall and Orr [1972]. While the mean values points to an CO2

concentration dependent increase in the dry weight normalized oxygen consumption rate,

no significant differences were found between the treatments. A higher energy utilization

may be a result from increased cellular regulatory activity to maintain proper acid-base

conditions.

The dry weights are likely to have influenced the observed pattern as seen in the mean

values, since the oxygen consumption is related to the mass of the animal. Copepod

respiration rate has been found to increase with increasing body weight Almeda et al.

[2011].
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4.1.3 Scope for Growth

Sub-lethal processes involved in reproduction and development has been considered to

be particularly vulnerable to ocean acidification effects Fitzer et al. [2012]. Calculations

of SfG provides an estimate for the available energy for such processes,and may therefor

serve as a useful biomarker to access effects from CO2 exposure. It is important to

investigate such effects since they may have the potential to alter the balance in marine

ecosystems through reduced fitness in individuals and populations Fitzer et al. [2012].

The significant results of a lower SfG in the two highest CO2 treatments points to a

depletion of their energy reserves. The estimated lower oil-sac volumes for these animals

may also support this to be the case. They also showed a tendency for a lower body

mass and length in these measurements despite a higher level of food available.

The egg production and hatching success of the developing females in the cohorts were

studied by sets of separate experiments performed by Tagliati [2013]. She found a

significantly lower rate of eggs produced in the highest CO2 treatment, and a tendency

for a concentration dependent decrease in hatching success between the treatments were

observed. Her results thereby supports the present indication of a reduction in the

available energy for reproduction at the highest CO2 treatments in this experiment. A

reduced hatching success may serve as an explanation for the observed lower animal

density in those treatment tanks.

The excretion of the animals were not measured in this experiment, and a different

pattern may have been reviled if this had been performed. The lack of incorporation of

excretion values may have lead to an overestimation of SfG Stumpp et al. [2011].

Potential stress during the incubation in small containers may have influenced the feed-

ing behavour and oxygen consumption results Mauchline [1998]. The volume of the

respiration champbers were small, and an potential stress from interactions with the

chamber walls may have elevated their respiratory rate, and given a decrease in the SfG

values. This may explain the negative SfG found in the control group.

Copepods are regarded as being mainly ammonotelic animals, that means that their

main excretion product is ammonia. Ammonia is known to have toxic properties, and

its speciation is dependent on pH and temperature. Dependent on the animal density

and the replacement of the experimental water the ammonia production may therefore
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have elicited a stress upon the animals. Ionized ammonia (NH+
4 ) (or ammonium) is lower

at low pH, and has been found to be less toxic, compared to the unionized form (NH3)

Sullivan and Ritacco [1985]. The lower pH may therefore have played a protective role

against this potential stress factor, and may have resulted in a better energetic perfor-

mance in the 1080 ppm CO2 treatment group (personal communication, Reseacher S.A.

Pedersen, Department of Biology, NTNU). The levels of ammonia were unfortunately

not measured in our system.

It should also be noted that the values of the energy equivalents were based upon some

assumptions on the carbon content and nutrient composition in the Rhodomonas baltica,

as well as metabolic energy utilization in form of oxygen, that were not measured for

this particular case, but based upon literature values.

4.1.4 Development time in long term elevated CO2 exposed C.finmarchicus

The results points to a longer median development time for the highest CO2 treatment

group, at least for some of the developmental stages. The results from the energetics

measurements points to a energy depletion in those groups and delayed development

may be a result of the energetic cost to cope with the stress of elevated CO2 exposure.

The development and the process of moulting is energy demanding Mauchline [1998].

It is therefor likely that a depletion of energy reserves could result in a slower stage

development rate as has been observed in this experiment. Similar results were obtain

from the study of the development rate in the second generation, where a significant

slower development were found in the highest CO2 exposure group in the stages N5, N6

and C1 , compared to the control treatment Gustavson [2013]. No obvious differences

between the generations with respect to stage development rate were detected.

Shorter intervals between each sample may have resulted in a better estimate for the

development time for some of the stages. The median development time for stage N1

(estimate for egg duration) were probably poorly estimated due to a too long time before

the first samplings. Because of the sampling was terminated before all animals had been

developed into adults an estimate of the generation time was not possible to obtain. A

more optimal procedure may have been to monitor the development more closely during

the experiment, to ensure that samples near critical times was taken.
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The size of the starting cohort (approximately 2050 eggs) may have been in the short

range to reach an adequate density and sample sizes large enough to meet the assump-

tions for the method Hu et al. [2007]. Based on this the MDT values may only be

regarded as a relative measure to detect treatment effects, and not an estimate of the

actual development times of the animals.

To investigate responses to environmental changes it is important to place the exposure

levels in a context with regional and seasonal projections, and with respect to current

environmental conditions in the habitat Byrne [2011]. The highest CO2 concentration

used in this experiment may exceed the highest projections for the year 2300 with respect

to atmospheric level under modeled ”business-as-usual” scenarios Caldeira and Wickett

[2003]. However such concentrations may represent a ”worst case scenario” Mayor et al.

[2007] and may also occur locally e.g. due to leakage from man made or natural CO2

storage reservoirs Hawkes et al. [2005].

Since the main periods of egg production and growth of C. finmarchicus is tuned to

match algae development, a change may result in a mismatch it timing between trophic

levels. This may lead to changes in structure and/or function of the marine ecosys-

tem, e.g in the Norwegian sea in which C. finmarchicus has been regarded as the most

important zooplankton species Bagøien et al. [2012].

4.1.5 Conclusion

The results presented in this thesis points to energy depletion in Calanus finmarchicus

due to continuously exposure to 2080- and 3080 ppm CO2 over the course of two gen-

erations. As the estimated Scope for Growth were negative, and also significantly lower

compared to the control treatment.

Adverse effects due to energy depletion in those treatments may have been manifested

in reduced amount of energy stores as indicated by their close to significantly smaller

oil-sac volumes. Although not significant the presented results may also have revealed

a tendency for lower body mass as measured by their dry weights, and reduced growth

indicated by the body length measurements, as compared to control.

The findings of slower development rate as were observed in some of the molting stages.

And the lower reproductive output found in the adult females Tagliati [2013] cultured
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in the 3080 ppm CO2 treatment, supports presented the findings since these processes

are influenced by the energy balance in the copepods.

Energy depletion is likely caused by decreased food intake, and/or increased metabolic

expenditure, as indicated by some of the feeding and oxygen consumption measurements.

This response may have been a result of an allocation of energy to fuel processes related

to maintenance of proper acid-base homeostasis challenged by hypercapnia.

C. finmarchicus seemed to be more tolerant to exposure to 1080 ppm CO2, and no

indication of adverse effects on the energy balance was found at this level of exposure.

In this treatment group the animals were found to have available energy reserves for

growth and reproduction. This is supported by larger estimated oil sac volumes, and a

tendency for higher dry weight values compared to the control treatment. Eventual extra

energy demand for acid-base regulation due to elevated CO2 was likely compensated for

by increased energy intake through feeding in this treatment group.

No indication of increased adaptation to the exposures over two consecutive generations

was found.

The present results may contribute to the work of elucidate the potential response of C.

finmarchicus to the ongoing elevation of ocean CO2. They may also serve as baseline

data for further studies of effects of CO2 combined with other environmental stress

factors such as increased temperature or pollutants.
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Pörtner, H. O., Langenbuch, M., and Reipschläger, A. (2004). Biological impact of
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Politecnica delle Marche, Ancona, Italy.



Bibliography 53

V̊age, V. T. (2011). Effects of high CO2 concentration on the early developmental

stages of the marine copepod Calanus finmarchicus (Gunnerus, 1770). Master’s thesis,

Norwegian University of Science and Technology.

Verslycke, T., Roast, S. D., Widdows, J., Jones, M. B., and Janssen, C. R. (2004).

Cellular energy allocation and scope for growth in the estuarine mysid Neomysis in-

teger (Crustacea: Mysidacea) following chlorpyrifos exposure: a method comparison.

Journal of experimental marine biology and ecology, 306(1):1–16.

Warren, C. E. and Dav1s, G. E. (1967). Laboratory studies on the feeding, bioenergetics,

and growth of fish1. In The Biological basis of freshwater fish production: a symposium,

page 175. Wiley.

Whiteley, N. (2011). Physiological and ecological responses of crustaceans to ocean

acidification. Marine Ecology Progress Series, 430:257–271.

Widdicombe, S. and Spicer, J. (2008). Predicting the impact of ocean acidification on

benthic biodiversity: What can animal physiology tell us? Journal of Experimental

Marine Biology and Ecology, 366(1-2):187–197.

Widdows, J., Donkin, P., Brinsley, M., Evans, S., Salkeld, P., Franklin, A., Law, R., and

Waldock, M. (1995). Scope for growth and contaminant levels in North Sea mussels

Mytilus edulis. Marine ecology progress series. Oldendorf, 127(1):131–148.

Williams, R. and Robins, D. (1982). Effects of preservation on wet weight, dry weight,

nitrogen and carbon contents of Calanus helgolandicus (Crustacea: Copepoda). Ma-

rine Biology, 71(3):271–281.

Xiaowan, T., Yunyan, N., Xiaoqiang, P., Chun, Y., and Anping, H. (2009). Determina-

tion of total alkalinity and calcium concentration of seawater rapidly and automaticly

with small-amount samples. In Bioinformatics and Biomedical Engineering, 2009.

ICBBE 2009. 3rd International Conference on, pages 1–4. IEEE.

Zeebe, R. (2012). History of seawater carbonate chemistry, atmospheric CO2, and ocean

acidification. Annual Review of Earth and Planetary Sciences, 40:141–165.

Zeebe, R. E. and Wolf-Gladrow, D. (2001). CO2 in Seawater: Equilibrium, Kinetics,

Isotopes: Equilibrium, Kinetics, Isotopes, volume 65. Elsevier Science.





Appendix A

Statistical analysis of energetic

measurements on copepodite

stage C5

The primary interest was to investigate whether there were any effects of the CO2 treat-

ments on the measured and calculated parameters that indicates possible impacts on the

animals energy balance. Individual sampling days and readings as well as the individual

experimental tanks may have contributed to variability with respect to measurements

that could potentially have masked the ability to detect an impact of treatments (e.g.

different age of copepods, available food or temperature conditions).

The data were therefore analyzed by applying a balanced three factor nested ANOVA

as described by Logan [2011]. The different parameters had been measured by three

separate readings on two different days of sampling from each of three individual exper-

imental tanks per one of four different treatments.

The treatments represent a fixed factor (Factor A). The replicate experimental tanks

represent a random nesting factor (Factor B), and are the replicate for the treatment

effects. The day of sampling represents an additional random nesting factor (Factor C).

The measurements of triplicate C.finmarchicus are the units of replication for the day

of sampling.
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The following describes the analysis of the dry weight measurements and illustrates

the method whereby all the parameters were analyzed in this experiment (bodylength,

volume oil sac, filtering rate, ingestion rate, oxygen consumption and Scope for Growth).

The following table A illustrates the conseptulised hierachial structure of the dataset

of the dryweight measurements and the nesting order of the factors. Treatment 1 is the

control treatment, 2, 3 and 4 is the increasing CO2 treatment concentrations. Tank 1

to 3 represents the replicated tanks, and day is a factor with 2 levels and represents the

day of the sampling for the experiment.

replicate 1 2 3

Treatment Tank Day

1 1 1 0.2070 0.2194 0.1053
2 0.2199 0.2604 0.1642

2 1 0.1993 0.1900 0.1681
2 0.1401 0.2600 0.2084

3 1 0.1350 0.2715 0.2487
2 0.2126 0.2026 0.0582

2 1 1 0.2507 0.1232 0.1310
2 0.0869 0.1269 0.2205

2 1 0.1723 0.2513 0.3124
2 0.2453 0.2555 0.2849

3 1 0.3032 0.3247 0.1261
2 0.0429 0.1306 0.1908

3 1 1 0.1710 0.1915 0.1804

2 0.1586 0.1609 0.2270
2 1 0.1915 0.2385 0.1705

2 0.2540 0.0821 0.1813
3 1 0.2304 0.2376 0.1921

2 0.1742 0.1704 0.0875
4 1 1 0.0723 0.1390 0.0870

2 0.0914 0.1606 0.0801
2 1 0.1826 0.1584 0.1154

2 0.2213 0.1633 0.1221
3 1 0.1701 0.1094 0.1757

2 0.1493 0.1573 0.0923

The total sum of squares was calculated by A.1

SST =
∑

y2 −
[
∑

y]2

72
(A.1)

SST = 2.560002− 12.7972/72 = 0.285513
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Where y is the individual measured values of the dry weight from all off the 72 C.finmarchicus

examined in the experiment.

The sum of squares for the treatments, SSA, was calculated as the sum of the four

treatments . Each were the sum of 18 numbers (3 sub replicates x 2 sampling days x 3

replicate tanks). The subtotal square was therefore divided by 18 before the correction

factor were subtracted A.2 and A.3.

SSA =

∑
T 2

18
−

[
∑

y]2

72
(A.2)

SSA =
3.47072 + 3.57922 + 3.29952 + 2.44762

18
−

12.7972

72
= 0.04405972 (A.3)

The sum of square for the difference between the tanks was calculated by A.4:

sum(tapply(DRY, list(Treatment, tank), sum))2

6
= 2.358103 (A.4)

where ”DRY,list(Treatment,tank),sum” is the R code that gave the sum of all the values

within each of the 12 tanks. The sum was divided by 6 because each value was the sum

of 3 measured values x 2 sampling days.

The sums of squares for the sampling days were similarly calculated A.5. Dividied by

three because each value is the sum of three values from the sub replicated C.finmarchicus.

sum(tapply(DRY, list(Treatment, tank, day), sum)2)

3
= 2.403678 (A.5)

The corrected sums of squares for each of the nested factors were calculated using the

value from the next scale above in the model hierarchy.

SSTANKS =

∑
TANKS2

6
−

∑
Treatment2

18
(A.6)

SSTANKS = 2.358103− 2.318549 = 0.039554

SSDAY S =

∑
DAY S2

3
−

∑
TANKS2

6
(A.7)
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SSDAY S = 2.403678− 2.358103 = 0.045575

SSCalanus =

∑
Calanus2

1
−

∑
DAY S2

3
(A.8)

SSCalanus = 2.560002− 2.403678 = 0.156324

The values were used to fill in the following ANOVA table.

Source SS d.f MS F Critical F

Treatment 0.04405972 3 0.01468657 2.970434 4.066181

Tanks in treatments 0.039554 8 0.00494425 1.301832 2.848565

Days in tanks 0.045575 12 0.003797917 1.166168 1.960121

Calanus in days 0.156324 48 0.00325675

Total 0.285513 71

From this table we can see that the F test for treatment effect: 0.01468657
0.00494425 = 2.970434 were

not significant, (P = 0.09698285). The same conclusion can be drawn for differences

between tanks within treatments: 0.00494425
0.003797917 = 1.301832, (P = 0.3281844), and days

within tanks: 0.003797917
0.00325675 = 1.166168, (P = 0.3335043).

Linear models were fitted to test the null hypothesis of no effect due to the treatments,

and no added variance due to tanks within treatments and sampling days within tanks

within treatments.

The control treatment (380ppm) were defined as a treatment contrast to assess any

significant result in the elevated CO2 treatments. Any significant results between the

treatments were ignored if the overall results were not significant (e.g. TREAT: 380ppm

vs 3080ppm in test of effect on dry weight A.1).

A.1 ANOVA tables

The following tables shows the summary statistics of possible effects of the treatments

on dry weight A.1 , volume of the oil sac A.2, body length A.3, filtering rate A.4,

ingestion rate A.5, oxygen consumption A.6, and Scope for Growth A.7.
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Table A.1: Dry weight (n.s.)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 0.04 0.01 2.97 0.0970

TREAT: 380ppm vs 1080ppm 1 0.01 0.01 2.16 0.1796

TREAT: 380ppm vs 2080ppm 1 0.00 0.00 0.87 0.3788

TREAT: 380ppm vs 3080ppm 1 0.03 0.03 5.88 0.0415 *

Residuals 8 0.04 0.00

Residuals 12 0.05 0.00

Residuals1 48 0.16 0.00

Table A.2: Volume of oil sac

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 0.04 0.01 4.87 0.0326 *

TREAT: 380ppm vs 1080ppm 1 0.02 0.02 7.91 0.0228 *

TREAT: 380ppm vs 2080ppm 1 0.00 0.00 1.42 0.2668

TREAT: 380ppm vs 3080ppm 1 0.01 0.01 5.29 0.0504 .

Residuals 8 0.02 0.00

Residuals 12 0.03 0.00

Residuals1 48 0.14 0.00

Table A.3: Body length (n.s.)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 0.22 0.07 3.68 0.0625

TREAT: 380ppm vs 1080ppm 1 0.02 0.02 1.02 0.3411

TREAT: 380ppm vs 2080ppm 1 0.00 0.00 0.12 0.7424

TREAT: 380ppm vs 3080ppm 1 0.20 0.20 9.89 0.0137 *

Residuals 8 0.16 0.02

Residuals 12 0.36 0.03

Residuals1 48 1.82 0.04
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Table A.4: Filtering rate (n.s)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 2.61 0.87 3.80 0.0582

TREAT: 380ppm vs 1080ppm 1 1.66 1.66 7.24 0.0275 *

TREAT: 380ppm vs 2080ppm 1 0.27 0.27 1.18 0.3097

TREAT: 380ppm vs 3080ppm 1 0.68 0.68 2.98 0.1224

Residuals 8 1.83 0.23

Residuals 12 6.57 0.55

Residuals1 48 24.35 0.51

Table A.5: Ingestion rate (dry weight specific)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 11.33 3.78 4.53 0.0390 *

TREAT: 380ppm vs 1080ppm 1 9.02 9.02 10.81 0.0111 *

TREAT: 380ppm vs 2080ppm 1 2.31 2.31 2.77 0.1348

TREAT: 380ppm vs 3080ppm 1 0.00 0.00 0.00 0.9606

Residuals 8 6.68 0.83

Residuals 12 25.38 2.12

Residuals1 48 60.02 1.25

Table A.6: Oxygen consumption rate (dry weight specific) (n.s.)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 17.13 5.71 3.35 0.0764

TREAT: 380ppm vs 1080ppm 1 2.79 2.79 1.64 0.2368

TREAT: 380ppm vs 2080ppm 1 0.07 0.07 0.04 0.8418

TREAT: 380ppm vs 3080ppm 1 14.26 14.26 8.36 0.0202 *

Residuals 8 13.65 1.71

Residuals 12 20.35 1.70

Residuals1 48 78.99 1.65
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Table A.7: Scope for Growth (energy / mg DW / hour)

Df Sum Sq Mean Sq F value Pr(>F)

TREAT 3 0.02 0.01 21.72 0.0003 *

TREAT: 380ppm vs 1080ppm 1 0.02 0.02 49.07 0.0001 *

TREAT: 380ppm vs 2080ppm 1 0.00 0.00 7.27 0.0272 *

TREAT: 380ppm vs 3080ppm 1 0.00 0.00 8.81 0.0179 *

Residuals 8 0.00 0.00

Residuals 12 0.03 0.00

Residuals1 48 0.07 0.00

The variance components were extracted after fitting a linear mixed effect model to

the data, using the VarCorr function in the nlme package. This function calculates the

variances, standard deviations of random factors in such models. The output were used

to calculate the percentage of the contribution of added variance due to different tanks

within treatments and due to different days within tanks within the treatments. The

results are summarised in table A.1.

Table A.8: Percent contribution to variance from random factors

Dry weight vol.Oil-sac Body length

Tanks 5.27 0.00 0.00

Days 4.97 0.45 0.00

Filtering rate Ingestion rate Oxygen consumption Scope for Growth

Tanks 0.00 0.00 0.10 0.00

Days 0.00 8.59 1.00 3.87

A generalized mixed effect model procedure was performed using the lmer package. It

should be noted that the calculations of these p values may be suspect Logan [2011].A

generalized mixed effect modeling procedure was performed, using the lmer package.

Since this did not produce F-ratios for the treatment effects, a sampling distribution

generated on the estimated parameters by a Markov Chain Monte Carlo technique was

examined, as described by Logan [2011].The mcmcsamp function were used to extract an

p value for the overall treatment effect. Since this method may not have been rectified
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yet, the p values based on this method may be suspect. I have therefore only mentioned

them as a point to potential effects that may be interesting to examine.

Figure A.1: Sampling distributions of parameter estimates for the dry weight mea-

surements generated by 10000 samples using a Markow chain Monte Carlo technique.
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Table A.9: Summary of p-values for differences between CO2 treatments

p − value p-value (MCMC)

Dry Weight 0.0970 0.0387 *

Vol. Oil-sac 0.0326 * 0.0226 *

Body length 0.0625 0.1605

Filtering rate 0.0582 . 0.2014

Ingestion rate 0.0390 * 0.0826

Oxygen consumption 0.0764 0.0535 .

Scope for Growth 0.0003 * 0.009 *

A.2 boxplots

Assumptions for normality and homogeneity of variance were assessed by inspecting

boxplots. Although some deviations from these assumptions may have occurred I de-

cided to proceed and relied on the robustness of parametric tests for balanced designs

Logan [2011]. The boxplots for the fixed effects are shown below. These are based

upon generated datasets with means within each tank as values, as they represents the

replicates for the treatment effects.
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Figure A.2: Caption for box1
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Figure A.3: Caption for box2




