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Abstract
In the collaboration between NTNU, the University of Stavanger, and the University of
Helsinki we pursue a satisfactory answer to the problem of baryogenesis, i.e. the origin of
the asymmetry in the amount of baryons and antibaryons in the universe. Baryogenesis at
the electroweak phase transition cannot be explained by the Standard Model as the phase
transition is a crossover, not strongly first order as required. In addition, the amount of
CP violation in the Standard Model is insufficient. Therefore, we investigate extensions
of the Standard Model to find a viable candidate for explaining baryogenesis.

Using the imaginary-time formalism for quantum field theories at finite temperature,
we have applied the method of dimensional reduction to the Two-Higgs Doublet Model
with a softly broken Z2 symmetry. An effective three-dimensional Euclidean bosonic
theory was constructed by integrating out all non-zero Matsubara modes. The parameters
of the effective three-dimensional theory were determined in terms of the parameters of
the original four-dimensional theory, by matching the correlators at long distances. The
effective potential was used to find the scalar correlators. The discussion was extended
to the N -Higgs Doublet Model, where CP violation is only present in the mass-mixing
terms. The results obtained here will be used in a numerical simulation of the electroweak
phase transition in a future paper.

i



Samandrag
I samarbeidet mellom NTNU, Universitetet i Stavanger og Universitet i Helsingfors prøver
me å finne eit fullnøyande svar p̊a problemet om opphavet til asymmetrien i mengda av
materie og antimaterie i universet. I Standardmodellen er den elektrosvake faseovergangen
kontinuerleg, ikkje sterkt fyrste ordens som vert kravd for å lage ei netto mengd materie.
I tillegg er mengda av brot p̊a CP-symmetrien i Standardmodellen ikkje tilstrekkeleg.
Derfor undersøkjer me utvidingar av Standardmodellen for å finne ein modell som kan
forkl̊are dei kosmologiske observasjonane.

Ved hjelp av imaginær-tid formalismen for kvantfeltteoriar ved endeleg temperatur har
vi brukt metoden kalla dimensjonsreduksjon p̊a 2-Higgs-dublet-modellen med ein mjukt
brota Z2 symmetri. Ein effektiv 3-dimensjonal Euklidisk bosonsk teori blei konstruert
ved å integrere ut alle dei endelege Matsubara-frekvensane. Parameterane til den effek-
tive 3-dimensjonale teorien blei uttrykt som ein funksjon av parameterane til den fulle
4-dimensjonale teorien og temperaturen, ved å setje korrelasjonsfunksjonane p̊a lange av-
standar til dei to teoriane lik kvarandre. Det effektive potensialet blei brukt til å finne dei
skalare korrelasjonsfunksjonane. Diskusjonen ble utvida til ein N -Higgs-dublet-modell,
kor brotet p̊a CP-symmetren berre er til stades i masseparameterane. Resultata me kom
fram til her vil bli brukt i ei numerisk simulering av den elektrosvake faseovergangen i ein
framtidig artikkel.

ii



Preface
I have applied the method of dimensional reduction to the Two-Higgs Doublet Model
(2HDM) with a softly broken Z2 symmetry, and extended the calculation to the N -Higgs
Doublet Model (NHDM). This work is my master thesis in theoretical physics at the
Norwegian University of Science and Technology (NTNU) as part of the study program
Physics and Mathematics, and was carried out during the spring semester of 2017, at the
Department of Physics at NTNU in collaboration with the University of Stavanger (UiS).
My supervisor at NTNU has been Professor Jens O. Andersen, and my supervisor at UiS
has been Professor Tomas Brauner.

I thank both Professor Andersen and Professor Brauner for their willingness to give
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CHAPTER 1

INTRODUCTION

Observations have ruled out the presence of a significant amount of antimatter in the
universe on scales ranging from the solar system to clusters of galaxies, and even distances
comparable to the scale of the present horizon [1]. The dominance of matter in the universe
remains one of the unresolved puzzles in cosmology. Generally, two distinct solutions can
be put forward. Either the universe can be assumed to start out in an asymmetric state,
with no net generation of matter, or the universe starts out in a symmetric state, and
the net amount of matter we observe today has to be generated. It is most natural, both
from an aesthetic and intellectual point of view, to rule out the first alternative. It is
by no stretch of the imagination a satisfactory explanation, as the question of why the
initial conditions of the universe were the way we observe is left unanswered. We will
focus on the second alternative, which requires a mechanism for generating a net amount
of baryons in the universe, also known as baryogenesis.

In 1967, Sakharov recognised that a mechanism for the generation of an asymmetry
in the baryon number in the universe must satisfy certain criteria, the so-called Sakharov
criteria [2]:

1. Baryon number violation

2. C and CP violation

3. Deviation from thermal equilibrium

Here C and P stand for the discrete symmetries charge conjugation (C) and parity (P).
CP is the combination of the two discrete symmetries charge conjugation and parity.

Firstly, we consider baryon number violation. The baryon number is defined as a
third of the difference between the number of quarks and antiquarks. The baryons (an-
tibaryons) are bound states of three quarks (antiquarks), which give rise to the numerical
factor. The requirement of baryon number violation follows immediately from the as-
sumption of a symmetric initial state of the universe (vanishing baryon number), and the
observations of an asymmetric universe (non-zero baryon number). As both quantum
electrodynamics (QED) and quantum chromodynamics (QCD) preserve baryon number,
we look to the electroweak sector of the Sandard Model (SM) for help, where baryon num-
ber conservation is broken by the chiral anomaly [3; 4]. The rate of the baryon number
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Chapter 1. Introduction

non-conservating processes is negligible at zero temperature, but at high temperature the
rate ∼ exp[−πMW (T )

αwT
], where MW (T ) is the mass of the intermediate vector bosons W±

[5]. Above the electroweak phase transition the mass of the intermediate vector bosons
vanishes together with the vacuum expectation value (VEV) of the Higgs field [6], and the
rate of the baryon number violating processes is rapid compared to the rate of expansion
of the universe.

The second criterion is that the discrete symmetries C and CP must be violated. If this
were not the case, then the rate of processes involving baryons would be equal to the rate of
the processes involving antibaryons. No net baryon number would be generated. Baryon
number violating processes, called sphaleron processes, must be biased in producing more
baryons than antibaryons. For this to be possible, C and CP must be violated.

The last criterion is that the universe must be out of thermal equilibrium, which is
connected with the symmetry CPT, i.e. CP together with the discrete symmetry time
reversal (T). Any unitary, Lorentz invariant quantum field theory has been shown to be
invariant under the CPT symmetry [7]. The transformation properties of the baryon
number are such that it is invariant under P and T, while it changes sign under C. Thus,
when calculating the thermal average of the baryon number at equilibrium, the average
can be shown to vanish. In order to avoid reaching the obviously wrong conclusion of a
vanishing baryon number, the universe must have been, at some stage, away from thermal
equilibrium, and thereby invalidating the argument above. A possible way of ensuring
a deviation from thermal equilibrium is to let the universe undergo a first order phase
transition.1

The electroweak phase transition (EWPT) has been intensively investigated due to
its possible connection to the generation of the asymmetry in the baryon number in the
universe [5; 8] (see refs. [9; 10] for reviews). One of the most important features of the
phase transition is the requirement to be of first order. This is to ensure deviation from
thermal equilibrium. If the phase transition is first order, bubbles of the broken phase will
nucleate in a sea of the symmetric phase. Then the bubbles will expand, collide, coalesce,
and fill the whole universe [5; 11]. The baryon asymmetry is generated in the vicinity of
the expanding bubble walls, away from thermal equilibrium.

For the baryon asymmetry generated during the phase transition to survive until today,
sphaleron processes (baryon number violating processes) must be suppressed immediately
after the phase transition [8]. The strength of the phase transition is reduced when
increasing the mass of the Higgs boson [10], and weakly first order phase transitions will
not sufficiently suppress the sphaleron processes, and no net baryon number will survive.
This problem arises in the SM: with a Higgs mass of 125 GeV [12; 13], the phase transition
is not strongly first order, but a crossover transition, and the SM is unable to account
for baryogenesis at the EWPT [14; 15; 16]. In addition, the amount of CP violation is
suppressed at high temperatures and it is clear that the amount of CP violation in the
SM is insufficient [17; 18; 19; 20; 21; 22; 23; 24]. Since the SM is unable to explain the
baryon-antibaryon asymmetry in the universe, we need physics beyond the SM.

As the SM is unable to account for baryogenesis, extensions of the SM have been inves-
tigated, as the Minimal Supersymmetric Standard Model (MSSM) [25], scalar-extended
Standard Model (SSM) [26] and the Two-Higgs Doublet Model (2HDM) [27]. The theo-

1The requirement that the universe undergo a first order phase transition is not sufficient; the phase
transition must be a strong first order phase transition in order to ensure the suppression of sphaleron
processes in the broken phase.
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ries are investigated to find regions of the parameter space where the phase transition is
strongly first order, to avoid the wash out of the excess of baryon number by sphaleron
processes.

Investigating the EWPT has been made feasible by applying the techniques of di-
mensional reduction [28] and effective field theory [29]. The idea behind dimensional
reduction is that in the imaginary-time formalism, discussed in section 2.1.2, the bosonic
and fermionic fields acquire a Matsubara frequency, which acts as a mass term. All but
one bosonic mode, the zero mode, have a non-zero thermal mass, and decouple from
the bosonic zero mode at high temperature and weak coupling, according to the decou-
pling theorem by Appelquist and Carazzone [30]. We can integrate out the so-called
superheavy modes, i.e. the modes with a mass of order T , and are left with an effective
three-dimensional theory with only zero modes. All the infrared problems of finite tem-
perature field theory are associated with the zero modes, so the method of dimensional
reduction is free of infrared problems. Several momentum scales are present if we consider
a non-abelian gauge theory [28]. The temporal component of the gauge field acquires a
mass of order gT , while the spatial component of the gauge field provides a momentum
scale of order g2T non-perturbatively. The scalar mass in theories with a single Higgs
doublet will generally be of order g2T close to the phase transition. When extending the
number of Higgs doublets, the masses of the additional scalar fields are normally of order
gT [25]. It is useful to also integrate out the fields of order gT , i.e. the temporal compo-
nent of the gauge field and possibly some scalar fields, to construct a second effective field
theory [29]. Studying the resulting effective field theory at high temperature has been
useful. The effective theory contains severe infrared problems in the symmetric phase,
and perturbation theory breaks down. Therefore, the phase transition was studied on the
lattice [31; 14; 15; 16].

The recent detection of gravitational waves [32] is relevant for baryogenesis. During
a first order phase transition, the colliding bubble walls and the aftermath of the bubble
collisions will produce gravitational waves. The possibility of detecting the gravitational
waves produced at a first order electroweak phase transition would be a direct probe of
the mechanism for baryogenesis [33; 34; 35]. Thus, cosmological observations will give
insight into the particle content of the underlying theory. The detection (or absence of)
primordial gravitational waves will help verify or falsify possible extensions of the SM,
and will give complementary information to the information obtained through collider
experiments. The space-based detector eLISA [36], expected to be launched in 2034, may
observe gravitational waves originating from the EWPT. Thus, investigating the strength
of the EWPT in extensions of the SM is of great interest.

The outline of the thesis is as follows. In chapter 2 background material needed for
the rest of the thesis is briefly discussed. In chapter 3 the Two-Higgs doublet model is
introduced. In chapter 4 correlators needed for dimensional reduction are presented. β-
functions for the gauge couplings are also calculated. Chapter 5 discusses the effective
potential, and extracts the counterterms for the scalar sector. β-functions for the scalar
couplings are also presented there. The method of dimensional reduction is applied to the
2HDM in Chapter 6, and the connection between the parameters in the effective three-
dimensional theory and the full four-dimensional theory is discussed. In Chapter 7 the
discussion is generalised to the N -Higgs doublet model. Chapter 8 contains a conclusion
and outlook for future work.

3



Chapter 1. Introduction

4



CHAPTER 2

PRELIMINARIES

This chapter contains a discussion of some of the fundamental concepts needed to un-
derstand the thesis. For a basic introduction to thermal field theory (TFT), see e.g.
[37; 38; 39]. The informed reader may skim through or skip altogether this chapter.

2.1 Thermal field theory
Extending the framework of quantum field theory to finite temperature is of interest in
many areas of research, from the interior of compact stars to heavy ion collisions and
the evolution of the universe. New phenomena arise at finite temperature, as e.g. a new
phase in QCD called the quark-gluon plasma [40], relevant for both heavy ion collisions
and the early universe [41; 42]. Another phenomenon arising at finite temperature, central
to baryogenesis, is the electroweak phase transition [8; 9; 10].

Two main frameworks for describing quantum field theories at finite temperature have
been developed, the imaginary-time formalism and the real-time formalism. There are
advantages and disadvantages with both frameworks, as we will shortly discuss.

The imaginary-time formalism naturally connects statistical mechanics with the path
integral of quantum field theory. Many of the same methods can be employed in evaluating
the path integral representation of the partition function, both perturbative methods
(Feynman diagrams) and numerical calculations. One shortcoming of the imaginary-time
formalism is that it is unable to describe out-of-equilibrium phenomena.

The real-time formalism can account for both equilibrium and non-equilibrium be-
haviour, but the technical evaluation is more cumbersome than in the imaginary-time
formalism. We will use the imaginary-time formalism throughout the thesis.

2.1.1 Statistical field theory
We recall some basic notions from statistical field theory. A field theory in thermal
equilibrium can be described by the partition function. In the grand canonical ensemble
the partition function is a function of the temperature T , volume V , and the chemical
potential µ. The partition function is defined as the trace of the density matrix of the
system ρ̂,

5
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Z = Tr ρ̂ =
∑
φ

〈φ|e−H/T |φ〉 (2.1)

ρ̂ = e−H/T , (2.2)

where H is the Hamiltonian, and |φ〉 is an eigenstate of the field φ. The sum is over a basis
of eigenstates. We can find macroscopic quantities of the system through the relations

P = T
∂ logZ
∂V

(2.3)

N = T
∂ logZ
∂µ

(2.4)

S = ∂T logZ
∂T

(2.5)

E = −PV + TS + µN, (2.6)

where P is the pressure, N is the number of particles, S is the entropy, and E is the
internal energy. The density matrix can be used to calculate the thermal average of a
physical observable 〈O〉,

〈O〉 = TrOρ̂
Z

. (2.7)

More details can be found in any decent textbook on statistical field theory. From now on
we set the chemical potential to zero. In the next section, we will connect the partition
function to the path integral formalism.

2.1.2 Imaginary-time formalism
We want to connect the statistical mechanics partition function with the path integral of
quantum field theory. The main idea of the imaginary-time formalism is to recognise that a
four-dimensional theory at finite temperature is equivalent to a 3+1 dimensional theory,
with three dimensions of space and a compact dimension of time, with (anti-)periodic
boundary conditions.

When deriving the path integral formalism for finite temperature field theory, we follow
[43]. Consider the transition amplitude for going from |φ0〉 at t = 0 to |φ1〉 at t = t1

〈φ1|e−iHt1|φ0〉 = N
∫
DπDφ exp

[
i
∫ t1

0
dt
∫
d3x

[
πφ̇−H(π, φ)

]]
, (2.8)

where |φ0〉 and |φ1〉 are eigenstates of the field φ, H is the Hamiltonian density, π is the
conjugate momentum of the field φ, φ̇ = ∂φ/∂t, and N is a normalisation factor. The
integral

∫
Dφ goes over all possible field configurations respecting the initial and final

conditions, while the integral
∫
Dπ is unconstrained.

In quantum field theory at zero temperature, we often analytically continue our theory
from real to imaginary time: t → −iτ , where τ is real. This means that we have moved
from Minkowski to Euclidean space, as the metric takes the form of a Euclidean metric
(with a change of sign): t2 − x2 → −(τ 2 + x2).

6



2.1 Thermal field theory

We now rotate our path integral to Euclidean space. Also, we identify it1 = 1/T . The
transition amplitude in eq. (2.8) has become

〈φ1|e−H/T |φ0〉 = N
∫
DπDφ exp

[∫ 1/T

0
dτ
∫
d3x

[
iπφ̇−H(π, φ)

]]
, (2.9)

where now φ̇ = ∂φ/∂τ . We recognise that eq. (2.9) is very similar to eq. (2.1). The main
difference is that in eq. (2.1) the initial and final states are identical, and we sum over all
such states. To connect the partition function to the path integral we restrict the integral∫
Dφ to go over all periodic paths, i.e. paths where the field configuration is the same at

t = 0 and t = 1/T . We then write

Z = Tr e−H/T =
∑
φ

〈φ|e−H/T |φ〉

= N
∫
Dπ

∫
periodic

Dφ exp
[∫ 1/T

0
dτ
∫
d3x

[
iπφ̇−H(π, φ)

]]
. (2.10)

The momentum integration is unrestricted, as before. Most Hamiltonians are at most
quadratic in the conjugate momentum, and we can perform the integral

∫
Dπ by com-

pleting the square. We can replace the conjugate momentum in favour of φ̇, as we go
from a Hamiltonian to a Lagrangian description of the system. Thus, we have that

Z = N ′
∫

periodic
Dφ exp

[∫ 1/T

0
dτ
∫
d3xL(φ, φ̇)

]
, (2.11)

where N ′ is a new temperature-dependent normalisation constant.
We want to take a closer look at the boundary conditions for the fields, and consider

a Euclidean Lagrangian L(Φ,Ψ) with bosonic and fermionic fields Φ and Ψ, respectively.
Take the bosonic thermal Green function for propagation from the point (~y, 0) to the
point (~x, τ),

GB(~x, ~y; τ, 0) =
Tr
{
Tτ [Φ(~x, τ)Φ(~y, 0)] ρ̂

}
Z

, (2.12)

where Tτ is the imaginary-time ordering operator,

Tτ [Φ(τ1),Φ(τ2)] = Φ(τ1)Φ(τ2)θ(τ1 − τ2) + Φ(τ2)Φ(τ1)θ(τ2 − τ1), (2.13)
and θ(τ) is the Heaviside step function. We use the Heisenberg time evolution

eH/TΦ(~y, 0)e−H/T = Φ(~y, 1/T ), (2.14)
and the commutation property of the imaginary-time ordering operator and the Hamil-
tonian,

[
Tτ , e

−H/T
]

= 0, to get

GB(~x, ~y; τ, 0) = GB(~x, ~y; τ, 1/T ), (2.15)
which implies

7
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Φ(~x, 0) = Φ(~x, 1/T ). (2.16)

For the fermions, we make the exact same steps. The only difference is the definition of
the imaginary-time ordering operator,

Tτ [Ψ(τ1),Ψ(τ2)] = Ψ(τ1)Ψ(τ2)θ(τ1 − τ2)−Ψ(τ2)Ψ(τ1)θ(τ2 − τ1), (2.17)

coming from the statistics for the fermionic fields. This minus sign goes through the
calculation, and we end up with

Ψ(~x, 0) = −Ψ(~x, 1/T ). (2.18)

Hence, the bosonic fields obey periodic boundary conditions, while the fermionic fields
obey antiperiodic boundary conditions in the compactified imaginary-time direction.

In summary, to construct a path integral representation of the partition function from
a zero-temperature Lagrangian, we perform the following steps:

i Do a Wick rotation from Minkowski to Euclidean space, where τ ≡ it is the imaginary-
time.

ii Let
L = −LM(τ = it) (2.19)

where LM is the zero-temperature Lagrangian in Minkowski space.

iii Compactify the imaginary-time dimension, e.g. restrict τ to the interval (0, 1/T ).

iv Impose (anti-)periodic boundary conditions for the bosonic (fermionic) fields,

Φ(x, 0) = Φ(x, τ) (2.20)
Ψ(x, 0) = −Ψ(x, τ). (2.21)

Because of step (i), the method is known as the imaginary-time formalism (ITF).
The Euclidean action takes the form

S =
∫ 1/T

0
dτ
∫
d3xL, (2.22)

where the imaginary-time integration only goes over the interval (0, 1/T ). Because of
the boundary condition eqs. (2.20) and (2.21), the bosonic and fermionic fields can be
expanded as

Φ(x, τ) =
√
T

∞∑
n=−∞

φn(x)eiωB
n τ (2.23)

Ψ(x, τ) =
√
T

∞∑
n=−∞

ψn(x)eiωF
n τ . (2.24)

The values of the so-called Matsubara frequencies are
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2.1 Thermal field theory

ωBn = 2nπT, for bosons (2.25)
ωFn = (2n+ 1)πT, for fermions (2.26)

where n ∈ Z. By inserting eqs. (2.23) and (2.24) into the Euclidean action in eq. (2.22),
we can trivially perform the integral over imaginary time. The resulting action is a three-
dimensional integral over space, and a sum over the Matsubara frequencies. Thus, we can
see that a quantum field theory at finite temperature is the same as a three-dimensional
Euclidean theory with an infinite number of fields. This feature of the imaginary-time
formalism will be useful later when we consider effective theories and dimensional reduc-
tion.

Going to momentum space, where we normally perform our calculations, we see that
the finite temperature effect amounts to replacing the normal four-momentum integration
by an infinite sum and a three-momentum integration times the temperature,

∫ dd+1k

(2π)d+1 → T
∑
n

∫ ddk

(2π)d . (2.27)

We will use the short-hand notation
∫∑
K

and
∫∑
{K}

defined in eq. (A.4).

2.1.3 Thermal mass
To get more acquainted with the ITF, we will start by looking at a scalar theory. We
will assume that the temperature is sufficiently high so that any bare mass scales can be
neglected. The Euclidean Lagrangian takes the form

L = 1
2(∂µφ)2 + g2

4!φ
4 (2.28)

where g2 is the scalar coupling constant. We use the notation g2 instead of the conventional
λ because it turns out that the perturbation theory is an expansion in g, not λ = g2 as
at zero temperature. This point will be discussed in more detail in section 2.1.6.

We can divide the Lagrangian in eq. (2.28) into a free and an interacting part,

Lfree = 1
2(∂µφ)2, Lint = g2

4!φ
4. (2.29)

The Feynman rules are derived in a similar fashion to the zero temperature case [43]. The
scalar propagators take the form 1/K2, and the interaction vertices give a factor of −g2.
The first quantum correction to the self-energy comes in the form of

I(1) = 1
2g

2
∫∑
K

1
K2 = 1

2g
2I4b

1 . (2.30)

We use dimensional regularisation with d = 3 − 2ε to regularise the ultraviolet (UV)
divergences. The UV divergence in eq. (2.30) is set to zero in dimensional regularisation,
and we get a finite result. At zero temperature the corresponding integral will simply
be zero. The sum-integral is evaluated in appendix C, and gives the value I4b

1 = T 2/12.
Thus, the self-energy at one-loop is

9



Chapter 2. Preliminaries

I(1) = g2T 2

24 ≡ m2
β. (2.31)

The scalar field has acquired a thermal mass m2
β of order gT , arising from interactions

with the heat bath.

2.1.4 Phase transitions
In section 2.1.3 we found the thermal mass of a scalar theory to one-loop accuracy to be
m2
β = g2

24T
2. This is an effective mass, and arises because the propagation of particles in a

heat bath is altered by their continuous interactions with the medium. The mass is also
called the Debye mass, from the similar effect in QED plasma [44]. This is one of the
major results of thermal field theory. A similar phenomenon is present in QCD at finite
temperature [45].

The thermal mass has important consequences for cosmology. Consider a potential
with a negative mass-squared term at low temperatures

Vlow T (φ) = −1
2µ

2φ2 + g2

4!φ
4. (2.32)

Clearly, one extremum of the potential is at a vanishing value of the field, φmax = 0.
Other extrema of the potential are at non-zero values of the field, φmin = ±

√
6µ2/g2. If

the mass term is truely negative (µ2 > 0), then the global minimum is away from the
origin. We have a phenomenon called spontaneous symmetry breaking, where a symmetry
possessed by the Lagrangian is not shared by the ground state. Here the system has a
φ → −φ discrete symmetry, while for the ground state, we must choose either the left
or the right minimum. The same happens for continuous symmetries as well, e.g. in the
Higgs mechanism [46].

However, interactions with the heat bath induce a positive mass-squared term, and at
very high temperatures the effective potential takes the form

Vhigh T (φ) = g2

48T
2φ2 + g2

4!φ
4. (2.33)

The unique minimum of the potential is at φmin = 0. Hence, there must be a phase
transition between the high- and low-temperature regimes. To find the order of the phase
transition, subleading terms must be taken into account. Even so, this is an important
result. A spontaneously broken symmetry can be restored at sufficiently high temperature
[6]. This symmetry restoration is the underlying mechanism for the electroweak phase
transition, where the nonzero VEV of the Higgs field we observe today vanishes at high
temperatures.

For the universe to move away from thermal equilibrium, the phase transition must
be of first order. A barrier between the high-temperature minimum at the origin and the
low-temperature minimum away from the origin arises near the critical temperature Tc.
The critical temperature is the temperature where the high- and low-temperature minima
are both global minima. Figure 2.1 shows a sketch of a first order phase transition, where
the minimum at the origin has been shifted to coincide with the horizontal axis. The other
possibility is that the phase transition happens continuously, i.e. that no potential barrier
is present at the critical temperature. This is called a second order (or continuous) phase
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2.1 Thermal field theory

Figure 2.1: A sketch of a first order phase tran-
sition. A barrier separates the two minima at
the critical temperature. The value of the min-
imum at the origin is shifted to zero.

Figure 2.2: A sketch of a second order phase
transition. No barrier is present at the critical
temperature. The value of the potential at the
origin is shifted to zero.

transition, and fig. 2.2 shows a sketch of a continuous phase transition. Alternatively, the
transition can be a crossover, where we cannot distinguish between the two phases.

The relevance of the order of the phase transition goes back to the criteria for baryo-
genesis by Sakharov [2]. One of the criteria for baryogenesis is the deviation from thermal
equilibrium. If the electroweak phase transition is a strong first order phase transition,
the deviations from equilibrium are large, and a net baryon number can be produced by
CP violating scatterings of the bubble walls with the surrounding plasma. The net baryon
number will not be washed-out by sphaleron processes, and survive until today. However,
if the phase transition is of second order or is a crossover, then no net baryon number
will be generated, as the sphaleron processes are not suppressed. Thus, the order of the
phase transition determines the generation of any net baryon number through electroweak
baryogenesis, and is therefore responsible for all the matter we observe in the universe
today, including you and me.

From the discussion above, we were able to find that there must be a phase transition
between the low and high temperature regimes. However, we were not able to see if the
phase transition was first or second order. We again have the potential

V (φ, T ) = g2

48

(
T 2 − 24µ

2

g2

)
φ2 + g2

4!φ
4 = D(T 2 − T 2

0 )φ2 + g2

4!φ
4, (2.34)

where we have defined D = g2/48 and T 2
0 = 24µ2/g2. At T < T0, the global minima are

at φmin(T < T0) = ±
√

12D(T 2
0−T 2)
g2 , while a local maximum is at φmax(T = 0) = 0. The

Z2 symmetry φ ↔ −φ of the Lagrangian is spontaneously broken. At T > T0, we have
only one global minimum, φmin(T > T0) = 0. For T = T0, both the solutions collapse at
φmin(T = T0) = 0. There is no barrier between the low and high temperature solution for
the minimum, so this phase transition is a second order phase transition.

However, for baryogenesis we need a first order phase transition in order to have
deviations from thermal equilibrium. Consider the potential

11
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V (φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 + g2

4!φ
4, (2.35)

where we have included a cubic term with the constant coefficient E. This is actually the
form of the SM effective potential at one-loop and analysed in refs. [47; 48; 49]. However,
perturbation theory is not to be trusted too close to the phase transition. We will treat
the potential as an example of a first order phase transition. At temperatures above T1
the only minimum is at φmin(T > T1) = 0, where

T 2
1 = 4g2DT 2

0
4g2D − 27E2 . (2.36)

T1 is also the temperature when a local minimum at φ(T1) 6= 0 appears. This is an
inflection point. The value of the inflection point is 〈φ(T1)〉 = 9ET1/g

2. For T < T1 a
barrier between the global minimum at the origin and the local minimum away from the
origin starts to develop. The local minimum and the maximum of the barrier are at φ(T ) =(
9ET ±

√
81E2T 2 − 12g2D(T 2 − T 2

0 )
)
/g2, respectively. At the critical temperature Tc,

the origin and the other minimum become degenerate, where

T 2
c = g2DT 2

0
g2D − 6E2 . (2.37)

Below the critical temperature, the global minimum will no longer be at the origin, and
the local minimum at the origin becomes metastable. Finally, the barrier disappears at
T = T0, and the origin becomes a local maximum.

One last comment is in order. The SM phase transition cannot be reliably analysed
using only perturbation theory, as perturbation theory fails close to the phase transition.
The SM phase transition was analysed using Monte Carlo simulations in the mid 90s,
and the conclusion was that the strength of the phase transition depended on the mass
of the Higgs boson [14; 15; 16]. The main result was that the phase transition turns into
a crossover when the mass of the Higgs is above about 80 GeV. The phase diagram of the
electroweak phase transition is similar to the liquid-vapour phase diagram of water, with
a first order line ending in a second order point, called the critical point. At higher tem-
peratures and pressures the transition is a crossover, where it is impossible to distinguish
between the liquid and the vapour phase.

2.1.5 Infrared problems
It is well known that quantum field theories at finite temperature are plagued with infrared
problems [50]. We will use a simple scalar theory to illustrate some of the problems arising
from loop diagrams at finite temperature.

Consider again the massless g2φ4theory,

L = 1
2(∂µφ)2 + g2

4!φ
4, (2.38)

where g2 is the scalar coupling. The usual procedure of replacing the four-dimensional
momentum integrals with an infinite sum and a three-dimensional momentum integral is
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applied. As for the scalar propagator, we get at the two-loop level the contribution1

I(2a) = −g
4

4

∫∑
P

1
P 2

∫∑
K

1
(K2)2 . (2.39)

For the zero mode n = 0, we have the integral
∫ d3k

(2π)3
1

(k2)2 ∼
∫
dk

1
k2 ∼ ∞ as k → 0. (2.40)

The sum-integral diverges at large distances, or small momenta. We call this kind of
divergence an infrared (IR) divergence. There is an infinite set of infrared divergent
Feynman diagrams, with increasingly severe divergences. The problem of the infrared
behaviour of quantum field theories at finite temperature looks at the offset to be an
unmanageable problem. However, much work has been devoted to curing the problem, as
we will see shortly.

We will look at one example of resummation, and see that the infrared divergences
disappear when an infinite set of Feynman diagrams is summed.

2.1.6 Resummation
We will here present the resummation program initiated by Braaten and Pisarski [51]. A
review of the program of resummation is presented in [52].

In the 1980s, a major problem of the apparent gauge dependence of the gluon damping
rate γdamp stimulated progress in understanding quantum field theories at finite tempera-
ture. As the damping rate is a physical quantity, it cannot be gauge dependent. Pisarski
[53] pointed out that the one-loop calculations performed to date were incomplete, and
an infinite subset of diagrams was to be included in order to get the correct result. For
more details see ref. [54].

We will continue to use the massless scalar theory to get a better look at the IR
divergences. In eq. (2.40) we first encountered an IR divergent diagram. Perturbation
theory breaks down because of these kinds of IR divergences. However, in eq. (2.31) we
calculated the thermal mass, which in practice screens the IR divergences. We include
this effect by using the effective propagator

∆(ωn, k) = 1
K2 +m2

β

, with mβ ∼ gT � T. (2.41)

The thermal mass can be omitted if the momentum in the propagator is hard, i.e. of order
T . However, the thermal mass must be included if the momentum in the propagator is
soft, i.e. of order gT . The thermal mass provides an IR cutoff of order gT , and the zeroth
mode contribution in eq. (2.39) now becomes

− 1
4g

4
∫∑
K

1
K2T

∫
p

1
(p2 +m2

β)2 = −1
4g

4
(
T 2

12

)(
T

8πmβ

)
+O(g4mT ). (2.42)

Since mβ ∼ gT , the contribution to the self-energy is of order g3T 2, and not the naively
expected g4T 2. Other bubble diagrams also contribute at order g3T 2, and must be in-
cluded. It can be shown that the bubble diagrams form so-called daisy diagrams, with

1There is also a contribution from a sunset diagram at the two-loop level, which is logarithmic IR
divergent.
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additional bubbles connected to a central bubble [52]. An infinite subset of these daisy
diagrams must be summed, and the reorganisation of the perturbation expansion is called
resummation.

We have seen that resummation in scalar theories simply amounts to replacing the
propagator with an effective propagator, where the thermal mass is included. A thermal
mass term must also be included in the interaction part of the Lagrangian. For gauge the-
ories, the situation is more complicated, as the thermal ”mass” will depend non-trivially
on the external momentum. In addition, the vertices must be replaced by effective ver-
tices, which also depend on the external momentum in a non-trivial way. For more details
on resummation in hot field theories, see ref. [52].

2.2 β-function
We will be using dimensional regularisation to regularise the ultraviolet divergences that
arise both in zero and finite temperature quantum field theory. One feature of dimensional
regularisation is that the regularisation scheme introduces an arbitrary renormalisation
scale µ. All physical quantities should be independent of the renormalisation scale. It
is convenient, and optimal, to set the renormalisation scale such that the contributions
from higher orders are minimised.

The bare coupling constant is independent of the renormalisation scale µ,

µ
d

dµ
λ(b) = µ

∂

∂µ
λ(b) + µ

∂λ

∂µ

∂

∂λ
λ(b) = 0 (2.43)

where λ(b) and λ are the bare and renormalised coupling constants, respectively. The
β-function is defined as

βλ ≡ µ
∂λ

∂µ
= ∂λ

∂ log µ. (2.44)

The β-function can be determined from the counterterms, as we will see shortly.

2.2.1 Structure of the β-function
We will follow the lecture notes by Kaplunovsky [55]. Our goal for this section is to
construct a general expression for the β-function from the relevant counterterms. We will
begin our discussion with a theory with only one coupling constant (e.g. λφ4 theory), and
afterwards generalise to a theory with multiple coupling constants (e.g. SM or 2HDM). We
will be using dimensional regularisation and the MS renormalisation scheme2 to regularise
and renormalise our theory. An L-loop amplitude can give rise to a pole in ε of at most
order L. The MS scheme simply says that we absorb the poles into the counterterm,
which takes the form

δZL = g2L
[
AL
εL

+ AL−1

εL−1 + · · ·+ A1

ε

]
. (2.45)

The bare coupling constant λb can be written as
2The final answer will be scheme independent to the two-loop level [55]. We can go to the renormali-

sation scheme MS by redefining the renormalisation scaleµ.
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2.2 β-function

λb = µ2ελ(µ) + δλ(µ)[
1 + δZ(µ)

]2 , (2.46)

where µ is the renormalisation scale introduced by dimesional regularisation, and δλ and
δZ are the coupling constant and field renormalisation counterterms, respectively. We
can write the counterterms as power series in 1/ε,

δλ =
∞∑
L=1

λL+1
L∑
k=1

AL,k
εk

(2.47)

δZ =
∞∑
L=1

λL
L∑
k=1

BL,k

εk
(2.48)

for some constant coefficients AL,k and BL,k. Taking the limit λ → 0 before the limit
ε→ 0, we have

λ(µ) + δλ(µ)[
1 + δZ(µ)

]2 = λ(µ) +
∞∑
L=1

λL+1(µ)
L∑
k=1

CL,k
εk

, (2.49)

where the constant coefficients CL,k are given by polynomials in AL′,k′ and BL′,k′ , with
L′ ≤ L and k′ ≤ k. The first few coefficients take the form

C1,1 = A1,1−2B1,1, C2,1 = A2,1−2B2,1, C2,2 = A2,2−A1,1B1,1 + 3B2
1,1−2B2,2, (2.50)

It is convenient to re-express the sum as

λb = µ2ελ(µ) + µ2ε
∞∑
k=1

fk(λ(µ))
εk

, where fk(λ) =
∞∑
L=k

CL,kλ
L+1. (2.51)

We will be doing calculations at one-loop, and it is sufficient to know f1(λ), which is given
as

f1(λ) = Residue of simple 1
ε

pole of δλ− 2λδZ. (2.52)

Now, we will use eq. (2.43) to find the β-function. The bare coupling is independent of
the renormalisation scale µ, so the left-hand side of eq. (2.51) becomes

µ
d

dµ
λb = 0. (2.53)

The right-hand side of eq. (2.51) is more involved,

µ
d

dµ
µ2ε
[
λ(µ)+

∞∑
k=1

fk(λ(µ))
εk

]
= 2ε

[
λ(µ)+

∞∑
k=1

fk(λ(µ))
εk

]
+β(λ)

[
1+

∞∑
k=1

f ′k(λ(µ))
εk

]
, (2.54)

where f ′k(λ(µ)) = d
dλ(µ)fk(λ(µ)). By equating the eqs. (2.53) and (2.54) we get
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0 = 2ε
[
λ(µ) +

∞∑
k=1

fk(λ(µ))
εk

]
+ β(λ)

[
1 +

∞∑
k=1

f ′k(λ(µ))
εk

]
. (2.55)

By making the β-function dependent on the spacetime dimension, β(λ) = β(λ, ε), we can
express it as a power series in ε

β(λ, ε) =
∞∑
n=0

βn(λ)εn (2.56)

where we have only included non-negative powers of ε as the β-function is not singular in
the limit ε→ 0. By combining eqs. (2.55) and (2.56), and rearranging the terms we end
up with

− 2ελ− 2ε
∞∑
k=1

fk(λ)
εk

=
[ ∞∑
n=0

βn(λ)εn
][

1 +
∞∑
k=1

f ′k(λ)
εk

]
. (2.57)

As we can vary ε, the two sides should match for any power of ε. Since the left-hand side
is at most linear in ε, we conclude that

β(λ, ε) = β0 + εβ1(λ). (2.58)
This simplifies eq. (2.57) a great deal,

− 2ελ(µ)− 2ε
∞∑
k=1

fk(λ)
εk

= εβ1(λ) + β0 + β1

∞∑
k=1

f ′k(λ)
εk−1 + β0

∞∑
k=1

f ′k(λ)
εk

. (2.59)

By comparing equal powers in ε, we find that

β1(λ) = −2λ(µ) (2.60)
β0(λ) = −2f1(λ)− β(λ)f ′1(λ). (2.61)

Recursion relations for the fk(λ)’s can also be obtained from eq. (2.59), but are not needed
to find the β-function, which takes the form

β(λ) = β0(λ) + β1(λ)ε = −2ελ+
(

2λ d

dλ
− 2

)
f1(λ). (2.62)

The quantity f1(λ) is given by the counterterms, e.g. eq. (2.52) in the λφ4 theory.
For a theory with multiple coupling constants we reach a similar result. Let gs(µ) be

the coupling constants, with s = 1, . . . , n. The bare coupling constants can be expressed
as

gs,bare = µ∆s
gs(µ) + δgs(µ)∏

Appropriate
fields i

√
1 + δZi

= µ∆s

(
gs(µ) +

∞∑
k=1

fk,s(g1(µ), . . . , gn(µ))
εk

)
, (2.63)

where the ∆s is the dimensionality of the renormalised coupling constant gs(µ). It is
sufficient to know f1,s(g1, . . . , gn) in order to calculate the β-functions. In a similar fashion
to eq. (2.52), we find that

16



2.3 Effective potential

f1,s(g1, . . . , gn) = Residue of simple 1
ε

pole of

δgs − gs
2

∑
Appropriate

fields i

δZi

 . (2.64)

The β-functions take the form

βs(g1, . . . , gn, ε) = −∆s(ε)gs +
 n∑
p=1

Kpgp
∂

∂gp
−Ks

 f1,s(g1, . . . , gn), (2.65)

where Ks is given by ∆s(ε) = ∆s(0) + Ksε. For marginal coupling constants ∆s(0) = 0.
For scalar coupling constants Ks = 2, while for gauge and Yukawa coupling constants
Ks = 1. In chapters 4 and 5 we use eq. (2.65) to find the β-functions.

2.2.2 Temperature-independence of the counterterms
We have seen in section 2.2.1 that the β-functions can be extracted from the counterterms.
We are familiar with how to extract the counterterms from Feynman diagrams at zero
temperature. However, one may wonder if the counterterms remain the same, or if finite
temperature effects will also contribute to the UV divergences. It turns out that the UV
divergences are the same at zero and finite temperature. Thus, the counterterms and the
β-functions are the same for zero and finite temperature. We can find the counterterms by
calculating the UV divergences at either zero and finite temperature. We will be doing all
the calculations at finite temperature in this thesis, as the finite temperature correlators
are needed for dimensional reduction (see section 2.4).

2.3 Effective potential
The ground state of a quantum field theory including quantum fluctuations can be de-
termined by the effective potential Veff. The effective potential was used in studying
theories with a spontaneously broken symmetry by Goldstone, Salam, S. Weinberg [56]
and Jona-Lasinio [57]. The famous one-loop calculation of the effective potential was done
by Coleman and E. Weinberg [58], and the extension to higher-loop was performed by
Jackiw [59].

2.3.1 Generating functionals
We start by finding the effective action in a theory with a scalar field φ(x) and action
S[φ]. The generating functional can be used to calculate vacuum amplitudes with sources,

Z[J ] = eiW [J ] =
∫
Dφexp

[
iS[φ] + i

∫
d4xφ(x)J(x)

]
. (2.66)

The functional W [J ] = −i logZ[J ] is the generator of all connected diagrams. We define
the effective action Γ[φ] as a Legendre transform of the functional W [J ],

Γ[φ] = W [J ]−
∫
d4xJ(x)φ(x), (2.67)
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where

φ(x) = δW [J ]
δJ(x) . (2.68)

Varying Γ with respect to φ using eqs. (2.67) and (2.68), we obtain

δΓ[φ]
δφ

= δW [J ]
δJ

δJ

δφ
− J − φδJ

δφ
= −J. (2.69)

where we have used the notation φJ =
∫
d4xφ(x)J(x). In particular, the vacuum in the

absence of external sources is defined by

δΓ[φ]
δφ

∣∣∣∣∣
J=0

= 0. (2.70)

We can expand the generating functionals Z[J ] and W [J ] in powers of the external
source J , to obtain a representation in terms of Green functions,

Z[J ] =
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xnG(n)(x1, . . . , xn)J(x1) . . . J(xn) (2.71)

iW [J ] =
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xnG
c
(n)(x1, . . . , xn)J(x1) . . . J(xn) (2.72)

(2.73)

where G(n) are the n-point Green functions, and Gc
(n) are the n-point connected Green

functions. In a similar fashion, the effective action can be expanded in powers of φ as3

Γ[φ] =
∞∑
n=0

1
n!

∫
d4x1 . . . d

4xnΓ(n)(x1, . . . , xn)φ(x1) . . . φ(xn), (2.75)

where Γ(n) are the one-particle irreducible (1PI) Green functions.
We can Fourier transform the 1PI Green functions and the field as,

Γ(n)(x) =
∫ n∏

i=1

[
d4pi

(2π)4 e
ipixi

]
(2π)4δ(4)(p1 + · · ·+ pn)Γ(n)(p) (2.76)

φ̃(p) =
∫
d4xe−ipxφ(x), (2.77)

so eq. (2.75) becomes

Γ[φ] =
∞∑
n=0

∫ n∏
i=1

[
d4pi

(2π)4 φ̃(−pi)
]

(2π)4δ(4)(p1 + · · ·+ pn)Γ(n)(p1, . . . , pn). (2.78)

3The effective action can be expanded in an alternative way, in powers of external momentum

Γ[φ] =
∫
d4x

[
−Veff(φ) + 1

2
(
∂µφ(x)

)2
Z(φ) + . . .

]
, (2.74)

where the expansion point is where all external momenta vanish.
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2.3 Effective potential

We assume that the classical field is translational invariant, φ(x) = φc. We define the
effective potential as

Γ[φc] = −
∫
d4xVeff(φc). (2.79)

Using eq. (2.77) and the definition of the δ-function, δ(4)(p) =
∫ d4x

(2π)4 e
−ipx, we find that

eq. (2.78) becomes

Γ[φc] =
∞∑
n=0

1
n!φ

n
c (2π)4δ(4)(0)Γ(n)(pi = 0) =

∞∑
n=0

1
n!φ

n
cΓ(n)(pi = 0)

∫
d4x. (2.80)

Comparing with eq. (2.79) we end up with

Veff(φc) = −
∞∑
n=0

1
n!φ

n
cΓ(n)(pi = 0). (2.81)

So, the effective potential is a sum of 1PI Green functions at zero external momenta. As
we will see, this is exactly what we need when performing dimensional reduction.

2.3.2 Background fields
We will calculate the effective potential using the background field method [60]. We start
by shifting the fields φ→ φ+ φ̂, where φ̂ is an arbitrary non-dynamical field.4 The shifted
action is denoted by Sb[φ̂, φ] ≡ S[φ + φ̂], with a corresponding shifted effective action
Γb[φ̂, φ]. The generating functional of the connected diagrams is defined as before

exp
(
iWb[φ̂, J ]

)
=
∫
Dφ exp

{
iSb[φ̂, φ] + i

∫
d4xJ(x)φ(x)

}
, (2.82)

with

φb(x) = δWb[φ̂, J ]
δJ(x) (2.83)

being the analogue of eq. (2.68). By shifting the field φ→ φ− φ̂ in eq. (2.82) we find

Wb[φ̂, J ] = W [J ]−
∫
d4xJ(x)φ̂(x), (2.84)

which implies that φb = φ − φ̂. This is as expected, since it only indicates a shift in the
expectation value when we shift the field. By defining the shifted effective action as the
Legendre transform of Wb[φ̂, J ], we find that

Γb[φ̂, φ] = Wb[φ̂, J ]−
∫
d4xJ(x)φ(x) = W [J ]−

∫
d4xJ(x)

[
φ(x)+φ̂(x)

]
= Γ[φ+φ̂], (2.85)

where we have used eq. (2.84). In particular, we have that Γ[φ̂] = Γb[φ̂, 0], which means
that we can find the functional form of Γ[φ] by calculating Γb[φ̂, 0]. Afterwards we simply
replace the background field by the original field in Γ[φ̂].

4Non-dynamical means that we do not integrate over the field configuration in the path integral.
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2.3.3 One-loop effective potential at zero temperature
We will now calculate the effective potential at one-loop order for a scalar theory. We
assume that the quantum fluctuations are small, and perform a saddle-point expansion
around the classical solution φ0, given by the solution to �φ0 + V ′(φ0) = J(x). The field
is separated into the classical solution and quantum fluctuations, φ = φ0 + φ̃. The path
integral can be approximated by

Z = eiW ≈ exp
{
iS[φ0] + i〈Jφ0〉

} ∫
Dφ̃ exp

{
i
∫
d4x

[1
2
(
∂µφ̃

)2
− V ′′(φ0)φ̃2

]}
. (2.86)

We have neglected terms of orderO(~2), which corresponds to contributions from two- and
higher-loop orders. The functional integral over φ̃ is Gaussian, given by det(�+ V ′′)−1/2.
We find that

W = S[φ0] + 〈Jφ0〉+ i

2 Tr log(� + V ′′(φ0)) +O(~2), (2.87)

where we have used the identity log detA = Tr logA. The trace is a summation over
discrete and integration over continuous quantum numbers. For a scalar particle, we
only have continuous quantum numbers, and we have to integrate the matrix element
〈x| log(� + V ′′)|x〉 only over space-time. In order to do so, we insert a complete set of
plane waves

Tr log(� + V ′′) =
∫
d4x〈x| log(� + V ′′)|x〉 =

∫
d4x

d4k

(2π)4 〈x| log(� + V ′′)|k〉〈k|x〉

=
∫
d4x

d4k

(2π)2 log(−k2 + V ′′)〈x|k〉〈k|x〉 = Ω
∫ d4k

(2π)4 log(−k2 + V ′′).

(2.88)

where Ω is a space-time volume. After a Legendre transform, and using that S[φ0] =
−ΩV (φ0), we get the effective potential with the first quantum corrections included

Veff(φ0) = V (φ0)− i

2

∫ d4k

(2π)4 log(−k2 + V ′′(φ0)) +O(~2). (2.89)

After a Wick rotation to Euclidean space the effective potential is given by

Veff(φ0) = V (φ0) + 1
2

∫ d4K

(2π)4 log(K2 + V ′′(φ0)) +O(~2). (2.90)

We can also write the contribution from fermions and gauge fields. For fermions, the
one-loop contribution to the effective potential is

V
(1)

eff,f = −1
2λ

∫ d4K

(2π)4 log(K2 +M2
f (φ0)) (2.91)

where M2
f (φ0) is the mass matrix squared for the fermion fields, which is a function

quadratic in the scalar field φ0. The prefactor λ counts the number of degrees of freedom
of the fermions; λ = 4 for Dirac fermions and λ = 2 for Weyl fermions. Notice the
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2.3 Effective potential

sign difference compared to eq. (2.90), which comes from the different statistics between
fermions and bosons.

For the gauge bosons, we get the one-loop contribution

V
(1)

eff,gb = Tr (PT (Q)) 1
2

∫ d4K

(2π)4 log(K2 + (Mgb)2(φ0)) (2.92)

where M2
gb(φ0) is the φ0-dependent mass squared of the gauge bosons, and PT (K)µν =

δµν −KµKν/K
2 is a projection operator, as defined in appendix B.

The effective potential is divergent, and we have to introduce counterterms to eliminate
the divergent parts. We will determine the counterterms, and thereby the β-functions,
for the scalar couplings in chapter 5.

2.3.4 One-loop effective potential at finite temperature
We wish to extend the framework of the effective potential to include thermal fluctuations.
We can generalise the effective potential found in the previous section using the imaginary-
time formalism. The effective potential for a scalar field found in eq. (2.90) becomes

Veff(φ) = V (φ) + 1
2

∫∑
K

log
[
K2 + V ′′(φ)

]
+O(~2), (2.93)

where K = (ωn,k) as usual. By including fermion and gauge fields we adopt the same
procedure. From [28] we need the integrals

CS(m) = −
∫∑
K

log
( 1
K2 +m2

)1/2
= Jb(m) (2.94)

CV (M) = −
∫∑
K

log
(

det δµν −KµKν/K
2

K2 +M2

)1/2
= (3− 2ε)Jb(M) (2.95)

CF (mf ) = −
∫∑
{K}

log
( 1
i /K +mf

)1/2
= −4Jf (mf ). (2.96)

where m, M , and mf are the eigenvalues of the mass matrices for the scalars, gauge bosons
and fermions, respectively. The prefactor in eq. (2.95) is the trace of the projection
operator in the gauge field propagator, eq. (B.1), in d = 3 − 2ε dimensions, while the
prefactor in eq. (2.96) indicates that we are working with Dirac fermions. We can see the
similarity to eqs. (2.90) to (2.92). The integrals

Jb(m) = 1
2

∫∑
K

log(K2 +m2) (2.97)

Jf (m) = 1
2

∫∑
{K}

log(K2 +m2) (2.98)

are evaluated in eqs. (C.15) and (C.16). We should sum up the contribution from all
the degrees of freedom in our theory, using eqs. (2.94) to (2.96), to get the full one-loop
effective potential.
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2.4 Dimensional reduction

We see that in the imaginary-time formalism, a (d+ 1)-dimensional theory at finite tem-
perature can be viewed as a d-dimensional Euclidean theory with an infinite number of
fields. The fields are characterised by their Matsubara frequencies, ωBn = 2nπT for bosons
and ωFn = (2n + 1)πT for fermions, which act as mass terms. In the high-temperature
limit all fermionic and non-static bosonic fields will be very massive, with mass of order
πT . We call the modes with mass of order πT for superheavy. In an abelian field theory,
e.g. QED, the static component of the gauge field (n = 0) acquires a thermal mass, also
known as a Debye mass, of order gT , similar to what we saw in section 2.1.3. The fields
with mass of order gT are called heavy. The inverse of the Debye mass is the electric
screening length, as it screens the electric forces. In a non-abelian field theory, we have
one additional mass scale, g2T [61], which screens the colour-magnetic (for QCD) forces.
The fields with mass of order g2T or lower are called light. The fermionic and non-static
bosonic fields are superheavy, the temporal part of the zero-mode of the gauge fields is
heavy, while the spatial part of the zero-modes of the gauge fields is light. The zero-mode
of scalar fields can be superheavy, heavy, or light, depending on the zero-temperature
mass.

If the coupling constant g is small, then we can separate the different scales of the
problem, g2T � gT � T . We integrate out all the superheavy modes in the theory, and
are left with an effective three-dimensional theory [62]. This process is called dimensional
reduction [63; 64; 65; 66; 67], and was made into a tool for quantitative calculations
[68; 69; 70; 71]. The idea is based on the observation that at high temperatures, the non-
zero modes become superheavy, and decouple from the bosonic zero modes, according to
the decoupling theorem by Appelquist and Carazzone [30]. All fermionic and non-zero
bosonic modes are integrated out, and the effective theory consists of only static, i.e.
zero-mode, bosonic fields. If the theory contains an additional scale g2T , we can also
integrate out all the heavy modes.

The way we integrate out the heavier modes, is to write down the most general ef-
fective, three-dimensional theory with the relevant fields, consistent with the underlying
symmetries. This effective theory will have a superrenormalisable Lagrangian, along with
higher-order operators. The effective theory should be able to reproduce the same results
as the original theory, by including more and more higher-order operators to increase the
accuracy. We will restrict ourselves to the superrenormalisable part of the effective theory.

We want to express the parameters of the effective theory in terms of the parameters
of the original theory. This is done by matching correlators at zero external momentum
in the two theories. We require the two theories to predict the same behaviour at long
distances, as it is only the short-distance modes that we have integrated out.

We will illustrate the method of dimensional reduction in the context of quantum
chromodynamics (QCD). Later, in the main part of the thesis we perform dimensional
reduction on the 2HDM, where we have omitted the contribution from the colour sector.

2.4.1 Dimensional reduction of quantum chromodynamics

The theory describing the strong nuclear force, called quantum chromodynamics (QCD),
is given by the four-dimensional Lagrangian
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2.4 Dimensional reduction

LQCD,4d = 1
4H

n
µνH

n
µν +

∑
i

Ψi /DΨi, (2.99)

where Hn
µν = ∂µC

n
ν − ∂νCn

µ + gsf
n
mrC

m
µ C

r
ν is the field strength tensor and gs is the gauge

coupling constant. Cn
µ and fnmr are the gauge fields and the structure constants of the

non-abelian gauge group SU(3), respectively, where n = 1, . . . , 8 is the colour index. We
have assumed that the temperature is much larger than any zero-temperature mass scales,
i.e. the temperature is much larger than the masses of the quarks.

The theory of quarks (the fermion fields Ψ) and gluons (the gauge fields) is charac-
terised by asymptotic freedom and confinement [72; 73]. Asymptotic freedom means that
the quarks act as if they were free at very high energy scales, i.e. the strength of the
strong interactions goes to zero at very short distances. On the flip side, the strength of
the strong interactions increases at large distances, and the quarks are confined to bound
states. This is known as quark confinement.

At finite temperature, the quarks and gluons can undergo a phase transition from
the confined phase (hadron phase) to the unconfined phase (quark-gluon phase) [40].
The quark-gluon phase, called quark-gluon plasma (QGP), is relevant for both the early
universe and heavy-ion collision experiments. Thus, finite temperature (and density) can
change the characteristics of a theory dramatically.

The dimensional reduction of QCD has been performed by several authors [65; 66; 74;
75]. We will here briefly outline the procedure.

Firstly, we know that the temporal gauge fields, Ca
0 , receive a thermal mass of order

gT , while the spatial gauge fields, Ca
i , remain massless. From this we construct the most

general three-dimensional Lagrangian containing the (three-dimensional) fields5

LQCD,3d = 1
4H

n
ijH

n
ij + 1

2 (DiC
a
0 )2 + 1

2m
′′2
DC

a
0C

a
0 + 1

4λC (Ca
0C

a
0 )2 + δL (2.100)

where DiC
a
0 =

(
∂i − igs,3

~λ
2 · ~Ci

)
Ca

0 is the covariant derivative in the adjoint representa-
tion, gs,3 is the three-dimensional gauge coupling constant, m′′2D is the three-dimensional
mass of the scalar octet Ca

0 , and λC is the three-dimensional self-coupling of the scalar
octet Ca

0 . δL contains all higher-order operators and counterterms.
We match the two theories by requiring that the correlators at zero external momentum

should be the same, i.e. that the two theories predict the same long distance behaviour.
We can use the results by [71; 76; 77], calculated at one-loop accuracy in the MS scheme,

g2
3 =g2(µ)T

[
1 + g2

(4π)2

(
11Lb −

2
3nfLf + 1

)]
(2.101)

m′′2D =g2(µ)T 2
(

1 + nf
6

)
(2.102)

λA = 6g4T

(4π)2

(
1− nf

9

)
(2.103)

where nf is the number of fermion flavours, Lb = 2 log
(

µ
4πT

)
+ 2γE, Lf = Lb + 4 log 2, µ

is the renormalisation scale coming from dimensional regularisation and γE is the Euler-
Mascheroni constant.

5We have maintained the same notation for the three- and four-dimensional fields for simplicity.
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After integrating out the superheavy fields, we end up with eq. (2.100), which contains
two mass scales. One is associated with the Debye mass, of order gT , and the other is
the three-dimensional gauge coupling constant g2

3 = g2T , which is not dimensionless.
Because of asymptotic freedom, the gauge coupling becomes very small at sufficiently
high temperatures. With the assumption of a weakly coupled theory, we can separate the
mass scales, g2

3 � m′′D. This suggests that we can simplify our theory even more. We
can integrate out the heavy fields, i.e. fields with a mass of order gT , and be left with
a theory containing only light fields, i.e. fields with a mass of order g2T or less. The
resulting theory is a pure Yang-Mills theory with the gauge group SU(3),

LYM,3d = 1
4H

n
ijH

n
ij + δL. (2.104)

The new gauge coupling can be determined by requiring the correlators to match at zero
external momentum. The result is [76]

g2
s,3 = g2

s,3

(
1−

g2
s,3

(4π)2m′′D

)
. (2.105)

The final theory contains only one scale g2
s,3, and is strongly coupled despite the asymptotic

freedom of QCD. Thus, perturbative methods have some limitation. For the free energy,
as an example, it is not possible to compute the O(g6T 4) correction perturbatively, as
an infinite number of diagrams contribute at that level of accuracy [76]. We have to use
non-perturbative methods such as Monte Carlo simulations.
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CHAPTER 3

TWO-HIGGS DOUBLET MODEL

In this chapter we introduce the Two-Higgs Doublet Model (2HDM). For a detailed review
of the 2HDM phenomenology, see refs. [78; 79].

3.1 The full theory
Firstly, we discuss the general Two-Higgs Doublet Model. The full Lagrangian of the
2HDM is

L2HDM = Lfermion + Lgauge + LYukawa + Lscalar + Lghost + δL (3.1)

where the fermion, gauge, scalar, and ghost sectors of the Lagrangian are defined as

Lfermion =
∑
A

(
lA /DlA + eA /DeA + qA /DqA + uA /DuA + dA /DdA

)
(3.2)

Lgauge =1
4FµνFµν + 1

4G
a
µνG

a
µν + 1

4H
n
µνH

n
µν (3.3)

Lscalar =
(
DµΦ1

)†
DµΦ1 +

(
DµΦ2

)†
DµΦ2 + V (Φ1,Φ2) (3.4)

Lghost =∂µξ∂µξ + ∂µη
aDµη

a + ∂µζ
n
Dµζ

n. (3.5)

The scalar potential and the Yukawa sector will be discussed in sections 3.2 and 3.3,
respectively. All the fields and couplings are renormalised, and δL contains the countert-
erms, specified in chapters 4 and 5. The field strength tensors Fµν , Ga

µν , and Hn
µν contain

the gauge fields of the gauge groups U(1)Y , SU(2)L, and SU(3), with corresponding ghost
fields ξ, ηa, and ζn, respectively. The field strength tensors are given as

Fµν = ∂µBν − ∂νBµ (3.6a)
Ga
µν = ∂µA

a
ν − ∂νAaµ + gεabcA

b
µA

c
ν (3.6b)

Hn
µν = ∂µC

n
ν − ∂νCn

µ + gsf
n
mrC

m
µ C

r
ν (3.6c)

25



Chapter 3. Two-Higgs Doublet Model

where Bµ, Aaµ, and Cn
µ are the U(1)Y , SU(2)L, and SU(3) gauge fields, and εabc and fnmr are

the structure constants of the non-abelian gauge groups SU(2)L and SU(3), respectively.
The fermionic fields form left-handed doublets and right-handed singlets under the SU(2)L
gauge group,

Left-handed Right-handed

Leptons l =
(
νL
eL

)
e = eR

Quarks q =
(
uL
dL

)
u = uR, d = dR.

The covariant derivatives of the various fields are

DµΨ =
(
∂µ − ig

~τ

2 ·
~Aµ − ig′

YΨ

2 Bµ − igs
~λ

2 ·
~Cµ

)
Ψ for Ψ = q (3.7a)

DµΨ =
(
∂µ − ig

~τ

2 ·
~Aµ − ig′

YΨ

2 Bµ

)
Ψ for Ψ = l,Φ1,2 (3.7b)

DµΨ =
(
∂µ − ig′

YΨ

2 Bµ

)
Ψ for Ψ = e (3.7c)

DµΨ =
(
∂µ − ig′

YΨ

2 Bµ − igs
~λ

2 ·
~Cµ

)
Ψ for Ψ = u, d (3.7d)

where ~τ and ~λ are the Pauli and Gell-Mann matrices and g′, g, and gs are the coupling
constants for the U(1)Y , SU(2)L, and SU(3) gauge fields, respectively. The hypercharge
Y is defined by the Gell-Mann-Nishijima relation [80; 81; 82]

Q = I3 + 1
2Y (3.8)

where Q is the electric charge and I3 is the third component of isospin of the various
fields. Explicitly, we have that

Yl = −1, Ye = −2, Yq = 1
3 , Yu = 4

3 , Yd = −2
3 , YΦ1,2 = 1. (3.9)

Some sums which regularly arise when doing loop calculations are

∑
f

Y 2
f = Nf [2Y 2

l + Y 2
e +Nc(2Y 2

q + Y 2
u + Y 2

d )] = Nf

[
6 +Nc

22
9

]
(3.10a)

∑
f

Y 4
f = Nf [2Y 4

l + Y 4
e +Nc(2Y 4

q + Y 4
u + Y 4

d )] = Nf

[
18 +Nc

274
81

]
(3.10b)

∑
left

= Nf [1 +Nc] (3.10c)

where Nf is the number of fermion families, and Nc is the number of colours. The first
two sums are taken over all fermions, while the last sum is the sum of all left-handed
fermions. We will also need some traces,
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g2
Y,1 = Tr[h(e)h(e)† +Nch

(d)h(d)† +Nch
(u)h(u)†] (3.11)

g2
Y,2 = Tr[(Y 2

l + Y 2
e )h(e)h(e)† +Nc(Y 2

q + Y 2
d )h(d)h(d)† +Nc(Y 2

q + Y 2
u )h(u)h(u)†] (3.12)

g2
Y,3 = Tr[h(e)h(e)† + h(d)h(d)† − h(u)h(u)†] (3.13)
g2
Y,4 = Tr[−h(e)h(e)† + h(d)h(d)† + h(u)h(u)†] (3.14)

G4
Y,1 = Tr[h(e)h(e)†h(e)h(e)† +Nch

(d)h(d)†h(d)h(d)† +Nch
(u)h(u)†h(u)h(u)†]. (3.15)

We will also use the conventions from [28], and define

Lb = 2 log
(

µ

4πT

)
+ 2γE (3.16)

Lf = Lb + 4 log(2). (3.17)

Inserting the specific values of the 2HDM, we get

∑
f

Y 2
f = 40 (3.18a)

∑
f

Y 4
f = 760

9 (3.18b)
∑
left

= 12 (3.18c)

Nh = 2 (3.18d)
g2
Y,1 = Tr[h(e)h(e)† + 3h(d)h(d)† + 3h(u)h(u)†] (3.18e)

g2
Y,2 = Tr[5h(e)h(e)† + 5

3h
(d)h(d)† + 17

3 h
(u)h(u)†] (3.18f)

where Nh is the number of Higgs doublets.

3.1.1 Renormalisation
The fields in the Lagrangian given in eq. (3.1) are the renormalised fields, with δL con-
taining the counterterms. The bare fields are denoted by a subscript (b), while the renor-
malised fields have no subscript. The relations between the bare and renormalised fields
are

Φn(b) ≡ (1 + δZΦn)1/2Φn (3.19)
~Aµ(b) ≡ (1 + δZA)1/2 ~Aµ (3.20)
Bµ(b) ≡ (1 + δZB)1/2Bµ (3.21)

where n = 1, 2. The relations between the bare and renormalised couplings are

g(b) ≡ g + δg (3.22)
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g′(b) ≡ g′ + δg′ (3.23)
λn(b) ≡ Z−2

Φn
(λn + δλn) (3.24)

λi(b) ≡ Z−1
Φ1 Z

−1
Φ2 (λi + δλi) (3.25)

m2
nm(b) ≡ Z

−1/2
Φn

Z
−1/2
Φm

(m2
nm + δm2

nm) (3.26)

where n,m = 1, 2 and i = 3, 4, 5.

3.2 Scalar potential
The most general form of the 2HDM potential is [78]

V (Φ1,Φ2) =− 1
2
{
m2

11(Φ†1Φ1) +m2
22(Φ†2Φ2) + [m2

12(Φ†1Φ2) + h.c.]
}

(3.27)

+ λ1

2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ 1
2[λ5(Φ†1Φ2)2 + λ∗5(Φ†2Φ1)2] +

{
[λ6(Φ†1Φ1) + λ7(Φ†2Φ2)](Φ†1Φ2) + h.c.

}
(3.28)

where λi are coupling constants, m2
ij are the squared masses, and Φi are the scalar Higgs

fields. h.c. stands for the Hermitian conjugate. The potential is required to be Hermitian,
which restricts λ1−4, m2

11 and m2
22 to be real. In general can λ5−7 and m2

12 be complex.
The potential contains 14 independent parameters.

The most general Lagrangian for the scalar sector violates the Z2 symmetry

Φ1 ↔ Φ1, Φ2 ↔ −Φ2 or Φ1 ↔ −Φ1, Φ2 ↔ Φ2. (3.29)

Thus, the Lagrangian permits the transformations Φ1 ↔ Φ2. We impose the Z2 symmetry
on the quartic couplings, eq. (3.29), which dispenses of λ6 and λ7. We can make a global
phase transformation of one of the Higgs fields to cancel the phase of λ5, and thereby
making λ5 real. The new scalar potential takes the form

V (Φ1,Φ2) =− 1
2
{
m2

11(Φ†1Φ1) +m2
22(Φ†2Φ2)

}
− 1

2
[
m2

12(Φ†1Φ2) + h.c.
]

+ λ1

2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ λ5

2 [(Φ†1Φ2)2 + (Φ†2Φ1)2] (3.30)

The complex coupling m2
12 does not respect the discrete Z2 symmetry, and we say that

the symmetry is softly broken by the mass-mixing term. The potential now contains 9
independent parameters. We will start by considering the simpler potential where the Z2
symmetry is respected both by the couplings and the masses. Thus, we drop the mass-
mixing term Lmix = −1/2(m2

12Φ†1Φ2 + h.c.). The potential now contains 7 parameters.
Later, we will treat the mass-mixing as a perturbation, and include it as our source for
additional CP violation. It will be clear when the mass-mixing term is reintroduced.
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3.3 Yukawa sector

3.3 Yukawa sector
There is still some freedom in defining the Yukawa sector of the theory. The different
possible couplings of the scalar fields with the fermions separate the 2HDM into distinct
types. We will briefly discuss the most common types, but will focus on the Type I in
this thesis. In all the various types of 2HDM presented here, the Φ1 Higgs field is taken
to couple to the up-type quarks, by convention.1

3.3.1 Type I

The Type I 2HDM is also called the fermiophobic 2HDM, since only one of the two Higgs
doublets directly couples to the charged fermions. The Yukawa sector of the Lagrangian
reads

LYukawa =
∑
AB

[
h

(e)
AB l̄AeBΦ1 + h

(d)
AB q̄AdBΦ1 + h

(u)
AB q̄AuBΦ̃1

]
+ h.c. (3.31)

where Φ̃i = iτ2Φ∗i is the charge conjugated Higgs doublet, and τ2 is the second Pauli ma-
trix. Thus, the Yukawa sector of Type I 2HDM takes the same form as the corresponding
SM Yukawa sector. Some authors use the convention that the up-type quarks always
couple to the Φ2. We will let the fermions only couple to Φ1.

3.3.2 Type II

In the Type II 2HDM both Higgs doublets couple directly to the charged fermions. Up-
type quarks couple to Φ1, while down-type quarks and the charged leptons couple to Φ2.
The Yukawa sector of the Lagrangian takes the form

LYukawa =
∑
AB

[
h

(e)
AB l̄AeBΦ2 + h

(d)
AB q̄AdBΦ2 + h

(u)
AB q̄AuBΦ̃1

]
+ h.c. (3.32)

In the Type II 2HDM the Higgs fields couple to the charged fermions in a similar fashion
as in the MSSM. The Type II 2HDM has been investigated for explaining electroweak
baryogenesis, and has been disfavoured [83].

3.3.3 Other models

Other types of 2HDM are Type III, X, and Y. In the Type III, both Higgs fields couple
to all charged fermion fields. Flavor-changing neutral currents at tree level are induced,
which makes the theory unattractive. The X type is also called lepton-specific, as the
Φ2 Higgs field only couples to the charged leptons, while Φ1 couples to the quarks. The
Y type is the flipped version of the X type, as the Φ2 Higgs field only couples to the
down-type quarks while Φ1 couples to the up-type quarks and the charged fermions.

1Other authors may use the opposite convention, where the Φ2 Higgs field couples to the up-type
quarks, as in e.g. [78].
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Chapter 3. Two-Higgs Doublet Model

3.4 Mass spectrum
We will illustrate the method for finding and diagonalising the mass matrix, also used in
[84], in order to find the mass spectrum of the scalar particles. In Chapters 5 and 7 we
will use some of these techniques when finding the effective potential, counterterms, and
β-functions for the scalar particles.

We start with two complex doublets, resulting in a total of 8 degrees of freedom. We
expect 3 of these to be would-be Goldstone bosons, absorbed to give a longitudinal degree
of freedom to the 3 massive vector bosons in the electroweak interactions, through the
Higgs mechanism [46], similarly to the SM. We are then left with 5 degrees of freedom,
and expect to find 5 massive scalars as a result.

We have the scalar potential of the Lagrangian from eq. (3.30),

V (Φ1,Φ2) =− 1
2m

2
11(Φ†1Φ1)− 1

2m
2
22(Φ†2Φ2) + λ1

2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) + λ5

2 [(Φ†1Φ2)2 + (Φ†2Φ1)2] (3.33)

where we have dropped the mass-mixing term. By writing

Φ1 = 1√
2

[
φ1 + iφ2
φ3 + iφ4

]
, Φ2 = 1√

2

[
φ5 + iφ6
φ7 + iφ8

]
(3.34)

we get that Φ†1Φ1 = 1
2
~Φ1 · ~Φ1 and Φ†2Φ2 = 1

2
~Φ2 · ~Φ2, where ~Φ1 = (φ1, φ2, φ3, φ4)T and

~Φ2 = (φ5, φ6, φ7, φ8)T . We want to find the minimum of the potential, where the vacuum
expectation values of the Higgs doublets are

〈Φ1〉 = 1√
2

[
0
v1

]
, 〈Φ2〉 = 1√

2

[
0
v2

]
. (3.35)

We have imposed that the vacuum expectation values of the Higgs doublets are electri-
cally neutral, and that they do not break the CP symmetry. When setting the vacuum
expectation values to be v1/

√
2 and v2/

√
2, we have implicitly imposed the extremum

condition

∂V

∂φi

∣∣∣∣∣
φ3=v1,φ7=v2

= 0. (3.36)

The only non-trivial constraints we obtain are

v1

(
− 1

2m
2
11 + 1

2λ1v
2
1 + λ+v

2
2

)
= 0 (3.37)

v2
(
− 1

2m
2
22 + 1

2λ2v
2
2 + λ+v

2
1

)
= 0 (3.38)

where λ+ = 1
2(λ3 + λ4 + λ5). The system of equations yields two independent solutions

when we require v1 to be non-zero,

Case A: v2
1 = m2

11λ2 − 2m2
22λ+

λ1λ2 − 4λ2
+

, v2
2 = m2

22λ1 − 2m2
11λ+

λ1λ2 − 4λ2
+

(3.39)
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3.4 Mass spectrum

Case B: v2
1 = m2

11
λ1

, v2
2 = 0. (3.40)

We will take advantage of these conditions shortly. We find the mass matrix by

M2
ij = ∂2V

∂φi∂φj

∣∣∣∣∣
φ3=v1,φ7=v2

. (3.41)

The 8× 8 mass matrix takes the form

M2 =



M2
11 0 0 0 M2

15 0 0 0
0 M2

22 0 0 0 M2
26 0 0

0 0 M2
33 0 0 0 M2

37 0
0 0 0 M2

44 0 0 0 M2
48

M2
15 0 0 0 M2

55 0 0 0
0 M2

26 0 0 0 M2
66 0 0

0 0 M2
37 0 0 0 M2

77 0
0 0 0 M2

48 0 0 0 M2
88


(3.42)

where

M2
11 = −1

2m̃
2
11 M2

22 = −1
2m̃

2
11

M2
33 = −1

2m̃
2
11 + λ1v

2
1 + 1

2(λ4 + λ5)v2
2 M2

44 = −1
2m̃

2
11 + 1

2(λ4 − λ5)v2
2

M2
55 = −1

2m̃
2
22 M2

66 = −1
2m̃

2
22

M2
77 = −1

2m̃
2
22 + λ2v

2
2 + 1

2(λ4 + λ5)v2
1 M2

88 = −1
2m̃

2
22 + 1

2(λ4 − λ5)v2
1

M2
15 = 1

2(λ4 + λ5)v1v2 M2
26 = 1

2(λ4 + λ5)v1v2

M2
37 = 2λ+v1v2 M2

48 = λ5v1v2

where m̃2
11 = m2

11 − λ1v
2
1 − λ3v

2
2 and m̃2

22 = m2
22 − λ2v

2
2 − λ3v

2
1. We divide the discussion

into two parts, one for each choice of the vacuum expectation values.

3.4.1 Case A
We notice that if we rearrange the matrix (1, 2, 3, 4, 5, 6, 7, 8) → (1, 5, 2, 6, 3, 7, 4, 8), and
notice that M2

11 = M2
22, M2

55 = M2
66 and M2

15 = M2
26, the matrix takes a block-diagonal

form,

M2 =
[(
M2

11 M2
15

M2
15 M2

55

)
⊗ I2×2

]
⊕
(
M2

33 M2
37

M2
37 M2

77

)
⊕
(
M2

44 M2
48

M2
48 M2

88

)
(3.43)

where

M2
11 = −1

2(λ4 + λ5)v2
2 M2

15 = 1
2(λ4 + λ5)v1v2

31



Chapter 3. Two-Higgs Doublet Model

M2
55 = −1

2(λ4 + λ5)v2
1 M2

33 = λ1v
2
1

M2
37 = 2λ+v1v2 M2

77 = λ2v
2
2

M2
44 = −λ5v

2
2 M2

48 = λ5v1v2

M2
88 = −λ5v

2
1

where we have used the minimum condition in eq. (3.39). We need to find the eigenvalues
and eigenvectors of a 2× 2 matrix, on the form

M =
(
a c
c b

)
. (3.44)

The procedure is familiar, we want to find the solution of the equation M~ui = ki~ui, for
i = 1, 2, which is the same as setting the determinant of M−kiI equal to zero for non-zero
eigenvectors ~ui,

det(M−k1,2I) =
∣∣∣∣∣a− k1,2 c

c b− k1,2

∣∣∣∣∣ = k2
1,2− (a+b)k1,2 +ab−c2 = k2

1,2−TrMk1,2 +∆ = 0

(3.45)
where TrM = a+ b and ∆ = detM = ab− c2. The eigenvalues are found by solving the
quadratic equation for k1,2,

k1,2 = 1
2
[
a+ b±

√
(a− b)2 + 4c2

]
= 1

2
[

TrM ±
√

(TrM)2 − 4∆
]
. (3.46)

The corresponding orthonormal eigenvectors are given by(
cos δ
sin δ

)
≡ ~u1 ↔ k1;

(
− sin δ
cos δ

)
≡ ~u2 ↔ k2 (3.47)

where
sin 2δ = 2c√

(a− b)2 + 4c2
; cos 2δ = (a− b)√

(a− b)2 + 4c2
. (3.48)

We will now use this generic procedure to diagonalise the (1, 5) and (2, 6) submatrices.
The submatrices are identical, and determine the masses of the charged Higgs bosons. The
eigenvectors and eigenvalues of the submatrices are

(
cos β
sin β

)
↔ 0 (3.49)(

− sin β
cos β

)
↔ −1

2(λ4 + λ5)(v2
1 + v2

2) (3.50)

where

cos β = v1√
v2

1 + v2
2

, sin β = v2√
v2

1 + v2
2

. (3.51)
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3.4 Mass spectrum

The mass eigenstates are (
G±

H±

)
=
(

cos β sin β
− sin β cos β

)(
φ1/2
φ5/6

)
, (3.52)

The masses of the charged Higgs bosons are

m2
G± = 0, m2

H± = −1
2(λ4 + λ5)(v2

1 + v2
2). (3.53)

Notice the two massless would-be Goldstone bosons G±, which are absorbed into the
longitudinal degree of freedom of the charged vector bosons W±. Two massive charged
bosons H± are left, as expected.

In a similar fashion, we find the mass eigenstates and masses of the remaining scalar
fields. For the (3, 7) submatrix, we get

m2
H0,h0 = 1

2[λ1v
2
1 + λ2v

2
2 ±

√
(λ1v2

1 − λ2v2
2)2 + 16λ2

+v
2
1v

2
2] (3.54)

tan 2α = 4v1v2λ+

(λ1v2
1 − λ2v2

2) (3.55)(
H0

h0

)
=
(

cosα sinα
− sinα cosα

)(
φ3
φ7

)
. (3.56)

Lastly, for the (4, 8) submatrix, we have that

m2
G0 = 0, m2

A0 = −λ5(v2
1 + v2

2) (3.57)(
G0

A0

)
=
(

cos β sin β
− sin β cos β

)(
φ4
φ8

)
(3.58)

where β is defined in eq. (3.51). We have found the mass spectrum of the scalar particles. 3
of the 8 degrees of freedom are massless, and are would-be Goldstone bosons, absorbed by
the longitudinal degree of freedom of the massive vector bosons W±, Z0. The remaining
5 degrees of freedom are massive scalar particles, two charged scalars H±, two neutral
scalars H0 and h0, and one neutral pseudoscalar A0.

In summary, the mass spectrum of the scalar fields is

m2
H± = −1

2(λ4 + λ5)(v2
1 + v2

2) (3.59a)

m2
H0,h0 = 1

2[λ1v
2
1 + λ2v

2
2 ±

√
(λ1v2

1 − λ2v2
2)2 + 16λ2

+v
2
1v

2
2] (3.59b)

m2
A0 = −λ5(v2

1 + v2
2). (3.59c)

3.4.2 Case B
When using eq. (3.40), we notice that the mass matrix is diagonal, and we obtain

M2
11 = 0
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M2
22 = 0

M2
33 = λ1v

2
1

M2
44 = 0

M2
55 = −1

2m
2
22 + 1

2λ3v
2
1

M2
66 = −1

2m
2
22 + 1

2λ3v
2
1

M2
77 = −1

2m
2
22 + λ+v

2
1

M2
88 = −1

2m
2
22 + λ−v

2
1

where λ− = 1
2(λ3 + λ4 − λ5). Two charged and one neutral degrees of freedom have

been absorbed into the longitudinal component of the (now) massive vector bosons W±

and Z0. We identify the remaining 5 degrees of freedom with two charged Higgs bosons,
ϕ5,6 = H±, one heavy neutral scalar ϕ7 = H0, one light neutral scalar, ϕ3 = h0, and one
neutral pseudoscalar ϕ8 = A0. The mass spectrum becomes

m2
H± = −1

2m
2
22 + λ3

2 v
2
1 (3.60a)

m2
H0 = −1

2m
2
22 + 1

2(λ3 + λ4 + λ5)v2
1 (3.60b)

m2
h0 = λ1v

2
1 (3.60c)

m2
A0 = −1

2m
2
22 + 1

2(λ3 + λ4 − λ5)v2
1. (3.60d)
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CHAPTER 4

CORRELATORS AND β-FUNCTIONS

This chapter contains the counterterms needed in order to renormalise the theory, obtained
from Feynman diagrams using the renormalisation scheme MS. The detailed calculations
can be found in appendix D, while the definitions of the renormalised fields and couplings
are given in section 3.1.1. From the counterterms we calculate the β-functions for the
gauge couplings. Also, additional correlators are calculated, needed in the dimensional
reduction step in chapter 6. We have kept the number of Higgs doublet Nh arbitrary as
the calculations easily generalise to a fermiophobic Nh-Higgs Doublet Model (NHDM) at
one-loop. Nh = 1 reduces to the SM result, while Nh = 2 is the result for the 2HDM. We
can compare our results for the β-functions for the 2HDM with the results in ref. [78].

4.1 Self-energies
The momentum dependent divergences in the two-point functions at one-loop are absorbed
into the field renormalisation counterterms of the various fields. Thermal mass terms also
arise, but they are not explicitly given here.

U(1)Y gauge boson self-energy
The Feynman diagrams for the U(1)Y gauge boson self-energy are found in eqs. (D.1)
to (D.5). The U(1)Y gauge boson self-energy at one-loop is

µ ν =− g′2(d− 1)
[
Nh + 1

2(1− 22−d)Nf

(
6 +Nc

22
9

)]
I4b

1 (4.1)

− 1
6g
′2
[
(4− d)Nh + 1

2(d− 1)(24−d − 1)Nf

(
6 +Nc

22
9

)]
P 2I4b

2

for µ = 0, ν = 0,

=1
6g
′2
[
Nh + (24−d − 1)Nf

(
6 +Nc

22
9

)]
(PiPj − δijP 2)I4b

2 (4.2)

for µ = i, ν = j,
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Chapter 4. Correlators and β-functions

where d = 3 − 2ε is the spatial dimension, Nc is the number of colours, and Nf is the
number of fermion families. The sum-integrals I4b

1 and I4b
2 are given in appendix C. We

see that the Lorentz symmetry is broken because the particles interact with the heat bath;
the self-energy is divided into a temporal and a spatial part. The resulting divergences
are absorbed into the U(1)Y field renormalisation counterterm,

δZB = − g′2

6(4π)2ε

[
Nf

(
6 +Nc

22
9

)
+Nh

]
. (4.3)

With the 2HDM specifics of eq. (3.18), we get

δZB = − 7g′2
(4π)2ε

. (4.4)

SU(2)L gauge boson self-energy

The Feynman diagrams for the SU(2)L gauge boson self-energy can be found in eqs. (D.6)
to (D.13). The SU(2)L gauge boson self-energy is

aµ bν =− g2δab(d− 1)
[
2(d− 1) +Nh + (1− 22−d)Nf (1 +Nc)

]
I4b

1

+ 1
6g

2δab

[
2(d2 − 2d+ 10)− (4− d)Nh (4.5)

− (d− 1)(24−d − 1)Nf (1 +Nc)
]
P 2I4b

2

for µ = 0, ν = 0,

=− 1
3g

2δab

[
(16− d)− Nh

2 − (24−d − 1)Nf (1 +Nc)
]
(PiPj − δijP 2)I4b

2

(4.6)
for µ = i, ν = j.

We see that the structure is very similar to the U(1)Y gauge boson self-energy, except for
the terms not proportional to Nh or Nf . These contributions come from the SU(2)L gauge
boson self-interactions, which are not present for the U(1)Y gauge boson. Also, only the
left-handed fermions couple to the SU(2)L gauge boson, while all fermions couple to the
U(1)Y gauge boson. This gives a difference in the numerical factor in the Nf term. The
SU(2)L field renormalisation counterterm takes the form

δZA = g2

3(4π)2ε

[
13− Nh

2 −Nf (1 +Nc)
]
. (4.7)

By inserting the 2HDM specifics of eq. (3.18), we get

δZA = 0. (4.8)
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4.1 Self-energies

Lepton doublet self-energy
When working with a fermiophobic Nh-Higgs doublet model, where only one Higgs doublet
directly couples to the fermions, the lepton doublet self-energy takes the same form as for
the SM at one-loop. The Feynman diagram for the divergent part of the lepton doublet
self-energy is calculated in eq. (D.14). The divergent part of the lepton doublet self-energy
is

iA jB =1
2i
[
h(e)†h(e)

]
AB
δij /PI

4b
2 . (4.9)

The divergence is absorbed into the lepton doublet field renormalisation counterterm,
(
δZl

)
AB

= − 1
2(4π)2ε

[
h(e)†h(e)

]
AB
. (4.10)

Higgs doublet self-energies
The Feynman diagrams for the Higgs doublet self-energies are calculated in eqs. (D.15)
to (D.19). We need only the parts of the self-energies which depend on the external
momentum to determine the wave function renormalisation. The mass counterterm will
be determined by using the effective potential. The P 2 pieces of the Higgs doublet self-
energies are

i j =
(9

4g
2 + 3

4g
′2
)
δijP

2I4b
2 − g2

Y,1δijP
2I4f

2 (4.11)

i j =
(9

4g
2 + 3

4g
′2
)
δijP

2I4b
2 , (4.12)

where g2
Y,1 is defined in eq. (3.11). The fermionic sum-integral I4f

2 is also evaluated in
appendix C. The divergences are absorbed into the Higgs doublet field renormalisation
counterterms,

δZΦ1 = 1
(4π)2ε

[9
4g

2 + 3
4g
′2 − g2

Y,1

]
(4.13)

δZΦ2 = 1
(4π)2ε

[9
4g

2 + 3
4g
′2
]
. (4.14)

We now have all the field renormalisation counterterms we need to calculate the β-
functions for the gauge fields. All additional field renormalisation counterterms can be
found in a similar fashion.

Later, we might wish to reintroduce the mass-mixing term. Then we will need to
calculate the Φ†1Φ2 correlator. The correlator at zero external momentum is
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i j =− 1
2
[
(λ3 + 2λ4)m2

12 + 3λ5m
∗2
12

]
δijI

4b
2 . (4.15)

The mass-mixing counterterm takes the form

δm2
12 = 1

(4π)2ε

[
(λ3 + 2λ4)m2

12 + 3λ5m
∗2
12

]
. (4.16)

4.2 Lepton doublet interactions
By calculating the interaction vertices with two external lepton doublet legs and a gauge
boson leg, we are able to determine the counterterms for the gauge field coupling constants
g′ and g. We only calculate the vertices needed to extract the gauge coupling counterterms,
since our goal is to determine the β-functions.

Lepton doublet - U(1)Y gauge boson vertex
The lepton doublet - U(1)Y gauge boson vertex is used to calculate the contribution from
the left-handed leptons to the gauge boson coupling constant counterterm δg′. We do
not need the contribution from the other fermionic fields to calculate the β-function for
the U(1)Y gauge boson. Extending the calculation to include all fermions is trivial. The
Feynman diagrams for the lepton doublet - U(1) vertex can be found in eqs. (D.22)
to (D.25). The divergence is absorbed by the counterterms of the form

δg′ + g′

2
(
2(δZl)AB + δZB

)
= − g′

2(4π)2ε

[
h(e)†h(e)

]
AB
. (4.17)

The structure comes from the interaction between the lepton doublet and the gauge field,
and from the definition of the gauge boson coupling constant counterterm in eq. (3.23).
Using our results for the wave function counterterms, eqs. (4.3) and (4.10), the coupling
counterterm becomes

δg′ = g′3

12(4π)2ε

[
Nh + 40

3 Nf

]
. (4.18)

Lepton doublet - SU(2)L gauge boson vertex
Similarly, we need only the lepton contribution to the SU(2)L gauge boson coupling con-
stant counterterm in order to calculate the β-function for the SU(2)L gauge boson. The
Feynman diagrams for the lepton doublet - SU(2)L vertex can be found in eqs. (D.26)
to (D.29). The divergence is absorbed by the counterterms of the form

δg + g

2
(
2(δZl)AB + δZA

)
= − g

2(4π)2ε

[
3g2 +

[
h(e)†h(e)

]
AB

]
, (4.19)
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4.3 4-point correlators

which is a similar structure to the U(1)Y gauge boson case. By using the wave function
renormalisation counterterms in eqs. (4.7) and (4.10), we find the coupling counterterm

δg = − g3

2(4π)2ε

[44−Nh

6 − 4
3Nf

]
. (4.20)

Again, notice the similarities between eqs. (4.18) and (4.20). The main difference is the
term not proportional to Nh or Nf , which is only present in eq. (4.20). This comes from
the SU(2)L gauge boson self-interactions. Also, we get a difference in the numerical factor
in the Nf term because only left-handed fermions couple to the SU(2)L gauge boson, while
all fermions couple to the U(1)Y gauge boson.

4.3 4-point correlators
An integral part of the dimensional reduction procedure is to match the effective three-
dimensional theory with the original four-dimensional theory, in order to determine the
parameters of the effective theory in terms of the original parameters. We match the two
theories by requiring the correlators of the two theories to be the same at large distances,
or at zero external momentum. We list the correlators in the original four-dimensional
theory at zero external momentum needed in chapter 6. Detailed calculations can be
found in appendix D.

The B4
0 correlator

We will need the four-point function with zero external momentum of the temporal compo-
nent of the U(1)Y gauge field when matching the three-dimensional theory to the original
theory. The sum of eqs. (D.30) to (D.33) is

= 1
2(d− 1)(d− 3)

[
Nh − (24−d − 1)

(
9 + 137

81 Nc

)
Nf

]
g′4I4b

2 . (4.21)

Notice that the factor (d − 3) cancels the divergence in I4b
2 , and we get a finite result.

Our theory is renormalisable, and any divergences should be absorbed by counterterms.
As we have no counterterms of this type, no divergence should arise. Making sure that
all divergences cancel will serve as a check for consistency when doing the matching.

The Aa
0A

b
0A

c
0A

d
0 correlator

Similarly, we need the temporal component of the four-point function of the SU(2)L gauge
field at zero external momentum. The sum of eqs. (D.34) to (D.41) is

=1
6(d− 1)(d− 3)

[
8(d− 1) +Nh

− (24−d − 1)Nf (1 +Nc)
]
g4(δabδcd + δacδbd + δadδbc)I4b

2 . (4.22)
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Chapter 4. Correlators and β-functions

Again, the factor (d − 3) cancels the divergence in I4b
2 . The factor 8(d − 1) comes from

the SU(2)L gauge boson and the ghost loops, and is not present in the correlator for the
U(1)Y gauge boson.

The Aa
0A

b
0B

2
0 correlator

The correlator with two B0 legs and two Aa0 legs can be found by summing eqs. (D.42)
to (D.47). It takes the form

= 1
2(d− 1)(d− 3)

[
Nh − (24−d − 1)Nf (Y 2

l +NcY
2
q )
]
g2g′2δabI

4b
2 (4.23)

Notice the similarities between eqs. (4.21) and (4.23). The fermionic part is different
because only left-handed fermions interact with the SU(2)L gauge boson.

The Φ†i1 Φj
1BµBν correlator

The correlator with two scalar legs and two gauge field legs is the sum of eqs. (D.57)
to (D.64), and takes the form

=g′2
[
(d− 3)

(3
2λ1 + λ3 + 1

2λ4

)
+ d

8g
′2 + 3

8dg
2

− 1
2(24−d − 1)

(
g2
Y,1 − 2εg2

Y,2

)]
δijI

4b
2 (4.24)

for µ = 0, ν = 0

=g′2
[3
8g
′2 + 9

8g
2 − 1

2(24−d − 1)g2
Y,1

]
δijδrsI

4b
2 (4.25)

for µ = r, ν = s

where g2
Y,1 and g2

Y,2 are defined in eqs. (3.11) and (3.12). Now the divergence in I4b
2 is not

cancelled, neither for the temporal nor the spatial part. The divergence can be absorbed
by counterterms. This is also our first encounter with a correlator that does not directly
generalise to the NHDM, due to the presence of the scalar couplings in the temporal part
of the correlator. This correlator will be re-calculated in chapter 7, to include the effect
of additional scalar doublets.

The Φ†i2 Φj
2BµBν correlator

The coupling with two scalar Φ2 legs and two gauge field legs takes the form

=g′2
[
(d− 3)

(3
2λ2 + λ3 + 1

2λ4

)
+ d

8g
′2 + 3

8dg
2
]
δijI

4b
2 (4.26)
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4.3 4-point correlators

for µ = 0, ν = 0

=g′2
[3
8g
′2 + 9

8g
2
]
δijδrsI

4b
2 (4.27)

for µ = r, ν = s.

The correlator is similar to the Φ†1Φ1BµBν correlator, by replacing λ1 → λ2 and drop-
ping the coupling to the fermions. The generalised correlator for the NHDM is found in
eq. (7.3).

The Φ†i1 Φj
1A

a
µA

b
ν correlator

The diagrams contributing to the correlator with two scalar legs and two gauge field legs
can be found in eqs. (D.48) to (D.56). The total contribution to the correlator is

=g2
[(
− 25

8 + d
)
dg2 − (3− d)

(3
2λ1 + λ3 + 1

2λ4

)
+ 1

8dg
′2

− 1
2(24−d − 1)(d− 2)g2

Y,1

]
δabδijI

4b
2 (4.28)

for µ = 0, ν = 0

=
[
− 3

8g
4 + 3

8g
2g′2 − 1

2(24−d − 1)g2g2
Y,1

]
δabδijδrsI

4b
2 (4.29)

for µ = r, ν = s.

Notice that the divergences do not cancel. Also, the scalar couplings make the expression
special to the 2HDM.

The Φ†i2 Φj
2A

a
µA

b
ν correlator

The coupling with two scalar Φ2 legs and two gauge field legs takes the form

=g2
[(
− 25

8 + d
)
dg2 − (3− d)

(3
2λ2 + λ3 + 1

2λ4

)
+ 1

8dg
′2
]
δabδijI

4b
2

(4.30)
for µ = 0, ν = 0

=
[
− 3

8g
4 + 3

8g
2g′2

]
δabδijδrsI

4b
2 (4.31)

for µ = r, ν = s

Notice the similarity to the Φ†1Φ1A
a
µA

b
ν correlator.

The Φ†i1 Φj
1A

a
0B0 correlator

Lastly, we compute the temporal part of the correlator with two scalar legs and two
different gauge field legs. The sum of eqs. (D.65) to (D.72) takes the form
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Chapter 4. Correlators and β-functions

=gg′
[1
2(d− 3)(λ1 + λ4) + 1

8d(g2 + g′2)

− 1
2(24−d − 1)(g2

Y,3 − 2εg2
Y,4)

]
(τa)ijI4b

2 , (4.32)

where g2
Y,3 and g2

Y,4 are defined in eqs. (3.13) and (3.14). This correlator also diverges,
and we must make sure that the divergences are cancelled in the final matching between
the three- and four-dimensional theories.

The Φ†i2 Φj
2A

a
0B0 correlator

The coupling with two scalar Φ2 legs and two different gauge field legs takes the form

= gg′
[1
2(d− 3)(λ2 + λ4) + 1

8d(g2 + g′2)
]
(τa)ijI4b

2 , (4.33)

which is identical to eq. (4.32), if we discard the coupling to the fermions. The general
NHDM correlator with two scalar legs and two different gauge boson legs is given in
eq. (7.5).

4.4 Counterterms
The counterterms are defined in section 3.1.1. We have used dimensional regularisation
to regularise the UV divergences, and the renormalisation scheme MS to renormalise the
theory. The UV divergences are independent of the temperature, so we could calculate
the correlators at finite or zero temperature. We have done all calculations at finite
temperature. We will here summarise the counterterms found previously, valid in the
Landau gauge,

δZA = g2

(4π)2ε

[26−Nh

6 − 4
3Nf

]
(4.34)

δZB = − g′2

(4π)2ε

[
Nh

6 + 20
9 Nf

]
(4.35)

(δZl)AB = − 1
2(4π)2ε

[
h(e)†h(e)

]
AB

(4.36)

δZΦ1 = 1
(4π)2ε

[9
4g

2 + 3
4g
′2 − g2

Y,1

]
(4.37)

δZΦ2 = 1
(4π)2ε

[9
4g

2 + 3
4g
′2
]

(4.38)

δg = − g3

2(4π)2ε

[44−Nh

6 − 4
3Nf

]
(4.39)
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4.5 β-functions

δg′ = g′3

12(4π)2ε

[
Nh + 40

3 Nf

]
. (4.40)

For Nh = 1 the counterterms agree with the SM results [26]. The counterterms for the
scalar couplings will be calculated using the effective potential in chapter 5.

4.5 β-functions
We find the β-functions by calculating the quantities fg′ and fg. From the definitions of
the gauge coupling counterterms, eqs. (3.22) and (3.23), the contributions from the wave
function renormalisation to the renormalised gauge couplings have already been taken
into account, and the quantities fg′ and fg simply become

fg′ = Residue of simple 1
ε

of
{
δg′
}

= g′3

12(4π)2

[
Nh +Nf

(
6 +Nc

22
9

)]
= C ′g′3 (4.41)

and

fg = Residue of simple 1
ε

of
{
δg
}

= − g3

6(4π)2

[
9 + 13− Nh

2 −Nf (1 +Nc)
]

= Cg3 (4.42)

In the limit ε→ 0, we have that βg′ = 2C ′g′3,

βg′ = g′3

6(4π)2

[
Nh +Nf

(
6 +Nc

22
9

)]
. (4.43)

In a similar fashion, we have that

βg = − g3

3(4π)2

[
22− Nh

2 −Nf (1 +Nc)
]
. (4.44)

Using the 2HDM specifics of eq. (3.18), we get

βg′ = 7g′3
(4π)2 (4.45)

βg = − 3g3

(4π)2 . (4.46)

The values of the β-functions for the gauge bosons agree with the known results, both for
the SM [26] and for the 2HDM [78].
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CHAPTER 5

EFFECTIVE POTENTIAL

We want to find the β-functions for the scalar couplings, which are determined from the
scalar counterterms in a similar fashion to the discussion in chapter 4. Also, we want to
calculate the contributions from the superheavy modes to the two- and four-point scalar
correlators at vanishing external momentum, in order to match the four-dimensional scalar
correlators with their three-dimensional counterparts. A convenient way to extract the
contributions from the superheavy modes to the scalar correlators, and also to find the
scalar counterterms, is to evaluate the effective potential V (Φ1,Φ2). For a preliminary
discussion on the effective potential, see section 2.3. The effective potential contains one-
particle irreducible Green’s functions Gn,m at vanishing external momenta of the form
Gn,mΦn

1 Φm
2 , so the quadratic and quartic terms in Φ1 and Φ2 give the two- and four-

point correlators. It is enough to calculate the one-loop effective potential to extract the
contribution to the coupling, but, in order to be consistent, for the mass parameter the
two-loop effective potential is needed for an accuracy of O(g4). We will only calculate the
one-loop effective potential, and leave the extension to two-loop for the mass parameters
as a part of the outlook for this project.

In order to calculate the effective potential V (Φ1,Φ2), we shift the scalar fields by
some arbitrary background fields, Φi → Φi + ϕi. The mass matrix is extracted from the
parts quadratic in the scalar, gauge or fermion fields. We diagonalise the mass matrix
for different choices of the background fields, and extract the contributions to the two-
and four-point correlators at zero external momentum. The counterterms are found by
absorbing the divergences, in the usual fashion. Lastly, we write down the β-functions for
the scalar couplings.

The effective potential can be expanded in terms of the background fields. The parts
of the effective potential quadratic or quartic in the background fields take the form

Veff =V11ϕ
†
1ϕ1 + V22ϕ

†
2ϕ2 + V1

[
ϕ†1ϕ1

]2
+ V2

[
ϕ†2ϕ2

]2
+ V3

[
ϕ†1ϕ1

][
ϕ†2ϕ2

]
+ V4

[
ϕ†1ϕ2

][
ϕ†2ϕ1

]
+ V5

2

[[
ϕ†1ϕ2

]2
+
[
ϕ†2ϕ1

]2]
. (5.1)

Our goal is to find the coefficients Vii and Vn, where i = 1, 2 and n = 1, . . . , 5. From
this we can both find the scalar counterterms and the correlators needed for dimensional
reduction.

45



Chapter 5. Effective Potential

Only the fields directly coupled to the Higgs doublets Φ1,2 affect the effective potential,
apart from a constant. We divide the discussion into the contribution from the scalars,
section 5.1, the gauge bosons, section 5.2, and the fermions, section 5.3. For the gauge
bosons, we must be careful when choosing a gauge. For the scalars and fermions, we will
directly go to the Landau gauge (ξ = 0).

5.1 Scalars
As we will see, we have eliminated the mixing between the gauge and scalar fields in
section 5.2. Thus, we can safely go directly to the Landau gauge (ξ = 0). After shifting
the fields Φi → Φi +ϕi and dropping the linear terms in Φi and some constant terms, we
get

Vscalar[Φ1 + ϕ1,Φ2 + ϕ2] = −1
2m̃

2
11Φ†1Φ1 −

1
2m̃

2
22Φ†2Φ2

+ 1
2λ1

[
Φ†1ϕ1 + ϕ†1Φ1

]2
+ 1

2λ2

[
Φ†2ϕ2 + ϕ†2Φ2

]2

+ λ3

[
Φ†1ϕ1 + ϕ†1Φ1

][
Φ†2ϕ2 + ϕ†2Φ2

]
+ λ4

[
(Φ†1Φ2)(ϕ†2ϕ1) + (Φ†2Φ1)(ϕ†1ϕ2)

+ (Φ†1ϕ2 + ϕ†1Φ2)(Φ†2ϕ1 + ϕ†2Φ1)
]

+ 1
2λ5

[
2(Φ†1Φ2)(ϕ†1ϕ2) + 2(Φ†2Φ1)(ϕ†2ϕ1)

+
[
Φ†1ϕ2 + ϕ†1Φ2

]2
+
[
Φ†2ϕ1 + ϕ†2Φ1

]2]
+O(Φ3

i ) +O(Φ4
i )

where m̃2
11 = m2

11 − 2λ1ϕ
†
1ϕ1 − 2λ3ϕ

†
2ϕ2 and m̃2

22 = m2
22 − 2λ2ϕ

†
2ϕ2 − 2λ3ϕ

†
1ϕ1.

Now, we notice that distinguishing the contributions to the λ3 − λ5 terms is difficult,
and we have to carefully choose the background field accordingly. We need to make three
separate choices for the background fields, and from the linear combinations that arise
extract the individual contributions to the scalar couplings.

Our choices for the backgrounds fields are

Case 1 : ϕ1 = 1√
2

(
0
v1

)
, ϕ2 = 1√

2

(
0
v2

)
(5.2)

Case 2 : ϕ1 = 1√
2

(
0
v1

)
, ϕ2 = 1√

2

(
0
iw0

)
(5.3)

Case 3 : ϕ1 = 1√
2

(
0
v1

)
, ϕ2 = 1√

2

(
w+
0

)
. (5.4)

For each case we will diagonalise the mass matrix, and evaluate the integral of the form
of eq. (2.94) to find the scalar contributions to the scalar correlators at zero external
momentum.
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5.1.1 Case 1
We use the expansion of the effective potential in powers of the background fields, eq. (5.1),
together with eq. (5.2) to get

Veff = 1
2V11v

2
1 + 1

2V22v
2
2 + 1

4V1v
4
1 + 1

4V2v
4
2 + 1

4(V3 + V4 + V5)v2
1v

2
2 (5.5)

We see that we cannot distinguish the contributions to V3, V4, or V5, and are only able to
extract the contributions to the sum of them from the expansion of the effective potential.
The divergent part of V1 is absorbed into δλ1, V2 into δλ2, and (V3 + V4 + V5) into
δλ3 + δλ4 + δλ5. The mass matrix can be found by using eq. (3.41), and it takes the form

M2 =



M2
11 0 0 0 M2

15 0 0 0
0 M2

22 0 0 0 M2
26 0 0

0 0 M2
33 0 0 0 M2

37 0
0 0 0 M2

44 0 0 0 M2
48

M2
15 0 0 0 M2

55 0 0 0
0 M2

26 0 0 0 M2
66 0 0

0 0 M2
37 0 0 0 M2

77 0
0 0 0 M2

48 0 0 0 M2
88


(5.6)

where

M2
11 = −1

2m̃
2
11, M2

22 = −1
2m̃

2
11, M2

33 = −1
2m̃

2
11 + λ1v

2
1 + 1

2(λ4 + λ5)v2
2,

M2
44 = −1

2m̃
2
11 + 1

2(λ4 − λ5)v2
2, M2

55 = −1
2m̃

2
22, M2

66 = −1
2m̃

2
22,

M2
77 = −1

2m̃
2
22 + λ2v

2
2 + 1

2(λ4 + λ5)v2
1, M2

88 = −1
2m̃

2
22 + 1

2(λ4 − λ5)v2
1,

M2
15 = 1

2(λ4 + λ5)v1v2, M2
26 = 1

2(λ4 + λ5)v1v2, M2
37 = 2λ+v1v2, M2

48 = λ5v1v2.

We use the same method as in section 3.4 to diagonalise the mass matrix. After diago-
nalising the mass matrix we find the mass terms

m2
1 =m2

2 = −1
4

[
m̃2

11 + m̃2
22 +

√
(m̃2

11 − m̃2
22)2 + 4(λ4 + λ5)2v2

1v
2
2

]
(5.7a)

m2
3 =m2

4 = −1
4

[
m̃2

11 + m̃2
22 −

√
(m̃2

11 − m̃2
22)2 + 4(λ4 + λ5)2v2

1v
2
2

]
(5.7b)

m2
5 =− 1

4

[
m̃2

11 + m̃2
22 − 2(λ1v

2
1 + λ2v

2
2)− (λ4 + λ5)(v2

1 + v2
2)

+
√(

m̃2
11 − m̃2

22 + 2(λ2v2
2 − λ1v2

1) + (λ4 + λ5)(v2
1 − v2

2)
)2

+ 16(λ3 + λ4 + λ5)2v2
1v

2
2

]
(5.7c)

m2
6 =− 1

4

[
m̃2

11 + m̃2
22 − 2(λ1v

2
1 + λ2v

2
2)− (λ4 + λ5)(v2

1 + v2
2)

−
√(

m̃2
11 − m̃2

22 + 2(λ2v2
2 − λ1v2

1) + (λ4 + λ5)(v2
1 − v2

2)
)2

+ 16(λ3 + λ4 + λ5)2v2
1v

2
2

]
(5.7d)
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m2
7 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 − λ5)(v2

1 + v2
2)

+
√(

m̃2
11 − m̃2

22 + (λ4 − λ5)(v2
1 − v2

2)
)2

+ 16λ2
5v

2
1v

2
2

]
(5.7e)

m2
8 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 − λ5)(v2

1 + v2
2)

−
√(

m̃2
11 − m̃2

22 + (λ4 − λ5)(v2
1 − v2

2)
)2

+ 16λ2
5v

2
1v

2
2

]
. (5.7f)

From eq. (2.94) the one-loop contribution to the effective potential from the scalar sector
is

8∑
i=1
CS(mi) =

8∑
i=1

1
2

∫∑
K

log(K2 +m2
i ). (5.8)

Equation (5.8) is evaluated using eqs. (5.7) and (C.15). The term O(m3T ) in eq. (C.15) is
omitted as it comes from the zero mode and thus not from a superheavy mode. This term
will be present in the three-dimensional theory as well, and will cancel when doing the
matching of the three- and four-dimensional theories. By identifying the different terms
in the series expansion eq. (5.5), we find the contributions to the effective potential to be

V11 = T 2

12
[
3λ1 + 2λ3 + λ4

]
(5.9a)

V22 = T 2

12
[
3λ2 + 2λ3 + λ4

]
(5.9b)

V1 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.9c)

V2 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

2 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.9d)

V3 + V4 + V5 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2)(λ3 + 3λ+ + λ−) + 8λ2

+ + (λ4 + λ5)2 + 2λ2
5

]
(5.9e)

where λ± = 1
2(λ3 + λ4 ± λ5) and Lb is defined in eq. (3.16). We leave the determination

of the counterterms to section 5.4.

5.1.2 Case 2
We see that the procedure for finding the contributions from the scalar sector to the effec-
tive potential is quite mechanical. We will follow the exact same steps as in section 5.1.1,
with a slightly different choice for the background fields, eq. (5.3). From the expansion of
the effective potential, eq. (5.1), we have that

Veff = 1
2V11v

2
1 + 1

2V22w
2
0 + 1

4V1v
4
1 + 1

4V2w
4
0 + 1

4(V3 + V4 − V5)v2
1w

2
0. (5.10)

Now we are able to find the contributions from the scalars to the linear combination
V3 + V4 − V5. We absorb the divergent part of V1 into δλ1, V2 into δλ2, and V3 + V4 − V5
into δλ3 + δλ4 − δλ5.
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Using eq. (3.41), we find the mass matrix to be

M2 =



M2
11 0 0 0 0 M2

16 0 0
0 M2

22 0 0 M2
25 0 0 0

0 0 M2
33 0 0 0 0 M2

38
0 0 0 M2

44 0 0 M2
47 0

0 M2
25 0 0 M2

55 0 0 0
M2

16 0 0 0 0 M2
66 0 0

0 0 0 M2
47 0 0 M2

77 0
0 0 M2

38 0 0 0 0 M2
88


(5.11)

where

M2
11 = −1

2m̃
2
11, M2

22 = −1
2m̃

2
11, M2

33 = −1
2m̃

2
11 + λ1v

2
1 + 1

2(λ4 − λ5)w2
0,

M2
44 = −1

2m̃
2
11 + 1

2(λ4 + λ5)w2
0, M2

55 = −1
2m̃

2
22, M2

66 = −1
2m̃

2
22,

M2
77 = −1

2m̃
2
22 + 1

2(λ4 + λ5)v2
1, M2

88 = −1
2m̃

2
22 + λ2w

2
0 + 1

2(λ4 − λ5)v2
1,

M2
16 = 1

2(λ4 − λ5)v1w0, M2
25 = −1

2(λ4 − λ5)v1w0, M2
38 = 2λ−v1w0, M2

47 = λ5v1w0.

After diagonalising the mass matrix, using the method from section 3.4, we find the mass
terms

m2
1 =m2

2 = −1
4

[
m̃2

11 + m̃2
22 +

√
(m̃2

11 − m̃2
22)2 + 4(λ4 − λ5)2v2

1w
2
0

]
(5.12a)

m2
3 =m2

4 = −1
4

[
m̃2

11 + m̃2
22 −

√
(m̃2

11 − m̃2
22)2 + 4(λ4 − λ5)2v2

1w
2
0

]
(5.12b)

m2
5 =− 1

4

[
m̃2

11 + m̃2
22 − 2(λ1v

2
1 + λ2w

2
0)− (λ4 − λ5)(v2

1 + w2
0)

+
√(

m̃2
11 − m̃2

22 + 2(λ2w2
0 − λ1v2

1) + (λ4 − λ5)(v2
1 − w2

0)
)2

+ 16(λ3 + λ4 − λ5)2v2
1w

2
0

]
(5.12c)

m2
6 =− 1

4

[
m̃2

11 + m̃2
22 − 2(λ1v

2
1 + λ2w

2
0)− (λ4 − λ5)(v2

1 + w2
0)

−
√(

m̃2
11 − m̃2

22 + 2(λ2w2
0 − λ1v2

1) + (λ4 − λ5)(v2
1 − w2

0)
)2

+ 16(λ3 + λ4 − λ5)2v2
1w

2
0

]
(5.12d)

m2
7 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 + λ5)(v2

1 + w2
0)

+
√(

m̃2
11 − m̃2

22 + (λ4 + λ5)(v2
1 − w2

0)
)2

+ 16λ2
5v

2
1w

2
0

]
(5.12e)

m2
8 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 + λ5)(v2

1 + w2
0)

−
√(

m̃2
11 − m̃2

22 + (λ4 + λ5)(v2
1 − w2

0)
)2

+ 16λ2
5v

2
1w

2
0

]
. (5.12f)

The contributions to the effective potential from the scalars are
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V11 = T 2

12
[
3λ1 + 2λ3 + λ4

]
(5.13a)

V22 = T 2

12
[
3λ2 + 2λ3 + λ4

]
(5.13b)

V1 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.13c)

V2 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

2 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.13d)

V3 + V4 − V5 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2)(λ3 + λ+ + 3λ−) + 8λ2

− + (λ4 − λ5)2 + 2λ2
5

]
.

(5.13e)

Clearly, the terms V11, V22, V1, and V2 should be the same as in section 5.1.1, and we can
see from eq. (5.9) that they match.

5.1.3 Case 3
With the choice of eq. (5.4), the expansion of the effective potential becomes

Veff = 1
2V11v

2
1 + 1

2V22w
2
+ + 1

4V1v
4
1 + 1

4V2w
4
+ + 1

4V3v
2
1w

2
+. (5.14)

We absorb the divergent part of V1 into δλ1, V2 into δλ2, and V3 into δλ3. The mass
matrix becomes, using eq. (3.41),

M2 =



M2
11 0 0 0 0 0 M2

17 0
0 M2

22 0 0 0 0 0 M2
28

0 0 M2
33 0 M2

35 0 0 0
0 0 0 M2

44 0 0 0 0
0 0 M2

35 0 M2
55 0 0 0

0 0 0 0 0 M2
66 0 0

M2
17 0 0 0 0 0 M2

77 0
0 M2

28 0 0 0 0 0 M2
88


(5.15)

where

M2
11 = −1

2m̃
2
11 + 1

2(λ4 + λ5)w2
+, M2

22 = −1
2m̃

2
11 + 1

2(λ4 − λ5)w2
+,

M2
33 = −1

2m̃
2
11 + λ1v

2
1, M2

44 = −1
2m̃

2
11, M2

55 = −1
2m̃

2
22 + λ2w

2
+, M2

66 = −1
2m̃

2
22,

M2
77 = −1

2m̃
2
22 + 1

2(λ4 + λ5)v2
1, M2

88 = −1
2m̃

2
22 + 1

2(λ4 − λ5)v2
1,

M2
17 = 1

2(λ4 + λ5)v1w+, M2
28 = −1

2(λ4 − λ5)v1w+, M2
35 = λ3v1w+.

The mass terms we find after diagonalising the mass matrix are

m2
1 =− 1

2m̃
2
11 (5.16a)
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m2
2 =− 1

2m̃
2
22 (5.16b)

m2
3 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 + λ5)(v2

1 + w2
+)

+
√(

m̃2
11 − m̃2

22 + (λ4 + λ5)(v2
1 − w2

+)
)2

+ 4(λ4 + λ5)2v2
1w

2
+

]
(5.16c)

m2
4 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 + λ5)(v2

1 + w2
+)

−
√(

m̃2
11 − m̃2

22 + (λ4 + λ5)(v2
1 − w2

+)
)2

+ 4(λ4 + λ5)2v2
1w

2
+

]
(5.16d)

m2
5 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 − λ5)(v2

1 + w2
+)

+
√(

m̃2
11 − m̃2

22 + (λ4 − λ5)(v2
1 − w2

+)
)2

+ 4(λ4 − λ5)2v2
1w

2
+

]
(5.16e)

m2
6 =− 1

4

[
m̃2

11 + m̃2
22 − (λ4 − λ5)(v2

1 + w2
+)

−
√(

m̃2
11 − m̃2

22 + (λ4 − λ5)(v2
1 − w2

+)
)2

+ 4(λ4 − λ5)2v2
1w

2
+

]
(5.16f)

m2
7 =− 1

4

[
m̃2

11 + m̃2
22 − 2(λ1v

2
1 + λ2w

2
+)

+
√(

m̃2
11 − m̃2

22 + 2(λ2w2
+ − λ1v2

1)
)2

+ 16λ2
3v

2
1w

2
+

]
(5.16g)

m2
8 =− 1

4

[
m̃2

11 + m̃2
22 − 2(λ1v

2
1 + λ2w

2
+)

−
√(

m̃2
11 − m̃2

22 + 2(λ2w2
+ − λ1v2

1)
)2

+ 16λ2
3v

2
1w

2
+

]
. (5.16h)

The contributions from the scalars to the effective potential are

V11 = T 2

12
[
3λ1 + 2λ3 + λ4

]
(5.17a)

V22 = T 2

12
[
3λ2 + 2λ3 + λ4

]
(5.17b)

V1 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.17c)

V2 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

2 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.17d)

V3 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

]
. (5.17e)

The first 4 coefficients are the same as in eqs. (5.9) and (5.13), as they should be.

5.1.4 Contribution to the effective potential
Clearly, the contribution to V11, V22, V1, and V2 from sections 5.1.1 to 5.1.3 should match.
This requirement serves as a consistency check for our calculations. In order to find
the contributions to V3, V4, and V5, we have to solve the system of three equations and
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three unknowns, eqs. (5.9e), (5.13e) and (5.17e). To summarise, the contributions to the
effective potential from the scalars are

V11 = T 2

12 (3λ1 + 2λ3 + λ4) (5.18a)

V22 = T 2

12 (3λ2 + 2λ3 + λ4) (5.18b)

V1 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.18c)

V2 = − 1
(4π)2

(1
ε

+ Lb

)[
3λ2

2 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.18d)

V3 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

]
(5.18e)

V4 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2 + 4λ3 + 2λ4)λ4 + 4λ2

5

]
(5.18f)

V5 = − 1
(4π)2

(1
ε

+ Lb

)[
λ5(λ1 + λ2 + 4λ3 + 6λ4)

]
. (5.18g)

Notice the term 4λ2
5 in eq. (5.18f) and the overall factor in eq. (5.18g). The term 4λ2

5
will be present in both the β-function βλ4 in eq. (5.39d) and in the three-dimensional
scalar coupling Λ4 in eq. (6.57). The overall factor in eq. (5.18g) will go through to the
β-function βλ5 in eq. (5.39e) and in the three-dimensional scalar coupling Λ5 in eq. (6.58).
We can compare our results for the β-functions with the results from the review article
on the 2HDM [78], and conclude that our results agree. We can also compare our results
for the three-dimensional couplings Λ4 and Λ5 with the results from a paper by Losada
on dimensional reduction of the Minimal Supersymmetric Standard Model (MSSM) and
other multiscalar models, therein the 2HDM [25]. Our results are very similar, except for
the term 4λ2

5 and the overall factor in eq. (5.18g). The paper by Losada disagrees with our
results by a factor of 2 in both cases. As our results agree with the review paper [78], and
the factor trivially goes through for the calculation of the three-dimensional couplings,
we conclude that the results found by Losada are incorrect. The paper on dimensional
reduction of the 2HDM by Andersen [27] quotes the results found by Losada, and thus
have the same incorrect expressions.

5.2 Gauge boson sector
The scalar fields are coupled to the gauge fields through the covariant derivative, DµΦ†iDµΦi,
where i = 1, 2. We proceed to shift the scalar field by some constant background fields,
Φi → Φi + ϕi, and drop terms linear in the fields Aaµ, Bµ and Φi, due to the equations of
motion for the background fields,

DµΦ†1DµΦ1 +DµΦ†2DµΦ2 →DµΦ†1DµΦ1 +DµΦ†2DµΦ2

+ ig

2
~Aµ

[
ϕ†1~τ∂µΦ1 − ∂µΦ†1~τϕ1 + ϕ†2~τ∂µΦ2 − ∂µΦ†2~τϕ2

]
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+ ig′

2 Bµ

[
ϕ†1∂µΦ1 − ∂µΦ†1ϕ1 + ϕ†2∂µΦ2 − ∂µΦ†2ϕ2

]
+ 1

4(ϕ†1ϕ1 + ϕ†2ϕ2)
[
g2 ~Aµ ~Aµ + g′2BµBµ

]
+ 1

2gg
′Bµ

~Aµ

[
ϕ†1~τϕ1 + ϕ†2~τϕ2

]
.

Notice the coupling between the gauge bosons and the scalars; a gauge boson can spon-
taneously turn into a scalar and vice versa. This is not desirable, and we remove it by
introducing a gauge fixing term, using the Faddeev-Popov gauge-fixing procedure. We
then choose the class of gauges called the Rξ gauge. We must also include ghost fields,
with new ghost interactions and ghost mass terms, all proportional to ξ. When we go
to the Landau gauge, ξ = 0, the ghost interactions and masses vanish. As there is no
bilinear mixing between the ghosts and the gauge bosons, we can safely go to the Landau
gauge in the ghost sector. When calculating the sum-integral for the effective potential,
eq. (2.95), we drop an infinite constant when using the Landau gauge.

We will focus on the part contributing to the mass of the gauge bosons,

1
4(ϕ†1ϕ1 + ϕ†2ϕ2)

[
g2 ~Aµ ~Aµ + g′2BµBµ

]
+ 1

2gg
′Bµ

~Aµ

[
ϕ†1~τϕ1 + ϕ†2~τϕ2

]
. (5.19)

We will use the same three choices for the background fields, as in the preceding section.

5.2.1 Case 1
We will illustrate the method of finding the masses of the gauge bosons here in detail.
Recall the first choice of the background fields, eq. (5.2). Equation (5.19) simplifies to

1
8(v2

1 + v2
2)
[
g2 ~Aµ ~Aµ + g′2BµBµ

]
− 1

4(v2
1 + v2

2)gg′BµA3,µ. (5.20)

We see that A1/2,µ have a mass of M2
W = 1

4g
2(v2

1 + v2
2), while A3,µ and Bµ are mixing.

After finding the eigenvalues of the corresponding 2×2 matrix, we find one massless gauge
boson (the photon), and one with mass M2

Z = 1
4(g2 + g′2)(v2

1 + v2
2). By the labelling of the

masses we have preluded to identifying the gauge bosons with the massive W±, Z0 gauge
bosons, and the photon γ. The gauge bosons contributing to the effective potential are
W± and Z0, with masses

M2
W = 1

4g
2(v2

1 + v2
2) (5.21)

M2
Z = 1

4(g2 + g′2)(v2
1 + v2

2). (5.22)

The photon does not contribute to the effective potential, since it is massless. From
eq. (2.95) the total contribution to the effective potential from the gauge sector is

2CV (MW ) + CV (MZ) =2C3d
V (MW ) + C3d

V (MZ)
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+
[2M2

W +M2
Z

8 T 2 − 2M4
W +M4

Z

4(4π)2

(3
ε

+ 3Lb − 2
)]

+O(M6/T 2).

(5.23)

The contributions labelled by C3d
V are the terms O(m3T ), and come from the zero modes,

which are also present in the three-dimensional theory. As this contribution will cancel
in the matching of the three- and four-dimensional theory in dimensional reduction, we
omit it.

The expansion of the effective potential in terms of the background fields is the same
as eq. (5.5). By identifying the different terms in the expansion, we find the contributions
to the effective potential to be

V11 = 1
16(3g2 + g′2)T 2 (5.24a)

V22 = 1
16(3g2 + g′2)T 2 (5.24b)

V1 = − 1
16(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2) (5.24c)

V2 = − 1
16(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2) (5.24d)

V3 + V4 + V5 = − 1
8(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2). (5.24e)

The divergences will be absorbed by the counterterms, similar to section 5.1.1.

5.2.2 Case 2
Following the same procedure as in section 5.2.1, but with a different choice of background
field, eq. (5.3), we arrive at the same result. We got two massive, charged gauge bosons,
one massive, neutral gauge boson, and one massless, neutral gauge boson. The mass of
the W± and Z0 are

M2
W = 1

4g
2(v2

1 + w2
0) (5.25)

M2
Z = 1

4(g2 + g′2)(v2
1 + w2

0), (5.26)

respectively. The contributions to the effective potential from the gauge sector are exactly
the same as in section 5.2.1,

V11 = 1
16(3g2 + g′2)T 2 (5.27a)

V22 = 1
16(3g2 + g′2)T 2 (5.27b)

V1 = − 1
16(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2) (5.27c)

V2 = − 1
16(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2) (5.27d)
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V3 + V4 − V5 = − 1
8(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2). (5.27e)

As the eqs. (5.24) and (5.27) are exactly the same, we see that the contribution from the
gauge bosons to V5 vanishes.

5.2.3 Case 3
Lastly, with the choice of eq. (5.4) we get four massive gauge bosons. The mass spectrum
is now

M2
W = 1

4g
2(v2

1 + w2
+) (5.28)

M2
± = 1

8

[
(g2 + g′2)(v2

1 + w2
+)±

√
(g2 − g′2)2(v2

1 + w2
+)2 + 4g2g′2(v2

1 − w2
+)2

]
, (5.29)

with the two usual charged gauge bosons W± having the same mass as in sections 5.2.1
and 5.2.2, while the masses of the two neutral gauge bosons mix. The total contribution
to the effective potential from the gauge sector is

2CV (MW ) + CV (M+) + CV (M−) = 2C3d
V (MW ) + C3d

V (M+) + C3d
V (M−)

+
[2M2

W +M2
+ +M2

−
8 T 2 −

2M4
W +M4

+ +M4
−

4(4π)2

(3
ε

+ 3Lb − 2
)]

+O(M6/T 2). (5.30)

Again, omitting the zero mode, we find the contributions to the expansion in eq. (5.14)
to be

V11 = 1
16(3g2 + g′2)T 2 (5.31a)

V22 = 1
16(3g2 + g′2)T 2 (5.31b)

V1 = − 1
16(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2) (5.31c)

V2 = − 1
16(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 + 2g2g′2) (5.31d)

V3 = − 1
8(4π)2

(3
ε

+ 3Lb − 2
)

(3g4 + g′4 − 2g2g′2). (5.31e)

We can find V4 by using eqs. (5.24e), (5.27e) and (5.31e).

5.2.4 Contribution to the effective potential
We summarise the results from sections 5.2.1 to 5.2.3. Again, V11, V22, V1, and V2 should
match for consistency. The different contributions to the effective potential from the
gauge sector are

V11 = 1
16(3g2 + g′2)T 2 (5.32a)
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V22 = 1
16(3g2 + g′2)T 2 (5.32b)

V1 = − 1
16(4π)2

[3
ε

+ 3Lb − 2
](

3g4 + g′4 + 2g2g′2
)

(5.32c)

V2 = − 1
16(4π)2

[3
ε

+ 3Lb − 2
](

3g4 + g′4 + 2g2g′2
)

(5.32d)

V3 = − 1
8(4π)2

[3
ε

+ 3Lb − 2
](

3g4 + g′4 − 2g2g′2
)

(5.32e)

V4 = − g2g′2

2(4π)2

[3
ε

+ 3Lb − 2
]

(5.32f)

V5 = 0. (5.32g)

The counterterms are discussed in section 5.4.

5.3 Fermions
The fermion fields are coupled to Φ1 in the fermiophobic 2HDM through their mass term,
LYukawa, and are not affected by the choice of gauge. As the fermion fields only couple to
the Φ1 Higgs field, the parts affected by the fermion fields are V11 and V1. Again, we shift
the scalar fields by a background field. We do not need to distinguish the contributions
to V3−5 as they are zero, and we simply use eq. (5.2). Using eq. (2.96), the contributions
to the effective potential from the fermion sector are

V11 = T 2

12 g
2
Y,1 (5.33)

V1 = 1
(4π)2

(1
ε

+ Lf

)
G4
Y,1 (5.34)

with the rest being zero. The definitions of g2
Y,1, G4

Y,1, and Lf are given in eqs. (3.11),
(3.15) and (3.17).

5.4 Effective potential
We sum up the contributions to the effective potential from the scalars, gauge bosons, and
fermions. The parts of the effective potential quadratic and quartic in the background
fields take the form

Veff =V11ϕ
†
1ϕ1 + V22ϕ

†
2ϕ2 + V1

[
ϕ†1ϕ1

]2
+ V2

[
ϕ†2ϕ2

]2
+ V3

[
ϕ†1ϕ1

][
ϕ†2ϕ2

]
+ V4

[
ϕ†1ϕ2

][
ϕ†2ϕ1

]
+ V5

2

[[
ϕ†1ϕ2

]2
+
[
ϕ†2ϕ1

]2]
(5.35)

where

V11 =T
2

12

[9
4g

2 + 3
4g
′2 + 3λ1 + 2λ3 + λ4 + g2

Y,1

]
(5.36a)
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V22 =T
2

12

[9
4g

2 + 3
4g
′2 + 3λ2 + 2λ3 + λ4

]
(5.36b)

V1 =− 1
16(4π)2

[3
ε

+ 3Lb − 2
](

3g4 + g′4 + 2g2g′2
)

− 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1 + 1
2λ

2
3 + λ2

+ + λ2
−

]
+ 1

(4π)2

(1
ε

+ Lf

)
G4
Y,1 (5.36c)

V2 =− 1
16(4π)2

[3
ε

+ 3Lb − 2
](

3g4 + g′4 + 2g2g′2
)

− 1
(4π)2

(1
ε

+ Lb

)[
3λ2

2 + 1
2λ

2
3 + λ2

+ + λ2
−

]
(5.36d)

V3 =− 1
8(4π)2

[3
ε

+ 3Lb − 2
](

3g4 + g′4 − 2g2g′2
)

− 1
(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

]
(5.36e)

V4 =− g2g′2

2(4π)2

(3
ε

+ 3Lb − 2
)
− 1

(4π)2

(1
ε

+ Lb

)[
(λ1 + λ2 + 4λ3 + 2λ4)λ4 + 4λ2

5

]
(5.36f)

V5 =− 1
(4π)2

(1
ε

+ Lb

)[
λ5(λ1 + λ2 + 4λ3 + 6λ4)

]
. (5.36g)

We can read off the counterterms for the scalar sector directly from the effective potential,

δλ1 = 1
(4π)2ε

[9
8g

4 + 3
8g
′4 + 3

4g
2g′2 + 6λ2

1 + λ2
3 + 2λ2

+ + 2λ2
− − 2G4

Y,1

]
(5.37a)

δλ2 = 1
(4π)2ε

[9
8g

4 + 3
8g
′4 + 3

4g
2g′2 + 6λ2

2 + λ2
3 + 2λ2

+ + 2λ2
−

]
(5.37b)

δλ3 = 1
(4π)2ε

[9
8g

4 + 3
8g
′4 − 3

4g
2g′2 + (λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

]
(5.37c)

δλ4 = 1
(4π)2ε

[3
2g

2g′2 + (λ1 + λ2 + 4λ3 + 2λ4)λ4 + 4λ2
5

]
(5.37d)

δλ5 = 1
(4π)2ε

[
λ5(λ1 + λ2 + 4λ3 + 6λ4)

]
. (5.37e)

The definitions of the counterterms are given in section 3.1.1.

5.5 β-functions
We are now in a position to calculate the β-functions for the scalar couplings. We follow
the procedure of section 2.2. First we calculate the quantities fλi

,

fλ1 =Residue of simple 1
ε

of
{
δλ1 −

λ1

2
[
4δZφ1

]}
= 1

(4π)2

[9
8g

4 + 3
8g
′4 + 3

4g
2g′2 + 6λ2

1 + λ2
3 + 2λ2

+ + 2λ2
−
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− 2G4
Y,1 −

3
2λ1(3g2 + g′2) + 2λ1g

2
Y,1

]
(5.38a)

fλ2 =Residue of simple 1
ε

of
{
δλ2 −

λ2

2
[
4δZφ2

]}
= 1

(4π)2

[9
8g

4 + 3
8g
′4 + 3

4g
2g′2 + 6λ2

2 + λ2
3 + 2λ2

+ + 2λ2
− −

3
2λ2(3g2 + g′2)

]
(5.38b)

fλ3 =Residue of simple 1
ε

of
{
δλ3 −

λ3

2
[
2δZφ1 + 2δZφ2

]}
= 1

(4π)2

[9
8g

4 + 3
8g
′4 − 3

4g
2g′2 + (λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

− 3
2λ3(3g2 + g′2) + λ3g

2
Y,1

]
(5.38c)

fλ4 =Residue of simple 1
ε

of
{
δλ4 −

λ4

2
[
2δZφ1 + 2δZφ2

]}
= 1

(4π)2

[3
2g

2g′2 + λ4(λ1 + λ2 + 4λ3 + 2λ4) + 4λ2
5 −

3
2λ4(3g2 + g′2) + λ4g

2
Y,1

]
(5.38d)

fλ5 =Residue of simple 1
ε

of
{
δλ5 −

λ5

2
[
2δZφ1 + 2δZφ2

]}
= 1

(4π)2

[
λ5(λ1 + λ2 + 4λ3 + 6λ4)− 3

2λ5(3g2 + g′2) + λ5g
2
Y,1

]
. (5.38e)

In the limit d→ 3, we have that

βλ1 = 1
(4π)2

[9
4g

4 + 3
4g
′4 + 3

2g
2g′2 + 12λ2

1 + 2λ2
3 + 4λ2

+ + 4λ2
−

− 4G4
Y,1 − 3λ1(3g2 + g′2) + 4λ1g

2
Y,1

]
(5.39a)

βλ2 = 1
(4π)2

[9
4g

4 + 3
4g
′4 + 3

2g
2g′2 + 12λ2

2 + 2λ2
3 + 4λ2

+ + 4λ2
− − 3λ2(3g2 + g′2)

]
(5.39b)

βλ3 = 1
(4π)2

[9
4g

4 + 3
4g
′4 − 3

2g
2g′2 + 2(λ1 + λ2)(3λ3 + λ4) + 2(2λ2

3 + λ2
4 + λ2

5 + λ3g
2
Y,1)

− 3λ3(3g2 + g′2)
]

(5.39c)

βλ4 = 1
(4π)2

[
3g2g′2 + 2λ4(λ1 + λ2 + 4λ3 + 2λ4) + 8λ2

5 − 3λ4(3g2 + g′2) + 2λ4g
2
Y,1

]
(5.39d)

βλ5 = 1
(4π)2

[
2λ5(λ1 + λ2 + 4λ3 + 6λ4)− 3λ5(3g2 + g′2) + 2λ5g

2
Y,1

]
. (5.39e)

In the review article on the 2HDM [78], the β-functions for the scalar couplings are listed,
in agreement with our results.
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CHAPTER 6

DIMENSIONAL REDUCTION

In the high temperature limit, a four-dimensional theory can be described by an effective
three-dimensional theory, with all non-static modes integrated out. This method is called
dimensional reduction [28]. We will follow the program of finding the effective three-
dimensional theories of simple extensions of the SM, outlined in ref. [26].

We recall our discussion of a theory at finite temperature, where the action takes the
form

S =
∫ β

0
dτ
∫
d3xL, (6.1)

where L is the Lagrangian and β = 1/T is the inverse temperature. In the imaginary-time
formalism (see section 2.1.2) the bosonic (fermionic) fields obey periodic (antiperiodic)
boundary conditions in the Euclidean time direction, which leads to the field expansions
(eqs. (2.23) and (2.24))

Φ(x, τ) =
√
T

∞∑
n=−∞

φn(x)eiωB
n τ (6.2)

Ψ(x, τ) =
√
T

∞∑
n=−∞

ψn(x)eiωF
n τ , (6.3)

where Φ and Ψ are the bosonic and fermionic fields, respectively. The respective Mat-
subara frequencies are ωBn = 2nπT and ωFn = (2n + 1)πT , where n ∈ Z. All non-static
modes, i.e. all ψn and φn except φ0 receive a thermal mass of order πT , and, in the high-
temperature limit, may be integrated out. We are left with an effective three-dimensional
theory with static bosonic modes. We can perform the dimensional reduction in two steps,
integrating first out the superheavy modes, then integrating out the heavy modes. We
will only do the first step, of integrating out the superheavy modes, and let the second
step be a part of the outlook.
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6.1 Integrating out the superheavy modes
We will focus on a model where both scalar Higgs doublets are either heavy or light. All
the fermionic and non-zero bosonic modes are integrated out first.

We write down the most general three-dimensional theory, which respects the under-
lying symmetries. The Lagrangian takes the form

L(3) = L(3)
scalar + L(3)

spatial + L(3)
temporal + L(3)

ghost + δL(3). (6.4)

We include only the U(1)Y and SU(2)L gauge fields, i.e. we ignore the SU(3) gauge fields
as they decouple from the second Higgs doublet, Φ2, and thus behave exactly the same
way as in the SM at one-loop. Thus, the gauge sector of the Lagrangian reads

L(3)
spatial = 1

4G
a
rsG

a
rs + 1

4FrsFrs, r, s = 1, . . . , 3. (6.5)

The couplings are denoted by g′3 and g3 for the U(1)Y and SU(2)L, respectively. The
Lorentz symmetry has been broken by the heat bath, but the smaller O(3) symmetry of
the spatial gauge fields is preserved. We will not explicitly consider L(3)

ghost or δL(3), as
they are irrelevant for the discussion below.

The scalar part preserves the structure of the full four-dimensional theory, with some
minor modifications,

L(3)
scalar = DrΦ†1DrΦ1 +DrΦ†2DrΦ2 −

1
2µ

2
1Φ†1Φ1 −

1
2µ

2
2Φ†2Φ2 + Λ1

2 (Φ†1Φ1)2 + Λ2

2 (Φ†2Φ2)2

+Λ3(Φ†1Φ1)(Φ†2Φ2) + Λ4(Φ†1Φ2)(Φ†2Φ1) + Λ5

2
[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
.

(6.6)

Notice that the covariant derivative has only a spatial index. As for the temporal part of
the gauge fields, we have that

L(3)
temporal =1

2(DrA
a
0)2 + 1

2(∂rB0)2 + 1
2m

2
D(Aa0)2 + 1

2m
′2
DB

2
0

+ 1
4κ1(Aa0)4 + 1

4κ2B
4
0 + 1

4κ3(Aa0)2B2
0 + h1Φ†1Φ1(Aa0)2 + h2Φ†2Φ2(Aa0)2

+ h3Φ†1Φ1B
2
0 + h4Φ†2Φ2B

2
0 + h5B0Φ†1 ~A0 · ~τΦ1 + h6B0Φ†2 ~A0 · ~τΦ2, (6.7)

where the covariant derivative of the adjoint temporal gauge field is DrA
a
0 = ∂rA

a
0 +

gεabcAbrA
c
0. We have maintained the same notation for the fields for simplicity. Our goal

is to determine the parameters of the effective three-dimensional theory in terms of the
parameters of the original four-dimensional theory.

6.1.1 Thermal masses
Firstly, we determine the thermal masses of the temporal component of the gauge bosons.
The mass parameters of the temporal gauge fields at leading order are simply the static
limit of the two-point correlators, found in eqs. (4.1) and (4.5),
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6.1 Integrating out the superheavy modes

m′2D = g′2(d− 1)
[
Nh + 1

2(1− 22−d)
∑
f

Y 2
f

]
I4b

1

= g′2
[
Nh

6 + Nf

4

(
1 +Nc

11
27

)]
T 2 = 2g′2T 2 (6.8)

m2
D = g2(d− 1)

[
2(d− 1) +Nh + (1− 22−d)

∑
left

]
I4b

1

= g2
[2
3 + Nh

6 + 1
12Nf (1 +Nc)

]
T 2 = 2g2T 2, (6.9)

where Nf is the number of lepton families, Nh is the number of Higgs doublets, and Nc is
the number of colours. In the last step in eqs. (6.8) and (6.9) we used the 2HDM specifics
in eq. (3.18) and let d → 3. For the three-dimensional scalar fields, the squared masses
receive a thermal contribution

µ2
1 = m2

11 −
T 2

6

[9
4g

2 + 3
4g
′2 + 3λ1 + 2λ3 + λ4 + g2

Y,1

]
(6.10)

µ2
2 = m2

22 −
T 2

6

[9
4g

2 + 3
4g
′2 + 3λ2 + 2λ3 + λ4

]
, (6.11)

where we used the effective potential in eqs. (5.36a) and (5.36b). Note that both the
temporal gauge fields and the scalars receive a thermal mass of order O(gT ), in agreement
with our discussion on thermal masses from section 2.1.3.

6.1.2 Field renormalisation
Secondly, we relate the three-dimensional fields to their four-dimensional counterparts,
denoted by the lower indices 3d and 4d, respectively. We have the general relation [28]

Ψ2
3d = Ψ2

4d
T

[1 + Π′Ψ(0) + δZΨ], (6.12)

where ΠΨ(K) is the self-energy of the field Ψ, and the prime denotes a derivative with
respect to K2. δZΨ is the field renormalisation counterterm. For the U(1)Y gauge field
we use eqs. (4.1), (4.3) and (6.12)

B2
3d,0 =

B2
4d,0

T

{
1 + g′2

(4π)2

[1
6Nh(Lb + 2) + 20

9 Nf (Lf − 1)
]}

(6.13)

B2
3d,i =

B2
4d,i

T

[
1 + g′2

(4π)2

(1
6NhLb + 20

9 NfLf

)]
, (6.14)

where Lb and Lf are defined in eqs. (3.16) and (3.17), respectively. Note that the diver-
gences from the self-energy and the field renormalisation counterterm must cancel. This
is a non-trivial check of the correctness of our calculations.

As for the SU(2)L gauge field, we use eqs. (4.5), (4.7) and (6.12)

A2
3d,0 =

A2
4d,0

T

{
1 + g2

(4π)2

[
−26−Nh

6 Lb + 8 +Nh

3 + 4
3Nf (Lf − 1)

]}
(6.15)
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A2
3d,i =

A2
4d,i

T

[
1 + g2

(4π)2

(
− 26−Nh

6 Lb −
2
3 + 4

3NfLf

)]
. (6.16)

The Higgs fields can be found in a similar fashion, using eqs. (4.11) to (4.14) and (6.12),

(Φ†1Φ1)3d = (Φ†1Φ1)4d

T

[
1− 1

(4π)2

(9
4g

2 + 3
4g
′2
)
Lb +

g2
Y,1

(4π)2Lf

]
(6.17)

(Φ†2Φ2)3d = (Φ†2Φ2)4d

T

[
1− 1

(4π)2

(9
4g

2 + 3
4g
′2
)
Lb

]
, (6.18)

where g2
Y,1 is defined in eq. (3.11).

6.1.3 Couplings
The matching prescription is that the correlators of the three- and four-dimensional the-
ories should be the same at zero external momentum.

The gauge couplings
We will determine the gauge couplings g3 and g′3 by matching the correlators computed in
the four-dimensional and three-dimensional theory. We will use the correlators of the bare
four-dimensional fields calculated in section 4.2 and the wave function renormalisation and
coupling counterterms from section 4.4.

The SU(2)L coupling g3 will be found by using the correlator with two scalar legs
and two spatial gauge field legs. The three-dimensional and four-dimensional theories are
matched by equating

Φ†,i3d,1Φj
3d,1A

a
3d,rA

b
3d,s

(
− 1

2g
2
3δijδabδrs

)
= 1
T

Φ†,i4d,1(b)Φ
j
4d,1(b)A

a
4d,r(b)A

b
4d,s(b)δijδabδrs

[
− 1

2(g2 + δg2)

+
(
− 3

8g
4 + 3

8g
2g′2 − 1

2(24−d − 1)g2g2
Y,1

)
I4b

2

]
, (6.19)

where δg2 = 2gδg. After some algebra we find the three-dimensional coupling to be

g2
3 = g2(µ)T

[
1 + g2

(4π)2

(44−Nh

6 Lb + 2
3 −

4Nf

3 Lf

)]
. (6.20)

We have indicated that the four-dimensional coupling, but not the three-dimensional
coupling, is dependent on the renormalisation scale µ. We can use the renormalisation
group equation, eq. (2.43), to verify that the three-dimensional coupling g3 is independent
of µ. All other three-dimensional couplings discussed below follow the same pattern. We
can use the criterion that the three-dimensional couplings should be independent of the
renormalisation scale as another non-trivial check of the correctness of our calculations.

To find the three-dimensional coupling g′3, we use a similar procedure, by using the
correlator with two scalar legs and two spatial gauge field legs. We match the two theories
by equating
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6.1 Integrating out the superheavy modes

Φ†,i3d,2Φj
3d,2B3d,rB3d,s

(
− 1

2g
′2
3 δijδrs

)
= 1
T

Φ†,i4d,2(b)Φ
j
4d,2(b)B4d,r(b)B4d,s(b)δijδrs

[
− 1

2(g′2 + δg′2) +
(3

8g
′4 + 9

8g
2g′2

)
I4b

2

]
. (6.21)

It does not matter if we use the correlator with Φ1 or Φ2 as the external scalar legs, the
result should be the same. This is a check of consistency of the results. The final result
for the coupling g′3 is

g′23 = g′2(µ)T
[
1− g′2

(4π)2

(1
6NhLb + 20

9 NfLf

)]
. (6.22)

The couplings g3 and g′3 could also have been found using the four-point correlators of the
gauge fields, yielding the same result. However, the calculation is sightly more involved.

Matching of the temporal gauge field self-couplings
The coupling constants for the temporal part of the gauge fields are found by matching
the four-point functions of the four-dimensional and three-dimensional theories at zero
external momentum. As the self-coupling of the temporal gauge fields is prohibited in
the four-dimensional theory at tree-level, the corrections will come at order O(g4), and
therefore the wave function renormalisation does not contribute. For the U(1)Y gauge
field we have that

− 6κ2(B3d,0)4 = 1
T
B4

0
1
2(d− 1)(d− 3)

[
Nh + 1

2(1− 24−d)
∑
f

Y 4
f

]
g′4I4b

2 . (6.23)

Thus, we find that

κ2 = T
g′4

(4π)2

[
Nh

3 −
1
6
∑
f

Y 4
f

]
= T

g′4

(4π)2

[
Nh

3 −
380
81 Nf

]
. (6.24)

Similarly, we find that

κ1 = T
g4

(4π)2

[16 +Nh − 4Nf

3

]
(6.25)

κ3 = T
g2g′2

(4π)2

[
2Nh − 2Nf (Y 2

l +NcY
2
q )
]
. (6.26)

We see that the couplings κ1, κ2 and κ3 are automatically independent of the renormali-
sation scale up to the order of accuracy of our calculations.

Matching the Higgs-gauge field couplings
We use the correlators with two scalar legs and two temporal gauge field legs to determine
the the Higgs - gauge field couplings,
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Φ†,i3d,1Φj
3d,1A

a
3d,0A

b
3d,0

(
− 2h1δijδab

)
= 1
T

Φ†,i4d,1(b)Φ
j
4d,1(b)A

a
4d,0(b)A

b
4d,0(b)δijδab

[
− 1

2(g2 + δg2)

+ g2
((
− 25

8 + d
)
dg2 − (3− d)

(3
2λ1 + λ3 + 1

2λ4
)

+ 1
8dg

′2

− 1
2(24−d − 1)(d− 2)g2

Y,1

)
I4b

2

]
, (6.27)

where g2
Y,1 is defined in eq. (3.11). The three-dimensional coupling becomes

h1 = T
{
g2(µ)

4 + g2

4(4π)2

[(44−Nh

6 Lb + 53− 2Nh

6 − 4
3Nf (Lf − 1)

)
g2 + 1

2g
′2 − 2g2

Y,1

+6λ1 + 4λ3 + 2λ4

]}
.

(6.28)

The correlator with two scalar Φ2 legs and two SU(2)L legs takes a very similar form,

h2 = T
{
g2(µ)

4 + g2

4(4π)2

[ (44−Nh

6 Lb + 53− 2Nh

6 − 4
3Nf (Lf − 1)

)
g2 + 1

2g
′2

+6λ2 + 4λ3 + 2λ4

]}
. (6.29)

Similarly, the couplings h3 and h4 are found by using the correlator with two U(1)Y gauge
boson field legs and two scalar legs, Φ1 and Φ2, respectively,

h3 =T
{
g′2(µ)

4 − g′2

4(4π)2

[(1
6NhLb + 2Nh − 3

6 + 20
9 Nf (Lf − 1)

)
g′2 − 3

2g
2 + 2g2

Y,2

− 6λ1 − 4λ3 − 2λ4

]}
(6.30)

h4 =T
{
g′2(µ)

4 − g′2

4(4π)2

[(1
6NhLb + 2Nh − 3

6 + 20
9 Nf (Lf − 1)

)
g′2 − 3

2g
2

− 6λ2 − 4λ3 − 2λ4

]}
(6.31)

where we have defined g2
Y,2 in eq. (3.12). The last scalar-gauge field couplings are h5

and h6, which can be extracted from the correlator with two scalar legs, Φ1 and Φ2,
respectively, and two different gauge field legs,

h5 =T
{
g(µ)g′(µ)

2 + gg′

2(4π)2

[
2(λ1 + λ4) + g2

(44−Nh

12 Lb −
5 +Nh

6 − 2
3Nf (Lf − 1)

)
+ g′2

(
− 1

12NhLb + 3−Nh

6 − 10
9 Nf (Lf − 1)

)
+ 2g2

Y,3

]}
(6.32)
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h6 =T
{
g(µ)g′(µ)

2 + gg′

2(4π)2

[
2(λ2 + λ4) + g2

(44−Nh

12 Lb −
5 +Nh

6 − 2
3Nf (Lf − 1)

)
+ g′2

(
− 1

12NhLb + 3−Nh

6 − 10
9 Nf (Lf − 1)

)]}
(6.33)

where g2
Y,3 is defined in eq. (3.13). All the three-dimensional couplings should be inde-

pendent of the renormalisation scale.

Matching of the scalar couplings
In a similar fashion, we find the scalar coupling constants in the three-dimensional the-
ory by using the scalar correlators at zero external momentum found from the effective
potential. The three-dimensional couplings take the form

Λ1 =T
[
λ1(µ) + 1

4(4π)2

(
3g4 + g′4 + 2g2g′2 + 8Lf (G4

Y,1 − λ1g
2
Y,1)

)
− 2Lb

(4π)2

( 9
16g

4 + 3
16g

′4 + 3
8g

2g′2 + 3λ2
1 + 1

2λ
2
3 + λ2

+ + λ2
− −

3
4λ1(3g2 + g′2)

)]
(6.34a)

Λ2 =T
[
λ2(µ) + 1

4(4π)2

(
3g4 + g′4 + 2g2g′2

)
− 2Lb

(4π)2

( 9
16g

4 + 3
16g

′4 + 3
8g

2g′2 + 3λ2
2 + 1

2λ
2
3 + λ2

+ + λ2
− −

3
4λ2(3g2 + g′2)

)]
(6.34b)

Λ3 =T
[
λ3(µ) + 1

4(4π)2

(
3g4 + g′4 − 2g2g′2 − 4Lfλ3g

2
Y,1

)
− Lb

(4π)2

(9
8g

4 + 3
8g
′4 − 3

4g
2g′2 + (λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5

− 3
2λ3(3g2 + g′2)

)]
(6.34c)

Λ4 =T
[
λ4(µ) + 1

(4π)2

(
g2g′2 − Lfλ4g

2
Y,1

− Lb
(3

2g
2g′2 + (λ1 + λ2 + 4λ3 + 2λ4)λ4 + 4λ2

5 −
3
2λ4(3g2 + g′2)

))]
(6.34d)

Λ5 =T
[
λ5(µ)− 1

(4π)2

(
Lfλ5g

2
Y,1 + Lb

(
λ5(λ1 + λ2 + 4λ3 + 6λ4)− 3

2Lbλ5(3g2 + g′2)
))]

(6.34e)

where we used eqs. (5.36c) to (5.36g) and the field renormalisations eqs. (4.13) and (4.14).
We have checked that the three-dimensional couplings are independent of the renormali-
sation scale.

Mass-mixing
We now include the mass-mixing term in the Lagrangian which softly breaks the Z2
symmetry,
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Lmix = −1
2(m2

12Φ†1Φ2 + h.c.), (6.35)

and treat it as a perturbation. All correlators should be re-evaluated to include contribu-
tions from the mass-mixing term. However, at one-loop only the Φ†1Φ2 and its Hermitian
conjugate correlator are affected by the mass-mixing term. All other correlators are af-
fected by the mass-mixing terms at higher orders.

We match the three- and four-dimensional two-point correlators at vanishing external
momentum,

(
−1

2µ
2
12

)
(Φ†1Φ2)3d = 1

T

(
−1

2m
2
12 −

1
2δm

2
12 − V12

)
(Φ†1(b)Φ2(b)), (6.36)

where V12 is the the correlator calculated in eq. (4.15). We use the mass-mixing countert-
erm from eq. (4.16), the correlator from eq. (4.15) and field renormalisation counterterms
from eqs. (4.13) and (4.14), and we end up with

µ2
12 = m2

12 −
[
(λ3 + 2λ4)m2

12 + 3λ5m
∗2
12 −

(9
4g

2 + 3
4g
′2
)
m2

12

]
Lb

(4π)2 −
g2
Y,1m

2
12

2(4π)2 Lf . (6.37)

The three-dimensional mass-mixing term should be independent of the renormalisation
scale. This requirement serves as an independent check for the correctness of our calcu-
lations.

6.1.4 Summary of one-loop matching relations
We here summarise the one-loop matching relations previously obtained, for the reader’s
convenience. The number of fermion families Nf and the number of Higgs doublets Nh

are kept unspecified wherever applicable.

m2
D =g2

[2
3 + 1

6Nh + 1
3Nf

]
T 2 (6.38)

m′2D =g′2
[1
6Nh + 5

9Nf

]
T 2 (6.39)

µ2
1 =m2

11 −
T 2

6

[9
4g

2 + 3
4g
′2 + 3λ1 + 2λ3 + λ4 + g2

Y,1

]
(6.40)

µ2
2 =m2

22 −
T 2

6

[9
4g

2 + 3
4g
′2 + 3λ2 + 2λ3 + λ4

]
(6.41)

µ2
12 =m2

12 −
[
(λ3 + 2λ4)m2

12 + 3λ5m
∗2
12 −

(9
4g

2 + 3
4g
′2
)
m2

12

]
Lb

(4π)2 −
g2
Y,1m

2
12

2(4π)2 Lf (6.42)

g2
3 =T

[
g2(µ) + g4

(4π)2

(44−Nh

6 Lb + 2
3 −

4Nf

3 Lf

)]
(6.43)

g′23 =T
[
g′2(µ)− g′4

(4π)2

(1
6NhLb + 20

9 NfLf

)]
(6.44)
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κ1 =T g4

(4π)2

[16
3 + 1

3Nh −
4
3Nf

]
(6.45)

κ2 =T g′4

(4π)2

[1
3Nh −

380
81 Nf

]
(6.46)

κ3 =T g
2g′2

(4π)2

[
2Nh −

8
3Nf

]
(6.47)

h1 =T
{
g2(µ)

4 + g2

4(4π)2

[(44−Nh

6 Lb + 53− 2Nh

6 − 4
3Nf (Lf − 1)

)
g2 + 1

2g
′2 − 2g2

Y,1

+ 6λ1 + 4λ3 + 2λ4

]}
(6.48)

h2 =T
{
g2(µ)

4 + g2

4(4π)2

[(44−Nh

6 Lb + 53− 2Nh

6 − 4
3Nf (Lf − 1)

)
g2 + 1

2g
′2

+ 6λ2 + 4λ3 + 2λ4

]}
(6.49)

h3 =T
{
g′2(µ)

4 − g′2

4(4π)2

[(1
6NhLb + 2Nh − 3

6 + 20
9 Nf (Lf − 1)

)
g′2 − 3

2g
2 + 2g2

Y,2

− 6λ1 − 4λ3 − 2λ4

]}
(6.50)

h4 =T
{
g′2(µ)

4 − g′2

4(4π)2

[(1
6NhLb + 2Nh − 3

6 + 20
9 Nf (Lf − 1)

)
g′2 − 3

2g
2

− 6λ2 − 4λ3 − 2λ4

]}
(6.51)

h5 =T
{
g(µ)g′(µ)

2 + gg′

2(4π)2

[
2(λ1 + λ4) + g2

(44−Nh

12 Lb −
5 +Nh

6 − 2
3Nf (Lf − 1)

)
+ g′2

(
− 1

12NhLb + 3−Nh

6 − 10
9 Nf (Lf − 1)

)
+ 2g2

Y,3

]}
(6.52)

h6 =T
{
g(µ)g′(µ)

2 + gg′

2(4π)2

[
2(λ2 + λ4) + g2

(44−Nh

12 Lb −
5 +Nh

6 − 2
3Nf (Lf − 1)

)
+ g′2

(
− 1

12NhLb + 3−Nh

6 − 10
9 Nf (Lf − 1)

)]}
(6.53)

Λ1 =T
[
λ1(µ) + 1

4(4π)2

(
3g4 + g′4 + 2g2g′2 + 8Lf (G4

Y,1 − λ1g
2
Y,1)

)
− 2Lb

(4π)2

( 9
16g

4 + 3
16g

′4 + 3
8g

2g′2 + 3λ2
1 + 1

2λ
2
3 + λ2

+ + λ2
− −

3
4λ1(3g2 + g′2)

)]
(6.54)

Λ2 =T
[
λ2(µ) + 1

4(4π)2

(
3g4 + g′4 + 2g2g′2

)
− 2Lb

(4π)2

( 9
16g

4 + 3
16g

′4 + 3
8g

2g′2 + 3λ2
2 + 1

2λ
2
3 + λ2

+ + λ2
− −

3
4λ2(3g2 + g′2)

)]
(6.55)

Λ3 =T
[
λ3(µ) + 1

4(4π)2

(
3g4 + g′4 − 2g2g′2 − 4Lfλ3g

2
Y,1

)
− Lb

(4π)2

(9
8g

4 + 3
8g
′4 − 3

4g
2g′2 + (λ1 + λ2)(3λ3 + λ4) + 2λ2

3 + λ2
4 + λ2

5
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− 3
2λ3(3g2 + g′2)

)]
(6.56)

Λ4 =T
[
λ4(µ) + 1

(4π)2

(
g2g′2 − Lfλ4g

2
Y,1

− Lb
(3

2g
2g′2 + (λ1 + λ2 + 4λ3 + 2λ4)λ4 + 4λ2

5 −
3
2λ4(3g2 + g′2)

))]
(6.57)

Λ5 =T
[
λ5(µ)− 1

(4π)2

(
Lfλ5g

2
Y,1 + Lb

(
λ5(λ1 + λ2 + 4λ3 + 6λ4)− 3

2Lbλ5(3g2 + g′2)
))]

.

(6.58)

The dimensional reduction of the 2HDM has been previously calculated by Losada [25]. In
the paper by Losada, neither the hypercharge gauge boson nor the fermions were included.
Our calculations have extended the dimensional reduced theory to include contributions
from both fermions and the hypercharge gauge boson. When comparing our results with
the results found by Losada, we find almost complete agreement. However, there are a
couple of discrepancies. For the three-dimensional coupling Λ4 we get a term 4λ2

5, while
Losada gets twice this value. Also, for the three-dimensional coupling Λ5 we get a factor
λ5(λ1 + . . . ), while Losada again gets a factor of 2 extra. Our calculations rely on using
the effective potential for the scalar couplings, and we also found the scalar β-functions
using the same results. Our results for the β-functions agree with the results from the
review article on the 2HDM [78]. As the factors in Λ4 and Λ5 follow trivially from the
effective potential, which gives the correct values for the β-functions, we conclude that
the results found by Losada are incorrect. Also, the article on dimensional reduction the
2HDM by Andersen [27], which extends the calculation to two-loop for the mass terms,
quotes the results found by Losada. Therefore, the values for Λ4 and Λ5 in that paper are
also incorrect.

6.2 Integrating out the heavy modes
Now, it is natural to integrate out the heavy modes, i.e. the modes which have masses of
order gT . That includes the temporal parts of the gauge fields, A0 and B0. In addition,
we can divide the discussion into two parts; we can have one heavy and one light Higgs
doublet, or we can have two light Higgs doublets. The first case is the generic one [25],
while the other requires the first thermal contribution to the masses to be cancelled by the
mass parameters m2

11 and m2
22. Depending on the choice of the scalar mass parameters,

additional scalars might be integrated out along with the temporal parts of the gauge
fields. The effective theory we end up with is identical to the effective theory for the SM
when we have one heavy and one light scalar.

We will not perform this second step of dimensional reduction, but the procedure is
identical to the one already outlined, and should not pose any major difficulties. The
massive sum-integrals in eqs. (C.17) and (C.18) will be needed. The second step of
dimensional reduction is performed in ref. [25], which would not differ much from our
case.
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CHAPTER 7

N -HIGGS DOUBLET MODEL

We will in this chapter extend the discussion to the N -Higgs Doublet Model (NHDM), find
the β-functions for the generalised couplings and perform dimensional reduction where
we integrate out the superheavy modes. We let Nh denote the number of Higgs doublets.
As we will see, it is easy to generalise to Nh Higgs doublets, and we will rely heavily on
the calculations performed earlier.

7.1 The model
We have an extended model of the SM with Nh scalar Higgs doublets, where only one
Higgs doublet couples directly to the fermions. This is the fermiophobic NHDM. The
interesting part of the Lagrangian is the scalar sector, which takes the form

Lscalar =
Nh∑
n=1

[
DµΦ†nDµΦn −

µ2
n

2 Φ†nΦn + λ1,n

2 (Φ†nΦn)2
]

+
Nh−1∑
n=1

Nh∑
m=n+1

[
λ3,nm(Φ†nΦn)(Φ†mΦm) + λ4,nm(Φ†nΦm)(Φ†mΦn)

+ λ5,nm

2

(
(Φ†nΦm)2 + (Φ†mΦn)2

)]
(7.1)

where µ2
n, λ1,n, λ3,nm, λ4,nm, and λ5,nm are real. We also have that λ3,nm = λ3,mn, and

similarly for λ4,nm and λ5,nm. The limits of the last two sums are chosen such that we
avoid double counting. We have already imposed (Nh − 1) Z2 symmetries, of the form

Φn → −Φn, Φm → Φm, m 6= n, n = 1, . . . , Nh − 1. (7.2)

This means that we have discarded couplings with an odd number of the Higgs field Φn.
We have also made λ5,nm real by a field redefinition, as before. A completely general
NDHM could also include couplings with an odd number of the Higgs field Φn, as e.g.
(Φ†nΦm)(Φ†mΦk). The theory considered here will serve as the minimal NHDM, where
additional operators could be included. Any general NDHM should reduce to the NHDM
considered here.
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Chapter 7. N -Higgs Doublet Model

7.2 Correlators
In Appendix D most of the correlators needed have already been calculated with the
number of Higgs doublets being arbitrary. We will summarise these correlators here, as
well as perform the additional calculations for the new correlators.

The B4
0 , Aa0Ab0Ac0Ad0 and Aa0Ab0B2

0 correlators are given in eqs. (4.21) to (4.23), respec-
tively. They remain unchanged, as the number of Higgs doublets is already kept arbitrary
there, and no scalar coupling is present.

The Φ†nΦnBµBν correlator
From eqs. (D.57) to (D.64) we find the types of diagrams contributing to the Φ†nΦnBµBν

correlator. The only difference between the 2HDM and the NHDM is that we get more
diagrams of the form of eqs. (D.58) and (D.62). Thus, with an extra sum over the scalar
couplings, the correlator takes the form

=g′2
[1
2(d− 3)

(
3λn +

∑
m 6=n

(2λ3,nm + λ4,nm)
)

+ d

8g
′2 + 3

8dg
2

− 1
2δn1(24−d − 1)(g2

Y,1 − 2εg2
Y,2)

]
δijI

4b
2 (7.3a)

for µ = 0, ν = 0

=g′2
[3
8g
′2 + 9

8g
2 − 1

2δn1(24−d − 1)g2
Y,1

]
δijδrsI

4b
2 (7.3b)

for µ = r, ν = s.

Notice the Kronecker delta δn1 that makes sure that only Φ1 couples directly to the
fermions.

The Φ†nΦnA
a
µA

b
ν correlator

Similarly, the Φ†nΦnA
a
µA

b
ν correlator can be extracted from diagrams of the form of eqs. (D.48)

to (D.56). Again, more diagrams of the form of eqs. (D.50) and (D.55) must be included,
which results in an extra sum over the scalar couplings. The correlator takes the form

=g2
[(
− 25

8 + d
)
dg2 − 1

2(3− d)
(
3λn +

∑
m6=n

(2λ3,nm + λ4,nm)
)

+ 1
8dg

′2

− 1
2δn1(24−d − 1)(d− 2)g2

Y,1

]
δabδijI

4b
2 (7.4a)

for µ = 0, ν = 0

=
[
− 3

8g
4 + 3

8g
2g′2 − 1

2δn1(24−d − 1)g2g2
Y,1

]
δabδijδrsI

4b
2 (7.4b)

for µ = r, ν = s.

70



7.3 Effective potential

The Φ†nΦnA
a
0B0 correlator

The correlator with two scalar legs and two different gauge field legs can be found from
eqs. (D.65) to (D.72). The additional sum over the scalar couplings comes from eqs. (D.66)
and (D.70). The correlator becomes

=gg′
[1
2(d− 3)(λn +

∑
m6=n

λ4,nm) + 1
8d(g2 + g′2)

− 1
2δn1(24−d − 1)(g2

Y,3 − 2εg2
Y,4)

]
(τa)ijI4b

2 . (7.5)

The correlators will be used when matching the effective three-dimensional theory with
the original four-dimensional theory.

7.3 Effective potential
We use the effective potential to extract the counterterms for the scalar couplings, as
before. Instead of diagonalising an 8 × 8 matrix, we will now need to diagonalise a
4Nh × 4Nh matrix. At the outset this seems to be a too great challenge, but we will see
that by choosing our background fields in a clever way we will be able to find the mass
spectrum.

We shift the scalar fields by a background field, Φn → Φn +ϕn. The mass matrix can
be found from the terms quadratic in the fields.

7.3.1 Case 1
We set the background fields to be

ϕn = 1√
2

(
0
vn

)
, ϕm = 1√

2

(
0
vm

)
, ϕk = 0, k 6= n,m, n 6= m, k = 1, . . . , Nh.

(7.6)

The mass matrix is similar to the 2HDM mass matrix, with the addition of 4(Nh − 2)
terms on the diagonal. We can rearrange the columns and rows to obtain

M2 =



M2
nn,1 0 0 0 M2

nm,15 0 0 0 0 0 0 0 ...

0 M2
nn,2 0 0 0 M2

nm,26 0 0 0 0 0 0 ...

0 0 M2
nn,3 0 0 0 M2

nm,37 0 0 0 0 0 ...

0 0 0 M2
nn,4 0 0 0 M2

nm,48 0 0 0 0 ...

M2
nm,15 0 0 0 M2

mm,1 0 0 0 0 0 0 0 ...

0 M2
nm,26 0 0 0 M2

mm,2 0 0 0 0 0 0 ...

0 0 M2
nm,37 0 0 0 M2

mm,3 0 0 0 0 0 ...

0 0 0 M2
nm,48 0 0 0 M2

mm,4 0 0 0 0 ...

0 0 0 0 0 0 0 0 M2
kk,1 0 0 0 ...

0 0 0 0 0 0 0 0 0 M2
kk,1 0 0 ...

0 0 0 0 0 0 0 0 0 0 M2
kk,1 0 ...

0 0 0 0 0 0 0 0 0 0 0 M2
kk,1 ...

... ... ... ... ... ... ... ... ... ... ... ... ...


(7.7)
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where

M2
nn,1 = −1

2 µ̃
2
n (7.8a)

M2
nn,2 = −1

2 µ̃
2
n (7.8b)

M2
nn,3 = −1

2 µ̃
2
n + λ1,nv

2
n + 1

2(λ4,nm + λ5,nm)v2
m (7.8c)

M2
nn,4 = −1

2 µ̃
2
n + 1

2(λ4,nm − λ5,nm)v2
m (7.8d)

M2
mm,1 = −1

2 µ̃
2
m (7.8e)

M2
mm,2 = −1

2 µ̃
2
m (7.8f)

M2
mm,3 = −1

2 µ̃
2
m + λ1,mv

2
m + 1

2(λ4,nm + λ5,nm)v2
n (7.8g)

M2
mm,4 = −1

2 µ̃
2
m + 1

2(λ4,nm − λ5,nm)v2
n (7.8h)

M2
nm,15 = 1

2(λ4,nm + λ5,nm)vnvm (7.8i)

M2
nm,26 = 1

2(λ4,nm + λ5,nm)vnvm (7.8j)

M2
nm,37 = (λ3,nm + λ4,nm + λ5,nm)vnvm (7.8k)

M2
nm,48 = λ5,nmvnvm (7.8l)

M2
kk,1 = −1

2 µ̃
2
k (7.8m)

M2
kk,2 = −1

2 µ̃
2
k (7.8n)

M2
kk,3 = −1

2 µ̃
2
k + 1

2(λ4,kn + λ5,kn)v2
n + 1

2(λ4,km + λ5,km)v2
m (7.8o)

M2
kk,4 = −1

2 µ̃
2
k + 1

2(λ4,kn − λ5,kn)v2
n + 1

2(λ4,km − λ5,km)v2
m. (7.8p)

The shifted masses are

µ̃2
n = µ2

n − λ1,nv
2
n − λ3,nmv

2
m (7.9)

µ̃2
m = µ2

m − λ1,mv
2
m − λ3,nmv

2
n (7.10)

µ̃2
k = µ2

k − λ3,knv
2
n − λ3,kmv

2
m. (7.11)

The effective potential takes the form

Veff = 1
2Vn,11v

2
n + 1

2Vm,11v
2
m + 1

4Vn,1v
4
n + 1

4Vm,1v
4
m + 1

4(Vnm,3 + Vnm,4 + Vnm,5)v2
nv

2
m

(7.12)

where

Vn,11 =T
2

12

(
3λ1,n +

∑
k 6=n

(2λ3,kn + λ4,kn)
)

(7.13)
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Vn,1 =− 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1,n

+1
4
∑
k 6=n

(
2λ2

3,kn + (λ3,kn + λ4,kn + λ5,kn)2 + (λ3,kn + λ4,kn − λ5,kn)2
)]

(7.14)

Vnm,3 + Vnm,4 + Vnm,5 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1,n + λ1,m)(3λ3,nm + 2λ4,nm + λ5,nm)

+ (λ4,nm + λ5,nm)2 + 2λ2
5,nm + 2(λ3,nm + λ4,nm + λ5,nm)2

+
∑

k 6=n,m

(
λ3,knλ3,km + (λ3,kn + λ4,kn)(λ3,km + λ4,km) + λ5,knλ5,km

)]
.

(7.15)

The divergence of Vn,1 is absorbed into δλn,1 and Vnm,3 + Vnm,4 + Vnm,5 into δλnm,3 +
δλnm,4 + δλnm,5.

7.3.2 Case 2
We now set the background fields to be

ϕn = 1√
2

(
0
vn

)
, ϕm = 1√

2

(
0
iw0

m

)
, ϕk = 0, k 6= n,m, n 6= m, k = 1, . . . , Nh.

(7.16)

The mass matrix is similar to the 2HDM mass matrix, with the addition of 4(Nh − 2)
terms on the diagonal. We can rearrange the columns and rows to obtain

M2 =



M2
nn,1 0 0 0 0 M2

nm,16 0 0 0 0 0 0 ...

0 M2
nn,2 0 0 M2

nm,25 0 0 0 0 0 0 0 ...

0 0 M2
nn,3 0 0 0 0 M2

nm,38 0 0 0 0 ...

0 0 0 M2
nn,4 0 0 M2

nm,47 0 0 0 0 0 ...

0 M2
nm,25 0 0 M2

mm,1 0 0 0 0 0 0 0 ...

M2
nm,16 0 0 0 0 M2

mm,2 0 0 0 0 0 0 ...

0 0 0 M2
nm,47 0 0 M2

mm,3 0 0 0 0 0 ...

0 0 M2
nm,38 0 0 0 0 M2

mm,4 0 0 0 0 ...

0 0 0 0 0 0 0 0 M2
kk,1 0 0 0 ...

0 0 0 0 0 0 0 0 0 M2
kk,1 0 0 ...

0 0 0 0 0 0 0 0 0 0 M2
kk,1 0 ...

0 0 0 0 0 0 0 0 0 0 0 M2
kk,1 ...

... ... ... ... ... ... ... ... ... ... ... ... ...


(7.17)

where

M2
nn,1 = −1

2 µ̃
2
n (7.18a)

M2
nn,2 = −1

2 µ̃
2
n (7.18b)

M2
nn,3 = −1

2 µ̃
2
n + λ1,nv

2
n + 1

2(λ4,nm − λ5,nm)(w0
m)2 (7.18c)
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M2
nn,4 = −1

2 µ̃
2
n + 1

2(λ4,nm + λ5,nm)(w0
m)2 (7.18d)

M2
mm,1 = −1

2 µ̃
2
m (7.18e)

M2
mm,2 = −1

2 µ̃
2
m (7.18f)

M2
mm,3 = −1

2 µ̃
2
m + 1

2(λ4,nm + λ5,nm)v2
n (7.18g)

M2
mm,4 = −1

2 µ̃
2
m + λ1,m(w0

m)2 + 1
2(λ4,nm − λ5,nm)v2

n (7.18h)

M2
nm,16 = 1

2(λ4,nm − λ5,nm)vnw0
m (7.18i)

M2
nm,25 = −1

2(λ4,nm − λ5,nm)vnw0
m (7.18j)

M2
nm,38 = (λ3,nm + λ4,nm − λ5,nm)vnw0

m (7.18k)
M2

nm,47 = λ5,nmvnw
0
m (7.18l)

M2
kk,1 = −1

2 µ̃
2
k (7.18m)

M2
kk,2 = −1

2 µ̃
2
k (7.18n)

M2
kk,3 = −1

2 µ̃
2
k + 1

2(λ4,kn + λ5,kn)v2
n + 1

2(λ4,km − λ5,km)(w0
m)2 (7.18o)

M2
kk,4 = −1

2 µ̃
2
k + 1

2(λ4,kn − λ5,kn)v2
n + 1

2(λ4,km + λ5,km)(w0
m)2. (7.18p)

The shifted masses are

µ̃2
n = µ2

n − λ1,nv
2
n − λ3,nm(w0

m)2 (7.19)
µ̃2
m = µ2

m − λ1,m(w0
m)2 − λ3,nmv

2
n (7.20)

µ̃2
k = µ2

k − λ3,knv
2
n − λ3,km(w0

m)2. (7.21)

The effective potential takes the form

Veff =1
2Vn,11v

2
n + 1

2Vm,11(w0
m)2 + 1

4Vn,1v
4
n + 1

4Vm,1(w0
m)4

+ 1
4(Vnm,3 + Vnm,4 − Vnm,5)v2

n(w0
m)2 (7.22)

where

Vn,11 =T
2

12

(
3λ1,n +

∑
k 6=n

(2λ3,kn + λ4,kn)
)

(7.23)

Vn,1 =− 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1,n

+1
4
∑
k 6=n

(
2λ2

3,kn + (λ3,kn + λ4,kn + λ5,kn)2 + (λ3,kn + λ4,kn − λ5,kn)2
)]

(7.24)
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Vnm,3 + Vnm,4 − Vnm,5 = − 1
(4π)2

(1
ε

+ Lb

)[
(λ1,n + λ1,m)(3λ3,nm + 2λ4,nm − λ5,nm)

+ (λ4,nm − λ5,nm)2 + 2λ2
5,nm + 2(λ3,nm + λ4,nm − λ5,nm)2

+
∑

k 6=n,m

(
λ3,knλ3,km + (λ3,kn + λ4,kn)(λ3,km + λ4,km)− λ5,knλ5,km

)]
.

(7.25)

Now, the divergence of V1,n is absorbed into δλ1,n and Vnm,3 +Vnm,4−Vnm,5 into δλnm,3 +
δλnm,4 − δλnm,5. The coefficients Vn,11 and Vn,1 should be the same as in section 7.3.1.

7.3.3 Case 3
We set the background fields to be

ϕn = 1√
2

(
0
vn

)
, ϕm = 1√

2

(
w+
m

0

)
, ϕk = 0, k 6= n,m, n 6= m, k = 1, . . . , Nh.

(7.26)

The mass matrix is similar to the 2HDM mass matrix, with the addition of 4(Nh − 2)
terms on the diagonal. We can rearrange the columns and rows to obtain

M2 =



M2
nn,1 0 0 0 0 0 M2

nm,17 0 0 0 0 0 ...

0 M2
nn,2 0 0 0 0 0 M2

nm,28 0 0 0 0 ...

0 0 M2
nn,3 0 M2

nm,35 0 0 0 0 0 0 0 ...

0 0 0 M2
nn,4 0 0 0 0 0 0 0 0 ...

0 0 M2
nm,35 0 M2

mm,1 0 0 0 0 0 0 0 ...

0 0 0 0 0 M2
mm,2 0 0 0 0 0 0 ...

M2
nm,17 0 0 0 0 0 M2

mm,3 0 0 0 0 0 ...

0 M2
nm,28 0 0 0 0 0 M2

mm,4 0 0 0 0 ...

0 0 0 0 0 0 0 0 M2
kk,1 0 0 0 ...

0 0 0 0 0 0 0 0 0 M2
kk,1 0 0 ...

0 0 0 0 0 0 0 0 0 0 M2
kk,1 0 ...

0 0 0 0 0 0 0 0 0 0 0 M2
kk,1 ...

... ... ... ... ... ... ... ... ... ... ... ... ...


(7.27)

where

M2
nn,1 = −1

2 µ̃
2
n + 1

2(λ4,nm + λ5,nm)(w+
m)2 (7.28a)

M2
nn,2 = −1

2 µ̃
2
n + 1

2(λ4,nm − λ5,nm)(w+
m)2 (7.28b)

M2
nn,3 = −1

2 µ̃
2
n + λ1,nv

2
n (7.28c)

M2
nn,4 = −1

2 µ̃
2
n (7.28d)

M2
mm,1 = −1

2 µ̃
2
m + λ1,m(w+

m)2 (7.28e)

M2
mm,2 = −1

2 µ̃
2
m (7.28f)
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M2
mm,3 = −1

2 µ̃
2
m + 1

2(λ4,nm + λ5,nm)v2
n (7.28g)

M2
mm,4 = −1

2 µ̃
2
m + 1

2(λ4,nm − λ5,nm)v2
n (7.28h)

M2
nm,17 = 1

2(λ4,nm + λ5,nm)vnw+
m (7.28i)

M2
nm,28 = −1

2(λ4,nm − λ5,nm)vnw+
m (7.28j)

M2
nm,35 = λ3,nmvnw

+
m (7.28k)

M2
kk,1 = −1

2 µ̃
2
k + 1

2(λ4,km + λ5,km)(w+
m)2 (7.28l)

M2
kk,2 = −1

2 µ̃
2
k + 1

2(λ4,km − λ5,km)(w+
m)2 (7.28m)

M2
kk,3 = −1

2 µ̃
2
k + 1

2(λ4,kn + λ5,kn)v2
n (7.28n)

M2
kk,4 = −1

2 µ̃
2
k + 1

2(λ4,kn − λ5,kn)v2
n. (7.28o)

The shifted masses are

µ̃2
n = µ2

n − λ1,nv
2
n − λ3,nm(w+

m)2 (7.29)
µ̃2
m = µ2

m − λ1,m(w+
m)2 − λ3,nmv

2
n (7.30)

µ̃2
k = µ2

k − λ3,knv
2
n − λ3,km(w+

m)2. (7.31)

The effective potential takes the form

Veff = 1
2Vn,11v

2
n + 1

2Vm,11(w+
m)2 + 1

4Vn,1v
4
n + 1

4Vm,1(w+
m)4 + 1

4Vnm,3v
2
n(w+

m)2 (7.32)

where

Vn,11 =T
2

12

(
3λ1,n +

∑
k 6=n

(2λ3,kn + λ4,kn)
)

(7.33)

Vn,1 =− 1
(4π)2

(1
ε

+ Lb

)[
3λ2

1,n

+ 1
4
∑
k 6=n

(
2λ2

3,kn + (λ3,kn + λ4,kn + λ5,kn)2 + (λ3,kn + λ4,kn − λ5,kn)2
)]

(7.34)

Vnm,3 =− 1
(4π)2

(1
ε

+ Lb

)[
(λ1,n + λ1,m)(3λ3,nm + λ4,nm) + 2λ2

3,nm + λ2
4,nm + λ2

5,nm

+
∑

k 6=n,m

(
λ3,knλ3,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn

)]
. (7.35)

We can find the individual contributions to the coefficients in the expansion of the effective
potential by solving the system of equations from sections 7.3.1 to 7.3.3.

7.3.4 Gauge sector
The gauge bosons couple identically to all the scalar doublets through the covariant
derivative. Thus, the gauge boson contributions decouple from each other, and we can
write down the contribution directly, using the results obtained previously;

76



7.3 Effective potential

Vn,11 =T
2

12

[9
4g

2 + 3
4g
′2
]

(7.36)

Vn,1 =− 1
16(4π)2

(3
ε

+ 3Lb − 2
)[

3g4 + g′4 + 2g2g′2
]

(7.37)

Vnm,3 =− 1
8(4π)2

(3
ε

+ 3Lb − 2
)[

3g4 + g′4 − 2g2g′2
]

(7.38)

Vnm,4 =− g2g′2

2(4π)2

(3
ε

+ 3Lb − 2
)

(7.39)

Vnm,5 =0. (7.40)

7.3.5 Fermion sector
The fermion sector takes the same form as for the 2HDM, since only Φ1 couples directly
to the fermions. The contributions to the effective potential are

V1,11 =T
2

12 g
2
Y,1 (7.41)

V1,1 = 1
(4π)2

(1
ε

+ Lf

)
G4
Y,1 (7.42)

with the rest being zero.

7.3.6 Total contribution to the effective potential
We summarise the total contribution to the effective potential,

Vn,11 =T
2

12

[9
4g

2 + 3
4g
′2 + 3λ1,n +

∑
k 6=n

(2λ3,kn + λ4,kn) + δn1g
2
Y,1

]
(7.43)

Vn,1 =− 1
16(4π)2

(3
ε

+ 3Lb − 2
)[

3g4 + g′4 + 2g2g′2
]

+ δn1

(4π)2

(1
ε

+ Lf

)
G4
Y,1

− 1
(4π)2

(1
ε

+ Lb

)[
3λ1,n

+ 1
4
∑
k 6=n

(
2λ2

3,kn + (λ3,kn + λ4,kn + λ5,kn)2 + (λ3,kn + λ4,kn − λ5,kn)2
)]

(7.44)

Vnm,3 =− 1
8(4π)2

(3
ε

+ 3Lb − 2
)[

3g4 + g′4 − 2g2g′2
]

− 1
(4π)2

(1
ε

+ Lb

)[
(λ1,n + λ1,m)(3λ3,nm + λ4,nm) + 2λ2

3,nm + λ2
4,nm + λ2

5,nm

+
∑

k 6=n,m

(
λ3,knλ3,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn

)]
(7.45)

Vnm,4 =− g2g′2

2(4π)2

(3
ε

+ 3Lb − 2
)
− 1

(4π)2

(1
ε

+ Lb

)[
(λ1,n + λ1,m + 4λ3,nm + 2λ4,nm)λ4,nm
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+ 4λ2
5,nm +

∑
k 6=n,m

(
λ3,knλ3,km + λ4,knλ4,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn

)]
(7.46)

Vnm,5 =− 1
(4π)2

(1
ε

+ Lb

)[
(λ1,n + λ1,m + 4λ3,nm + 6λ4,nm)λ5,nm +

∑
k 6=n,m

λ5,knλ5,km

]
.

(7.47)

We see that the effective potential reduces to the 2HDM effective potential when n,m =
1, 2, as it should. We can directly write down the counterterms

δλ1,n = 1
(4π)2ε

[9
8g

4 + 3
8g
′4 + 3

4g
2g′2 − 2δn1G

4
Y,1 + 6λ2

1,n

+ 1
2
∑
k 6=n

(
2λ2

3,kn + (λ3,kn + λ4,kn + λ5,kn)2 + (λ3,kn + λ4,kn − λ5,kn)2
)]

(7.48)

δλ3,nm = 1
(4π)2ε

[9
8g

4 + 3
8g
′4 − 3

4g
2g′2 + (λ1,n + λ1,m)(3λ3,nm + λ4,nm) + 2λ2

3,nm

+ λ2
4,nm + λ2

5,nm +
∑

k 6=n,m

(
λ3,knλ3,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn

)]
(7.49)

δλ4,nm = 1
(4π)2ε

[3
2g

2g′2 + (λ1,n + λ1,m + 4λ3,nm + 2λ4,nm)λ4,nm + 4λ2
5,nm

+
∑

k 6=n,m

(
λ3,knλ3,km + λ4,knλ4,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn

)]
(7.50)

δλ5,nm = 1
(4π)2ε

[
(λ1,n + λ1,m + 4λ3,nm + 6λ4,nm)λ5,nm +

∑
k 6=n,m

λ5,knλ5,km

]
. (7.51)

To find the β-functions, we need the wave function renormalisation counterterms. From
eqs. (4.13) and (4.14) we have that

δZΦn = 1
(4π)2ε

[9
4g

2 + 3
4g
′2 − δn1g

2
Y,1

]
, (7.52)

similarly to the 2HDM. Thus, the β-functions can be found by using the same procedure
as previously,

βλ1,n = 1
(4π)2

[9
4g

4 + 3
4g
′4 + 3

4g
2g′2 + 12λ2

1,n

+
∑
k 6=n

(
2λ2

3,kn + (λ3,kn + λ4,kn + λ5,kn)2 + (λ3,kn + λ4,kn − λ5,kn)2
)

− 3λ1,n(3g2 + g′2)− 4δn1(G4
Y,1 − λ1,ng

2
Y,1)

]
(7.53)

βλ3,nm = 1
(4π)2

[9
4g

4 + 3
4g
′4 − 3

4g
2g′2 + 2(λ1,n + λ1,m)(3λ3,nm + λ4,nm) + 4λ2

3,nm

+ 2λ2
4,nm + 2λ2

5,nm +
∑

k 6=n,m

(
2λ3,knλ3,km + λ3,knλ4,km + λ3,kmλ4,kn

)
− 3λ3,nm(3g2 + g′2) + 2(δ1n + δ1m)λ3,nmg

2
Y,1

]
(7.54)
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βλ4,nm = 1
(4π)2

[
3g2g′2 + 2(λ1,n + λ1,m + 4λ3,nm + 2λ4,nm)λ4,nm + 8λ2

5,nm

+
∑

k 6=n,m

(
2λ3,knλ3,km + 2λ4,knλ4,km + λ3,knλ4,km + λ3,kmλ4,kn

)
− 3λ4,nm(3g2 + g′2) + 2(δ1n + δ1m)λ4,nmg

2
Y,1

]
(7.55)

βλ5,nm = 1
(4π)2

[
2(λ1,n + λ1,m + 4λ3,nm + 6λ4,nm)λ5,nm +

∑
k 6=n,m

2λ5,knλ5,km (7.56)

− 3λ5,nm(3g2 + g′2) + 2(δ1n + δ1m)λ5,nmg
2
Y,1

]
. (7.57)

Most of the terms in the β-functions are just generalisations of the terms in the 2HDM β-
functions, while the sums over k 6= n,m are novel, as they arise from interactions between
additional Higgs doublets not present in the 2HDM.

7.4 Dimensional reduction
We are now in a position to integrate out the superheavy modes and get a three-dimensional
effective theory. The effective theory is similar to eq. (6.4), except for

L(3)
scalar =

∑
n

[
DrΦ†nDrΦn − µ2

3,nΦ†nΦn + Λ1,n

2 (Φ†nΦn)2
]

+
∑
m>n

[
Λ3,nm(Φ†nΦn)(Φ†mΦm) + Λ4,nm(Φ†nΦm)(Φ†mΦn)

+ Λ5,nm

2
[
(Φ†nΦm)2 + (Φ†mΦn)2

]]
(7.58)

and

L(3)
temporal =1

2(DrA
a
0)2 + 1

2(∂rB0)2 + 1
2m

2
D(Aa0)2 + 1

2m
′2
DB

2
0

+ 1
4κ1(Aa0)4 + 1

4κ2B
4
0 + 1

4κ3(Aa0)2B2
0

+
∑
n

(
h1,nΦ†nΦn(Aa0)2 + h2,nΦ†nΦnB

2
0 + h3,nB0Φ†n ~A0 · ~τΦn

)
. (7.59)

The procedure for determining the parameters of the three-dimensional theory in terms of
the parameters of the original theory is identical to the procedure in chapter 6. Therefore,
we simply list the results

µ2
3,n =µ2

n −
T 2

12

[9
4g

2 + 3
4g
′2 + 3λ1,n +

∑
k 6=n

(2λ3,nm + λ4,nm) + δn1g
2
Y,1

]
(7.60)

h1,n =T
{
g2(µ)

4 + g2

4(4π)2

[(44−Nh

6 Lb + 53− 2Nh

6 − 4
3Nf (Lf − 1)

)
g2 + 1

2g
′2 − 2δn1g

2
Y,1

+ 6λ1,n +
∑
k 6=n

(4λ3,kn + 2λ4,kn)
]}

(7.61)
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h2,n =T
{
g′2(µ)

4 − g′2

4(4π)2

[(1
6NhLb + 2Nh − 3

6 + 20
9 Nf (Lf − 1)

)
g′2 − 3

2g
2 + 2δn1g

2
Y,2

− 6λ1,n −
∑
n6=k

(4λ3,kn + 2λ4,kn)
]}

(7.62)

h3,n =T
{
g(µ)g′(µ)

2 + gg′

2(4π)2

[
2(λ1,n +

∑
k 6=n

λ4,kn)

+ g2
(44−Nh

12 Lb −
5 +Nh

6 − 2
3Nf (Lf − 1)

)
+ g′2

(
− 1

12NhLb + 3−Nh

6 − 10
9 Nf (Lf − 1) + 2δn1g

2
Y,3

)]}
. (7.63)

We use the effective potential to determine the scalar couplings. The couplings take the
form

Λ1,n =T
[
λ1,n(µ) + 1

4(4π)2

(
3g4 + g′4 + 2g2g′2 + 8Lf (G4

Y,1 − λ1,ng
2
Y,1)

)
− 2Lb

(4π)2

( 9
16g

4 + 3
16g

′4 + 3
8g

2g′2 + 3λ2
1,n

+ 1
4
∑
k 6=n

(2λ2
3,kn + (λ3,kn + λ4,kn + λkn)2 + (λ3,kn + λ4,kn − λkn)2)

− 3
4λ1,n(3g2 + g′2)

)]
(7.64a)

Λ3,nm =T
[
λ3,nm(µ) + 1

4(4π)2

(
3g4 + g′4 − 2g2g′2 − 4Lfλ3,nmg

2
Y,1

)
− Lb

(4π)2

(9
8g

4 + 3
8g
′4 − 3

4g
2g′2

+ (λ1,n + λ1,m)(3λ3,nm + λ4,nm) + 2λ2
3,nm + λ2

4,nm + λ2
5,nm

+
∑

k 6=n,m
(λ3,knλ3,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn)− 3

2λ3,nm(3g2 + g′2)
)]

(7.64b)

Λ4,nm =T
[
λ4,nm(µ) + 1

(4π)2

(
g2g′2 − Lfλ4,nmg

2
Y,1

− Lb
(3

2g
2g′2 + (λ1,n + λ1,m + 4λ3,nm + 2λ4,nm)λ4,nm + 4λ2

5,nm

+
∑

k 6=n,m
(λ3,knλ3,km + λ4,knλ4,km + 1

2λ3,knλ4,km + 1
2λ3,kmλ4,kn)

− 3
2λ4,nm(3g2 + g′2)

))]
(7.64c)

Λ5,nm =T
[
λ5,nm(µ)− 1

(4π)2

(
Lfλ5,nmg

2
Y,1 + Lb

(
λ5,nm(λ1,n + λ1,n + 4λ3,nm + 6λ4,nm)

+
∑

k 6=n,m
λ5,knλ5,km −

3
2λ5,nm(3g2 + g′2)

))]
. (7.64d)

The remaining couplings are the same as in chapter 6.
We can also include a mass-mixing term which softly breaks the Z2 symmetries
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Lmix = −
∑
m<n

1
2(m2

nmΦ†nΦm + h.c.). (7.65)

The terms in Lmix can be treated as perturbations, and we can calculate the counterterms
as we did in eq. (4.16). The counterterms become

δm2
nm = 1

(4π)2ε

[
(λ3,nm + 2λ4,nm)m2

nm + 3λ5,nmm
∗2
nm

]
(7.66)

and the β-functions take the form

βm2
nm

= 1
(4π)2

[
2(λ3,nm + 2λ4,nm)m2

nm + 6λ5,nmm
∗2
nm−m2

nm

(9
2g

2 + 3
2g
′2− (δn1 + δm1)g2

Y,1

)]
.

(7.67)
We also include mass-mixing terms in the effective three-dimensional theory. The three-
dimensional mass-mixing parameters become

µ2
nm = m2

nm −
[
(λ3,nm + 2λ4,nm)m2

nm + 3λ5,nmm
∗2
nm −

(9
4g

2 + 3
4g
′2
)
m2
nm

]
Lb

(4π)2

− (δn1 + δm1)
g2
Y,1m

2
nm

2(4π)2 Lf . (7.68)

All the three-dimensional parameters are independent of the renormalisation scale. This
serves as an independent check for the correctness of our results.
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CHAPTER 8

CONCLUSION AND OUTLOOK

We have calculated the β-functions of the gauge couplings g and g′, and the scalar cou-
plings λi, where i = 1, . . . , 5, for the Two-Higgs Doublet Model in the Landau gauge
at one-loop. The results are in agreement with previous calculations of the β-functions
[78]. In addition, the four-dimensional theory has been matched to an effective three-
dimensional theory through the method called dimensional reduction, where the non-zero
Matsubara modes have been integrated out. As the fermions have only non-zero Mat-
subara modes, the effective theory is purely bosonic. The masses and couplings of the
effective theory have been determined as a function of the the masses and couplings of
the original four-dimensional theory, and the temperature. This is done by calculating
correlators in the three- and four-dimensional theory, and requiring that the long distance
behaviour of the two theories should be the same, i.e. the correlators with zero external
momentum should be matched. The scalar correlators were calculated using the effective
potential, with different choices for the background fields. When comparing the results
with previous calculations of the effective couplings, we discovered a discrepancy in the
results by Losada [25]. There is a factor of 2 difference in the three-dimensional scalar
couplings Λ4 and Λ5. As our results for the β-functions for the scalar couplings agree
with the review article by Branco et al. [78], and the factors trivially go through in the
calculation of the three-dimensional couplings Λ4 and Λ5, we believe the error is in the
paper by Losada. Apart from the factor of 2, our results agreed with the calculations by
Losada. We extended the calculation to include both the hypercharge gauge boson and
the fermions.

We also extended the calculation to the N -Higgs Doublet Model. This is the first
calculation of dimensional reduction for the general N -Higgs Doublet Model with softly
broken Z2 symmetries at one-loop. In the limiting cases of Nh = 1 and Nh = 2 the results
agree with the SM and 2HDM results. The method of using the effective potential, with
different choices for the background field, turned out to easily generalise to Nh doublets.
Also, the β-functions was calculated for the NHDM.

At first we calculated the dimensional reduction with a strict Z2 symmetry imposed,
i.e. with no mass-mixing. Later, we relaxed this restriction, and treated the mass-mixing
term as a perturbation. The corrections to the mass-mixing term in the effective theory
turned out to be of order g4, while the corrections to the other mass terms are of order
g2. The corrections to the couplings are also of order g4. To be consistent with the order
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of accuracy in our calculations, we should have extended the calculations for the mass
terms to two-loops and order g4. We reserve this calculation as a natural extension of the
calculations in this thesis.

Also, the gluonic sector of the 2HDM has been neglected. This could be incorporated
in the calculations with minimal difficulties.

In the dimensional reduction step we integrated out the superheavy modes, i.e. the
modes with a mass of order T . A natural second step is to also integrate out the heavy
modes, i.e. the modes with a mass of order gT . Thus, the temporal part of the gauge
bosons would be integrated out, possibly along with some scalar doublets.

The 2HDM has been proposed as a possible candidate for explaining baryogenesis.
In the collaboration between NTNU, the University of Stavanger and the University of
Helsinki we do numerical simulation of the effective three-dimensional theory to find the
region of parameter space where the electroweak phase transition is a sufficiently strong
first order phase transition. The calculations of dimensional reduction will be a major
part of the project of determining the potential of the 2HDM for explaining baryogenesis
at the electroweak phase transition. With the extension to the general NDHM we are in
the reach of investigating a large family of theories as possible candidates for the theory
describing Nature. However, the parameter space increases rapidly when additional scalar
doublets are included, and thus makes numerical simulations impractial.
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APPENDIX A

NOTATION AND CONVENTIONS

Here we establish the notation used in this thesis. Both Euclidean and Minkowski space
play a role in thermal field theory. We will for the most time be working in Euclidean
space, where we write

X = (τ, xi), x ≡ |x|, S =
∫
X
L, (A.1)

where i = 1, . . . , d, ∫
X
≡
∫ β

0
dτ
∫

x
≡
∫ β

0
dτ
∫
ddx, β ≡ 1

T
, (A.2)

and d is the dimensionality of space. When we move to Minkowski space we will explicitly
label the action and Lagrangian accordingly, SM and LM . Going to momentum space, we
have

K ≡ (ωn, ki), k ≡ |k|, φ(X) =
∫∑
K
φ̃(K)eiK·X (A.3)

where ∫∑
K
≡ T

∑
ωB

n

∫
k

(A.4a)
∫∑
{K}
≡ T

∑
ωF

n

∫
k
, (A.4b)

where ωBn and ωFn are the discrete Matsubara frequencies. The square of a four-vector in
Euclidean space is K2 = ω2

n + k2. We will use dimensional regularisation to regularise
both ultraviolet and infrared divergences, and the dimensionality of space is d = 3 − 2ε,
while the dimensionality of space-time is D = 4− 2ε. The integral is defined in eq. (C.3).

We employ the natural units, where the speed of light c, the Boltzmann constant kB
and the reduced Planck constant ~ all have been set to unity, c = kB = ~ = 1.
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APPENDIX B

FEYNMAN RULES

The Feynman rules are given in Euclidean spacetime in the unbroken phase, i.e. they
are valid in the high temperature limit, where the Higgs field expectation values vanish.
The gluon sector is not included, as we will not include the gluons in the dimensional
reduction step.

B.1 Propagators
We define the projection operators

PT (K)µν ≡ δµν −
KµKν

K2 , (B.1)

PR ≡
1
2(1 + γ5), (B.2)

PL ≡
1
2(1− γ5). (B.3)

The propagators take the form

U(1)Y gauge boson:
K

µ ν = PT (K)µν
K2 (B.4)

SU(2)L gauge boson:
K

aµ bν = δabPT (K)µν
K2 (B.5)

SU(2)L ghost:
K

a b = δab
K2 (B.6)

Fermions:
K

= PL/R
i

/K
(B.7)

Φ1 Higgs doublet:
K

i j = δij
K2 (B.8)
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Chapter B. Feynman rules

Φ2 Higgs doublet:
K

i j = δij
K2 (B.9)

B.2 Interactions
The interaction vertices take the form

SU(2)L gauge boson self-interaction

P

K
Q

bν

aµ

cλ = −igεabc
[
(P −Q)µδνλ + (Q−K)νδλµ + (K − P )λδµν

]
(B.10)

bν

aµ

cλ

dκ

= g2
[
δabδcd(δµλδνκ + δµκδνλ − 2δµνδλκ) (B.11)

+δacδbd(δµνδλκ + δµκδνλ − 2δµλδνκ)
+δadδbc(δµνδλκ + δµλδνκ − 2δµκδνλ)

SU(2)L gauge boson - ghost interaction

K

c

b

aµ = igεabcKµ (B.12)

Gauge boson - matter interaction

µ= i

2g
′Y γµ (all fermions) (B.13)

j

i

aµ = i

2g(τa)ijγµ (left-handed fermions) (B.14)

j

i

µ=

j

i

µ= −1
2g
′δij(K + P )µ (B.15)
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P

K

j

i

aµ =

P

K

j

i

aµ = −1
2g(τa)ij(K + P )µ (B.16)

j

i

ν

µ

=

j

i

ν

µ

= −1
2g
′2δijδµν (B.17)

j

i

bν

aµ

=

j

i

bν

aµ

= −1
2g

2δijδabδµν (B.18)

j

i

ν

aµ

=

j

i

ν

aµ

= −1
2gg

′(τa)ijδµν (B.19)

Scalar interactions

i

j

k

l

= −λ1(δikδjl + δijδkl) (B.20)

i

j

k

l

= −λ2(δikδjl + δijδkl) (B.21)

i

j

k

l

= −(λ3δijδkl + λ4δikδjl) (B.22)
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i

j

k

l

=

i

j

k

l

= −λ5(δijδkl + δilδjk) (B.23)

i j = 1
2δijm

2
12 (B.24)

Yukawa interactions

e

l

B

iA

j = −δijh(e)
AB

l

e

iA

B

j = −δijh(e)∗
AB (B.25)

d

q

B

iA

j = −δijh(d)
AB

q

d

iA

B

j = −δijh(d)∗
AB (B.26)

u

q

B

iA

j = −i(τ2)ijh(u)
AB

q

u

iA

B

j = −i(τ2)ijh(u)∗
AB (B.27)
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APPENDIX C

SUM-INTEGRALS

We use the imaginary-time formalism for quantum field theories at finite temperature.
The 4-momentum K = (ωn,k) is Euclidean, K2 = ω2

n+k2, where the Matsubara frequen-
cies take discrete values, ωn = ωBn = 2πnT and ωn = ωFn = (2n + 1)πT for bosons and
fermions, respectively, with n ∈ Z. Loop diagrams involve sums over ωn and integrals over
k. We will employ dimensional regularisation to regularise both ultraviolet and infrared
divergences. We follow the common notation for the regularised sum-integrals

∫∑
K
≡
(
eγµ2

4π

)ε
T

∑
ωn=2πnT

∫ ddk

(2π)d (C.1)

∫∑
{K}
≡
(
eγµ2

4π

)ε
T

∑
ωn=(2n+1)πT

∫ ddk

(2π)d (C.2)

∫
k
≡
(
eγµ2

4π

)ε ∫ ddk

(2π)d , (C.3)

where d = 3 − 2ε is the dimensionality of space and µ is the renormalisation scale. The
factor (eγ/4π)ε is introduced so that µ coincides with the MS renormalisation scale after
minimal subtraction of the poles in ε due to ultraviolet divergences.

We list the one-loop sum-integrals needed in the thesis, which have been calculated in
[25; 28; 29; 71]:

I4b
1 ≡

∫∑
K

1
K2 = T 2

12

[
1 +O(ε)

]
(C.4)

I4b
2 ≡

∫∑
K

1
(K2)2 = 1

(4π)2

[1
ε

+ Lb +O(ε)
]

(C.5)

I4b
3,1 ≡

∫∑
K

K2
0

(K2)3 = 1
4(4π)2

[1
ε

+ Lb + 2 +O(ε)
]

(C.6)

I4b
4,2 ≡

∫∑
K

K4
0

(K2)4 = 1
8(4π)2

[1
ε

+ Lb + 8
3 +O(ε)

]
(C.7)∫∑

K

KµKν

(K2)3 = 1
2
[
δµiδνjδij − (1− 2ε)δµ0δν0

]∫∑
K

1
K2 (C.8)
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where Lb = 2 log µ
4πT + 2γE and γE is the Euler-Mascheroni constant, as defined in [28].

The corresponding fermionic one-loop sum-integrals are

I4f
1 ≡

∫∑
{K}

1
K2 = −T

2

24

[
1 +O(ε)

]
(C.9)

I4f
2 ≡

∫∑
{K}

1
(K2)2 = 1

(4π)2

[1
ε

+ Lf +O(ε)
]

(C.10)

I4f
3,1 ≡

∫∑
{K}

K2
0

(K2)3 = 1
4(4π)2

[1
ε

+ Lf + 2 +O(ε)
]

(C.11)

I4f
4,2 ≡

∫∑
{K}

K4
0

(K2)4 = 1
8(4π)2

[1
ε

+ Lf + 8
3 +O(ε)

]
(C.12)

I4f
α,β ≡

∫∑
{K}

(K2
0)β

(K2)α =
(
22α−2β−d − 1

)∫∑
K

(K2
0)β

(K2)α (C.13)∫∑
{K}

KµKν

(K2)2 = 1
2
[
δµiδνjδij − (1− 2ε)δµ0δν0

]∫∑
{K}

1
K2 (C.14)

where Lf = Lb + 4 log 2. For the effective potential we need the integrals

Jb(m) = 1
2

∫∑
K

log(K2 +m2) =
[
m2T 2

24 − m3T

12π −
m4

64π2

(1
ε

+ Lb

)]
+O

(
m6

T 2

)
(C.15)

Jf (m) = 1
2

∫∑
{K}

log(K2 +m2) =
[
− m2T 2

48 + m4

64π2

(1
ε

+ Lf

)]
+O

(
m6

T 2

)
. (C.16)

In the three-dimensional effective theory we need the one-loop integrals:

∫
k

1
p2 +m2 = −m4π

[
1 +O(ε)

]
(C.17)∫

k

1
(p2 +m2

1)(p2 +m2
2) = 1

4π(m1 +m2)
[
1 +O(ε)

]
. (C.18)

C.1 Derivation of some sum-integrals
We will in this section derive some formulas for sum-integrals later used in loop calcula-
tions. The calculations are performed for bosonic fields, but can easily be extended to
include fermionic fields as well.

We start with the sum-integral

J(m,T ) = 1
2

∫∑
K

log(K2 +m2). (C.19)

From this integral we can obtain many other sum-integrals by taking the derivative with
respect to the mass m,

I(m,T ) = 1
m

d

dm
J(m,T ) =

∫∑
K

1
K2 +m2 . (C.20)

For future reference we will calculate a generic integral in detail,
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Φ(m, d,A) =
∫ ddk

(2π)d
1

(k2 +m2)A (C.21)

where d and A are left unspecified. By changing the integration variable thrice, z = k2,
m2t = z, s = (t+ 1)−1, we get

Φ(m, d,A) = πd/2

Γ(d/2)(2π)d
∫ ∞

0
dzz

d−2
2 (z +m2)−A (C.22)

= md−2A

(4π)d/2Γ(d/2)

∫ ∞
0

dttd/2−1(1 + t)−A (C.23)

= md−2A

(4π)d/2Γ(d/2)

∫ 1

0
dssA−d/2−1(1− s)d/2−1. (C.24)

We recognise that the last integral is simply the product of gamma functions,
∫ 1

0
dssA−d/2−1(1− s)d/2−1 = Γ(A− d/2)Γ(d/2)

Γ(A) (C.25)

so we get the formula

Φ(m, d,A) = 1
(4π)d/2

Γ(A− d/2)
Γ(A)

1
(m2)A−d/2 . (C.26)

Now we are in a position to evaluate the sum-integral

I =
∫∑
K

1
K2 +m2 . (C.27)

Firstly, we divide the sum into the zero and the non-zero parts

I = In=0 + In 6=0. (C.28)

Using eq. (C.26) with d = 3 − 2ε and A = 1 we can directly evaluate the zero mode
integral

In=0 = TΦ(m, 3− 2ε, 1) = T

(4π)3/2−ε
Γ(−1/2 + ε)

Γ(1)
1

(m2)−1/2+ε = −Tm4π +O(ε). (C.29)

This evaluation clearly shows the unintuitive behaviour of dimensional regularisation; a
linearly divergent, positive definite integral turns out to give a finite and negative result.
We can also from this get the zero mode contribution to eq. (C.19) by integrating our
result,

Jn=0 = −Tm
3

12π +O(ε) (C.30)

Now we turn our attention to the non-zero modes. We start by Taylor expanding the
integrand, using eq. (C.26) with m = 2πnT and A = l + 1, and using the zeta function
ζ(s) = ∑∞

n=1 n
−s,
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In6=0 =
∫∑′ 1
ω2
n + k2 +m2 = 2T

∞∑
n=1

∫ ddk

(2π)2

∞∑
l=0

(−1)l (m2)l[
(2πnT )2 + k2

]l+1 (C.31)

= 2T
∞∑
n=1

∞∑
l=0

(−1)l (m2)l
(4π)d/2

Γ(l + 1− d/2)
Γ(l + 1)

1
(2πnT )2l+2−d (C.32)

= 2T
(4π)d/2(2πT )2−d

∞∑
l=0

[ −m2

(2πnT )

]lΓ(l + 1− d/2)
Γ(l + 1) ζ(2l + 2− d). (C.33)

Expanding the first few terms, with d = 3− 2ε, we get

In6=0 = T 2

12 −
2m2µ−ε

(4π)2

[ 1
2ε + log

(
µeγE

4πT

)]
+ 2m4ζ(3)

(4π)4T 2 +O
(
m6

T 4

)
+O(ε). (C.34)

Combining the zero-mode and non-zero mode contributions, we get

I = T 2

12 −
Tm

4π −
2m2µ−ε

(4π)2

[ 1
2ε + log

(
µeγE

4πT

)]
+ 2m4ζ(3)

(4π)4T 2 +O
(
m6

T 4

)
+O(ε), (C.35)

where we have used eqs. (C.28), (C.29) and (C.34). By setting m = 0 we get eq. (C.4).
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APPENDIX D

DETAILED RESULTS FOR LOOP
DIAGRAMS

The one-loop diagrams needed for dimensional reduction are provided, expressed in terms
of the master integrals from appendix C.

D.1 Self-energy diagrams
The diagrams needed for wave function renormalisation and Debye mass for the bosons are
presented. The diagrams with only a quartic vertex contribute to the Debye mass, while
the wave function renormalisation is extracted from the part quadratic in momentum.

U(1)Y gauge boson self-energy

=− g′2

2 (d− 1)
[
(1− 22−d)I4b

1 + 1
6(24−d − 1)P 2I4b

2

]∑
f

Y 2
f (D.1)

for µ = 0, ν = 0,

=g
′2

6 (24−d − 1)
[
PiPj − δijP 2

]
I4b

2
∑
f

Y 2
f

for µ = i, ν = j

=− 2g′2
[1
2(d− 2)I4b

1 + 1
12(4− d)P 2I4b

2

]
(D.2)

for µ = 0, ν = 0,

=g′2
[
δijI

4b
1 + 1

6(PiPj − δijP 2)I4b
2

]
for µ = i, ν = j
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Chapter D. Detailed results for loop diagrams

=− 2g′2
[1
2(d− 2)I4b

1 + 1
12(4− d)P 2I4b

2

]
(D.3)

for µ = 0, ν = 0,

=g′2
[
δijI

4b
1 + 1

6(PiPj − δijP 2)I4b
2

]
for µ = i, ν = j

=− g′2δµνI4b
1 (D.4)

=− g′2δµνI4b
1 (D.5)

SU(2)L gauge boson self-energy

=2g2δab

[
− d(d− 2)I4b

1 + 1
12(16− 3d+ 2d2)P 2I4b

2

]
(D.6)

for µ = 0, ν = 0,

=g2δab

[
2dδijI4b

1 +
(1

6(31− 2d)δijP 2 − 1
3(17− d)PiPj

)
I4b

2

]
for µ = i, ν = j

=− g2δabdI
4b
1 (D.7)

for µ = 0, ν = 0,
=− g2δab(2d− 1)δijI4b

1

for µ = i, ν = j

=− g2δab(d− 1)
[
(1− 22−d)I4b

1 + 1
6(24−d − 1)P 2I4b

2

]∑
left

(D.8)

for µ = 0, ν = 0,

=1
3g

2δab(24−d − 1)
[
PiPj − δijP 2

]
I4b

2
∑
left
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D.1 Self-energy diagrams

for µ = i, ν = j

=− 2g2δab

[1
2(d− 2)I4b

1 + 1
12(4− d)P 2I4b

2

]
(D.9)

for µ = 0, ν = 0,

=g2δab

[
δijI

4b
1 + 1

6(PiPj − δijP 2)I4b
2

]
for µ = i, ν = j

=− 2g2δab

[1
2(d− 2)I4b

1 + 1
12(4− d)P 2I4b

2

]
(D.10)

for µ = 0, ν = 0,

=g2δab

[
δijI

4b
1 + 1

6(PiPj − δijP 2)I4b
2

]
for µ = i, ν = j

=− g2δabδµνI
4b
1 (D.11)

=− g2δabδµνI
4b
1 (D.12)

=2g2δab

[1
2(d− 2)I4b

1 + 1
12(4− d)P 2I4b

2

]
(D.13)

for µ = 0, ν = 0,

=− g2δab

[
δijI

4b
1 −

1
6(2PiPj + δijP

2)I4b
2

]
for µ = i, ν = j

Lepton doublet self-energy
We calculate the divergent momentum dependent part of the lepton doublet self-energy
in order to determine the wave function renormalisation.

=1
2i
[
h(e)†h(e)

]
AB
δij /PI

4b
2 (D.14)
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Higgs doublet self-energies
We include only those diagrams which contribute to the wave function renormalisation of
the Higgs fields, i.e. those diagrams with a divergence proportional to the external mo-
mentum squared. The mass renormalisation will be extracted from the effective potential.

=3
4g
′2δijP

2I4b
2 (D.15)

=9
4g

2δijP
2I4b

2 (D.16)

= g2
Y,1δij(2I

4f
1 − P 2I4f

2 ) (D.17)

=3
4g
′2δijP

2I4b
2 (D.18)

=9
4g

2δijP
2I4b

2 (D.19)

where g2
Y,1 = Tr[h(e)†h(e) +Nch

(d)†h(d) +Nch
(u)†h(u)].

The Φ†1Φ2 correlator
To extract the mass mixing counterterm, the diagrams for the Φ†1Φ2 correlator have been
calculated. The momentum-independent divergences are absorbed by the mass mixing
counterterm.

= −1
2(λ3 + 2λ4)δijm2

12I
4b
2 (D.20)

= −3
2λ5δijm

∗2
12I

4b
2 (D.21)
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D.1 Self-energy diagrams

Lepton doublet - U(1)Y gauge boson vertex

=1
8ig

′3Y 3
l δijγ0(d− 3)I4b

2 (D.22)

for µ = 0
=0

for µ = r

=3
8ig

2g′Ylδijγ0(d− 3)I4b
2 (D.23)

for µ = 0
=0

for µ = r

=1
4ig

′Yeδij
[
h(e)†h(e)

]
AB
γ0(d− 2)I4b

2 (D.24)

for µ = 0

=1
4ig

′Yeδij
[
h(e)†h(e)

]
AB
γrI

4b
2

for µ = r

=1
4ig

′δij
[
h(e)†h(e)

]
AB
γ0(4− d)I4b

2 (D.25)

for µ = 0

=1
4ig

′δij
[
h(e)†h(e)

]
AB
γrI

4b
2

for µ = r

Lepton doublet - SU(2)L gauge boson vertex

=1
8igg

′2Y 2
l (τa)ijγ0(d− 3)I4b

2 (D.26)

for µ = 0
=0

for µ = r
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=− 1
8ig

3(τa)ijγ0(d− 3)I4b
2 (D.27)

for µ = 0
=0

for µ = r

=3
4ig

3(τa)ijγ0(4− d)I4b
2 (D.28)

for µ = 0

=3
4ig

3(τa)ijγiI4b
2

for µ = r

=1
4ig(τa)ij

[
h(e)†h(e)

]
AB
γ0(4− d)I4b

2 (D.29)

for µ = 0

=1
4ig(τa)ij

[
h(e)†h(e)

]
AB
γiI

4b
2

for µ = r

U(1)Y gauge boson coupling
The four-point functions for the temporal component of the gauge fields are found at zero
external momentum.

= = 3
2g
′4I4b

2 (D.30)

= = −3(4− d)g′4I4b
2 (D.31)

= = 1
2(6− d)(4− d)g′4I4b

2 (D.32)

100



D.1 Self-energy diagrams

= −1
4(d− 1)(d− 3)(24−d − 1)Nf

(
18 +Nc

274
81

)
g′4I4b

2 (D.33)

SU(2)L gauge boson coupling
The Aa0Ab0Ac0Ad0 correlator at zero external momentum is

= 1
6d(14 + d)g4(δabδcd + δacδbd + δadδbc)I4b

2 (D.34)

= = 1
2g

4(δabδcd + δacδbd + δadδbc)I4b
2 (D.35)

= −20
3 d(4− d)g4(δabδcd + δacδbd + δadδbc)I4b

2 (D.36)

= = −(4− d)g4(δabδcd + δacδbd + δadδbc)I4b
2 (D.37)

= 4
3d(4− d)(6− d)g4(δabδcd + δacδbd + δadδbc)I4b

2 (D.38)

= −1
6(4− d)(6− d)g4(δabδcd + δacδbd + δadδbc)I4b

2 (D.39)

= = 1
6(4− d)(6− d)g4(δabδcd + δacδbd + δadδbc)I4b

2

(D.40)
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= −1
6(d− 1)(d− 3)(24−d − 1)Nf (1 +Nc)g4(δabδcd + δacδbd + δadδbc)I4b

2

(D.41)

The Aa
0A

b
0B

2
0 correlator

The four-point functions for the temporal component of the gauge fields are found at zero
external momentum.

= = 1
2g

2g′2δabI
4b
2 (D.42)

= = g2g′2δabI
4b
2 (D.43)

= = =

= −1
2(4− d)g2g′2δabI

4b
2 (D.44)

= = =

= −(4− d)g2g′2δabI
4b
2 (D.45)

+ = +

= 1
2(4− d)(6− d)g2g′2δabI

4b
2 (D.46)

+ = −1
2(d− 1)(d− 3)Nf (Y 2

l +NcY
2
q )g2g′2δabI

4f
2

(D.47)
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D.1 Self-energy diagrams

The Φ†i1 Φj
1A

a
µA

b
ν correlator

The diagrams contributing to the correlator with two scalar legs and two SU(2)L gauge
boson legs at zero external momentum are presented below. The diagrams with two Φ2
legs instead of Φ1 take the same form, with the substitution λ1 → λ2, and the absence of
fermion loops (box diagrams).

=3
4dg

4δijδabI
4b
2 (D.48a)

for µ = 0, ν = 0

=
(
d− 3

4
)
g4δijδabδrsI

4b
2 (D.48b)

for µ = r, ν = s

= 3
2λ1g

2δijδabδµνI
4b
2 (D.49)

=
(
λ3 + 1

2λ4
)
g2δijδabδµνI

4b
2 (D.50)

=1
8dg

4δijδabI
4b
2 (D.51a)

for µ = 0, ν = 0

=3
8g

4δijδabδrsI
4b
2 (D.51b)

for µ = r, ν = s

=1
8dg

2g′2δijδabI
4b
2 (D.52a)

for µ = 0, ν = 0

=3
8g

2g′2δijδabδrsI
4b
2 (D.52b)

for µ = r, ν = s
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=− (4− d)dg4δabδijI
4b
2 (D.53a)

for µ = 0, ν = 0
=− dg4δabδijδrsI

4b
2 (D.53b)

for µ = r, ν = s

=− 3
2(4− d)λ1g

2δabδijI
4b
2 (D.54a)

for µ = 0, ν = 0

=− 3
2λ1g

2δabδijδrsI
4b
2 (D.54b)

for µ = r, ν = s

=− (4− d)
(
λ3 + 1

2λ4
)
g2δabδijI

4b
2 (D.55a)

for µ = 0, ν = 0

=−
(
λ3 + 1

2λ4
)
g2δabδijδrsI

4b
2 (D.55b)

for µ = r, ν = s

+ =− 1
2(d− 2)g2g2

Y,1δabδijI
4f
2 (D.56a)

for µ = 0, ν = 0

=− 1
2g

2g2
Y,1δabδijδrsI

4f
2 (D.56b)

for µ = r, ν = s

The Φ†i1 Φj
1BµBν correlator

The contribution to the correlator with two Φ2 scalar legs instead of Φ1 is similar the dia-
grams listed below, except that no fermion loops are present (no box diagrams). Also, the
substitution λ1 → λ2 should be made wherever appropriate. The diagrams contributing
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D.1 Self-energy diagrams

to the correlator with two scalar legs and two U(1)Y gauge boson legs at zero external
momentum are

= 3
2λ1g

′2δµνδijI
4b
2 (D.57)

=
(
λ3 + 1

2λ4
)
g′2δµνδijI

4b
2 (D.58)

=1
8dg

′4δij (D.59a)

for µ = 0, ν = 0

=3
8g
′4δijδrs (D.59b)

for µ = r, ν = s

=3
8dg

′2g2δij (D.60a)

for µ = 0, ν = 0

=9
8g
′2g2δijδrs (D.60b)

for µ = r, ν = s

=− 3
2(4− d)g′2λ1δijI

4b
2 (D.61a)

for µ = 0, ν = 0

= −3
2g
′2λ1δijδrsI

4b
2 (D.61b)

for µ = r, ν = s

=− (4− d)g′2
(
λ3 + 1

2λ4
)
δijI

4b
2 (D.62a)
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for µ = 0, ν = 0

= −g′2
(
λ3 + 1

2λ4
)
δijδrsI

4b
2 (D.62b)

for µ = r, ν = s

+ = −1
2(d− 2)g′2δij Tr[(Y 2

l + Y 2
e )h(e)h(e)†

+Nc(Y 2
q + Y 2

d )h(d)h(d)† +Nc(Y 2
q + Y 2

u )h(u)h(u)†]I4f
2

(D.63a)
for µ = 0, ν = 0

= −1
2g
′2δijδrs Tr[(Y 2

l + Y 2
e )h(e)h(e)†

+Nc(Y 2
q + Y 2

d )h(d)h(d)† +Nc(Y 2
q + Y 2

u )h(u)h(u)†]I4f
2

(D.63b)
for µ = r, ν = s

= g′2 Tr[YlYeh(e)h(e)† +NcYqYdh
(d)h(d)† +NcYqYuh

(u)h(u)†]δijδµνI4f
2

(D.64)

The Φ†i1 Φj
1A

a
0B0 correlator

Lastly, we list the diagrams contributing to the correlator with two scalar legs and two
different gauge field legs at zero external momentum. Again, the diagrams with two Φ2
external legs instead of Φ1 take the same form, with the substitution λ1 → λ2, with the
absence of fermion loops (box diagrams).

= 1
2gg

′λ1(τa)ijI4b
2 (D.65)

= 1
2gg

′λ4(τa)ijI4b
2 (D.66)

= = 1
16dgg

′3(τa)ijI4b
2 (D.67)
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= = 1
16dg

3g′(τa)ijI4b
2 (D.68)

= = −1
4(4− d)gg′λ1(τa)ijI4b

2 (D.69)

= = −1
4(4− d)gg′λ4(τa)ijI4b

2 (D.70)

+ + +

= −1
2(d− 2)gg′(τa)ij Tr[Ylh(e)h(e)† + YqNch

(d)h(d)† − YqNch
(u)h(u)†]I4f

2 (D.71)

+

= 1
2(τa)ijgg′Tr[Yeh(e)h(e)† + YdNch

(d)h(d)† − YuNch
(u)h(u)†]I4f

2 (D.72)
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