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Abstract

In this thesis, simulation models for a knuckleboom crane and its winch system have been
developed. The simulation models have been used to design model based control laws for
positioning the orientation of the crane joints and for softly landing its cargo. The control law
for positioning the crane has been implemented and tested in an experimental crane lab at the
department of marine technology at NTNU. As part of this process, the lab has been improved
with a new set of sensors, filters and hands-on control systems.

The simulation model of the crane has been based upon the physical crane in the lab and was
derived using Lagrangian mechanics and modelling procedures for robotic manipulators. The
model was derived by treating the crane as a system of linked rigid bodies and includes the
weight of the actuator, but not their dynamics. The load of the crane was modelled as a constant
weight acting at the tip of the crane. Simulation studies of the model has shown that the crane
behaves as an undamped, double gravity pendulum when not influenced by external forces, or
with limitations imposed on the joint angles.

The control law for positioning the crane joints was designed using the crane simulation model
and the non-linear backstepping technique. The procedure yielded a globally asymptotic stable
control law for the system. When the control law was tested with the crane simulation model
it was able to follow a ramp reference signal lifting and lowering the crane arms and perform
heave compensation with the upper arm, with a load of 16kg attached to the tip.

Testing the control law in the marine crane lab revealed that the crane was able to follow ramp
reference signals and perform heave compensation with the upper arm, without an attached load.
However, the lower arm was not able to lift a load of 6kg when using a wire with a diameter
of 1.7mm. The actuator motor drew full current, but was not able to move the arm. This was
most likely due to increased resistance caused by using a thin wire or by the friction profile of
the actuator.

The simulation model of the winch has been used to design a control law for softly landing
crane cargo. The control law was designed by defining the control objective as tracking, where
the wire velocity should follow a desired speed profile. Simulation results have shown that the
control law achieved the objective with good accuracy.

The lab has been improved with new gyroscopes that fits the velocity range of the crane and
accelerometers that have been attached to the mass centres of the lower and upper crane arm.
The accelerometers have been used to measure the absolute orientation of the crane by calcu-
lating their orientation relative to the gravitational axis. A low-pass filter has been designed to
remove high frequency components from the gyroscope measurements and a Kalman filter to
remove noise from the accelerometer and estimate gyro bias. In addition, the crane’s winch has
been finished and a simple hands on-control system for controlling the winch speed has been
implemented. Meaning that the state of the marine crane lab has been improved and that the
process of implementing model based controllers simplified.
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Sammendrag
I denne oppgaven er det blitt utviklet simuleringsmodeller for en knuckleboomkran og vinsj.
Simuleringsmodellene har blitt benyttet til å konstruere modellbaserte kontrollsystemer for å
posisjonere kranen og for forsiktig senking av last. Kontrollsystemet for posisjonering har blitt
implementer og testet i en eksperimentell kranlab ved institutt for marin teknikk ved NTNU.
Som en del av denne prosessen har laboratoriet blitt forbedret med et nytt sett med sensorer og
filtre.

Simuleringsmodellen av kranen er basert på den fysiske kranen i laben og har blitt utviklet ved å
benytte Lagrange-mekanikk og modelleringsmetoder for manipulatorer. Kranen har blitt mod-
eller som en et system av sammenhengende, stive legemer og inkluderer vekten av aktuatorene,
men ikke dynamikken. Kranens last er antatt å være en konstant vekt som henger i kranspissen.

Styringssystemet for å posisjonere kranarmene har blitt utviklet ved hjelp av backstepping-
metoden og er basert på simuleringsmodellen. Dette resulterte i en global asymptotisk kontroll-
lov. Tester med simuleringsmodellen viste at det var mulig å få kranen til å følge et rampe-
signal, for å heve og senke kranarmene, og et sinussignal for å utføre hiv-kompensasjon.

Testing av kontroll-loven i laben viste at kranen var i stand til å følge de samme referansesigna-
lene, dog uten last. Eksperimenter med en 6 kilo tung vekt viste at den nedre armen ikke klarte
å overvinne statisk friksjon, selv når den trakk maksimalt med strøm.

Simuleringsmodellen av vinsjen har blitt benyttet til å konstruere et styringssystem for forsiktig
senking av last. Problemet har blitt formulert ved å kreve at vaierhastigheten skal følge en
forhåndsdefinert hastighetsprofil. Profilen har blitt valgt slik at maksimal hastighet holdes for
størstedelen av operasjonen og at hastighetene sakte avtar når lasten nærmer seg bakken.

Simuleringsresultater har vist at kontroll-loven klarte å få vinsjen til å følge den definerte
hastighetsprofilen med god nøyaktighet.

Kranlaboratoriet har blitt forbedret med nye gyroskoper som er bedre egnet for kranens hastighet-
sområde og akselerometre har blitt installert for å måle kranens absolutte posisjon. Posisjonen
måles ved å finne akselerometerets vinkel i forhold til tyngdeaksen. Et lavpass- og Kalman-filter
har blitt designet for å fjerne høyfrekvent støy fra sensorene og estimere feilen i gyroskopene. I
tillegg er vinsjen blitt ferdigstilt og implementert. Det betyr at laben er blitt betydelig forbedret
og at prosessen med å implementere modellbaserte kontrollsystemer gjort enklere.
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Chapter 1
Introduction

Marine cranes play an important part in several marine operations. They are expected to per-
form a wide range of different tasks and there are many different designs optimized to handle
specific challenges and conditions. For instance, gantry cranes (Figure 1.1a) are often used to
fetch and transport cargo in container terminals and between vessels. These cranes may run on
rails allowing rapid relocation and are usually capable of lifting heavy load. During these op-
erations speed are essential in order to minimize loading time, thereby decreasing the docking
time of vessels and increasing the port’s efficiency. Since the cranes are able to draw power
from the electric grid and are subject to few environmental disturbances, aspects such as power
consumption and environmental disturbance rejection may be less important.

Offshore cranes, on the other hand, face different challenges. Placed on-board vessels, they are
affected by vessel motions induced by environmental forces such as wind, waves and current.
The amplitude of the motions depend upon weather conditions and may change drastically dur-
ing an operation. In addition, if the load of the crane is to be lowered beneath the ocean surface,
it will be affected by hydrodynamical forces such damping, buoyancy and waves, which induces
motions relative to the tip of the crane. Also, the power drawn by the crane is limited by the
power plant of the vessel and fuel reserves. Hence, offshore marine cranes have stricter require-
ments regarding energy consumption and environmental disturbance rejection, while limitations
to time and speed may be slacker.

(a) Gantry Crane (b) Knuckleboom Crane

Figure 1.1: Two types of marine cranes.
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A popular crane type used offshore is the knuckleboom crane, Figure 1.1b. It is similar to a
boom crane, but with an added knuckle that provides an additional degree of freedom for the
upper part of the boom. This allows the crane to fold when not in use, thereby reducing occupied
deckspace. The crane’s disadvantage is its high power consumption and maintenance due to a
large amount of moving parts. The arms are usually positioned using hydraulic actuators and
the load is suspended by a wire whose length is controlled by a winch. Hoisting and lowering
of the crane load is accomplished by positioning the arms and controlling wire length.

With the recent focus upon limiting emissions and transitioning into greener technology, reduc-
ing power consumptions by using new control laws may be of interest. A vessel’s power plant
may experience large fluctuations in demand during crane operations. For instance, the power
demand may peak when hoisting is initialized or if the crane must react quickly to counteract an
external disturbance. This may lead incomplete combustion and increased emissions. However,
energy can be recovered during lowering operations and stored in batteries, one of the principles
behind hybrid power systems. The stored energy can be used for peak shaving and assisting the
power plant during heavy demand periods, thereby reducing incomplete combustion and emis-
sions.

Another interesting field is interconnected vessel-crane dynamics. This involves studying mo-
tions that are induced in the crane due to vessel motions, and vice-versa if the crane and its
load is large and the vessel small. Active heave compensation is a technique that relies upon
knowledge of interconnected dynamics.

The abovementioned discussion has presented several challenges related to marine crane control
and that there is potential for developing new control laws for increasing crane performance.
During controller design, the first step is usually to derive a mathematical model of the system
that is to be controlled, and then design a control law using this model. Testing the control law
with the simulation model can provide an initial set of tuning parameters and an estimate of the
system response. However, there is no guarantee that the real system will behave similarly when
subject to the control law. This may be due to modelling inaccuracies, sensor noise or the PLC
(Programmable Logic Controller) that executing the control law. In addition, if the control law
is designed to operate under dangerous situations such as harsh weather or hardware failures it
may be unsafe, expensive or impossible to run full scale experiments in operating conditions.
Another alternative is laboratory experiments with a scaled down version of the physical system.

1.1 Marine Crane Lab

A marine crane lab has newly been designed and constructed at the department of marine tech-
nology. This section will present the state of the lab at the beginning of this thesis and the
relevancy to its work. The lab consists of a scaled down knuckleboom crane with three degrees
of freedom and its design was done as part of the master thesis of (Gyberg, 2017).

2



Figure 1.2: The lab crane as it appeared at the beginning of this thesis. Taken from (Gyberg, 2017).

At the beginning of this thesis the crane lab appeared as shown in Figure 1.2. The crane’s actu-
ators and winch are controlled by electric motors and a hands-on control system for positioning
the arms has been implemented using low-level motor controllers. The actuators are operated
by a set of joysticks that provides setpoints to the motor controllers.

The winch has yet to be fitted on the crane, only the reel that stores wire is depicted in Figure
1.2. The belt connecting the winch reel and motor has not been fitted onto the winch and the
brake that holds the winch in place is being manufactured. In addition, the low-level motor
controller that controls the winch motor must be installed and configured.

A PLC from Bachmann electronics is used as the main controller in the lab. It is responsible for
low-level signal handling and for connecting the joysticks and motor controllers. The simple
hands-on control system is executed by the PLC.

A set of gyroscopes have been placed on the crane measuring the angular velocity of the arms
and base. However, filters for removing noise and estimating bias has not been implemented.
The measurement range of the gyroscope are much larger than the expected operating velocity
of the crane. This means that the measurement resolution will be low. If the gyroscope bias
is to be estimated, a set of accelerometers must be installed, this will also make it possible to
measure the absolute orientation of the crane.

In summary, the crane lab is not yet fully completed and some effort must be made to finish the
design of (Gyberg, 2017). However, when completed with an operating winch and basic set of
sensors, it will allow for a wide range of experiments. For instance, combining the crane with
a power simulator would allow research into hybrid power plants. Power simulators for marine
vessels have been proposed by (Bø et al., 2015) where the positioning system and power plant
of a marine vessel is combined into a single simulator. Combining the simulator with the crane
rig could create a powerful tool for power management research.

In addition to power management, the crane lab can also be used to investigate interconnected
vessel crane dynamics. This topic has been discussed by (Rokseth et al., 2016) whose work
could be further investigated through experiments. The rig’s modular design makes it possible
to mount it on a barge like mechanism simulating the motions of a vessel. The rig can also be
placed on an actual barge making it possible to carry out experiments in the ocean basin at the
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department of marine technology.

However, before any of these experiments can be carried out, the lab must be finished and a
model based control law should be implemented and tested. This will reveal strengths and
weaknesses with the design. In order to design a model based control law, a simulation model
of the crane and winch must be developed.

1.2 Related Work

Much attention has been given to the modelling of marine cranes. In theory, the modelling pro-
cedure is similar to that of robotic manipulators, since marine cranes are in essence large scale
manipulators. The most common way of modelling such systems is by using Lagrangian me-
chanics. This field is well explored and the theoretical foundation well explained in (Ginsberg,
2010).

Lagrangian mechanics is used by (Rokseth, 2014) to model manipulators for remotely operated
vehicles, by (Fang et al., 2016) for dynamics analysis and non-linear control, by (Qian and
Fang, 2016) to model an offshore ship-mounted crane subject to wave disturbances and also by
(Alibeji and Sharma, 2017) and (Smith et al., 2016). (Rokseth et al., 2016) uses Lagrangian
mechanics to model an interconnected vessel-crane system.

Crane models developed by Lagrangian mechanics will be highly non-linear due to the presence
of non-linear inertia matrices and Coriolis and centripetal effects. Hence, control laws can
be designed by either linearising the system and use linear systems theory or use non-linear
stability theory. The focus of this thesis will be on designing non-linear control laws. One of
the most popular methods for non-linear control is Lyapunov stability theory. A subject that is
thoroughly explored in (Khalil, 2014). Of special interest is the backstepping procedure which
can be used to design stabilizing controllers for non-linear systems.

Winch dynamics are treated by (Skjong. and Pedersen, 2014) for a marine crane with a hy-
draulic actuated winch. The work describes how the inertia and diameter of the winch reel can
be modelled as functions of the amount of wire left on the reel. It also proposes a wire model
that can be used to predict the pendulum motions of the crane load. Even though the winch
is hydraulic actuated, it is simple to replace the hydraulics with an electric motor such that the
model can be used to represent the winch in the crane lab.

1.3 Scope of Work

The previous discussions has shown that there are many different approaches that can be taken
to further develop the crane lab, too many to be treated in a single master thesis. There are also
limits to what can be achieved in the lab today, and since the crane is a work in progress, effort
should be undertaken to complete its fundamental components.

First, work on the winch should be finished as soon as possible. This will complete the design
envisioned by (Gyberg, 2017) and open up the possibility of experimenting with control laws
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handling lowering and lifting of cargo. By finishing the winch, the lab will be equipped with a
functioning crane capable of performing basic crane operations.

Parallel to finishing the winch, a model describing the winch dynamics will be developed. This
model will allow the prediction of winch performance and make it possible to develop model
based control laws. The main modelling uncertainties will be the parameters used in the model,
especially those determining the transmission between load, electrical motor and winch. A
similar system, using hydraulic actuation, have been treated by (Skjong. and Pedersen, 2014)
and the same procedure will be used in this thesis.

The winch dynamics will be used to design a control law for softly landing the crane load.
However, the definition of soft landing must be decided. It can be interesting to investigate a
tracking approach, where the system tries to follow a defined path and speed profile.

(Gyberg, 2017) suggests that more sophisticated controllers for positioning the crane should be
developed and implemented. The low-level motor controllers are fast and the hands-on control
is responsive, but reaching a desired crane position must be done manually and there is not
possible to follow a defined reference signal. A model based position controller can make path
following possible and enable the crane to follow advanced reference signals.

Before a model based position control law can be designed, a model describing the crane dy-
namics must be constructed. The model will serve the same purpose as the winch model in
predicting the performance of the crane and providing the foundation for the control law design.
A model has already been developed by (Gyberg, 2017), but the bond-graph implementation is
not suited for the work in this thesis. Instead, a simplified model inspired by the same proce-
dures will be constructed and put on state-space form. The modelling procedure will be closely
related to the techniques used to model robotic manipulators.

In summary, the work presented in this thesis seeks to investigate control systems for marine
cranes. The focus will be on deriving the equations of motion for a three degrees of freedom
knuckleboom crane and the dynamics of its winch system. The crane dynamics will be used
to design a control law for positioning the joints at a desired orientation or follow a desired
reference signal. The winch dynamics will be used to investigate control laws for softly landing
the cargo of the crane. Both the control laws will be tested in a newly constructed crane lab at
the department of marine technology.

The crane lab is in the prototype stage and at the beginning of this thesis, only a simple control
system without feedback has been implemented. In addition, the winch system has not been
implemented. The secondary motivation of this thesis is therefore to contribute to the devel-
opment of the crane lab by finishing the implementation of the winch, add additional sensors,
design sensor filters and improve the user friendliness of the lab.

The main goals and scope of work can be summarized as

• Finish implementation of the winch.

• Construct a simulation model of the crane dynamics.

• Construct a simulation model of the winch.

• Design a control law for soft-landing.

• Design a control law for positioning the crane joints.
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• Install accelerometers in the lab and design sensor filters for removing noise and estimat-
ing gyro bias.

• Propose further extensions to the lab

1.4 Software

This section will briefly present the software that will be used in this thesis.

Matlab

Matlab (matrix laboratory) is a numerical computing environment and programming language
developed and maintained by MathWorks. The work in this thesis will rely on some of Matlab’s
many toolboxes, its ability to quickly and efficiently process matrices and its plotting capabili-
ties.

Simulink

Simulink a toolbox for Matlab adding a block diagram environment for multidomain simulation.
The equations of motions governing the crane dynamics will be implemented and simulated
using Simulink.

Symbolic Math Toolbox

The Symbolic Math Toolbox adds functionality for solving and manipulating symbolic math
equations to Matlab. In this thesis the toolbox will be used to define the geometry of the crane
and solve Lagrange’s equation. Thereby reducing work involved and reducing the chance of
mathematical errors.

1.5 Structure of the Thesis

The introduction will finish by introducing the structure of the rest of the thesis. A small sum-
mary of each section and the attached appendices will follow.

Chapter 2 provides the theoretical foundation needed to understand and accomplish the goals
of this thesis. The chapter includes introduction to kinematics of rigid bodies, Lagrangian
mechanics, modelling of robotic manipulators and non-linear stability theory.

Chapter 3 presents the derivation of the equations of motion of the knuckleboom crane intro-
duced in Section 1.1. The modelling proccedure will be based on the Lagrangian mechanics
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presented in Chapter 2. In addition, a dynamic model of the crane winch will be derived. Both
models will be implemented as simulation models in Simulink

Chapter 4 presents the design of control laws for positioning the orientation of the knuckle-
boom crane and softly landing cargo. The control law design will be based on the simulation
models developed in Chapter 3 and will be designed using the non-linear control theory pre-
sented in Chapter 2.

Chapter 5 presents the marine crane lab, its equipment and the extension that have been made
in order to test the control laws. This chapter will also include the design of a low-pass filter for
removing gyroscope noise and a Kalman filter for estimating gyro bias.

Chapter 6 presents the results of the tests run in the marine crane lab with the control laws
designed in Chapter 4. The chapter will also present the performance of the low-pass and
Kalman filters.

Chapter 7 presents the final discussion and conclusion of this thesis and some recommendation
for further work.

Appendix A.1 presents the Matlab script for generating the crane model and position control
law.

Appendix A.2 presents the Matlab code for initializing the crane simulation.

Appendix A.3 presents the Matlab script for generating the winch model and soft landing con-
trol law.

Appendix A.4 presents the Matlab script for initializing the winch simulations.

Appendix A.5 presents the Matlab script for generating the speed profile used in the soft landing
control law.
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Chapter 2
Background Material

This chapter will give an overview of the most essential theory needed to accomplish the goals
of this thesis. The objective is not to provide textbook detailed introductions to all topics, but to
act as reference and small introduction to areas that may be unfamiliar to the reader.

The chapter will start by introducing kinematics of rigid bodies and Langrangian mechanics,
which will be essential when modelling the knuckleboom crane from Section 1.1. Next, an
introduction to the modelling procedures of robotic manipulators will be given, as these will be
useful when putting the crane model on state-space form. The chapter will finish by discussing
non-linear systems, Lyapunov stability and backstepping.

2.1 Rigid Body Kinematics

Rigid body kinematics is concerned with describing positions, velocities and accelerations of
moving points, bodies or systems of bodies. In this thesis it will be used to describe the kine-
matics of the knuckleboom crane from Section 1.1.

A common way of describing the position of a particle in three dimensional space is extrinsic
coordinates. These are coordinates that are independent of the particle’s path and can be de-
scribed by using the three unit vectors. Meaning that the position of a particle relative to the
origin of the coordinate frame can be given by

r = x(t)i+ y(t)j + z(t)k (2.1)

and the particle velocity and acceleration is simply given by the time derivatives of (2.1)

v = ṙ = ẋ(t)i+ ẏ(t)j + ż(t)k + ω × r (2.2)
a = v̇ = ẍ(t)i+ ÿ(t)j + z̈(t)k + ω × v (2.3)

where ω is the particle’s, or coordinate frame’s, angular velocity.
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(2.1) through (2.3) provides a mathematical description of particle motions relative to the origin
of a reference frame, and even accounts for angular motions of the unit axes. However, the
discussion so far has only accounted for a single coordinate system and set of unit vectors. In
order to properly describe the motions of multiple rigid bodies, this framework must be extended
to include multiple reference frames. The next section will therefore introduce the concept of
coordinate transformations.

2.1.1 Coordinate Transformations

Modelling systems of linked rigid bodies often necessitates the use of multiple reference frames,
because some positions are more conveniently expressed in a local reference frame. However,
it is often desired to know these positions relative to a global or inertial reference frame. In
fact, when deriving a system’s equations of motion by using Lagrange’s equation, velocities
and positions defining system energies must be expressed in an inertial frame. Coordinate
transformations provide the set of tools that can be used to transform vectors between reference
frames by using the relative orientation of the frames.

Coordinate transformations can be defined in several ways, this thesis will use the euler an-
gle definition. The three basic rotations are presented in Figure 2.1 showing the rotation of a
reference frame about each of the three unit axis.

Figure 2.1: The three principal rotations abut each of the three unit axes. Figure taken from (Rokseth,
2014)

Each of the three principal rotations can be described by a rotation matrix that transforms a
vector from one reference frame to the other. The three basic rotation matrices can be written
as
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Rx =

1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

Ry =

cos(φ) 0 − sin(φ)

0 1 0

sin(φ) 0 cos(φ)


Rz =

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1


(2.4)

where θ, φ and ψ are the orientations about the x-, y- and z-axes. Referring to Figure 2.1,Rx(θ)
transforms a vector from j′′k′′ to jbkb. In addition, the rotations matrices give by (2.4) have the
following property

R−1 = RT (2.5)

meaning that the reverse transformation is given by the transpose of the rotation matrix.

Rotation about an arbitrary axis can be expressed by a combination of the three principal ro-
tations (Ginsberg, 2010). For instance, if a frame is first rotated about the x-axis and then the
y-axis, the total rotation can be described by

e′ = RyRxe0 (2.6)

e0 = RT
xR

T
y e
′ (2.7)

where e0 and e′ are the fixed and rotating frames.

2.1.2 Vector Notation

Working with multiple reference frames requires a strict notation expressing which reference
frame a vector is described in. This simplifies the process of book keeping vectors and avoids
confusion. In this thesis the notation employed by (Rokseth, 2014) will be used

rij/k (2.8)

where i is the reference frame the vector is expressed in and j is the point relative to the origin
of reference frame k.

The framework for describing the motion of particles in multiple reference frames has now been
laid and Lagrangian mechanics can be introduced.
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2.2 Lagrangian Mechanics

This section will introduce Lagrangian mechanics and it will be shown how the equations of
motion of a system of rigid bodies can be derived by considering the system’s kinetic and
potential energy. The first topic will be generalized coordinates, followed by the definition of
potential and kinetic energy. Finally Lagrange’s equation will be introduced and the section
will finish by discussing generalized forces.

2.2.1 Generalized Coordinates

Generalized coordinates are a set of variables that uniquely describe the position of a system,
relative to some reference (Ginsberg, 2010). The minimum number of generalized coordinates
that are required are called the system’s degrees of freedom. However, there are often several
sets of variables that can be chosen as the generalized coordinates and their selection will influ-
ence the final form of the system dynamics, since the number of equations of motion given by
Lagrange’s equation is the same as the number of generalized coordinates.

i

j

L

y

x

θ

Figure 2.2: A generic beam with one fixed end. The beam is allowed to rotate about the joint and the
orientation relative to the i axis is θ.

For instance, each position on the fixed beam shown in Figure 2.2 can be described using its
orientation relative to the i axis. The position along i and j are given by

x = cos(θ)h (2.9a)
y = sin(θ)h (2.9b)

where h is a fraction of the beam length L. Therefore, the example beam has one generalized
coordinate, θ, and since this is the smallest number of coordinates required, it is also the beam’s
degree of freedom.
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2.2.2 Potential and Kinetic Energy

The kinetic energy of a system is defined by the velocity of its mass centres. The general
expression for a system consisting of n rigid bodies can be written as

T =
n∑
i=1

vTi mivi (2.10)

where T is the total kinetic energy, vi is the velocity of mass centre i and mi the mass. When
applying (2.13) in Lagrangian mechanics it is important that the velocity vectors are given in
terms of generalized coordinates, and that they are expressed in the same inertial reference
frame.

A system’s potential energy is given by the relative position of its mass centres in the gravity
field and other storage elements. In general, the potential energy for a system of n bodies and
m storage elements is given by

V =
n∑
i=1

mighi +
m∑
i=1

ki(x) (2.11)

where hi is the position of mass centre i along the axis where gravity is acting, g is the gravita-
tional acceleration and ki(x) is other contributions to the potential energy such as springs.

The kinetic and potential energy, given by (2.10) and (2.11), are essential in Lagrangian me-
chanics and now that they have been defined, Lagrange’s equation can be presented.

2.2.3 Lagrange’s Equation

Lagrange’s equation is a specialized version of Hamilton’s principle for systems with a discrete
number of generalized coordinates (Ginsberg, 2010). The equation is formulated by the kinetic
and potential energy of the system that it describes and is sometimes given in terms of the
Lagrangian

L = T − V (2.12)

where T is the kinetic energy given by (2.10) and V the potential energy given by (2.11). Hence,
for a system of a finite number of rigid bodies, described by a set of n generalized coordinates,
Lagrange’s equation is given by

∂

∂t

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk k = 1, 2, · · · , n (2.13)

where n is the number of generalized coordinates, qk and q̇k is the kth generalized coordi-
nate and velocity, L the Lagrangian and Qk generalized forces influencing the kth generalized
coordinate. Lagrange’s equation is in fact a representation of the conservation of energy and
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momentum. The term ∂
∂t

(
∂L
∂q̇k

)
represents the change in momentum, while ∂L

∂qk
is the change in

potential energy.

If Qk = 0, then there are no external forces acting on the system and the change in energy is
zero. Meaning that the system is conservative and no energy is added or dissipated. However,
if Qk 6= 0, then there are non-conservative forces influencing the total energy. Qk usually
represents forces such as resistance, damping or actuators. Modelling generalized forces will
be presented in the next section.

2.2.4 Generalized Forces

The term Qk is called generalized forces and represents the non-conservative forces and mo-
ments acting on the system. It is used to represent external forces that can not be described or
covered by the system’s potential and kinetic energy. For instance, friction and resistance are
not conservative forces since they remove energy from the system and causes a decrease in the
total energy, without the possibility of recovery. Another example is the actuators controlling
the motion of a robotic manipulator. According to (Ginsberg, 2010) a force or moment F acting
at a position rF is described as a generalized force by

Qk = F T
k

∂rFk
∂qk

(2.14)

where the position and force vector must be given in an inertial reference frame and in terms of
the generalized coordinates.

2.3 Modeling of Robotic Manipulators

The knuckleboom crane introduced in Section 1.1 is not different from a robotic manipulator,
in terms of mathematical modelling. Therefore, an introduction to procedures for modelling
robotic manipulators will be presented. This will cover state-space formulation of manipulators,
Jacobians, derivations of the generalized inertia matrix, the Coriolis and centripetal matrix,
the gravity vector, external forces and how the system matrices are connected to Lagrange’s
equations (2.13).
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2.3.1 State-space Formulation of Robotic Manipulators

Figure 2.3: A generic robotic manipulator with joint angles q1 and q2 and three defined reference frames.
From (Scilab, 2017).

A generic robotic manipulator consisting of two linked arms is shown in Figure 2.3. The figure
also shows the placement of three coordinate frames: X0Y0,X1Y1 andX2Y2, WhereX0Y0 is the
inertial reference frame and the other two are aligned with the manipulator arms. The placement
of the mass centre of each arm is also defined.

Such robotic manipulators can easily be modelled using Lagrange’s equation (2.13) and the
particle kinematics and coordinate transformations presented in section 2.1. The resulting equa-
tions of motion can be written compactly as

D(q)q̈ +C(q, q̇)q̇ + g(q) = τ (2.15)

where M is the inertia matrix, C the centripetal and Coriolis matrix, g the gravity vector and
τ external forces.

However, the relationship between Lagrange’s equation and the terms in (2.15) is not explicitly
clear. For instance, the general inertia matrix can be derived directly from the kinetic energy
and Jacobian of the system, and one representation of the Coriolis matrix is given by the partial
derivatives of D with respect to the generalized variables. In the coming sections the Jaco-
bian will be defined and the inertia and Coriolis matrices and gravity vector in (2.15) will be
connected directly to the kinetic and potential energy in Langrange’s equation.
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2.3.2 Jacobian

The Jacobian is one of the most important quantities in the analysis and control of robot motion
and arises in virtually every aspect of robotic manipulation, Spong et al. (2006). In the context
of this thesis, it defines the transformation from generalized to body velocities, which can be
written as

[
v0n
ω0
n

]
=

[
Jv

Jω

]
q̇ = Jq̇ (2.16)

where v0n and ω0
n are the linear and angular body velocities expressed in the inertial frame, J

the Jacobian and q̇ the generalized velocities.

The definition of the Jacobian will depend upon whether the joints of the manipulator are pris-
matic or revolute. The ith element is generally given by

Jvi =

{
ei−1 × (on − oi−1); for revolute joint i
ei−1; for prismatic joint i

(2.17)

Jωi =

{
ei−1; for revolute joint i
0; for prismatic joint i

(2.18)

where ei−1 is the axis of rotation or parallel to translation, on is position of the point and oi−1 the
origin of a preceding reference frame. For the generic manipulator in Figure 2.3, the Jacobian
for mass centre m2 will be

J =

[0 0 1
]T
× (om2 − o0)

[
0 0 1

]T
× (om2 − o1)[

0 0 1
]T [

0 0 1
]T

 (2.19)

The next section will show how the generalized inertia matrix can be derived from the Jacobian.

2.3.3 Inertia Matrix

The inertia matrix in (2.15) can be directly derived from the kinetic energy calculated as part
of the Lagrangian formulation. An alternative expression of (2.10) for a robotic manipulator is
given by (Spong et al., 2006) as

T =
1

2
q̇T

[
n∑
i=1

(miJ
T
vi
Jvi + JTωiRi(q)I iRi(q)TJωi)

]
q̇ (2.20)

where the inertia matrix is given by
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D(q) =

[
n∑
i=1

(miJ
T
vi
Jvi + JTωiRi(q)I iRi(q)TJωi)

]
(2.21)

where q̇ is the generalized velocities, Jvi the linear velocity Jacobian, Jωi the angular Jacobian,
mi mass and I i the moment of inertia of body i. Ri is the rotation matrix from the local
reference frame of body i to the inertial reference frame.

2.3.4 Centripetal and Coriolis Matrix

The Coriolis and centripetal matrix represents the fictional Coriolis forces that acts on the sys-
tem due to motions relative to a rotating reference frame. According to (Spong et al., 2006), it
can be diectly derived from the inertia matrix by using the first order Christoffel symbols. The
kjth element in the Coriolis and centripetal matrix is given by

ckj =
n∑
i=1

1

2

(
∂dkj
∂qj

+
∂dki
∂qj
− ∂dij
∂qk

)
q̇i (2.22)

where dkj is the kjth element of the generalized inertia matrix (2.21) and qk is the kth general-
ized coordinate.

2.3.5 Gravity Vector

The system’s gravity vector is derived directly from the potential energy (2.11). Each term in
the gravity vector in (2.15) can be found by partially differentiating the potential energy with
respect to the generalized coordinates. The kth element of the gravity is therefore given by

gk =
∂V

∂qk
(2.23)

where V is the potential energy given by (2.11) and qk the kth generalized coordinate.

2.3.6 External Forces

The term τ on the right hand side of (2.15) collects all external forces acting on the manipu-
lator and is directly connected with the generalized forces Qk in Lagrange’s equation (2.13).
The general expression is given by (2.14), but for some system it may given directly. Most
importantly, the term includes the actuator forces which are used to control the manipulator.
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2.4 Non-Linear Systems

The robotic manipulator model will, when used to model the knuckleboom crane from Section
1.1, be highly non-linear. This means that non-linear control theory must be used to design
stabilizing controllers for the system. This section will give an overview of the most essential
non-linear control theory that will be used in this thesis and will include representations of
non-linear systems, Lyapunov stability theory and backstepping.

2.4.1 Representation of Nonlinear Systems

The work in this thesis will deal with non-linear dynamic equations that can be written as a
set of lumped, first order, time invariant differential equations. In general, such systems can be
written as

ẋ = f(x) + g(x)u (2.24)

where ẋ is the state vector, f(x) the system matrix, g(x) the input matrix and u the input
vector.

2.4.2 Lyapunov Stability Theory

Lyapunov stability theory is a powerful set of tools that can be used to design control laws for
non-linear systems and prove their stability. It will be widely used in this thesis in order to
design the control laws mentioned in Section 1.3 and the most relevant topics will be covered
in the following section. This includes asymptotic stability, Lyapunov functions, Lyapunov’s
equation and backstepping.

Lyapunov Function

Lyapunov functions are essential for designing non-linear control laws and analysing the sta-
bility of non-linear systems. Their definition is given by (Khalil, 2014) in the following theorem.

Theorem 2.4.1. Let f(x) be a locally Lipschitz function defined over a domain D ⊂ Rn, which
contains the origin, and f(0) = 0. Let V (x) be a continuously differentiable function defined
over D such that

V (0) = 0 and V (x) > 0 for all x ∈ D with x 6= 0 (2.25)

V̇ (x) ≤ 0 for all x ∈ D (2.26)

Then, the origin is a stable equilibrium point of ẋ = f(x). Moreover if

V̇ (x) < 0 for allx ∈ D with x 6= 0 (2.27)
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then the origin is asymptotically stable. Furthermore, if D = Rn and (2.25) and (2.27) hold for
all x 6= 0, and

||x|| → ∞ =⇒ V (x)→∞ (2.28)

then, the origin is globally asymptotically stable.

Theorem 2.4.1 states that if a function that satisfies (2.25) exists and its derivative is negative
definite for all time and for all x in the function’s domain, then the origin of f(x) will be globally
asymptotically stable. Now, the definition of asymptotic stability will be given.

Asymptotic Stability

Non-linear systems may exhibit several types of stability. They can be locally or globally stable
and converge to the origin at different rates. Usually the rate of convergence is what defines
different types of stability. In this work only the notion of asymptotically stability will be
discussed, since this type of stability is usually achieved when using the backstepping method.
The reader is directed to (Khalil, 2014) for more on stability of non-linear systems.

Before asymptotic stability is defined, the definitions of κ, ` and κ` class functions will be given.

Definition 1. A continuous function α: [0, a)→ [0,∞) is called a class-κ function if

• α(0) = 0

• it is strictly increasing

Definition 2. A continuous function φ: [0,∞)→ [0,∞) is called a class-` function if

• it is decreasing

• lims→∞ φ(s) = 0

Definition 3. A function β: [0,∞)× [0,∞)→ [0,∞) is called a class-κ` function if

• for each fixed s, the function β(r, s) belongs to class κ

• for each fixed r, the function β(r, s) belongs to class `

Uniform, global, asymptotic stability can now be defined in terms of κ, ` and κ` class functions
from 1, 2 and 3.

Definition 4. The origin x = 0 of ẋ = f(t,x), with x0 = x0(t), is uniformly Globally
Asymptotically Stable (UGAS) if ∃β ∈ κ` such that, ∀x0 ∈ Rn, the solution x(t, x0) satisfies

|x(t, x0)| ≤ β(|x0|, t), ∀t ≥ 0 (2.29)

For non-linear systems, asymptotic stability, as given by Definition 4, can be proved through
Lyapunov’s direct method (Khalil, 2014).

19



Theorem 2.4.2. Assume the system ẋ = f(x, t) is forward complete.

• If there exists a smooth Lyapunov function for the system ẋ = f(x, t), with respect to the
origin x = 0, then the origin is uniformly globally stable

• If V̇ ≤ α(|x|), where V is a Lyapunov function candidate for ẋ = f(x, t), and α(|x|)
is a negative definite function, then the origin x = 0 is uniformly globally asymptotically
stable (UGAS).

Hence, through Definition 4 and Theorems 2.4.3 and 2.4.2 asymptotic stability of non-linear
systems can be proven. However, finding functions which satisfies Lyapunov’s direct method is
not always trivial, but there exist techniques that can achieve it for certain types of systems.

Lyapunov’s Equation

The Lyapunov equation often occurs when analysing stability of non-linear systems. It is es-
pecially useful when designing controllers through backstepping and helps choosing gains that
ensures asymptotic stability. By (Khalil, 2014), the Lyapunov equation is given as

ATP + PAT = −Q (2.30)

and connected with the following theorem.

Theorem 2.4.3. A matrixA is Hurwitz if and only if for every positive definite symmetric matrix
Q there exists a positive definite matrix P that satisfies the Lyapunov equationATP +PAT =
−Q. Moreover, ifA is Hurwitz, then P is the unique solution.

Where a matrixA is Hurwitz if every eigenvalue has a strictly negative real part. With Lyapunov
functions defined, the notion of asymptotic stability explored and given the Lyapunov equation,
backstepping can be presented.

2.4.3 Backstepping

Although Lyapunov functions are an extremely powerful tool for stabilizing non-linear sys-
tems, the design procedure is not always straight forward. The backstepping method provides a
systematic way of recursively designing control laws for strict-feedback systems of the form

ẋ = f0(x) + g0(x)z1

ż1 = f1(x, z1) + g1(x, z1)z2

ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3
...

żk−1 = fk1(x, z1, · · · , zk1) + gk−1(x, z1, · · · , zk−1)zk
żk = fk(x, z1, ·, zk) + gk(x, z1, · · · , zk)u

(2.31)
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where x ∈ Rn, z1 to zk are scalars, u the input, f0 to fk vanish at the origin and

gi(x, z1, ..., zi) 6= 0 for1 ≤ i ≤ k (2.32)

over the domain of interest (Khalil, 2014).

The recursive procedure start with a change of variables defined by

z1 = y − yd (2.33)
z2 = x2 −α1

.

.

.

zn = xn −αn

where zi is the backstepping variables, αi a virtual controller that will be used to stabilize zi−1,
yd the system’s output vector and yd the desired that the system should follow.

The number of backstepping steps required are determined by the relative degree of the system.
For each step a Lyapunov function is defined as

Vi = Σi−1
j=1Vj + zTi P izi (2.34)

where P i is a positive definite matrix satisfying the Lyapunov equation (2.30) and theorem
2.4.3. The virtual controller, αi, is chosen such that V̇i is rendered negative definite in terms
of zi. This ensures asymptotic stability by Lyapunov’s direct method (theorem 2.4.2). Terms
related to zi+1 is ignored and carried over to the next step. This process is repeated until the
control input is reached.

The final step is reached when the derivative of (2.34) contains the control input u, which is
chosen such that the final Lyapunov derivative is rendered negative definite. The final Lyapunov
function is then given by the sum of Lyapunov functions for all steps and since each step is
asymptotically stable, so is the total system.

However, backstepping only proves asymptotic stability for z and does not guarantee that stabil-
ity is carried over to x. Asymptotic stability is only preserved if the transformation T (x) from
x to z is a global diffeomorphism (Khalil, 2014). This means that T (x)−1 must be defined over
the domain of the system.

In summary, this chapter has provided the set of tools that will make it possible to construct
a mathematical model of the knuckleboom crane and winch from Section 1.1 and design non-
linear controllers for these systems.
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Chapter 3
Simulation Models

In this chapter models of the knuckleboom crane and winch system from Section 1.1 will be
developed using Lagrangian mechanics. The models will later in the thesis be used to design
control laws for positioning the crane joints and soft landing. For each model, the modelling
procedure will be described in detail and finish with a simulation study verifying its theoretical
behaviour.

3.1 Crane Model

This section will use Lagrangian mechanics to derive the equations of motion for the knuck-
leboom crane presented in Section 1.1. The modelling procedure will start by defining a set
of reference frames that will be used to describe each position in the system. Then, a set of
generalized coordinates will be selected and the Jacobians of the mass centres derived. The Ja-
cobians will be used to define the potential and kinetic energy of the system, which will be used
to derive the system matrices. Afterwards, external forces will be identified and modelled. The
section will finish by implementing the model in Simulink and running a simple simulation.

3.1.1 System Description

The first step is to properly define the system that is to be modelled. The knuckleboom crane
consists of a rotating base and two arms. The orientation of the base is controlled by an electric
motor and the arms are positioned by two electric actuators. In addition, a load that represent
the crane cargo acts at the tip of the upper arm. The crane can therefore be represented as a
series of linked, rigid bodies and is well suited to be modelled using Lagrangian mechanics. A
sketch of the crane is presented in Figure 3.1.
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Figure 3.1: Sideview of the crane showing the placement of local reference frames.

3.1.2 Placement of Reference Frames

If the equations of motions are to be derived using Lagrange’s equation, all positions and ve-
locities in the crane system must be known and expressed in an inertial reference frame. These
variables are essential when defining the kinetic and potential energy of the system. However,
it is often more convenient to describe positions in a local reference frame and then use a series
of coordinate transformations to transform the vector to the inertial frame. Hence, the reference
frames that will be used in the modelling procedure must defined.

A simplified view of the crane seen from the side is presented in Figure 3.1. In addition, the
placement of some reference frames and their relative orientation are shown.

The inertial reference frame for this system is placed at the base of the crane with its z-axis
aligned with the base column. The frame is denoted x0y0z0.

Next, a local reference frame for the base is placed with its origin coinciding with the inertial
frame. However, its axes rotates together with the column, about the z-axis, and its relative
orientation to the inertial frame is denoted θ1 and axes x1y1z1.
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The second local reference frame is placed at connection point between the base and lower arm.
Its local x-axis runs parallel to and rotates with the arm, about the local y-axis. Its axes are
denoted x2y2z2 and its orientation relative x1y1z1 is θ2.

The local reference frame for the upper arm, x3y3z3 is placed at its connection point to the lower
arm. The local x-axis runs parallel to the arm and it has an orientation θ3 relative to x2y2z3 about
the y-axis.

Reference frames following the same principle as for the arms are placed at the lower connection
point of each actuator. These are denoted x4y4z4 for the lower and x5y5z5 for the upper and their
orientations are δ1 and δ2 relative to x1y1z1.

From the previous discussion it is evident that all positions in the system can be described using
the five reference frames and orientations θ1, θ2, θ3, δ1 and δ2. However, the number of free
variables can be reduced by noting that δ1 and δ2 are function of the joint orientations.
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Figure 3.2: Upper and Lower Actuator geometries. From (Gyberg, 2017)

The geometry of the lower and upper actuators are shown in Figure 3.2. It can be shown that
the orientation of the lower actuator can written as

δ1(θ2) = sin−1

(
h+ sin(θ2)b− cos(θ2)u√

(cos(θ2)b+ sin(θ2)u− a)2 + (h+ sin(θ2)b− cos(θ2)u)2

)
(3.1)
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where all geometric parameters are defined in Figure 3.2a. A similar analysis of the upper
actuator shows that its orientation can be written as

δ2(θ2, θ3) = π + θ2 + θ3 − sin−1
( s
c′

)
− cos−1

(
cos(µ2)v − c′√

v2 + c′2 − 2vc′ cos(µ2)

)
(3.2a)

µ2 = π + θ3 − sin−1
(

s√
c2 + s2

)
− sin−1

(
r√

r2 + (L1 − w)2

)
(3.2b)

v =
√
r2 + (L1 − w)2 (3.2c)

c′ =
√
c2 + s2 (3.2d)

(3.2e)

where all geometric parameters are defined in Figure 3.2b. (3.1) and (3.2) shows that the orien-
tations of the actuators can be written as functions of the joint angles.

It has now been shown that all relevant orientations in the system can be expressed using the
orientation of the base and arms. Since the crane arms are fixed in length, these orientations can
be used to express all position in the system. Therefore, the generalized coordinates are chosen
as

q =
[
θ1 θ2 θ3

]
(3.3)

and since q ∈ R3, there will be three differential equations governing the system. The next step
is to derive the transformations between the different reference frames and express the position
and velocity of all mass centres in the inertial frame.

3.1.3 Relevant Positions

Now that generalized coordinates have been selected and reference frames defined, transfor-
mations between the local and inertial frames can be derived and all relevant positions in the
system expressed. The relevant positions are the coordinates of the mass centres, origin of the
local reference frames and crane tip. Expressing these positions in the inertial reference frame
will make it possible to construct the Jacobians that will be used to define the system’s kinetic
and potential energy.

Most of the reference frames that were defined in the previous section rotates about the local
y-axis, with exception of x1y1z1 which rotates about the local z-axis. Hence, rotation matri-
ces about the y- an z-axes must be used to transform coordinates. The rotation matrices are
presented in Section 2.1.1.

The rotation matrix for each reference frame can be expressed as a series of rotations defined
by
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R0
1 = Rz(θ1)

T R0
2 = R0

1Ry(θ2)
T R0

3 = R0
2Ry(θ3)

T (3.4)

R0
4 = R0

1Ry(δ1)
T R0

5 = R0
1Ry(δ2)

T (3.5)

whereRk
i defines the rotation from frame i to k.

The origin of each local reference frame can be written as

r01/0 =

0

0

0

 r12/1 =

0

0

h

 r23/2 =

 0

0

L1

 r14/1 =

a0
0

 r25/2 =

 w0
−r

 (3.6)

where the geometric parameters are defined in Figures 3.1 and 3.2.

The position of each reference frame relative to the inertial frame, expressed in the inertial
frame, is given by

r02/0 = r01/0 +R0
1r

1
2/1 (3.7a)

r03/0 = r02/0 +R0
2r

2
3/2 (3.7b)

r04/0 = r01/0 +R0
1r

1
4/1 (3.7c)

r05/0 = r02/0 +R0
2r

2
5/2 (3.7d)

The same procedure can be repeated for the position of the mass centres. In the local frames the
mass centres of each body can be written as

r1cg1/1 =

Xcm1

Ycm1

0

 r2cg2/2 =

k0
0

 r3cg3/3 =

n0
0

 r4cg4/4 =

p0
0

 r5cg5/5 =

o0
0

 (3.8)

where Xcm1, Ycm1, k, n, p and o are constant parameters.

The position of all centres of mass relative to the inertial reference frame, expressed in the
inertial frame, can be written as

r0cg1/0 = r01/0 +R0
1r

1
cg1/1

(3.9a)

r0cg2/0 = r02/0 +R0
2r

2
cg2/2

(3.9b)

r0cg3/0 = r03/0 +R0
3r

3
cg3/3

(3.9c)

r0cg4/0 = r04/0 +R0
4r

4
cg4/4

(3.9d)

r0cg5/0 = r05/0 +R0
5r

5
cg5/5

(3.9e)

Now that the origin of each reference frame and the position of each mass center relative to
inertial frame have been expressed, the Jacobians can be defined.
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3.1.4 Jacobians

In order to simplify the derivation of the Jacobians, the unit vectors and following transforma-
tions are defined

e1 =

1

0

0

 e2 =

1

0

0

 e3 =

0

0

1

 (3.10a)

w1 = R0
1e3 w2 = R0

2e2 w3 = R0
3e2 (3.10b)

meaning thatw1 is the z-axis of frame 1,w2 the y-axis of frame 2 andw3 the y axis of frame 3,
transformed to the inertial frame. Since there are three generalized coordinates, the Jacobians
will be in R6×3 and since the crane consists of five rigid bodies, at least five Jacobians must be
defined. Hence, following the principles from section 2.3.2, the mass center Jacobians can be
written as

J1 =

[
w1 × r1cg1/0 03×2

w1 03×2

]
(3.11a)

J2 =

[
w1 × r1cg2/0 w2 × (r0cg2/0 − r02/0) 03×1

w1 w2 03×1

]
(3.11b)

J3 =

[
w1 × r1cg3/0 w2 × (r0cg3/0 − r02/0) w3 × (r0cg3/0 − r03/0)

w1 w2 w3

]
(3.11c)

J4 =

[
w1 × rcg4/0 w2 × r0cg4/0 − r02/0 03×1

w1 w2 03×1

]
(3.11d)

J5 =

[
w1 × rcg5/0 w2 × r0cg5/0 − r02/0 w3 × r0cg5/0 − r03/0

w1 w2 w3

]
(3.11e)

In addition, in order to follow the motion of the crane tip, the crane tip Jacobian is defined as

J6 =

[
w1 × r1tip/0 w2 × (r0tip/0 − r02/0) w3 × (r0tip/0 − r03/0)

w1 w2 w3

]
(3.12)

The next step in the modelling procedure is to define the kinetic and potential energy of the
system.

3.1.5 Kinetic and Potential Energy

Now that the mass centre Jacobians (3.11) have been derived, the kinetic and potential energy of
the system can expressed. In Section 2.3.3, it was shown that the kinetic energy can be written
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as a function of the Jacobians and mass matrices. For the knuckleboom crane, consisting of five
rigid bodies, the total kinetic energy can be written as

T =
5∑
i=1

1

2
q̇TJTi M iJ iq̇ (3.13)

where q̇ is the generalized velocities, the time derivative of (3.3), J i is the Jacobian for the ith
rigid body andM i the mass matrix for the ith body. Mass matrix i can be written as

Mi =

[
I3×3mi 03×3

03×3 Ri
0I i(R

i
0)
T

]
(3.14)

where mi and I i are the mass and moment of inertia matrix of body i.

The system’s potential energy depends upon the position of mass centres in the gravity field and
other storage elements. For the crane system, the mass of the actuators and arms will contribute
to the total potential energy. The base will not influence the energy since its position is fixed
in the direction of gravity. Since there are no storage elements in the system, the total potential
energy can be written as

V =
5∑
i=1

−gmizi (3.15)

where g is the acceleration of gravity, mi the mass of body i and zi its position in the gravity
field, given by the z component of the mass center positions expressed (3.9).

With the kinetic and potential energy of the crane system expressed, the generalized inertia,
Coriolis and centripetal matrices and gravity vector can be derived. The next section will derive
these quantities and put the system on state-space form.

3.1.6 State-Space Formulation

It was shown in Section 2.3 that the generalized inertia, Coriolis and centripetal matrices and
gravity vector of a system of rigid bodies can be derived from the system’s kinetic and potential
energy. These quantities were derived in the previous section, see (3.13) and (3.15).

Hence, the generalized inertia matrix of the crane can be written as

D =
5∑
i=1

JTi M iJ i (3.16)

where Ji is one of the Jacobians given by (3.11) andM i is defined in (3.14).

The Coriolis matrix can then be derived directly from (3.16) by using the Christoffel symbols
introduced in Section 2.3.4. For this system, the kjth element of the Coriolis matrix can be
written as
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ckj =
3∑
i=1

1

2

(
∂dkj
∂qj

+
∂dki
∂qj
− ∂dij
∂qk

)
q̇i k = 1, ..., 3 j = 1, ...3 (3.17)

where dkj is the k, jth element of (3.16) and qi generalized coordinate i.

The gravity vector of the system can be derived directly from the potential energy (3.15)

G =
[
∂V
∂q1

∂V
∂q2

∂V
∂q3

]T
(3.18)

where V is the potential energy.

Finally, the model can be put on state-space form using the formulation from section 2.3. The
state space formulation of the three degrees of freedom knuckleboom crane can be written as

D(q)q̈ +C(q̇, q)q̇ +G(q) = τ (3.19)

where D is given by (3.16), C by (3.17) and G by (3.18). The only term that has not been
discussed is external forces represented by τ . This will be the topic of the next section.

3.1.7 Actuator Forces and Load

The previous section established the internal forces acting on the crane and put the crane dy-
namics on state space form (3.19). However, there are several external forces acting on the
crane that has yet to be modelled. For instance, the force produced by the actuators and the load
at the crane tip.

It is assumed that the load that is to be lifted by the crane acts at the crane tip and is constant
during a single operation. This is of course a simplification since the load in reality acts at the
tip of the wire and may also cause lateral disturbances due to pendulum motions. The force
exerted on the crane tip by the load can be written as

F L =
[
0 0 −mLg

]T
(3.20)

where ml is the weight of the cargo. This force must be expressed as a generalized force in
order to derive its effect upon the crane dynamics. An introduction to generalized forces can be
found in section 2.2.4.

The first step is to find the position where the load acts on the system. The position of the crane
tip can be written as

r0tip/0 = r03/0 +R3
0

L2

0

0

 (3.21)
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where L2 is the length of the upper arm. The generalized force from the load is then given by
(2.14), and can for this system be written as

τL =
[
F T
L

∂r0
tip/0

∂θ1
F T
L

∂r0
tip/0

∂θ2
F T
L

∂r0
tip/0

∂θ3

]T
(3.22)

where r0tip/0 is the position of the load in the inertial frame given by (3.21). Now, the procedure
is repeated for the actuators.

The actuator forces act parallel to each actuator and have to be decomposed in order to be
expressed as a generalized force. The decomposition angle for the lower actuator is δ1, the
orientation of reference frame x4y4z4 given by (3.1). The second decomposition angle is δ2, or
the orientation of x5y5z5 given by (3.2). In addition, the forces will have to be transformed to
the inertial frame x0y0z0 using the rotation θ1. The forces produced by each actuator can be
written as

F 1 = F1,a

1

0

0

 F 2 = F2,aR
1
0

cos(δ1)

0

sin(δ1)

 F 3 = F3,aR
1
0

cos(δ2)

0

sin(δ2)

 (3.23)

where Fi,a is the amplitude of the force for the ith actuator.

The force from an actuator will result in an equal force at both the upper and lower connec-
tion (Gyberg, 2017). Therefore, the position of both connections points must defined. The
connection points for the lower actuator are

r0a11/0 = R0
1

[
a 0 0

]T
r0a12/0 = r02/0 +R2

0

[
b 0 −u

]T
(3.24)

and
r0a21/0 = r02/0 +R0

2

[
w 0 −r

]T
r0a22/0 = r03/0 +R3

0

[
c 0 −s

]T
(3.25)

for the upper actuator.

Now, the generalized force from each actuator can be determined from (2.14). By combining
the actuator contributions into a matrix, the generalized actuators forces can be written as

τ a =

1 F T
2 (−∂ra11

∂θ1
+ ∂ra12

∂θ1
) F T

3 (−∂ra21
∂θ1

+ ∂ra22
∂θ1

)

0 F T
2 (−∂ra11

∂θ2
+ ∂ra12

∂θ2
) F T

3 (−∂ra21
∂θ2

+ ∂ra22
∂θ2

)

0 F T
2 (−∂ra11

∂θ3
+ ∂ra12

∂θ3
) F T

3 (−∂ra21
∂θ3

+ ∂ra22
∂θ3

)

 (3.26)

and by extracting the amplitude of each actuator force, (3.26) can be rewritten as

τa = Q

Fa1Fa2

Fa3

 = Qu (3.27)
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In summary, a model of the knuckleboom crane presented in Section 1.1 has been derived and
the model is now ready for implementation in the Simulink.

3.1.8 Simulink Implementation

Deriving the system’s generalized inertia and Coriolis matrices by hand is both time consuming
and prone to errors. Therefore, the symbolic Math Toolbox(Mathworks, 2017) has been used to
derive them and the script for generating the model can be found in Appendix A.1. Figure 3.3
shows the crane model (3.19) implemented in Simulink.
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Figure 3.3: Overview of the crane model implemented in Simulink.

Figure 3.3a shows the interface of the simulation model, which has been divided into the crane
dynamics, actuator connections and load. The outputs of the model are the generalized coor-
dinates and velocities. The actuator connections have been configured to take the force that

32



should be produced by the actuator as input. Meaning that different control laws can easily be
connected to the simulation model.

A detailed overview of the crane dynamics are shown in Figure 3.3b, showing that the inertia,
Coriolis and gravity vectors have been implemented as custom Matlab functions. An input port
for external forces have also been provided.

The actuator and load connections are shown in Figure 3.3c, 3.3d and 3.3e. They have been
implemented as Matlab functions containing the matrices that were developed in Section 3.1.7.

Now that the crane model has been implemented in Simulink, a simulation can be run to verify
its behaviour.

3.1.9 Simulation Results

The final step in the modelling procedure is to run a simple simulation showing that the crane
model behaves as expected. The simulation will be run without any actuator forces and without
limits on the joint orientations. In this case, only gravitational forces acts on the system and it
is expected that the response of the lower and upper arm will be similar to a gravity pendulum.

The simulation will be run with the mass and geometric parameters presented in Tables 3.1 and
3.2, which corresponds to the design parameters from (Gyberg, 2017).

Table 3.1: Mass Parameters

Parameter Value Parameter Value Parameter Value

m1 67 kg I1,z 1.8 kgm2 I4,z 2.3 kgm2

m2 23.3 kg I2,y 9.2 kgm2 I5,y 1.1 kgm2

m3 5.5 kg I2,x 9.4 kgm2 I5,z 1.1 kgm2

m4 8.5 kg I3,y 1.6 kgm2

m5 6.8 kg I3,x 1.5 kgm2

ml 16 kg I4,y 2.3 kgm2

Table 3.2: Geometrical Parameters

Parameter Value Parameter Value

h 0.495 m u 0.14m
L1 1.251 m r 0.14m
L2 0.96 m s 0.118m
a 0.1 m k 0.533 m
b 0.461 m n 0.42
c 0.1 m o 0.324 m
w 0.461m p 0.44 m
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Figure 3.4: Results from simulating the knuckleboom crane model without actuator forces and limits
imposed on the joint orientations.

The results from the unforced simulation, Figure 3.4, shows that the crane behaved as an un-
damped gravity pendulum. The base did not move at all, since it was unaffected by gravity and
no external forces were applied. The lower arm was affected only by gravity and the motion of
the upper arm. Therefore, it behaved as a simple pendulum moving between its initial position
and maximum stroke. The upper arm was driven by gravity and the motion of the lower arm.

It can be seen from the angle, Figure 3.4a, and pendulum movement, Figure 3.4b, of the upper
arm that it started spinning In the real setup the angle of the upper arm and elongation of the
actuators are restricted and will not be allowed to crash into or pass through the lower arm.
Currently, this is a weakness of the simulation and limits to the angle can adding a stiff spring
and a strong damper as a function of the orientation of the respective arm, added as external
forces, or by imposing limitations in the Simulink model.

However, the most important observation is that the kinematics of the model behave as expected
when the system is unaffected by external forces. This can be observed from the indefinite
pendulum motion of the lower arm and the double pendulum motion of the tip. Thus, the most
basic response of the crane dynamics have been shown to behave as expected.

As a summary, in this section the equations of motion for the knuckleboom crane from Section
1.1 crane lab has been derived by using Lagrangian mechanics. The resulting model has been
put on state-space form and implemented in Simulink. A simulation of the unforced system has
shown that the dynamics behaves as a double gravity pendulum when only affected by gravity.

In the next section, a model of the crane’s winch system will be developed.
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3.2 Winch Model

In the previous section, the dynamics of the knuckleboom crane from Section 1.1 was derived
using Lagrangian mechanics. However, the model did not include the winch and simply mod-
elled the load as a constant weight hanging from the crane tip. In this chapter, the dynamics of
the winch will be derived such that the length of wire between the crane tip and cargo can be
described. The motivation is to use the model to develop a control law for softly landing the
load.

3.2.1 System Description

The section will start by giving a description of the winch system that is to be modelled. The
main components of the winch are the reel, on which wire is stored, the electric motor control-
ling the speed of the reel and the belt connecting the motor and reel. An overview of the system
is shown in Figure 3.5.

TL

Motor
Gearbox

Belt

Roll

Figure 3.5: Figure showing the wire roll, the wire load, electrical motor and transmission belt.

In essence, the winch system is not different from an electric motor. The dynamics of the electric
side will be equal to that of an electric DC motor, the challenge lies in accurately modelling the
mechanical side of the winch. As the amount of wire on the reel changes, so will its inertia and
diameter. This means that the moment acting on the reel from the load will also change with
the amount of wire on the reel.

3.2.2 Winch Dynamics

Since the amount of wire stored on the reel is to be modelled, the system states are chosen as

x =

LL̇
i

 ẋ =

L̇L̈
i̇

 u = V (3.28)
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where L is the amount of wire on the reel, L̇ the velocity of wire leaving or entering the reel, i
the current drawn by the electric motor and V the voltage across the motor.

The wire velocity is a function of the reel radius and angular velocity

L̇ =
D(L)

2
ω (3.29)

where D(L) is the diameter of the reel, assumed to be a function of the amount of wire on the
reel, and ω, the reel velocity. The acceleration of the wire can be found by differentiating (3.29)
with respect to time. Since the reel diameter is dependent upon L its derivative will also appear
in the expression. The wire acceleration can be written as

L̈ =
DL(L)

2
L̇ω +

D(L)

2
ω̇ (3.30)

where DL(L) is the derivative of D(L) with respect to L and ω is the acceleration of the reel.
An expression for the reel velocity has already been defined in (3.29) and inserting it into (3.30)
yields

L̈ =
DL(L)

D(L)
L̇2 +

D(L)

2
ω̇ (3.31)

The next step is to find an expression for ω̇. The reel acceleration can be modelled by Newton’s
second equation and can be written as

ω̇I(L) = −ωB +Kti+ τL (3.32)

where I(L) is the inertia of the reel, assumed to be a function of L, B the reel damping, Kt the
torque constant of the electric motor and τL the load from the cargo.

The torque produced by the electric motor acts at the motor’s shaft and must be transformed
through the gearbox and belt connection to find its magnitude at the reel. This will be modelled
by multiplying Kt with an efficiency. It will be assumed that the friction acting on the reel is
small, meaning that B = 0.

The load acting on the crane tip is transferred to the reel using a series of pulleys, see Section
1.1, and the moment it exerts on the reel depends upon the reel radius. The magnitude of the
force at the reel can be modelled using the Capstan equation.
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Capstan Rope

TLoad THold

Figure 3.6: Pulley showing the area covered by the rope, the tension exerted by the load and reaction
tension at the hold side. From (Commons, 2017).

Figure 3.6 shows a single pulley covered by a rope spanning the angle φ. The relationship
between the force at the load and hold side is given by

Tload = Tholde
µφ (3.33)

where µ is the coefficient of friction between the wire and pulley. The crane supports the rope
using three pulleys, meaning that the magnitude of the load at the reel is given by

τL =
D(L)

2

mLg

eµ(φ1+φ2+φ3)
(3.34)

where mL is the weight of the load, φ1, φ2 and φ3 the spanning angle of each pulley, and g the
gravitational acceleration.

By inserting (3.34) into (3.32), the final expression of the reel acceleration is obtained

ω̇ =
Ktηt
I(L)

i+
D(L)

2I(L)

mLg

eµ(φ1+φ2+φ3)
(3.35)

The final equation for the wire acceleration is found by inserting (3.35) into 3.31, yielding

L̈ =
DL(L)

D(L)
L̇2 +

D(L)

2I(L)
Ktηti+

D(L)2

4I(L)

mL

eµ(φ1+φ2+φ3)
g (3.36)

The final step is to model the electric part of the motor. It is assumed that the DC brushless motor
controlling the winch can be modelled by using the simple DC motor model from (Balchen
et al., 2003). This model reduced the electric part of the motor to a simple RI circuit, meaning
that the current dynamics can be written as

i̇ = −Kv

La
ωm −

Ra

La
i+

V

La
(3.37)

whereKv is the motor’s speed constant, ωm the shaft speed, Ra the resistance and La the anchor
inductance. Again, the angular velocity in (3.37) is given at the motor shaft. However, ω is not
a state in the system and must be transformed to the wire velocity L̇. The transformation from
shaft to reel velocity is given by the motor gearbox and belt transmission and will, as with the
motor torque, be modelled by an efficiency. Hence, ωm can be written as

ωm = ηω
D(L)

2
L̇ (3.38)
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where ηω is the efficiency. The final equation for the current dynamics is obtained by inserting
(3.38) into (3.37)

i̇ = −ηω
Kv

La

D(L)

2
L̇− Ra

La
i+

V

La
(3.39)

There are now only two terms that must be discussed before the final winch system can be
presented: the inertia and diameter of the reel. As mentioned both of these parameters will be
functions of the amount of wire and the reel. This thesis will use the equations developed by
(Skjong. and Pedersen, 2014) as part of modelling a hydraulic winch system. According to this
study the diameter of the reel is given by

D(L) =

√
LD2

w

wrfw
+D2

r,0 (3.40)

where Dw is the diameter of the wire, wr the width of the reel, Dr,0 the diameter of an empty
reel and fw a packing efficiency. The packing efficiency depends upon how the wire is stored
at the reel. According to (Skjong. and Pedersen, 2014) the most efficient packing efficiency is
fw = 0.9069.

Next is the inertia of the reel. The inertia is given as a sum of the static elements of the reel,
such as the flange and reel, and the amount of wire stored on the reel. According to (Skjong.
and Pedersen, 2014) the inertia the winch can be written as

I(L) =
1

2
mreel

D2
r,0

4
+mflange

D2
r,full

4
+

1

2
ρwL

(
D(L)2 −D2

r,0

4

)
(3.41)

where mreel is the mass of the reel, mflange of the flanges, ρw the density of the wire and Dr,full

the diameter of a full reel.

Now that the winch model has been fully developed the final system can be presented.

L̇L̈
i̇

 =

 L̇
DL(L)
D(L)

L̇2 + D(L)
2I(L)

Ktηti

−ηω KvLa
D(L)
2
L̇− Ra

La
i

+

 0

0
1
La

V +

 0

−D(L)2

4I(L)
mL

eµ(φ1+φ2+φ3)

0

 g (3.42)

In summary, a dynamical model of the winch system shown in Figure 3.5 has been developed.
The model has been designed to account for the changes in reel diameter and inertia, caused by
wire entering or leaving the reel. The resulting model is presented in 3.42 and is non-linear due
to the inertia and reel diameter. In the next section the model will be implemented in Simulink.

3.2.3 Simulink Implementation

The winch dynamics that were developed in the previous section, (3.42), has been implemented
in Simulink and made ready for simulation. The system interface and dynamics are presented
in Figure 3.7 and the Matlab code for generating the model can be found in Appendix A.3.
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(a) Winch model interface. The input ports are the voltage of the electric motor and weight of the crane load. The
output ports are the state vector containing the amount of wire on the reel, wire velocity and motor current. The
submodels D and I monitors the diameter and inertia of the winch.
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(b) Winch model dynamics. The amount of wire stored on the reel has been limited between zero and maximum
wire length.

Figure 3.7: Winch model interface and dynamics as implemented in Simulink.

The model interface is shown in Figure 3.7a and has been implemented with the motor voltage
and crane load as inputs. Meaning that different control laws and load models can be easily con-
nected to the system. The outputs of the model is the state vector defined by (3.28). In addition,
the equations calculating reel inertia and diameter, (3.41) and (3.40), have been implemented as
Matlab functions in order to monitor these quantities.

The interior of the winch dynamics subsystem is shown in Figure 3.7b. The current and wire
length dynamics have been implemented as Matlab functions. The amount of wire is calculated
by integrating the wire velocity. Initial conditions for the wire and limitations on the amount of
wire on the reel have been implemented in the integrator block.

Now that the winch model has been derived and implemented in Simulink, test simulation can
be run.

3.2.4 Simulation Results

The objective of the simulation is to verify that the winch dynamics behaves as expected and
that the reel and inertia equations have been correctly implemented. The simulation will be run
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with the motor parameters given in Table 3.3 and reel properties in Table 3.4. The transmission
and wire properties are given in Tables 3.5 and 3.6. They are based on design parameters from
(Gyberg, 2017). The simulation will be run with a load of 16kg attached to the crane.

Table 3.3: Winch motor parameters

Parameter Symbol Value Unit

Torque constant Kt 53.4 mN m A−1

Speed constant Kv 179 RPM V−1

Anchor resistance Ra 0.307 Ω

Anchor inductance La 0.118 mH

Table 3.4: Reel properties

Parameter Symbol Value Unit

Reel mass mreel 1 kg
Flange mass mflange 1 kg
Diameter of empty reel Dr,0 0.04 m
Diameter of full reel Dr,full 0.1 m
Reel width wr 0.13 m
Packing factor fr 0.9069 -

Table 3.5: Transmission properties

Parameter Symbol Value Unit

Gearbox reduction ηg 43 -
Belt diameter at reel Dr,pw 0.12 m
Belt diameter at gearbox Dg,pw 0.6 m
Wire pulley span φ π

4
rad

Table 3.6: Wire properties

Parameter Symbol Value Unit

Total wire length Lt 100 m
Wire diameter Dw 1.7 mm
Wire density ρw 100 kg/m3
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Figure 3.8: Results of lifting and lowering with the winch using a supply voltage of ±5V. A load of
16kg was attached to the wire.

The wire velocity was slightly higher when lowering, Figure 3.8b, since the gravitational forces
on the load assists motions in this direction. The velocity did not saturate since friction has not
been included in the motor model. The inertia and diameter of the reel, Figures 3.8c and 3.8d,
showed the expected behaviour. They increased when wire entered the reel and decreased when
lowering the load.

The uncertainty of the model lies in the values that has been chosen for the pulley span, and
the fact that friction has been neglected. The actually pulley span is expected to change as
the orientation of the crane changes, but can be assumed constant when the crane arms are not
moving. However, whether the chosen values represents the crane in Section 1.1 is not known,
and a parameter study should be done to determine them.

In summary, this section has developed a dynamic model of the winch of the knuckleboom
crane. A simulation has been run to verify that the model behaves similarly to an electric
DC motor and that the function for calculating inertia and diameter have been implemented
correctly. The uncertainty of the model lies in the selection of parameters.
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Chapter 4
Control Laws

The previous chapter developed models of the knuckleboom crane from Section 1.1 and its
winch system. The limitations and simplifications of the models have been discussed and sim-
ulations have been run to verify their theoretical behaviour. In this chapter, the knuckleboom
crane model will be used to design a control law for positioning the joints of the crane and the
winch model to design a control law for soft landing.

4.1 Crane Position Control Law

The motivation for developing a position control law for the crane is to implement it in the
crane lab from Section 1.1 and investigate the response of the crane when subject to model
based control laws. Currently, a hands-on control system, using low-level motor controllers,
are implemented, making it possible to control the crane manually using two joysticks. The
low-level controllers, however, do not utilize feedback from the sensors in the lab and only
controls the velocity of the crane joints. Hence, positioning the crane at a desired orientation
must be done by hand and following a desired reference signal is difficult and inaccurate, if not
impossible. Designing a control law for positioning the crane joints will therefore improve the
state of the lab by enabling the user to position the crane at a desired position and to follow
reference signals.

The modelling procedure will start by defining the system that is to be stabilized and the control
objective. The control law itself will be designed using the recursive backstepping technique,
see Section 2.4.3. After the control law has been designed it will be implemented in Simulink
and tested and tuned with the simulation model from Section 3.1.

4.1.1 Problem Formulation

The system that is to be stabilized is the knuckleboom crane model from Section 3.1. The states
of the model are the joint orientations and velocities and the input is the force produced by each
actuator. It is assumed that full state-feedback is available, meaning that both the joint angles
and velocities can be measured. Hence, the model states and inputs can be written as
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x1 =

θ1θ2
θ3

 x2 =

θ̇1θ̇2
θ̇3

 u =

F 1

F 2

F 3

 (4.1)

where x1 is the joint angles, x2 the joint velocities and F 1, F 2,F 3 the forces produced by the
actuators. The system dynamics were derived in Section 3.1 and can be written as

ẋ1 = x2 (4.2a)
M(x1)ẋ2 = −C(x1,x2)x2 − (G(x1) + τL)g +Quu (4.2b)

with the states defined in (4.1). From (4.2) it can be noted that the system is subject to a constant
gravitational disturbance from the crane arms and load. Hence, the control law be should be
designed to include integral to remove stationary deviations.

The goal of the controller is to make joint orientations converge to a desired reference. Meaning
that the control objective can be stated as

lim
t→∞
|x1 − xd| = 0 (4.3)

where x1 ∈ R3 contains the three joint angles of the crane. In order to achieve this objective
a controller with integral action will be designed by following the procedure of (Skjetne and
Fossen, 2004). This design method will ensure an asymptotically stable controller that is able
to reject the gravitational disturbance.

4.1.2 Control Law Design

Now that the system that is to be stabilized has been formulated and the control objective de-
fined, the control law can be designed. The recursive backstepping technique will be used to
design the control law, see Section 2.4.3 for more details. The method is used to design asymp-
totically stable controllers for systems of strict-feedback form. Comparing (4.1) with (2.31)
shows that the system is on strict-feedback form. Since (4.1) is of relative degree two, the
design procedure will consist of two steps.

Before starting the design, a new set of states are defined as

z1 = x1 − xd (4.4a)
z2 = x2 −α1 (4.4b)

where xd is the reference signal and α1 is a virtual controller that will be used to stabilize
z1. The dynamics of the new states are found by differentiating (4.4) with respect to time and

44



inserting (4.1). The new dynamics can be written as

ż1 = x2 (4.5a)

ż2 = M−1[Cx2 − (G+ τL)g +Quu]− α̇1 (4.5b)

where it has been assumed that xd is constant.

Step 1:
In the first step, a Lyapunov function of z1 is written as

V1 =
1

2
zT1P 1z1 (4.6)

V̇1 = zT1P 1(z2 +α1) (4.7)

and an α1 is chosen such that (4.7) is rendered negative definite. However, terms including z2
are ignored and carried over to the next step. The virtual controller is chosen as

α1 = A1z1 (4.8)
α̇1 = A1x2 (4.9)

whereA1 andP 1 satisfies Lyapunov’s equation (2.30). The time derivative ofα1 will be needed
in the next step. Inserting (4.8) into (4.7) yields

V̇1 = −zT1Q1z1 + zT1P 1z2 (4.10)

showing that V̇1 is negative definite with respect to z1. The objective of the first step has been
reached and the second step can be initiated.

Step 2:
The second step Lyapunov function is chosen to be

V2 = V1 +
1

2
z2P 2z2 (4.11)

and its time derivative can be written as

V̇2 = −zT1Q1z1 + zT1P1z2 + zT2P 2(M
−1(−Cx2 −G+Quu)− α̇1) (4.12a)

V̇2 = −zT1Q1z1 + zT2P 2(P
−1
2 P 1z1 +M−1(−Cz2 −Cα1 −G+Quu)− α̇1) (4.12b)

Since u is included in (4.12), the control input of the system has been reached and can be
defined. Again, the goal is to render (4.12) negative definite. However, the gravitational terms
will be ignored for now and included later in the integral state. Hence, u can be written as
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u = Q−1(Cα1 +Cz2 +M (α̇1 − P−12 P 1z1 +A2z2)) (4.13a)

u = Q−1ψ (4.13b)

whereA2 is a matrix that together with P 2 satisfies Lyapunov’s equation (2.30).

V̇2 = −zT1Q1z1 − zT2Q2z2 (4.14)

(4.13) is called the nominal controller and is a control law that would stabilize the system
without disturbances. (Skjetne and Fossen, 2004) showed that the nominal controller can be
used to design an integral state rendering the system asymptotically stable with the disturbances
included. For this system, the final control law and integral states can be written as

ξ̇ = M−1(Qu −G)T (zT2P 2)
T (4.15)

u = Q−1(ψ −M−1(Qu −G)Kiξ) (4.16)

The controller is tuned by choosing values forKi,Q1,Q2, P 1 and P 2 and solving Lyapunov’s
equation for A1 and A2. The control law has now been designed and can be implemented and
tested with the simulation model derived in section 3.1

4.1.3 Simulink Implementation

The control law for positioning the crane joints has been implemented in Simulink and con-
nected to the dynamics developed in Section 3.1. The results are shown in Figure 4.1 and the
Matlab script that was used to generate the model can be found in Appendix A.1.
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Figure 4.1: Overview of the Simulink implementation of the position control law.
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4.1.4 Simulation Results

The control law for positioning the crane joints has now been designed, implemented in Simulink
and connected to the crane dynamics developed in Section 3.1. The next step is to run a series
of simulations that will evaluate the controller’s performance in different conditions. The tests
will include lifting, hoisting and a heave compensation like test where the crane will be made
to follow a sine shaped reference signal.

The control law has been tuned in preparation for the simulations and the tuning parameters are
presented in Table 4.1. The mass and geometric parameters are the same as those in Section
3.1.9 and are given in Table 3.1 and 3.2. In addition, the limits given in Table 4.3 have been
placed on the joint angles.

The efficiencies transforming the force that is produced by the actuators to torque produced by
the electric motors have been calculated based on the design parameters of the actuators, found
in (Gyberg, 2017), and the parameters of the motors in the crane lab. The results are given
in Table 4.2. The efficiencies will be used to estimate the current that must be drawn by each
motor to produce the force given by the control law.

Table 4.1: Controller Parameters

Parameter Value Parameter Value

P1

0.01 0 0

0 0.01 0

0 0 0.01

 P2

0.01 0 0

0 0.01 0

0 0 0.01


Q1

1 0 0

0 1 0

0 0 1

 Q2

1 0 0

0 1 0

0 0 1


A1

−50 0 0

0 −50 0

0 0 −50

 A2

−50 0 0

0 −50 0

0 0 −50


Ki 400

Table 4.2: Actuator Efficiency Parameters

Parameter Base Actuator Lower Actuator Upper Actuator

η 0.011 T /N 7.3751e−5 T /N 1.2214e−4 T /N
Kt 60.4 mN A−1 60.4 mN A−1 60.4 mN A−1
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Table 4.3: Joint limits.

Joint Lower Limit Upper Limit

θ1 - -
θ2 30.2◦ 86◦

θ3 −90.5◦ −24.4◦

Lifting

The first simulation tested the controller’s capability of lifting the lower and upper arm from
their lower to upper limits. The reference signal was a ramp moving from the lower to upper
position in seven seconds. A load of 16kg was attached to the tip of the crane.
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Figure 4.2: Results from the simulation where the lower and upper arms where lifted from the lower to
upper limits. A load of 16kg was attached to the crane tip.
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The results from the lifting test are shown in Figure 4.2. It can be observed in Figure 4.2a
that both the lower and upper arm were able to follow the reference signal. The tracking error,
displayed in Figure 4.2b, was in the scale of 10−3, and the constant deviation, caused by gravity,
was removed by the integrator term in about five seconds.

The motion of the crane tip is shown in Figure 4.2c, which shows a smooth transition from
the initial to final position. During the simulation the maximum current demanded from the
actuators, Figure 4.2d, were about 2.3A for the lower actuator and 1.2A for the lower. These
values are well within the maximum current of 7A that can be drawn by the actuators in the
crane lab. It can also be observed that both actuators stabilize at a constant current when the
desired position is reached, to hold the arms in place.

In summary, the control law designed in Section 4.1 is able to position the crane arms, governed
by the crane dynamics from Section 3.1, at an orientation above their initial orientation. The es-
timated currents drawn by the actuator motors have been found to be well within the limitations
of the actuators in the crane lab from Section 1.1. The next simulation will test the controller’s
ability to lower the crane arms.
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Lowering

The second simulation tested the controller’s capability of lowering the lower and upper arm
from their upper to lower limits. The reference signal was a ramp moving from the upper to
lower position in seven seconds. A load of 16kg was attached to the tip of the crane.
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Figure 4.3: Results from the simulation where the lower and upper arms where lowered from the upper
to lower limits. A load of 16kg was attached to the crane tip.

The results of the lowering simulation are shown in Figure 4.3 and in general the same as for
the lifting simulation.

The joint angles, Figure 4.3a, is able to follow the desired reference signal. The tracking error,
Figure 4.3b, is again in the scale 10−3 and any constant deviation is quickly removed by the
integral term.

The transition from the initial position of the tip to the final, Figure 4.3c, is smooth. The currents
drawn by the actuator motors, Figure 4.3c, are smaller since the motions are helped by gravity.
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However, the similar peaks in current can be observed when the reference is reached.

In summary, the lowering simulation has shown that the control law designed Section 4.1 is able
to position the crane arms, governed by the crane dynamics from Section 3.1, at an orientation
below their initial orientation.

Sine Tracking

The last simulation was a heave-like simulation scenario where the lower and upper arms were
made to follow a sine shaped reference signal. The reference signal for both arms were given
by

θd =
5π

180
sin(

π

4
t) (4.17)
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Figure 4.4: Results from the simulation where the lower and upper arms where made to follow a sine
shaped reference signal. A load of 16kg was attached to the crane tip.
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The results from the sine tracking simulation are presented in Figure 4.4. Both the lower and
upper arm were able to follow the reference signal given by (4.17) for the duration of the simu-
lation. It can be observed in Figure 4.4a that both arms used about two seconds to converge to
the reference signal.

The same result can be observed in the tracking error, Figure 4.4b, and after converging, the
error of both arms followed a sine shape. Meaning that the orientations were off by a small
amount. However, the error was in the scale of 10−3, same as for the lifting and lowering
simulations, and can be considered negligible.

The motion of the crane tip, Figure 4.4c, was smooth, oscillating between a maximum and
minimum amplitude. The simulation was ended when the crane tip was in the top position. The
motions along the vertical axis was larger then along the horizontal. The tip shifted between
a height 1.6m to 1.1m while the horizontal position only shifted between 1.9m and 1.74m.
However, this is to be expected since the vertical position of the tip more amplified by small
motions than the horizontal position.

The motor currents, Figure 4.4d, peaked when the reference signal was initialized and stabi-
lized at about 2.1A for the lower actuator and 1.7A for the upper. Small fluctuations in can be
observed, since the actuators had to keep up with the reference signal. However, the maximum
currents are well within the maximum values of the motors in the lab.

4.2 Soft Landing Winch Controller

One of the main goals of this thesis is to design a soft landing control law. The controller
should ensure that cargo suspended by the crane is lowered safely and lands without being
damaged. The trivial solution to this problem is to use a very slow lowering speed, but this is
time consuming and not very efficient. A better solution is to try and keep maximum lowering
velocity for a given duration of the operation and initiate a deceleration phase as the cargo
approaches the ground. This means that the there are at least two objectives: reaching the
desired position and following a desired speed profile.

4.2.1 Problem Formulation

The dynamics to be stabilized is the winch dynamics that were developed in Section 3.2. The
states of this system is the amount of wire left on the winch reel, the wire velocity and the current
drawn by the electric motor. The control input is the voltage of the electric motor. Hence, the
system states and input can be written as

x1 = L x2 = L̇ x3 = i u = V (4.18)

where L is the amount of wire on the reel, i the motor current and V the input voltage.
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In Section 3.2 it was shown that the dynamics of this system can be written as

(4.19a)
ẋ1 = x2 (4.19b)

ẋ2 =
Dx1(x1)

D(x1)
x22 +

D(x1)

2I(x1)
Ktηtx3 −

D(x1)
2

4I(x1)

mLg

eµ(φ1+φ2+φ3)
(4.19c)

ẋ3 = −ηω
Kv

La

D(x1)

2
x2 −

Ra

La
x3 +

1

La
u (4.19d)

The same procedure as in Section 4.1 will be used to design the soft landing controller. How-
ever, the control objective will be different since it is important that the wire velocity is small
when approaching the desired position. Therefore, the control objective and following design
will be treated as a tracking problem.

The tracking problem is formalized and detailed in (Skjetne et al., 2004) and is usually for-
mulated by defining one or several secondary control objectives. These may be restrictions
in velocity, time or acceleration. The tracking problem for the soft landing controller will be
defined as

lim
t→∞
|L(t)− Ld(s(t))| = 0 (4.20a)

lim
t→∞
|ṡ(t)− v(s(t), t)| = 0 (4.20b)

where Ld(s(t)) is the desired amount of wire that should be stored on the reel, v(s(t), t)) the
speed assignment and s a variable parametrizing the desired position and velocity. This means
that (4.20a) expresses that the amount of wire left on the reel should follow a desired path that is
generated by s and (4.20b) that the speed at which the path is generated should follow a defined
velocity profile. The next section will discuss the selection of a desired path and velocity profile.

4.2.2 Path and Speed Profile

The cargo should follow a straight line towards the ground while its speed should follow some
desired speed. A one dimensional linear path parametrized by s can be written as

Ld(s) = as+ L0 (4.21)

where L0 is the initial amount of wire on the reel.

The speed profile should be chosen such that the winch reaches maximum speed as soon as
possible and keeps this speed until a certain point in the path. When reaching this point, the
velocity should slow down such that the cargo is slowly lowered during the last phase.

A speed profile that is inspired by the work of (Skjetne et al., 2004) will be used in this thesis.
The chosen speed profile was originally used to make the tip of a robotic manipulator follow
a triangular path. This required a speed profile that slowed down when the tip approached the
vertices of the triangle. The profile is given by the arctan function and can be written as
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v(s) =

{
umax
π|ysd|

arctan( s−sk−a1
a2

) + umax
2|ysd|

; s ∈ [sk,+f(sk+1 − sk)]
umax
π|ysd|

arctan( sk+1−a3−s
a2

) + umax
2|ysd|

; s ∈ [sk + f(sk+1 − sk), sk+1]
(4.22)

where umax is the maximum velocity, ysd the derivative of the path with respect to s, a1, a2 and
a3 shaping parameters and f determines at which point the deceleration phase is initiated.
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Figure 4.5: Soft landing speed profile.

A plot of the speed profile given by (4.22) is shown in Figure 4.5 and has been generated with
the parameters in Table 4.4. It shows that maximum speed is given for most of the path, except
towards the end where the speed slowly decelerates.

Table 4.4: Speed Profile Parameters

Parameter Value Parameter Value

s1 0 s2 12
a1 0.01 a2 0.01
a3 0.2 ysd -1
f 4

5
umax 0.1

Now that the path and speed profile has been selected, it is time to design the control law.
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4.2.3 Control Law Derivation

The soft landing control law will de designed by using the same backstepping technique as in
Section 4.1. The main difference is of course the dynamics of the winch and also the control
objective. The states that will be used for backstepping is written as

z1 = L− Ld(s) (4.23a)

z2 = L̇− α1 (4.23b)
z3 = i− α2 (4.23c)

where Ld(s) is a general path parametrized by s, α1 a virtual controller that will stabilize z1 and
α2 a virtual controller to stabilize z2. The path speed ṡ is simply set equal to the speed profile

ṡ = v(s) (4.24)

The winch system is of relative degree three, meaning that the design procedure will consist of
three steps.

Step 1
The Lyapunov equation for the first step is written as

V1 =
1

2
z21p1 (4.25)

where z1 is defined in (4.23a) and p1 is a positive value. The time derivative of (4.25) can be
written as

V̇1 = z1p1(z2 + α1 − Lsdṡ) (4.26)

where Lsd is the derivative of Ld(s) with respect to s. In order to stabilize z1, α1 must be chosen
to render (4.26) negative definite. This is done by choosing α1 as

α1 = Ldṡ+ a1z1 (4.27)

α̇1 = αL1 L̇+ αs1ṡ+ αt1 (4.28)

where a1 must be negative. Inserting (4.27) into (4.26) yields

V̇1 = −z21a1 + z1p1z2 (4.29)

showing that V̇1 is negative definite with respect to the z1 terms. Terms including z2 are carried
over to the next step.

Step 2
The Lyapunpov function for the second step is written as
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V2 = V1 +
1

2
z22p2 (4.30)

where V1 is the Lyapunov function from the first step (4.25) and p2 a positive value. Taking the
time derivative of V2 and inserting the L̇ and L̈ dynamics (4.19b) and (4.19c) gives

V̇2 = z21q1 + z1p1z2 + z2p2(
DL(L)

D(L)
L̇2 +

D(L)

2I(L)
Ktηti (4.31a)

− D(L)2

4I(L)

mL

eµ(φ1+φ2+φ3)
− α̇1)

V̇2 = z21q1 + z1p1z2 + z2p2(
DL(L)

D(L)
(z2 + α1)

2 +
D(L)

2I(L)
Ktηt(z3 + α2) (4.31b)

− D(L)2

4I(L)

mL

eµ(φ1+φ2+φ3)
− α̇1)

This time α2 must be chosen to render V̇2 negative definite. This is achieved by choosing α2 to
be

α2 =
2I(L)

D(L)
(a2z2 − z1

p1
p2
− DL(L)

D(L)Ktηt
(z2 + α1)

2 + α̇1) (4.32a)

α̇2 = αL2 L̇+ αL̇2 L̈+ αs2ṡ+ αt2 (4.32b)

where a2 must be negative. Inserting (4.32a) into (4.31b) results in

V̇2 = −z21a1 − z22a2 + z2p2
D(L)

2I(L)
Ktηtz3 (4.33)

which shows that the V̇2 is rendered negative definite with respect to z2, excluding terms includ-
ing z3. In the third, and last, step the final control law for the motor voltage will be chosen.

Step 3
The Lyapunov function for the third step is chosen as

V3 = V2 +
1

2
z23p3 (4.34)

where V2 is the Lyapunov equation from the second step and p3 a positive value. Taking the
time derivative of (4.34) results in

V̇3 = −z21q1 − z22q2 + z2p2
D(L)

2I(L)
Ktηtz3 + z3p3(−ηω

Kv

La

D(L)

2
L̇ (4.35a)

− Ra

La
i+

V

La
− α̇2)

V̇3 = −z21q1 − z22q2 + z2p2
D(L)
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The control law for the motor voltage is defined as

V = La(
Ra

La
(z3 + α2) + ηw

Kv

La

D(L)

2
(z2 + α1)− z2

p2
p3

D(L)

2I(L)
Ktηt + a3z3) (4.36)

where a3 must be negative. Inserting (4.36) into (4.35) yields

V̇3 = −a1z21 − a2z22 − a3z23 (4.37)

showing the V̇3 is negative definite and the system is globally asymptotically stable by Lya-
punov’s direct method 2.4.2.

The control law for soft landing has now been designed and can be implemented in Simulink
and connected to the winch dynamics developed in Section 3.2.
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4.2.4 Simulink Implementation

The control law designed in the previous section (4.36) has been implemented in Simulink and
connected with the simulation model developed in Section 3.2. The resulting model is shown
in Figure 4.6.
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Figure 4.6: Soft landing control law Simulink implementation.

Figure 4.6a shows the interfacing between the simulation model and control law. The controller
has been split into the control law, path and speed profile.

The detailed overview of the path generator, Figure 4.6d shows that its output also includes the
first and second order derivatives of the path with respect to s as these are needed by the control
law. The same is true for the speed profile, Figure 4.6c. The control law itself is shown in Figure
4.6b and can be customized to include different cargo weights. The Simulink interface allows
any path and speed profile to be used with the control law.
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4.2.5 Simulation Results

The control law for soft landing that was designed in Section 4.2 has been implemented in
Simulink and connected to the winch dynamics that were derived in Section 3.2. Hence, the
performance of the control law can be now be estimated by running a simulation scenario. The
simulation will be run with the speed profile given by (4.22) and the straight line path given by
(4.21).

The winch and wire parameters are the same as in the simulation from Section 3.2.4, given in
Tables 3.3, 3.4, 3.5 and 3.6. The controller has been tuned and the parameters given in Table
4.5 have been found to give a satisfactory performance. The speed profile are given by the
parameters in Table 4.4, except that s ∈ [0, 3].

Table 4.5: Soft Landing Tuning Parameters

Parameter Value

p1 0.01
p2 0.1
p3 0.0001
a1 -50
a2 -5
a3 -5000
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Figure 4.7: Results from simulating the soft landing controller with the winch dynamics.

The results from simulating the soft landing control law with the winch dynamics are given in
Figure 4.7. It can be observed that the amount of wire on the reel was able to follow the desired
reference almost perfectly. The largest path errors, shown in Figure 4.7d, can be observed when
the path was initialized and when the speed velocity entered the slower phase.

The wire velocity was able to follow the desired speed profile. The largest deviations occurred
when the speed profile was initialized and when the slowdown phase began, at approximately
six seconds. A constant deviation can be observed after the path reached its final destination,
but this is because the speed profile was not set to zero when the path stopped.

The voltage supplied to the winch motor can be observed in Figure 4.7d. A limit of ±24V was
imposed on the control signal, as to better represent the motor that is used in the crane lab. It can
be seen that maximum voltage was applied when the path was initialized. However, very little
voltage is needed to keep wire moving. This is most likely due to low friction in the simulation
model and that the load helps pulling the wire. Voltage spikes occurred when the path slowed
down, at six seconds. Afterwards, a small voltage was needed to slow the wire down, and the
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final spike appeared when the load reached its final destination.

In summary, the soft landing controller designed in Section 4.2 was able to follow the path given
by (4.21) and speed profile given by (4.22).

4.3 Chapter Summary and Discussion

In this chapter a control law for positioning the joints of the knuckleboom crane from Section
1.1 was developed. The control law was based on the crane dynamics developed in Section 3.1.
In addition, a soft landing control law for automatically lowering crane cargo was designed.
This control law was based upon the winch dynamics developed in Section 3.2.

The position control law was simulated with the crane dynamics and was able to lift and lower
the crane arms to a desired reference, and make the arms simultaneously follow sine shaped
reference signal. The results are presented in Section 4.1.4. However, how the control law will
perform when tested with the crane in the lab will be determined by the accuracy of the model
and robustness of the control law.

For instance, actuator dynamics have largely been neglected when developing the crane model
and the control law. It has been assumed that their response will be fast and the estimate of
current drawn by the motors have been calculated using steady-state parameters. However,
the actuator housing may affect the dynamics in ways that have not been predicted. Their
friction parameters have not been well documented and it may be that friction will have a larger
contribution than assumed. Especially, the transition from static to dynamic friction.

In addition, a soft landing control law was developed from the winch dynamics derived in
Section 3.2. The soft landing problem has been defined as a tracking problem, and the goal is to
lower the load in a straight path by following a pre defined velocity profile. The velocity profile
was chosen to keep maximum speed for most of the operation, until a defined point in the path
is reached, after which the velocity is lowered and gently converges to zero.

Simulation showed that the soft landing controller was able to follow the desired speed profile
perfectly. However, there are uncertainties regarding the parameters used in the simulation,
especially regarding friction and pulley span.
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Chapter 5
Lab Setup

So far simulation models of the knuckleboom crane and winch systems from Section 1.1 have
been developed. In addition, control laws for positioning the crane arms and softly landing the
crane load was designed in Chapter 4 and initial tuning parameters have been found by running
the control laws with the simulation models.

This means that the control laws are almost ready to be tested in the crane lab. However, the
setup of the lab must first be reviewed. In addition, one of the goals of this thesis is to finish
the lab design envisioned by (Gyberg, 2017) and design sensor filters. Therefore, this section
will review the lab equipment, design a low-pass filter for removing high frequency noise and
design a Kalman filter for estimating gyro bias.

5.1 Equipment

The chapter will start by reviewing the most essential equipment that will be used when testing
the control laws from Chapter 4. This will cover the lab’s main controller, low-level motor
controllers, joysticks and sensors.

5.1.1 Main Programmable Logic Controller

A PLC from Bachmann electronics will be used as the main controller in the lab and will be
responsible for executing control laws and handling low-level I/O. The controller consists of the
MH212/S processor module and is equipped with a rail-like interface that supports additional
modules. In this thesis the general GIO212 I/O module and the PWM202 module will be
used. The first to handle analogue and digital I/O signals and the latter to control the winch
brake. The controller and its modules are depicted in Figures 5.1a, 5.1b and 5.1c. For for more
documentation about the individual modules see (Bachmann, 2017)
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(a) MH212/S (b) GIO212 (c) PWM202

Figure 5.1: Bachmann controller modules used in the lab.

5.1.2 Motor Controllers

The Bachmann controller is not capable of handling the currents drawn by the actuator and
winch motors during operation. Therefore, external motor controllers will be used to control
the velocity and torque of the actuators and winch.

The ESCON Module 50/5 4-Q motor controller will be used for the actuator motors. This
controller can be configured to run either a speed or current controller. In the experiments in
this thesis, it will be configured to rune the current controller, since the output of the position
control law from Section 4.1 outputs the force that should be produced by each actuator. The
current setpoint is provided as an analogue voltage between ±10V.

The winch motor will use 1-Q-EC Amplifier DEC Module 50/5 the motor controller. This
controller will be configured to run a speed controller, where the desired speed is directly pro-
portional to an analogue voltage signal. This mode will be used for hands-on winch control.

5.1.3 Sensors

Three types of sensors will be used in the experiments: gyroscopes, accelerometers and stop
sensors.

The gyroscopes are of the type ADXR2624, produced by Analog devices, documentation can
be found at (Devices, 2017). It was planned to use three gyroscopes, one for each degree of
freedom of the crane. However, the sensor intended for the base was defective upon delivery
and a new one could not be obtained in time for the experiments. Therefore it was prioritized to
measure the angular rate of the lower and upper arms. The gyroscope parameters provided by
the manufacturer are given in Table 5.1.

Table 5.1: Gyroscope parameters provided by the manufacturer

Parameter Value Unit

Sensitivity 25 mV/◦ s−1

Offset 2.5 V
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The accelerometers are of the type MXR9500G/M, produced by MEMSIC, documentation can
be found at (Memsic, 2017). They will be used to measure the absolute orientation of the crane
arms and to estimate the bias of the gyroscopes. The sensors have been placed as close as
possible to the mass center of each arm. The parameters from the manufacturer are given in
Table 5.2.

Table 5.2: Accelerometer Parameters

Parameter Value Unit

Sensitivity 500 mV/g
Zero g offset 1.5 V

The stop sensors are inductive sensors made by Contrinex with the model number DW-AD-623-
04, see (Contrinex, 2017) for more information. They register the actuator as it approaches its
limits and outputs a digital signal. The stop sensors for the upper actuator are shown in figure
5.2 and are placed similarly for on the lower actuator. They will be used to stop the electric
motors when the actuator’s approach their maximum or minimum elongation.

Figure 5.2: Proximity sensors in the upper actuator. Taken from (Gyberg, 2017).

5.2 Signal and Sensor Processing

This section will describe the processing that is necessary in order to read measurement sig-
nals from the gyroscopes and accelerometers from Section 5.1.3. This will include digital to
analogue conversion, absolute orientation measurements by using the accelerometer, low-pass
filter design and gyroscope bias estimation using a Kalman filter.

5.2.1 Digital to Analogue Conversion

The analogue channels of the Bachmann controllers reads or writes voltages between ±10V.
For output channels, the desired voltage is set by a 16-bit signed integer and for the input
channel the voltage is read with the same resolution. This means that the read value must be
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processed in order to either recover or produce the desired voltage. The maximum values that
can be stored by a 16-bit signed integer is 32767 in the positive range and -32768 in the negative.
Amounting to a maximum of 65535 values. Hence, the conversion from a 16-bit signed integer
to a voltage is given by

V =
Vrange
65535

SINT16 (5.1)

where V is the read voltage, Vrange the voltage range and SINT16 the 16-bit signed integer. To
find the integer that produces a desired voltage simply take the inverse of (5.1).

5.2.2 Measuring Absolute Position

It will now be shown how the accelerometers presented in Section 5.1.3 can be used to measure
the absolute orientation of the crane. Being able to measure absolute orientation is convenient
since it removes the need of defining the crane’s initial position manually and will also make it
possible to estimate the drift of the gyroscopes.

Figure 5.3: Accelerometer tilted an angle θ relative to the horizontal axis.

An accelerometer that is tilted at an angle θ relative to the horizontal axis is shown in Figure
5.3. When θ = 90◦, the accelerometer will measure 1g and 0g when θ = 0◦. Hence, the
gravitational acceleration measured by the accelerometer varies with orientation. This means
that the measurements from thee accelerometer can be used to determine its orientation.

From Figure 5.3, it can be observed that the orientation of the accelerometer is given by

θ = arcsin(a0) (5.2)

where θ is the orientation of the accelerometer relative to the horizontal axis and a0 the measured
acceleration in g.

5.2.3 Low-Pass Filter

Measurements from the gyroscopes will be corrupted by high frequency noise and will, if passed
directly into the control law, cause unnecessary wear and tear of the actuators and in a worst
case scenario lead to instabilities. A low-pass filter will therefore be designed to remove high
frequency components and provide a smooth measurement signal
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A first-order low-pass filter can be written as

y(s)

x(s)
=

K

τs+ 1
(5.3)

in the Laplace notation, where y(s) is the output, x(s) the input, K the passband gain and τ the
time constant that determines the cutoff frequency. In the time domain the filter can be written
as

ẏ =
Kx− y

τ
(5.4)

(5.4) can be discretized by assuming that the timestep is significantly smaller than the cutoff
period. The discretized low-pass filter can be written as

yk+1 = yk + (Kx− yk)
∆t

τ
(5.5)

where ∆t is the timestep. When implementing the discrete low-pass filter the cutoff frequency
must be selected such that most of the high frequency noise components of the signal are re-
moved. Small values of τ will result in a slow filter and may negate the assumption that ∆t is
much smaller than τ . However, the low-pass filter will not remove the constant bias that affects
most gyroscopes.

5.2.4 Kalman Filter for Estimating Gyro Drift

A Kalman filter that combines measurements from the gyroscopes and accelerometer will be
designed to remove noise from the acceleration measurements and estimate the gyroscope bias.
If the bias is not removed, it will result in large integration errors when calculating orientation
from the gyroscopes measurements. This will cause the system to deviate from its desired
position over time.

A simple discrete model for the orientation and bias can be written as

[
θk

bk

]
=

[
1 −∆t

0 1

][
θk−1

bk−1

]
+

[
∆t

0

]
θ̇k (5.6)

yk = θk + vk (5.7)

where θk is the orientation, bk the bias, ∆t the timestep, θ̇k the velocity measured by the gyro,
k the timestep index and vk is assumed to be zero mean white noise. The model given by (5.6)
states that the orientation is given by the orientation of the previous timestep plus the measured
velocity, minus the bias, multiplied by the timestep. This model will be used to calculate the a
priori states in the Kalman filter and can be written more compactly as

x̂k|k−1 = F kx̂k−1|k−1 +Bkukŷk = Hk + vk (5.8a)
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where the system matrices are given by

F k =

[
1 −∆t

0 1

]
Bk =

[
∆t

0

]
Hk =

[
1 0

]
(5.9)

The predicted a a priori covariance estimate is given by

P k|k−1 = F kP k−1|k−1F
T
k +Qk∆t (5.10)

Since the bias of the gyroscope cannot be measured, the orientation is the only measured state.
The residual term of the Kalman filter is therefore given by

ỹ = θk − θ̂k|k−1 (5.11)

The residual covariance will also be a vector given by

Sk = HkP k|k−1H
T +Rk (5.12)

and the Kalman gain by

Kk = P k|k−|H
TS−1k (5.13)

the update state

x̂k|k = x̂k|k−1 +Kkỹk (5.14)

and finally the updated covariance matrix

P k|k = (I −KkH)P k|−k−1 (5.15)

This finishes the designs of the Kalman filter.

The lab equipment has now been reviewed and the low-pass and Kalman filters designed. This
means that the control laws can be tested in the marine crane.
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Chapter 6
Lab Results

In the previous chapter, the marine crane lab was presented. The equipment that will be used
to implement and test the control laws developed in Chapter 4 was reviewed and the signal
processing necessary to achieve communication between the sensors, PLC and low-level motor
controllers were described. A low-pass filter for removing high frequency noise from the gyro-
scopes and a Kalman filter for removing accelerometer noise and estimating bias were designed.
In addition, a hands-on control system for the winch and actuators were implemented.

This means that the preparations for implementing and testing the position control law are
finished. Tuning the low-pass and Kalman filter is the only remaining step before the control
law can be tested. Hence, this chapter will present the final results of this thesis which is the
implementation, tuning and testing of the position control law.

6.1 Filters

The low-pass and Kalman filters designed in Section 5.2 must be tuned before being used with
the control law. For the low-pass filter this will consist of finding a cutoff frequency that removes
most of the high frequency noise, while ensuring that the filter is fast enough to keep up with
the system dynamics. As mentioned in Section 5.2, the cutoff must be chosen such that the
assumption that τ = 1

ωcuttoff
>> ∆t is valid. The time between control cycles in the Bachmann

controller is approximately 10ms.

For the Kalman filter, the tuning procedure will consist of finding values forR andQ, which are
the covariance matrices of the output and system noise. An approximation of R can be found
by analysing a timeseries of the measurements andQ is difficult to determine, but can be tuned
by trial and error.
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Table 6.1: Low-pass filter tuning parameters

Gyro 1 Gyro 2

Parameter Value Parameter Value

K 1 K 1
τ 0.1 τ 0.1

Table 6.2: Kalman filter tuning parameters

Gyro 1 Gyro 2

Parameter Value Parameter Value

R 5 R 5

Q

[
0.0001 0

0 0.0003

]
Q

[
0.0001 0

0 0.0003

]

The tuning parameters for the low-pass and Kalman filter was determined through trial and
error in the lab and the results are presented in Table 6.1 and 6.2. A cutoff frequency of 10Hz,
corresponding to τ = 0.1 provided a satisfactory compromise between noise filtering and filter
speed. However, it is close to the timestep of the Bachmann controller.

The output covariance of the accelerometers were initially measured to be 1.5, however, after
tuning the filter by hand a value of 5 provided good filtering. The variance of the bias and
orientation was assumed independent, meaning thatQ has been chosen to be a diagonal matrix.
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Figure 6.1: Comparisons of unfiltered and filtered joint orientation and velocity measurements.

Figure 6.1 shows a comparison between the filtered and unfiltered sensor measurements for
the lower and upper crane arms. Figure 6.1a and 6.1b compares the orientation measurement,
showing that the unfiltered signal oscillated between 51◦ to 43◦ for the lower arm and −15◦

to −29◦ for the upper. Meaning that the unfiltered orientation was corrupted by a significant
amount of noise. However, the Kalman filter was able to remove a significant part of the noise,
resulting in a smooth output signal.

The velocity measurements are compared in Figure 6.1c and 6.1d which shows that the unfil-
tered signal oscillated between 1.5◦ s−1 and−0.5◦ s−1 for both arms. In addition, the signal bias
causes an offset resulting in a mean velocity of approximately 0.5◦ s−1. The low-pass filter was
able to remove most of the noise, but some components remains. However, the original noise
is significantly diminished. When removing the bias approximated by the Kalman filter, the
measurement oscillates around zero mean.

In summary, the low-pass and Kalman filter was able to remove most of the gyroscope and
accelerometer noise and estimate the gyro bias. However, some noise still remains in the gyro-
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scope measurements, but it is expected that the filtering is good enough to be used in the control
law. The filters could be improved by additional tuning, expanding the low-pass filter to higher
order, using an extended Kalman filter based on the crane model or by adding additional sensors
to the system.

6.2 Position Control Law

The low-pass and Kalman filters have now been tuned, meaning that joint orientation and ve-
locity measurements can be used in a state-feedback control law. Therefore, the joint position
controller that was designed in Section 4.1 can now be implemented and tested in the crane lab.

This section will present a series of tests where orientation of the crane will be made to follow
a ramp and a sine shaped reference signal. The ramp reference will test the ability to lower and
lift the crane arms and the sine shaped reference will be used to simulate heave compensation.

The control law has been tuned in preparation of the experiments and the final tuning parameters
can be found in Table 6.3. The parameters of the wire can be found in Table 6.4.

Table 6.3: Final tuning parameters for the position control law.

Parameter Value Parameter Value

P1

0.1 0 0

0 0.01 0

0 0 0.001

 P2

0.1 0 0

0 0.1 0

0 0 0.1


Q1

1 0 0

0 1 0

0 0 1

 Q2

1 0 0

0 1 0

0 0 1


A1

−5 0 0

0 −50 0

0 0 −500

 A2

−5 0 0

0 −5 0

0 0 −5


Ki 50

Table 6.4: Parameters of the wire used in the lab.

Parameter Value Unit

Wire Length 100 m
Wire Diameter 1.7 mm

6.2.1 No Load Tests

The first series of tests were run without an attached load. The objective was to verify the
tuning parameters from Table 6.3 and the control law’s ability to position the crane at a desired

72



orientation. Three tests were run: lifting both the crane arms simultaneously, lowering the arms
simultaneously and making the upper arm follow a sine shaped reference signal while holding
the lower arm fixed.

Lifting

The purpose of the lifting test was to observe the controller’s performance when positioning
the crane arms at an orientation above their initial position. It was essential to observe that the
integral term in the control law was able to remove the static deviations induced by gravity,
within a reasonable period. A second motivation was to observe the response and behaviour of
the actuators and compare their response to the simulations from Section 4.1.4.
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Figure 6.2: Lab results from lifting the crane arms with no load attached to the crane.

The results from the lifting test are presented in Figure 6.2.

The orientation of the lower arm and the reference signal are shown in Figure 6.2a and it can be
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observed that the lower arm managed to reach the final reference position, but was not accurately
able to follow the desired path. The actuator motor needed to draw a current of about −5.5A,
Figure 6.2d, in order to overcome static friction, which explains why the orientation lags behind
the path at the five seconds mark. However, once static friction was overcome, the arm managed
to catch up to the reference signal. The same result can also be observed from the tracking error,
Figure 6.2c, that shows a large deviation at five seconds.

The upper arm was able to follow the reference signal without large errors. The largest tracking
error was around 0.7◦ and can be observed in Figure 6.2c, right after the reference signal was
initialized. The upper actuator did not need to draw the same amount of current as the lower,
peaking at −1A in order to overcome static friction.

The noise characteristics of the sensors can be observed in the actuator current setpoint, Figure
6.2d, and the tracking error, Figure 6.2c. This is why the tracking error does not converge
perfectly to zero.

In summary, the control law was able to lift both arms simultaneously, following a ramp refer-
ence signal. The lower arm lagged slightly behind due the amount of current needed to over-
come static friction, but once moving it caught up with reference signal.
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Lowering

The objective of the lowering test was to observe the control law’s performance when position-
ing the crane arms at an orientation beneath their initial position. During this test the grav-
itational forces on the arms and actuators aided the motions of the system, meaning that the
actuators should draw less current to overcome static friction. It was essential to observe that
the orientation stabilized at the reference without significantly overshooting.
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(c) Absolute value of the tracking error.
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Figure 6.3: Lab results from lowering the crane arms with no load attached to the crane.

The results from the lowering test are presented in Figure 6.3.

When comparing the motion of the lower arm with the lifting test, it can be seen that static
friction was overcome faster and by using lower current. This is because the gravitational force
on the actuators aided the motion. However, it can also be observed that the lower actuator
overshot the desired reference by 2.5◦ and that the integral term used about 20 seconds to correct
the error, which again overshot the reference. The final correction can be seen at 50 seconds
where lower arm finally reached the desired orientation
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This result, together with the results from the lifting test, shows an aspect of the lower actuator
that has not been included in the simulation model or control law. Namely, its friction profile,
which is highly dependent upon which direction the actuator is moving. When being lowered a
current of 3A is needed to overcome static friction, as opposed to around −5A when lifting.

This was most likely the reason why the integral term used 40 seconds to correct the deviation
and the response can be made faster by increasing the integral gain. However, this could lead
to larger overshoots. Another solution is to reset the integral term whenever it crosses the
reference, thereby reducing the build-up time.

The upper actuator had no problems with following the reference signal and its tracking error is
mostly caused by measurement noise.

In summary, the control law was able to lower both arms simultaneously, following a ramp
reference signal. The lower arm overshot the reference, but the integral term removed the
deviation in about 50 seconds. The response can most likely by improving by retuning the
control law.
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Sine Tracking

In the last test, the upper arm was made to follow a sine shaped reference signal. The purpose
was to test the controller with a wave-like reference signal that may be used when performing
heave compensation. One of the design requirements of the crane, from (Gyberg, 2017), is that
the crane tip should be able to follow a the motions induced by a scaled down sea state.

The reference signal was given by

θ3,d = −55 + 5 sin(πt) (6.1)
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(a) Joint orientation vs. reference signal. The reference
is initiated at approximatly 0.6 seconds.
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(b) Joint velocities.
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Figure 6.4: Lab results from performing heave compensation with the upper arm with no load attached
to the crane.

The results of the sine tracking test is shown in Figure 6.4.
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The lower arm was kept fixed for the duration of this test since the crane is design to perform
heave compensation with the upper arm. The orientation of the upper arm is shown in Figure
6.2a and it can be observed that it managed to follow the reference signal with a small delay.
Meaning that the response is slightly out of phase from the reference.

By comparing the actuator currents with the simulation of the same scenario, Figure 4.4d, it
can be observed that larger currents were used in the physical system. This is because the self
locking property of the actuators were not modelled in the simulation, meaning that the arm
cannot be lowered by simply reducing the current. The current must be reversed in order to
counter the self-locking property.

The tracking error, Figure 6.2c, is also larger than in the simulations, Figure 4.4d, because the
arm lags behind the reference signal.

A a summary, the lowering, lifting and heave compensation tests without load has shown that
the control law is able to position the crane at a desired reference, and to follow a shine shaped
reference signal with some delay. It has been observed that the friction profile of the lower
actuator is highly dependent upon its direction and that large currents are needed to lift the
lower arm. In the next section, the same tests will be repeated with a load attached to the crane.
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6.2.2 Tests With Load

The seconds series of tests were run with a load of 6kg attached to the crane and suspended
0.5m from the crane tip. The wire parameters are given in Table 6.4. The objective of these
tests were to evaluate the control law’s performance when the crane had to lift, lower or perform
heave compensation with an attached load.

Lifting
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(a) Joint orientation and orientation reference signal. θ2
is the lower arm of the crane and θ3 the upper.
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(b) Joint velocities of the lower and upper arms.
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(c) Error between joint orientation and reference.
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Figure 6.5: Lab results from lifting the crane arms with a load of 6kg attached to the crane.

Figure 6.5 shows the result of the lifting test with a 6kg attached to the crane.

It can be observed from Figure 6.5a that the lower actuator was not able to follow the desired
reference. The actuator was able to reach an orientation of 45◦ before stopping. Comparing
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with Figure 6.2d, showing motor currents, shows that the control law demanded maximum
motor current −7A. This means that the electric motor was not able to provide enough force to
overcome the static friction of the actuator.

The upper actuator had no problems with following the reference, but overshot the desired
reference by approximately 2◦. However, the integral term was able to remove the deviation on
about 15 seconds.

As a summary, the lower actuator is not able to lift a load of 6kg when using a wire with a
diameter of 1.7mm. The response can not be improved by tuning the control law since the
current drawn by the lower motor reached its saturation value without moving the actuator. The
cause may be either the friction profile of the actuator or the diameter of the wire and the tests
should be run again with a thicker wire.
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Lowering

The lifting test showed that the control law was not able to lift the crane arms with a load of
6kg. However, it is expected that it will be possible to lower the crane arms, since, in this case,
the load will assist in overcoming static friction.
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(a) Joint orientation vs. reference signal. The reference
is initiated at approximatly 0.6 seconds.
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(b) Joint velocities.
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(c) Error between joint orientation and reference.
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(d) Motor current setpoints and integral term.

Figure 6.6: Lab results from lowering the crane arms with a load of 6kg attached to the crane.

Sine Tracking

The last test evaluated to control law’s performance when trying to perform heave compensation
with the upper arm. The same reference signal as for the no load test (6.1) was used.
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(a) Joint orientation vs. reference signal. The reference
is initiated at approximatly 0.6 seconds.
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(b) Joint velocities.
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(c) Error between joint orientation and reference.
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(d) Motor current setpoints and integral term.

Figure 6.7: Lab results from performing heave compensation with the upper arm with a load of 6kg
attached to the crane.

Results from the sine tracking test are presented in Figure 6.7.

The results are similar to the sine tracking without the load, Figure 6.4. The orientation of
the upper arm, Figure 6.7a, was able to follow the reference signal, slightly out of phase. The
tracking error, Figure 6.5c, is slightly larger than the no load test, Figure 6.4c, peaking at 4 + ◦.

It is unexpected that the control law outputs a sinusoidal current for the lower actuator, Figure
4.4d, since the lower arm should be fixed. However, the current do not exceed values necessary
to overcome static friction, and the arm remains fixed. If the integral gain is increased, the lower
arm will most likely start moving as well. This may hint to some errors the integral state, in the
implementation of the control law or that the tuning could be improved. For instance, the gains
for the lower arm may be increased to dampen the effect of the integral state.

In summary, the control law is able to perform heave compensation with the upper arm with a
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6kg load. The response lags behind the reference signal, but the response can most likely be
improved by better tuning.

6.3 Chapter Summary

This chapter has presented the results of testing the control law for positioning the crane joints,
designed in Section 4.1, with the crane lab that was presented in Section 1.1 and Chapter 5. The
tests made the crane follow a ramp signal for lifting and lowering the arms simultaneously and
a sine shaped reference in order to test a heave compensation like scenario. The test were first
run with no load attached to the crane and then with a weight of 6kg.

The no load tests revealed that the control law was able to lift and lower the crane arms and
make the upper arm follow a sine shaped reference. The integration term was able to remove
constant deviations caused by gravity, but used considerable time to reach a values able to lift
the lower arm. This was most likely due to the friction profile of the lower actuator, it required
a current of about −5.5A to overcome static friction during lifting operations.

The load tests revealed that the crane was not able to lift a load of 6kg with a wire with diameter
1.7mm. The control law saturated the current of the lower actuator without being able to move
the arm. In addition, when lowering the arms, a significant increase in the gyrscope noise was
observed. The noise was especially prominent for the lower arm gyroscope and may have been
induced by the load’s pendulum motions or by vibrations in the crane’s foundation. However,
since the amplified noise was only observed when lowering the arm with an attached load, it is
most likely due to pendulum motions.
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Chapter 7
Conclusion and Further Work

This thesis has presented the derivation of simulation models for a knuckleboom crane and its
winch system. The simulation models have been used to design control laws for positioning the
orientation of the crane joints and for softly landing its cargo. The control law for positioning
the crane has been implemented and tested in a new crane lab at the department of marine
technology. As part of this process the lab has been improved with a new set of sensors, filters
and hands-on control systems. Due to delays in the lab, it has not been time to test the soft
landing controller.

The crane simulation model has been based on the physical crane in the lab and was derived
using Lagrangian mechanics and modelling procedures for robotic manipulators developed by
(Spong et al., 2006). The model was derived by treating the crane as a system of linked rigid
bodies and includes the weight of the actuators, but not their dynamics. In addition, friction in
the crane joints have been assumed to be negligible. The load of the crane has been modelled
as a weight acting on the tip of the crane and is assumed constant during crane operations.

A control law for positioning the base, lower and upper arms of the knuckleboom crane has been
designed. It has been based upon the simulation model of the crane and designed by using the
non-linear, recursive backstepping method. The method has produced a global asymptotically
stable control law with integral action. Simulating the control law with the crane dynamics
has shown that it was able to stabilize the model to a desired reference. The simulations were
run with 16kg attached to the crane tip and consisted of following a ramp reference signal for
lifting and lowering the arms and performing heave compensation by following a sine shaped
reference.

The control law has been implemented on the PLC in the crane lab and tested with the physical
knuckleboom crane. Two series of tests have been run, with and without a load attached to the
crane tip. Both series consisted of a lowering, lifting and heave compensation like test. During
the lowering and lifting tests, the crane was made to follow a ramp signal and for the heave
compensation, a sine shaped reference signal.

The tests without load showed that the crane was able to follow the lowering and lifting ramp
signals and the sine shaped reference. The integral term was able to remove deviations caused
by gravity when lifting the crane arms. When lowering the arms, it caused the lower actuator to
overshoot the desired reference by approximately 2◦, and it used about 40 seconds to completely
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remove the deviation. During the heave compensation like test, the lower arm was kept fixed,
and the upper managed to follow the sine reference, with a slight delay.

The response of the no-load tests can most likely be improved by finding better tuning parame-
ters for the control law. However, the deviation that was experienced during lowering was most
likely caused by the dynamics of the lower actuator. The lower motor must draw currents of
about 5A in order to overcome static friction. This means that the integral term had to reverse
after overshooting the reference. Of course, the integral tuning constant can be increased to
decrease the recovery time, but this could lead to larger overshoots. An improvement, could be
to reset the integral term whenever the lower arm orientation crosses the reference.

Lab tests with an attached load revealed that the lower actuator was not able to lift a 6kg weight,
using a wire with a diameter of 1.7mm. The motor drew maximum current, 7A, but was not able
to overcome the static friction of the actuator. It was possible to lift the arm slightly by manually
controlling the crane and initialising a downwards motion that was quickly reversed. Thereby
starting the lifting operation with dynamic friction, however, the motion quickly slowed down
and the procedure had to be repeated to further lift the arm.

There may be many reasons for the lower actuator’s incapability of lifting a load. The result
was unexpected since the crane has been designed for loads up to 16kg and should therefore
be able to easily lift 6kg. It could be that the small wire diameter caused extra load on the
lower arm, thereby increasing its resistance. It could also be that the actuator dynamics are
significant enough to be included in the simulation model. The upper actuator did not display
any problems with either lifting or lowering the attached load. It managed to follow both the
lifting and lowering reference signals with good accuracy.

In addition, gyroscopes and accelerometers have been added to the marine crane lab and the
winch system has been completed. A simple hands on control for the winch has been imple-
mented, where the winch speed is controlled by a joystick. A Kalman and low-pass filter has
been designed and tuned in order to remove noise from the sensor measurements and estimate
gyro bias. The filters provided good performance when being used with the control laws.

However, pendulum motions of the load were induced when lowering both arms simultaneously.
The motions caused excessive noise in the gyroscope measurements, especially for the gyro
placed at the lower arm. This means that the filters are vulnerable to vibrations caused by
the load or other external sources. The crane is currently placed on a concrete block with
rubber feet, which may also have contributed to vibrations during the operations. However, the
excessive noise was only observed with an attached load.

The winch has been modelled as an electric DC motor, whose mechanical side is modelled at
the winch reel. The equations developed by (Skjong. and Pedersen, 2014) has been used to
estimate the diameter and inertia of the winch reel, since these parameters are functions of the
amount of wire on the reel.

The winch model has been used to design a control law for softly landing the crane’s cargo.
Soft landing has been defined as a tracking problem, as developed by (Skjetne et al., 2004),
where the control objective is to make the system output follow a defined path and velocity
profile. The definition of the velocity profile is the essence of the soft landing problem as it will
determine the velocity of the load. It has been chosen such that the load is quickly brought to
full speed until a certain point in the path is reached, then a slow velocity phase is initiated.
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Simulation results of the soft landing control law has shown that the winch model is able to fol-
low the defined velocity profile with a maximum speed of 0.5m s−1, while following a straight
line path. However, due to delays, it has not been time to implement and test the control law in
the crane lab.

Delays have been caused by unforeseen problems with the lab. The problems have occurred
since the lab is currently in a prototype phase and at the start of this thesis, there were no
infrastructure for implementing and testing control laws. This meant that most functions for
filtering and processing the PLC’s I/O had to be written and that a lot of time was used to test
whether the implemented functions behaved as intended.

Other delays were caused by already existing sensors and equipment. For instance, the stop
sensors placed at the ends of both actuators were not reliable during the experiments. Several
times the actuators ran past the stop position, crashing into the end piece of the actuator housing.
Therefore, a lot of time was used to open the actuators and manually screw them back into
position. Sometimes the sensors did not register the actuator screw and did therefore not provide
a stop signal. The unreliability could be due to some programming errors in the controller code,
but this only explains the cases when the actuators ran past the sensors even when the stop signal
was registered.

However, the delays and challenges have provided valuable experience and provided new areas
of improvement of the lab.

7.1 Further Work

It is recommended that a model study of the actuators are undertaken. Especially the friction
profile of the lower actuator should be determined. This will make it possible to construct
an accurate dynamic model of the actuators, which can be added to the simulation model of
the crane and included in the position control law. Tests should be run with a thicker wire to
determine whether the wire diameter caused the poor response of the lower actuator.

The soft landing controller should be implemented and tested in the lab. The simulation re-
sults are promising, however, a parameter study of the lab winch should be performed to more
accurately determine its friction, transmission and weight properties. After the soft landing
controller has been tested an effort should be made to combine the crane and winch dynamics
to try and achieve soft landing by controlling the winch and crane arms simultaneously.

If the crane is to be placed on a barge and tested in the ocean basin, a simulation model estimat-
ing interconnect crane-vessel dynamics should be developed. An approach for developing such
models can be found in (Rokseth et al., 2016).

When preparing the lab for the experiments, the Bachmann controller ran out of I/O channels.
Therefore, additional modules should be procured in order to accommodate more sensors and
electronics. As of now, the complete winch system cannot be run simultaneously with the crane
position controller. Which does not include the gyroscope and accelerometer placed at the base.
In addition, the gyroscope that was defective upon delivery should be replaced and fitted to the
crane base.

87



It is suggested that optical, rotary encoders are installed in the crane joints in order to measure
absolute angular position. This will provide an extension to the lab’s sensors and allow for more
accurate filtering and sensor fusions.

The stop sensors should be more permanently integrated in the actuator housing, as opposed
to being glued as they were during the work of this thesis. It is also suggested that some
mechanical damping mechanism is installed in the actuators ends, in order to act as an extra
safeguard should the stop sensor fail. This will stop the actuators from jamming if they run past
the stop sensors.

7.2 Conclusion

In conclusion, most of the goals established in Section 1.3 has been accomplished. Simulation
models of the knuckleboom crane and winch in the marine crane lab has been derived. Control
laws for positioning the joints orientation of the crane and softly landing its cargo has been
designed and proven stable. The position control law has been tested in the lab and was able to
position an unloaded crane. Tests with an attached load has shown that the actuator dynamics
and parameters warrants further study. The proposed extensions to the lab has been done by
adding additional sensors, designing sensor filter and finishing the implementation of the winch.
The filters have shown to perform well for the experiments that were done. Due to delays, it has
not been time to test the soft landing controller in the lab.
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Appendix A
Matlab Source Code

This appendix presents the source code of the Matlab scripts that were used to generate and
initialize the simulations models of the knuckleboom crane, winch, position control law and
soft landing control law.

A.1 Crane Simulation Model and Control Law

c l e a r
%% D e f i n i n g Symbol ic V a r i a b l e s
syms t g
syms t h e t a 1 ( t ) t h e t a 2 ( t ) t h e t a 3 ( t )
syms q1 q2 q3
syms dq1 dq2 dq3
syms ddq1 ddq2 ddq3

syms a b c h r s u w o p n k zcm1
syms L1 L2

syms I1x I1y I 1 z I2x I2y I 2 z I3x I3y I 3 z
syms I4x I4y I 4 z I5x I5y I 5 z

syms m1 m2 m3 m4 m5 mLoad

syms Fa1 Fa2

syms e1 e2 e3
syms q 1 r e f q 2 r e f q 3 r e f

q = [ q1 ; q2 ; q3 ] ;
dq = [ dq1 ; dq2 ; dq3 ] ;
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I1 = [ I1x 0 0 ; 0 I1y 0 ; 0 0 I 1 z ] ;
I2 = [ I2x 0 0 ; 0 I2y 0 ; 0 0 I 2 z ] ;
I3 = [ I3x 0 0 ; 0 I3y 0 ; 0 0 I 3 z ] ;
I4 = [ I4x 0 0 ; 0 I4y 0 ; 0 0 I 4 z ] ;
I5 = [ I5x 0 0 ; 0 I5y 0 ; 0 0 I 5 z ] ;

%% A c t u a t o r a n g l e s
d1 = a s i n ( ( h + s i n ( q2 ) ∗b −cos ( q2 ) ∗u ) / ( s q r t ( ( cos ( q2 ) ∗b + s i n ( q2 )
∗u −a ) ˆ2 +( h + s i n ( q2 ) ∗b − cos ( q2 ) ∗u ) ˆ 2 ) ) ) ;

my2 = p i + q3 − a s i n ( s / ( s q r t ( c ˆ2 + s ˆ 2 ) ) ) − a s i n ( r / ( s q r t ( r ˆ2 +
( L1 − w) ˆ 2 ) ) ) ;

v = s q r t ( r ˆ2 + ( L1 − w) ˆ 2 ) ;
cm = s q r t ( c ˆ2 + s ˆ 2 ) ;

d2 = p i + q2 + q3 − a s i n ( s / cm ) − acos ( ( cos ( my2 ) ∗v − cm ) / ( s q r t ( v
ˆ2 + cmˆ2 − 2∗v∗cm∗ cos ( my2 ) ) ) ) ;

%% T r a n s f o r m a t i o n m a t r i c e s
Rz = [ cos ( q1 ) −s i n ( q1 ) 0 ; . . .

s i n ( q1 ) cos ( q1 ) 0 ;
0 0 1 ] ;

Ry1 = [ cos ( q2 ) 0 s i n ( q2 ) ; . . .
0 1 0 ; . . .
−s i n ( q2 ) 0 cos ( q2 ) ] ;

Ry2 = [ cos ( q3 ) 0 s i n ( q3 ) ; . . .
0 1 0 ; . . .
−s i n ( q3 ) 0 cos ( q3 ) ] ;

Ra1 = [ cos ( d1 ) 0 s i n ( d1 ) ; . . .
0 1 0 ; . . .
−s i n ( d1 ) 0 cos ( d1 ) ] ;

Ra2 = [ cos ( d2 ) 0 s i n ( d2 ) ; . . .
0 1 0 ; . . .
−s i n ( d2 ) 0 cos ( d2 ) ] ;

R1 0 = Rz ;
R2 0 = Ry1∗Rz ;
R3 0 = Ry2∗Ry1∗Rz ;
R3 0 = s i m p l i f y ( R3 0 ) ;
R4 0 = Ra1∗Rz ;
R5 0 = Ra2∗Rz ;
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R0 1 = t r a n s p o s e ( R1 0 ) ;
R0 2 = t r a n s p o s e ( R2 0 ) ;
R0 3 = t r a n s p o s e ( R3 0 ) ;
R0 4 = t r a n s p o s e ( R4 0 ) ;
R0 5 = t r a n s p o s e ( R5 0 ) ;

%% I n e r t i a and Mass M a t r i c e s
I1 = R0 1∗ I1 ∗ t r a n s p o s e ( R0 1 ) ;
I2 = R0 2∗ I2 ∗ t r a n s p o s e ( R0 2 ) ;
I3 = R0 3∗ I3 ∗ t r a n s p o s e ( R0 3 ) ;
I4 = R0 4∗ I4 ∗ t r a n s p o s e ( R0 4 ) ;
I5 = R0 5∗ I5 ∗ t r a n s p o s e ( R0 5 ) ;

M1 = b l k d i a g ( eye ( 3 ) ∗m1 , I1 ) ;
M2 = b l k d i a g ( eye ( 3 ) ∗m2 , I2 ) ;
M3 = b l k d i a g ( eye ( 3 ) ∗m3 , I3 ) ;
M4 = b l k d i a g ( eye ( 3 ) ∗m4 , I4 ) ;
M5 = b l k d i a g ( eye ( 3 ) ∗m5 , I5 ) ;

%% P o s i t i o n o f R e f e r e n c e Frames and Mass C e n t e r s
r 1 0 = R0 1 ∗ [ 0 ; 0 ; 0 ] ;
r 2 0 = r 1 0 + R0 1 ∗ [ 0 ; 0 ; h ] ;
r 3 0 = r 2 0 + R0 2 ∗ [ L1 ; 0 ; 0 ] ;
r 4 0 = r 1 0 + R0 1 ∗ [ a ; 0 ; 0 ] ;
r 5 0 = r 2 0 + R0 2 ∗ [w;0;− r ] ;

r c g 1 0 = r 1 0 + R0 1 ∗ [ 0 ; 0 ; zcm1 ] ;
r c g 2 0 = r 2 0 + R0 2 ∗ [ k ; 0 ; 0 ] ;
r c g 3 0 = r 3 0 + R0 3 ∗ [ n ; 0 ; 0 ] ;
r c g 4 0 = r 4 0 + R0 4 ∗ [ p ; 0 ; 0 ] ;
r c g 5 0 = r 5 0 + R0 5 ∗ [ o ; 0 ; 0 ] ;

r t p 0 = r 3 0 + R0 3 ∗ [ L2 ; 0 ; 0 ] ;

%% Angula r V e l o c i t i e s
w1 = R0 1 ∗ [ 0 ; 0 ; 1 ] ;
w2 = R0 2 ∗ [ 0 ; 1 ; 0 ] ;
w3 = R0 3 ∗ [ 0 ; 1 ; 0 ] ;

%% J a c o b i a n s
J1 = [ c r o s s ( w1 , r c g 1 0 ) , z e r o s ( 3 , 2 ) ; w1 z e r o s ( 3 , 2 ) ] ;
J2 = [ c r o s s ( w1 , r c g 2 0 ) , c r o s s ( w2 , r c g 2 0 − r 2 0 ) , z e r o s ( 3 , 1 ) ;

w1 w2 z e r o s ( 3 , 1 ) ] ;
J3 = [ c r o s s ( w1 , r c g 3 0 ) , c r o s s ( w2 , r c g 3 0 − r 2 0 ) , c r o s s ( w3 ,

r c g 3 0 − r 3 0 ) ; w1 w2 w3 ] ;
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J4 = [ c r o s s ( w1 , r c g 4 0 ) , c r o s s ( w2 , r c g 4 0 − r 2 0 ) , z e r o s ( 3 , 1 ) ;
w1 w2 z e r o s ( 3 , 1 ) ] ;

J5 = [ c r o s s ( w1 , r c g 5 0 ) , c r o s s ( w2 , r c g 5 0 − r 2 0 ) , c r o s s ( w3 ,
r c g 5 0 − r 3 0 ) ; w1 w2 w3 ] ;

%% G e n e r a l i z e d Load
F l o a d = [0 ;0 ; − g∗mLoad ] ;
r l o a d = r 3 0 + R0 3 ∗ [ L2 ; 0 ; 0 ] ;
Q load = [ t r a n s p o s e ( F l o a d ) ∗ d i f f ( r l o a d , q1 ) ; t r a n s p o s e ( F l o a d ) ∗

d i f f ( r l o a d , q2 ) ; t r a n s p o s e ( F l o a d ) ∗ d i f f ( r l o a d , q3 ) ] ;

%% A c t u a t o r F o r c e s
F a1 = R0 1∗Fa1 ∗ [ cos ( d1 ) ; 0 ; s i n ( d1 ) ] ;
F a2 = R0 1∗Fa2 ∗ [ cos ( d2 ) ; 0 ; s i n ( d2 ) ] ;

r a 1 1 = r 4 0 ;
r a 1 2 = r 2 0 + R0 2 ∗ [ b ;0;−u ] ;

r a 2 1 = r 2 0 + R0 2 ∗ [w;0;− r ] ;
r a 2 2 = r 3 0 + R0 3 ∗ [ c ;0;− s ] ;

Q a11 = [ t r a n s p o s e ( F a1 ) ∗ d i f f ( r a11 , q1 ) ; t r a n s p o s e ( F a1 ) ∗ d i f f (
r a11 , q2 ) ; t r a n s p o s e ( F a1 ) ∗ d i f f ( r a11 , q3 ) ] ;

Q a12 = [ t r a n s p o s e ( F a1 ) ∗ d i f f ( r a12 , q1 ) ; t r a n s p o s e ( F a1 ) ∗ d i f f (
r a12 , q2 ) ; t r a n s p o s e ( F a1 ) ∗ d i f f ( r a12 , q3 ) ] ;

Q a21 = [ t r a n s p o s e ( F a2 ) ∗ d i f f ( r a21 , q1 ) ; t r a n s p o s e ( F a2 ) ∗ d i f f (
r a21 , q2 ) ; t r a n s p o s e ( F a2 ) ∗ d i f f ( r a21 , q3 ) ] ;

Q a22 = [ t r a n s p o s e ( F a2 ) ∗ d i f f ( r a22 , q1 ) ; t r a n s p o s e ( F a2 ) ∗ d i f f (
r a22 , q2 ) ; t r a n s p o s e ( F a2 ) ∗ d i f f ( r a22 , q3 ) ] ;

%% G e n e r a l i z e d I n e r t i a , C o r i o l i s and G r a v i t y M a t r i c e s
D = t r a n s p o s e ( J1 ) ∗M1∗ J1 + t r a n s p o s e ( J2 ) ∗M2∗ J2 + t r a n s p o s e ( J3 ) ∗

M3∗ J3 + t r a n s p o s e ( J4 ) ∗M4∗ J4 + t r a n s p o s e ( J5 ) ∗M5∗ J5 ;
D = s i m p l i f y (D) ;

C = c o r i o l i s M a t r i x (D, q , dq ) ;

V = −g∗m1∗ r c g 1 0 ( 3 ) − g∗m2∗ r c g 2 0 ( 3 ) − g∗m3∗ r c g 3 0 ( 3 ) − g∗m4∗
r c g 4 0 ( 3 ) − g∗m5∗ r c g 5 0 ( 3 ) ;

V = s i m p l i f y (V) ;

G = −[ d i f f (V, q1 ) ; d i f f (V, q2 ) ; d i f f (V, q3 ) ] ;

%% Numer ica l P a r a m e t e r Va lues
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m num = [ 6 7 , 2 3 . 3 , 5 . 5 , 8 . 5 , 6 . 8 ] ; %m1 m2 m3 m4 m5
I1 num = [ 0 , 0 , 1 . 8 ] ;
I2 num = [0 9 . 2 9 . 4 ] ;
I3 num = [ 0 , 1 . 6 , 1 . 5 ] ;
I4 num = [ 0 , 2 . 3 , 2 . 3 ] ;
I5 num = [ 0 , 1 . 1 , 1 . 1 ] ;

g num = 9 . 8 1 ;

a r m l e n g t h = [ 1 . 2 5 1 , 0 . 9 6 ] ; %L1 L2
d i m e n s i o n s = [ 0 . 4 6 1 , 0 . 1 , 0 . 4 9 5 , 0 . 4 6 1 , 0 . 1 9 , 0 . 1 4 0 , 0 . 1 4 0 ,

0 . 1 1 8 , 0 . 5 3 3 , 0 . 4 2 0 , 0 . 3 2 4 , 0 . 4 4 0 , −0 .023] ; % b , a , h , w, c , u , r ,
s , k , n , o , p , zcm1

%% I n s e r t i n g Numer ica l Va lues
D = subs (D, [m1 m2 m3 m4 m5 ] , m num ) ;
D = subs (D, [ I1x , I1y , I1z , I2x , I2y , I2z , I3x , I3y , I3z , I4x , I4y , I4z ,

I5x , I5y , I 5 z ] , [ I1 num , I2 num , I3 num , I4 num , I5 num ] ) ;
D = subs (D , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;
D = subs (D , [ L1 , L2 ] , a r m l e n g t h ) ;

C = subs (C , [m1 m2 m3 m4 m5 ] , m num ) ;
C = subs (C , [ I1x , I1y , I1z , I2x , I2y , I2z , I3x , I3y , I3z , I4x , I4y , I4z ,

I5x , I5y , I 5 z ] , [ I1 num , I2 num , I3 num , I4 num , I5 num ] ) ;
C = subs (C , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;
C = subs (C , [ L1 , L2 ] , a r m l e n g t h ) ;

G = subs (G, [m1 m2 m3 m4 m5 ] , m num ) ;
G = subs (G, [ I1x , I1y , I1z , I2x , I2y , I2z , I3x , I3y , I3z , I4x , I4y , I4z ,

I5x , I5y , I 5 z ] , [ I1 num , I2 num , I3 num , I4 num , I5 num ] ) ;
G = subs (G , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;
G = subs (G , [ L1 , L2 ] , a r m l e n g t h ) ;

V = subs (V, [m1 m2 m3 m4 m5 ] , m num ) ;
V = subs (V, [ I1x , I1y , I1z , I2x , I2y , I2z , I3x , I3y , I3z , I4x , I4y , I4z ,

I5x , I5y , I 5 z ] , [ I1 num , I2 num , I3 num , I4 num , I5 num ] ) ;
V = subs (V , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;
V = subs (V , [ L1 , L2 ] , a r m l e n g t h ) ;
V = subs (V, g , g num ) ;

r t p 0 = subs ( r t p 0 , [ L1 , L2 , h ] , [ a r m l e n g t h 0 . 4 9 5 ] ) ;

Q load = subs ( Q load , [ L1 , L2 , h ] , [ a r m l e n g t h , 0 . 4 9 5 ] ) ;

Q a11 = subs ( Q a11 , [ L1 , L2 ] , a r m l e n g t h ) ;
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Q a11 = subs ( Q a11 , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;

Q a12 = subs ( Q a12 , [ L1 , L2 ] , a r m l e n g t h ) ;
Q a12 = subs ( Q a12 , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;

Q a21 = subs ( Q a21 , [ L1 , L2 ] , a r m l e n g t h ) ;
Q a21 = subs ( Q a21 , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;

Q a22 = subs ( Q a22 , [ L1 , L2 ] , a r m l e n g t h ) ;
Q a22 = subs ( Q a22 , [ b , a , h , w, c , u , r , s , k , n , o , p , zcm1 ] , d i m e n s i o n s ) ;

Q a1 = −Q a11 + Q a12 ;
Q a2 = −Q a21 + Q a22 ;

Q = [ [ 1 ; z e r o s ( 2 , 1 ) ] d i f f ( Q a1 , Fa1 ) , d i f f ( Q a2 , Fa2 ) ] ;

%% B a c k s t e p p i n g C o n t r o l l e r
syms qd 1 qd 2 qd 3
syms p11 p12 p13
syms p21 p22 p23
syms a11 a12 a13
syms a21 a22 a23
syms x i
syms K i
P 1 = d i a g ( [ p11 ; p12 ; p13 ] ) ;
P 2 = d i a g ( [ p21 ; p22 ; p23 ] ) ;
A 1 = d i a g ( [ a11 ; a12 ; a13 ] ) ;
A 2 = d i a g ( [ a21 ; a22 ; a23 ] ) ;

q d = [ qd 1 ; qd 2 ; qd 3 ] ;

z 1 = q − q d ;

a l p h a 1 = A 1∗ z 1 ;

z 2 = dq − a l p h a 1 ;
a l p h a 1 d o t = A 1∗dq ;

D inv = D\ eye ( 3 ) ;

u 0 = ( D inv ∗C∗ ( a l p h a 1 + z 2 ) + a l p h a 1 d o t − i n v ( P 2 ) ∗P 1∗ z 1
+ A 2∗ z 2 ) ;

x i d o t = t r a n s p o s e ( D inv ∗ d i f f ( ( Q load − G) , g ) ) ∗ t r a n s p o s e (
t r a n s p o s e ( z 2 ) ∗P 2 ) ;

u = (Q\ eye ( 3 ) ) ∗ (D∗ u 0 − d i f f ( ( Q load − G) , g ) ∗K i ∗ x i ) ;
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G = subs (G, g , g num ) ;
Q load = subs ( Q load , g , g num ) ;

%% S i mu l i n k F u n c t i o n Blocks
m a t l a b F u n c t i o n B l o c k ( ’ Crane / B a c k s t e p p i n g C o n t r o l l e r / u 1 ’ , u ) ;
m a t l a b F u n c t i o n B l o c k ( ’ Crane / B a c k s t e p p i n g C o n t r o l l e r / x i d o t ’ ,

x i d o t ) ;

% System Dynamics
m a t l a b F u n c t i o n B l o c k ( ’ Crane / Crane Dynamics /M’ ,D) ;
m a t l a b F u n c t i o n B l o c k ( ’ Crane / Crane Dynamics / C’ ,C) ;
m a t l a b F u n c t i o n B l o c k ( ’ Crane / Crane Dynamics /G’ ,G) ;
m a t l a b F u n c t i o n B l o c k ( ’ Crane / T i p m o t i o n / t i p ’ , r t p 0 ) ;

% A c t u a t o r C o n n e c t i o n s
m a t l a b F u n c t i o n B l o c k ( ’ Crane / Load / Q load ’ , Q load ) ;
m a t l a b F u n c t i o n B l o c k ( ’ Crane / A c t u a t o r 1 / Q a1 ’ , Q a1 ) ;
m a t l a b F u n c t i o n B l o c k ( ’ Crane / A c t u a t o r 2 / Q a2 ’ , Q a2 ) ;
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A.2 Crane Simulation Model Initialization Script

c l e a r

%% J o i n t Angle L i m i t a t i o n s and I n i t i a l C o n d i t i o n s
q l o w e r l i m = [− i n f ; 3 0 . 2 ; −90 .5 ] .∗ p i / 1 8 0 ;
q u p p e r l i m = [ i n f ; 8 6 ; −24 .4 ] .∗ p i / 1 8 0 ;

q 0 = [ 0 ; 4 5∗ p i / 1 8 0 ; −45∗ p i / 1 8 0 ] ;

%% Tuning P a r a m e t e r s
Ki = 400 ;
mLoad = 1 6 ;

P 1 = eye ( 3 ) ∗ 0 . 0 1 ;
P 2 = eye ( 3 ) ∗ 0 . 0 1 ;
A 1 = l y a p ( P 1 , eye ( 3 ) ) ;
A 2 = l y a p ( P 2 , eye ( 3 ) ) ;

p11 = P 1 ( 1 , 1 ) ;
p12 = P 1 ( 2 , 2 ) ;
p13 = P 1 ( 3 , 3 ) ;

p21 = P 2 ( 1 , 1 ) ;
p22 = P 2 ( 2 , 2 ) ;
p23 = P 2 ( 3 , 3 ) ;

a11 = A 1 ( 1 , 1 ) ;
a12 = A 1 ( 2 , 2 ) ;
a13 = A 1 ( 3 , 3 ) ;

a21 = A 2 ( 1 , 1 ) ;
a22 = A 2 ( 2 , 2 ) ;
a23 = A 2 ( 3 , 3 ) ;

%% P a r a m e t e r s f o r e s t i m a t i n g motor c u r r e n t
e t a 1 = ( 1 3 / 7 4 ) ∗ 1 / ( 1 8 6 ∗ 0 . 8 6 ) ;
e t a 2 = 0 . 0 1 / ( 2 ∗ p i ) ∗ 1 / ( 2 6 ∗ 0 . 8 3 ) ;
e t a 3 = 1 / ( 1 5 . 7 ∗ 0 . 8 3 ) ∗ 0 . 0 1 / ( 2 ∗ p i ) ;

Kt 1 = 6 0 . 4 e−3;
Kt 2 = 6 0 . 4 e−3;
Kt 3 = 6 0 . 4 e−3;
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A.3 Winch Simulation Model and Control Law

c l e a r

syms L L do t i V
syms Dw wr fw Dr0
syms mree l mf lange mL D r f u l l rhow
syms Kt e t a t g ph i1 ph i2 ph i3 etaw Kv La Ra

%%D e f i n i n g Winch Model
D = s q r t ( L∗Dwˆ 2 / ( wr∗fw ) + Dr0 ˆ 2 ) ;
DL = d i f f (D, L ) ;

I = 0 . 5∗ mree l ∗Dr0 ˆ 2 / 4 + mf lange ∗D r f u l l ˆ 2 / 4 + 0 . 5∗ rhow∗L∗ (Dˆ2 −
Dr0 ˆ 2 ) / 4 ;

L ddo t = (DL/D) ∗L do t ˆ2 + (D/ ( 2 ∗ I ) ) ∗Kt∗ e t a t ∗ i − Dˆ 2 / ( 4 ∗ I ) ∗g∗mL/
exp ( ph i1 + ph i2 + ph i3 ) ;

i d o t = −etaw ∗Kv∗D∗L do t / ( La ∗2) − Ra∗ i / La + V/ La ;

%% S o f t Landing C o n t r o l l e r
syms zs Lt Larms
syms s s d o t ( s ) bp Ld ( s ) Lds Ldss
syms a1 a2 a3
syms p1 p2 p3
syms Lds

z1 = L − Ld ;

a l p h a 1 = d i f f ( Ld , s ) ∗ s d o t + a1∗ z1 ;
a l p h a 1 d o t = d i f f ( a lpha1 , L ) ∗L do t + d i f f ( a lpha1 , s ) ∗ s d o t ;

z2 = L do t − a l p h a 1 ;
a l p h a 2 = (2∗ I / ( D) ) ∗ ( a2∗ z2 − z2∗p1 / p2 − DL / ( D∗Kt∗ e t a t ) ∗ ( z2 +

a l p h a 1 ) ˆ2 + a l p h a 1 d o t ) ;

a l p h a 2 d o t = d i f f ( a lpha2 , L ) ∗L do t + d i f f ( a lpha2 , L do t ) ∗L ddo t +
d i f f ( a lpha2 , s ) ∗ s d o t ;

z3 = i − a l p h a 2 ;

V = La ∗ ( ( Ra / La ) ∗ ( z3 + a l p h a 2 ) + etaw ∗Kv∗D/ ( 2 ∗ La ) ∗ ( z2 + a l p h a 1 )
− z2∗p2 ∗ (D/ ( 2 ∗ I ∗p3 ) ) ∗Kt∗ e t a t + a3∗ z3 + a l p h a 2 d o t ) ;
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%% Nunmer ica l Va lues
Kt num = 5 3 . 4 e−3;
Kv num = 2∗ p i / ( 1 7 9∗6 0 ) ;
Ra num = 0 . 3 0 7 ;
La num = 0 .188 e−3;

e t a t n u m = 2∗43 ;
etaw num = 1 / ( 2 ∗ 4 3 ) ;
Dr0 num = 0 . 0 4 ;
D r f u l l n u m = 0 . 1 ;

mreel num = 1 ;
mflange num = 1 ;

fw num = 0 . 9 0 9 6 ;
wr num = 0 . 1 3 ;
Dw num = 0 . 0 0 1 7 ;
rhow num = 100 ;

g num = 9 . 8 1 ;
phi1 num = p i / 4 ;
phi2 num = p i / 4 ;
phi3 num = p i / 4 ;

%% S u b s t i t u t i n g Numer ica l Va lues
D = subs (D, [ Dr0 , D r f u l l , e t a t , e taw ] , [ Dr0 num , Drfu l l num ,

e t a t num , etaw num ] ) ;
D = subs (D, [ fw wr , Dw] , [ fw num , wr num , Dw num ] ) ;

I = subs ( I , [ Dr0 , D r f u l l , e t a t , e taw ] , [ Dr0 num , Drfu l l num ,
e t a t num , etaw num ] ) ;

I = subs ( I , [ fw wr , Dw] , [ fw num , wr num , Dw num ] ) ;
I = subs ( I , [ mreel , mflange , rhow ] , [ mreel num , mflange num ,

rhow num ] ) ;

L ddo t = subs ( L ddot , [ Dr0 , D r f u l l , e t a t , e taw ] , [ Dr0 num ,
Drfu l l num , e t a t num , etaw num ] ) ;

L ddo t = subs ( L ddot , [ fw wr , Dw] , [ fw num , wr num , Dw num ] ) ;
L ddo t = subs ( L ddot , [ mreel , mflange , rhow ] , [ mreel num ,

mflange num , rhow num ] ) ;
L ddo t = subs ( L ddot , [ Kt , Kv , Ra , La ] , [ Kt num , Kv num , Ra num

, La num ] ) ;
L ddo t = subs ( L ddot , [ g , phi1 , phi2 , ph i3 ] , [ g num , phi1 num ,

phi2 num , phi3 num ] ) ;
L ddo t = s i m p l i f y ( L ddo t ) ;

100



i d o t = subs ( i d o t , [ Dr0 , D r f u l l , e t a t , e taw ] , [ Dr0 num ,
Drfu l l num , e t a t num , etaw num ] ) ;

i d o t = subs ( i d o t , [ fw wr , Dw] , [ fw num , wr num , Dw num ] ) ;
i d o t = subs ( i d o t , [ mreel , mflange , rhow ] , [ mreel num ,

mflange num , rhow num ] ) ;
i d o t = subs ( i d o t , [ Kt , Kv , Ra , La ] , [ Kt num , Kv num , Ra num ,

La num ] ) ;
i d o t = subs ( i d o t , [ g , phi1 , phi2 , ph i3 ] , [ g num , phi1 num ,

phi2 num , phi3 num ] ) ;
i d o t = s i m p l i f y ( i d o t ) ;

V = subs (V, [ Dr0 , D r f u l l , e t a t , e taw ] , [ Dr0 num , Drfu l l num ,
e t a t num , etaw num ] ) ;

V = subs (V, [ fw wr , Dw] , [ fw num , wr num , Dw num ] ) ;
V = subs (V, [ mreel , mflange , rhow ] , [ mreel num , mflange num ,

rhow num ] ) ;
V = subs (V, [ Kt , Kv , Ra , La ] , [ Kt num , Kv num , Ra num , La num ] )

;
V = subs (V, [ g , phi1 , phi2 , ph i3 ] , [ g num , phi1 num , phi2 num ,

phi3 num ] ) ;
V = s i m p l i f y (V) ;

syms v vds vds s
syms yd yds yds s

V = subs (V, [ s d o t , d i f f ( s d o t , s ) , d i f f ( s d o t , s , s ) ] , [ v , vds , vds s
] ) ;

V = subs (V, [ Ld , d i f f ( Ld , s ) , d i f f ( Ld , s , s ) ] , [ yd , yds , yds s ] ) ;
V = V( s ) ;

%% G e n e r a t i n g Model
m a t l a b F u n c t i o n B l o c k ( ’ winch / I ’ , I ) ;
m a t l a b F u n c t i o n B l o c k ( ’ winch /D’ ,D) ;
m a t l a b F u n c t i o n B l o c k ( ’ winch / Winch / L ddot ’ , L ddo t ) ;
m a t l a b F u n c t i o n B l o c k ( ’ winch / Winch / i d o t ’ , i d o t ) ;
m a t l a b F u n c t i o n B l o c k ( ’ winch / Cont ro l Law / S o f t L a n d i n g ’ ,V) ;
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A.4 Winch Simulation Model Initialization Script

p1 = 0 . 0 1 ;
p2 = 0 . 1 ;
p3 = 0 . 0 0 0 1 ;
q1 = 1 ;
q2 = 1 ;
q3 = 1 ;
mL = 1 6 ;
L 0 = 100 ;

p = [ p1 ; p2 ; p3 ] ;
mu = 0 ;
yds = −1;
uMax = 0 . 5 ;
Lw0 = 1 0 ;

s1 = 0 ;
s2 = 3 ;
a1 = 0 . 0 1 ;
a2 = 0 . 0 1 ;

a = [ l y a p ( p1 , q1 ) ; l y a p ( p2 , q2 ) ; l y a p ( p3 , q3 ) ] ;
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A.5 Soft Landing Speed Profile

f u n c t i o n [ v , vds , vds s ] = s p e e d p r o f i l e ( s , uMax , yds , s1 , s2 , a1 ,
a2 , a3 )

i f ( s >= s1 ) && s < ( s1 + 4∗ ( s2 − s1 ) / 5 )
v = uMax / ( p i ∗ abs ( yds ) ) ∗ a t a n ( ( s − s1 − a1 ) / a2 ) + uMax / ( 2 ∗ abs

( yds ) ) ;
vds = uMax / ( p i ∗ abs ( yds ) ) ∗1 / ( 1 + ( ( s − s1 −a1 ) / a2 ) ˆ 2 ) ;
vds s = uMax / ( p i ∗ abs ( yds ) ) ∗ (2∗ a1 − 2∗ s + 2∗ s1 ) / ( a2 ˆ 2 ∗ ( ( a1 −

s + s1 ) ˆ 2 / a2 ˆ2 + 1) ˆ 2 ) ;
e l s e i f ( s >= ( s1 + 4∗ ( s2 − s1 ) / 5 ) ) && s <= s2

v = uMax / ( p i ∗ abs ( yds ) ) ∗ a t a n ( ( s2 − a3 − s ) / a2 ) + uMax / ( 2 ∗ abs
( yds ) ) ;

vds = uMax / ( p i ∗ abs ( yds ) ) ∗−1/(1+ ( ( s2 − a3 −s ) / a2 ) ˆ 2 ) ;
vds s = uMax / ( p i ∗ abs ( yds ) ) ∗ ( a3 + 2∗ s − 2∗ s2 ) / ( a2 ˆ 2∗ ( ( 1 0∗ a1 +

s − s2 ) ˆ 2 / a2 ˆ2 + 1) ˆ 2 ) ;
e l s e

v = uMax / ( p i ∗ abs ( yds ) ) ∗ a t a n ( ( s2 − a3 − s ) / a2 ) + uMax / ( 2 ∗ abs (
yds ) ) ;

vds = uMax / ( p i ∗ abs ( yds ) ) ∗−1/(1+ ( ( s2 − a3 −s ) / a2 ) ˆ 2 ) ;
vds s = uMax / ( p i ∗ abs ( yds ) ) ∗ ( a3 + 2∗ s − 2∗ s2 ) / ( a2 ˆ 2∗ ( ( 1 0∗ a1 +

s − s2 ) ˆ 2 / a2 ˆ2 + 1) ˆ 2 ) ;
end
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