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Abstract

T HE introduction of new methods for production and distribution of electrical energy
has increased the attention related to problems with power quality and the presence

of time-varying frequencies. It has been reported several cases with such problems in iso-
lated electrical systems such as isolated microgrids for incorporation of renewable energy
sources and marine vessel power systems. The sources and loads in such systems are usu-
ally interfaced with power electronic equipment, meaning that there is low or no inertia.
The low inertia and the stochastic nature of the generation and loads results in systems
that are prone to nonlinear distortions and variations in the fundamental frequency. The
hitherto used measurement- and monitoring equipment have mostly been based on average
value calculation. The aforementioned problems in isolated electrical systems have made
the need of measurement of instantaneous values instead of average values apparent, in
order to have monitoring- and control systems with satisfying performance and accuracy.

This thesis studies the use of several types of Kalman filters (KF), Hilbert-Huang Trans-
form (HHT) and the proposed method of merging empirical mode decomposition (EMD)
and KF for the purpose of tracking instantaneous values of voltage- and current waveforms
in isolated microgrids with the aforementioned challenges. Both synthetic signals and real
measurements from a marine vessel power system were used to validate the methods. The
algorithms and methods were implemented in Matlab and Simulink.

In varying degrees, the methods did all prove to be viable options for tracking of the funda-
mental frequency on the marine vessel. The proposed method turned out to be particularly
powerful to decompose multicomponent signals consisting of several time-varying mono-
components, and track their instantaneous amplitude and frequency.
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Sammendrag

I NNFØRINGEN av nye metoder for produksjon og fordeling av elektrisk energi har økt
oppmerksomheten rundt problemer med strømkvalitet og tidsvarierende frekvenser.

Det har blitt rapportert flere hendelser med slike problemer i isolerte kraftsystem som for
eksempel isolerte microgrids for inkorporering av fornybare energikilder og kraftsystem
ombord på marinfartøy med elektrisk fremdrift. Kilder og laster i slike system er van-
ligvis knyttet sammen gjennom kraftelektronisk utstyr, noe som fører til lavt treghetsmo-
ment. Det lave treghetsmomentet, i tillegg til kraftproduksjonens og lastenes stokastiske
natur, resulterer i system som er utsatt for ulineære forvrengninger og variasjoner i grunn-
frekvensen. Det hittil benyttede måle- og overvåkingsutstyret har for det meste vært basert
på gjennom- snittsverdi beregninger. De tidligere nevnte problemene i isolerte kraftsys-
tem har gjort det tydelig at målinger heller burde baseres på momentanverdier, slik at
overvåkings- og kontrollsystemer opprettholder tilfredsstillende ytelse og nøyaktighet.

Denne masteroppgaven studerer bruken av forskjellige Kalman-filtre (KF), Hilbert-Huang
Transform (HHT) og den foreslåtte metoden for sammenslåing av empirical mode decom-
position (EMD) og KF for følging av momentantverdier i spennings- og strøm bølgeformer
i isolerte microgrids med de nevnte utfordringene. Både syntetiske signaler og ekte spen-
ningsmålinger fra et kraftystem på marinfartøy ble brukt til å validere de forskjellige meto-
dene. Algoritmene og metodene ble implementert i Matlab og Simulink.

I varierende grad, viste de foreslåtte metodene seg å være gode metoder for følging av
grunnfrekvensen om bord på marinfartøyet. Den foreslåtte metoden viste seg å være spe-
sielt kraftig for å dekomponere signal bestende av flere tidsvarierende monokomponenter,
og estimere deres momentane amplitude og frekvens.

v



vi



Preface

T HIS is the master’s thesis to conclude the Master of Science degree in Cybernetics
and Robotics at the Norwegian University of Science and Technology. The work

was carried out at the Department of Engineering Cybernetics during spring 2017.

I would like to express my sincere gratitude to my supervisor, professor Marta Molinas
for giving me the opportunity to work with such an interesting topic. The completion of
the thesis would not have been possible without her tireless guidance and her remarkable
insight on the topic. Secondly, I would like to thank Vijay Venu Vadlamudi. His great
lectures aroused my interest for the world of electric power engineering.

I am grateful for the mail conversations with Manuel Duarte Ortigueira and Raul Rato for
increasing my understanding of their version of the EMD.

I would also like to thank Tomasz Tarasiuk from Gdynia Maritime Institute for providing
the measurements from the marine vessel power system.

Trondheim, 5 June 2017

Haakon Jondal Helle

vii



viii



Table of Contents

Problem Description i

Abstract iii

Sammendrag v

Preface vii

Table of Contents ix

List of Tables xiii

List of Figures xv

Abbreviations xvii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Objective and Scope of Work . . . . . . . . . . . . . . . . . . . . 2
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State-of-the-art in Methods for Frequency Identification in Microgrids 5
2.1 Introduction to Microgrids . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fundamental Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Time- and Phasor Domain . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 RMS, Effective Value . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Harmonics and Total Harmonic Distortion . . . . . . . . . . . . . 8
2.2.4 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Clarke Transformation . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 Symmetrical Component Theory - Fortescue’s Theorem . . . . . 10

2.3 Frequency Identification Methods . . . . . . . . . . . . . . . . . . . . . 12

ix



2.3.1 Kalman Filter and Extended Kalman Filter . . . . . . . . . . . . 12
2.3.2 The Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . 14
2.3.3 Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Hilbert-Huang Transform . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Summary of Previous Work 25
3.1 The Kalman filter and the Adaptive Kalman filter . . . . . . . . . . . . . 25
3.2 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Harmonics- and Frequency Tracking Using Kalman Filters 31
4.1 Tracking of Three-Phase Harmonics Based on Linear Kalman Filter . . . 31
4.2 Tracking of Fundamental Frequency Based on Extended- and Unscented

Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Estimation of the Phase Angle . . . . . . . . . . . . . . . . . . . 37
4.3.2 Tracking of Time-Varying- Amplitude and Fundamental Frequency 38

5 Merging Empirical Mode Decompositon and Kalman Filtering 41
5.1 Single-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Three-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Merging Empirical Mode Decompositon and Kalman Filtering - A Vali-

dation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Assessment of Methods for Tracking of Time-Varying Frequencies in real data
from a Marine Vessel Power System 51
6.1 3.33 second analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 60 second analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion and Future Work 63

Bibliography 65

Appendices 71

A Simulink Models 73
A.1 Tracking in Three-Phase Test System . . . . . . . . . . . . . . . . . . . . 73
A.2 Tracking in Marine Vessel Power System . . . . . . . . . . . . . . . . . 75

B Matlab Code 77
B.1 Voltage Source in the Three-Phase Test System . . . . . . . . . . . . . . 77
B.2 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . . . 78
B.3 Calculation of Instantaneous Amplitude and Frequency . . . . . . . . . . 80
B.4 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



B.5 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.6 From Estimated States to Estimated Magnitude, Phase Angle and Frequency 83
B.7 Park Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xi



xii



List of Tables

3.1 Parameters for project experiment 1. . . . . . . . . . . . . . . . . . . . . 27
3.2 Parameters for project experiment 2. . . . . . . . . . . . . . . . . . . . . 29

5.1 Parameters and tuning in experiment 1. . . . . . . . . . . . . . . . . . . . 45
5.2 Parameters and tuning in experiment 2. . . . . . . . . . . . . . . . . . . . 47

6.1 UKF tunings for tracking on the marine vessel. . . . . . . . . . . . . . . 52

xiii



xiv



List of Figures

2.1 An example microgrid with DC bus and the possibility to connect to the
main grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Three-phase voltages in the time domain. Phase voltages plotted with solid
lines and line voltages plotted with dotted lines. . . . . . . . . . . . . . . 7

2.3 Three-phase voltages shown in a phasor diagram. . . . . . . . . . . . . . 7
2.4 The Clarke transformation shown graphically. . . . . . . . . . . . . . . . 10
2.5 Unbalanced three phase voltages. . . . . . . . . . . . . . . . . . . . . . . 11
2.6 The sequence components of the unbalanced voltages. . . . . . . . . . . 12
2.7 The KF algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Comparison between the HT and FFT. . . . . . . . . . . . . . . . . . . . 19
2.9 Signal with spline interpolations and mean. . . . . . . . . . . . . . . . . 21
2.10 Steps of the EMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Instantaneous amplitude and frequency of the three first IMFs. . . . . . . 23
2.12 PLL structure and step response. . . . . . . . . . . . . . . . . . . . . . . 24

3.1 The regular KF and the AKF compared. . . . . . . . . . . . . . . . . . . 26
3.2 Comparison between the KF and the AKF. . . . . . . . . . . . . . . . . . 27
3.3 The analytical impedance of the MMC compared with impedance obtained

by small-signal perturbation. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 The analytical impedance of the MMC compared with impedance obtained

by KF and FFT for selected harmonics. . . . . . . . . . . . . . . . . . . 28
3.5 Simulations of the EKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 A small section of the three-phase voltages. . . . . . . . . . . . . . . . . 37
4.2 Simulations of the EKF, no noise. . . . . . . . . . . . . . . . . . . . . . 38
4.3 Simulations of the EKF, with noise. . . . . . . . . . . . . . . . . . . . . 38
4.4 Three-phase voltages and frequency. . . . . . . . . . . . . . . . . . . . . 39
4.5 Tracking of voltages with time-varying amplitude and frequency with fv =

2Hz, fm = 1Hz, fc = 10Hz. . . . . . . . . . . . . . . . . . . . . . . 39

xv



4.6 Tracking of voltages with time-varying amplitude and frequency with fv =
10Hz, fm = 5Hz, fc = 100Hz. . . . . . . . . . . . . . . . . . . . . . 40

4.7 Tracking of voltages time-varying amplitude and frequency with fv =
2Hz, fm = 1Hz, fc = 3Hz. . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Merging of EMD and KF. Single-phase structure. . . . . . . . . . . . . . 42
5.2 Merging of EMD and KF. Three-phase structures. . . . . . . . . . . . . . 43
5.3 The IMFs and residue of the space vector. . . . . . . . . . . . . . . . . . 45
5.4 Experiment 1 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 The IMFs and residue of the space vector. . . . . . . . . . . . . . . . . . 48
5.6 Experiment 2 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Line voltages and FFT plot. . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 IMFs of the 3.33 seconds space vector. . . . . . . . . . . . . . . . . . . . 53
6.3 Results using the different methods. . . . . . . . . . . . . . . . . . . . . 54
6.4 IMFs of the 60 seconds space vector. . . . . . . . . . . . . . . . . . . . . 55
6.5 Results using the different methods. . . . . . . . . . . . . . . . . . . . . 56
6.6 The instantaneous amplitude and frequency obtained by HHT for the first

and second IMFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.7 The instantaneous amplitude and frequency obtained by the merged EMD

and UKF for the two first IMFs. . . . . . . . . . . . . . . . . . . . . . . 57
6.8 The three first IMFs of the space vector, and the space vector it self, plotted

for three fundamental periods. . . . . . . . . . . . . . . . . . . . . . . . 58
6.9 Comparison between HHT and merged EMD and UKF . . . . . . . . . . 59
6.10 Sine fitting to IMF 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.11 Sine wave fitted to the instantaneous amplitude and frequency obtained by

HHT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12 Sine wave fitted to the instantaneous frequency obtained by HHT. . . . . 62

A.1 Implementation of the three-phase test system in Simulink. . . . . . . . . 73
A.2 Implementation of three-phase voltage source in Simulink. . . . . . . . . 74
A.3 Implementation of the extended Kalman filter in the test system. . . . . . 74
A.4 Implementation of the unscented Kalman filter in the test system. . . . . . 75
A.5 Implementation of the unscented Kalman filter for tracking on the marine

vessel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.6 Implementation of the different tracking methods on the marine vessel. . . 76
A.7 Implementation of the PLL. . . . . . . . . . . . . . . . . . . . . . . . . . 76

xvi



Abbreviations

AC Alternating current

AKF Adaptive Kalman filter

DC Direct current

DFT Discrete Fourier transform

EKF Extended Kalman filter

EMD Empirical mode decomposition

FFT Fast Fourier transform

FIR Finite impulse response

HHT Hilbert-Huang transform

HT Hilbert transform

IMF Intrinsic mode function

PV Photovoltaics

KF Kalman filter

MAF Moving average filter

MMC Modular multilevel converter

PI Proportional-Integral

PLL Phase-locked loop

RMS Root mean square

THD Total harmonic distortion

UKF Unscented Kalman filter

xvii



xviii



Chapter 1
Introduction

1.1 Background and Motivation

D UE to a large amount of rotating masses in the electric generators and loads, classi-
cal electric power systems have been characterized by excellent power quality and

frequency with very small drifts away from the fundamental frequency, usually at 50Hz
or 60Hz. With the increasing amount of power electronics equipment in the grids, such
as rectifiers, inverters, adjustable speed drives and the like, harmonics and nonlinear dis-
tortions are increasingly injected. This makes real-time measurement and estimation of
essential quantities such as frequency and magnitude a challenging, but necessary task.
With no connections to a strong-/stiff grid, stand-alone power systems such as isolated
microgrids (e.g photovoltaics (PV) microgrids or marine vessel power systems) are prone
to problems with severe frequency deviations. The low inertia in such systems requires
properly implemented controllers in order to maintain satisfying operation. In addition to
the harmonic pollution, advanced inverter control may produce time-varying oscillations
in conditions with varying load demand [1]. The role of these invertes are to serve as an
interface between the generation source and the loads. ”Static” power electronics equip-
ment such as the inverter is a means of inverting DC power to AC power in the cases where
the generation source is not rotating, e.g solar panels, fuel cells or battery banks supplying
DC power [1]. Hitherto, data acquisition- and measurement systems have generally been
based on average value calculations and harmonics that are integer multiples of a con-
stant fundamental frequency [2, 3]. After an extensive study of IEC Standard 61000-4-7
measuring methods, [4] states that these methods do not produce accurate results in envi-
ronments with time-varying angular frequency. Keeping the aforementioned problems of
nonlinearities and time-varying quantities in mind, measurements and estimation in iso-
lated microgrids should rather be based on instantaneous amplitude and frequency rather
than the usage of average values [1,5]. With improved data acquisition- and measurement
tools, the supervisory control systems in isolated microgrids may perform better actions,
and earlier hidden distortions may be revealed.
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Chapter 1. Introduction

1.2 Thesis Objective and Scope of Work

T HE objective of this thesis is to review current literature on specific frequency iden-
tification methods, and assess their viability in microgrids with time-varying funda-

mental frequency and nonlinear distortions. This is obtained by running simulations using
synthetic signals and real voltage measurements from a marine vessel power system.

Fundamental theory for microgrids and the methods used in this thesis are carried out in a
thorough manner. The extended Kalman filter (EKF) and unscented Kalman filter (UKF)
algorithms, and their models are derived. Also a phase-locked loop (PLL), EMD, Hilbert
transform (HT) and the proposed method of merging EMD and UKF are outlined. These
methods are implemented in Matlab and Simulink for assessment of their potential for
tracking of instantaneous amplitude and frequency of voltage- and current waveforms in
isolated microgrids, and for verification of the derived models used by the EKF and UKF.
It is also studied how some of the methods are able to break down multicomponent signals
into monocomponents, from which instantaneous amplitude and frequency with physical
meaning can be studied. Synthetic signals and real voltage measurements from a marine
vessel power system during sea voyage will be used for this purpose.

1.3 Main Contributions

T HE main contributions of this thesis are:

• An extensive literature review of papers and books relevant to the objective is ren-
dered in an easy-to-read and compact thesis.

• A proposed method for better phase angle estimation in noisy environments.

• Study of the nonlinear KF model limitations, regarding tracking of signals with
time-varying amplitude and frequency.

• The merging of EMD and KF is in this thesis proposed by the supervisor and author,
for the first time to the authors knowledge. Single-phase and three-phase topologies
are developed. This new method is tested with synthetic signals and real voltage
measurements, showing promising results.

1.4 Structure of the Report

T HE thesis is outlined as follows:
Chapter 1: Introduction - This chapter presents the background and motivation for

the work in this thesis. It also contains the thesis objective, scope of work, main contribu-
tions and the structure of the report.
Chapter 2: State-of-the-art in Methods for Frequency Identification in Microgrids
- This chapter introduces the concept of microgrids, fundamental definitions and impor-
tant frequency identification methods. It also contains literature review and state-of-the-art
within the field.

2



1.4 Structure of the Report

Chapter 3: Summary of Previous Work - This chapter summarizes the most important
results from the specialization project carried out autumn 2016.
Chapter 4: Harmonics- and Frequency Tracking using Kalman Filters - Linear and
nonlinear mathematical models for the different KFs are developed. Simulations are con-
ducted to confirm the models and to study their feasibility.
Chapter 5: Merging Empirical Mode Decomposition and Kalman Filtering - The pro-
posed method of combining EMD and KF is outlined, and validated with simulations.
Chapter 6: Assessment of Methods for Tracking of Time-Varying Frequencies in a
Marine Vessel Power System - The feasibility of the different frequency identification
methods outlined in this thesis are assessed by using real voltage measurements from a
marine vessel power system during sea voyage in rough sea conditions.
Chapter 7: Conclusion & Future Work - Conclusion of the thesis and recommended
work for future papers and master theses.
Appendix A: Simulink Models - Some of the Simulink models used in this thesis are
included in this appendix.
Appendix B: Matlab Code - Some of the scripts and functions used in Matlab and
Simulink are listed here.

3
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Chapter 2
State-of-the-art in Methods for
Frequency Identification in
Microgrids

2.1 Introduction to Microgrids

A CCORDING to the U.S Department of Energy a microgrid is ”a group of intercon-
nected loads and distributed energy resources with clearly defined electrical bound-

aries that acts as a single controllable entity with respect to the grid and can connect and
disconnect from the grid to enable it to operate in both grid connected or island modes”
[6]. The International Energy Agency (IEA) estimates that to achieve the goal of universal
access to electrical energy, 70% of rural areas lacking electricity will have to connect to
mini-grid or off-grid solutions [7]. Often microgrids are intended as a means of incorpo-
rating distributed and renewable energy sources such as solar PV, wind power, small hydro
and more. Microgrids are also used for military applications, offshore and maritime appli-
cations. Figure 2.1, inspired by [8], shows an example DC microgrid with a PV array and
battery bank supplying DC and AC loads. The microgrid is able to connect to and discon-
nect from the main grid. This point is called the point of common coupling (PCC). When
operating in island mode the available capacity from the energy storage and PV array must
exceed the power drawn from critical loads. Should there be any surplus energy in the mi-
crogrid, it may be sent to the main grid or be stored in the battery bank. The AC/DC block
is a rectifier/inverter, depending on the direction of the power flow. The DC/DC blocks are
mainly buck or boost converters, depending on whether the voltage levels should decrease
or increase. The DC/DC block connected to the battery bank is a so-called bi-directional
converter, having the ability to increase or decrease the voltage levels depending on the
direction of the power flow.

5



Chapter 2. State-of-the-art in Methods for Frequency Identification in Microgrids

Though having many advantages, there are several challenges related to the microgrids. In
isolated microgrids the amount of rotating mass is usually low, i.e low inertia. This can
often lead to severe frequency deviations if the controllers are not properly implemented
[9].

Figure 2.1: An example microgrid with DC bus and the possibility to connect to the main grid.

2.2 Fundamental Definitions

I N the following subsections several fundamental terms and definitions used in the the-
sis are explained, containing basic three-phase system and circuit analysis theory, har-

monics, Fourier analysis, different transformations and more.

2.2.1 Time- and Phasor Domain
Balanced three-phase voltages are shown in the time- and phasor domain in Figure 2.2 and
Figure 2.3. The three phases are denoted a,b and c, and can be represented as in equation
(2.1). The three phases are displaced by 120◦ or 2π

3 radians in balanced systems, and has
the frequency fn, usually 50Hz or 60Hz in most power systems. Currents will have the
same waveforms as the voltages.

va(t) = V̂a cos(2πfnt) (2.1a)

vb(t) = V̂b cos(2πfnt− 120◦) (2.1b)

vc(t) = V̂c cos(2πfnt+ 120◦) (2.1c)

Line voltages, or line-line voltages may be expressed as vab(t) = va(t)− vb(t) and so on.
Phase- and line voltages are often denoted as vφ and vl. The following relations applies:

vl =
√

3vφ∠30◦ (2.2)

Three-phase quantities may also be represented in the phasor domain:

Va = V̂ae
j0◦ = V̂a∠0◦ (2.3a)

6



2.2 Fundamental Definitions

Vb = V̂be
−j120◦ = V̂b∠− 120◦ (2.3b)

Vc = V̂ce
j120◦ = V̂c∠120◦ (2.3c)

where the the angular frequency ωn = 2πfn is assumed to be known. In fact each phasor
is multiplied with the term ejωnt, but is usually omitted as it is implied.

V
l
=1.732·V

φ

-V
φ

-V
l

120
°

30
°

V
φ

V
a

V
b V

c

V
ab

V
bc

V
ca

Figure 2.2: Three-phase voltages in the time domain. Phase voltages plotted with solid lines and
line voltages plotted with dotted lines.
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V
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V
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V
a

V
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V
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V
c

Figure 2.3: Three-phase voltages shown in a phasor diagram.
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Chapter 2. State-of-the-art in Methods for Frequency Identification in Microgrids

2.2.2 RMS, Effective Value
The term root mean square (RMS) is commonly used in electrical power engineering.
Vrms is the effective value of v(t), it can be regarded as the DC-value that will give the
same dissipated power over an resistance as v(t) does on average [10]. The instantaneous
power over an resistance can be expressed as:

p(t) = v(t)i(t) = v(t)2

R
(2.4)

The RMS value of any voltage can be found by an integral, as in (2.5).

V 2
RMS

R
= 1
R

1
T

∫ T

0
v(t)2dt (2.5)

giving

VRMS =

√
1
T

∫ T

0
v(t)2dt (2.6)

For sinusoids, it can be shown that V̂ =
√

2VRMS .

2.2.3 Harmonics and Total Harmonic Distortion
Total harmonic distortion (THD) is a measure of harmonic distortion, and is defined as the
ratio between the sum of the power of the harmonics and the power of the fundamental
frequency. Harmonic components are often introduced by power electronics equipment,
such as rectifiers and inverters, and has frequencies with an integer times the fundamental
frequency. Let a distorted voltage be defined as:

vs(t) = vs1(t) +
∑
h6=1

vsh(t), (2.7)

where vs1(t) is the fundamental component and vsh(t) are the harmonics. In terms of
RMS, the THD of the voltage defined in equation (2.7) can be found as follows [10]:

%THDv = 100 ·
√
V 2
s − V 2

s1
Vs1

= 100 ·

√√√√∑
h6=1

(
Vsh
Vs1

)2
(2.8)

2.2.4 Fourier Analysis
Fourier analysis of electrical voltage and current waveforms is hitherto the most widely
used method in instrumentation for electrical applications such as smart meters, spectrum
analyser, phasor measurement units and many more. With the presence of time-varying
quantities the frequency based methods may suffer from the leakage and picket-fence ef-
fects [11]. Leakage refers to the spreading of energy from one frequency to the adjacent
frequencies. The picket-fence effect occurs if the analysed signal contains harmonics that
are not an integer times the fundamental.
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According to IEEE 519 and IEC 61000-4-7, harmonic measurements using Fourier series
should be done in the following manner [2, 3, 12]:

x(t) = a0 +
∞∑
h=1

ch sin( h
N
ωnt+ φh) (2.9a)

ch =
√
a2
h + b2

h (2.9b)

φh = tan−1
(
ah
bh

)
, if bh ≥ 0 (2.9c)

φh = π + tan−1
(
ah
bh

)
, if bh < 0 (2.9d)

and

ah = 2
Tw

∫ Tw

0
x(t) cos

(
h

N
ωnt+ φh

)
dt (2.10a)

bh = 2
Tw

∫ Tw

0
x(t) sin

(
h

N
ωnt+ φh

)
dt (2.10b)

a0 = 1
Tw

∫ Tw

0
x(t) dt (2.10c)

where wn is the fundamental frequency, h is the harmonic order, Tw is the duration of
the window and N is the number of fundamental periods within the window width. As
the measurements obtained by data acquisition- and measurement systems are in discrete
time, the equations above is not used exactly as they are given. The aforementioned trans-
forms DFT and FFT are in that case used, where the only difference between the two is
that the latter is a more efficient implementation. The FFT takes advantage of symmetries,
reducing the number of computing operations needed from O(N2) (DFT) to O(N logN)
(FFT) [13].

2.2.5 Clarke Transformation
The Clarke transformation, also known as αβγ-, or αβ0 transformation, is a means of
simplifying three-phase quantities by projecting them onto a stationary reference frame
denoted α and β [14]. This transformation is conceptually similar to the Park-, or dq0
transformation, where the difference is that the Park transformation projects three-phase
quantities onto a rotating reference frame. The transformation from abc reference frame
to the stationary reference frame, α and β, can be obtained by:

Xαβ0 = TXabc, (2.11)

and inversely from αβ0 to abc:

Xabc = T−1Xαβ0. (2.12)

9
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The transformation matrices in equation (2.11) and (2.12) are defined as in (2.13) and
(2.14).

T = 2
3

1 − 1
2 − 1

2
0

√
3

2 −
√

3
21

2
1
2

1
2

 (2.13)

T−1 =

 1 0 1
− 1

2

√
3

2 1
− 1

2 −
√

3
2 1

 (2.14)

The transformation is shown in Figure 2.4, where balanced three phase quantities are trans-
formed into the α− and β axis. Since the system is balanced, the γ or 0 component equals
zero.

Re

Im

Clarke Transform

aα

β

b

c

Figure 2.4: The Clarke transformation shown graphically.

2.2.6 Symmetrical Component Theory - Fortescue’s Theorem

The fundamentals for symmetrical component theory was first presented by Fortescue in
[15], which is a paper that is by many seen upon as one of the most important papers
in electric power engineering. Fortescue proposed that any set of N unbalanced phasors
could be expressed as the sum of N symmetrical sets of balanced phasors. This does of
course apply to three phase system, where the three symmetrical sets of balanced phasors
are called positive-, negative- and zero sequence components. The positive sequence com-
ponents is a set of three balanced vectors, with equal magnitude, same phase sequence and
displaced by 120◦ with respect to each other. The same properties applies to the negative
sequence components except that the phase sequence is opposite. The zero sequence com-
ponents is a set of three balanced vectors with equal magnitudes and equal phase angles,
i.e in phase.

10



2.2 Fundamental Definitions

Any set of unbalanced voltages or currents in the abc reference frame, Xabc, can be trans-
formed into balanced positive, neqative and zero sequence components, X012. X012 =
A−1Xabc, where A−1 is the transformation matrix:

A−1 = 1
3

1 1 1
1 a a2

1 a2 a

 , (2.15)

where a = ej120◦ . Similarly the sequence components can be transformed back to the
original unbalanced quantities. Xabc. Xabc = AX012 where A is the transformation
matrix:

A =

1 1 1
1 a2 a
1 a a2

 (2.16)

Figure 2.5 shows an unbalanced three-phase system, whereas Figure 2.6 shows the se-
quence components.
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V
c

V
a

V
b

Figure 2.5: Unbalanced three phase voltages.
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Figure 2.6: The sequence components of the unbalanced voltages.

2.3 Frequency Identification Methods

T HE task of estimating frequency and other parameters in isolated microgrids is a task
of grave importance, for many different reasons. The methods mentioned in section

1.2 will here be outlined. Rich literature on these methods is available, and also for other
methods that will not be covered in this thesis. Some other widely used methods for
on-line fundamental frequency estimation (and other parameters) are: adaptive Prony’s
method [16], least squares methods [17, 18], adaptive notch filtering [19, 20] and Newton
type algorithms [21, 22].

2.3.1 Kalman Filter and Extended Kalman Filter

For time-domain- and model based methods, KF is a widely used tool for a variety of
power system applications. The use of KF for electrical engineering purposes has been
around since the early 80’s [23, 24], and has been of interest in applications and research
ever since. Several great approaches have been suggested for both balanced and unbal-
anced power system, under the assumption of both stationary- and non-stationary fre-
quency in [11, 25–29]. Another example of usage is state estimation in electrical drives
[30].

The KF has been around for over 50 years, and is still alive and well and widely used in
many applications. In 1960 R. E. Kalman found a recursive solution for the Wiener filter
problem, the solution was called KF and was first presented in [31]. The theory in this
section is based on [32].

It is assumed that the following discrete state-space model can be used to estimate the
random process:

xk+1 = Akxk + wk (2.17a)

yk = Ckxk + vk (2.17b)
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2.3 Frequency Identification Methods

xk and yk are the process state- and measurement vector at time tk. Ak is the system
matrix relating xk to xk+1, assuming there is no noise. Matrix Ck gives the noiseless
relationship between the state- and measurement vector at time tk. wk and vk are the
model error and measurement error, assumed to be white sequences with zero mean, and
normal distributed covariances wk ∼ N (0, Qk) and vk ∼ N (0, Rk). Furthermore the
covariance matrices Qk and Rk are uncorrelated, and are uncorrelated at different time
instants, as stated in (2.18).

E[wkwTi ] =
{
Qk, i = k

0 =, i 6= k
, (2.18a)

E[vkvTi ] =
{
Rk, i = k

0 =, i 6= k
, (2.18b)

E[wkvTi ] = 0,∀k, i (2.18c)

To start the KF algorithm, an initial estimate x̂−0 and its error covariance P−0 is needed.
The ”hat” denotes that this is an estimate, and the superscript ”-” denotes that this is the a
priori estimate, meaning this is the best estimate before taking the measurement at time tk
into consideration. Furthermore the estimation error is defined as:

e−k = xk − x̂−k . (2.19)

Assuming the estimation error in (2.19) has zero mean, the error covariance matrix is given
by (2.20).

P−k = E[e−k e
−
k

T ] = E[(xk − x̂−k )(xk − x̂−k )T ] (2.20)

We now want to improve our a priori estimate, x̂−k , by using the measurement yk. The a
posteriori estimate x̂k can be found by:

x̂k = x̂−k +Kk(yk − Ckx̂−k ). (2.21)

Kk is the yet to be determined Kalman gain, with the purpose of giving an optimal updated
estimate through properly weighting the measurement residual yk − ŷk and adding it to
the a priori estimate. The a posteriori estimate results in the following error covariance
matrix:

Pk = E[ekeTk ] = E[(xk − x̂k)(xk − x̂k)T ]. (2.22)

The purpose of the Kalman gain Kk, and the KF itself, is to minimize the individual terms
along the major diagonal of Pk. It can be shown that (2.23) minimizes the mean-square
estimation error.

Kk = P−k C
T
k (CkP−k C

T
k +Rk)−1 (2.23)

For optimal gain conditions the error covariance matrix for the updated estimate is given
as:

Pk = (I −KkCk)P−k (2.24)

The a priori estimate for the next time step, tk+1, can be found by simply projecting x̂k
ahead via the system matrix Ak, as given in (2.25).

x̂−k+1 = Akx̂k (2.25)

13
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The error covariance matrix for the next time step is given by:

P−k+1 = E[e−k+1e
−T
k+1] = AkPkA

T
k +Qk (2.26)

For the case of systems with highly nonlinear characteristics , the KF will normally behave
badly and the EKF may be a better candidate. Assuming the state-space model is on the
form:

ẋ = f(x, t) + w (2.27a)

y = h(x, t) + v (2.27b)

To obtain the state transition matrix, Ak, and measurement matrix, Ck, at time step k
equation (2.28) and (2.29) are used.

Ak = ∂f

∂x

∣∣∣∣
x̂k

(2.28)

Ck = ∂h

∂x

∣∣∣∣
x̂k

(2.29)

Though the above equations may seem abstract at first, the goal of the KF is quite sim-
ple. It is simply a computer algorithm that processes discrete measurements into optimal
estimates. Figure 2.7 shows the KF loop visually, and summarizes equations (2.21)-(2.26).

Figure 2.7: The KF algorithm.

2.3.2 The Unscented Kalman Filter
For nonlinear systems, the EKF is the most widely used state estimation algorithm. It has
low complexity and is easy to implement. Though the EKF possess many advantages,
such as simple tuning, it also falls short when compared to other nonlinear state estimation
algorithms, mostly due to linearization errors and the need of calculating derivatives [33]
[34]. The theory in this part is based on [33] and [35].

Assume we have a n-dimensional state-space model as given in (2.30):

xk+1 = f(xk, tk) + wk (2.30a)

14
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yk = h(hk, tk) + vk (2.30b)

wk ∼ (0, Qk) (2.30c)

vk ∼ (0, Rk) (2.30d)

The UKF is initalized:
x̂0 = E[x0] (2.31a)

P0 = [ekeTk ] = E[(x0 − x̂0)(x0 − x̂0)T ] (2.31b)

As opposed to the EKF which uses linearized models to propagate from time step k − 1
to k, the UKF picks a minimal set of sigma points around the mean, which is further
propagated through the nonlinear functions, meaning it is derivative free. This is known
as the unscented transformation, which results in a new mean and covariance estimate.
The unscented transformation is based on the idea that it is easy to perform nonlinear
transformations on single points. By using Cholesky factorization to find matrix square

roots, i.e
(√

nP
)T √

nP = nP , the sigma points are defined as follows:

χ
(i)
k−1 = x̂k−1 + x̃(i), i = 1, ..., 2n (2.32a)

x̃(i) =
(√

nPk−1

)T
i
, i = 1, ..., n (2.32b)

x̃(n+i) = −
(√

nPk−1

)T
i
, i = 1, ..., n (2.32c)

The sigma points are then propagated through the nonlinear function f(·), making the
vector χ(i)

k :
χ

(i)
k = f(χ(i)

k−1, uk, tk) (2.33)

The elements of χ(i)
k are then combined, serving as the a priori estimate at time k.

x̂−k = 1
2n

2n∑
i=1

χ
(i)
k (2.34)

The a priori error covariance is defined as in (2.35), where it should be noted that Qk−1 is
added to take model error into account.

P−k = 1
2n

2n∑
i=1

(χ(i)
k − x̂

−
k )(χ(i)

k − x̂
−
k )T +Qk−1 (2.35)

The equations defined above are usually denoted as the time update equations. The mea-
surement update equations are yet to be defined. Equation (2.36) defines new sigma points
using the current best estimates, in fact x̂−k and P−k . To save computational effort one may
omit the calculation of new sigma points, if one is willing to sacrifice accuracy, that is.

χ
(i)
k = x̂−k + x̃(i), i = 1, ..., 2n (2.36a)
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x̃(i) =
(√

nP−k

)T
i

, i = 1, ..., n (2.36b)

x̃(n+i) = −
(√

nP−k

)T
i

, i = 1, ..., n (2.36c)

The nonlinear measurement function h(·) is now used to transform the sigma points into
vectors of predicted measurements, γ(i)

k .

γ
(i)
k = h(χ(i)

k , tk) (2.37)

The vectors of predicted measurements are then combined to obtain the predicted mea-
surement ŷk, as shown in (2.38).

ŷk = 1
2n

2n∑
i=1

γ
(i)
k (2.38)

Equation (2.39) defines the covariance of the predicted measurement.

Py = 1
2n

2n∑
i=1

(γ(i)
k − ŷk)(γ(i)

k − ŷk)T +Rk (2.39)

The cross covariance between x̂−k and ŷk is defined as:

Pxy = 1
2n

2n∑
i=1

(χ(i)
k − x̂

−
k )(γ(i)

k − ŷk)T (2.40)

The a posteriori estimates can now be found as in equation (2.41)

Kk = PxyP
−1
y (2.41a)

x̂k = x̂−k +Kk(yk − ŷk) (2.41b)

Pk = P−k −KkPyK
T
k (2.41c)

Using 2n+ 1 Sigma Points

[35] suggests different scaling parameters and weights for combining the sigma points into
estimates. Also an additional sigma point is added, i.e 2n+ 1 sigma points. Compared to
equation (2.32) the a priori sigma points vectors χ(i)

k are now defined as:

χ
(0)
k−1 = x̂k−1, i = 0 (2.42a)

χ
(i)
k−1 = x̂k−1 + x̃(i), i = 1, ..., 2n (2.42b)

x̃(i) =
(√

(n+ λ)Pk−1

)T
i
, i = 1, ..., n (2.42c)
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x̃(n+i) = −
(√

(n+ λ)Pk−1

)T
i
, i = 1, ..., n (2.42d)

χ
(i)
k−1 will be on the form:

χ
(i)
k−1 =

[
x̂k−1 x̂k−1 +

(√
(n+ λ)Pk−1

)T
x̂k−1 −

(√
(n+ λ)Pk−1

)T]
(2.43)

The scaling parameter λ is defined as in equation (2.44):

λ = α2(n+ κ)− n, (2.44)

where α determines the spread of the sigma points around the mean x̄ = x̂k−1, usually
set to a small positive value, e.g 1e-3. κ is a secondary scaling parameter, usually set to 0.
Then a set of mean and covariance weights are defined as in equation (2.45):

ω
(m)
0 = λ

n+ λ
(2.45a)

ω
(c)
0 = λ

n+ λ
+ (1− α2 + β) (2.45b)

ω
(m)
i = ω

(c)
i = 1

2(n+ λ) , i = 1, ..., 2n (2.45c)

β is used to incorporate prior knowledge about the probabilistic distribution, e.g β = 2 for
Gaussian distribution. The different state, measurement and covariance estimates are now
found as:

x̂−k =
2n∑
i=0

ω(i)
m χ

(i)
k (2.46a)

ŷk =
2n∑
i=0

ω(i)
m γ

(i)
k (2.46b)

P−k =
2n∑
i=0

ω(i)
c (χ(i)

k − x̂
−
k )(χ(i)

k − x̂
−
k )T +Qk−1 (2.46c)

Py =
2n∑
i=0

ω(i)
c (γ(i)

k − ŷk)(γ(i)
k − ŷk)T +Rk (2.46d)

Pxy =
2n∑
i=0

ω(i)
c (χ(i)

k − x̂
−
k )(γ(i)

k − ŷk)T (2.46e)

The above changes are also applied to the a posteriori estimates. The observant reader
may notice that with λ = 0, equations (2.42)-(2.46) reduces to the equations from the
preceding subsection.
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Adaptive update of model- and measurement error covariances

[34] proposes an adaptive update of the model- and measurement error covariance matri-
ces, in order to better respond to rapid fluctuations and varying measurement noise. Let

Zk = x̂k − x̂−k = Kk(yk − ŷk) =
[
ψ1k ψ2k

]T
(2.47)

The iteratively updated model error covariance matrix is then defined as follows:

Qk = 1
2(ψ2

1k + ψ2
2k)× I2×2 (2.48)

It can be seen that a large error in one of the states will affect the whole model. The
adaptive measurement noise covariance matrix is given as:

Rk = ξRk−1 + (1− ξ)|ek||ek−1| (2.49)

where ξ is the forgetting factor between 0 and 1.

2.3.3 Hilbert Transform
The HT is an important tool in signal processing. It is a tool for projecting real signals
onto the imaginary axis, which further makes it possible to obtain instantaneous amplitude
and frequency. Let the HT of the function x(t) be defined as in [36]:

y(t) = H [x(t)] = 1
π
p.v

∫ ∞
−∞

x(τ)
t− τ

dτ, (2.50)

where p.v indicates the Cauchy principal value. The original signal can now be expressed
in an exponential form as shown equation (2.51).

z(t) = x(t) + jy(t) = a(t)ejθ(t), (2.51)

where
a(t) =

√
x2(t) + y2(t) (2.52a)

θ(t) = tan−1
{
y(t)
x(t)

}
(2.52b)

a(t) and θ(t) are the instantaneous amplitude and phase respectively. Knowing the instan-
taneous phase, the instantaneous frequency f(t) can then be found:

f(t) = 1
2π

dθ(t)
dt

(2.53)

The notions of instantaneous amplitude and frequency for general signals are not well-
defined [5, 37]. For a perfect sinusoid, the instantaneous frequency will be f = 1

T . Figure
2.8 compares the HT and FFT applied to a signal with varying amplitude and frequency,
given as:

x(t) =
{

cos(2π3t), 0 ≤ t < 2.5
0.5 · cos(2π6t), 2.5 ≤ t ≤ 10

(2.54)
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It can be seen that the Fourier transform struggles when analysing signals with time-
varying components, and is representing the signal energy as a leakage around 3Hz and
6Hz, whereas the instantaneous amplitude and frequency found from the HT quickly set-
tles to the correct values.
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Figure 2.8: Comparison between the HT and FFT.

2.3.4 Hilbert-Huang Transform
The HHT, in fact a NASA designated name, combines EMD and the aforementioned HT,
and is well suited for analysis of non-stationary signals. The use of HHT has proven
useful for obtaining instantaneous amplitude, frequency and power in power systems and
isolated microgrids [1, 5, 38, 39]. As will be outlined in the next subsection, the EMD
decomposes signals into monocomponents/IMFs. From the IMFs it is possible to obtain
instantaneous amplitudes and frequencies, as the monocomponents often can be regarded
as near periodic and near sinusoidal [5,37]. The amount of IMFs greatly varies depending
on the signal at hand. Knowing the IMFs of a signal one may reveal important information,
e.g oscillatory modes. EMD is originally an offline method, but there are also examples of
on-line EMD implementations [40–42]. To realize the HHT for real-time applications, a
FIR filter can be used to estimate the HT, as in [43–45].

Empirical Mode Decomposition - The Sifting Process

The EMD and sifting process aims to extract IMF from non-stationary and nonlinear data
in a systematic manner. [46] states that an IMF must satisfy the following conditions:
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• The number of extrema and the number of zero crossings must either be equal or
differ at most by one

• At any point, the average value of the envelopes defined by the local maxima and by
the local minima is zero.

The EMD starts by finding all the local maxima and minima of the signal x(t). The
extrema points are connected by cubic spline interpolation lines as shown in Figure 2.9.
The average of the upper and lower spline envelopes is computed and here denoted as m1.
The mean is subtracted from the original signal [46]:

h1 = x(t)−m1 (2.55)

Further, the extrema points of h1 are identified and again connected by cubic spline in-
terpolation lines. The new mean is defined as m11. This so called sifting procedure is
repeated k times until h1k is an IMF or the standard deviation, SD, computed from two
consecutive sifting is below a certain value, typically 0.2 or 0.3 [46] .

SD =
T∑
t=0

[
|(h1(k−1)(t)− h1k(t)|2

h2
1(k−1)(t)

]
(2.56)

h1k = h1(k−1) −m1k (2.57)

The first IMF is designated as

c1 = h1k, (2.58)

and subtracted from the original signal, resulting in the residue r1.

r1 = x(t)− c1 (2.59)

The steps mentioned above are repeated until the residue is a monotonic function, or so
small that it is less than a predefined value of substantial consequence. From the resulting
IMFs and the last residue the signal x(t) can be represented as [46]:

x(t) =
n∑
i=1

ci + rn (2.60)

To illustrate, the signal x(t) = cos(2π50t)+0.5 cos(2π250t)+0.3 cos(2π750t) is passed
through the HHT. Figure 2.10 clearly shows the steps of the sifting process for the three
first IMFs, while Figure 2.11 shows the instantaneous amplitudes and frequency obtained
from the three first IMFs. As can be seen, the highest frequency components are extracted
first.
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Figure 2.9: Signal with spline interpolations and mean.
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Figure 2.10: Steps of the EMD.
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Figure 2.11: Instantaneous amplitude and frequency of the three first IMFs.

2.3.5 Phase-Locked Loop

The PLL is the state-of-the-art method for extracting the phase angle of grid voltages
[47, 48]. Many versions of the PLL are implemented in the dq synchronous reference
frame, as can be seen in Figure 2.12a, which is based on [49]. The estimated d- and q-axis
voltages are low-pass filtered with the cut off frequency ωLP . The inverse tangent of the

23



Chapter 2. State-of-the-art in Methods for Frequency Identification in Microgrids

filtered voltages is used as input to the Proportional-Integral (PI) controller [49], giving:

ωPLL = θv(kp ·
1 + Tis

Tis
) + ωg, (2.61)

where ωg is the nominal grid angular frequency. A typical step response is showed in
Figure 2.12b. The Park-/dq transform is given as [50]:

[
vd
vq

]
=
√

2
3

[
cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

− sin(θ) − sin(θ − 2π
3 ) − sin(θ + 2π

3 )

]vavb
vc

 (2.62)
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Figure 2.12: PLL structure and step response.
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Chapter 3
Summary of Previous Work

T HIS thesis is a continuation of the specialization project carried out autumn 2016 at
the Department of Engineering Cybernetics [51]. The specialization project mainly

involved the development and testing of different types of Kalman filters for harmonics-
and frequency tracking in electric power systems. This chapter includes the main results
and findings of the specialization project.

3.1 The Kalman filter and the Adaptive Kalman filter

T HE mathematical models for the KF, the adaptive Kalman filter (AKF) and the three-
phase voltages subject to harmonic pollution are given in section 4.1. The KF and

AKF were subjected to the experiment as given in table 3.1

As can be seen from Figure 3.1, the AKF outperformed the KF. This was to be expected as
the AKF was designed to quickly handle fluctuations. Figure 3.2 shows the error of the KF
and AKF, and also how the tuning of the AKF impacted the error. The error was defined
as in equation 3.1.

Magnitude errordB = 10 · log
(√ ∑

i∈hp∪hn

(|Vi,ref | − |Vi|)2
)

(3.1a)

Angle errordB = 10 · log
(√ ∑

i∈hp∪hn

(∠Vi,ref − ∠Vi)2
)

(3.1b)

25



Chapter 3. Summary of Previous Work

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-500

-400

-300

-200

-100

0

100

200

300

400

500

M
a
g
n
it
u
d
e
 [
V

]

Phase a

Phase b

Phase c

(a) Three-phase voltages in the abc frame

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

M
a
g
n
it
u
d
e
 [
V

]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-20

0

20

40

60

80

A
n
g
le

 [
°
]

(b) KF

(c) AKF

Figure 3.1: The regular KF and the AKF compared.
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3.1 The Kalman filter and the Adaptive Kalman filter

Project experiment 1
Parameter Value
Simulation time 0.2 s
Sample time, Ts 10−6 s
Measurement noise, v = v1 = v2, turn on 0.08 s
Noise mean, E[v] 0
Noise variance, var(v) = E[v2] 1
Positive sequence harmonics, hp [1, 7, 13]
Negative sequence harmonics, hn [5, 11, 17]
|Vi,ref | , 0 s ≤ t < 0.06 s [100, 80, 50]
|Vi,ref | , 0.06 s ≤ t ≤ 0.2 s [50, 40, 25]
∠Vi,ref , 0 s ≤ t < 0.12 s [0◦, 45◦, 60◦]
∠Vi,ref , 0.12 s ≤ t ≤ 0.2 s [0◦, 22.5◦, 30◦]
i ∈ hp
|Vj,ref | , 0 s ≤ t < 0.06 s [90, 70, 40]
|Vj,ref | , 0.06 s ≤ t ≤ 0.2 s [45, 35, 20]
∠Vj,ref , 0 s ≤ t < 0.12 s [−20◦, 55◦, 70◦]
∠Vj,ref , 0.12 s ≤ t ≤ 0.2 s [−10◦, 27.5◦, 35◦]
j ∈ hn

Table 3.1: Parameters for project experiment 1.
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Figure 3.2: Comparison between the KF and the AKF.

Figure 3.3 shows the modular multilevel converter (MMC) impedance found by small-
signal perturbation in a MMC-diode bridge system. This was obtained by injecting shunt
currents of 0.01 pu between the MMC and the diode bridge. Figure 3.4 compares the
analytical impedance, and impedance obtained by FFT and KF at specified harmonics
present in the system.
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Figure 3.3: The analytical impedance of the MMC compared with impedance obtained by small-
signal perturbation.
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FFT for selected harmonics.
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3.2 The Extended Kalman Filter

T HE equations for the model used by the EKF can be found in section 4.2. Figure 3.5
shows how the EKF was able to track the voltage magnitude and frequency as given

in table 3.2. At this point the author had had no luck tracking the phase angle. It was found
that the performance of the EKF was linked to the ratio between the diagonal elements of
the model error covariance matrix Q, defined as λ = q1,1

q2,2
.

Project experiment 2
Parameter Value
Simulation time 2 s
Sample time, Ts 10−5 s
Measurement noise, v, turn on 0 s
Noise mean, E[v] 0
Noise variance, var(v) = E[v2] 0.1
Positive sequence harmonics, hp [1]
Negative sequence harmonics, hn ∅
|Vi,ref | , 0 s ≤ t < 0.2 s [100]
|Vi,ref | , 0.2 s ≤ t ≤ 2 s [50]
∠Vi,ref , 0 s ≤ t ≤ 2 s [45◦]
i ∈ hp
fn , 0 s ≤ t < 0.8 s 50Hz
fn , 0.8 s ≤ t ≤ 2 s 51Hz

Table 3.2: Parameters for project experiment 2.
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Figure 3.5: Simulations of the EKF.
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Chapter 4
Harmonics- and Frequency
Tracking Using Kalman Filters

I N this chapter two Kalman filter models will be developed, one for tracking of harmon-
ics and one for tracking of time-varying fundamental frequency. The models will be

validated by simulations.

The first model is based on [26,52], and [25] for the adaptive approach. Here it is assumed
that the angular frequency ω is constant, and that the system is balanced. In addition a
nonlinear model suitable for the EKF and UKF, as in [27] and [34] is developed. This
model can be used to include tracking of the fundamental frequency.

4.1 Tracking of Three-Phase Harmonics Based on Linear
Kalman Filter

F OR now, ω(t) = ωn is assumed to be known and constant. It is also assumed that
the system is balanced, hence Va = Vb = Vc. Equation (4.1) represents three-phase

voltages in the abc frame with amplitudes Va , Vb , Vc, phase angles φa , φb , φc, and a
known angular frequency ωn. The angular frequency is given by ωn = 2πfn, where fn in
this case is the fundamental frequency at 50Hz. The model to be developed also applies
for three-phase currents in the abc frame.

va(t) = Va cos(ωnt+ φa) (4.1a)

vb(t) = Vb cos(ωnt+ φb) (4.1b)

vc(t) = Vc cos(ωnt+ φc) (4.1c)

Let φb = φa− 2π
3 and φc = φa+ 2π

3 , i.e the phases are aligned in the positive sequence. As
explained in section 2.2.6, any unbalanced systems can be transformed into three sets of
balanced phasors. The positive-, negative- and zero sequence will from now on be denoted
as p, n, 0, respectively.
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va(t) = va,p(t) + va,n(t) + va,0(t) (4.2a)

vb(t) = vb,p(t) + vb,n(t) + vb,0(t) (4.2b)

vc(t) = vc,p(t) + vc,n(t) + vc,0(t) (4.2c)

Furthermore we define Vp=[Va,p,Vb,p,Vc,p]T , Vn=[Va,n,Vb,n,Vc,n]T and V0=[Va,0,Vb,0,Vc,0]T

as in [26]. Equation (4.1) can be rearranged as in equation (4.3).va(t)
vb(t)
vc(t)

 = Vp

 cos(ωnt+ φp)
cos(ωnt+ φp − 2π

3 )
cos(ωnt+ φp + 2π

3 )

+ Vn

 cos(ωnt+ φn)
cos(ωnt+ φn + 2π

3 )
cos(ωnt+ φn − 2π

3 )

+ V0

cos(φ0)
cos(φ0)
cos(φ0)

 ,
(4.3)

where φp, φn, φ0 are the phase angles for each sequence. Further the voltages in the abc
frame are transformed into the αβ0 frame using the Clarke transform, where the transfor-
mation matrix T is given in (4.4) and (4.5).

T = 2
3

1 − 1
2 − 1

2
0

√
3

2 −
√

3
21

2
1
2

1
2

 (4.4)

By assuming we have a balanced system, the ”0”-component is omitted and we get:

T = 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(4.5)

Multiplying (4.5) with every part of (4.3) yields:

vαβ(t) = Tvabc(t) = TVp

[
cos(ωnt+ φp)
sin(ωnt+ φp)

]
+ TVn

[
cos(ωnt+ φn)
− sin(ωnt+ φn)

]
(4.6)

To obtain a more convenient structure, the trigonometric theorem of addition and subtrac-
tion, as in (4.7) is used.

sin(a± b) = sin(a) cos(b)± cos(a) sin(b) (4.7a)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b) (4.7b)

Applying (4.7) to (4.6):[
vα(t)
vβ(t)

]
=
[
cos(ωnt) − sin(ωnt)
sin(ωnt) cos(ωnt)

] [
Vp cos(φp)
Vp sin(φp)

]
+
[

cos(ωnt) − sin(ωnt)
− sin(ωnt) − cos(ωnt)

] [
Vn cos(φn)
Vn sin(φn)

]
(4.8)

In (4.9) the model is restated as a discrete state-space model fitting the KF, where i takes
the values of the positive harmonic set hp and negative harmonic set hn, xi,1 and xi,2 are
the α and β components at harmonic i, ωn is the grid angular frequency, Ts is the sampling
period and subscript ”k” denotes the time instant. It is also assumed random walk for the
states.

32



3.2 The Extended Kalman Filter

[
xi,1
xi,2

]
k+1

=
[
1 0
0 1

] [
xi,1
xi,2

]
k

+
[
wi,1
wi,2

]
k

(4.9a)

yk =
[
vα
vβ

]
k

=
∑
i∈hp

[
cos(iωnkTs) − sin(iωnkTs)
sin(iωnkTs) cos(iωnkTs)

] [
xi,1
xi,2

]
k

+
∑
i∈hn

[
cos(iωnkTs) − sin(iωnkTs)
sin(iωnkTs) cos(iωnkTs)

] [
xi,1
xi,2

]
k

+
[
vi,1
vi,2

]
k

(4.9b)

Let the number of harmonics in the set hp and hn be np and nn, and furthermore the
total number of harmonics N = np + nn. The total number of states will be 2N . The
model error covariance matrix, Qk, will be a 2N × 2N matrix. The measurement noise
covariance matrix, Rk will be a 2 × 2 matrix. The system matrix Ak, and measurement
matrix Ck will be matrices with dimensions 2N × 2N and 2 × 2N respectively. The
amplitude and phase at harmonic i is found by:

|Vi| =
√
x2
i,1 + x2

i,2 (4.10a)

φi = tan−1
{
xi,2
xi,1

}
(4.10b)

The self-tuning AKF algorithm from [25] is adopted and slightly modified to include sev-
eral harmonics. The AKF is implemented so that the model error covariance matrix is
adaptively updated, to handle fast fluctuations in the studied signal. The model error ŵk
can be estimated as:

ŵk = x̂k − x̂−k = x̂−k +Kk(yk − Ckx̂−k )− x̂−k
= Kk(yk − Ckx̂−k ).

(4.11)

Inspired by the algorithm in [25], the diagonal terms of the model error covariance matrix
takes the value of the average of the sum of (ŵ2

i,1 + ŵ2
i,2) for every harmonic i in the set

hp ∪ hn, as in (4.12) and (4.13):

qk = 1
2N

∑
i∈hp∪hn

(ŵ2
i,1 + ŵ2

i,2)k (4.12)

Qk = qkI (4.13)

The AKF algorithm is given in Algorithm 1.
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Algorithm 1 Adaptive Kalman filter algorithm for time instant k = 0, 1, ...
1: q−k = Qk(1, 1)
2: for i = 1 to Nmax iter do
3: Pk = AkP

−
k A

T
k +Qk

4: Kk = PkC
T
k (CkPkCTk +Rk)−1

5: x̂k = x̂−k +Kk(yk − Ckx̂−k )
6: ŵk = Kk(yk − Ckx̂−k )
7: qk = 1

2N
∑
i(ŵ2

i,1 + ŵ2
i,2)k, i ∈ hp ∪ hn

8: Qk = qkI

9: if |√qk −
√
q−k | < ε then

10: break
11: end if
12: q−k = qk
13: end for
14: x̂−k+1 = Akx̂k
15: P−k+1 = (I −KkCk)Pk
16: Qk+1 = Qk
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Filter

4.2 Tracking of Fundamental Frequency Based on Extended-
and Unscented Kalman Filter

I N this section a model suitable for the EKF and UKF for frequency tracking will be
developed, as in [27] and [34]. Again, balanced conditions are assumed, i.e Va =

Vb = Vc. The three-phase voltages vabc,k are described in a discrete manner:

va,k = Va cos(ωkTs + φa) (4.14a)

vb,k = Vb cos(ωkTs + φb) (4.14b)

vc,k = Vc cos(ωkTs + φc), (4.14c)

where k is the sampling instant, Ts is the sampling period, and φa = φb + 2π
3 = φc − 2π

3
are the phase angles aligned in the positive sequence. With the assumption of a balanced
system, vabc is transformed into the αβ frame:[

vα
vβ

]
k

= Tvabc,k = 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]Va cos(ωkTs + φa)
Vb cos(ωkTs + φb)
Vc cos(ωkTs + φc)

 (4.15)

Expressing (4.15) as a complex voltage vk:

vk = vα,k+jvβ,k = Vk cos(ωkTs+φk)+Vkj sin(ωkTs+φk) = Vke
j(ωkTs+φk) (4.16)

This can further be represented in state-space form as:[
x1
x2

]
k+1

= f(xk) =
[
x1
x1x2

]
k

(4.17a)

yk = vk = h(xk) = x2,k (4.17b)

where x1,k = x1,k+1 = ejωTs , x2,k = Vke
j(ωkTs+φk) and x2,k+1 = x1,kx2,k =

ejωTsVke
j(ωkTs+φk) = Vke

j(ω(k+1)Ts+φk). For tracking of a single sinusoidal vs, HT
can be used as in [43]. The measurement equation is then given as in (4.18) . The HT can
be realized with a finite impulse response (FIR) filter, both analog and digital as further
explained in [44] and [45].

vk = vs,k + jH [vs,k] (4.18)

The state-space equations in (4.17) are clearly nonlinear, hence the need for an EKF or
UKF. In the case of the EKF we have to linearize around the a posteriori estimate for x̂k
which yields:

Ak = ∂f

∂x

∣∣∣∣
x̂k

=
[

1 0
x̂2 x̂1

]
k

(4.19)

Ck = ∂h

∂x

∣∣∣∣
x̂k

=
[
0 1

]
(4.20)

The UKF may use equations (4.17) directly. The magnitude, phase angle and frequency of
the fundamental component are found by information from the estimated states x̂1,k and
x̂2,k as in (4.21):
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Vk =
√
x̂2,k · x̂∗2,k (4.21a)

φk = Im

ln
 x̂2,k√

x̂2,k · x̂∗2,k

− k · Im {ln(x̂1,k)} (4.21b)

fk = 1
2πTs

Im {ln(x̂1,k)} (4.21c)

The calculation of the phase angle φk is very sensitive to noise, and will quickly diverge
in noisy conditions. This comes from the the last part of equation (4.21b), i.e

− k · Im {ln(x̂1,k)} (4.22)

which can be rewritten as
− k · 2πfkTs. (4.23)

The first part of equation (4.21b) represents the angle of the rotating voltage vector, i.e

Im

ln
 x̂2,k√

x̂2,k · x̂∗2,k

 = sin−1

Im( x2,k√
x̂2,k · x̂∗2,k

)

 (4.24)

Equation (4.22) and (4.23) represents the subtraction of how far the vector has rotated,
calculated with the current frequency estimate. In noisy environments the calculation of
equation (4.22) and (4.23) will be unaccurate. Hence a moving average filter is used to
smoothen the frequency estimate. In this thesis a 800 sample moving average filter will be
used. An n sample MAF is expressed as in (4.25).

fMAF = 1
n

n−1∑
i=0

fk−i (4.25)

Using fMAF in equation (4.23) results in the new calculation of the phase angle:

φk = Im

ln
 x̂2,k√

x̂2,k · x̂∗2,k

− k · 2πfMAFTs (4.26)
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4.3 Simulations

T HIS section aims to show the capabilites of the EKF and UKF for tracking of magni-
tude, phase angle and frequency of voltages with varying quality. The Kalman filters

are first subjected to voltages with steps in magnitude, phase angle and frequency. Further
the Kalman filters are subjected to voltages with time-varying amplitude and frequency.
Simulink models of the experiment setup are included in Appendix A.1, and EKF and
UKF code in Appendix B.4 and Appendix B.5.

4.3.1 Estimation of the Phase Angle

As can be seen in Figure 3.5, the author was not able to correctly extract the phase angle
during the specialization project carried out autumn 2016. Figure 4.2 shows how the EKF
is able to efficiently estimate the magnitude, phase angle and frequency of the three-phase
voltages shown in Figure 4.1. Note that this is in a noise free environment, hence an
aggressively tuned EKF with q1,1 = 10−6, q2,2 = 104, R = 1. A less aggressive tuning
must have been chosen in a noisy environment. It should be noted that the transient period
of the frequency, and consequently the transient period of the phase angle would have
increased with a less aggressive tuning. Figure 4.2 shows how the computation of the
frequency and phase angle are coupled, while the magnitude is unaffected. Figure 4.3
clearly shows the difference between the original phase extraction as in [27, 34], and the
phase obtained by using the proposed method, when noise is added.
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Figure 4.1: A small section of the three-phase voltages.
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Figure 4.2: Simulations of the EKF, no noise.
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Figure 4.3: Simulations of the EKF, with noise.

4.3.2 Tracking of Time-Varying- Amplitude and Fundamental Fre-
quency

In this section it is studied how the UKF and EKF are managing the task of tracking volt-
ages with time-varying amplitude and fundamental frequency. The different filters are
subjected to three-phase voltages with amplitudes and frequencies as in equation (4.27),
and a phase angle of 45◦. The frequency consists of a constant value, carrier and modula-
tion signal, as shown in Figure 4.4b.
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4.3 Simulations

A(t) = 100 + 10 · sin(2πfvt) (4.27a)

f(t) = 50 + 0.1 · sin(2πfmt) · sin(2πfct) (4.27b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

-150

-100

-50

0

50

100

150

M
a
g
n
it
u
d
e
 [
V

]

Phase a

Phase b

Phase c

(a) A small section of the three-phase voltages.

Modulated carrier

Modulation envelope

(b) Shape of the frequency around the constant value.

Figure 4.4: Three-phase voltages and frequency.

As shown in Figure 4.5 and Figure 4.6 the EKF and UKF are both clearly able to accurately
track the time-varying- magnitude and fundamental frequency. Due to the nonlinear vari-
ations of the fundamental frequency, the phase angles are not satisfactory tracked as they
are oscillating around the reference. This comes from the fact that the model is assuming
constant values, and not several time-varying quantities. As the frequency is constantly
changing, the phase angle never gets to settle to its correct value.
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Figure 4.5: Tracking of voltages with time-varying amplitude and frequency with fv = 2 Hz,
fm = 1 Hz, fc = 10 Hz.
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Figure 4.6: Tracking of voltages with time-varying amplitude and frequency with fv = 10 Hz,
fm = 5 Hz, fc = 100 Hz.

It is found that when the expression fv = fc − fm ⇔ fv = fm − fc holds, the EKF and
UKF fails to track the frequency. This can be observed in Figure 4.7, where the expression
holds and the frequency estimates are slowly but surely collapsing. The reasons for this
remains unknown, but the author encourages further investigation of this phenomenon as
it will not be further studied in this thesis. Also, the author failed to obtain reasonable
results for the adaptive UKF in noisy environments, i.e in the environments it is supposed
to excel. Further work of this adaptability is suggested for further studies.
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Figure 4.7: Tracking of voltages time-varying amplitude and frequency with fv = 2 Hz,
fm = 1 Hz, fc = 3 Hz.

40



Chapter 5
Merging Empirical Mode
Decompositon and Kalman
Filtering

T HE method of combining KFs (UKF will be used), with their inherent real-time prop-
erties, and on-line EMD for tracking of instantaneous amplitude and frequency of

voltage- and current waveforms in isolated microgrids will here be assessed. Such wave-
forms are often multicomponent, resulting in the need of decomposition into monocompo-
nents in order to study instantaneous amplitude and frequency. This is a new method pro-
posed by the supervisor and the author. The fundamental difference between this method
and the HHT are how the frequencies are calculated.
In this thesis, two different EMD implementations are used. They are implemented as
offline algorithms, but assumed to be on-line. One EMD is implemented by the author in
Matlab, inspired by [53]. Matlab code for EMD1 can be found in Appendix B.2 . The
other EMD is used as given in [54, 55], also implemented in Matlab. They are denoted as
EMD1 and EMD2 respectively.

5.1 Single-Phase Systems

F OR real-time EMD+UKF tracking in single-phase microgrids, Figure 5.1 shows a
proposed structure. The single-phase voltage v(t) = v is decomposed into mono-

components by a single EMD. The resulting IMFs, IMFi, i ∈ {1, 2, . . . , n}, and their
HT, H {IMFi}, i ∈ {1, 2, . . . , n} are injected pairwise into independent UKFs. The
measurement equation for the uppermost UKF at time step k will be vk = IMF1[k] +
jH {IMF1}[k]. The same measurement equations with their respective IMFs also yields
for UKF 2, ..., n.
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Figure 5.1: Merging of EMD and KF. Single-phase structure.

5.2 Three-Phase Systems

T HE EMD+UKF structures for real-time tracking in three-phase systems are shown
in Figure 5.2. The main difference between the two structures is that the Clarke

transform is done before and after the EMD, and more importantly that structure 2 needs
two EMDs instead of three. They are expected to have the same accuracy, hence structure
2 is expected to be the preferable choice. Injecting space vectors into the single-phase
structure is also possible, but will not be further discussed.
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5.3 Merging Empirical Mode Decompositon and Kalman
Filtering - A Validation Study

I N this section it is investigated how the merging of EMD and UKF is performing com-
pared to the UKF. Two different experiments are conducted to reveal the potential of

the proposed method and the limitations of the model used in the EKF and UKF. Three-
phase structure 1 and EMD1 is used in this section.

5.3.1 Experiment 1

The EMD+UKF and UKF are subjected to the voltages as given in equation (5.2), with
parameter values and tuning as listed in table 5.1. The voltages consists of the sum of two
sinusoids with different amplitudes and frequencies. A small section of the waveform of
va(t) is shown in Figure 5.4a. Figure 5.4b shows how the UKF fails to find the magnitude
and frequency in the three-phase system, while the proposed method quickly settles to the
reference values, as seen in Figure 5.4c and Figure 5.4d. Additionaly the IMFs and residue
can be seen in Figure 5.3. The UKF fails due to a model that is not suitable for the studied
signal. Recall the UKF assumes voltages on the form (discrete) vk = vα,k + jvβ,k =
Vk cos(ωkTs + φk) + Vkj sin(ωkTs + φk) = Vke

j(ωkTs+φk). The UKF will try to fit
the voltages in equation (5.2) to a model that assumes a balanced three-phase system. As
[37] states, the concept of instantaneous frequency loses its meaning when studuying a
multicomponent signal.

As the UKF in fact is estimating the magnitude and frequency of the space vector rotating
in the complex plane, the EMD is also applied to the space vector of the three-phase
system, defined as:

~v(t) = vα(t) + vβ(t)√
2

, (5.1)

where the dividing by
√

2 is introduced for the space vector and phase voltages to have the
same magnitude.

va(t) = V̂1 sin(2πf1t) + V̂2 sin(2πf2t) (5.2a)

vb(t) = V̂1 sin(2πf1t− 120◦) + V̂2 sin(2πf2t− 120◦) (5.2b)

vc(t) = V̂1 sin(2πf1t+ 120◦) + V̂2 sin(2πf2t+ 120◦) (5.2c)
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Experiment 1
Parameter Value
Simulation time 2 s
Sample time, Ts 10−4 s
Noise variance, var(v) = E[v2] 0
V̂1 100V
V̂2 50V
f1 35Hz
f2 232Hz

(a) Parameters for experiment 1.

UKF tuning
Parameter Value
q1,1 1 · 10−8

q2,2 1 · 108

R 0.1
α 0.5
β 2
κ 0
P−0 10000 · I2
x̂−0 02×1

(b) UKF tuning in experiment 1.

Table 5.1: Parameters and tuning in experiment 1.

Figure 5.3: The IMFs and residue of the space vector.
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Figure 5.4: Experiment 1 results.
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5.3.2 Experiment 2

In this experiment the EMD+UKF and UKF are subjected to the three-phase voltages
as given in equation (5.5), and with parameter values and tuning as listed in table 5.2.
This time, one of the sinusoids consists of a time-varying amplitude and frequency. A
small section of the waveform va(t), and the different results are shown in Figure 5.6, and
the IMFs and residue in Figure 5.5. Again the UKF fails due to an erroneous model, as
explained in experiment 1. Also it is found that the EMD+UKF is more accurate, and more
suitable for this type of problem, compared to the HHT as can clearly be seen in Figure
5.6d. Due to the time-varying components of f1, the frequency estimate of the HHT for
IMF 2 is found as:

f1(t) = 1
2π

dθ1(t)
dt

− df1(t)
dt

t, (5.3)

due to the fact that

θ1(t) = 2πf1(t)t+ φ (5.4)

va(t) = V̂1(t) sin(2πf1(t)t+ 45◦) + V̂2 sin(2πf2t) (5.5a)

vb(t) = V̂1(t) sin(2πf1(t)t− 75◦) + V̂2 sin(2πf2t− 120◦) (5.5b)

vc(t) = V̂1(t) sin(2πf1(t)t+ 165◦) + V̂2 sin(2πf2t+ 120◦) (5.5c)

Experiment 2
Parameter Value
Simulation time 5 s
Sample time, Ts 10−4 s
Noise variance 0V
V̂1(t) 100 + 10 sin(2πfvt)V
V̂2 50V
f1(t) 50 + 0.1 sin(2πfmt)sin(2πfct)Hz
f2 250Hz
fv 2Hz
fm 1Hz
fc 10Hz

(a) Parameters for experiment 2.

UKF tuning
Parameter Value
q1,1 1 · 10−8

q2,2 1 · 108

R 0.1
α 0.5
β 2
κ 0
P−0 10000 · I2
x̂−0 02×1

(b) UKF tuning in experiment 2.

Table 5.2: Parameters and tuning in experiment 2.
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Figure 5.5: The IMFs and residue of the space vector.
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Figure 5.6: Experiment 2 results.
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Chapter 6
Assessment of Methods for
Tracking of Time-Varying
Frequencies in real data from a
Marine Vessel Power System

I N this chapter it is studied how the different tracking methods are able to capture the
time-varying fundamental frequency present in the voltages measured on marine ves-

sel power system during sea voyage in rough sea. It is reported in [4, 56] that the time-
varying frequency stem from the dynamic load demand in rough sea conditions. The for-
mer outlined methods, i.e UKF, HHT and merged EMD and UKF, will be tested with real
voltage measurements for 3.33 seconds and 60 seconds (out of 11 minutes) periods. The
UKF is chosen over EKF due to marginally better results in preliminary testing. Whether
the UKF or EKF should be chosen in real applications should be investigated in each case
as they both have their pros and cons as mentioned in section 2.3.2. The UKF is usu-
ally preferred over the EKF even though the UKF often has slightly higher computational
load, which can be justified by a more robust performance [30]. A small section of the
measured line voltages can be seen in Figure 6.1a, where the observant reader may notice
some small distortions in the waveforms. Also, defying the shortcomings of Fourier based
methods used on time-varying signals, the space vector of the three-phase system is anal-
ysed with FFT to serve as a preliminary study, with results as shown in Figure 6.1b. The
space vector, ~v(t) is defined as follows:

~v(t) = vα(t) + vβ(t)√
2

(6.1)

where [
vα(t)
vβ(t)

]
= 2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]va(t)
vb(t)
vc(t)

 (6.2)
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As expected a peak emerges around the fundamental frequency at 50Hz in the FFT plot.
The spikes in the higher frequencies are not easy to interpret, but there are some hints
about significant components with frequencies of 850− 950Hz and 3.6− 3.8 kHz.
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(a) A small section of the measured line voltages.
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Figure 6.1: Line voltages and FFT plot.

The UKF is tuned with values as given in table 6.1 for the rest of this chapter. At
first glance the UKF may seem hard to tune, but the only tuning knob used is Q =
diag([q1,1, q2,2]), while the other tuning knobs are kept constant. Also, a MAF of 800
samples is used on the frequency estimate from the UKF, HHT and merged EMD and
UKF. This is done to avoid noisy results due to the derivative in the HHT, i.e dθ

dt , and the
aggressively tuned UKF. The UKF is tuned aggressively in order to be able to track the
rapid fluctuations in the frequency of the measured voltages. A PLL as in [49] and Figure
2.12a is implemented and used with the purpose of providing a frequency ”reference”.
The Simulink models of the experiment setup, UKF and PLL can be seen in Appendix
A.2, with code as included in Appendix B.

UKF tuning
Parameter Value
q1,1 1 · 10−6

q2,2 5 · 104

R 0.1
α 0.5
β 2
κ 0
P−0 10000 · I2
x̂−0 02×1

(a)
UKF tuning for tracking of IMF 3.

UKF tuning
Parameter Value
q1,1 1 · 10−4

q2,2 1 · 102

R 0.1
α 0.5
β 2
κ 0
P−0 10000 · I2
x̂−0 02×1

(b)
UKF tuning for tracking of IMF 1 and IMF 2.

Table 6.1: UKF tunings for tracking on the marine vessel.
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6.1 3.33 second analysis

6.1 3.33 second analysis

T HIS section will assess the performance of the former outlined frequency identifica-
tion methods when analysing the 3.33 first seconds of the measured line voltages on

the marine vessel. The space vector is defined as in equation (6.1), and the line voltages
are converted to phase voltages to be compliant with the single-phase- and three-phase
merged EMD and UKF structures. The IMFs from EMD1 and EMD2 are shown in Fig-
ure 6.2. It appears to be two high frequencies in addition to the fundamental component.
These high frequency components will be further studied in the 60 second chapter. As can
be seen in Figure 6.2a the fundamental component, i.e IMF 3 and IMF 4, are split into
two or more IMFs. This unwanted mode mixing turned out to be problem when analysing
the ship voltages with the EMD. Figure 6.2b shows that the fundamental component is ex-
tracted as one IMF, as we want. This is obtained by tuning EMD2 to low resolution. The
low resolution results in a slightly less accurate extraction of IMF 1 and IMF 2. Regard-
less of slightly lower accuracy, IMF 3 from EMD2 will be used for most of the results
in this section. It would’ve been possible to use

∑n
i=1{IMFi}+ res− IMF1 − IMF2

as estimate of the fundamental component by EMD1, but is avoided to maintain track-
ing with no assumptions and a priori knowledge. Using this equation would’ve assumed
only two high frequency components, and the fundamental component, while information
about possible lower frequencies would’ve disappeared into the IMF for the fundamental
component.
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Figure 6.2: IMFs of the 3.33 seconds space vector.
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(b) HHT applied to space vector.
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(c) EMD+UKF. Single-phase structure
used on phase a.
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(d) EMD+UKF three-phase structure 1
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Figure 6.3: Results using the different methods.
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6.1 3.33 second analysis

Figure 6.3 shows how the different methods are able to track the fundamental component.
It is clear that the three merged EMD and UKF structures provides the most accurate am-
plitude and frequency estimates. The frequency estimates coincides well with the PLL
estimate. The HHT of the space vector also gives acceptable results, but the frequency
estimate is quite noisy compared to the frequency estimates of the other methods. The
magnitude estimation of the UKF is slightly more inaccurate compared to the other meth-
ods. Also, the frequency estimate of the UKF is oscillating around the PLL estimate, as
can be observed in Figure 6.3a, and compared to Figure 6.3e. These slight inaccuracies
comes from the fact that the UKF is taking the high frequency components into account,
while the other methods does not.

6.2 60 second analysis

T HE frequency identification methods are now assessed when analysing the 60 first
seconds of the measured line voltages on the marine vessel. The same procedures

for the space vector, conversion to phase voltages and usage of IMF 3 fromEMD2 applies
as in the preceding section.
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(b) IMFs extracted by EMD2.

Figure 6.4: IMFs of the 60 seconds space vector.

Again, all the methods are managing to track the fundamental component in a good man-
ner. The frequency estimate of the HHT is again more noisy, while the performances of
the UKF and merged EMD and UKF are quite similar. Small deviations with respect to
the PLL estimate can be observed.
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(b) HHT applied to space vector.
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(c) EMD+UKF. Single-phase structure
used on phase a.
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(d) EMD+UKF three-phase structure 1
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Figure 6.5: Results using the different methods.
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6.1 3.33 second analysis

Moving onwards to the two high frequency components, EMD1 is used due to a more
coarse IMF extraction by EMD2. Due to high computational time, a maximum of 30
sifts per IMF is used. With reasons unknown, the space vector had to be used together
with the single-phase structure, as the three-phase structures failed finding the frequency
of the high frequency components. Figure 6.6 and Figure 6.7 shows the tracking of the high
frequency components, done by HHT and merged EMD and UKF. The magnitudes are in
good agreement, while some discrepancies can be observed in the estimated frequencies.
Both frequency estimates of IMF 1 rises to approximately 7 kHz. The frequency vari-
ations between the peaks in IMF 1 can also be observed in the merged EMD and UKF
estimate, but are far less visible. From the HHT results it is evident that there is coupling
in the oscillations of the frequencies of IMF 1 and IMF 2. Looking at the FFT plot in Fig-
ure 6.1b, it is believed that the mentioned higher frequency components in fact are IMF 1
and IMF 2. The interpretation of these results will further be discussed in the next section.
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Figure 6.6: The instantaneous amplitude and frequency obtained by HHT for the first and second
IMFs.
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Figure 6.8: The three first IMFs of the space vector, and the space vector it self, plotted for three
fundamental periods.

Figure 6.8 shows the trajectories of the three first IMFs in the complex plane, and also
the trajectory of the space vector of the voltage measurements. The complex part of the
signals are generated by using HT. The chaotic nature of the two first IMFs is evident,
while the trajectory of the fundamental component is fairly smooth. The trajectory of the
space vector is the trajectory of all the IMFs added together, resulting in the oscillation
around the fundamental component, i.e IMF 3.

6.3 Interpreting the Results

R EGARDING the tracking of the fundamental component, Figure 6.3 and Figure 6.5
show that the studied methods are managing to track the fundamental component

well. Discrepancies are shown between the HHT and merged EMD and UKF in the fre-
quency tracking of IMF 1 and IMF 2, while the estimated amplitudes are coinciding. The
reason for this is the fundamental difference between the HT and UKF. By using HT, a
signal can be expressed as y(t) = x(t) + jH [x(t)] = a(t)ejθ(t), where a(t) is the in-
stantaneous amplitude and θ(t) is the instantaneous phase. The UKF is relying on a model
on the form y(t) = a(t)ej(ω(t)t+φ). Both the HT and UKF are finding the amplitude by
a(t) =

√
Re(y(t))2 + Im(y(t))2, hence the similar results for the amplitudes. The HT

finds the frequency by derivating θ(t), i.e not relying on a model, while the UKF is deriva-
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tive free and fits (filters) the measurements to the given state-space model. This results in
a more ”noisy” estimate from the HT compared to the UKF.
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Figure 6.9: Comparison between HHT and merged EMD and UKF

A simple example is conducted where two sinusoids, one constant (IMF 1) and one with
steps in amplitude and frequency (IMF 2), are studied by the HHT and merged EMD
and UKF. Figure 6.9 illustrates the mentioned differences between the two tools. The
amplitudes are coinciding entirely, while the frequency estimates are quite different, due
to how they are calculated. It can be seen that both for this synthetic signal, and the
real measurements from the marine vessel, that the proposed tool is more accurate under
certain circumstances, but no assertions are made for any given signal.

Both the HHT and merged EMD and UKF tracking of IMF 1 and IMF 2, i.e Figure 6.6 and
Figure 6.7 reveals that there are some repeating oscillations occurring in the frequencies,
and also the amplitude of IMF 1. Figure 6.10 shows sine waves fitted to the observed
oscillations in the HHT results. The sine waves are defined as in equation (6.3).

x1(t) = 3.8 + 3 · sin(2π 1
23.4 · t− 4.3◦) (6.3a)

x2(t) = 3600 + 600 · sin(2π 1
23.4 · t− 2.29◦) (6.3b)

x3(t) = 1000 + 750 · sin(2π 1
23.4 · t− 2.29◦) (6.3c)
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instantaneous amplitude and frequency of IMF 1.
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Figure 6.10: Sine fitting to IMF 1.

In mail communication with Tomasz Tarasiuk, the provider of the ship measurements,
it was determined that the switching frequency of the converters on the marine vessel
was 3.6 kHz [57]. This frequency is clearly visible in Figure 6.7. Interestingly the mean
of x2(t), i.e sine wave fitted to the frequency of IMF 1 found by HHT, is found to be
around 3.6 kHz. With the mail information in mind it is believed that distortions from
the converter switching is found (IMF 1). It is also peculiar to see that the repeating
oscillations of the sine waves in equation (6.3) all have the frequency 1

23.4 Hz, i.e period
of 23.4 s. These sine wave are also fitted to IMF 1 and IMF 2 of the full 11 minute
measurements, as in Figure 6.11 and Figure 6.12, and are coinciding quite well. Again a
maximum of 30 sifts per IMF is used due to a high amount of data points. Up to the date
of the master’s thesis submission the author is still unsure what these repeating patterns
originate from, as they are regarded as too consistent to originate from ocean waves.
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Chapter 7
Conclusion and Future Work

I N this master’s thesis, different methods for tracking of instantaneous frequencies in
microgrids have been outlined. The study was motivated from several reports of prob-

lems with time-varying frequencies in isolated microgrids [5, 56]. First a brief introduc-
tion to microgrids is given, followed by explanation of the most fundamental definitions
in electrical power engineering used throughout the thesis. The different KF algorithms,
HT, HHT and the PLL are then outlined in a thorough manner. The EKF and UKF, and
also the proposed merging of EMD and UKF are initially validated through the analysis
of synthetic signals. The EKF and UKF manages to track steps in magnitude, phase and
frequency efficiently. It was also shown that the EKF and UKF are able to track signals
with time-varying magnitude and frequency, with the exception of a few specific cases.
The proposed structures of merged EMD and UKF are presented in chapter 5. The ini-
tial analysis of synthetic signals proved the proposed method to be powerful for tracking
of instantaneous amplitude and frequency of multicomponent signals with several time-
varying monocomponents, even superior to the HHT in that given case. It also showed
that the study of instantaneous frequency loses its meaning when considering multicom-
ponent signals [37].

Ultimately, voltage measurements from a marine vessel power system during sea voyage
are analysed with the different tracking methods. The UKF, HHT and merged EMD and
UKF all proved to be suitable methods for tracking the variations of the fundamental fre-
quency on the vessel, but the proposed method of merging EMD and UKF proved to give
slightly better results. The EMD also found additional high frequency components, where
one of them are believed to be the switching frequency of the converters. Interesting re-
peating waveforms are revealed in the high frequency components.

Some problems and interesting findings have been found and left unanswered during the
work of this master’s thesis. The following work for future papers and master’s theses are
proposed:

• The EKF and UKF fails estimating signals with magnitudes and frequencies varying
with certain frequencies, as explained in section 4.3.2. The reasons for this are not
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studied in this thesis.

• The adaptability of the UKF only performed well in noise-free environments, and
not in noisy environments where it is supposed to excel and be superior to the regular
UKF and EKF [34]. The author strongly encourages this to be further studied so it
can be used in the merging with the EMD.

• The EMD implementations used in this thesis are offline. They are assumed to
be on-line when used together with the UKF. The author encourages further study
involving the development of on-line EMD and its compatibility with the UKF in
real-time applications.

• The three-phase structures were not suitable for the study of the high frequency
monocomponents on the marine vessel. The single-phase structure and space vector
had to be used instead, with reasons unknown to the author.

• Finally, the author strongly suggests to study the origins of the repating waveforms
in the instantaneous amplitude and frequency found in the high frequency compo-
nents of the voltages on the marine vessel.
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Appendix A
Simulink Models

T HIS appendix includes some of the most significant models implemented in Simulink.

A.1 Tracking in Three-Phase Test System

Discrete,
Ts = 1e-05 s.

powergui

abc → αβVabcA

B

C

a

b

c

Uabc_L Uabc_g V_αβ

Kalman Filter

A

B

C

Voltage Source A B C

Three-Phase
Series RLC Load

abc

Figure A.1: Implementation of the three-phase test system in Simulink.
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Figure A.2: Implementation of three-phase voltage source in Simulink.
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Figure A.3: Implementation of the extended Kalman filter in the test system.
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Unscented Kalman Filter
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Figure A.4: Implementation of the unscented Kalman filter in the test system.

A.2 Tracking in Marine Vessel Power System
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Figure A.5: Implementation of the unscented Kalman filter for tracking on the marine vessel.
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Figure A.6: Implementation of the different tracking methods on the marine vessel.
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Appendix B
Matlab Code

T HE most signicant Matlab scripts and functions are listed in this appendix.

B.1 Voltage Source in the Three-Phase Test System

1 function [a,b,c,A,ang,f]= fcn(t)
2 % Making signals for controlled voltage sources
3 fv=2;
4 fm=1;
5 fc=10;
6

7 A=(100+10*sin(2*pi*fv*t));
8 ang=45;
9 f=50+0.1*sin(2*pi*fm*t)*sin(2*pi*fc*t);

10

11 w=2*pi*f;
12 wt=w*t;
13 dtr=pi/180;
14

15 a=A(1)*sin(wt+ang*dtr);
16

17 b=A(1)*sin(wt+(ang-120)*dtr);
18

19 c=A(1)*sin(wt+(ang+120)*dtr);
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B.2 Empirical Mode Decomposition

1 function [imf,res] = emd(x_in,sd)
2 %Input:
3 %x_in - Input signal
4 %sd - Minimum standard deviation between two consecutive siftings.
5 %Output:
6 %imf - Cell containing the intrinsic mode functions
7 %res - The remaining residue after the extraction of intrinsic mode
8 %functions
9

10 imf=[];
11 x=x_in;
12 while monotonic(x)==false
13 x_temp=x;
14 SD=Inf; % Standard deviation between two consecutive siftings
15 while isimf(x_temp)6=true|| sd<SD
16 max_spline=makespline(x_temp,true);
17 min_spline=makespline(x_temp,false);
18 m=(max_spline+min_spline)/2;
19 h=x_temp-m;
20 SD=sum(abs(x_temp-h).ˆ2)/sum(x_temp.ˆ2);
21 x_temp=h;
22 end
23 imf{end+1}=x_temp;
24 x=x-x_temp;
25 end
26 res=x;

1 function b = monotonic(x)
2 %Input:
3 %x - Input signal
4 %Output:
5 %b - Boolean. Is monotonic(True=1), is not monotonic(False=0)
6

7 no_max=findpeaks(x,1); % Number of maxima
8 no_min=findpeaks(x,0); % Number of minima
9 %Return true if there exist both a max and a min

10 if(length(no_max)>0&&length(no_min)>0)
11 b=false;
12 else
13 b=true;
14 end

1 function b = isimf(x)
2 %Input:
3 %x - Input signal
4 %Output:
5 %b - Boolean. Is IMF(True=1), is not IMF(False=0)
6

7 u1 = sum(x(1:end-1).*x(2:end) < 0); % Number of zero crossings
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8 u2 = length(findpeaks(x,1))+length(findpeaks(x,0)); % Number of ...
extrema

9 if abs(u1-u2) > 1
10 b = false;
11 else
12 b = true;
13 end

1 function s = makespline(x,is_max)
2 %Input:
3 %x - Input signal
4 %is_max - Extrema boolean. Max(true=1), min(false=0)
5 %Output:
6 %s - Cubic spline interpolation
7

8 N = length(x);
9 if is_max

10 p = findpeaks(x,1);
11 s = spline([0 p N],[max(x(p(1)),x(1)) x(p) ...

max(x(p(end)),x(end))],1:N);
12 else
13 p = findpeaks(x,0);
14 s = spline([0 p N],[min(x(p(1)),x(1)) x(p) ...

min(x(p(end)),x(end))],1:N);
15 end

1 function extrema_index = findpeaks(x,is_max)
2 %Input:
3 %x - Input signal
4 %is_max - Extrema boolean. Max(true=1), min(false=0)
5 %Output:
6 %extrema_index - Indices of the extrema points
7

8 extrema_index=[];
9 peaks=diff(x);

10 if is_max
11 for i=1:length(peaks)-1
12 if peaks(i)==0&&peaks(i+1)<0||peaks(i)>0&&peaks(i+1)<0
13 extrema_index=[extrema_index i+1];
14 end
15 end
16 else
17 for i=1:length(peaks)-1
18 if peaks(i)==0&&peaks(i+1)>0||peaks(i)<0&&peaks(i+1)>0
19 extrema_index=[extrema_index i+1];
20 end
21 end
22 end
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B.3 Calculation of Instantaneous Amplitude and Frequency

1 function [H,A,f]=process_imf(x,Fs)
2 %Input:
3 %x - Input signal
4 %Fs - sampling frequency
5 %Output:
6 %H - Signal and Hilbert transform of input signal i.e H=x+jH(x)
7 %A - Instantaneous amplitude
8 %f - instantaneous frequency
9

10 y=hilbert(x);
11 H=y;
12 A=sqrt(real(y).ˆ2+imag(y).ˆ2); %Instantaneous amplitude
13

14 ang=zeros(1,length(x));
15

16 %Finding the instantaneous phase
17 for i=1:length(ang)
18 ang(i)=atan(imag(y(i))/real(y(i)));
19 end
20

21 f=zeros(1,length(x));
22 %Finding the instantaneous frequency
23 for i=1:length(f)-1
24 f(i)=(ang(i+1)-ang(i))*Fs/(2*pi);
25 if(f(i)<0&&i>1)
26 f(i)=f(i-1);
27 end
28 end

B.4 Extended Kalman Filter

1 function x_hat_out = fcn(y,Q0,R0,P_0_,X_hat_0_)
2

3 %=====================Extended Kalman filter ...
algorithm==========================

4 persistent P_ x_hat_ C Q R A
5

6 if isempty(P_) %Initialization
7 x_hat_=complex(X_hat_0_);
8 P_=complex(P_0_);
9 Q=Q0;

10 R=R0;
11 C=[0 1];
12 A=complex(zeros(2,2));
13 end
14

15 K=P_*C'*(C*P_*C'+R)ˆ(-1); %Finding the kalman gain
16 x_hat=x_hat_+K*(y-C*x_hat_); %Updating estimate of x
17
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18 P=(eye(2)-K*C)*P_*(eye(2)-K*C)'+K*R*K'; %Joseph form,
19

20 x_hat_out=x_hat; %Output from the Kalman filter, estimated x
21

22 %Linearizing around the updated estimate (a posteriori), x_hat
23 A=[1 0;
24 x_hat(2) x_hat(1)];
25

26 %Projecting ahead
27 x_hat_=A*x_hat;
28 P_=A*P*A'+Q;

B.5 Unscented Kalman Filter

1 function x_hat_out = ...
fcn(y,Q0,R0,P_0_,X_hat_0_,alpha,beta,kappa,adaptive)

2

3 %============Adaptive Complex Unscented Kalman filter ...
algorithm============

4 persistent P x_hat Q R e n lambda
5 %% Initializing persistent variables
6 if isempty(P)
7 x_hat=complex(X_hat_0_);
8 n=length(x_hat);
9 P=complex(P_0_);

10 Q=complex(Q0);
11 R=complex(R0);
12 e=complex(zeros(1,1));
13 lambda=alphaˆ2*(n+kappa)-n;
14 end
15 %--------------------------------------------------
16

17 %% Preallocation of matrices used during the algorithm
18 hx_sigma=complex(zeros(1,2*n+1));
19 x_sigma=complex(zeros(n,2*n+1));
20 fx_sigma=complex(zeros(n,2*n+1));
21 y_hat=complex(zeros(1,1));
22 x_hat_=complex(zeros(2,1));
23 P_=complex(zeros(n,n));
24 Py=complex(zeros(1,1));
25 Pxy=complex(zeros(2,1));
26 %--------------------------------------------------
27

28 %% Making sigma points
29 temp=repmat(x_hat,1,2*n);
30 nP=chol((n+lambda)*P)';
31 temp=temp+[nP -nP];
32 x_sigma=[x_hat temp];
33 %--------------------------------------------------
34

35 %% Propagating through nonlinear function f(.)
36 for k = 1:(2*n+1)
37 fx_sigma(:,k) = f(x_sigma(:,k));
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38 end
39 %--------------------------------------------------
40 %% Obtaining the a priori estimate
41 for i=1:(2*n+1)
42 if i==1
43 weight=lambda/(lambda+n);
44 else
45 weight=1/(2*(lambda+n));
46 end
47 x_hat_(1,1)=x_hat_(1,1)+weight*fx_sigma(1,i);
48 x_hat_(2,1)=x_hat_(2,1)+weight*fx_sigma(2,i);
49 end
50 %--------------------------------------------------
51 %% Estimate a priori error covariance
52 for i=1:(2*n+1)
53 if i==1
54 weight=lambda/(lambda+n)+1-alphaˆ2+beta;
55 else
56 weight=1/(2*(lambda+n));
57 end
58 P_= P_ + weight*((fx_sigma(:,i)-x_hat_)*(fx_sigma(:,i)-x_hat_)');
59 end
60 P_=P_+Q;
61 %--------------------------------------------------
62

63 %% Making new sigma points
64 temp=repmat(x_hat_,1,2*n);
65 nP=chol((n+lambda)*P_)';
66 temp=temp+[nP -nP];
67 x_sigma=[x_hat_ temp];
68 %--------------------------------------------------
69

70 %% Sigma points through nonlinear measurement function h(.)
71 %% and finding the estimated
72 for k = 1:(2*n+1)
73 hx_sigma(:,k) = h(x_sigma(:,k));
74 end
75 for i = 1:(2*n+1)
76 if i==1
77 weight=lambda/(lambda+n);
78 else
79 weight=1/(2*(lambda+n));
80 end
81 y_hat=y_hat+weight*hx_sigma(1,i);
82 end
83 %--------------------------------------------------
84 %% Estimate predicted measurement covariance
85 for i=1:(2*n+1)
86 if i==1
87 weight=lambda/(lambda+n)+1-alphaˆ2+beta;
88 else
89 weight=1/(2*(lambda+n));
90 end
91 Py= Py + weight*((hx_sigma(:,i)-y_hat)*(hx_sigma(:,i)-y_hat)');
92 end
93 Py=Py+R;
94 %--------------------------------------------------
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95

96 %% Estimate the cross covariance
97

98 for i = 1:(2*n+1)
99 if i==1

100 weight=lambda/(lambda+n)+1-alphaˆ2+beta;
101 else
102 weight=1/(2*(lambda+n));
103 end
104 Pxy = Pxy + weight*((x_sigma(:,i)-x_hat_)*(hx_sigma(:,i)-y_hat)');
105 end
106 %--------------------------------------------------
107 %% Finding the kalman gain and updated estimates
108 K=Pxy/Py;
109 x_hat=x_hat_+K*(y-y_hat);
110 P=P_-K*Py*K';
111 P=0.5*(P+P');% Prevent numerical problems
112 %--------------------------------------------------
113 if adaptive
114 %Adaptive Q
115 psi= x_hat-x_hat_;
116 Q=0.5*(abs(psi(1))ˆ2+abs(psi(2))ˆ2)*eye(2);
117 if (Q(1,1)>10000 || Q(2,2)>10000)
118 Q=1*eye(2);
119 end
120

121 %Adaptive R
122 e_=e;
123 e=y-y_hat;
124 lambda=0.5;
125 R_=R;
126 R=lambda*R_+(1-lambda)*abs(e)*abs(e_);
127 end
128

129 x_hat_out=x_hat;
130 %--------------------------------------------------
131

132

133

134 function X = f(x)
135 X=complex(zeros(2,1));
136 X(1)=x(1);
137 X(2)=x(1)*x(2);
138

139 function y = h(x)
140 y=x(2);

B.6 From Estimated States to Estimated Magnitude, Phase
Angle and Frequency

1 function [Abs,ang,f] = fcn(x,t,Ts)
2 persistent f_array MAF_samples
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3

4 if isempty(f_array)
5 MAF_samples=800;
6 f_array=zeros(1,MAF_samples);
7 end
8 k=t/Ts;
9

10 Abs=sqrt(imag(x(2))ˆ2+real(x(2))ˆ2);
11 f=imag(log(x(1)))/(2*pi*Ts);
12

13 if(k<MAF_samples)
14 f_array(k+1)=f;
15 else
16 f_array=[f_array f];
17 f_array=f_array(2:end);
18 end
19 f_MAF=mean(f_array);
20

21 ang=imag(log(x(2)/sqrt(x(2)*x(2)')))-k*f_MAF*2*pi*Ts;
22

23 while (ang>2*pi)||(ang<-2*pi)
24 if(ang>2*pi&&ang>0)
25 ang=ang-2*pi;
26 elseif(ang<-2*pi&&ang<0)
27 ang=ang+2*pi;
28 end
29 end
30 ang=(ang+pi/2)*180/pi; % Angle offset

B.7 Park Transformation

1 function v_dq = Park(theta,v_abc)
2 v_dq=sqrt(2/3)*[cos(theta) cos(theta-2*pi/3) cos(theta+2*pi/3);
3 -sin(theta) -sin(theta-2*pi/3) -sin(theta+2*pi/3)]*v_abc;
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