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Abstract

We study the regularity of the p-Poisson equation

∆pu = h, h ∈ Lq

in the plane, when p ≥ 2. In the case 2 < q < ∞ we obtain the sharp
Hölder exponent for the gradient. In the case q = ∞ we come arbitrary
close to the sharp exponent.
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1 Introduction

In the plane, the theory of many partial differential equations is more explicit
than in higher dimensions. Sometimes the theory of quasiregular mappings
and other devices are available, see [Ber58]. Our object is to study the so-
called p-Poisson equation

∆pv (x, y) ≡ div(|∇v(x, y)|p−2∇v(x, y)) = h(x, y), (1)
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in a bounded domain Ω ⊂ R2, where p ≥ 2. This equation arises as the
Euler-Lagrange equation of the variational integral∫∫

Ω

(
1

p
|∇v|p + hv

)
dxdy.

We are interested in the sharp Hölder exponent for the gradient of the solu-
tion. The weak solutions are known to be of class C1,κ

loc for some κ ∈ (0, 1).
We record a well known result:

Proposition 1. Suppose that v is a solution of (1) in the disc B2R and that
h ∈ Lq(B2R) for some fixed 2 < q ≤ ∞. Then v ∈ C1,κ

loc (B2R), for some
κ = κ(p, q). More exactly, we have the estimate

‖v‖C1,κ(BR) ≤ A,

where A = A(p, q, R, ‖h‖Lq(B2R), ‖v‖L∞(B2R)).

Here and in the rest of the paper, we use the notation

[u]Cs,D =

∥∥∥∥u(x)− u(y)

|x− y|s

∥∥∥∥
L∞(D×D)

, ‖u‖Cs(D) = [u]Cs(D) + ‖u‖L∞(D)

and
‖u‖C1,s(D) = ‖∇u‖Cs(D) + ‖u‖L∞(D)

when s ∈ (0, 1) and is D a bounded domain. The proof of the above theorem
can for q =∞ be found in [Tol84] and for 2 < q <∞ in [Lie93].

In the homogeneous case, ∆pv = 0, the optimal Hölder exponent

κ =
1

6

(
p

p− 1
+

√
1 +

14

p− 1
+

1

(p− 1)2

)
>

1

p− 1
, (p > 2)

has been determined by Iwaniec and Manfredi in [IM89]. They used the
hodograph transform. However, the “torsional creep equation”

∆pv = 2,

has a weak solution given by

v(x) =
p− 1

p
|x|

p
p−1 ,
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so that |∇v(x)| = |x|
1
p−1 , exhibiting the fact that, in general one must have

κ ≤ 1
p−1

. The example

v(x) =

∫ |x|
0

(
ρ1− 2

q

(ln ρ)
2
q

) 1
p−1

dρ

solves the p-Poisson equation with the right-hand side in Lq, showing that,

also κ ≤ 1− 2
q

p−1
. Our result determines the optimal Hölder exponent: it is given

by
1− 2

q

p−1
for 1 < q <∞ and is arbitrary close to 1/(p− 1) for q =∞.

Theorem 2. Suppose ∆pv = h in Ω and that h ∈ Lq(Ω), where 2 < q ≤ ∞.

Then ∇v ∈ Cβ−1
loc (Ω) for any β < p

p−1
when q =∞ and for β =

p− 2
q

p−1
if q <∞.

In particular, for any compact K ⊂ Ω, we have the estimate

[∇v]Cβ−1(K) ≤ C(q, p, β,K) max

(
‖h‖

1
p−1

Lq(Ω), ‖v‖L∞(Ω)

)
.

Our method of proof is based on universal estimates for the p-Laplace
equation ∆pu = 0, which come from the fact that the complex gradient,
f = ux − iuy is a quasiregular mapping. A balanced perturbation of the
p-Poisson equation leads to the p-Laplace equation at the limit so that the
universal estimates can be employed.

Acknowledgments: This work was written at the Mittag-Leffler Institute.
The topic was inspired by a talk of J. M. Urbano concerning [TU13]. G.
Mingione has informed us that alternative proofs can be extracted from var-
ious estimates in [KM13]. The authors are also truly grateful to J. Lewis for
reading the proof at an early stage.

2 Auxiliary results for the homogeneous equa-

tion ∆pu = 0

It was proved by Bojarski and Iwaniec that the complex gradient

f = ux − iuy

of a solution to the p-Laplace equation ∆pu = 0 is a quasiregular mapping;
see [BI87]. We need the following consequence of this fundamental result.
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Lemma 3. Suppose u ∈ C(B2R)∩W 1,p(B2R) is a solution to ∆pu = 0 in the
disc B2R. Then there is a constant Λ = Λ(p) such that

[∇u]Cα(BR) ≤
Λ

R1+α
‖u‖L∞(B2R),

where α = 1
p−1

.

It is of utmost importance that the same Λ will do for all solutions u. We
sketch the proof of this known result.

Sketch of the proof. First, by [BI87] the complex gradient f(z), which be-
longs to W 1,2

loc (Ω) and is continuous, satisfies the inequality∣∣∣∂f
∂z̄

∣∣∣ ≤ p− 2

p

∣∣∣∂f
∂z

∣∣∣,
a.e. in the Ω. Here it is decisive that (p − 2)/p < 1. As in the proof of
Lemma 12.1 in [GT01] page it follows that the Dirichlet integral

I(r) =

∫∫
Br

|Df |2dxdy

satisfies the inequality

I(r) ≤ I(r0)

(
r

r0

)2α

, α =
1

p− 1
,

when r ≤ r0 < 2R. Then Morrey’s lemma implies

|f(z2)− f(z1)| ≤ 2

(
|z2 − z1|

r0

)α√
1

α
I(r0),

when |z2 − z1| ≤ r0 < 2R; see Lemma 12.2 in [GT01].
We also have the standard estimate

I(r) =

∫∫
Br

|Df |2dxdy ≤ C1

r2

∫∫
B 3r

4

|f |2dxdy =
C1

r2

∫∫
B 3r

4

|∇u|2dxdy, (2)
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for a quasiregular mapping, sometimes called Mikljukow’s inequality. There
C1 depends on the dilatation 1/(p− 1), hence only on p. Now 1

r2

∫∫
B 3r

4

|∇u|2dxdy

 1
2

≤

 1

r2

∫∫
B 3r

4

|∇u|pdxdy

 2
p

≤
(
C2

rp+2

∫∫
B2r

|u|pdxdy
) 2

p

≤ C
2
p

2

r2
‖u‖L∞(B2r), (3)

by Hölder’s inequality and a standard Caccioppoli estimate. The new con-
stant C2 depends only on p. Combining (2) and (3) we arrive at

|f(z2)− f(z1)| ≤ Λ

r0

(
|z2 − z1|

r0

)α
‖u‖L∞(B2r0 ),

whenever |z2 − z1| ≤ r0 < R. The various constants have been joined in Λ.
This is the desired result.

The above lemma has the following immediate consequence.

Corollary 4 (Liouville). If ∆pu = 0 in R2 and if

‖u‖L∞(BRj ) ≤ CR1+α−ε
j , α =

1

p− 1

for some fixed constant C, some subsequence Rj → ∞ and ε > 0, then ∇u
must be constant.

3 The oscillation of the solution when the

gradient is small

In this chapter we assume
∆pv = h in B1

where
‖h‖Lq(B1) ≤ 1, q > 2, ‖v‖L∞(B1) ≤ 1.

In this normalized situation, our aim is to prove the following estimate:
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Proposition 5. If q = ∞ let β be any number less than p/(p − 1) and if
q <∞ let

β =
p− 2

q

p− 1
.

If the inequality |∇v(x)| ≤ rβ−1, where r < 1/4, hold at some fixed point
x ∈ B1/2, then

Sr = sup
y∈Br(x)

|v(y)− v(x)| ≤ Crβ,

where C = C(p, q, β).

The difficulty is that the gradient constraint is only assumed at the point
x, otherwise result would be trivial. The proof is based on rescaled functions
and a blow-up argument. At the end, the limiting function turns out to be
a solution of the p-Laplace equation in the whole plane, which satisfies the
Liouville theorem. We begin with the key lemma.

Lemma 6. Assume the hypotheses of Proposition 5. Then there is a constant
C = C(p, q, β) such that for every fixed r ∈ (0, 1/4), at least one of the
following alternatives hold:

(i) Sr = sup
y∈Br(x)

|v(y)− v(x)| ≤ Crβ,

(ii) There is an integer k ≥ 1 such that 2kr < 1/4 and Sr ≤ 2−kβS2kr.

Proof. The proof is indirect, starting from the antithesis that no constant
C will ever do. Thus, giving C the successive values j = 1, 2, 3, . . ., we can
select solutions vj, radii rj < 1/4 and points xj ∈ B1/4 so that the three
conditions

1) Srj = sup
y∈Brj (xj)

|vj(y)− vj(xj)| ≥ jrβj ,

2) Srj ≥ 2−kβS2krj for all integers k such that 2krj < 1/4, or rj ≥ 1
8
,

3) |∇vj(xj)| ≤ rβ−1
j ,

all hold. By 1) and the assumed bound on vj, we have jrβj ≤ 2, which forces
rj → 0, as j →∞. This excludes the alternative rj ≥ 1/8 in 2). Notice that
2) is perfectly designed for iteration. We define the rescaled functions

Vj(x) =
vj(x+ rjx)− vj(xj)

Srj
, j = 1, 2, 3, . . .
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which, as we will see, solve a p-Poisson equation. By the chain rule

∇Vj(x) =
rj
Srj
∇vj(y)

∣∣∣
y=xj+rjx

.

The following properties are now immediate:

Vj(0) = 0,

|∇Vj(0)| = rj
Srj
|∇vj(xj)| ≤

rβj
Srj
≤ 1

j
→ 0,

supB
2k
|Vj| =

S
2krj

Srj
≤ 2kβ, for all integers k such that 2k < 1

4rj
,

∆pVj(x) =
rpj

Sp−1
rj

h(xj + rjx) ≡ Hj(x), when |x| < 1
4rj
.

In particular, the rescaled functions vj solve a p-Poisson equation in the disc
|x| < 1/(4rj), which is expanding to the whole plane as j → ∞. Note that
the use of second derivatives can be totally avoided if one just writes the
equations in their weak form, using test functions under the integral sign.

Recall that 2 < q ≤ ∞. We need to treat the case q = ∞ separately in
the following formal computations.

Case q =∞: Now p− β(p− 1) > 0 and thus for any R > 0 we have

‖∆pVj‖L∞(BR) =
rpj

Sp−1
rj

‖h‖L∞(BRrj (xj))

≤
rpj

(jrβj )p−1
→ 0,

as j →∞, since sooner or later Rrj < 1/2, as required.

Case q <∞: Now q(p− β(p− 1))− 2 > 0 and

‖∆pVj‖qLq(BR) =
rpqj

S
(p−1)q
rj

∫
BR

|h(xj + rjx)|q dx

=
rpq−2
j

S
(p−1)q
rj

∫
BRrj (xj)

|h(y)|q dy ≤
rpq−2
j

S
(p−1)q
rj

≤
r
q(p−β(p−1)−2
j

(j)(p−1)q
→ 0,
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as j →∞, since as above, Rrj < 1/2 sooner or later, as required.
Now we go back the equation for the Vjs:

∆pVj = Hj.

In order to be able to pass to the limit as j →∞, we need some compactness.
We recall Proposition 1 in the introduction. It yields an estimate of the form

‖Vj‖C1,κ(BR
2

) ≤ A(p, q, R, ‖h‖Lq(BR), ‖v‖L∞(BR)), (4)

for some κ = κ(p, q). Recall also that

‖Vj‖L∞(B
2k

) ≤ 2βk

and that
‖Hj‖Lq(BR) < 1, for j large enough.

Thus, the bound in (4) is uniform in j. It follows that, up to extracting
a subsequence, Vj converges locally uniformly in C1,κ/2(R2) to some limit
function V . The limit function inherits many properties. We obtain that

V (0) = 0, |∇V (0)| = 0,
supB

2k
|V | ≤ 2kβ for all integers k ≥ 1,

supB1
|V | = 1,

∆pV = 0 in R2.

Thus, V is an entire solution of the p-Laplace equation. Since in any case,
β < p/(p−1), it follows from Liouville’s theorem (Corollary 4) with Rj = 2j,
that ∇V reduces to a constant. Thus, V is an affine function and since
V (0) = |∇V (0)| = 0, we must have v ≡ 0. This contradicts the fact that

sup
B1

|V | = 1.

We conclude that the antithesis is false. The lemma follows.

In order to prove Proposition 5 we have to show that the first alternative
in Lemma 6 is always valid.

Proof of Proposition 5. If alternative (i) holds for all r < 1/4 we are done.
If not, we pick a radius r for which, by alternative (ii),

Sr ≤ 2−k1βS2k1r,
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for some integer k1 with 2k1r < 1/4. If (i) holds for S2k1r, then

Sr ≤ 2−k1βS2k1r ≤ 2−k1βC(2k1r)β = Crβ

and again we are done. If not, we continue with

S2k1r ≤ 2−k2βS2k22k1r,

where 2k12k1r < 1/4. Iterating this as long as alternative (i) fails, we obtain

Sr ≤ 2−knβ · · · 2−k1βS2kn ···2k1r = 2−(k1+···kn)βS2k1+···knr,

where 2k1+···knr < 1/4. Since every kj ≥ 1, the procedure must stop after a
finite number of steps (depending on r), at its latest when

2k1+···knr ≥ 1

8
.

Then the alternative (i) holds for the radius 2k1+···knr and so, finally,

Sr ≤ 2−(k1+···kn)βS2k1+···knr ≤ 2−(k1+···kn)βC(2k1+···knr)β = Crβ.

This proves the claim.

4 Proof of the main theorem

We are now ready to give the proof of our main result. The idea is that
when the gradient is small, we can apply the result of the previous section to
obtain the desired estimates. On the other hand, when the gradient is large,
then the equation becomes non-degenerate so that classical results apply. We
first prove the following intermediate result.

Theorem 7. Assume that

∆pv = h in B1, ‖v‖L∞(B1) ≤ 1, ‖h‖Lq(B1) ≤ 1,

for some q > 2. If q = ∞ let β be any number less than p/(p − 1) and if
q <∞ let

β =
p− 2

q

p− 1
.

Then for any x ∈ B1/2,

sup
Br(x)

|v(y)− v(x)− (y − x) · ∇v(x)| ≤ Lrβ, (5)

when 0 < r < 1/4 and where L = L(p, q, β).
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Proof. Fix x ∈ B1/2. If |∇v(x)| ≤ rβ−1 ≤
(

1
4

)β−1
, then by Proposition 5,

sup
Br(x)

|v(y)− v(x)− (y − x) · ∇v(x)| ≤ Crβ + r · rβ−1 = (C + 1)rβ, (6)

where C depends on p, q and β. We need the estimate also for rβ−1 < |∇v(x)|.
To this end, let ρ = |∇v(x)|

1
β−1 > 0 and

w(y) =
v(x+ ρy)− v(x)

ρβ
,

so that ∇w(y) = ρ1−β∇v(x+ ρy) and

sup
B1

|w(y)| = ρ−β sup
Bρ(x)

|v(y)− v(x)| ≤ C,

since ρ is the largest radius for which Proposition 5 is available. Moreover,
by calculation

‖∆pw‖Lq(B1) ≤ ‖h‖Lq(Bρ(x))ρ
p−β(p−1)− 2

q ≤ 1.

Hence, we can once more apply Proposition 1 to obtain the estimate

‖w‖C1,κ(B 1
2

) ≤ A = A(p, q, β), κ = κ(p, q).

Therefore we can fix a small radius τ = τ(p, q, β) so that

osc
Bτ

(∇w) <
1

2
.

Since
|∇w(0)| = ρ1−β |∇v(x)|︸ ︷︷ ︸

ρβ−1

= 1,

we must have |∇w(y)| > 1/2 in Bτ . Thus w solves an equation which is
uniformly elliptic with uniformly Hölder continuous coefficients in Bτ . Re-
call also that |w| ≤ C in B1 and hence also in Bτ . Then, from Theorem
9.11 in [GT01] and the Sobolev embedding, there are uniform C1,γ-estimates
available for w with γ = 1− 2/q, so that

‖w‖C1,γ(Bτ/2) ≤ B = B(p, q, β).
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In particular

sup
y∈Bs
|w(y)− w(0)− (y − 0) · ∇w(0)| ≤ B|y − 0|2−

2
q ,

when s < τ/2. In terms of v this means

sup
y∈Bs

∣∣∣v(x+ ρy)− v(x)

ρβ
− y · ρ1−β∇v(x)

∣∣∣ ≤ B|y|2−
2
q .

Write z = x+ ρy and recall that β ≤ 2− 2
q
. Then the above estimate reads

sup
z∈Bsρ

|v(z)− v(x)− (z − x) · ∇v(x)| ≤ B|y|2−
2
q ρβ = B(sρ)βs2−β− 2

q ≤ B(sρ)β,

whenever
r = sρ <

τρ

2
=
τ

2
|∇v(x)|

1
β−1 .

This is the same as saying that

sup
z∈Br
|v(z)− v(x)− (z − x) · ∇v(x)| ≤ B|y|2−

2
q ρβ = B(sρ)βs2−β− 2

q ≤ Brβ,

whenever
r <

τρ

2
=
τ

2
|∇v(x)|

1
β−1 .

It remains to verify estimate (5) also when r is in the interval τρ/2 < r < ρ.
This is easy. Take such an r. Then estimate (6) is available for the radius ρ
and we obtain

sup
z∈Br
|v(z)− v(x)− (z − x) · ∇v(x)| ≤ sup

z∈Bρ
|v(z)− v(x)− (z − x) · ∇v(x)|

≤ (C + 1)rβ
(ρ
r

)β
≤
(

2

τ

)β
(C + 1)rβ.

Hence, we finally obtain the estimate (5) for all r < 1/4 with the constant

L = max

(
C + 1, (C + 1)

(
2

τ

)β
, B

)
,

which only depends on p, q and β.
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We now conclude the proof of our main result.

Proof of Theorem 2. It is enough to prove the result for Ω = B1 and K =
B1/4. By the normalization

ṽ =
v

max

(
‖v‖L∞(B1), ‖h‖

1
p−1

Lq(B1)

) ,
we see that ṽ satisfies the assumption of Theorem 7. Hence, the esimate (5)
holds true for ṽ. Then the same estimate holds true for v with L replaced by

Lmax

(
‖v‖L∞(B1), ‖h‖

1
p−1

Lq(B1)

)
.

This implies immediately

|∇v(x)−∇v(y)| ≤ 2Lmax

(
‖v‖L∞(B1), ‖h‖

1
p−1

Lq(B1)

)
|x− y|β−1,

whenever x, y ∈ B1/4. This ends the proof of the theorem.
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